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I INTRODUCTION

The use of diffusion aluminide protective coating systems on supei—
alloys in gas turbine engines for the improvement of oxidation and hot
corrosion resistance has become quite widespread as a result of increasing
cycle temperatures. Although they accomplish this purpose, there is concern
that such coatings may degrade the mechanical properties of coated hardware.
Of particular concern is a reduction of fatigue resistance in complex geometry
hot section components such as turbine blades and vanes which experience
severe thermal-mechanical strain cycling during engine service.

The application of a coating to the surface of a material can have a
number of effects relevant to the fatigue properties of the coating-substrate
system (l). For example, the deformation behavior of the substrate may be
changed by the presence of a surface layer having a different elastic modulus
and yield strength from that of the substrate. If the fatigue properties of
the coating are better than that of the substrate, increased life may be ex-
pected. On the other hand, if the fatigue properties are poorer than the
substrate, cracks in the coating w i l l serve as surface notches and as paths
for the degrading environment to reach the substrate, resulting in reduced
fatigue life. In general, the effect that a coating has on the fatigue pro-
perties depends on the strainrange, the maximum tensile and compressive strain,
temperature, frequency and the nature of the coating itself (1).

The present study was undertaken to provide further insight into the
thermal-mechanical fatigue behavior of the nickel-base superalloy Rene1 80 in
the coated (CODER B-l) and uncoated condition. This program involved closed-
loop, servo-controlled fatigue testing with independently programmed tempera-
ture control and strain cycling to develop baseline data for analysis of
thermal fatigue behavior by the method of strainrange partitioning (2). Tests
were performed in air and in vacuum to separate the effects of environmental
interactions from mechanical effects of the coating on fatigue behavior.
Interpretation was made of the influence of thermal cycling on fatigue life
within the framework of the strainrange partitioning concept by correlating
microstructural damage with various types of reversed inelastic strain cycles
involving reversed and unreversed tensile and compressive creep deformation.
The program was a cooperative effort between the Materials Technology
Laboratory of TRW Inc. and the Materials and Structures Division of the
NASA-Lewis Research Center, with vacuum tests being performed at TRW and air
testing at NASA. This report presents the results of the vacuum fatigue
tests performed at TRW.



II EXPERIMENTAL PROCEDURES

For this program the effect of CODER B-l aluminide coating on the
thermal-mechanical fatigue behavior of nickel-base superalloy Rene1 80 was
evaluated. The program was divided into three tasks, specimen preparation,
cyclic fatigue tests and supplementary mechanical property testing. In the
following sections the experimental procedures for each task are discussed.

A. Task I _- Specimen Preparation

The specimens used for the present study were the individually cast,
tubular, hour glass-shaped specimens with threaded ends as per NASA Drawing
CB-3007AO, shown in Figure 1. The specimens were originally cast as solid
bars and were then machined to the proper configuration. The composition of
the material used for this program is listed in Table I. Uncoated specimens
were given the following heat treatment:

1218°C (2225°F)/2 hours vacuum/argon quench to room temperature

1093°C (2000°F)A hours vacuum/argon quench to room temperature

1052°C (1925°F)A hours vacuum, furnace cool in vacuum to 6A9°C
(1200°F) within 1 hour, air cool to room temperature*

8^3°C (1550°F)/16 hours vacuum/furnace cool to room temperature

Coated specimens were prepared with the CODEP B-l aluminide coating. The
alumina precoat was deposited on both the internal and external surfaces of
the specimens by the electrophoresis technique. All other aspects of the
coating application process conformed to General Electric Company Specifica-
tion No. F50T58-S1. The resulting coating thickness was approximately 0.05mm
(0.002 inch). The coated specimens were given the following heat treatment
cycle:

12l8°C (2225°F)/2 hours vacuum/argon quench to room temperature

1093°C (2000°F)A hours vacuum/argon quench to room temperature
coating cycle as per Specification No. F50T58-S1

843°C (1550°F)/l6 hours vacuum/furnace cool to room temperature

This simulates coating cycle
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TABLE I

Element

C

Si

Mn

Cr

Mo

Fe

TJ

Al

Co

W

Zr

B

Ni

COMPOSITION OF RENE1 80 MATERIAL UTILIZED
LOW CYCLE FATIGUE TEST PROGRAM (w/o)

Composition (l)

0.17

<0.05

<0.02

13.80

4.11

0.13

A. 87
2.99

9.73

3.94
0.043

0.015
Balance

FOR

Norn i na 1
Composition (2)

0.17

-

-

14.0

4.o
-

5.0

3.0

9.5
4.0

0.03

0.015

Balance

(1) TRW Master Heat BL 5138

(2) ASTM Data Series Publication No DS9E



B. Task II - Cyclic Fatigue Tests

The basic fatigue test program involved isothermal strain cycling to
measure the four basic types of creep-fatigue life relationships defined by
the strainrange partitioning method (2). The basis of this approach is the
concept that two modes of inelastic deformation must be considered during low
cycle fatigue, plastic flow and creep. These may exist separately or con-
currently, and their interaction can influence the fracture behavior of a
material to a considerable degree. Plastic flow is regarded as the sum of
all inelastic strain components which occur nearly immediately upon applica-
tion of stress (time independent) while creep is regarded as the sum of all
time-dependent components. A major factor in strainrange partitioning is the
shape of the stress-strain hysteresis loop during completely reversed
straining and the manner in which the tensile and compressive components of
stra in are applied.

Strainrange partitioning is based on separation of the reversed
inelastic strainrange into components which represent both the direction
and the nature of the deformation. The critical point involves how the
deformation is reversed in the fatigue cycle. Four basic types of reversed
strain are defined:

Ae , tensile plastic strain reversed by compressive plastic strain

Ae , tensile creep strain reversed by compressive plastic strain

Ae , tensile plastic strain reversed by compressive creep strain

Ae , tensile creep strain reversed by compressive creep strain

The idealized hysteresis loops for these are shown in Figure 2.

pp strain is experienced at low temperatures, where creep does not
occur, or at a high temperature and frequency where thermally activated flow
is prohibited, cc deformation occurs in a low frequency, high temperature
cycle where the strain rate is low enough that essentially all of the in-
elastic strain occurs by creep. Pure cp and pc types of deformation would
be found in cycles where all of the deformation in one direction occurs at
a low temperature and all of the reverse deformation takes place at a high
enough temperature and low enough strain rate so that all of the reversed
strain occurs by a thermally activated flow mechanism. Another case where
this type of deformation might occur would be an isothermal cycle where the
tensile and compressive strain rates are not equal so that one half of the
cycle sustains more creep deformation than the other half.
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Figure 2, Idealized hysteresis loops for the four basic types
of inelastic strainrange.



The basic test program for the present study was conducted at 1000°C
(1832°F) and in an ultrahigh vacuum environment below 10~7 torr. On the
basis of the results obtained from this basic program, s i m i l a r tests were
conducted at 871°C (1600°F) in a poorer vacuum (approximately 10~6 torr) to
determine the effect of the variation of these parameters on the four basic
types of creep-fatigue life relationships defined by the strainrange
partitioning method. In order to more completely define the effect of the
temperature variable on low cycle fatigue life a series of pp type tests
were conducted on uncoated material at a range of temperatures from the
ambient to 1000°C (1832°F) in the poorer vacuum.

Equipment and procedures used for the vacuum thermal fatigue tests
on this program have been described in detail in previous reports (3,^)-
Briefly, the test apparatus was designed to perform completely reversed push-
pu l l fatigue tests on hour-glass specimens using independently programmable
temperature and strain control. Temperature was programmed using a thyratron-
controlled 50 KV AC transformer for direct resistance heating of the specimen,
while diametral strain was controlled directly using an LVDT type extensometer
coupled to a programmable closed loop electrohydraulic servosystem. The
measured specimen diameter was compensated electronically for thermal expan-
sion so that net mechanical strain was controlled directly. Load, diameter
and temperature were recorded continuously, with load-diameter hysteresis
loops being obtained at periodic intervals during each test. Tests were
conducted over a range of strain amplitudes (as measured by the width of the
hysteresis loop at zero load) versus cycles to failure. Fatigue failure was
defined in all cases as complete separation of the specimens into two pieces.
Fractured specimens were sectioned longitudinally and examined metallographically
to evaluate the character of the microstructural damage associated with each
of the applied cycles.

C. Task III - Supplementary Mechanical Property Tests

Supplementary vacuum tensile and creep-rupture tests were also con-
ducted in this program to provide baseline characterization data. All sup-
plementary tests were conducted in ultrahigh vacuum (below 10~7) at 871°C
(1600°F) and 1000°C (1832°F) using tubular hour-glass specimens identical to
those used for fatigue tests. Tension tests were conducted on both coated
and uncoated specimens using a crosshead extension rate approximately equal
to the frequency of the pp type fatigue tests (1.0 Hz). Properties measured
were 0.2% offset yield strength, ultimate tensile strength and % reduction of
area. Creep-rupture tests were conducted at constant load on coated and un-
coated specimens. Reduction of area and rupture life were measured in these
tests and a recording against time of the axial creep strain up to failure
was also obtained.



I I I RESULTS AND DISCUSSION

A. Fatigue Test Results

The dynamic stress-strain response (hysterisis loops) for all the
fatigue tests conducted in this program are presented in Appendix A along
with a l i s t of the elastic modulus at each test temperature used to cal-
culate the elastic strain. In the following discussion PP, PC, CP and CC
w i l l refer to Aepp, AepC, AeCp and Aecc types of deformation, respectively.
All PP tests were conducted at approximately 1 Hz. For the PC and CP tests
the time required to reverse the creep portion of the cycle by plastic strain
and then initiate the creep portion again was 1 second or less. For the CC
tests the time required to initiate creep in the reversed direction was also
1 second or less.

The fatigue life results are summarized in Tables II - VI. Table II
lists the results of tests conducted at 1000°C (1832°F) and 871°C (1600°F)
for uncoated and coated material tested with the PP type cyclic deformation
while Tables I I I , IV and V l i s t results for tests conducted with the PC, CP
and CC types of deformation, respectively. Note that in Table I I I , contain-
ing the PC results, eight tests were conducted on uncoated material at 1000°C
(1832°F) instead of the usual five. Three extra tests (89U-PC-1 , 9^U-PC-lA
and 97U-PC-15) were conducted here because analysis of the data for the first
five tests indicated that drift may have occurred in the zero point for the
load and strain control settings resulting in erroneous readings. Thus, the
values of total, inelastic and partitioned inelastic strainrange may be in
error. Table VI lists the results of tests conducted at a number of dif-
ferent temperatures on uncoated material with the PP type deformation in a
poorer vacuum (approximately 10 torr).

The ultrahigh vacuum fatigue life results from Tables II - V are
plotted against longitudinal strainrange in Figures 3-6. For the remainder
of the discussion, the term strainrange w i l l always refer to longitudinal
strainrange. Each figure contains three different graphs including a plot
and a least squares fit of total strainrange versus observed cycles to failure,
inelastic strainrange versus observed cycles to failure- and partitioned in-
elastic strainrange versus life relationships computed using the interaction
damage rule (5). Figures 3 and k contain results for tests conducted at
1000°C (1832°F) for uncoated and coated material, respectively, while
Figures 5 and 6 contain results for tests conducted at 871 °C (l600°F) for
uncoated and coated material, respectively.
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Î  vO
o o
o o

en en
vo ro
vO LO
o o
o o

oo ro
co vo
o o
o o

-3- O
o co
CM CM
o o
o o

o
J3

C
(D

r-.i
o

X
o
a
a
ro

en en
ro r-~
vo en
o o
o o

co
o o o o
o o o o

j- CM
co -3-
o o
o o

-3- CM
o en
vo r~
o o
o o

rovO
-3" I-»
CO LO
o o
o o

I 8

-3- LT\
~- CM

a. o-
o. a_

en oen —

-3-
O
CM -

O
O
-3- Z

a. o_
CL o.

— CM
o o

oo
ro
LO z

o
o
o -

Q-
I

en
j-
vO

O
o
CM :

O CM
CM CM
I I

o- a_
O- D_
i i

ZJ Z3

LO I—o o

o
vo

1— I

o
o
-3- -

CL. a.
a. o.
i i
^ o
ro -3-
O o

O
o
O I

CM
ro
co :

ro-3"
CM CM

I I
o_ a.
o. o.

co en
o o

"8
4J
o

T>c
oo

13
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Figure 3a Longitudinal Tout Strainrang* Venus Observed Cycles to failure

t 001£

Figure 3b Longitudinal Inelastic Stralnranga Versus Observed Cycles to Failure

g.OOl

I

Figure 3c Longitudinal Partitioned Inelastic Sti
(Computed Using Interaction Damage Rule. Ref 5)

102 103

CYCLES TO FAILURE
10*

Figure 3. Rene1 80 Fatigue Test Results at 1000°C (l832°F) in the Uncoated Condition.
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Figure 4a Longitudinal Total Stralnrang« Versus Observed Cycles to Fallui
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Figure 4c Longitudinal Partitioned Inelastti
Interaction Damage Rule. Ref 5)

i (Computed Using
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Figure ^. Rene1 80 Fatigue Test Results at 1000°C (1832°F) in the Coated Condition.
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• PP DEFORMATION

A PC DEFORMATION

V CP DEFORMATION

• CC DEFORMATION

Figure 5b Longitudinal Inelastic Stralnrange Versus Observed Cycles to Fallu

_, 001

i
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10* 105 10'

Figure 5- Rene1 80 Fatigue Test Results at 871°C (1600°F) in the Uncoated Condition.
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Figure 6. Rene1 80 Fatigue Test Results at 871°C (1600°F) in the Coated Condition.
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For tests conducted at 1000°C (1832°F), Figures 3 and k, the results
indicate that the relative positions of the failure lives for the four basic
types of strainrange components (PP, PC, CP and CC) changes little as a re-
sult of the presence of the aluminide coating. In all instances PP deforma-
tion was the least damaging while PC deformation was the most damaging by
approximately an order of magnitude difference in number of cycles to failure.
The CP and CC lines were quite close together and fell between the PC and PP
lines, ranging from 2/3 to 1/2 order of magnitude below the PP line. A dif-
ference was observed between coated and uncoated material, however, in that
for the values of inelastic and partitioned inelastic strainrange included in
this study for uncoated material, the lines for CP and CC approached the PP
l i n e at the low strainrange values, Figures 3b and 3c.

Results of tests conducted at 871°C (1600°F), Figures 5 and 6, were
consistent with those conducted at 1000°C (1832°F) in that the aluminide
coating had l i t t l e effect on the relative positions of the failure lives for
the four basic types of strainrange components. In all cases PP deformation
was the least damaging. Unlike the 1000°C (1832°F) results, however, the PC
and CP lines were both comparable, ranging from 1/2 to 1 order of magnitude
below the PP line. In terms of total and inelastic strainrange, the CC re-
sults were somewhat comparable to those for PC and CP, but the partitioned
inelastic strainrange results indicated that CC was less damaging than PC
and CP by approximately 1/2 order of magnitude at the higher strainrange
values. Manson and Halford have made an analysis u t i l i z i n g Strainrange
Partitioning (6) of the low cycle fatigue data generated independently by
Lord and Coffin on uncoated Rene1 80 at 871°C (1600°F). They determined
that the partitioned lives for the 0.0032 strainrange at this temperature
were Npp = 600, Ncp = *450, Ncc = 190 and Npc = 80. With the exception
of the Ncp results, these values agree quite closely with the data presented
in Figure 5c. This indicates that the Method of Strainrange Partitioning may
have some potential as a unifying framework around which the many factors con-
cerning fatigue at elevated temperatures can be coherently structured.

In order to illustrate the effect of temperature and coating on these
fatigue results in a more graphic manner, the results for each of the basic
types of deformation have been plotted separately in Figures 7~10 in terms
of total strainrange versus observed cycles to failure and partitioned in-
elastic strainrange versus life relationship computed using the interaction
damage rule (5). For each of these plots a least squares fit was made of all
the data. These least squares lines suggest that for all four basic types of
deformation, there was l i t t l e difference between coated and uncoated material
at 1000°C (1832°F) and 87PC (1600°F) and further, that there was l i t t l e ef-
fect of temperature on the fatigue results. These results were not unexpected
in that the ultrahigh vacuum test atmosphere nullified the effect of oxidation
behavior thus minimizing possible differences in fatigue behavior.
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O Uncoated Test at 1000°C (1832°F)

• Coated Test at IOOO°C (1832°F)

O Uncoated Test at 87I°C (1600°F)

• Coated Test at 87TC (1600°F)

O

Figure 7a. Longitudinal Total Strainrange Versus Observed Cycles to Failure.

.01

.001

.0001
Figure 7b. Longitudinal Inelastic Strainrange Versus Observed Cycles to Failure.

10 102 103
CYCLES TO FAILURE

101* 105 10°

Figure 7. Rene1 80 Fatigue Test Results at 1000°C (]832°F) and 871°C (1600°F)
for Uncoated and Coated Specimens Tested with the AeD_ Type Deformation.
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A Uncoated Test at 1000'C (1832°F)

A Coated Test at 1000°C (|832°F)

A Uncoated Test at 871°C (1600°F)

A Coated Test at 871°C (1600°F)

Figure 8a. Longitudinal Total Stralnrange Versus Observed Cycles to Failure.

I
i

.001

.0001

Figure 8b. Longitudinal Partitioned Inelastic Strainrange Versus Life Relationships
(Computed Using Interaction Damage Rule, Ref. 5).

10 10' 1011 105 10C

CYCLES TO FAILURE

Figure 8. Rene',80 Fatigue Test Results at 1000°C (1832°F) and 871°C (1600°F)
for Uncoated and Coated Specimens Tested with the Ae Type Deformation.
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V Uncoated Test at IOOO°C (1832°F)

* Coated Test at 1000°C (1832°F)

V Uncoated Test at 871°C (I600°F)

Y Coated Test at 871 "C (1600°F)

Figure 9a. Longitudinal Total Stralnrange Versus Observed Cycles to Failure.

.01

.00

.0001

Figure 9b. Longitudinal Partitioned Inelastic Strainrange Versus Life Relationships
(Computed Using Interaction Damage Rule, Ref. 5).

10 103

CYCLES TO FAILURE

105 10°

Figure 9. Rene1 80 Fatigue Test Results at 1000°C (]832°F) and 871°C (1600°F)
for Uncoated and Coated Specimens Tested with the Aecp Type Deformation
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D Uncoated Test at 1000°C (1832°F)

• Coated Test at IOOO°C (l832°F)

n Uncoated Test at 871°C (1600°F)

• Coated Test at BJ]"C (1600°F)

Figure lOa. Longitudinal Total Stralnrange Versus Observed Cycles to Failure.

E .01

.001

.0001

Figure lOb. Longitudinal Partitioned Inelastic Strainrange Versus Life Relationships (Computed Using
Interaction Damage Rule, Ref. 5).

10 103

CYCLES TO FAILURE

10°

Figure 10. Rene1 80 Fatigue Test Results at 1000°C (l832°F) and 8?1°C (1600°F)
for Uncoated and Coated Specimens Tested with the Aecc Type Deformation.
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To summarize these fatigue results more clearly, the least squares
lines shown in Figures 7~10 are included in the composite plot of Figure 11.
These results indicate that PP deformation resulted in the least damaging
type of cycling. When a time-dependent creep component was introduced into
the cycle, however, an effect was observed which was dependent upon which
portion of the cycle contained the creep component. The PC type deforma-
tion, in which creep was introduced in the compressive portion of the cycle,
was most damaging, resulting in failure lives one order of magnitude below
those for PP deformation. The CP type deformation, in which creep was
introduced in the tensile portion of the cycle resulted in failure lives
sligh t l y higher than those for PC, i.e., slightly less than an order of
magnitude below those for PP. The least damaging of the creep type cycling
was CC in which creep occurred both in the tensile and compressive portions
of the cycle. It resulted in failure lives approximately 1/2 an order of
magnitude below those for PP.

The life results from Table VI for tests conducted at a number of
different temperatures on uncoated material with the PP type deformation
in a poorer vacuum (approximately 10~6 torr) are shown in Figure 12. This
figure contains a plot of total strainrange versus observed cycles to failure
and inelastic strainrange versus observed cycles to failure. No tests were
conducted under these conditions at 871°C (1600°F) but the least squares
lines from Figure 5 for the ultrahigh vacuum tests have been included for
comparative purposes. The results for inelastic strainrange indicate a
decrease in fatigue life as temperature is reduced. It has been generally
acknowledged that in the absence of time dependent deformation (creep) a
material's ductility w i l l be an indicator of its relative fatigue resistance
with a decrease in ductility usually resulting in a decrease in fatigue
life (7). Ductility results for cast Rene1 80 indicate a decrease with tem-
perature from 1000°C (l832°F) (8). Thus, the inelastic strainrange results
for Rene1 80 do reflect the decrease in fatigue l i f e with decreasing
ducti1 i ty.

B. Microstructura1 Observations

All the fatigue specimens failed within the hourglass areas. There
was no evidence of the specimen geometry change known as "barrelling" which
is characterized by an increase in specimen diameter adjacent to the center
of the original hourglass configuration. This effect has been observed in
30A stainless steel (9) and tantalum base materials (3)- Metal lographic
examination was conducted on selected specimens and included light and
scanning electron microscopy to aid in the interpretation of the fatigue
results. The results indicated that microstructural damage varied with
cycle type, test temperature and surface condition (coated versus uncoated),
Figures 13-18.
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Figure lla. Longitudinal Total Stralnrange Versus Observed Cycles to Failure

.01

< .001

.0001

Figure lib. Longitudinal Partitioned Inelastic Strainrange Versus Life Relationships (Computed
Using Interaction Damage Rule, Ref. 5).
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CYCLES TO FAILURE
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Figure 11. Composite Plot of Least Squares Lines Through Fatigue Data Shown in
Figures 7-10.
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Figure I2a. Longitudinal Total Stralnrange Versus Observed Cycles to Failure.
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Figure 12b. Longitudinal Inelastic Strainrange Versus Observed Cycles to Failure.
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Figure 12. Rene1 80 Fatigue Test Results at Various Temperatures for Uncoated
Material Tested in Poorer Vacuum (Approximately 10~6 Torr) with the
AepD Type Deformation.
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a) Surface Grain Boundary Crack I n i t i a t i o n with Crack
Branching Off Into Matrix Region, 800X Magnification

m

b) Grain Boundary Porosity Crack I n i t i a t i o n with Crack
Branching Off Into Matrix Region, 400X Magnification.

Figure 13- Light photomicrographs of fatigue specimen 8U-PP-7, tested at
1000°C (1832°F), 1.033 Hz, total strainrange of 0.002̂ 7.
Failure occurred after 22,115 cycles. Fry's etch.
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a) Unetched

b) F ry ' s etch

Figure ]k. Light photomicrographs of fatigue specimen 51C-PP-6, tested at 8?1°C
(1600°F), total strainrange of 0.00672. Fai1ure occurred after i860
cycles. Note coating cracks propagating transgranularly into specimen,
500X magnification.
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a) 80X Magnif icat ion

b) 800X Magnif icat ion

Figure 15- Light photomicrographs of uncoated fat igue specimen 10U-PC-2,
tested at 1000°C ( l832°F), total strainrange of 0.01999- Failure
occurred after 19 cyc les. Note grain extrusion as a result of PC
deformation. F ry ' s etch.
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a) 100X Magnification

b) 500X Magnification

Figure 16. Light photomicrographs of coated fatigue specimen 57C-PC-2, tested
at 1000°C (1832°F), total strainrange of 0.00450. Failure occurred
after 386 cycles. Note grain extrusion and intergranular cracking
as a result of PC deformation. Fry's etch.
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a) Uncoated specimen 31U-CP-6, tested at 871°C (1600°F),
total strainrange of 0.00586, 530 cycles to failure.

b) Coated specimen 62C-CP-1 , tested at 871 °C (1600°F), total strainrange of
0.00995, 150 cycles to failure.

Figure 17. Light photomicrographs of intergranular fracture mode in specimens
tested with the CP type deformation. Fry's etch. 1OOX magnification,
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a) Intergranular Fracture Mode In Coated
Specimen 68C-CC-1, Tested at 1000°C
(1832°F), .01135 Total Strainrange,
17 Cycles to Failure 100X

b) Transgranular Fracture Mode in Coated
Specimen 69C-CC-2, Tested at 871°C
(1600°F), .01005 Total Strainrange,
108 Cycles to Failure. 500X

Figure 18. Light Photomicrographs Showing Examples of Fracture Modes for Specimens
Tested with the CC Type Deformation. Fry's etch.
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Specimens tested with the PP type deformation exhibited primarily a
transgranular fracture mode for all test temperatures and surface conditions.
This is a common fracture mode for materials tested at high frequencies where
creep deformation is negligible. This fracture mode reflects the fact that
the PP deformation resulted in the highest fatigue lives. Transgranular crack
propagation in a highly alloyed cast nickel-base superalloy such as Rene1 80
is retarded by the heavy matrix precipitation of the gamma-prime strengthening
phase. For uncoated specimens, grain boundary areas at the specimen surface
were common crack initiation sites, with the cracks becoming transgranular
after a short distance, Figure 13a. Crack initiation was also observed at
grain boundary microporosity, Figure 13b. After initiation in the grain
boundary region these cracks become transgranular. For coated specimens,
considerable numbers of coating cracks were observed leading to transgranular
crack propagation, Figure 14. Since the fatigue results for the PP type tests,
Figure 7, indicated no appreciable differences in failure times as a function
of surface condition, the presence of the aluminide coating and its attendant
cracks did not degrade the low cycle fatigue properties of this alloy.

Specimens tested with the PC type deformation exhibited a predominantly
intergranular fracture mode. In general, intergranular crack initiation and
propagation occur at a faster rate than transgranular cracking in nickel-base
superalloys and the presence of this fracture mode in PC specimens suggests
why this type of strain cycling resulted in lower fatigue lives than the PP
type. At 1000°C (l832°F) there was considerable evidence of grain boundary
sl i d i n g which took place during the compressive (creep) portion of the cycle
resulting in steps or grain extrusions along the sides of the specimens.
Examples of these extrusions are shown in Figure 15 for the uncoated material
and Figure 16 for coated material. Specimens tested at 871°C (1600°F) did
not exhibit the extent of grain boundary s l i d i n g seen at 1000°C (l832°F).
Considerable numbers of surface cracks were observed in the coated specimens,
but, similar to the PP specimens, the presence of the aluminide coating and
its attendant cracks did not degrade the low cycle fatigue properties of this
al loy.

Specimens tested with the CP type deformation exhibited primarily an
intergranular type of fracture mode both at 1000°C (]832°F) and 871°C (1600°F),
Figure 17. Unlike materials such as iron base A-286 and 304 stainless alloys
which exhibit intergranular fracture resulting from internal grain boundary
"decohesion" as a consequence of CP cycling (4), specimens of Rene1 80 studied
in the present investigation usually exhibited some form of surface grain
boundary cracking into the specimen. High magnification SEM analyses of
Rene1 80 specimens revealed no internal grain boundary "decohesion" or cavita-
tion in this alloy. In addition, the CP specimens did not exhibit the grain
boundary s l i d i n g observed in the PC specimens and this may explain why the CP
failure lives were slightly higher. Sim i l a r to the results for the PP testing,
the presence of numerous coating cracks did not result in an appreciable de-
gradation in fatigue results, Figure 9.
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Specimens tested with the CC type deformation exhibited different
fracture modes depending on the test temperature. At 1000°C (1832°F) the
fracture mode was primarily intergranular, while at 871°C (1600°F) the
fracture mode was transgranular. Examples of these various modes are shown
in Figure 18. There was no evidence of grain boundary extrusion at the
specimen surface or of internal grain boundary decohesion or cavitation
in these specimens.

C. Supplementary Mechanical Property Tests

The results of the supplemental vacuum tensile and creep rupture
tests are presented in Appendix B in Tables B-l and B-2.
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VI SUMMARY

The results of ultrahigh vacuum low cycle fatigue tests conducted
on uncoated and CODER B-l aluminide coated specimens of Rene1 80 nickel -
base superalloy at 1000°C (l832°F) and 871°C (1600°F) indicated l i t t l e
effect of coating or temperature on the fatigue properties. There was,
however, a significant effect on fatigue life as a function of strain cycle
type. The method of Strainrange Partitioning offers an appropriate frame-
work around which to correlate the effects of these strain cycle types. In
terms of partitioned inelastic Strainrange, the completely reversed plasticity
type of strain cycling (PP) resulted in the highest fatigue lives. When a
time-dependent creep component was introduced into the cycle, an effect was
observed which was dependent upon which portion of the cycle contained the
creep component. When creep was introduced in the compressive portion of the
cycle (PC) failure lives were approximately one order of magnitude below
those for PP deformation. When creep was introduced in the tensile portion
of the cycle (CP), failure lives were slightly higher than those for the PC
deformation, i.e., slightly less than an order of magnitude below those for
PP. The least damaging of the creep type cycling was CC in which creep
occurred both in the tensile and compressive portions of the cycle resulting
in failure lives approximately 1/2 an order of magnitude below those for PP.

Metallographic evaluation indicated that microstructural damage
varied with cycle type and test temperature. Specimens tested with the PP
type deformation exhibited primarily a transgranular fracture mode. Speci-
mens tested with the PC type deformation exhibited a predominantly inter-
granular fracture mode. At 1000°C (1832°F) there was considerable evidence
of grain boundary s l i d i n g which took place during the compressive (creep)
portion of the cycle resulting in steps or grain extrusions along the sides
of the specimens. Specimens tested at 871°C (1600°F) did not evidence the
same extent of grain boundary extrusion. Specimens tested with the CP type
deformation exhibited an intergranular type of fracture mode at both test
temperatures. Specimens tested with the CC type deformation exhibited
different fracture modes depending on the test temperature. At 1000°C
(1832°F) the fracture mode was intergranular while at 871°C (l600°F) the
fracture mode was transgranular. At both test temperatures considerable
evidence of surface cracking was observed in coated specimens for all the
types of strain cycling.
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APPENDIX A

HYSTERISIS LOOPS



TABLE A-1

MODULUS OF ELASTICITY USED TO CALCULATE ELASTIC STRAIN
~N LOW CYCLE FATIGUE TESTS CONDUCTED IN THIS PROGRAM^')

Test Temperature Modulus of Elasticity 10

29.98

28.78

26.26

25-29

24.15

22.76

20.90

(1) Modulus of elasticity data obtained from General Electric Co.
Aircraft Engine Group, Materials Data Unit, Cincinnati, Ohio
45215, 10-8-7^.

°F

Room

400

1000

1200

1400

1600

1832

°C

Room

204

538

649

760

871

1000
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TABLE B-l

RENE1 80 TENSILE RESULTS

Specimen
Number(1)

Specimen
Number(1)

37U-C-7
38U-C-8
53C-C-4
60C-C-5
25U-C-1
35U-C-6
33U-C-4
32U-C-3
63C-C-6
46C-C-1
48C-C-2

Temperature
op oc

U l t i m a t e
Tensile Strength
ksi MN/M2

123C-T-3
124C-T-4
125U-T-1
126U-T-2
121C-T-1
122C-T-2
127U-T-3
128U-T-4

1600
ii
ii
n

1832
ii
n
ii

871
n
H
n

1000
II

II

II

110.4
114.0
106.8
111 .4
67.5
70.1
62.2
61.4

II

1832
II

II

II

II

II

II

II

II

II

II

II

II

761 .2
786.0
736.3
768.1
465.4
483.3
428.9
423.4

83". 4
80.1
79.3
76.8
33.4
34.0
34.2
33.3

0.2%
Yie ld Strength
ks i MN/M2

575.1
552.3
546.8
529.5
230.3
234.4
235.8
229.6

RENE1 80 CREEP RESULTS

Temperature
°F °C

1600 871

Stress Level
ksi

1000

50.0
35.0
50.0
45.0
30.0
25.0
15.0
15.0
23.0
15.0
15.0

344.7
241.3
344.7
310.3
206.8
172.4
103.4
103.4
158.6
103.4
103.4

Rupture Life
hours

2.1
84.8
9.4
66
0
1

48
52.6
15.4
60.0
21.6

Percent
Reduction Area

27.8
20.8
27.5
30.1
29.7
31.2
33.5
32.8

Percent Reduction
Area

31,
23-
28,
20,
29,
31.
29,
32.
29.6
31.1
35.1

(l) The first letter in the specimen number designation stands for coated (C)
or uncoated (U) material, while the second letter stands for a tensile
(T) or creep (T) type of test.
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