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RIDE QUALITY SEI;SITIVITY TO

SAS CONTROL LAW AND TO KINDLING QUALITY VARIATIONS

Philip A. Roberts, David K. Schmidt, and Robert L. Swaim
School of Aeronautics and Astronautics, Purdue University

SUMMARY

(0

State variable techniques are used to generate the vertical and lateral
f-:selage loadfactor distributions for the B-52H and B-1 bombers. A compari-
son of loadfactors resulting from cruise turbulence excitation, reveals that 	 n M
rive quality is not significently improved by increasing the control law	 ba{
complexity. Control law complexity is meant to imply rate feedback in com-
parison to full state feedback. Handling quality parameterizations show N
pronounced effects on the loadfactors. Finally variations under, relaxed
static stability implementation show that the ride quality is degraded by 	 ^!
restoration of handling characteristics to original short period values. U

INTRODUCTION	 HHM O
 u.	 Hw •y

H co
Control Configured Vehicle (CCV) technology is ,just beginning to affect 	 m ° uthe design, and manufacture of aerospace vehicles. Current technology 	 N;= pp,

craft like the F-16 fighter and B-1 bomber are utilizing concepts such as-
ride control, Relaxed Static Stability (RSS), and fatigue reduction. Future 	 0464 a
vehicles will certainly incorporate active controls, maneuver load control, 	 H m
direct lift, flutter mode control, and gust load alleviation concepts'.- 
These future vehicles will be optimized under many manifalds to include Ride a 

EQu ality (RQ).	 -
W  FA •N

The objective of this	 cJ	 paper in to discuss the RQ trends-which large
flexible aircraft exhibit under various parameterizations of control laws 	 pa a a
and handling qualities. The information was generated as a data base for	 „ENO
research supported by NASA Dryden Flight Research Center under grant NSG
4003. The ultimate aim of the project is delineation of handling qualities 	 N opt
specifications  for highly flexible CCV vehicles. This paper contains a
summary of the assumptions and solution technique, a control law parameter- 	 $z H
ization review, a discussion of ride sensitivity to handling qualities, and a ka V 00
finally the RQ effects generated by implementing relaxed static stability 	 V to H
configurations.	
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A'	 Transpose of the A matrix 	 <'
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Man

C Mean aerodynamic -chord length

cg Center of gravity

E{	 } Expected value

HQ Handling Qualities

I Distance from cg along fuselage centerline, positive forwardx

t`
t Distance between the tail and wing-body aerodynamic centers

e N Loadfactor at a particular body station;
i

z'Y z'denotes vertical
y denotes lateral

rms Root mean square

k
RQ Ride Qualities

RSS Relaxed-static stability

S Wing planform area

St Tail planform area

Up Averaged Steady State Flight Velocity

u Control(s) vector; elevator, aileron, and/or rudder

V Tail volume coefficient

x State vector; usually associated with physical outputs in thfis
paper

a Perturbation angle of attack

9 Perturbation side slip angle

Damping value

n	 Scalar unit white noise

a	 Perturbation pitch angle

g,	 ith elastic mode generalized displacement

¢i (RY ) ith orthogonal elastic mode shape value at body station Z 

y	 Perturbation roll angle



Perturbation yaw angle

w	 Natural frequency

' PROBLEM FORMULATION

Equations of Motion for Flexible Vehicles
r

„.

r'Time domain representations for the flexible vehicles were decoupled
into longitudinal and lateral state variable formats. 	 The Gaussian white
noise representation of turbulence was modeled as a state vector system as 4
suggested in reference 1.	 The gust state vector was appended to the vehicle
state equations resulting in the familiar control form.(1).

x(t) = Ax(t) + Bu(t) + Gri(t)	 (1)

where:	 x	 (n+p) X, i

u	 'mX 1

n	 number of physical vehicle states -
' m	 number of controls

p	 number of gust states
a, 	 ( n+p ) X 1

A '	 '(u`+p.	 X (n+p) d

B	 (n+p	 X: ut

Loadfactor Expression

The major contributions to vertical and lateral loadfactors at cruise "t
conditions can be represented by equations ( 2a) and (2b).	 T w

KK

NZ (kx ,t) _ ^CUQ(e-a) + PO	 E 0i ( kx ) gi ]'	 (2a)
i=1 !

H

u Ny(Rx,t) _ [go -`U004) - A-	 ^ ^i (kx) gi 1	 (2b)
x

where:	 K is the number of elastic modes included in the model.

Throughout this paper the standard right hand stability axis system is
utilized with the x axis positive forward from the eg`as shown in figure 1. 2

The sign conventions for the vertical and side bending elements are
shown in figures 2 and 3. by

'

}

The loadfactor expressions can be reformulated as functions of the
physical state variables by simple substitution.

3
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xz (P X
,t) = P

z 
x
z (t)	 (3a)

I
-1

NY(Ax ,t) = Py xy (t)	 (3b)

the IX(n+p) row vectors, P	 are deterministic for a given vehicleZ,equation of motion set, specific gontrol, and specified gain value. 	 Equa-
tions (3) can be manipulated into a mean square value expression for the
loadfactor.

E(N2	 p	 E(XXI)	
P,	

(4)
zVy 	 zly	 z0y	 Z'y

Assuming a stationary, zero mean process for the state differential system
(1) leads to an algebraic matrix Riccati equation. 	 This equation can be
solved for the symmetric covariance matrix, E{xx l ).	 Utilizing one algorithm
suggested by Gelb in reference 2, convergence can be obtained within 35
seconds on a CDC 6500 for a 16xl6 Hiccati system. 	 A simple matrix multipli-
cation routine completes the solution utilizing equation (4).

Study Vehicle Descriptions and Flight Conditions

L The B-52H and B-1 were chosen for ttis study because they exemplify the
trend toward more elastic structures for future large vehicles. 	 The B-52,
and commercial derivatives thereof, was a member of the first generation of
elastic vehicles. 	 Since that era, improved structural design techniques and
composite materials have made possible vehicles like the highly plastic B-1.

The flight conditions were chosen because they represent cruise condi-
tions which are mission essential and because turbulence encounters at low
altitudes must be included in future design considerations.

The B-52H is used by the US Air Force as a long range bomber., It is
47.55 meters long and has a wing span of 56.4 meters. 	 Originally designed
as a high altitude bomber, it must now cope with penetration problems by
combined high/low altitude profiles. 	 Table 1 describes the flight condition
for the B-52H.

1

41 Mass = 158,75T kilograms	 (350,000 lbs.)
Mach = .55
Velocit

y = 185-56 meters/see	 (608.8 fps)
eg at 25% mean aerodynamic chord
Altitude - 609.6 meters	 (2000 ft)

TABLE 1:	 B-52H Flight Condition

The B-1 is currently being test flown in a major pre-production effort
by Rockwell International and the USAF. It is designed as the replacement
vehicle for the aging B-52 fleet. The advanced structures and integrated

I a

	 technology make this vehicle an outstanding example for loadfactor
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contributions due to elasticity.	 The overall length of the H-1 is 46
meters`.	 The reference wing span utilized at the flight condition in Table 2
is 41.8 meters.

Mass = 103,315 kilograms	 (227,770 lbs)
Mach = . 85
Velocity =289.4 meters /sec 	 (949.45 fps)
cg is at fuselage station 40.67 (meters)
Altitude = 30.48 meters	 (100 feet)

TABLE 2:	 B-1 Flight Condition

CONTROL LAW VARIATIONS
J

Both vehicles were modeled as stable, unaugmented systems in the
j

F - - vertical and lateral cases with the exception of the ' B-52H which required a,':
small roll subsidence mode stabilization before proceeding. 	 Each vehicle
model was theoretically modified utilizing pitch rate', yaw rate, pitch rate/

i pitch attitude, blended pitch rate with acceleration, and full state ,feed-
back control laws.	 No significant differences in RQ were generated by these
variations for identical (or nearly equivalent) handling quality values. z

It should be mentioned here thsa the B-1 Structural Mode Control System"
'tt was purposely not included or utilized because this study is involved with
P general control design, parameterizations and not the specific RQ optimize-

tion of the B-1.	 For both aircraft studies, only the primary control
surfaces (elevator, rudder, and aileron) were used for RQ determinations.

To establish a basis for comparison, the unaugmented vehicle load-
factors were computed for .3048 meter/sec (1 fps) rms (root mean square)
gust velocities.

Figure 4 depicts the loadfactor curves for the unaugmented B -52H.	 The.<
nearly linear loadfactors labeled "rigid body only" include all terms except
the summations in equations (2a) and (2b). 	 Hence any interactive rigid body
and elastic dynamics from the Riccati solution are included in this output.
The second line which has a more pronounced curvature includes all the modes
that were utilized in the model.	 For the B-52H at this flight condition,
the maximum elastic contribution to vertical loadfactors is about 15% of the
total.	 (The lateral fuselage modes used in this data were primarily aft-
body modes.	 Hence the rise in elastic effects near the tail.')

Figure 5 shows an impressive increase in the elastic contribution to
vertical loadfactors on the unaugmented B-l. 	 The discerning reader will

immediately note the changes in vertical scale in figures 4 and 5.	 The
different flight conditions and elastic contributions to ride on the
separate vehicles dictated these scale changes.
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' RQ SENSITIVITY TO HMLING ,CHARACTERISTICS

Under each control law studied, the gains were changed so that a range
4 - of handling characteristics and their resulting loadfactors -could be cata-

loged.	 The values used for the handling characteristics were restricted to
the acceptable `ranges ̀given in MIL SPEC 878511.-	 Hence the following
boundaries:
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It is important to reiterate at this juncture that the study goal was RQ
sensitivity to feasible controls, not the design of an optimal control for
either vehicle.

F	 Pitch Rate Feedback (B-52H)
^	 I

Figure 6 shows the perventage change in loadfactor for various handling
characteristics. The baseline In all these cases is the unaugmented vehicle
loadfactors from figures b or 5, whichever is appropriate. As shown, the
increase of damping and frequency for higher stabilizing feedback 'gains

r	 produced better RQ.
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Figure 6: Pitch Rate SAS Changes
I

Yaw Rate Feedback (B-1)

Figure 7 shows the loadfactor curves for the B-1 lateral dynamics.
Notice the effect is similar; increased damping produces better RQ.

I
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Blended Pitch Rate and Acceleration (CO ) (B-1)

Figure 8 shows the percentage changes in loadfactor under the C*

'
control policy with variations in handling characteristics. 	 Again the same

,
general trends appear.
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Full State Feedback (B-52H)

The trend expected by control experts would show that higher frequency
and higher damping beget better RQ. This expectation was validated using
full state feedback pole placing capacility. Figure 9 shows the results as
percentage changes in loadfactor compared to the unaugmented vehicle. The
forward fuselage percentage changes were distorted by relatively low baseline
loadractor values. Hence the higher damping/frequency loadfactor curves
represent better rides overall. The asterisk cases in fiWwe 9 deserve

\^Special mention. In these two cases the elastic mode damping was artifi-
cially increased through the elevator feedback control policy. Vote that
both cases generated appreciably worse RQ. This occurred because of the
increased elevator excitation of the rigid body parameters in equations (2).
Breakdowns of the elastic contributions to the loadfactors showed the three
elastic modes chosen for increased damping actually did 2ontribute less to
the rms loadfactor.

8-52H, MAW .65. 00 METERS

FULL STATE7

"6 30,00.

Is	 20	 215	 30	 35	 4a	 4s	 IMETERS).5	 .10
-30.00	 1	 1	 1	 1 ,

0.	 eba.	 "1	 1200.	 1500.	 teoo^	 ( INCHES)BODY STATION
J*	 I:ncraased	 J'.P"ns ' constdotel4of.,

Figure 9:	 B-52 Full State SAS

This result prompted a theoretical attempt to parametrically plot load^
factor versus frequency and damping. 	 Using a transfer function approach and
the Dryden power spectral density for Vertical gusts 9 J'he ioadfactor mean
square value was computed as an integral over the fr'e : ,^,u'ency domain.	 The

results support the numerical analysis shown in fi are 9.

e,
As frequency increases, the RQ gets better.,^^ 	 ikewise da mping value

excursions from the coupled elastic mode eigenvalue at constant frequency
will adversely affect the loadfactors.	 A numerical example was run for the
B-52H and is shown in figure 10 for two increased short period frequency
cases.	 The elastic mode increased damping was not included in these cases.
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RSLA.XI,'D STA'T'IC STABILITY (1185)

	

i
'No methods were used to simulate this effect on the study vehicles.

rirst the tail. volume coefficlent, 	 was reduced.

&	 S
t	 t

(5)
i	 c S

This h v.tis the effect of shifting the vehicle aerodynamic center toward the
center Uf gravity.	 Static stability is thereby reduced.. 	 The second method
involves an artificial eg shift toward the tail. 	 This is the more practical
of the two methods, as it has alreadybeen incorporated as a fuel transfer
or management activity on a test vehicle (CCV B-52).

Figure 11 shows the effect of RSS on vertical ride for the rigid body
B-52F vehicle.	 Essentially pitching moment effects are reduced until at1
neutral stability the loadfactors are constant and due only to the vertical

€ accelerations. , This would logically follow front 	 definition of the neu-
tral point.	 The question now arises, what rides are inauced by restoring
the original handling characteristics of the unaugmented vehicle with an -
active control system4 '	Figure 12 shows these results in terms of percent

i

loadfactor change. 	 c;-^reral the restoration resulted in degraded RQ.,''.,
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CONCLUSIONS

1.	 hide quality is particularly sensitive to the handling characteristics
specifications.

Except in optimizing a particular vehicle's control capabilities, ride
quality is not dependent ;n the type of ,:ontrol law chosen.

3.	 Relaxed Static Stability has a favorable effect on D-1 ride quality in
that less pitch acceleration mud/or velocity contribute to the loadfactor.

!,,	 Relaxed Static Stability with restored handling qualities generates
higher loadfactors on the N-52H and B-1 at the flight conditions studied.
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