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Abstract

This investigation is concerned with the dynamic syﬁthesis of a heli-
copter. The method of approach is a variation of the component-mode syn-
thesis in the sense that it regards the aircraft as an assemblage of inter-
connected substructures. The equations of motion a;e derived in general
form by means of the Lagrangian formulation in conjunction with an orderly

kinematical procedure that takes into account the superposition of motion

of various substructures, thus circumventing constraint problems.
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1. Introduction

This investigation is concerned with the development of a mathematical
mode1 capable of simulating the vibrational characteristics of a helicopter
in various flight regimes, such as hover and forward flight. The helicopter
represents a very complicated structure consisting;pf a given number of inter-
connected substructures. The object is to produce a mathematical formulation
which includes all the system dynamic characteristics and yet is not so cum-
bersome as to defy analysis.

The method of approach represents a variation of the component-mode
synthesis (Refs. 1 and 2) in the sense that it regards the aircraft as an
assemblage of interconnected substructures acting as a system. The various
substructures identified are the airframe, the transmission shaft, the main
rotor (consisting of the hub and the rotor blades), and the tail rotor (re-
garded ac a rigid fan). To ensure that the various substructures are acting
as parts of the whole structure, an orderly kinematical procedure is de-
veloped which takes into account automatically the superposition of motions.
This procedure does away with the question of constraints.

The approach based on the substructure concept has the advantage that
it permits a large measure of versatility in the mathematical modeling of
the substructures. For example, due to the complex configuration, the air-
frame is best represented by a discrete model. On the other hand, the trans-
mission shaft or a rotor blade can best be represented by a continuous model.
In the final synthesis, each of the substructures is simulated by only a
limited number of deqrees of freedom. To this end, one expresses the dis-
placements as a superposition of space-dependent modes multiplied by time-
dependent generalized coordinates. For the space-dependent functions or

vectors one must use rigid-body modes and deformation modes capable of des-



cribing the motion of the substructure with sufficient accuracy. This

Rayleigh-Ritz type approach permits the simulation of the aircraft by a dis-
crete system.

To derive the system equations of motion, it is desirable to use an
approach devoid of unnecessary complications. An approach fitting this
description is the Lagrangian approach which is ca;able of producing the
equations of motion of the system without the need of calculating constraint
forces acting at points connecting various substructures. To this end, one
must use a consistent kinematical representation to calculate the inertial
velocity of every mass point of the aircraft. Such a representation necessi-
tates the introduction of a number of reference frames associated with the

various substructures. The motion of these reference frames can be regarded

¢ as representing the rigid body motion, and the motion of a point relative to
the frames can be regarded as representing the elastic motion of the sub-

structure.

g R o BT A 0 ST, s

The Lagrangian approach requires the calculation of the kinetic energy,
the potential energy, and the nénconservative virtual work for the elastic
system. The potential energy is due to the structural elasticity and gravi-
tational forces. On the other hand, the nonconservative virtual work is due
minly to aerodynamic forces. A relatively complicated procedure is necessary
to transform the physical aerodynamic forces and torque into generalized
forces.

The equations of motion are nonlinear and their general solution is
beyond the state of the art. Fortunately, general solutions are not necessary,
and in fact may not even be very informative. Indeed, quite often the in-
terest 1ies in solutions in the neighborhood of certain particular solutions,
where the latter are generally known as trim solutions. Trim solutions of

special interest are those associated with hover and forward flight. To
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examine the motion in the neighborhood of trim solutions, it is necessary
to derive the so-called variational equations, which are really perturbation
equations about the trim.

In deriving variational equations, one must make certain simplifying
assumptions. These assumptions require a judgement as to the expected or-
der of magnitude of the various generalized coordiaates and system parameters.
Such a set of assumptions constitute a so-called ordering scheme and it
applies primarily to the main rotor.

The derivation of the variational equations implies an extremely large
number of matrix multiplications and differentiations with respect to the
state variables and time. In addition, it implies the selection from the
multitude of terms only those which the ordering scheme deems essential.
The magnitude of the task demands an efficient approach. To this end, a
procedure for the derivation of the variational equations by means of com-

puter manipulation is developed.



2. Generalized Coordinates and Velocities

We shall be concerned with the flight of a helicopter in the neighbor-

hood of a given point on the earth's surface, so that the gravitational
field can be regarded as uniform. It will prove convenient to introduce

a set of inertial axes XYZ with the origin at a po[pt 0 on the surface of
the earth, so that axes»X and Y are in the local horizontal plane and Z

is aligned with the local vertical, and measure the motion relative to this
inertial frame.

The mathematical formulation will be produced by regarding the heli-
copter as an assemblage of a given number of interconnected substructures.
This requires a set of kinematically consistent coordinates, in the sense
that the motion of one substructure must take into account the motion of
another. A kinematically consistent formulation can be obtained by des-
cribing the motion of the substructures independently and then imposing con-
straints guaranteeing that points shared by two substructures undergo the
same motion. It can also be obtained by means of an orderly kinematical
procedure taking into account automatically the superposition of motions.
For example, if the airframe, the transmission shaft, and the rotor are iden-
tified as different substructures, then the absolute motion of the rotor can
be regarded as a superposition of the motion of the airframe relative to the
inertial space, the motion of the transmission shaft relative to the air-
frame, and the motion of the rotor relative to the transmission shaft. This
procedure eliminates the need of constraint equations and is the one used
in this investigation.

To describe the motion of the airframe, it will prove advantageous to
introduce a set of afrframe body axes XaYAZA with the origin A at an arbi-

trary point in the undeformed airframe, so that x, is along the forward

4
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direction, zp is along the vertical, and Yp is normal to both so as to

form a right-hand system. Then the motion of the airframe can be des-
cribed in terms of the translation of the origin A, the rotation of the
airframe body axes XaYaZp relative to the inertial axes XYZ, and the elas-
tic motion of the airframe relative to XpYpAZp - The translation of A rela-
tive to XYZ is given simply by the position vector*;.:OA from O to A and

the absolute velocity vector QOA' They can be expressed in terms of the
column matrices {wy,} = [WOAwaAowAZ]T and {QOA} = [&OAXQOAYQOAZ]T’ res-
pectively, where the meaning of the vector components is obvious. On the
other hand, the rotation of axes XaYpAZA relative to XYZ is fully determined
by the matrix of direction cosines between these two sets of axes and by
the angular velocity vector of axes XpYaZa relative to the inertial space.
In defining the orientation of axes XaYaZa relative to axes XYZ, it is con-
venient to regard XpYpZp 25 2 triad originally coincident with axes XYZ and
moving relative to these axes. Then, the orientation of axes XaYpZA rela-
tive to axes XYZ can be obtained by means of three rotations: A, about Zps
Ay about Xpo and Ay about YA in that order (see Fig. 2). This permits us
to write the coordinate transformation from one set of axes to the other in

the compact matrix form
{rA} = [TAO]{R} (1)

where
{ra} = [x z ]T R} = [XY Z]T (2)
A A YA Zpd e
are position veci.»s and

[TA0] = [Xy][xx][xz] (33)

is the transformation matrix, in which



S,

ey

] 0 0 () 0 -s\ cA s\ 0

y y F4 Zz
[Ax] =0 e sal, [Ay] =10 1 01, [Az] =|-sx, e, 0
0 =Sh, Ay sAy 0 cxy 0 0 ]
(3b)

Note that Eqs. (3b) represent transformation matricgs defining the rotations
described above, in which sAx = sin Ays CA, = COS Xk. etc. Also from Fig. 2
it can be easily verified that the absolute angular velocity vector 2p»
which defines the angular velocity of axes Xp¥aZp relative to axes XYZ and
which is also equal to the relative anguiar velocity vector wps Can be

written in the matrix form

Ay} = {wy} = xz[xy][xx]{e3} + Ax[Ay]{e]} + Ay{ezl (4)
where
] 0 0
{e]} =<0, , {ez} =<1y , {e3} =<0 (5)
0 0 ]

are unit vectors written in matrix form.

Equation (4) gives {a,} fn terms of components along axes XAYAZp»
whereas {QoA} = [QOAXQOAYQOAZ]T is expressed in terms of inertial components.
However, there are equations requiring that {QOA} and {QA} be expressed in
terms of components along the same system of axes. It is often convenient
to write (QOA} in terms of components along axes XaYAZA® which can be done
by simply premultiplying {QOA) by the transformation matrix [TAO].

The elastic motion of the airframe requires first a definition of the
airframe itself. The major question is whether the power train, consisting
of the transmission assembly, the transmission shaft, and the contro)
1inkages, should be considered as part of the airframe or as a separate

subsystem. Moreover, there is the question of the tafl rotor. In view of
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the difficulties encountered in accounting properly for the flexibility of
the transmission shaft in airframe free-free modes, and because we desire
a formulation independent of the type of airfréme modes used, the trans-
missfon assembly and shaft will be treated as a separate elastic subsystem
connecting the ajrframe to the main rotor hub. As such, we will ignore the
mass of the transmission itself* and account for the transmission mount
flexibility by introducing two torsional springs at the base of the shaft
acting along orthogonal axes which are perpendicular to the shaft. The
flexibility of the transmission shaft itself will be described in terms of
two bending and one torsional displacement. The tail rotor will be re-
garded as a rigid fan, not part of the airframe, so that the airframe is
assumed to exclude the transmission, transmission shaft, control 1inkages,
and tail rotor. Note also that the control linkages are not being con-
sidered explicitly but only through their kinematical effects.

Next, let us consider any arbitrary mass point in the airframe. The

position of this point relative to the inertial space is given by
At Yoat ity (6)

where T is the radius vector from A to the point in question when the
airframe {s undeformed and y, is the elastic displacement vector of that
point. Recognizing that A and up are measured relative to the moving

axes XpYpZps the inertial velocity of the point is simply

Wa T Won * Ty ¥ up) Uy gy -y )y gy (7)

where QOA and ¢, were defined earlier and QA is the elastic velocity vector

*This assumption may be discarded later if it is “ound that the inertia of

the transmission is significant.



of the mass point measured relative to XpaYaZp - Equation (7) can be written

in the matrix form

(&A} = [TAO]{QOA} - [ry + up ey} + {&A} (8)

where [rA + uA] is a skew symmetric matrix defined by

0 ~(rp, + up,) "ay * Yay
[rg *upl =] Taz * Up, 0 ~(rax *+ U (9)
'(rAy * uAy) "ax ¥ Vix 0

in which r,., oy’ Az are the components of ', and u, , Upy® Uaz 2T€ the
components of Up-

We note that the vectors {QOA} and {QA} represent the translation of
the origin A of axes XaYaZA and the rotation of these axes. They can be
interpreted as the "rigid-body modes" of the airframe. On the other hand,
{uA} represents the elastic displacement vector relative to the airframe
axes XpypZp. As customary in the analysis of complex structures, we assume
that the elastic displacements of the airframe can be represented as a
linear combination of space dependent functions multiplying time dependent
coordinates, where the first are referred to as "airframe modes". Thore
are two main possibilities. One is to use "free-free modes", which can be
obtained by regarding the airframe as being clamped at point A, where A is
taken to coincide with the center of mass of the undeformed airframe. Another
possibility is to use "cantilever modes", which can be obtained by regarding
the airframe as being fixed at the base of the transmission. The implica-
tions of these possibilities will be examined in the next section.

Equation (8) defines the motion of any mass point of the airframe. One
point of particular interest is that corresponding to the lower end of the

transmission shaft, namely, the end attached to the transmission and trans-

iy 8 £i:PRODUCIBILITY OF THE
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mission mount. Ue shall denote this point by S and attach a set of axes
XeoYESZES to the airframe at this point such that Zeg coincides with the
shaft axis before any deformation takes place and Xgg and Ypg are attached
to the airframe and are normal to Zpg (Fig. 3). Another set of axes, the
shaft axes X¥gZgo have the origin at the same point S and are obtained from
axes XpsYpsZes by means of three rotations. Considering axes Xs¥gZg to be
initially coincident with axes XesYESZES? these rotations are by about Xg»
wy about ¥Yg» and v, about zg in that ofder, where wx’ wy are small angles permit-
ted by the transmission mount flexibility and &Z = Q is the constant angu-
lar velocity imparted to the shaft by the engine. The position of point

S relative to point A is given by the vector ras ¥ Unss where ras is the
redius vector from A to S when the airframe is undeformed and u,. is the
elastic displacement vector of point S relative to axes XpYaZp- The trans-
lational velocity vector @AS of point S is obtained in matrix form by

simply introducing the coordinates of point S in Eq. (8). On the other hand,
the angular velocity vector of the frame Xs¥sZg is simply QA + WEg + Wg s
where WEs is the elastic angular velocity vector of axes XesYESZES relative
to axes XpYaZp, and wg is the angular velocity vector of axes Xg¥sZg rela-
tive to axes XesYESZES:

The mot.on of point S is in terms of components along axes XpYaZp: In

particular, the translational velocity of S is

(Wpg} = [TAO]{WOA} - [rAS + uAS]{QA} + {upc} (10)

where [rAS + "AS] can be obtained from Eq. (9) by replacing Pay ¥ Upy (xA,
7% zA) by Pasx * Yasx (XAS’ Ypg ZAS)’ etc., and where {GAS} is a vector
having the components Uy . GASy’ Ups,- If the interest lies in working

with components along Xgs Ygs Zgs then these can be obtained by premultiplying
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" g

the components along XpYaZn bY the transformation matrix [TSA] = [25][2ES][~GS]
representing the matrix of direction cosines between these two sets of axes,
where [QES][QGS] represents the matrix of direction cosines between axes

XpYAZA and XesYESZES and [zs] is the matrix of direction cosines between axes
XesYESZES and Xg¥gZg - Note that [2GS] represents the matrix of direction
cosines between axes XaYaZA and XesYESZES due to the geometrical configuration
when the airframe 5 undeformed, whereas [zES] is due to the airframe elas-

tic deformations. To obtain the latter matrix, we assume that the orientation
of axes XesYesZEs is defined by three infinitesimal rotations given by the

curl of the elastic displacement vector [QGS]{UAS}. Therefore, we can write

[RES] in :he form

-
* *
1 (auASy - BuKSx) _(?UKSX _ auAS??\
Xeg  Wgg d2pg g )
* *
L (PYAsy  YAsx URsz  YAsy
[RES] 1 \ex T 1 3 T 2z (11)
ES YES YES ES
* * * *
(‘“‘ASx RS _(auASz _ auASy) :
2pg  gg ) \Wps | 9%
b -

. )
where uKSx’ uKSy’ Ui, are the components of the vector [zGS]{uAS} and where
it is understood that the partial derivatives are to be evaluated at the

point S. Furthermore, the matrix [zs] can be shown to have the explicit form

Logd = Ly, v, Ly, ] (12a)
in which
o0 o o, 0 -sy ] T
y y z z

Lo d =10 co sy f Dwd=fo 1 0|, [vl=|s, cy O

fl =S¥y cwf_ swy 0 cqu i 0 0 l
~ (12b)

10



The angular velocity vector of the frame XesYESZES relative to XpYAZA
is recognized simply as the curl of the elastic velocity vector QAS which

can be shown to have the vector form

wgg = ¥V X Upg (13)

where V is the well known del operator. Equation (13) can be written in

~

the matrix form

in which
- b
9 9
0 - ———
gy g
[v] ={ =2 0o -2—| (15)
aZES aXES
e 3 0
| Yes es _

is the skew symmetric matrix operator, which is the matrix counterpart of
the vx vector operator. On the other hand, the angular velocity of axes

Xg¥Ys2g relative to axes XesYESZES can be shown to be

togh = v, [y, 10v ey} + ¥ Lv, ley} + aleg) (16)
where {e,} (i = 1,2,3) are given by Eqs. (5). Hence, the total angular
velocity of axes Xg¥gZg has the form

{Qs} = [TSA]{QA} + [zs]{wES} + {ws} (17)

Next, we wish to define the motion of the shaft. To this end, let
us consider an arbitrary point on the shaft. The position of this point
relative to axes Xg¥gZg is given by the radius vector rs + 957 where rs is

the position of the point in question when the shaft is undeformed and Ug

n
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is the elastic displacement of that point relative to axes Xg¥gZg: Denoting

by gS the elastic velocity of the point relative to axes Xg¥Zgo the iner-

tial velocity of this point can be written as

Wg = Wpg + Qg x (g + Ug) + Ug = Wy - (rg + ug) x g + ug (18)
But @AS is given in terms of components along axes\XAyAzA, whereas the re-
maining two terms are in terms of components along axes Xg¥gZg- To express

all terms in Eq. (10) in terms of components along axes XsYsZg» We premultiply

{QAS} by the transformation matrix [TSA], so that Eq. (18) can be written

in the matrix form
(W} = [TSA]{wAS} - [rg + us]{QS} + {uc) (19)
To describe the elastic motion, it is convenient to regard the shaft as
a one-dimensional member. Note that this is in direct contrast with the

airframe which was regarded as a three-dimensional structure. We can write

the position of any point on the deformed shaft relative to axes Xs¥sZg in

the matrix form (Fig. 4)

Ug

{rg + ug) = Jvg (20)
Zg

where Ugs Vg are elastic dispiacements parallel to axes Xgs Yg respectively,
of a point originally on the axis Zg and at a distance Zg from S. Axial
elastic displacements have been assumed to be smaller than Ug Or v¢ and
have been ignored. The shaft also undergoes torsion, but this does not
affect {Qs}, which, in view of Eq. (20), is the velocity of a typical point
on the shaft, originally on the axis Zg. The torsion does, however,Aaffect

the orientation of a set of axes attached to the shaft at any point Zg

12



which were originally parallel with axes X¥gZg and are moving with the shaft
during deformation. Denoting by [TS] the transformation matrix from the

undeformed shaft axes to the deformed axes, weA can write

[Tl = |0 1 -v _ (21)

in which ¢S is the elastic torsional displacement about axis zS and where
primes denote differentiations with respect to the spatial variable Zg.

To define the motion of the rotor, let us assume that the upper end

. of the shaft coincides with the geometric center H of the hub. Then let
us introduce the hub axes XHYHZH with the origin at H and with axis zZy

along the rotor spin axis; axes Xy and yy are attached to the hub and are
normal to z,. Note that axes x, and y, are parallel to axes xg and yg

when the shaft is undeformed. The relation between the direction of axes

and x has the general form

*WYHZH sYs%s
{ry} = [THS]{rS} (22)

where the matrix [THS] of direction cosines is simply the matrix [TS] given

by Eq. (21) evaluated at zg = LS, where LS is the length of the shaft. More-

over, the angular velocity of the hub axes XuYH2ZH is

ta} = [THS]{QS} + [THS]{wEH} (23)

where

gy = [l ) B(Lt) bl )] (24)

is the angular velocity of axes XuYH2H relative to axes xsyszS due to the
elastic angular motions at the upper end of the shaft. The absolute velocity

of point H is simply Eq. (19) evaluated at zg = LS and can be written in

13



the symbolic matrix form

wgy} = [TsA]{wAS} - [rSH + usH]{QS} + {usH} (25)

The tail rotor is assumed to be a rigid fan spinning at the angular

velocity wr relative to the airframe. Using the analogy with the transmission

shaft, let XeYET2ET be a set of axes attached to the frame at the point T,
coinciding with the center of the fan (Fig. 5) and let XYt be a set of
axes rotating relative to Xe1YET2ET? so that the translational velocity of
T is |

tiypd = [Tpolivgp} - Irap * upplie} + (ippd (26)
where all the quantities are as in Eq. (10) except that the coordinates of
point T replace those of point S. Similarly, the angular velocity of axes

XeYETZET relative to axes XpYAZA is

{ugy} = [v]([zGT]{GAT}) (27)
and the angular velocity of the tail rotor is

{7} = (Tyadia,} + [ ugp) + apples) (28)

where there are no counterparts of Yy and wy for the tail rotor and the

spin axis is taken as coincident with axis Zy.

The main rotor is assumed to have M identical articulated blades (M>2),

where the blades are assumed to have the flap-lag-pitch configuration (Fig.

6).

The subsequent derivations are concerned with a typical blade i (i =1,

2,...,M). Ordinarily, we would identify every quantity pertaining to the
blade by the subscript i. However, with the tacit understanding that the

subscript is implied throughout, considerable simplification of notation can

be achieved by omitting the subscript during the derivation stage and rein-

tEPRODUCIBILITY OF TH
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troducing it when it becomes necessary. Hence, let us consider a typical
blade and assume that the flap hinge is at point F at a distance rHF from H,
the lag hinge is at point L at a distance gkL'from F, and the pitch hinge

is at point B at a distance rp from L. First, let us introduce the set of
axes XpYpZp obtained through a rotation g about axjs z, and a rotation -8
about axis Yy where op is known as the azimuth angle and g8 is known as the
flapping angle (Fig. 6a). Note that ag is constant for every bladc. The

relation between axes XEYEZE and XuYH2H is given by
{rF} = [TFH]{rH} (29)
where

is a transformation matrix, in which

Cap  Sag 0 ce Q0 s
[aB] = |-Seg Cop 0 y [B] =10 1 0 (31)
0 0 1 -s8 0 «cpg

Although it is more convenient to define the components of the radius
vector YE in terms of components along an intermediate set of axes, for
consistency of notation, we express HF in terms of components along axes

XuYHZH- Hence, we write

et = [ag)'Ld, 2 0 1T (32)

The inertial velocity of point F has the matrix form

who [PHF] is the skew symmetric matrix corresponding to {rHF}. Also from
Fig. 6a, it can be verified that the angular velocity of axes XEYEZE has

15



the form
tag} = [T lay) - Bley) ) (34)

Following the same pattern, we conclude from Fig. 6b that the relation

between the lag axes X\ and the flap axes XEYEZE is

{r} = [TLF]{rF} ~ (35)
where
ca sa O
[TLF] =]l-sa ca O | (36)
0 0 1

in which a is known as the lag angle. Moreover, the inertial velocity of
the 1ag hinge is

twey b = [Tyl oy} - [rp Jap) (37)
in which [rFL] is the matrix obtained from {rFL} = LF{e1}, where the latter
is the vector from F to L whose magnitude is LF' The angular velocity of
axes Xy 7| is

{a 1 = [T, plagh + afey) (38)

Finally, we wish to define the blade axes Xp¥pZg such that Xg is along

the axial direction of the blade, Yg is the plane of the blade and in the
direction of the leading edge, and z, is normal to the blade (Fig. 6c). The
relation between axes Xg¥p2p and X\ is

(rg} = [TBL]{rL} (39)

where

16
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[TBL] =|0 c8 s6 (40)
0 -se co

in which 8 is known as the pitch angle. The inertial velocity of point B is

(i gd = [T edog 3 - [rplim) - (41)

Y

where [rLB] is the matrix obtained from {rLB} = LL{e]}, where {rLB} is the
vector from L to B whose magnitude is LL' The angular velocity of the blade

axes XpypZp is

{g} = [TBL]{QL} + 6{e)} : (42)

At this point, we note the implicit assumption that the hub and its
connecting links are rigid, with the connecting links being considered as
one-dimensional bodies. In addition, we shall assume that the connecting
links are small compared to the airframe and the rotor blades, so that they
can be regarded as massless. Hence, there is no direct contribution from
these links to the system energy. In contrast, the hub can be much more
massive, particularly for large helicopters, and hence will contribute to
the system energy as a rigid body.

The rotation angles ags Bs o, and o described above deserve further
discussion. In particular, the angle ag is a constant design parameter. On
the other hand, the angles g and a representing flap and lag, respectively,
are time-dependent generalized coordinates. The angle 6 is the sum of three
parts, namely, the collective pitch 8co the cyclic pitch ecy' and the

pitch change ecp due to coupling, where 8co and 8., are given functions of

y

time and 8. is a function of 8 and/or o and provides the flap and/or lag

p
kinematical coupling, respectively. Hence, 6 does not introduce additional
degrees of freedom.

We now wish to define the motion of a typical rotor blade. By analogy

17
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with the airframe and the transmission shaft, we can write the absolute
velocity of an arbitrary point on the rotor blgde in the general vector

form

Wg =gt 2 x (g +ug) +ig =wg - (lptug) xgg+iy  (43)
where rg is the radius vector from B to the point 16 question when the blade
is undeformed, ug is the displacement vector of the point and, @B is the
elastic velocity vector of the point relative to XpYpZg* We note that QLB
is given in terms of components along axes X L4 whereas the remaining two
terms are in terms of components along ¥.YpZp- Following the established
pattern, we can write the velocity vector QB in terms of components along

axes XgypZp in the matrix form

(wg) = [Tg Jiw g} - [rg + ugliag) + {ug} (44)
where [rB + uB] is the skew symmetric matrix associated with ' + ug-
It remains for us to define the elastic motion of the blade relative
to axes XgypZp- To this end, we can write the position of any point in the

deformed blade relative to axes Xg¥gZp in the matrix form (Fig. 7; see also

Ref. 3)

X +u -A(¢, + ¢)'
_ T
{rg +ugl =qe +v + [TDB] n (45)
W g

where u, v, w are elastic displacements along axes Xgs Ygo Zp respectively,
& is the distance at the blade root between the pitch axis Xg and the
elastic axis, measured in the Xg¥g plane and positive in the direction of
the leading edge, A(¢o + ¢)' represents an axial position where X = A(n,z)

is the warp functiun (note: 1(0,0) = 0), and n, ¢ are cross sectional coordi-
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nates along local principal axes at a distance x from B, in which n is along
the chord pointing toward the leading edge and r is normal to the blade
mid-plane. Moreover, [TDB] is the transformafion matrix from the undeformed
blade coordinates to the deformed coordinates.

When deriving the rotor blade kinetic and potential energy, it becomes
necessary to omit certain small terms arising from the blade elastic defor-
mation in order to keep from unduly complicating our equations. These
terms are generally known as "higher-order" terms. At this point, we wish to
introduce the idea of an ordering scheme which will enable us to compare the
relative magnitudes of terms in a systematic manner, thus permitting us to
determine which terms to retain and which terms to omit from the formulation.
To this end, let us define the nondimensional parameter e, which is taken
to be the same throughout this report. The approximate magnitude of ¢ is
taken to be less than one tenth and a term of the same order of magnitude
as ¢ is said to be of order ¢ and denoted O(c). We can compare the relative
magnitudes of terms in an equation by first nondimensionalizing that equa-
tion and then comparing the resulting nondimensional terms directly with
the parameter . Hence, to compare terms in Eq. (45), we divide Eq. (45)
by the length of a rotor blade LB and compare each resulting term to ¢. As

in Ref. 3, we shall adopt the following ordering scheme for the blades

= 0(.2 = = = -
g—B-o(e) %_’*B--O(e) = 0e)  =ol) = ol)

A< o(e?)

-

2
]
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Note that primes denote differentiations with respect to the spatial variable

x, and o9 = ¢0(x), ¢ = ¢(x,t) are blade pretwist and blade torsional dis-
placement about the deformed elastic axis, reépectively, where the pretwist
is considered as a static torsional displacement. The angles %0 and ¢ are
defined here differently than in Ref. 3 where the sum ¢p * ¢ was taken to be

the "total torsional bending" about an axis parallel to axis x We shall

B
see in the next section that it is necessary to obtain the vector {rB +u

. given by Eq. (45) to 0(e3).

g}
In view of Eqs. (46), the largest terms in the vector multiplying [TDB]T

in Eq. (45) are O(c) terms so that it is necessary to express [TDB] in terms

of the elastic displacements to O(cz) only. Hence, the matrix [TDB] can be

written in the form (see Ref. 3)
12 2
B yakde = v d
I2 l2
[Tpgl= |-Dv'cos(egre)w'sinlopte)] (1 - Lp)coslogrerv'u') (1 - %-)sin(egre)

' 2 ' 2
[visin(agte)-w'cos(sg+e)] (1 - L)sin(egretvin') (1 - r-)cos (4+4)

(47)
in which it is assumed that the pretwist and torsional displacement are both
taken to be zero at the blade root. It is understood that consistent order
series expansions are used for sine and cosine terms. Introducing Eq. (47)
into Eq. (45) and expressing n and ¢ in terms of components along yg and 2,

we obtain

x+u-A(¢0+¢)'-(V'+W’¢)(ncos¢o-csin¢o) - (w'-v'¢)(nsin¢0*ccos¢0))

2
(rgtug) = e0+v+(l - !7-)(ncos¢0-csin¢0) - (¢+v'w‘)(nsin¢0+ccos¢0) g

2
wt(l - !5-)(nsin¢0+ccos¢0) + ¢(ncos¢0-csin¢0)

(48)
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where 0(:4) terms and smaller have been neglected. Equations (48) contain

nonlinear terms which we desire to retain. This is in contrast to the air-

frame and shaft, whose deformations are described strictly in terms of
Tinear elasticity.

Finally, it will prove convenient to obtain an expression for the angqu-
lar velocity of the deformed blade axes XpYpZp at aﬁy point on the elastic
axis a distance x from the blade root, where Yp and z; are local principal
axes of the cross section with origin on the elastic axis, in which Yp is
along the chord pointing toward the leading edge and zp is normal to the
blade mid-plane, and where Xp is tangent to the deformed elastic axis posi-
tive toward the free blade end. Note that n and ¢ are measured along axes
Yp and Zp» respectively. An expression for the angular velocity of axes
XpYp2p relative to axes XgY¥pZg can be deduced from the bending curvature
expressions given in Ref. 3 where care must be exercized in distinguishing
between the torsional displacement as defined herein and the elastic kine-
matical pitch angle of Ref. 3 (see Ref. 4). Such an expression can be
written in the form

w'v'+$
(ugd = { (7 =0'v'% - 2 0w )stnag- (W -ty w2 -
1

2

v'v'v‘z)cos¢0

2

(v'-\'/'v'2 -3 v'w! 2

)cos¢o+(ﬁ'-0'v‘w‘-ﬁ'w' -

w'y' )sin¢0

+ 0'(¢cos¢0 - % ¢zsin¢o)+ﬁ'(¢sin¢o + % ¢2

2

cosé) (49)

cos¢0)+ﬁ'(¢cos¢o - % ¢2

where 0(54) terms and smaller have been neglected. Hence, the angular

- 0'(¢sin¢0 + % ¢ sin¢0)

velocity of axes XpYo?p is
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(ap} = [TDB]{QB) + Lup) (50)

where [TDB] is simply Eq. (47) evaluated at the point D in question.
A summary of some important equations in this section can be found

in Appendix A.




3. The Kinetic and Potential Energy

To derive Lagrange's equations of motion:it is necessary to produce
expressions for the kinetic energy, the potential energy, and the noncon-
servative virtual work. In this section we shall consider the kinetic
and potential energy for the system and in the nexglsection we shall present
the virtual work due to aerodynamic forces. |

The kinetic energy of the airframe can be written in the general form

1 . .
TA =3 J {wA} {wA}dmA -(51)
M

where M is the mass of the airframe. Introducing Eq. (8) into Eq. (51),

we obtain
_ 1 « T, 1 T 1 e T.
TA =5 mA{WOA} {wOA} + §{QA} [JA]{QA} + 5 Im {uA} {uA}dmA
A
< T T = o (Ter T a7
+ (Wgpt [Tpod upd = twgpd [Ty [raltey) - (H Y {ep) (52)
where
my = Jm dmA (53a)
A
[rA] = [ [rA + uA]dmA (53b)
m
A
{uA} = J {uA}dmA (53c)
m
A
T
[JA] Jm [rA + uA] [rA + uA]dmA (53d)
A
W= [re +u 1 (0, dm (53e)
A o o AT AT TERTTA
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will be referred to as "mass integrals", where My is the total mass of the
airframe, [JA] is the matrix of moments of inertia of the airframe in de-
formed configuration about axes XaYAZps and {ﬁk} is an angular momentum
vector of the airframe due to elastic velocities. Note that Eq. (52) takes
into account the fact that [TA6] is an orthonormal matrix.

Next, let us consider the shaft kinetic energy and write it in the

general form

1 .
TS =5 Jm {wS} {ws}dmS ‘ | (52)
s .

where {QS} is given by Eq. (19). Introducing Eq. (19) into Eq. (54), we

obtain
I T 1 T 1 . T,
TS =5 ms{ AS} {wAS} + 7-{95} [JS]{QS} + 5 Jm {LS} {us}dmS
S
¢+ (Tre T~ « o Tre T a7
+ {Wpel [TsA] {ug} - {‘”As} [TsA] [rs]{ns} - {HS} {ns} (55)
where
me = Jm dmS (56a)
S
. f
[rS] = [rs + “s]d'“s (56b)
Mg
. ( .
{us} = Jms {us}dmS (56¢)
3= [ [re + u3TTr + uldn (56d)
S J,. ©S STHs sy
S
{H.} = r [r. + u.] (0. }dm . (56e)
s ), TS ST TsTUs
S

are certain mass integrals and [TsA] is an orthonormal transformation. Equa-
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tion (55) looks deceivingly simple and is in fact quite complicated. For
example, the vectors {WAS} and {QS} depend not only on the rigid body mo-
tions of the airframe but on the airframe elaétic motion as well. Moreover,
[TSA] involves the elastic rotation of the airframe at S and the angles
between axes XesYESZES and xsyszs, which vary with Fime. In particular
the translational velocity and angular velocity expressions, Eqs. (10) and
(17) respectively, must be substituted into Eq. (55). Later in this sec-
tion, we will simplify Eq. (55) by ignoring certain higher order terms.
Assuming that the point T coincides with the mass center of the rigid

tail rotor, the kinetic energy of the tail rotor can be written as

Tp = g el o) + 5 (0 Lo Hep) (57)
where mr is the mass and [JT] is the matrix of moments of inertia about
axes Xr¥yZp of the tail rotor. Similarly, assuming that the point H coin-
cides with the mass center of the rigid hub, we can write the hub kinetic

energy as

Ty = % Myligy} Ty} + 7 (9,)T[9,JMa,} (58)
where m, is the mass and [JH] is the matrix of moments of inertia about
axes X, yuz, of the hub. Although Egs. (57) and (58) are considerably simpler
than Eq. (55), the velocities {QAT} and {a;} for the tail rotor and {QsH}
and {QH} for the hub still depend on the motion of the airframe. In addi-
tion, {QSH} and {a,} also include the motion of the transmissien shaft.

Finally, we can write the kinetic energy for each rotor bi.de in the

general form

=1 o (T
Tg =7 Jm {wg} {wB}de (59)
B
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where Mg is the mass of the blade. Note that the subscript i, identifying
a particular blade, has been ignored temporarily. Introducing Eq. (44)
into Eq. (59), we obtain

1 . T.. 1 T 1 . T,
Tg = 7 Mg {wLB} {wLB} 3 {5} [JB]{QB} t5 Im {uB} {uB}de

B
o Ter Ty e 3T 1T S T
+ {w g} [TBL] {ug} - {w g} [TBL] [rB]{QB} - {H} {ag} (60)
where
mg = j dn, (612)
m
B
[ry] = J [ry + ugldng (61b)
m
B
{IIB} [ {&B}de (61c)
m
B
_ T
(3] = ]m [rg + ug]'Lry + ugldng (61d)
B
—— T.-
{HB} = Im [rB + uB] {uB}de (61e)
B

The various guantities in Eqs. (60) and (61) are analogous to those per-
taining to the airframe and the shaft. Of all the component kinetic energies,
Eq. (60) is the most complex. In general, the velocity {&LB} and angular
velocity {QB} take into account the rigid body translation and rotation of
the airframe, the airframe elastic motion, the rigid body rotation of the
transmission shaft relative to the airframe, the transmission shaft elastic
motion, the rigid body rotation of the flap link relative to the hub, and the
rigid body rotation of the lag link relative to the flap link. A method

of simplifying these coupling effects will be given later in this report.

The blade ordering scheme of Sec. 2 will be used in this section to obtain
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0(53) expansions of Eqs. (61).

Equations (52), (55), (57), (58), and (60) give the kinetic energy for
each component. The system kinetic energy is formed by simply summing up
these equations, where it is now necessary to introduce the subscript i in
Eq. (60) and sum over the number of blades. This yields

M -
T=Tpt T+ T+ T+ 121T (62)
Substituting Egs. (52), (55), (57), (58), and (60) into Eq. (62) and grouping

together terms of the same type, we can write
6
T=7 T, (63)

in which

21 1
T] = 5 My {WOA} {wOA} + 7- T{wAT} {wAT} + 5 m {wAs} {wAS}

M

1 o T.. ] e T.e
IR | Tr= . T Tr—
- ? tw o LT, 1P 1 (g (64b)
i&y etitieL it BB

M .
1.~
Ty = {Wgp! T 0] {uA} + {wpg) [TsA] {u g+ z W g}y T sl (Vg (64c)

1T 10T 1,47
Ty = 5 (g [J )} + 5 (a7} [0 )Hap) + 5 {05} [JS]{QS)
+ 1T d) +1 ? (0} 00,1, {2,) (64d)
2 ) Ugdtoy) * gl tagdildpditaghy
o T - Moo
21 J o T 1 M
T =5 w}{uMm+-f i} (g yam + 1 f TRy
6 2, A AMATT {ugJdmg + 5 121 (g} (g dmy

A S Y
(64f)
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Equations (64) possess all of the complexities mentioned earlier. A direct
approach to evaluating the system kinetic energy explicitly is to substitute
explicit expressions for Eqs. (53), (56), and‘(61) as well as explicit
expressions for the velocities and angular velocities given by Eqs. (A28)-
(A32) and (A12)-(A16) into Egs. (64). The extreme Fediousness involved
forces us to seek explicit forms for some terms at'one time and for other
terms at a different time. This is motivated by the different treatments
necessary for the two different types of quantities, those which depend on
the spatial position and time and those which depend on time alone. One
possibility is to substitute explicit expressions for Eqs. (53), (56), and
(61) into Eqs. (64) while retaining all other quantities in implicit form,
i.e., to write the components of the velocity and angular velocity vectors
of each set of axes implicitly. This approach is convenient when the elas-
tic displacements and velocities are of interest. It is the approach of
this section. Another possibility is to substitute Eqs. (A28)-(A32) and
(A12)-(A16) into Eqs. (64) while retaining the matrix quantities defined by
Eqs. (53), (56), and (61) implicitly. Such an approach is more suitable
when the discrete coordinates are being considered and the approach will be
discussed in more detail later in this report.

Let us now examine the airframe kinetic energy, Eq. (52), more closely.
Assuming that the angular velocity vector {QA} and the elastic displacement
vector {uA} are sufficiently small that their product can be ignored, we can

make the following simplifications in Eqs. (53b, d, and e)

[FA] = Im [rA]dmA (65a)
A

(9a] = [y, Lra"Crylom, (65b)

= T,

(Hy} = ’[mA [rA] {up Ydm, (65¢c)
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Note that this is equivalent to ignoring the cross product 2 x Up in Eq. (7).
Equations (65) have simple physical meaning. Equation (65a) is the skew
symmetric matfix associated with the vector from A to the airframe mass
center in undeformed configuration, Eq. (65b) is the inertia matrix of the
undeformed airframe about axes XpYaZp and Eq. (65c) is an angular momentum
vector due to the airframe elastic velocities.

Thus far, we have been concerned with the airframe elastic displacements
and velocities in a general way only. Now we wish to explore the possibility
of representing these displacements in terms of airframe modes. Recognizing
that these modes are three-dimensional, we can represent them by 3 x 1 column
matrices {0y;(Xps ¥ps 24)} and write

P
tup(xps ¥ps 23 )} = izl lopi(xps Yoo 23)Ing;(t) (66)
where “Ai(t) are generalized coordinates associated with these modes. Note

that the mode {¢Ai} gives the three displacement components at every mass

point of the airframe. Introducing the 3 x P airframe modal matrix

[¢A] = [{¢A]} {opo} + « v {8pp)] (67)

and the airframe elastic generalized coordinate vector

_ T
Eq. (66) can be written in the compact form
(ug} = [03](ny} (69)

Substituting Eq. (69) into Eqs. (53) and taking into account Eqs. (65) we

can write the airframe kinetic energy as

NYPRODUCIBILITY OF THR
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1 « T.e 1 T 1 0T .
TA - E.mA {WOA} {WOA} + 2 {QA} [JA]{QA} + 2 {nA} [MA]{nA}

1
$
;
4

+ Gigg ) [Tyod T8y 10y} - (iga} [Tpo1 [Py MRy}

e Ty AT
- {nA} [IA] {QA} (70)

in which we have introduced the definitions

[My] = fmA [ea]'LoyJdmy (712)

[5,] - fm [e, Jan, (71)
A

(1] = | Try2Lopldn (71c)
In,

Substantial simplification can be achieved if the point A is chosen to
coincide with the center of mass of the undeformed airframe. Then, if the

elastic modes are orthogonal to the rigid body modes, we can write

[ trgdamy = [ Toydam, = | Cryd"Loplem, < (0] (72)
m
A

My My
so that

[ry = (5,1 = [1,] = [0] (73)
The requirement that XpYAZA be principal axes of the airframe does not

yield significant savings, so that it need not be made. Inserting Eqs. (73)
into Eq. (70), the kinetic energy reduces to

= Lm e T LT LNERUTRIT
Ty =5 my (Wgpd (Wgad + 5 (2} [9ad{ep) + 5 (ng} M Tngd  (74)

where [JA] is now the matrix of moments of inertia of the airframe in unde-

formed configuration about axes XaYAZA and [MA] is the diagonal matrix of

T
-
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"generalized masses”.

The above development is predicated on the availability of free-free
airframe modes, which cannot be taken for graﬁted. Moreover, it may not be
the most advantageous way to describe the airframe motion. Hence, we wish
to consider the possibility of using a different type of airframe modes.

As mentioned earlier, an alternative to the use of airframe free-free
modes is the use of cantilever modes, obtained by regarding the airframe
as being fixed at the transmission base. We recall that this point was
denoted by S in the preceding section. This alternative has the advantage
that it eliminates the need of considering the intermediate axes XESyESZES’
and indeed one can assume that XaYAZA take their place. On the other hand,
the cantilever modes are not orthogonal to the rigid body modes, so that
additional terms appear in the kinetic energy which do not appear in Eq.
(74).

In view of the above, let us assume that axes XpYAZA have the origin
at point S and that axis zp coincides with the direction of the shaft axis
in undeformed state. Axes Xp and yp are attached to the airframe and are
normal to z,. Then Egs. (65a), (65b), and (71) remain valid except that
their interpretation is different. Of course, the difference comes from the
fact that the matrix [¢A] now represents cantilever modes and not free-free
modes. Likewise, the vector {rA} is now measured from point S, which af-
fects [?A], [IA]. and [JA]. In particular, [JA] is now the inertia matrix
of the airframe in undeformed configuration about axes XpYAZA with the
origin at S. Clearly, simplifications (72) are no longer possible and the
kinetic energy remains in the form (70).

In contrast to the airframe where all components of {QA} are small
and vary with time, the third component of the shaft angular velocity vector

{QS} contains a large constant part. Giving special consideration to this

3
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angular velocity component, in the sense that quantities containing this

component may not necessarily be small, we substitute Eq. (20) into Eqs.

(56), integrate over the length of the shaft.‘and obtain

[ 0
[rS] *| sz
-rsy
(us} =
JSxx
I:'JS] = 'JSxy
_'Jsz
(Hg) =
where
_ s
FSx Jo pgUgdzg

T Sy
0 -er
sy 0 |
qu
Ugy
uSz
'JSxy 'Jsz
JSyy 'JSyz
'JSyz JSzz
HSx
HSy
Sz
L

S
rSy = JO psvsdzS

L

L

J = 3 (u2 + vz)dz
szz |, Pgillg ¥ Vgl

sxz © Jo PsusZgdzg
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Ls Ls
Hoy = Jo pgVs2gdzg Hgy = _fo pgus2gdzs
Lg (76d)
6 pslUgyg - Vgug)dzg
in which og is the mass per unit length, Lg is the length, and Mg is the

total mass of the uniform shaft. In addition, we can write the third term

~

in Eq. (55) as

g

Next, we wish to discretize Eqs. (76) and (77) and use the result to

L
S
{uS}T{uS}de = %-I ps(ué + Vg)dzs (77)
me 0

write a discretized shaft kinetic energy. Thus, let us assume that the
shaft elastic displacements can be written as linear combinations of

space dependent functions multiplied by time dependent generalized coordi-
nates in the form

s
u
ug = L ¥sylzghny(t)

S
5 1 dsilzghny (¥ (78)
i=

S¢

Note that we are simulating the elastic shaft by 25u + S¢ degrees of freedom.
- T * - .' L] .. T

We can write {ag} = [QSX %, QSz] and [TSA]{wAS} = [Wasy wASy wASz]

where "ASx’ wASy. NASZ are components of the vector Was along axes XgYsZg

in contrast to QASx’ WASy’ QASz which are the components along axes x,yaZ-

Substituting Eqs. (78) into Egs. (76) and (77), we can write the shaft kinetic

energy, Eq. (55), in the discrete form
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Tg = % mS(&Agx * QAgy ¥ QAgz) * %'mSLg (ng * ng)
Su Su S
* %'ng iz] jZ] “?? ("uinuj "v1"vj) SxQSz .X M?Z ui
Sy vz . S Sy .
5y%s2 iZ] Motz 121 jz] M (ny4 uj * v1”v3)
Sy S, ) Sy
sk (L My * Wasy L Mifyg + (asyRs; = ¥asz sy L Z Min
S
+ (g 0y - wASxQSz) 2 Ming; + 3 mels(Wagesy = WasyPsx)
Su Su S Su
T MiThyg + 2y 121 M5 - 9, iil JZ] MY Cugnyg = fyangg)
(79)
where we introduced the definitions
by LS
Mij © Io P¥si¥sidZs
L
My - !05 Pe¥sidZs (80)
L

My - JOS pgbsiZ592g

Before we can write explicit expressions for the rotor blade "mass in-
tegrals" Eqs. (61), we must apply the ordering scheme (46) to the blade
kinetic energy Eq. (60). To this end, it is desirable to compare nondimen-
sional quantities directly with the parameter ¢. Let us divide Eq. (60) by
the quantity m QZLE which has units of energy, where Mg is the mass and L
is the length of a rotor blade, and 2 is the constant angular velocity im-

parted to the shaft by the engine. Note that this division is compatible

with the ordering scheme (46).
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We can now examine the rationale for retaining 0(e3) terms in the
blade kinetic energy. This criterion is based on the derivation of Ref. 3
which is concerned solely with rotor blades rbtating uniformly about an axis
fixed in inertial space. Hence, the derivation of Ref. 3 contains all of
the third term and parts of the second and fifth terms in the blade kinetic

3 were retained while 0(e4) terms were

energy, Eq. (60). Terms of order ¢
ignored. By examination of the fourth and fifth terms in Eq. (60), it is
readily seen that 0(e3) terms in (rp + uB} and {Ge} can be of the same or-
der of magnitude as the 0(:3) terms of Ref. 3, depending on the magnitude
of {QLB}. These terms are a direct result of the translational velocity of
the blade root, i.e., of the point B, represented by the vector @LB in
Eq. (43), and we note that in high speed flight {QLB} can have large com-
ponents, so that the fourth and fifth terms in Eq. (60) must include 0(:3)
terms in {GB} and {rB + uB), respectively.

Substituting Eq. (48) into Eqs. (61), integrating over the undeformed
blade, and retaining terms through 0(c3). we can write the components of

Eqs. (61) in a form analogous to Eqs. (76) for the shaft, as

L
- (B
"Bx * | olx + u - e (v'+'e)cos ¢q - e (w'-v'¢)sin $oldxg
o= | ’ ole. +v+e(1-142- 1w ¥)cos o, - e_(s+v'w')sin o Jdx, (81a)
By 0 m 2 2 0 m 0" "8
Ly
Y, = r [w+e (1 - l-¢2 - w'z)sin ¢n * € ¢ COS ¢nq)dx
Bz ), ° m 2 z 0" °m b9 %%
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= (B, . . .
Ugy = ] olu - em(v +w' p+w' ¢ )cos ¢g - em(w iv'¢-v ¢)sin ¢0]de
- s . . .. .
= - LRYLEY - (] (WY s
uBy J ofv em(¢¢+v v'icos ¢, em(¢+v w'+v'w')sin ¢0]dx3 (81b)
O rLB .
Ug, * Jo olw - em(¢¢+w'w')sin ég t em¢ cos ¢0]dx§
L
J = ’ [ (e2+v2+w2+ze v) + 20€ (€.cos ¢, - €.45in + vcos ¢
Bxx ~ J, P50 0 PEMITQLOs ¢ - Eq#sin ¢ 0
- vésin ¢y + wsin $g * wecos ¢0) + Jp]de
L
J = ’ [ (x2+2xu+w2) + 20 (-xv'cos ¢.+xv'ésin - xw'sin
By ~ Jo *“n % % %0
- Xw'¢cos ¢0 + wsin ¢0 + wécos ¢0) + Jz(sinzqs0 + 24sin ¢0 cos ¢0
2 2 2 .2 2 .
+ ¢° cos g = ¢ sin ¢0) + J](cos ¢ - 24 sin by COS ¢
2 2 2 2
+¢7 sin® ¢4 - ¢° cos ¢0)]de
L
B 2 2, 2
JBzz = [0 [o(x +2xu#eo+v +Zeov) + 2pem(-xv'cos og * xv'¢sin ¢g - xw'sin %0

- XW'¢COS ¢ + €,C0S ¢, - €.4Sin ¢, + vCOS ¢, - VésSin ¢.)
0 0 0 0 0 0 0

2

+ Jz(cos2 49 - 2¢sin bg €OS ¢4 - ¢2 cos” ¢ + ¢2 sin2 ¢0)

, 2 .
+ J](s1n N + 24sin ¢0 €os ¢4 - ¢2 sm2 by * ¢2 cos2 @0)]dxB
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L
B
= - 3 - l 2
JBxy JO [p(xe0+xv+ue0+uv) + pem(xcos bg - X¢sin ¢ - 5 x¢~ cos ¢

- l 2 _ gl e - ' - 1ed
2 XV'"COoS 4)0 XV'W' sin ¢0 EOV Cos ¢0 eow sin ¢0

9 (81c)
- vv'cos ¢ - vww'sin %0 + ucos ¢0) + pCm¢ésin ¢ * Jz(-v'cos %9

; - w'sin ¢4 cos ¢0) + J](w'sin by COS g - v'sin® ¢0)]de

8 . 1.2, 1.2,
Jsz = JO [o(xwtuw) + pem(xs1n bg + X6COS ¢y - 5 x¢ sin ¢, - E-xw'~s1n 40
+ usin 90 - wv'cos 69 - ww'sin ¢0) - pCm¢6cos %0
§ + J2(-v'sin ¢g COS by - w'sin? ¢0) + J](v'sin by €OS ¢
- w'cos? $n) Jdx
0 B
rLB
JByz = JO [p(e0w+vw) + pem(eosin g t egocos ¢ + vsin ¢y + vécos ¢

+ wcos 6g - wésin ¢0) + Jz(sin b COS ¢g - ¢sin2 40

2

+ ¢cos2 ¢0) + Jl(-sin ¢g €0S ¢0 + 4sin dg - ¢cos2 ¢0)]de

OLB

ﬁéx = JO [p(wG-eOW—vh)— Jp$ + pem(Osin b * V6CoS ¢ - wcos %0
+ wosin ¢ - wésin 4g - e0$cos 4o - vHCos 8g) Jdxg
Lg

ﬁﬁy = IO [o (xwuw-wu) + pem(xécos 4 - xobsin o - w'w'sin by * wv' oS N
+ ww'sin oG - usin ¢ - v'Wcos bg - w'wsin ¢0) + JZ(G'sin $gCOS ¢

+ w'sin? ¢0) + J1(v'J‘cos2 bg - v'sin $g cOS ¢0)]de (81d)
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Hg, = JO [p(eou+VU—XV~UV) + pqm(x¢sin dg * X#dCOS 45 - eyviCOS 4y

egW'sin ¢y - vv'cos ¢q - ww'sin ¢, + ucos ¢y + xv'v'cos ¢

xv'w'sin 49 + v'VCos b9 * w'vsin ¢0) + Jz(—\'/'cos2 N

+

2

w'sin b COS 4q) + J](Q'sin b COS 4 - V'sin 8 Ndxg

in which we introduced the definitions

Ji = [J Yczdndc 02 = JJ Ynzdndc p = JJ ydndz
A A A

+, = JJ v(n? + £2)dndz pe. = JJ yndndzg (82)
A A

ocm = JJA yAzdndz

where v = y(x, n, z) is the mass density of the blade and the symbol A de-
notes here integration over the blade cross-sectional area. Due to assump-
tions of cross-sectional symmetry about the n axis and anti-symmetry of the

warp function A, we also used the relations

JJ ygdndz = J[ yncdndz = IJ yidndg = II yindndz = 0 (83)
A ‘A A A

In addition, we can write the third term in Eq. (60) in the form

B
1 . T. ] 02 .2 02 oo
5 {u,} dm, = —-J vitw©) + 4 + 2 ~-v¢sin
zij ig) Cighing = 7 | * [o(i%430) + 987 ¢ 2mey (-Fdsin o
L whcos o) Jdxg (84)

Equations (81) and (84) contain several 0(e4) torsion terms which have
been underlined. These terms are formally of higher-order and could be

ignored. These teris were shown in Ref. 3, however, to be important for
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Tow torsional natural frequencies, and hence, have been retained here for
completeness.

In actuality, to obtain Egs. (81) and (84) we should integrate over
the deformed blade or,equivalently,correct the integration over the unde-
formed blade by introducing into the integrand the absolute value of the
Jacobian associated with the transformation from thé position of a point in
the undeformed blade to the position of the same point in the deformed
blade. The Jacobian in question differs from unity by a quantity of order
52, so that its introduction would not change our results substantially.
Hence, the added complication appears unwarranted and will be left out.

Next, we wish to discretize Eqs. (81) and use the result to write t*
blade kinetic energy in a discrete form. To this end, let us consider

series expansions

NU
izl 65 (x)a,; (t)

u =
NV

v = izl byi(x)a,;(t)
N, (85)

W= _Z] 6, (¥)a 5 (t)
1=

- N¢
6 = izl b4q(x)ay;(t)

where ¢ui’ ¢vi’ L ¢¢i are space dependent admissible functions and Qi

Qi° i q¢i are associated generalized coordinates. Note that we are re-

presenting the elastic motion of each blade by Nu + Nv + Nw + N degrees of

%
freedom. Substituting Eqs. (85) into Egs. (81) and (84) we can write the
discretized blade kinetic energy in a form resembling Eq. (79), where this

form contains a very large number of integrals similar to the mass integrals
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(80). The discretized blade kinetic energy is extremely lengthy and its
presentation here is omitted for brevity.

As mentioned earlier, a derivation of Lagrange's equations of motion
requires also a derivation of the system potential energy. The potential
energy is composed of two distinctly different parts; namely, the potential
energy due to gravity, and the potential energy due to the elastic effects.
The following discussion is directed towards finding expressions for the
potential energy of each component and ultimately the potential energy of
the system.

To calculate the gravitational potential energy of the airframe, we
assume that the gravitational field is uniform. Hence, the potential energy
of any mass point on the airframe is the product of the weight of the mass
point multiplied by the height above the earth's surface, i.e., the verti-
cal distance of the mass point from 0. This distance can be written in

the vorm

_ T T
hA = Woaz t {e3} [TAO] {rA *upl (86)

so that the gravitational potential is

i Tee AT
Vea = 9 Im (Wonz + {83} [Tpgl try + upd)dmy
A

1 T T
= mAg(wOAZ + ﬁ; {eg} [TAO] J {rp + up}dm,) (87)

where g is the local acceleration due to gravity. The last term of Eq. (87)
is recognized as the vertical distance from A to the mass center of the de-
formed airframe. When the elastic deformations are small, they can be
ignored in Eq. (87) and one can replace the last term by the vertical dis-
tance from A to the mass center of the undeformed airframe.

The airframe elastic potential energy can be written in the general
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form

Vey = 3 (ngd [k, Jiny) ., (88)

EA 2 "TAT YTATA
where

(K] = 4,005 (89)
in which [Ai] is the diagonal matrix of natural freﬁuencies squared, where
the natural frequencies correspond to the elastic modes of the airframe.
Of course, the matrix [KA] depends on whether free-free or cantilevered
modes are used. Similarly, the matrix [MA] of generalized masses and the
matrix [Az] of natural frequencies squared are different in each case.

By analogy with Eq. (87), the gravitational potential energy of the
shaft is
Vgs = malugg + (egd [TqT rpg + upgd) + g{e3}T[TAO]T[TSA]T I {rg + ug ydmg

"5

(90)
Assuming that the shaft undergoes normal stress along axis zg as well as
shearing stress, so that letting EIS be the flexural rigidity and GJS the
torsional stiffness of the shaft, the elastic potential energy of the shaft

is
L

108 [(azus)z azvs)z] ] Ls (34»5 2 o)
Voo = —-J El +( dz. + —-I GJ ———) dz 9
ES 2 0 S azg 3z§ S 2 0 S azs S

Substituting Egs. (78) into Eq. (91), the elastic potential energy can be

written in the discrete form

S S s S
S e I R
Ves = 2 iz] j§1 Kij (nuinuj + "vinvj) ts Z] .Z] Kij UL (92)
in which we introduced the definitions
4 REPRODUCIBILITY OF THL
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Kij. = Jo Elgvgivsy92s (93a)
Ls

o'e' _ L0l .d 93b)

where primes designate derivatives with respect to Zg-
Assuming that the tail rotor is a rigid fan with its mass center at
point T, the gravitational potential energy for the tail rotor can be written

in the form

_ T T ‘
Var = M9ligaz * ek [Tag) {ray + upr}) (54)
while the tail rotor elastic potential energy is zero by virtue of the rigid-

ity assumption. Similarly, the gravitational potential energy of the rigid

hub with mass center at H can be written in the form

- T T T T
Von = ™90gaz * {egh [Tagl {rag + upgd + (egd[Ty 1 [T ) trgy + ugy )
(95)
By analogy with Eqs. (87) and (90), the gravitational potential energy

of a typical rotor blade can be written in the form

) Tee AT Teo T
Vog = MgIWgaz + (e3) [Tpgd trpg + upg) + (e} [Ty 1 [T, T rgy + ugy)

+eg [Taol [Tepd [Tysd (rypd + Lple g ITp [T 1 [Ty (TR, ] ey
TR A a WL 20 L PN LY L A8 LY
T T T T T T T

B

The elastic potential energy for a rotor blade is identical to that of
Ref. 5 before the axial displacement u was eliminated. Assuming that the
blade undergoes normal and shearing stresses the classical nonlinear strain-

displacement relations to 0(63) are (see Ref. 3)
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v'[ncos(eg + ¢) - gsinleg * $)] - w'lnsin(eg + ¢) + tcosleg ¥ ¢)]
(97)

E

.a_l_ ' = - 32‘. !
RIS UL M e, = (n-37) ¢

For a linear stress-strain law, the blade elastic potential energy is simply

1 2 2 2
Veg = 3 [VC1[EEXX b o(c2, + <& ) Tdndeax (98)

where E is the modulus of elasticity and G is the shear modulus. Substi-
tuting Egs. (97) into Eq. (98), integrating over the blade cross-section,

and retaining terms as in Ref. 5 yields
L

B
[0<Euu'+%(w2+w“fo+(%w P Lot et

1

o —

VeB

-+

W2 2 2 s )
v [Izcos 4o * I]sin 49 2¢ sin ¢ cos ¢0(I2 I])]

<+

YA . 2 2 .
W [Izs1n 4o * I]cos %9 +2¢ sin ¢ cos ¢0(I2 - I])]

2fu’ + Jé-(V'2 s w ) (oge" + % ¢‘2)Ak§

+

2(¢6¢' + %—¢'2)[v"cos 40 + w'sin ¢4 - 2¢ sin ¢ COS ¢0(v"-w")]B2

2v'w"[sin ¢4 COS %9 + ¢(cos2 b9 - sin2 ¢0)](12 - I])

+

- 2v"¢"(sin 40 + $COS ¢o)c2 + 2w'¢"(cos &g - ¢sin ¢0)cz} + Glp¢'?>>dx

(99)

where A is the cross-sectional area and
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B] = J (n2 + CZ)Z dndz 82 = J[ n(n2 + gz)dndc
‘A A
I] = JP czdndc 12 = JJ nzdndc AeA = II ndndg
‘A A A
(100a)
al = [ 2+ Bydndr 1= VL . . 2¥ g
A JAn & Jande P A 3y \C an nds
{2 _
C] = [ A"dndcz CZ = JI ghdndr
‘A A

are certain cross-section integrals. Note that I] and 12 are flapwise and
chordwise area moments of inertia, respectively, Aki is the area polar
moment of inertia, Ip is the torsional constant including cross-sectional
warping and e is the tension offset from the elastic axis. We note that
because of symmetry of the cross-section about the n axis and anti-symmetry

of the warp function, we have taken into account in Eq. (99) the fact that

” zdndg = ” nzdndzg = ” c(r\2 + cz)dndc = ” Adndg = ” Andndg = 0
A A A A A

(100b)

Equation (99) can be discretized by using the expansions (85). Such a
discrete expression for the blade elastic potential energy is very lengthy
and will be omitted here for brevity.

Equations (87), (88), (90), (91), (94), (95), (96), and (99) define
the gravitational and elastic potential energy for all the system components.
In addition the shaft can undergo rigid body rotation relative to the air-
frame, the flap link can rotate relative to the hub, and the lag 1ink can
rotate relative to the flap link. For generality, we shall assume that
torsional springs are present to counteract these rotations.

The potential energies due to these springs can be written as
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Vsx = 7 Ksx¥x
Vysy ~ %’kSyws
Vkai = ¥ ko
Vkei © ]E kesf

where ka, kSy’

system potential energy can be written in the form

VeV, + Vo, vV

6a * Vea +Vgs * Ves * Vo Y

of FVes P Ves tVen t Vksx tY

KSy

+V, .tV +V

i=1 Kai K81 GB1 EBi)

45

ka, kB are the torsional spring constants.

(101a)

(101b)

(101¢c)

(101d)

Thus, the total

(102)
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4. The Aerodynamic Loading and Virtual Work

As indicated in Section 3, Lagrange's equétions of motion require the
expression for the nonconservative virtual work. In this section, we shall
produce this expression for the main rotor, tail rotor, and airframe.

We begin with the formulation of the main rotor:aerodynamic loads.

A strip theory or blade element approach is adopted because the results

are in the form of loads per unit span, and thus are easily integrable over
the total area of each blade, and because the theory allows a high level of
flexibility in regard to the flow field assumptions.

Before beginning the detailed analysis, a brief outline of assumptions
and definitions is in order. The 1ift and pitching moment at a typical
main rotcr blade station are obtained via the Theodorsen expressions for os-
cillating airfoils. The velocity used in these expressions is the local
two-dimensional relative wind due to both nonoscillatory motions of the air-

foil and induced flow, hereafter referred to as the nonoscillatory relative

wind. In contrast, the blade element drag is assumed to depend upcn and act

along the total two-dimensional or oscillatory relative wind, which is defined

as the velocity due to all blade motions and induced flow. In all phases of
the aerodynamic formulations, effects due to reversed flow, stall, and shed
wakes are ignored; compressibility is treated by use of the Prandtl-Glauert
factor.

In the induced flow analysis, it is convenient to work in terms of the
hub Xy plane rather than the average tip path plane so that the complica-
tions of determining the latter are avoided. For the flight regimes to be
studied, the orientations of the two planes should differ by only a few de-

grees; this justification for using the hub plane remains to be verified.



The mean induced velocity, as determined from simple momentum theory
(see Ref. 6) is

2

M= Tp/(2nly YAB2V') (103)

where TR is the rotor thrust along the zZy axis, LB the rotor radius, YA the
the air density, B the tip loss factor, and V' the relative wind at the hub.

The tip loss factor is given by

B=1 - N (104)

where M is the number of rotor blades and

2, 4
LB ) (105)

CT = TR/(wyAQ
The relative wind at the hub has the expression

1/2

V' = [(H-vigpy Sin aR)2 + (W COS aR)Z] (106)

where ap is the angle between the velocity of the hub and the plane normal
to the hub axis Zp-

For hover, WOAX = 0 and the induced velocity is
]
My = [T/2ny 821212 (107)

For high forward speeds, W << WOAX’ V' o= Woay» and

= 2, 2.
wHS = TR/(ZnyAB LB wOAX) (108)

For moderate forward flight, Eqs. (103) and (106) are solved simultaneously

for W, resulting in the quartic
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W (2igpy SN aR)N3 + (\;IOAX)ZWZ - TRZ/(4n2LB4y 284y - (109)

A

The mean induced flow is then corrected by Glauert's expression

= T
win = W(1 - LB Kv cos wz) (110)

where r is the radia! distance from the hub center and Kv’ according to

Payne (Ref. 7), has the form

>
U]
w4

ized (111)

in which

WOAX»COS aR

po= (112)
QLB
is the advance ratio and
W= Wopy SiN a
_ QAX R
A= QLB (113)

is the rotor inflow ratio.
The induced velocity win. which is assumed to be in the -z, direction,
is then expressed in terms of components along the deformed blade section

coordinate system XpYp2p S
0
{win} " Il {0 (114)
~Hin
where [TDH] is the matrix product [TDB] [TBL] [TLF] [TFH] (see Appendix A).

The inertial velocity of a typical blade element is calculated by
utilizing the previously introduced coordinate systems and velocity expres-

sions. Specifically, the velocity of any point on the elastic axis of blade
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i*, in terms of components along XpYpZps is given by Eq. (A33) of Appendix

A with n and ¢ set equal to zero. If this velocity is denoted by {Qé}

E!
where the subscript E refers to the elastic axis, then the oscillatory
relative wind {U} is given by

Y |
(U} = 9 Uy 0= (W} - wgde ~ (115)
U

Since the profile drag is assumed to depend upon the two-dimensional

oscillatory relative wind, we can use Eq. (115) to write its magnitude as

_ 1 2
D = E'CDOYAU c (116)

where U2 = U22 + U32, C is the local! blade chord length, and CDO is the

local profile drag coefficient (see Fig. 8).

As mentioned at the beginning of this section, Theodorsen's eguations
call for the use of the nonoscillatory blade motion, which is defined as
the sum of all motions except those which contribute to the unsteady velocity
of the airfoil in the direction perpendicular to the nonoscillatory relative
wind. This nonoscillatory motion is obtained by setting the flap angle rate
8 and the blade bending rate w (along with n and t) equal to zero in the
right side of Eq. (A33) of Appendix A. If the resulting velocity is termed
{QB'}EN » where the subscript EN refers to nonoscillatory motion of the

elastic axis, then the nonoscillatory relative wind is given by

{V} = V2 = {win} - {wé}EN (117)

*
As mentioned in Section 2, it is understood that the subscript i on variables
associated with a particular rotor blade is deleted for clarity,
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Theodorsen's expressions for the unsteady 1ift and pitching moment

about the elastic axis are (see Ref. 8)

L = C, va¥bC(K)[Vap-2+b(F = a) ap] + my,b2(Vay-i-basy) (118)
and

Mo = CiayAVbz(a N %)C(k)[VuA-i + b(-;- - a) 4] N

- nyAbz [(‘7 - a) Vba, + b2 (%— + a%) &, + bai] (119)

In these expressions, C, is the local blade element 1ift coefficient per

La
unit length, V = (v,2 + v,%)1/2, b is the blade semichord, a is the dis-
tance from the midchord to the elastic axis in percent of semichord b,
neasured positive towards the trailing edge, C(k) is the complex lift defi-
ciency function, ap is the instantaneous inclination of the chord to the non-
oscillatory relative wind, and z is an upward (perpendicular to the nonoscil-
latory relative wind) translational velocity of the elastic axis. The angle
of attack ap Can be written as (see Fig. 8)

v
ap = tan”! [Vg’] 1120)

The terms &A and z are given by

ay = ¢+ ecy + ecp (121)

2% G ey (8B3 + Tpgzy U + Tppsp v * Tpgaz W) (122)

where By is the third component of the 3 x | matrix ([TDF][rFL] + [TDL] x
[r gllT f] + [TpgllrgtugdlTycl) (e,), which is recognized as the coefficient
of 8 in Eq. (A33) and Tp31® Tpgsze 2nd Tppsq are elements of the last row
of matrix [TDB]. The terms z and &A in Eqs. (118) and (119) will be
neglected (see Ref. 8).

" PRODUCIBILITY OF THE
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The complex 1ift deficiency function C(k) is given by

C(k) = F + i6 ' (123)
where
. J](J]+YO) + Y (Y]:JO) (124)
- 2 2
(33 +Yg)" + (¥1-d4)
and
Y,Y, + J,J »
(J]+Y0) + (Y]—JO)

The Bessel functions J], JO’ Y], and Y0 depend on the reduced frequency

- wb
k =% (126)

where w, the frequency of oscillation is set equal to © for 1/rev oscilla-
tions; more qgenerally, w is the frequency which best represents the oscilla-
tory motion of the main rotor blades. Because this frequency is not known
in advance, an iterative process may be required, so that the value of w
assumed for the force computation is verified to agree with that resulting
from the solution of the blade equations of motion. Note that C(k) intro-

duces both a reduction in magnitude of the unsteady loads and a time lag of

t -1 tan-]
[iV]

lag (127)

5
F

In the case of the quasi-steady assumption, C(k) = 1 and tlag = 0.
At time t, the components of the aerodynamic forces in the ¥pZp coor-

dinate system are
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F = Re]L )} i D(t) r "(U3) (128

W= e{ (t - ty,q)] sin op - D(t cos._tan T, )
: a Y

Fp® Re{L(t - t]ag)} cos oy + D(t) sin -tan\ :UE' (129)

and the pitching moment is
() = Re [t - t,,)] (130)

Now that the enrodynamic forces and moment acting on a typical blade
section have been cerived in terms of components along Xp¥pZps We proceed
to formulate the ionconservative virtual work for the main rotor subsystem.
The virtual work expression for the ith blade is

L
B
oW = [0 (FyDéwDy + FpWp, * Mypdopy) dx (131)

where GwDy and Gtz are virtual displacements in the Yp and 2y directions
and 80, p is a virtual angular displacement about the Xp axis. Explicit
expressions for these quantities are listed in Appendix A as Eqs. (A39),
(A40), and (A36).

The fuselage aerodynamic characteristics are required for an eventual
trim solution and for the airframe virtual work. The tail rotor exerts an
aerodynamic force TR on the airframe at point T. This force, which is
assumed to act in the Zg direction (perpendicular to the tail rotor fan
plane) and is calculated as part of the trim procedure, counteracts any

airframe rotational tendency due to drag on the main rotor blades or other
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aerodynamic effects.

Also acting on the airframe at its center of mass

are the overall airframe 1ift LA acting normal to the distant free-stream

velocity, the airframe drag DA acting along the distant free-stream velocity,

and the airframe pitching moment MA about the A axis.

loads are given by

M

=.]_
2

2

v, 25

¢ AF SrefYAF

LaAYA

1 2
CoaYaVar Spef

v, 25 |

- 1
A= 2 CuoaAVAE Srefbsmear

These three airframe

(132)

(133)

(134)

where CLuA’ CDA’ and CMaA are the airframe 1ift, drag and pitching moment

coefficients based on the reference area S of LSM is the static margin,

ApF is the airframe angle of attack, and VAF = (w

oax’ * Voaz")- Due to

the nature of the flight regimes to be studied, side forces are not con-

sidered.

The virtual work due to the three airframe loads and the tail rotor

thrust is (see Fig. 9)

6Wy = (Ly sin ape - D, cos ape) SWoay *

(LA €os ap; + DA sin “AF) Sw

TR AT,

where éwyr, is given by Eq. (A41) of Appendix A.
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5. _Llagrange's Equations of Motion in General Form

The kinetic energy, potential energy, and nonconservative virtual
work have been discussed in detail in Secs. 2-4. In this section we shall
present a general form of Lagrange's equations for the system.

Before we can proceed with Lagrange's equations, it is necessary to
identify the functional dependence of T and V on the various generalized
coordinates. The functional dependence presented here is the most general
possible and not restricted to the linear case. First, we recognize that

the airframe is described by three rigid-body translations w. .. w.. .., w

OAX" "OAY" "0AZ

three rigid-body rotations Ax’ X, AZ, and P elastic generalized coordinates

y
LY (i = 1,2,...,P). Then, considering Eqs. (65a,b), (69), (70), (71), (87),
and (88) in conjunction with Eqs. (3) and (4) as well as the definition of

{wa}, we conclude that the functional dependence of TA’ VGA’ and VEA is as

follows:
Ty = TaloaxsWoay v‘:OAZ,ix,iy,iz,ﬁAi,xx,xy,xz) v 1= 1,2,...,P (136a)
Ve = VGA(WOAZ’Ax’Ay’Az’nAi) ,» 1=1,2,...,P (136b)
VEA = VEA(“Ai) sy 1 =1,2,...,P (136¢)

The transmission shaft is described by three rigid-body rotations wx’
wy, and v, relative to the deformed airframe and ZSu + S¢ elastic generalized

coordinates it vyt Mok (j = ],2,...,Su; k =1,2,...,S.). Note that the

¢
rotation v, = I Qdt is a specified function of time. Considering Egs. (79),
(90), (92), and (107a,b) for the shaft kinetic emergy, gravitational poten-
tial energy, elastic potential emergy, and potential energies due to torsional
springs at the base, respectively, together with Egs. (3), (4), (11), (12),
(20), (69), (78), (A14), and (A30), we can write the functional dependence

of TS’ VGS’ VES’ VKSx and VKSy as follows:
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TS = TS(WOAX’WOAY’WOAZ’AX’AY’XZ’nAi’¢X’wy’nt’an’AX’Ay’AZ’nAi’wx’wY’nt’an)’

P2 1,2,0.0P5 § = L2,n.uS, (137a)

Ves = VGS(WOAZ’Ax’Ay’Az’“Ai’wx’wy’“uj’"vj)
i=1,2,...,P3 ] =~],2,...,Su (137b)
VES = VES(nuj’nvj’n¢k) j= 1,2,...,Su; k = 1,2,?l.,$¢ (137¢)
Vksx = Vkex{¥x) (1374)
VKSy = VKSy(wy) (137e)

T
to the deformed airframe. The kinetic energy of the tail rotor is given by

The tail rotor is described by one specified rotation ! Q. dt relative

Eq. (57), so that considering Eqs. (3), (4), (26), (27), (28), and (66) the

functional dependence of TT can be written as

’

TT = TT(WOAX,WOAY,WOAZ,AX,Ay,AZ,nAi,Ax,ky,kz,nAi), i=1,2,...,) (138)

On the other hand, the tail rotor potential energy is given by Eq. (94), and

it is readily seen that

VGT = VGT(WOAz,XX,Xy,AZ,nAi) ’ i= ],2,...,P (]39)

Following the same pattern, the hub is fixed to the end of the transmission
shaft and moves together with it, so that considering Eqs. (58) and {(95) in
conjunction with Eqs. (3), (4), (11), (12), (20), (21), (69), (78), (A15),

and (A31), we conclude that the functional dependence of TH and VGH is

TH = TH(WOAXJVOAYJVOAZ.Axgly,kz,nAi,wx,wy,nuj.nvj,n¢K.kx,Ay.Xz,nA1.

Vs sn

x*Yy uj,nvj,n¢k) sy 1 = 1,2,...,P; j = ]s29---:s ’

u

k = ].2,...,8¢ (140a)
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VGH = VGH(W0A29AX’Xy;XZ$nAiswx!wyanuj1nvj) s 1 = ],2,...,P; J = ],20---,Su

(140b)
Finally, the rth rotor blade is described by the three rotations @,

(1ead-1ag), B (flapping), and .. (pitch) as well as the Nu + Nv + Nw + N¢

elastic generalized coordinates q (2 = 1,2,...,N 3

ure’ Yvrm® Qwrn’ q¢rs u
m= 1,2,...,Nv; n= 1,2,...,Nw; § = 1,2,...,N¢). As mentioned in Sec. 2,

of the three rotations only a_ and B, are generalized coordinates. The

r
kinetic energy is given in general form by Eq. (60). Considering Eqs. (81),

(84), and (85) along with Egs. (3), (4), (11), (12), (20), (21), (30), (31),
(36), (40), (69), (78), (A16), and (A32), the functional dependence of

T =1,2,...,M) is deduced to be

Br (r

TBP = TBP(WOAX’WOAY,WOAZ’AX’Ay’xz’nAi,wX’wy’nuj’an,n¢k,ar,6r’qurz’qum’

q ’Ay’xz’”Ai’w T TS T

wren®Sors >« XYy Y205 My ek % B Gy 2y rm?

qwrn’q¢rs) » i =1,2,...,P3 § = 1,2,...,Su; k = ],2,...,S¢;

g = 1,2,...,Nu; m= 1,2,...,Nv; n= 1,2,...,Nw; S = 1,2,...,N¢

(141)

The gravitational and elastic potential energies VGBr and vEBr are given by

Eqs. (96) and (99) respectively, whereas the potential energies Veor and
VKBr are given by Eqs. (101c) and (101d). Their functional dependence is

readily seen to be

v s A

GBr = VGBr(wOAZ’AX y.kz.nAi,wx,wy.nuj,nvj,n¢k.ar,Br,qurzyqum.qwrn,q¢rs) ’

i=1,2,...,P;J= 1,2,...,Su; k = 1,2,...,S¢; L = 1,2,...,Nu;

m = 1,2,...,Nv; n = 1,2,...,Nw; s = 1,2,....N¢ (142a)
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VEBr : VEBr(qurn’qum’qwrn’q¢rs) » b F ]’2"“’Nu; m= 1’2""’Nv;
n = 1,2,...,Nw; S = 1,2,...,N¢ (142b)
Vear = Viar(op) (142¢)
VKBr = VKBr(Br) (142d)
Considering Eqs. (62) and (102), the system Lagrangian is
M
L= T-V = Tt TerT-Ven-VeaVer—Vas—VesVanVksxVksy * rZ] (Tgy
'VGBr'VEBr'VKar‘VKsr) (143)

Noting the functiznal dependencies (136) - (142), Lagrange's equations for

the three rigid-body translations can be written as

' ‘ M
d oL aL d_5_
a_ oL 3t o8 9 (7 4T _+T 4T, + ) T.)=F, (144a)

T i dt At Tt Tor Ty * Lo Tge! = Taoy

MoAx OAX BWOAX rel
d st b _d 3 (p T T 4T 4 ! ) = Fpo, (144b)
dt - ™ at ATt s Ty ™ L Tee! = Faoy
I AR A A ? T..)
at . wonz Ot o At Trt Ity Lo Ter

Woaz WoAzZ "
M
3 -
* aony ven T Vet * Ves Yo L Vegr) = Faoz (144c)

where FOAX’ FOAY’ FOAZ are the nonconservative generalized forces associated

with Woax* “oav® oAz respectively. Similarly, we can write the rotation

equation
g__?_'_-__@_l_._=g___3._(1- + T +7 +T+h£‘|')__a_.[1' + 7
dt i P dt 55 ATttt Lo Tee T AT T
M
$To* Ty - Ve - Vo~ Vas T Van t L (Tar - Vese)d = Fix (145)

- e e o o S AT T T S s



where analogous equations can be written for » and \_and F, _, F
y z Ax> Ay

are the nonconservative generalized forces associated with Ax’ Ay, xz,

respectively. In the same manner, we can write the airframe elastic defor-

’ sz

mation equations

M
d sl aL d
T cr et Ty ¥ T+ T+ T+ ] Tp)
1
oy AT Tt Tyt Yea Vet 7 Vs 7 Ve
M -
- VEA + rzl (TBr - VGBr)] = FnAi s 1= 1,2,...,P (146)
the transmission shaft rotation equation
d oL L d 3
T st (Tt Tyt 2 Tar [Te +# T, -V
dt 3 v, dt N wx S H GS
X X
M
~ Visx rzl (Tgy - Vggr)d = Fox (147)

where an analogous equation can be written for wy, the transmission shaft

elastic deformation equations

d oL oL _d : e
e L (e Z Ty, [Te # T, -V
Ty g At L ngg 115 T T Ves
uj uj
M
“Van * L g~ Vear) - Vesd = Fou; (148a)
d ol oL _d 9 i >
d oL 3L o4 3 (a4 Y T ) - R [T T, -V
at - o dt = st Tyt Lo Tge) g Llg + Ty = Vg
anvj vj 3an. r=1 vj
M
“Vau* L ae = Voge) = Vesd = Py (148b)
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M M
d oL sL__d 9 i
T T et Oy LT s Oy 1 (g - Vepyy
an ok an =] ok r=1
ok ¢k .
- VES] Fn¢k J = ],2, -,Su; k = ]92’ ,S (]48C)
the rotor blade rotation equations
aT av av
d 3L 3L . d " Br, _GBr, " Ker_p Ly M (149a)
dt 5 0 dt .- da 1) ar
o r 2a r r
r r
aT oV oV
d 3L aL d Br GBr KBr
a ot & .C + + SF_,r=1,2,...,M (149b)
dt 38 38, dt 38 38, 38, gr
r r
and the rotor blade elastic deformation equations
d ot ot _d Ter 2Tar |, Vopr , Vogr . (150a)
dt 3,pq Wyry dt a&urz Mure  urg  3yp,  Gure
d_ sl oL _d *Ter 2Tpe  NVggr Vg,
dt .- T 9q._ dt - Y * 3q * 3q. Fqurm (1500)
3y pm urm CL - urm urm urm
d_ o ot .d PTer e Ve, MVegr (150¢)
dt aawrn ¥ypn 4t aawrn Myrn  rn  Gypn QWM
d_ot ot _d Ter Tar, Vepr , Vepr (150)
dt - 3q dt .. 3q 8q 3q qérs
aqwS ors aqwS ors $rs ors
g = 1.2,...,Nu; m = 1.2,...,Nv; n=12,...,.N; s =1,2, ,N¢
r=1,2,...,M
where the meaning of FnAi’ wa, FWY' Fnuj’ anj’ Fn¢k’ Far, Fer’ Fqurz‘
qurm' qurn’ and Fq¢rs (i =1,2,...,P3 j = 1,2,...,Su; k = 1.2,...,S¢;
g = ],2,...,Nu; m = 1,2,...,Nv; n-= 1,2,....Nw; s = 1,2,...,N¢; r =

1,2,...,M) is obvious.

Equations (144) - (150) represent a set of 6 + P + 2 + 25u + S¢ + (Nu
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+ Nv + Nw + N¢)M coupled nonlinear cquations which must be solved simul-
taneously. Before we proceed with the actual solution, we must first ren-
der the equations in a more explicit form by replacing the various kinetic
energy components, potential energy components, and generalized noncon-
servative forces by their specific matrix expressions. Then, we derive the
variational equations by expanding the nonlinear equations about trim
solutions. A general form of the trim solution and variational equations
will be discussed in the next section.

Lagrange's equations, Eqs. (144) - (150) involve an extremely large
number of matrix multiplications and differentiations both with respect
to generalized coordinates and velocities and time. The magnitude of the
task demands a more automated approach, so that in Sec. 7 we present a
procedure for the derivation of Lagrange's equations by computer manipu-

lation.
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6. The Perturbation Equations

Let us assume that, following discretization, the helicopter can be
represented by an n-degree-of-freedom system, so that its motion is des-
cribed by n second-order Lagrange's equations or 2n first-order Hamilton's

equations. The latter set can be written in the form

~

X = Xi(x]’xz""’XZn’t) s 1=1,2,...,2n (151)

. (i

where Xi are generally nonlinear functions of the variables X;

1,2,...,
2n) and of the time t. Note that n of the variables X; represent generalized
displacements and the remaining n represent generalized velocities, or
generalized momenta. The 2n variables xi(t) define the state of the system
at any time t.

Next, let us consider a special solution of Eqs. (151), namely, a
trim solution. In general, there are many such solutions, but solutions of
particular interest are those corresponding to hovering and to forward
flight. Denoting a particular trim solution by ¢i(t), and jecognizing that
¢i(t) must satisfy Eqs. (151), we can write

¢i(t) = Xi(¢]’¢2"'.’¢2n’t) y 1= ],2’...’2n (]52)

In general, such solutions are periodic, ¢i(t) = ¢i(t + T). We shall refer

to b, as the unperturbed motion.

Letting yi(t) be perturbations about a given trim solution ¢1(t), the

general perturbed motion can be written in the form

xi(t) = ¢;(t) + yi(t) y 1=1,2,...,2n (153)

so that, introducing Eqs. (153) into Eqs. (151), we obtain

61



¢i + yi = x1(¢] + y]’¢2 + )’2----.¢2n + )’2" t) ’ i = ],2....,2" (]54)

Considering Eqs. (152), Eqs. (154) reduced to°
Yi = X000+ ¥100y + ¥ouiiintyy + ¥onat) = Xi(808500 008yt
i=12,...,2n (185)

which are referred to as the differential equation§ of the perturbed motion.

Equations (155) can be expressed in a different form. To this end, let us
expand the first term on the right side of Egs. (155) in the Taylor's series

about the trim solution
Xi(8 + ¥100p + Youeiistor + ¥orat) = Xo(y08n0.nusbyst)
2n ax

i
+ ) =,
j=1 ¥%;1%¢

y, +0,(y%) 1= 1,220 (156)

where x, ¢, and y are 2n-dimensional vectors associated with x,, ¢,, and Yy
respectively, and Oi(gz) denotes terms of second order in 7 Introducing
the notation

X

.
a;;(t) = o

and considering Eqs. (156), Eqs. (155) can be rewritten in the form

g » b= T2 (157)

2n
. _ 2 _
¥y ® jgl ag(tlyy + 0,(y%) w1 =12, (158)

where in general the coefficients a;y are periodic, aij(t) = aij(t + 7).
Note that Eqs. (158) are nonlinear because of the terms Oi(yz).

A case of particular interest is that in which the perturbations yi(t)
are small. In this case, we can neglect the second-order terms in Eqs. (158)

and obtain the set of linearized equations
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2n
yi ® 121 ag;(t)yy 1= 2.2 (159)

which are referred to as the variational equations.

The perturbation equations, Eqs. (158), or the linearized version, Egs.
(159), were derived on the assumption that the solution °i(t) represents an
actual trim solution, i.e., they represent a solution of the original equa-
tions (151). Trim solutions, however, are difficult to obtain and at times
one may wish to assume an approximate solution and derive a set of pertur-
bation equations about the "assumed trim". The question arises naturally as
to the behavior of these equations. To answer this question, let us denote
the actual trim by ¢i(t) and the assumed trim by ¢:(t). Assuming that the

two solutions differ to some extent, we can write

o1(t) = 45(8) +6,(8) 4§ =1.2,...20 (160)

where 6i(t) (i =1,2,...,2n) represents the difference between the two solu-

tions. Then, the perturbed motion can be written in the form

x;(t) = ¢:(t) + y:(t) L i=1,2,....2n (161)

*
where yi(t) are perturbations from the assumed trim. Inserting Egs. (161)

into Eqs. (151), we obtain

*

w * * * ¥ * b
85 () + ¥ (£) = X (07 + ¥yuby + Ypreenabyy + Yoot
i=1,2,...,2n (162)
so that, expanding Xi about the assumed trim ¢:, we can write Eqs. (162) in
the form

2n aX :
ok - * % * * __l * 2
yi(t) = xi(¢1’¢2""'¢2n’t) = ¢i(t) + jZ] axj §=Q* yi + 01(! ) ’

i=1,2,...,2n (163)
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Unlike the case in which the expansion was about the actual trim, however,
the first two terms on the right side of Eqs. (165) do not cancel out, be-
cause the assumed trim does not solve Egs. (151). It wil)l prove of interest
to examine these terms a little closer.

Assuming that the difference between the actual and the assumed trim is
relatively small, we can write the expansion about "the actual trim

* *x * Zn
X (8700000 csbpnat) = Xi(01atpuencstprat) + ] by (t)e (t)

i=1,2,...,2n (154)
where

X,

o
IS " P (165)

are the actual coefficients, which are ¢enerally not known. Considering

Eqs. (161) and (164), as well as Eqs. (52), we obtain

* * * ok 2n .
X (patgeesstguet) = 33(8) = 1 by (006, (8) - &() (166)

Moreover, introducing the notation

es(t) = ki: by (£)8, (t) - §,(t) , 1 =1.2,....2n
. X (167)
ayy(t) = &‘;‘ o
Eqs. (163) reduce to
- 2n * *2
yj(t) = J_Z] a”(t)yj(t) +e(t) + 0,y %) (168)

Hence, Ci(t) play the role of unknown extraneous forces introduced by the

process of using an approximate trim instead of an actual one. Although
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these forces are not generally known. one may be able to estimate them.

The solution y: represents perturbations from the assumed trim instead
of from an actual trim. The question can be ésked as to how they compare
with the perturbations ¥; from the actual trim. For small deviations 61
from the actual trim, the response y: should not differ very much from Yi»
but this cannot be taken for granted. The re]ationvbetween y: and ¥; de-
pends of course on € Methods for estimating bounds for y* - y for given

*
bounds for ¢ - ¢ appear highly desirable.
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7. Algebraic Computer Manipulation

In Sec. 3 we mentioned two approaches for expanding the system kinetic
energy, Eq. (63). One approach is to obtain explicit expressions for the
mass integrals given by Eqs. (53), (56), and (61) while retaining the trans-
lational velocity and angular velocity of each set_of axes in implicit form.
Such an approach is convenient when the elastic displacements are of inter-
est and was the approach used in Sec. 3. The other possibility is to sub-
stitute explicit expressions for the translational velocity and angular
velocity of each set of axes given by Eqs. (A28)-(A32) and (A12)-(A17) into
*qs. (64) while retaining the mass integrals (53), (56), and (61) in im-
plicit form. This approach is convenient when the rotational coordinates
as well as the terms due to coupling between bodies are of interest, and it
must be adopted if one wishes to derive explicit expressions for Lagrange's
equations. Examining Eqs. (A28)-(A32) and (A12)-(A17) one concludes imme-
diately that working with explicit expressions for the velocities and angu-
lar velocities of each set of axes involves the calculation of very lengthy
matrix products. Moreover, these matrix products involve quantities of
different orders of magnitude and/or importance. Many of these terms are
insignificantly small and can be ignored. Because of the complexity asso-
ciated with algebraic multiplication of a large number of matrices and be-
cause of the high probability of human error in performing these multipli-
cations by hand, it seems highly desirable to computerize these algebraic
operations. It should be pointed out that algebraic computer manipulation
need not be restricted to matrix multiplication. Indeed, many operations
involved in the derivation of Lagrange's equations, including differentia-

tion, can be performed by computer.
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In this section, we shall outline an algebraic computer procedure which
can be used to expand the system kinetic energy explicitly in terms of the
translational and angular velocity of each set of axes in such a way that
small terms are ignored automatically. In addition, the same method can be
applied to the gravitational potential energies, Eqs. (81), (90), (94),
(95), and (96). Furthermore, the system kinetic energy and gravitational
potential energy expressions obtained by the computer method are in a form
which can be easily differentiated algebraically by the computer, so that
ultimately Lagrange's equations, Eqs. (144)-(150), can be obtained explic-
itly with a minimum of human effort.

The ideas used in implementing algebraic manipulation on a computer,

are best introduced via an explicit example. Let us consider the product

-0.5 B s6 ca(-f J sa - B J co ca - B J s ca) (169)

Bxz Byz Bzz
which appears in the expansion of %-{QB}T[JB]{QB}, where the latter was
encountered in Sec. 3. To calculate this product on the computer, we shall
associate numbers with the different groups of characters that represent

s dpoos U

quantities to be manipulated algebraically, i.e., 8, J , SO,

Bxz’ “Byz’ "Bzz

B, Sa, ar vca. These groups of characters constitute what will be re-
ferred to as symbols. The association of numbers with symbols allows ys

to substitute manipulation of numbers for manipulation of symbols and is
accomplished by the formation of a symbol table, Table I. The symbol table
contains two entries per line. These entries give the character representa-
tion of a symbol and a weight assigned to the symbol, where the weight is
determined by the analyst according to his knowledge of the symbol's mag-
nitude or his desire tc retain its effects. The weight need not be a fixed

quantity and can be changed at will. A high numerical value of the weight
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implies a high-order term, i.e., a lcss significant term. Note that here

we assigned JBzz’ s0, c0, and ca a weight of zero, Jsz’ sa, and 8 a we1ght

of unity, and JByz a weight of two, where the weights represent anticipated

magnitudes of these symbols. The number associated with a particular sym- §

bol is the line number in the symbol table. In this case, one is associated

with 8, two with Jsz’ three with JByz’ etc. - é
Examining Eq. (169), we see that it is necessary to form aigebraic

products of symbols, for example - 0.5 B s ca. To this end, we define

terms. A term consists of a signed numerical coefficient, a pattern con-

sisting of the numbers associated with each symbol appearing in the product,
and a weight which is the sum of the weights of each individual symbol ap-
pearing in the term. Hence, in view of the number-symbol associations and
the weights of Table I, we represent -0.5 8 s6 ca as a term having a coeffi-
cient of -0.5, a pattern of 1, 5, 8, and a weight of 1. All terms, i.e.,
all coefficients, weights, and patterns are stored in numbered storage
stacks. The coefficient and weight of any term are always single numbers

and are stored side-by-side in the coefficients and weights free storage

stack, exhibited in the form of Table II. On the other hand, the pattern of
a term may differ from the pattern of other terms and must be able ‘o re-
present the product of any number of symbols. Because of the different
lengths of different patterns, all patterns are stored in the separate

patterns free storage stack, labeled as Table III. Note that the coefficient

and weight of -0.5 8 s6 ca are stored in line 3 of Table II and the pattern

is stored in lines 5, 6, and 7 of Table III.

It is also necessary to form algebraic sums of terms, such as -8 Jgyz SO
- B JByz o Ca - B Jp,, SO Ca, which we shall call series. Each series is

given a distinct series name. As examples, we shall call the series con-

sisting of the single term -0.5 8 s6 ca by the name X, the series -g Jsz Sa
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co ca - B JBzz s6 ca by the name Y and the series resulting from

the product of X and Y by the name Z. A series is described by a sequence

of terms with coefficients and weights stored.sequentia11y in the coeffi-
cients and weights free storage stack and with patterns stored sequentially

in the patterns free storage stack. The summation of terms in the sequence

is understood. Hence, the series Y is described by:the coefficients and
weights stored in lines 8, 9, and'10 of Table II and the patterns stored in
lines 12-14, 16-19, and 21-24 of Table III. To distinguish sequences of terms
forming series, each series name is assigned a number corresponding to a

line in the series definition table, Table IV. Each line of this table

contains three entries giving the 1ine number of the coefficient and weight
in the coefficients and weights free storage stack of the first term in the
series, the line number of the beginning of the pattern in the patterns
free storage stack of the first term in the series, and the number of terms
in the series. Assigning the number 5 to the series name Y, the fifth line
of Table IV contains the entries 8 and 12 giving the storage locations of
the series and the entry 3 designating that there are three terms in the
series.

Let us now consider the multiplication of two series, namely, the mul-
tiplication of Y by X, which can be performed term by term. The product
of two terms yields a new term. If the total weight of the new term, given
by adding up the weights of the two terms in the product, is greater than a
specified value, for example 3, then the new term is deleted. Otherwise, the
coefficient of the new term is the product of coefficients and the pattern
of the new term is the concatenation of the patterns of the two terms in the
product. Multiplying tie first two terms in Y by the single term in X, the

total weight of each resulting new term is 4 which is greater than 3, so
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that these terms are deleted. Multiplying the last term in Y by the single
term in X, the resulting new term has a total weight of 2, a coefficient of
0.5, and a pattern of 1, 1, 4, 5, 5, 8, 8. Assigning the number 6 to the
series name Z, this new term which is the product of X and Y is stored
according to the information in line 6 of Table IV.

The method outlined can be programmed easily tn Fortran IV and is
appealing because of its simplicity. We have discussed only mulitplication
of series. Clearly, considering each entry in a matrix to be a series, al-
gebraic multiplication of matrices is accomplished by multipiying and addiﬁg
series. In addition it is not hard to see that differentiation is simply
a matter of looking for the occurrence of particular symbols in the pattern
of each term. In future work, we shall present detailed documentation of
a computer program which performs algebraic manipulation and we shall use

the program to obtain explicit expressions for Lagrange's equations.
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Symbol  Weight
8 1
Jsz 1
JB_yz 2
JBzz 0
s6 0
co 0
Sa 1
ca 0
1 !

Table I - Symbol Table

10
1
12
13
14
15

250

71

Coefficient Weight
of Term of Term
-0.5 1
-1.0 3
-1.0 3
-1.0 ]
0.5 2
- \J; ~a
= <= =
X X A

Table I1 - Coefficients and
Weights Free Storage Stack

it (AN A




1 ) Y 12 1 23 5 34 5
2 | - 13| 2 | s | B | s
3 ) 14 7 25 | -1 36 8
4 ) 15 0 26 ) 37 8
X 5 1 16 1 27 ) ~38 | -1
6 5 17 3 28 } 39 B
7 8 18 6 29 } 40 )
8 | -1 19 8 30 3 41 3
9 ) 20 0 Z 3 ] 42 3
10 - 21 1 32 1 43 i}
noL- 22 | 4 33| 4 S §5
® X
0 denotes the end of a term i
2000

-1 denotes the end of a series

Table IIlI - Pattern Free Storage Stack

Location of Location of Number of
Coefficients Patterns Terms

: - - -

X=2 2 3 5 1

3 - - -

. - - -

Y=5 5 8 12 3

=6 6 14 31 1
J\ i R <

50 } - )

Table IV - Series Definition Table
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8. Summary and Future Plans

This report presents a formulation of the equations of motion of a heli-
copter. The method of approach is a variation of the component-mode synthesis
in the sense that it regards the aircraft as an assemblage of interconnected
substructures. The substructures identified are the airframe, the trans-
mission shaft, the tail rotor, and the main rotor. vThe rotor blades are
assumed to be articulated with the flap-lag-pitch configuration. The equa-
tions of motion are derived in general form by means of the Lagrangian
formulation in conjunction with an orderly kinematical procedure that takes
into account the superposition of motion of various substructures, thus
circumventing constraint problems.

Because of the complexity of the problem, the derivation of explicit
equations of motion is sure to be extremely tedious and time consuming.
Moreover, the probability of error in deriving the equations is large indeed.
Fortunately, a number of assumptions can be made to simplify these equations.
In particular, one can ignore certain higher-order quantities in the equa-
tions for the rotor blades. However, this task is also sure to be tedious
and time consumihg. Hence, a procedure for the automation of the derivation
of the equations of motion is unavoidable if time and effort are to be mini-
mized. Such a procedure consists of a computer program capable of performing
the many matrix multiplications involved, certain differentiations, and elimi-
nation of higher-order terms. This latter task can be made easier by
adopting an ordering scheme. In a computer manipulation the ordering scheme
can be altered, thus producing sets of equations corresponding to different
sets of assumptions.

The next phase of the investigation is concerned with the derivation of

the equations of motion in explicit form. To this end, a method for the
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derivation of the perturbation equations (which are generally nonlinear) by
means of computer manipulation will be developed along the lines of Sec. 7.

Implicit in the derivation of the explicit equations of motion is
the truncation problem. Truncation will be done first on the substructure
Tevel and then on the complete aircraft level. An important question is
that of the airframe modes and how they can be used.to evaluate certain "mass
integrals." In this regard, it may prove advantageous to look into the
possibility of using "admissible vectors" to represent the motion of the air-
frame instead of using actual airframe modes.

Another problem that needs to be answered is the effect of nonlinear
terms in the perturbation equations for the blade motion. If such terms
cannot be ignored, considerable difficulty is Tikely to be encountered in the
determination of the dynamic characteristics of the aircraft. Intimately
related is the question of the axial displacement of the helicopter blade,
as the axial displacement introduces nonlinear terms. The question is
whether one should treat this axial displacement as an independent distrib-
uted coordinate or attempt to express it in terms of the bending displace-
ments. Of course, if the axial displacement can be expressed in terms of the
bending displacements, then this fact in itself implies a reduction in the
number of degrees of freedom of the simulation, as the differential equation
for the axial displacement is eliminated for every blade. Under certain
circumstances, it may be possible to eliminate also the differential equation
for the torsional motion in a similar fashion.

It appears desirable, if at all possible, to derive a set of linear
ordinary differential equations with constant coefficients for the system,
as such a set leads to an eigenvalue problem 1ikely to yield useful informa-

tion concerning the helicopter dynamic characteristics, such as natural
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frequencies and natural modes of vibration. Then, it may be possibie to
treat nonlinear effects as perturbations on the linear case. If a set of
linear differential equations with constant coefficients can be obtained

for the system, then it must by necessity correspond to the case of hovering.
In the absence of aerodynamic forces, the set of equations is bound to be of
gyroscopic type. The solution of the eigenvalue problem for the gyroscopic
system can be obtained by the method of Ret. 9. The possibility of using

the natural modes of the gyroscopic system to truncate the overall problem

will be explored.
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Figure 3. The Main Rotor Transmission Shaft Coordinate System
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Figure 4. The Deformed Main Rotor Transmission Shaft
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Figure 5. The Tail Rotor Coordirate System

Figure 7. The Deformed Main Rotor Blade
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Figure 6a.

The Main Rotor Hub and Flap
Coordinate Systems

6b.

The Lag Coordinate
System

6¢c.

The Undeformed Blade
Coordinate System .
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Figure 9. The Fuselage Aerodynamics
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Appendix A

Contained herein is a summary of the key translational and angular
velocity relationships developed in Sec. 2. Also included, when needed
elsewhere in the text, are the full expansions of these expressions in terms
of generalized coordinates, control variables, and elastic displacements.
Important virtual displacement expressions are a]so‘1isted. As mentioned
in Sec. 2, it is understood that the subscript i on variables associated with
a particular main rotor blade is deleted for clarity. Because many of the
matrix products appear repeatedly, the following compact notation is de-

veloped:

[Ty ] = [Tpp)lTg, ] (A1)

[Tyed = [TgdlTg 1T () & etc. (A2)

The important angular velocity expressions in Sec. 2 are:

(e} = Az[xy][xx]{e3} + xx[xy]{e]} + i ley) (A3)
tagh = [Tgpliagd + [Toplv1(Lagetupgh) + v Ty, Ilvy Jey)
+ 9, [u, Je,) + afes) (A5)
‘Oé (L59t)
{QH} = [THs]{QS} + [THS] Ué (Lsst) (A6)
bg (Lgst)
{ap}t = [Tg,loy) - 8le,) (A7)
{QL} = [TLF](QF} + G{E3} (A8)
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{ag} = [TBL]{QL} + 0{e} (A9)

{QD} = [TDB]{QB} + (ND} ' (A10)
w'v' o+
{up} = (v' - Vvl %-Q'W'z)sin 4g - W' - v'v'w' - ww'? - %-W'v'z)cos %9
(v - vyl %—Q'w'z)cos b * W' - v'v'w - ww'l - %—Q'v'z)sin ¢

2 Sin ¢0) + w'(¢sin 40 +-% ¢2 cos ¢0) (A11)

- v'(¢sin tg * %— 2 cos 4g) * w' (¢cos bg - %—¢2 sin ¢y)

+ V' (ocos o5 - %—¢

Substitution of Eq. (A3) into Eq. (A4) yields a fully expanded expression
for {a;}, substitution of Eq. (A3) into Eq. (AS5) yields a fully expanded
expression for {QS}, etc. Repeating Eq. (A3), this process yields the

following equations:

(g} = 3,0 IO Jegh + A, Dn Jegd + 5 (ep) (A12)
tard = A [Tppd00 J00 Jtegd + & [T, 000 Teeg) + A [Trpliey)

+ [T JvI(Dag iy 1) + appfes) (A13)
tag) = A, [Tga 100, 100 Jeqd + A, [Tga 00 Jeyd + & [Tgpte,)

+ [Topdlod(laggtupgh) + v, v, I0v, Doy} + v, Tle,} + aleg) (AT4)

—
0
-
—
L}

= iZ[THA][Ay][Ax]{e3} + iX[THA][xy]{el} + iy[THA]{ez}
+ [TyadlvIleggltuyc1) + &x[THS][wZ][wy]{e1} + iy[THS][wz]{ez}
'Oé (Ls’t)

+alTygllegh + [T 18 ug (Lgst) (A15)
bg (Lgst)
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ag) = 3, [TpaJ00 J0n Jegh + A, [Tgp Jn Jeq} + X [Tgyltey)

+ [TgadlvI(Laggltipgd) + v, [Tpg10v, 1luy Jeyd + 9, [Tyo1lv, Jie,)

'Vé (Lsat)
+ a[TgeHegd + [Tped i (Lost) ¢ - B[Ty Niey) + alTy 1iey)
bg (Lgot) -
+ é{e]} , (A16)

tapt = 4, [Tpa 300 J1x, Jegd + A, [Tp0 100 Jeeqd + A [Ty Tey)
+ [Tpa 071 Legg Jipgd) + 4, [Tycd0v, 10w, Jey ) + § [Tpc 100, ey}
'oé (Lsst)
+ a[TpHegd + [Tpel d g (Lg,t) ¢ - BlTpe1ee ) + a[Ty Jeg)
ég (Lgst)

+ é[TDB]{el} +4(v' - vl %-Q'W'Z)Sin 49

(v' - vy --% v'w'%)cos 4
lel + $
- (W' - OIVIWI - W'W'z _ % Q'V.Z)COS ¢0 + V'(¢COS ¢0
° S0 ° |2 l 0 |2 . _ ' s
- (W= v'v'w' - w'w' - 7 W'v'%)sin g = V (¢sin %0
- %~¢2 sin ¢0) + w'(esin bo * %-¢2 cos ¢p) (A17)

1

+ 3 ¢2 cos ¢q) + w' (¢cos 4 - %—¢2 sin ¢,)

The important translational velocity expressions in Sec. 2 are:

. e . N

Wont = Dioax Womy Woa! (R18)

ipd = [Todtigad = [ry + updisy) + (0, (A19)
8 REPRODUCIBILITY OF THR
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pd = [Tpodige) = Drpp + uppdieg) + (0y0) (A20)
(Wpg} = [Tagltwgad = [rag + upgdiay) + {lpe} - (A21)
W} = [Tpdiwpe) = [rg + ugliag) + {ug) (A22)
Wy} = [Tgpltwggd = [rgy + ugyling) + {ig,) . (A23)
Wypd = [Tyolwgyd - [rycliay) (A24)
e b= [T dw ey - [rp Jag) (h25)
{w gt = [T pltwg 3 - [r g} (A26)
twg} = [T 1w g} - [rg + ugliag) + (lg) (A27)

Substitution of (A18) into (A21) yields a fully expanded expression for

{QAS}, substitution of the results into Eq. (A23) yields a fully expanded

expression for {QSH}, etc. Note that the use of Eqs. (A3)-{A9) is necessary.

Repeating Eq. (18), this process gives the following selected equations:

{wOA} =

{wAT} =

{wAs} =

{wSH} =

Cioax Vony Yonz)' (A28)
[Tao Doy Vopy Woazd' = A,lrar * uprdlry Ja, Jes}

- A lrap + uppdr,Iie} - iy[rAT +uprlie,} + {Uyg) (A29)
[Tao loax Yory onzd' - Aplrac * UREMIEMICTY

- X lrps * uAS][Ay]{e]} - iy[rAS +updley) + i) (A30)
[Tsollhonx "oy Voaz)' - %, ([Tgpllrgg + upglDr 100

+ [rgy + ugyllTgaI00 I D) teg) - & ([Tgp1lrpg + upgdln,]

* [rgy + uSH][TSA][Ay]){e]} - iy([TSA][,.AS +up]
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* Lrgy + ugyllTga)te,d + [TgpTtupe) - [rgy + ugyJTgaJ0vI([2gq1Mupc))
“blrgy * ugydlv, Jlvy Jeqd - d Irgy + ug, 10w, ey}

- Q[rSH + uSH]{e3} + {uSH} (A31)

__— . . < T . .
tng? = [Tolluoax Youy Monzl - A,([Tallrpg + upgdin 0, ]

* [T lrgy * ugyJTuI0 0 + [T, e dT,0 100, 100, 3
# IT g JTR 00 0D + D107, 100 10, Dtey)

- iX([TLA][rAS + uAS][Ay] + [TLS][rSH + uSH][TSA][Ay]

+

[T e T 0003 + 07 0 0T 0001 + D 10T, 200, Do)

" AT pIrgg + upgd + [T glrgy + ug0Tg,] + [T, Try0T,,,]

-+

[Tepdlrp 0T + D gdITy g tep} + [T, i)

- ([Tygdrgy + ugydlTgad + [Ty J0rygdCTyad + 17 0rg 10Ty
DI DI N Ceggdtigg)) = b, (0T, gy + ug, 0y, 1w
DIl 100, 1+ O, g 10T 00, 00w,

+ D g1 200,00, ey - (LT, Ilrgy + ug, 104, ]

+ [T el 0o,1 + 1, 20 00Tpd00, + T 30T, 109, D)
- T gdlrgy + ugy] + [T d0ryedlTygd + [T 10rg 0T

+ [rgllT gdv, Dtegd = (LT, 00ny 00T, + [T, (J0r, 10T,

-Vg (Lgt)
bs (Lgot)
+ [rLB][TLF]){eZ} - &[rLB]{EB} (A32)
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From Eqs. (A27), (A32), and the fact that {Qé} = [TDB]{QB}, we can
write the following fully expanded expression for the inertial translational
velocity of an arbitrary point on a main rotor blade in terms of components

along XpYpZp 2Xes:

) = [Togllhgux Woay onzd' = Ay ([Tpadlras + upgDay 0]
* [ggllrgy + ug eI, 1001 + [T, Trye 1T, 100 T,
I llrg T 00, T + [ T 10T, 4108, 100, )
+ [Tpgllrg + upllTga IO J0\ Dteg) - X ([Tpadlrpg + upgdlr 1
¢ [Tygllrgy + ug MTguT0n,1 + [T, )0r J(T,0 100
+ [Tgdlrg JTpad0d + [ 10 10T, 4100 ]
+ [Tpgllrg + ugdlTgad0 1teyd - A ([T dlrpg + ]
* Upgdlrgy + ugydlTsad + [Ty Jlred(Typd + [Tpellrg J0Tgy]
+ [Ty dr glIT, 1 + [Tpg g + ugdlTg D)te,) + [7,, 1)
- ([Tpgllrgy * ugydlTsad + [Ty llryedlTyad + [Tpedlrg JTey]
+ [T JrgI0T, o] + [Tpgllrg + ugJUTy, DIFN(Legg i)
by (TggTlrgy * ug )0, 1001 + [T, 1y J01, 10w, 1w,
g dlrp J0TpgT0v, 000, + 70, 20 10T, 100, 10w, )
 [Togllrg + upllTgsIlo, 10w e - § ([Tog Mgy + ugy v,
b [ JOng 2T, 0w, 1% [Tl MTpgdlv, ) + 1y, 10, 107, (10v,)
+ [Tpgdlrg + ugdTpellu, Diey) - allTpgllrg, + ugyd + [T, JIry 10T, (]
¢ ppdirg 00Tpg) + [Ty M G107, ] + [Tpgllrg + ugllTgcl)iey)
- ([ToydlryedCTysd + [Tppdlrg J0Tegd + [Tg 1 10T, o]
+ [Tggllrg + ugllTgeDI-Va(Lest) Gi(Lg,t) d(Lg,t)]
* [Tpgltigy) + BITyellrgy ] + [Ty M 10T, )
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+ [TDB][FB + UB][TBF]){EZ} = &([TDL][rLB] + [TDB][rB + uB][TBL])(e3]

- 8([Tpgllrg + ugliey) + [T MGg) (A33)

The virtual displacement vector associated with Eq. (A17) is
{80y} = GAZ[TDA][Ay][AX]{e3} + GAX[TDAJ[AY]{e]} + sxy[TDA]{ez}
-GVé (Ls,t)
+ [TDS] sug (Lest) p - 88[Tpplie,) + 6alTpy Jeg) + Gecp[TDB]{el}

) Lost
\ ¢S ( S )

W

+ 6¢{e]} + 6v' (1 - v'2 - %- '2)sin ¢0 + v'w'cos ¢0
|2 _]_ l2 1 ] L4
(1 - v'© - 5 W Jcos g t v'w'sin %0
/
0
+ sw' (-1 + w'2 + %—v'z)cos g * 6sin ¢g * %-¢2 cos ¢, (A34)
(-1 + w'2 + %—v‘z)sin ¢0 + ¢cos ¢0 - %-¢2 sin ¢0

Discretization of the continuous variables in Eq. (A34) via the methods

of Sec. 3 yields
{s0p} = GAZ[TDA][Ay][AX]{e3} + GAX[TDA][Ay]{e]} + cxy[TDA]{ez}

+ UTpaJ7 ) Leggdopgteng) + o0, [Tpcd0v, o Moy ) + oy, [Tpc1lv, Jeey)

=

N
-

+
™
—
o
w
—
N1 N I~ »V U~ »n
[ =4
<
w
—
-
N
w
A
(=]
=}

- 6B[TDF]{e2}

L = N—)

1
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N
¢
+ 5a[TDL]{e3} + secp[TDB]{e]} + 121 ¢¢i(x)6q¢i{e1}

N W' )
A (x)s (1 2 L2y +v'w
izl by (x)éq . ? - V' - w%)sin g + viw'cos 4 g

12 luz tygled
(v - v'© - > W )cos %0 i v'w'sin ¢

N 0

+ Xw ¢! . (x)s (-1 + w'2 + l-v'z)cos 6o + 65in ¢, + 1 ¢2 cos ¢
iEy fwi %% 2 0 0" ? 0
B 2 .1 2

(-1 +w'" + E-v'z)sin g * 6COS ¢4 - % sin ¢0

(A35)
where (¢AS] is the matrix [¢A] evaluated at the point S of the airframe.

The first component GODx of {GOD} is needed in the main rotor virtual

work expression of Sec. 4. It can be written from Eq. (A35) as

P
pa12%y * jZ] 215%3 * Apxa®¥x
s s

u u
¥ AnyWy i} TDS” 'iz] ll’S‘i(zS)Gnvi + TDS]Z iz] ‘l’éi(ls)énui
S

60Dx - Akzléxz * Akxlaxx T

* Tos1a L Osi(2g)ongq = Tpprp 88 + Ty p3 6+ Togyy 60,
N, ,
+ izl 9,7 (x)6Qy; + W iZ] dyq(x)ea . (A36)

where A, . is the first component of the 3 x 1 matrix [TDA][Ay][Ax]{e3},
A,y is the first component of the 3 x 1 matrix [TDA][xy]{e]}, wa] is

the first component of the 3 x 1 matrix [TDS][wz][wy]{el}, A is the

vyl
first component of the 3 x 1 matrix [TDS][wz]{ez}, a;q are the first row
components of [TDA][V]([EGS]{¢AS]), TDA]Z is the first row, second column
element of [TDA], Tos11 is the first row, first column element of [TDS],

etc.
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The virtual displacement vector associated with Eq. (A33) is

oo T
{wg} = [Tno][swOAX S¥gay BWOAZ] - T, 08, - (T der - {Txy}exy

+ [TDA]{auAS} - [TUAS][V]([QGS]{suAS}) - {wa}dwx - {Twy}awy
- [Tys] § ug (Lgot)p + [Tpedisugy} + (T }a8 = (T }sa
6¢S (Ls’t)
- {Tecp}6ecp + [TDB){éuB} (A37)

where the matrices {sz}, {TXX}, etc. are the respective coefficients of

“Ags A etc. in Eq. (A33).

Discretization of the continuous variables in Eq. (A37) via the methods

of Sec. 3 yields
' = T _ .
{awB} = [TDO][swOAX SWoay awOAZ] - {sz}axz {TAX}{GAX} [TAyJSAy

+ [Tpalloggdiongd = [T pdIvITeggIlopg Diongt - (T dow,

S
u
- {Tq._y}wy - [TuS] Z wéi(zs)énui + [TDS]“SHJ{G“S}

N
u
izl 8,4 (x)8q

N
v
Z] 8,4 (x)6q (A38)

W

+ {TB}GB - {T Yoa - {Tecp}éecp + [TDB] i

¢wi(x)éqwi

ne-31 X i
—

i
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where [@SH] is the matrix [¢S] evaluated at poiﬁ: H.

In the last term of Eq. (A38), n and ¢ have been set equal to zero in
antipation of the aerodynamic virtual work requirerents of Sec. 4.

The latter two components of {Gwé}. SwDy and GWDZ, are needed in the
main rotor virtual work expression. These two quantities can be written

from Eq. (A38) as

oy * Too21%%oax * Too22oav * To023%caz = Thzz®z = Taxa®x = Tay2®hy

P P Su
- - - . ' \
+ jZ] b2j6nAj jZ] CZJGnAj wazdwx Twy26wy + TUSZ] iZ] wSi(ZS,ﬁnvi
S S 5
u ¢ u
" Tuszz (b, ¥8i(2)onu - Tuse L Osizg)engy + jZ1 425553
N

u
* Tgp88 - T 60 - Tecp259cp *+ Togo1 iz] ¢u1.(x)<squi

N N
w

v
+ Tpgoo izl ¢yi(X)8a s + Tpooa 121 byi (X)80 4 (A39)

and

oz = Too31%%oax * Tpo3z%%oay * Tposs®™oaz = Thz3®ts = Taxstiy
p P
Ay36ly + jg] b3j6nAj - jZ] c3j6nAj - wa35wx - Twy36wy
s, | 5,
Tusa L ¥si(2s)on4 - Tygs, L sqlzgdenyg

-T

+

S S
¢ u
* L dayinsy ¥ Tgyts - Togte

+

T ) 0es (2
us33 iy Osi s)en
N

N
u v
Tocp3®®cp * Toman igl by (X)6Qy + Tpasy izl 6y (x)8q 4
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T TR e

[

N
w
FTaaz 2, bt (¥)80y, | (A40)

In Eqs. (A39) and (A4C), the biJ are elements of the matrix [TDA][¢AS]. the

c;y are elements of the matrix [TuAS][V]([zGS][oAS]), and the d,. are elements

1j
of the matrix [TDS][QSH]‘

Finally, the third component of virtual displacement vector associated
with Eq. (A29) is
Watz = Tho31%¥oax * Tao32%0ay * Tao33oaz ~ €rz3%%z - CaxatPx

P

- cAy36xy + 321 °AT3j5“Aj (A41)

where C, 5 is the third component of the 3 x 1 matrix [rAT + uAT][xy][Ax]{e3}.

C,x3 1s the third component of the 3 x 1 matrix [rA1 + uAT][Ay]{e]}, ny3

is the third component of the 3 x 1 matrix [rAT + uATJ{eZL and the ¢AT3j

are the third row elements of the matrix [¢

———
v

AT]'
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