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wind-to-test section dynamic pressure ratio
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total pressure loss due to friction, rotation, and expansion through model
tunnel circuit because of wind effects; average static pressure rise across the
fans nondimensionalized by test section dynamic pressure (increment from
the no-wind condition)
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AN EXPERIMENTAL INVESTIGATION OF END TREATMENTS

FOR NONRETURN WIND TUNNELS

William T. Eckert,* Kenneth W. Mort, and J. E. Piazza*

Ames Research Center
and

Ames Directorate
U. S. Army Air Mobility R&D Laboratory

SUMMARY

The results of a series of flow quality and performance tests on several inlet and exit configura-
tions for nonreturn wind tunnels are presented. Test section flow angularities, local dynamic pres-
sure variations, and total-pressure-loss variations are presented as functions of wind-to-test-section
dynamic pressure ratio. The results show that a nonreturn wind tunnel should have end treatments
with three characteristics: (1) a vertical exit system, (2) a horizontal inlet system, and (3) an area of
protected enclosure at the inlet. Inlet and exhaust treatments were developed that produced good
aerodynamic flow qualities with low power penalties.

INTRODUCTION

In the planning and design of new wind-tunnel facilities the choice between closed- and
nonreturn-circuit types is an important one. Possibly offsetting the nonreturn circuit's advantages of
continuous fresh test air and lower structural costs is its potential sensitivity to external winds. This
sensitivity becomes especially critical at the low test speeds required for V/STOL aircraft studies.

Although many nonreturn wind tunnels have been built (for examples, see refs. 1 through 7),
there have been problems either of low operating efficiency or sensitivity to external winds, or
both. In the studies described in this report, several combinations and variations of nonreturn
wind-tunnel end treatments were examined in an attempt to develop a configuration that had good
low-speed flow quality, high efficiency, and minimum structural cost.

Two types of end treatments, vertical and horizontal, were studied for both the inlet and exit
ends. The kinds and extent of the treatments were varied, and flow quality and pressure measure-
ments were taken. The flow quality of the tested treatments varied from poor to good; flow qual i ty
data of one of the better configurations were compared to the V/STOL flow quality criteria of
reference 8.

*Ames Directorate, U. S. Army Air Mobility R&D Laboratory.



MODEL AND APPARATUS

Model

A representative configuration of the model used in this study, installed in the Ames Research
Center 40- by 80-Foot Wind Tunnel, is shown in figure 1. Dimensions and geometry of the basic
portion of the model tunnel circuit (i.e., without inlet and exit treatment) are given in figure 2 and
table 1.

The model was basically a straight, conventional, nonreturn wind tunnel. The primary contrac-
tions changed in shape from a rectangular cross section at the entrance to a flat-oval cross section at
the test section. (A flat-oval cross section is one with a flat roof and floor and with semicircular
sidewalls.) The primary diffuser changed from a flat-oval cross section back to rectangular at the
start of the fan section. The fan drive, located near the exit, consisted of eight six-bladed fans, each
in a separate nacelle and driven by a small electric motor placed in the center of an annular duct.

Several combinations of inlets and exits were tested. (Figure 3 shows the geometries of the
major end treatment components.) The various vertical and horizontal inlet systems (figs. 3(a)
through 3(c)) employed such components as perforated plate for roof or walls, protective louvers,
square-celled flow straightener grating in several locations, and roof-support posts used as flow guide
vanes. The exits (fig. 3(d)) were: (1) a horizontal type with 8-to-l area ratio (relative to the test
section), enclosed with 40-percent-porosity perforated plate on three sides and the roof; (2) an
8-to-l area ratio vertical exit with small turning vanes; and (3) a 20-to-l area ratio diffusing vertical
exit with large vanes. The detailed geometries of the several inlet/exit combinations are shown in
the figures on the pages facing the plots of the data they produced.

Instrumentation

The vertical and transverse locations of the total and static pressure probes and of the flow
direction rake in the model test section are shown in figure 4. These pressure probes were located in
a plane 6.35 cm (2.5 in.), or 14.7 percent of the test-section length, downstream of the test-section
entrance. The static pressure rise across the fans was measured by means of orifices located 0.3 fan
diameters ahead of and behind the fan in each nacelle. The pressure data were measured using
multiple-tube, water manometers and were recorded photographically.

TEST PROCEDURE

The Ames 40- by 80-Foot Wind Tunnel was used as the source of external wind. The model
was mounted on a platform above the boundary layer on the wind-tunnel floor (see fig. 1 (b)) and
was set at selected azimuth angles to vary the wind direction.

The model test-section dynamic pressure was set at increments between 5.08 and 25.40cm
(2 and 10 in.) of water with the wind dynamic pressure set at values between 0 and 5.08 cm (0 and
2 in.) of water. Both dynamic pressure levels were varied to obtain selected wind-to-test-section



dynamic pressure ratios between 0 and about 1.2. (Within the accuracy of the data, it was found
that the results correlated well with this ratio regardless of the absolute value of the dynamic
pressures.)

These studies involved only the effects of steady-state winds with a uniform velocity distribu-
tion. It was concluded from other studies (refs. 2 and 9) that flow distortion due to the steady-state
wind was the most critical problem and that wind gusts produced only a small effect on the
turbulence of the test-section flow. Limited studies were performed with the model in a boundary
layer artificially thickened to represent the Earth's boundary layer. These tests, not reported here,
indicated that a uniform velocity equal to that at the wind-tunnel centerline could be used to
establish wind effects on test-section flow quality.

REDUCTION OF DATA

The various parameters were determined in different ways. The test-section dynamic pressure,
qQ, was found from the difference between the average total and average static pressures over the
central 75 percent of the test-section vertical and horizontal centerline dimensions. The incremental
flow angularity and dynamic pressure variation due to external winds were determined by subtract-
ing the zero-wind values from the wind-on values. The local dynamic pressure variations, Aq/q0,
were found from linear interpolations of the local total and static pressure data. All data are
presented as functions of dynamic pressure ratio, 4W/<?0 •

The azimuth angles for external wind direction were set with an accuracy of about ±1°. The
pressure readings which were used to determine the various flow measurement values were accurate
to about ±1.0 mm (±0.04 in.) of vertical water column height. The effects of this on the accuracy
of the data presented in the figures were determined for the values of model test-section dynamic
pressures used in these studies, and are shown in figure 5, for convenience, as functions of the
corresponding nominal values of dynamic pressure ratio.

RESULTS

The plotted results of these studies, along with sketches of the 16 configurations, are presented
in figures 6 through 21. A configuration plotting index is provided in table 2. In figure 22 the flow
quality results from figure 7 are compared with the V/STOL flow quality criteria of reference 8.

DISCUSSION

Inlets

All vertical inlets (figs. 18 through 21) and the horizontal inlet with an open roof (fig. 15)
produced very poor flow quality. The wind flow over these inlets produced negative pressure peaks



that caused the serious deficiencies in test-section conditions. Therefore, upward-facing inlets, even
if open at the walls as well, should be avoided.

Horizontal inlets without an enclosed area of front protection (figs. 16 and 17) produced
results comparable to those for the vertical designs. The need for some front protection area is
apparent.

Of those configurations with a horizontal front protection area and a solid roof (figs. 6
through 15), some had better flow quality than others. Similarly, each component of these horizon-
tal inlet systems produced its individual effects. The addition of a flow straightener system at the
front of the inlet area, whether completely peripheral or in the central front only, generally served
to reduce any test-section flow angularity levels (cf. figs. 10 and 11 with fig. 12). The full peripheral
straighteners smoothed the test-section dynamic pressure variations (cf. figs. 10 and 11) but also
caused higher sideflow angularities at the higher wind levels. A front flow straightener in combina-
tion with roof support posts produced a high dynamic pressure variation at moderate and high wind
speeds (fig. 10); the roof posts, when used alone, reduced that variation over the dynamic pressure
range (fig. 12).

Exits

Vertical exits appear more desirable than horizontal exits. Generally, the differences in test-
section flow quality were small, but the differences in pressure rise across the fans (total circuit
losses) were large. For example, consider the horizontal exit data of figure 14 for the case when the
wind is from the rear (i// = 180°). These data show a large increase in the total pressure rise across
the fans with increasing wind dynamic pressure (increasing QW/Q0). In contrast, the data of
figure 11, for a vertical exit, show that a small reduction in pressure rise occurs with increasing wind
from the rear. The latter condition is much more desirable since, at a given test-section speed, an
increase in total pressure rise requires an increase in power. Similarly, it can be demonstrated that,
due to the larger variation in total pressure rise, during gusty conditions when the wind is from the
rear, a wind tunnel with a horizontal exit would have more oscillation in test-section speed than
would one with a vertical exit. For these two reasons vertical exits appear more desirable than
horizontal exits.

Evaluation

Any configuration must be judged against some standard and the V/STOL flow quality criteria
of reference 8 are suggested. These criteria are those accepted as standard for conventional wind-
tunnel testing (Aa - 0.25° and Aw/^ = 0.005) at speeds above 51 m/sec (100 knots), but are modi-
fied for speeds between 0 and 51 m/sec (100 knots), since criteria based on freestream velocity lose
their significance as the velocity is reduced. At the lower speeds used for testing of V/STOL aircraft,
it is recommended that the velocity deviation in each of the three component directions not exceed
0.26 m/sec (0.5 knots).

Figure 22 compares the results of one of the better configurations, that of figure 7, with these
suggested V/STOL flow quality criteria. For convenience, the comparisons were made in terms of
deviation velocities as functions of test-section velocity at selected wind speeds and directions. In



general the comparisons are favorable, especially at low wind speeds, and particularly in view of the
conservative level of the V/STOL flow quality criteria.

Although nearly all of the horizontal inlet configurations produced reasonably acceptable flow
quality for low wind conditions (dynamic pressure ratios below about 0.25), none should be
considered an optimum design and each could be improved by further careful development work.

CONCLUSIONS

Although no single configuration can be selected best in all respects, this study has developed
an end-treatment configuration (fig. 7) that gave good flow quality when coupled with reasonable
environmental conditions (i.e., external winds that are not severe). Additional improvements could
be obtained by further development of the ideas presented herein.

Though the choice of specific end-treatment components may vary or be subject to appro-
priate trade-offs between flow quality and cost, three overall conclusions seem clear. A nonreturn
wind tunnel designed for good flow quality in the test section and reasonable power efficiency
should have (1) a vertical exit, (2) a horizontally facing inlet, and (3) an area of protected enclosure
at the inlet.

The merit of an end-treatment system as evaluated against the flow quality criteria will vary
depending on prevailing wind direction and speed at the site. Therefore, local wind patterns at the
specific wind-tunnel site may alter the suitability of one configuration relative to that of another.

Ames Research Center'
National Aeronautics and Space Administration

and
Ames Directorate, U. S. Army Air Mobility R&D Laboratory

Moffett Field, Calif. 94035, February 12, 1976
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TABLE 1.- MODEL DIMENSIONS

Test section area, m2 (in.2) 0.083 (128.8)

Flow area at start of fan nacelle contraction,
m2 (in.2) 0.402 (623.0)

Flow area at fans, m2 (in.2) 0.224 (347.0)

Fan diameter, mm (in.) 213.4 (8.4)

Number of fans 8

Perforated plate (where used)
Porosity, percent 40
Hole diameter, mm (in.) 3.175 (0.125)
Thickness, mm (in.) 1.016 (0.040)
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41.18

All dimensions in cm (in.)

Contraction wall coordinates

X

0 (0)
2.54 ( 1 )
5.08 (2)
5.33 (2.1)

10.16 (4)
13.82 (5.44)
15.24 (6)
20.32 (8)
25.40 (10)
30.48 (12)
35.56 (14)
40.64 (16)
45.72 (18)
50.80 (20)
54.10 (21.3)
55.88 (22)
60.96 (24)
66.04 (26)
7 1 . 1 2 (28)
76.20 (30)
82.98 (32.67)

Y

63.20 (24.88)
63.14 (24.86)
62.84 (24.74)
62.79 (24.72)
60.43 (23.79)
56.24 (22.14)
54.15 (21.32)
47.29 (18.62)
41.48 (16.33)
36.70 (14.45)

29.54 ( 1 1 .63)

25.10 (9.88)
24.10 (9.49)

22.71 (8.94)

21.77 (8.57)
21.62 (8.51)
21.59 (8.50)

26.37
26.31
26.01
25.96

c<
c

'
(13.31)

11.91

10.97
10.82
10.80

7

(10.38)
(10.36)
(10.24)
(10.22)

y
a

(5.24)

(4.69)

(4.32)
(4.26)
(4.25)

R

0 (0)

1.65 (0.65)

3.30 (1.30)

4.95 (1.95)
6.60 (2.60)
8.26 (3.25)
9.91 (3.90)

10.80 (4.25)

c
in

O

10.80 (4.25)

(b) 8:1 contraction cone A.

Figure 2.- Continued.
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Line of tangents for
corner radius

Dimensions in cm (in.)

(c) 8:1 contraction cone B.

Figure 2.- Concluded.
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Small inlet 58X204cm (23X80 in.)
(Wi th front f low stroightener)

Large inlet !07X253cm (42X lOOin.)
(With peripheral flow straightener)

Dimensions in cm (in.)
Geometry symmetrical about longitudinal centerline

15.2 (6) R
0.952

(0.375)R

fffft'-***^ i
7.6(3) ^|

Roof post cross section

(b) Horizontal inlet area planform and post arrangement details.

Figure 3.- Continued.
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126.4
(49.8)

Turning vanes:
90° Circular arcs — 2.54 (1.0) R
Constant thickness—0.3175 (0.125)
Chord along arc —7.976 (3.14)
Gap—1.905 (0.75)

Dimensions in cm (in.)

5 . I 8 ( 2 ) R

2.54(I) R

(22.9)

(c) Basic area ratio 8:1 vertical inlet.

Figure 3.- Continued.
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All dimensions in cm (in.)

45.4 (17.9)

Area ratio 20:1 (Basic) Vertical exit

220.9

45.4(17.9)

52.7 (20.8)1
• 52.7
(20.8)

58.2 (22.9)
__*_

Area ratio 8:1 (Alternate) Vertical exit

(d) Exit configurations.

Figure 3.- Concluded.
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(a) Effect of wind speed at Y = 0°.

Figure 22.- Flow quality evaluation for model with 58 x 204 cm (23 x 80 in.)
horizontal inlet with solid roof (post supports), 40 percent perforated-
plate walls, peripheral flow straightener, 2.54 * 2.54 * 20.32 cm
( 1 x 1 x 8 in.) contraction flow straightener, and with 20:1 vertical
exit — (configuration of figure 7).
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Figure 22.- Concluded.
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