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UNCERTAIN DYNAMICAL SYSTEMS — A DIFFERENTIAL GAME APPROACH

Shaul Gutman

Ames Research Center

SUMMARY

A class of dynamical systems in a conflict situation is formulated and
discussed, and the formulation is applied to the study of an important class
of systems in the presence of uncertainty. The uncertainty is deterministic
and the only assumption is that its value belongs to a known compact set.
Asymptotic stability is fully discussed with application to variable structure
and model reference control systems.

1. INTRODUCTION

In the past two decades an extensive effort has been made, mainly in the
U.S.S.R., to improve dynamic performances of linear systems, using the concept
of variable structure systems (VSS) (ref. 1). Roughly speaking, given a
linear dynamical system, it is possible to use a "linear" feedback whose gain
values vary with the state. In the case of linear systems, VSS is related to
bilinear control (ref. 2); the reader can consult reference 3 for this subject.
Furthermore, under some conditions, such nonlinear controllers can operate
against parameter uncertainty and input disturbances (refs. 4 and 5). In
references 4 and 5, the approach is to find an attractive hyperplane in the
state space such that the motion there is independent of the disturbance
(invariance property). Then, it is possible to study the asymptotic behavior
of the system in this hyperplane using the usual linear technique. Since
attractivity is a local property, one has to add conditions that guarantee
either reaching the attractive hyperplane or approaching the origin outside
it (in ref. 4 such conditions are called "fall conditions"). However, for
some multivariable systems this procedure may be too complicated. In addition,
references 4 and 5 lack a priori conditions for stability. It should be men-
tioned that in some non-trivial cases it is possible to stabilize a linear
system in the presence of parameter uncertainty using a linear feedback
(ref. 6) by modifying the Riccati equation. Although the feedback control is
simple, there are no a priori conditions for stability. In the case of linear
time invariant systems with some unknown parameters, it is useful to use an
adaptive model reference scheme (refs. 7 and 8) which assumes some "matching
conditions" (ref. 9).

In this article, we develop stabilizing controllers for a class of non-
linear systems homogeneous in the input, in the presence of uncertainty. We
consider the uncertain system from the viewpoint of a conflict between uncer-
tainty and controller. We associate with the dynamics a cost function and
find a saddle point for finite transfer time. In checking asymptotic
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properties of the system we note that the saddle point controller may be dis-
continuous. Thus, we use "generalized dynamical systems" theory to define a
solution of the resulting discontinuous dynamical system (refs. 11-12; see
also 13). Some results with respect to nominal linear systems (i.e., the
system without uncertainty is linear) are reported in reference 14. Stability
and optimal control for the nonlinear case without uncertainty are studied in
reference 15. It is interesting to note that our conditions on the system's
structure and the "invariance condition" of references 4 and 5 are both
equivalent to the "matching conditions" (refs. 7-9). The main drawback of
the present method (as in optimal control) is the necessity to measure the
complete state vector.

In section 2 we formulate and solve a simple differential game for finite
terminal time. Motivated by the saddle point strategy, we study in sections 3
and 4 the asymptotic behavior of uncertain systems. In section 5 we apply
the results to nominal linear systems with special attention to VSS. Appli-
cations to model reference control in the presence of uncertainty are discussed
in section 6.

I am grateful to Prof. G. Leitmann for his critical reading and encourage-
ment, and to Prof. E. Polak for drawing my attention to reference 5.

2. A SIMPLE DIFFERENTIAL GAME

Consider the dynamics

	

x = f.(x,t) + B(x,t)(u + n) ,	 x(to )	 x0	(1)

u(EU _ {u:u'R l u 6 p2(x,t))
(2)

nEV = {n:n'R-1 n 6 p2(x,t)}

where xEe u,nEdm, BER
nxm

, B( • ) is continuous on 
6In+l, 

f( • ) will be speci-
fied later, R = M'M is a constant positive jefinite symmetric matrix, and
p( • ) is a continuous scalar function on Rn 1 . With (1)-(2) vre associate
the cost

	

J =f T g(x,t)dt	 (3)
t0

where T is fixed and g( • ) will be specified later. For system (1)-(2)
we seek a saddle point strategy pair {p*(•),e*(•)} in the class of strategy
pairs {p(•),e(•)} satisfying the hypotheses of reference 16, such that
u(t) = p (x(t),t), n(t) a e(x(t),t); and V(x0,t0)G41nx(--,T}

J (xo,t0,p*(•),e(•)) 6 J(xo,t0,p*(•),e*(•)) G J(xo,t0,p(•),e*(•)) 	 (4)

2
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In order to find	 {p*(•),e *(•)),	 we restrict	 f( • ), g( • )	 as	 follows:

Assumption 1:	 The functions f( • ), g( • )	 are	 C 1 on	 bin+1

Since	 U and V are identical sets, we expect (4) to be satisfied at
p*( • )	 _ -e*( • ).	 Then, equation (1) becomes	 x* - f(.ch ,t) and the cost	 (3)	 is
evaluated along	 x*( • ); namely	 J - J(xo to,p*(•),e*(•))	 6 u*(xo ,to ).	 Since

k

f( • ),	 g( • )	 are	 C 1 ,	 the above cost is	 C i	with respect Co	 (xo,to).

Using Isaacs' equation (ref.	 17),

I

Min Max[g(x,t) + grad u*(x,t) • (f(x,t) + B(x,t)(u + n))] = 0
uEU nEV

we find

p*(x ,t) = -e*(x,t; = -p(x,t)M' 
MII'(x.t)grad' u*(x.t) V(x,t) ,V

IIMII (x,t)grad u*(x,t)II

{p*(•),e*(•)}	 is any admissible pair	 V(x,t)E,b''	 (5)

Jb- {(x,t):B'(x,t)grad' u*(x,t) = 0}

Remark 1: If (2) is replaced by

U - {uVim :lui l 6 Pi(x,t)}

(2')
V = {nee:ln i l < Pi(x,t)}

•	 then {p*(•),e*(•)} becomes

P i*(x , t ) = -e 1. 	 _ -P i (x,t)sgn[bI'(x,t)grad' u*(x,t)] V(x,t)'#,A'i.

{ P i 
*(•),ei*(•)}	 is any admissible pair 	 V(x,OC=A1	 (5')

3Vi ^ {(x,t):bi'(x,t)grad' u * (x ,t) = 01 ,	 B @ [b l . . . b ] .
m

We conclude with

Theorem 1: Consider the differential games (1), (2), (3) and (1), (2 1 ), (3).
The strategy pairs {p (-),e*(-)} given by (5) and (5 1 ), respectively, are
saddle points on 61nx(--,T].

Now that theorem 1 is established, the application to the control of
uncertain systems is straightforward. If a system of the form z = F(x,t,u)
has an uncertainty (in the parameters, input or both) that can be transformed
into a system of the form z = f(x,t) + B(x,t)(u + n) and if the controller

t.
t:	 I

.
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u uses p* ( • ) given by (5) or (5'), he is guaranteed the cost (3) evaluated
along solution of x = f(x,t), Note that the identity of sets U and V is
essential for establishing the saddle point. Practically speaking, after
verifying the above form, we bound the uncertainty by V as in (2) or (2'),
even if we have to be conservative. Then we define U to be identical to V
as in (2) or (2').

3. STABILITY OF A CLASS OF UNCERTAIN SYSTEMS

We now turn our attention to the asymptotic behavior of (1). We first
relax assumption 1 by making the following assumption.

Assumption 2: The function f( • ) Is continuous on 6? 
n+1 

and f(o,t) - o VtE6t+

We also need

Assumption 3: The origin x = {O} is uniformly asymptotically stable in the
large for k = f(x,t), such that there exists a C l function u(•):6,n+l _,, ,R1

satisfying (ref. 18):

1. u(x,t) is positive definite (p.d.): 	 8 a continuous, nondecreasing
scalar function %(•) with a(0) = 0, such tilat VtE6{+ and VxE61 n , x 0 0

0 < %(11x11) < u(x,t)

2. u(x,t) has an "infinitely small upper bound": :1 a continuous non-
decreasing scalar function S( • ) with 8(0) = 0, such that VtE6t+

u(x,t) < 8(11x11)

3. a(IIx11) +	 as	 11A }

4. Wo(x't)	 8t + grad u	 f is negative definite (n.d.).

Assumption 4: Admissible strategy e( • ):6inx611 + V is continuous on 6 n and
piecewise continuous on any compact subinterval of R.F.

Motivated by (5) and (5') we assoicate with (2) and (2'), respectively,
the feedback strategies p(•):Qlnx6{+ -* U given, respectively, by

-p(xnt)M' MB 
(x.t)grad' u(x,t)	

y(x,t)FA.i
p(x,t)	

IIMII (x,t)grad u(x,t)II

IuEU - {uE6{m :u'R-1 u < p2 (x,t)) V(x,t)E,i

.i'6 {(x,t):B'(x,t)grad' u(x,t) = 0) 	 (6a)

4
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"	 and
pi(x,t)sgn[bi'(x,t)grad' v(x,t), v(x,t)O,Ai

P (x.t)	 (7)
i	

uieui a 
{uiE6ll:Iail 6 p i (x,t)) V(x,t)E,ii

3Vi A ((x,t):bi'(x,t)grad' u(x,t) - 0} , 	 iE{1,2, . . ., m) ,	 (7a)

where the b i 'a are the columns of B,

We now have

Theorem 2: Consider the dynamical systems (1)-(2) and (1)-(2'). If we sup-
pose that assumptions 2-4 are met, then there exists a feedback control p(•)
satisfying (6) and (7), respectively, such that the origin x s (0) is
uniformly asymptotically stable in the large for all admissible disturbances
e(•).

Proof: Since 0 ( • ) is discontinuous and hence considered not unique,
equation (1) becomes a generalized dynamical system ( refs. 11 and 12),

xFE(x,t)	 (8)

where the set valued function E( • ) is given by

E(x,t) - { f(x,t) + B (x,t)u + B (x,t)e(x , t):u . 13(x,t)}	 (8a)

It can be shown (see appendix) that

1. E(x,t) is convex V(x,t)E61nx61*

2. E(x,t) is compact V(x,t)EQinx6i+

3. E( •-) is upper semicontinuous on 61°x6;+

Thus, given any (xo,to)E61nx611
That any such solution can be
of the properties of the folli
of assumption 3 be a Lyapunov

there exists at least one solution of (8).
continued l on 61 1 is one of the consequences

)wing Iyapunov function. Let u( • ):61nx61+ y 611
function candidate. We now show that vox(t)

decreases along a solution x(•) of (1) generated by {p(•),e(.)},

'At points of discontinuity of e(x,•), solutions can be joined in the
usual way.

5
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For (x(t),t)1,N in system (1)-(2),2

W(t) A 2c + grad u • R

t + grad u • If + Bp + Be]

au +rad u • f	 grad uBM'MII' grad' u
8t g	 - p II MB g 

1,'
 vll

Wo (x(t),r) - pIIMB' grad' ull + grad u Be

< W0 (x(t),t) - pIIMB' grad' ull + pIIMB' grad' ill

- Wo (x(t),t) < 0

For (x(t),t)E,N but x(t) 0 0,

W(t) ` Wo (x(t),t) < 0	 Q.E.D.

Similar results are obtained for system

Remark 2: If in equation (2)

U = {u:u'R l u < pu2(x,t)}
V - {n;n'R In < pv2(x,t)}

then we use p (x,t) in (6), where p (x,t) > p (x,t). A similar statement
holds for (2'), (7).	

u	 v

Integrating W(t), we find

Coro llary 1: The average measure of deviation from the origin along a solu-
tion x(•):[to,-] - din , x(to ) = xo , generated by {p(•),e(•)} is

f'- Wo (x(t),t)dt < u(xo ,t o ) .
t

0

4. APPLICATION TO PARAMETER AND INPUT UNCERTAINTY

Consider the uncertain dynamical system

is = f(x,t) + 6f(x,t,v) + B(x,t)u + C(x,t)w
	

(9)

'For simplicity we drop function's arguments.

3



i	 I	 r

where f, dfcan , BE5flnxm ^ CE61
nxr ^ uEVm ^ df( • ) is continuous. The uncertainty

vector Functions v(•):Q2nxS{+- 6t q , w(•):,Inx6{* +Rt r are continuous and satisfy
(v,w)eu, where

R ® {vE6Zq'Wed? 
:lvil 

G 1	 i = 1, 2, .	 . , q ;	 Ilwll 4 Pw }	 (10)

We now require

Assumption 5: For all (x,t)EdtnxR 1 there exists a continuous vector function
h(x,t,v)Edtm and a continuous matrix function D(x,t)Edtmxr , such that

(i) df(x,t,v) a B(x,t)h(x,t,v)
(11)

(ii) C(x,t) a B(x,t)D(x,t)

We refer to (i)-(ii) as "matching conditions"

Remark 3: The matching conditions are properties only of the system'3 struc-
ture. They guarantee that the controller u influences the dynamics in
equation (10) as "well" as the disturbance df + Cw does.

If (11) is satisfied, (10) becomes

* . f(x,t) + B(x,t)(u + h(x,t,v) + D(x,t)w) 	 (12)

Denoting h + Dw by n, equation (12) reduces to the form of (1).

Remark 4: If k - f(x,t) is not asymptotically stable, we have to stabilize
it via B(x,t)u. The subject of stabilizing a system of the form
is . f(x,t) + B(x,t)u is considered in reference 15.

Applying theorem 2 to equation (12), we find

Theorem 3: Consider the uncertain system (9)-(10) and suppose assumptions 2-•5
are satisfied. If p( • ):dZnxRZ +U is given by (6) with
p(x,t) > pw + maxllh(x,t,v)II, u - p(x,t), then the origin x = (0) is uniformly
asymptotically stable in the large for all admissible (v,w).

5. APPLICATIONS TO NOMINALLY 3 LINEAR SYSTEMS

5.1 Parameter Uncertainty 5

Consider the uncertain system (9) with f(x,t)	 Ax; that is

x (A + AA(v))x + Bu

r

3That is, without uncertainty the system is linear.

7



where AWnxn, BGRnxm are constant matrices, A is asymptotically stable:
all its eigenvalues have negative real parts, A 0 [ a ij 1; AA(v) C [aijvijl;

aii - 
constant, i,je(1,2, . . ., n). The uncertainty vector function

v(•):exd?+ a 61 9 is continuous and satisfies veil, where

C2
	 veaq :Iv ij ( • )I	 1 ,	 i,Je(1,2,	 .,n)

Let matching conditions (11) be satisfied:

There exists a continuous F(•):61k _,. ,mxn such that VveQ

AA(v) - BF(v)

The state equation becomes

* - Ax + B(u + F(v)x)

:'Ax+B(u+n)

Applying the results of section 3 (eq. (6) with R - I, u(x,t) - x'Px), we
find a stabilizing feedback control p( • ) : dlnx61+ + bt0 1 , u(t) - p(x(t),t),
satisfying

	

I-MavYJIF(v))dl IIB'Pxll 	 (x,t)(4j
p(x,t) -

vU - jue6i'":IIuL' < MaxIIF(v)xll}	 (x,t)e,A'v
where

PA + A'P + Q - 0 ,	 Q - Q' > 0 ,	 and	 J4 ((x,t):B'PX - 01

Remark 5: Here the origin is an equilibrium point in the usual sense, since
liimm p(x,t) - 0. This holds in the following two examples as well.

5.2 System of Section 5.1 in Companion Form with Single Input

Let

t.

(13)

k
AA(v) - E Aivi(x,t)

1-1
* - (A + AA(v))x + bu ;

8
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i
where''

0	 1	 0	 . . .	 0

0	 0	 1	 0

A.	
A
i .	 O	 b O------ - - - -----	 -

0	 0	 0	 . . .	 1	 0	 . . .	 0 a i 0	 . . .	 0	 '..

-a l -a2 -a3 . . . -en

a
j
 . constant, j - 1,2, . . ., n

a i v constant, i - 1,2, . 	 ., k; k 6 n

I
vi (x,t)I < 1

Here, P (v)	 c'(v)x where c'(v)	 [a l v l	 anvn]

Equation (13) becomes

Max [c'(v)x]sgn ir'x	 V(x,t)rgJ

P(x,t)	 I°il	 (14a)

ue(uefl l : Jul < I Max
<1 [c' (v)x]) 

V(x,t)c:dV
vi

where it is the n-th column of the symmetric matrix P satisfying
PA + A'P + Q	 0, Q - Q' > 0, and .A'- ((x,t):n'x - 0).

k	 1/2

Remark 6: Note that	 Max [c' (v)x] <	 a 2	 IIxII
Ivi l41	 .l i )

Equation (14a) subject to remark 6 yields one possible solution for p(•).
A second one is found by noting that

Max [c'(v)x]	
a 	

Max (viii ) _ E ai xi

I°ii <1 	 i	 Ivil<1
	 i

4 In the terminology of section 5.1, vi ^ v ni , i . 1,2,	 n.

9



Thus, (x,t)eJ,

p(x,t)	 ailxilsgn n'x - -	 aixi agn xi1r'x

A[alEi . . . anCn]x

where	 J

.i - - sgn xix'x

We conclude that

p(x,t) - K(^)x

K(^) - [a,&, .	 an&nl

	

I -sgn xix'x	 V(x,t)O,,V'	 (14b)

gi
YiE{yieRl:lYi1 6 1) 	 V(x,t)E.A'

3V- {(x,0 :Tr 'x - 0) ,

n is the n-th column of P, PA + A'P + Q - 0, Q - Q' is any positive
definite matrix.

Example 1: Let xE6{2 with

0	 1 l 	0
ic-	 -Jx+

C u	-a l+Anl	 a2	 1

where da l * a l v l , Ivll G 1, n l - constant. 

1

We assume that

	

A - [01 - 1

Ja
	 a2

has all its eigenvalues in the left half plane (otherwise it must be stabilized
by linear feedback). Equation (14b) becomes

xl
p(x,t) - K(^)x - [a l l 10] N

xy

where $ 1 (x,t) - -sgn(xln'x).

3
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If Di Q ni 'UDi", then

I
	

IX2
xeDl:p(x,t) - - adol

xJ

xC-D2 :p (x . t ) - -[al 0] [x2]
where (D 1 ,D2 ) is defined in figure 1.

Example 2: Let xE412 with

- [al+Aal -a2+Aa2]x + 10]u

where Aai - aivi, Ivi l < 1, ai - constant, 1 - 1,2. As in example 1, let A
have all its eigenvalues in the left half plane. Equation (14b) become,;

P(x,t) - K (E) x - [a l l a2^2,
[x2^

where r,,; , )	 - sgn (xi rr I x), i - 1, 2.

If D1 Q Di 'UDi", then

xEDl: p (x,t) - -[ a l a 2, [X 

I

xl
xED2t0(x:t) - -[al:a2] [.

X-2

xED30(x,t) - - [a 1. a2J
1

1 

 [.X.

X2J

where {D l ,D2 ,D 3 ) is defined in figure 2.

5.3 Variable Structure Systems

An alternative way to stabilize the systems of sections 5.1 and 5.2 is
as follows:

Let

is - (A + AA (v)) x + Bu
	

(15)

L-



where A and B are constant matrices. As before, let

AA(v) - BF(v)

where ven is the parameter uncertainty vector with

n 6 (Venk : l vi, l C 1 ;	 ij = 1,2,

We wish to use a stabilizing control of the form

u = K(E)x

i

(15a)

where EEn is the control parameter vector, and E( • ) :Rnx6i+ -0 6tk . That is,
we use a "linear" feedback whose "coefficients" vary with the state and time.
Using (15a) and (15b) in (15), we find

k = Ax + B(K(E) + F(v))x	 (16)

Equation (16) can always be written in the form

	

k = Ax + M(x) (E + v)
	

(17)

where M(x) has the proper dimension.

Since equation (17) has the form of (1), we can use our previous results.
In particular, consider the system of section 5.2

1

. Here,

F(v) ° [a l v l . . . anvn]

K(E) ° [
a 

1 E 1 . . . 
anEnl

M(x) =	 O
La x . . . anxn

A stabilizing control p( • ) :ex6i+ + An , $(t) = p(x(t),t) is found

sgn(xia'x)	 V X,Ot.A'

	

E 1E{yal : 1 E i l < 1}	 V(x,t)E,N

where m is as in section 5.2. As expected, this result agrees u

12
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5.4 A Simple Input Disturbance

Let $ w Ax + Bu + Bv, V = (v:Ilvll < Pv - constant), A,B are constant
matrices, and A is asymptotically stable. Choose U . {u:llull 6 Pu , Pu ^ P Pv).
Equation (6) becomes

,>
P(x,t)	 -p u TID Px	

V(x,t)VA' - ((x,t):B'Px = 0)

where PA + A'P + Q . 0, Q - Q' > 0.

Remark 7: Here the origin is not an equilibrium state in the usual sense.
Compare with remark 5.

Remark 8: If a system has both input and parameter uncertainty, we sum the
corresponding "p s."

5.5 An Extension

In the previous sections we assumed that the nominal matrix A is
asymptotically stable (i.e., all its eigenvalues have negative real parts).
Here we show a way to stabilize A s and simultaneously to overcome the
uncertainty. Consider the nominally time-invariant linear dynamical system

	

(9)-(12) with f(x,t)	 Ax, v 6 h + Dw; that is,
x Ax+B(u+v)

x(to )	 xo 	 te(to,m)	 (19)

hull < P u (x,t) ,	 IIVII < Pv (x,t) ,

where A and B are constant matrices. Now consider a constrol strategy
p (-) :Ox6;+ -+, d 1 such that

L 1 B'P;c - Pu (x't) IIB'Pxll	 Ax,t)(t.N
_

	

p"(x,t)	

ItE fueeflIull < P u (x,t)}	 V(x,t)c=.N	
(20)

where

if = {(x,t):B'Px - 0}

PA + A'P - PBL-1B'P + Q = 0 ,	
(20a)

L is a constant mxm p.d. matrix, and Q is a constant nxn positive semi-
definite matrix.

5We keep in mind that other mcthoda to stabilize A are available, for
example pole placement.

a
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•	 Assumption 6: (F,A,B), Q	 F'F, is completely controllable and observable.

Assumption 7: F	 is an	 kxn	 matrix and	 k + m > n.

Assumption 8: The matrix (F':PB] has full rank.

Note:	 If Q is p.d., assumptions 7 and 8 can be dropped.

Theorem 4: Consider the dynamical system (19). Suppose that assumptions 4
and 6-8 are met. Then there exists a control function p( . ) : 6tnx6i+ _0- 

Rm

	

satisfying (20) with p µ 	p(x,t) > p v(x,t) V(x,t), where u(t) - (x(t),t , such
that the origin x - {Ot ie uniformly aaymptotically stable in the large for
all admissible disturbances.

Proof: It is similar to the proof, of theorem 2 with u(x,t) - x'Px as a
Lyapunov function. See also section 5 of reference 19.

Example 3: Consider the system of section 5.2. Using (20) and (14b) we have

p (x,t) - [-L-11r' + K (fl)Jx	 (21)

where

K(fi) _ [a l l . . . anon

sgn(xiIT'x)	 V(x,00

	

n =	 (21a)
i	 n iE{n & v In i l G 1)	 V(x,t)E.N

3V= ((x,t):n'x - 0), n is the n-th column of P, PA + A'P - PBli 1 B'P + Q - 0;
Q = Q', L = L' are p.d.

Example 4: Let xc-92 with

0 1
	 IJa i Aaz x +

where As i = aivi ; Iv 6 1, 1 = 1,2. Here

A =I 0 

OJ

Choose

q 0

0 0

14



Then, by (21a),

2q^
P	 ,^;

I2

thus

r0q[F':PB]
2]

It is evident that assumptions 6-8 are met.

We further choose q - 4. Using (21) we find

xeD1:P(x,t) _ -[2 - a 1 12 + a2] [x2 1

xeD2 :p(x,t) _ - [2 + a 1 12 + a2] [X. I

X21

xeD3:P(x,0 _ -[2 + alj2 - a2] [X.x2^
where (D 1 ,D2 , D 3 ) is defined in figure 2, and the slope of fx:ir'x - 01

is 1.

6. MODEL REFERENCE CONTROL IN THE PRESENCE OF UNCERTAINTY

In many applications it is convenient to have a given system follow an
ideal model from an input -output point of view. Suppose a nonlinear system
has parameter uncertainty and we wish it to follow its nominal response.
Following the usual scheme of "model reference control," we write the equa-
tions of the system (plant) and the model, respectively, as

xp - f(xp , t) + 6f(xp , t,v) + B(u + r)
(22)

zm = Gxm + f (xp ,t) - Gxp + Br

where r is a reference signal, BeOXm is constant, and GERn"n is any
constant matrix with all its eigenvalues in the left half plane. Let
e=x -x . Then

P	 m

e = Ge + df (xp ,t,v) + Bu	 (23)

15

i	 I
I'

2

^z

F.



4 I

4

' If "matching conditions" (11) are satisfied, equation (23) reduces to the form
of (12), and theorem 2 is applicable.	 The block diagram for this situation
is given in figure 3, with the choice	 0 - -aI and Q - BI.

Remark A:	 Note that as	 a -+	 0, the model description approaches the desired
nominal system

km m f(xm ,t) + Br (24)

Remark 10: Since, in general, xp does not approach zero, the origin e - (0}
in (23) with the feedback control shown in figure 3 is not an equilibrium
state in the usual sense. (Compare with remarks 5 and 7.)

Remark 11: In the light of (24), it is possible to design the model using
any convenient method, and then to use an additional feedback to overcome the
uncertainty.

Remark 12: Finally note that the "Variable Structure Model" in (22) permits
us to drop the necessity to know the Lyapunov function u( • ) in assumption 3.

In this paper some results from the theory of differential games and
Lyapunov stability of generalized dynamical systems ate combined to produce
simple results concerning a class of uncertain dynamical systems. The basic
assumption on the system's structure is the "matching condition" which is
common in adoptive schemes as well. The basic feature of the present approach
is the possibility to steer a system asymptotically to its nominal behavior
against any bounded uncertainty. The extension of this theory to systems with
incomplete state measurement is left for a future investigation.
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APPENDIX

DIFFERENTIAL EQUATIONS WITH DISCONTINUOUS R.H.S.

A.1 Some Results from the Theory of "Generalized Dynamical
Systems," (Ref. 11)

Definition 1: The distance between a point Nson and a set AE6in is defined
by

d(x,A) - inf(llx - all:a(-=A)

Definition 2: The separation of set A from set B is defined by

d*(A,B) - sup(d(a,B):aEA)

Definition 3: The variable set E(a)C6tn , aCMnx6; 1 , is said to be upper oemi-
continuous at ao , if for every 6 > 0 there exists some neighborhood
N(ao) of ao such that VaEN(ao)

d*(E(a),E(a0)) < 6

In other words, E(-) 1s upper semicontinuous at a point, if its separation is
continuous there.

Definition 4: Let c - (x(t):x:[t',t"] -+ 61n ) be a curve defined on [t',t"].
Let

x(t ) - x(t
o )Y(ti)	

t - t	 +	 t0 , t ie ft',t"] .
i	 o

The set of all yo(WI such that there exists a sequence (ti),
i - 1,2,3	 ti + to, ti ¢ to, and i^ y(t i ) - yo is called the con-
tingent derivative of c at x(t o ); at x(t) it will be designated by
D x(t).

Definition 5: An expression D *xCE(x,t), where the set E(x,t) depends on
(x,t) and is defined on Ox6;+ is called a contingent equation.

Definition 6: A solution of D*xCE(x,t) is any curve
c - (x(t):x(.):[t',t"] + (Rn) such that

1. x(-) is absolutely continuous

2. x(t)EE(x(t),t) for almost all tE[t',t"].

Theorem A.1: Let E(x,t)C6tn defined on some compact neighborhood N(xo,to)
be compact, convex and upper semicontinuous. Then there exists at least one
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solution to the above contingent equation, passing through a given point
(xo,to) and this solution can be continued until reaching the boundary of
A(xo, to) .

A.2 Existence of a Solution to Equation (8)

1. Clearly, at a point (x,t)E J,the set E(x,t) is a point in 6i n , and
E( • ) is continuous there; thus, the usual existence theorem holds.

2. At a point (s,e)E.3 , (see fig. A-1), convexity and compactness are
trivial by construction. To prove upper semicontinuity, let 0( • ):6tn x6t+ 6tn
be given by

O(x,t) - f(x,t) + B(x,t)e(x,t)

(i) (x l. t l)OdV (fig. A-1).

Since E(x l ,t l ) is a point in 62n,

d*(E(xl,tl),E(x,t)) - d(E'(xi,tl),E(x,t))

InfI10 (i t) - O(xl,ti) + 'B(x,t)u
uEU

B(xl,tl ) o(xl,tl)IIr
< II^(x,[) - O(x l ,t l )II + II p B(x,t) - pB(xl ,tl)II

A 1160 1 11 + IIpAB111

(ii) (x2 ,t2)GJ (fig. A-1).

d* (E(x2 1 t2),E(ij ) )	 Sup Inf II¢ (x,t) - ¢(x2 , t2) + B(x,t)u - B(x2,t2)u2II
u2EU-uEU

< 11 A 0211 + Sup Inf IIB(x,t)u - B(x2,t2)u2II
u2EU 7'EU

II A0211 + Sup Inf 11 B(x,t) (u - u2) + 6B2u2II
u2EU UEU

< II A0 211 + Sup Inf [ II B(z, -t)11 II u - u 211 + II AB 211 II u211^
u2EU uEU

= II A0 2 11 + Sup{II AB2 1I II u211

+ 11B(x,t)II Inf (11u - U211:uEU}:u2EUI

= 11 A0 211 + 11 AB 211 Sup(II u211 :u2EU}

- II A0 211 + II pAB211

21
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(iii) Since p(-), ¢(-) and B(-) are continuous, given any
6 1 , d l > 0, Bc l , f l > 0 such that

II (x,i) - (X I ,tt)II < c  » Ilem 1 11 < 61

II (i, -t) - (x l ,t l )II < e l b II p AB111 < 6l

Thus, given any 6 > 0 choose any 61 6 l > 0 such that 6 1 + 6 1 - 6.
Then Be	 Min ( c l ,f l ) such that

II (R E)- (xlrtl)II < c o d*(E(xlrtl)rE(xrt)^ < 1104 1 11 + 11 p oB111 < 61 + ^1 - 6 .

A similar result holds for (x2 i t2). We conclude that the separation d * (-! is
continuous, which implies that E(.) is upper semicontinuous.
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