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A BLOCK ITERATIVE FINITE ELEMENT ALGORITHM FOR NUMERICAL SOLUTION

OF THE STEADY-STATE, COMPRESSIBLE NAVIER-STOKES EQUATIONS

By

Charlie H. Cookel

SUMMARY

An iterative method for numerically solving the time independent

Navier-Stokes equations for viscous compressible flows is presented.

The method is based upon partial application of the Gauss-Seidel

principle in block form to the systems of nonlinear algebraic equa-

tions which arise in construction of finite element (-Galerkin) models

approximating solutions of fluid dynamic problems. The Co-cubic

element on triangles is employed for function approximation. Compu-

tational results for a free shear flow at Re = 1000 indicate signfi-

cant achievement of economy in iterative convergence rate over finite

element and finite difference models which employ the customary time

dependent equations and asymptotic time marching procedure to steady

solution. Numerical results are in excellent agreement with those

obtained for the same test problem employing time marching finite

element and finite difference solution techniques.

INTRODUCTION

Historically, most numerical methods for obtaining steady-state

solutions of the nonlinear Navier-Stokes equations of fluid dynamics

are time-dependent methods in which the steady solution is approached

asymptotically by time marching procedures. Prevalence of such methods

derives from the confidence that is placed in eventual convergence to

the steady solution (for stable and consistent algorithms), as well as

1 Associate Professor, Department of Mathematical and Computing
Sciences, Old Dominion University, Norfolk, Virginia 23508.
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the ease and economy with which numerous finite difference methods may

be formulated and implemented. However, in many situations the struc-

ture of the problem or stability restrictions of the algorithm can

lead to the requirement of many time steps to convergence. Hence,

it is desirable to devise methods in which iterative convergence is

achieved as rapidly as possible.

In a series of investigations by Roache (refs. 1 and 2) several
iterative methods have been devised for solving the incompressible

2D steady Navier-Stokes equations in stream functions and vorticity.
These finite difference techniques are neither time dependent nor even

timelike in their iterations. Instead, the nature of the iterations

is such that otherwise nonlinear equations approximating time independ-
ent Navier-Stokes flows become linear in the independent variables

over one iterative step. Recent advances in solving the resulting

linear systems by direct methods (fast Poisson solvers and biharmonic

solvers) are employed for economical equation solving. Improved

iterative convergence rates have been experienced for the driven

cavity problem and other low Reynolds number flows.

On the other hand, applications of the finite element method in

fluid dynamics problems governed by the unsteady Navier-Stokes equa-

tions leaves one unconvinced such methods are at all competitive,

in terms of economy of computer resources, with the standard finite

difference techniques (refs. 3 and 4). A built-in cumbersomeness

due to the general (gridwise) applicability of the method seems to

indicate more complex program structure, more lengthy development and

slower problem execution times are to be expected. Hence, in attempt-

ing to make the finite element method more nearly competitive with

the state-of-the-art finite difference algarithms which now exist

in rather streamlined form, one might logically consider iterative

solution procedures for the steady equations, with expectations that

order of magnitude improvements in the number of iterations to con-

vergence could vastly improve the economy of the method.

Early investigations of this type on the 2D steady transonic flow
equations (ref. 5) are encouraging. A reported comparison of the Galerkin
method (with quadratic rectangular elements) versus finite difference

results for the flow around a circular-arc airfoil with imbedded shock

2



indicates finite element results which are superior to finite dif-

ferences, while retaining a speed ratio of at least one order of

magnitude. Here, of course, only one governing equation is involved,

which greatly simplifies the numerical computation.

Attempted solutions by finite elements of steady problems involv-

ing the full Navier-Stokes equations have as yet been only sparsely

reported. The case of viscous incompressible flow and laminar, steady,

isothermal fluid motion in two dimensions has been investigated by

Garling (ref. 3), using quadratic function approximation with isopara-

metric quadrilateral and triangular finite elements. The nonlinear

algebraic equations resulting from the discretization process are

solved with a Picard iteration of the form

A (XR) XR+1	 f (XR) r

where X is a vector of all density and momentum variables at the

nodes of the discretization. The initial flow field employed the

solution to the creeping flow problem (zero Reynolds number) and

iterative convergence was achieved in only a few iterations, for a

broad class of viscous flow problems and a significant range of
Reynolds number (< 10,000). The matrix A and vector f were

assembled by the frontal solution technique, generalized to the case

of nonsymmetric matrices (essentially Gaussian elimination without

pivoting). (Herein lies the weakness of this formulation, since in

the present investigation for the case of mixed subsonic-supersonic

compressible flow at Re = 1000 we have experienced significant round
off when Gaussian elimination with no pivoting (Crouts Method) was
used.)

Laskaris (ref. 6) has developed a finite element numerical tech-

nique whereby the steady state hydrodynamic equations for two-dimen-

sional viscous compressible flows are solved, taking into-full account

the nonlinear convective terms, viscous terms, heat conduction terms,

and variable fluid properties. The (Galerkin) method of weighted

residuals is applied over distorted rectangular elements with cubic

(Hermite, tensor product) function approximation. The resulting set

of nonlinear algebraic equations for the nodal parameters are solved

3
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by means of a multi-dimensional Newton-Raphson scheme. For a heat

transfer problem in a diverging channel with plane walls, with around

400 elements (roughly 2400 unknowns), convergence was achieved in

5 to 8 iterations and approximately two hours CPU time on the GE-600

computer. Direct Gaussian elimination and an out -of-core solver were

used for matrix inversion at each iterative step.

In the present investigation viscous compressible flows governed

by the two-dimensional steady Navier-Stokes equations in primitive

variables form are considered. The goal of the investigation is to

determine whether the finite element method becomes a more feasible

tool for fluids computations (for which either time asymptotic or

steady governing equation formulation is applicable) when the steady-

state governing equations are adopted. Solutions of the same physical

problem by both time transient finite element and finite difference

wethods affords a ready basis for comparison of these diverse techniques.

FLUID DYNAMICS MODEL OF A FREE SHEAR LAYER FLOW

A computer code for numerical computation of 2D viscous fluid

flows governed by the steady-state compressible Navier-Stokes equations

in primitive variable form has been developed. Proof of concept for

this finite element program is provided by the computation of the

solution to a free shear flow generated by the parallel mixing of two

supersonic jets, initially separated by a thin splitter plate. Solu-

tion of the problem does not require the full Navier-Stokes equations,

since fairly accurate results can be obtained using the quasi-parallel

assumptions of parabolic boundary layer theory. However, the avail-

ability of solutions generated by several computational methods (refs.

4 and 7) affords a ready basis for evaluation of the finite element

method.

Flow Field Configuration	 .

The flow field configuration of the test problem considered is

shown in figure 1. The computational domain begins downstream from

the base of the splitter plates. Numerical computations have been

performed for flow at Reynolds number 1000.

4



Governing Equations

Steady-state flow is obtained through solution of the time inde-

pendent Navier-Stokes equations. The assumption of constant total

temperature (adiabatic mixing) and two-dimensional flow yields the

following non-dimensional systems of governing equations (non-conserva-

tive form):

Continuity

P (42x+
ay +v+u aX 0	 (1)ay

y-momentum

	

(av	 av	 aP	 4 a	 av
P v ay + u ax + 2y + 3Re ay u

 TY-)

+ a	 211 2—u) _ a k,	 +av,^0	 (2)

	

ay ORe ax 	 ax Re 
(22
ay ax

x-momentum

P ( v 8u + u au l + 8P + 4 a (u au

	

ay	 ax) ax 3R  ax ` ax

+ a	 2JLj av	 _ a [,lav + au )] s 0 	 (3)
ax 3Re ay )	 ay	 ax ay

Temperature relation

T = 1 - u2 - v2	 (4)

Constitutive relationship

T + 198.6

	

Sutherland's viscosity law: u = T 3 2	 T T + 198.T(5)s

t

5
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P - p (^ 1 ) T.Perfect gas laws (6)

In equation ( 5), u,T are dimensionless, although Ts and the
constant 198.6 (Sutherland ' s constant) are expressed in degrees

Rankine. The variables used to non -dimensionalize eqs. (1) to (6)

are presented in reference 7.

Boundary Conditions

Boundary conditions for the problem are shown schematically in

figure 2. Function specifications are given for all three variables

on the inf1-.)w; symmetry conditions apply at the bottom, and on the

top function specification iz made for velocity, zero normal deriva-

tive for density. On the outflow a computational boundary condition

must be aprlied; this was chosen to be quadratic extrapolation.

FINITE ELEMENT APPROXIMATION

Our approximation to the flaid dynamics problem [equations (1)

to (7) and boundary conditions of figure 21 is obtained by applying

the classical Galerkin (or method of weighted residuals) in conjunc-

tion with finite elements. The first step is to triangulate the

computational domain 0 with boundary r, and then consider piece-

wise polynomial approximating (trial) functions on this grid.

Trial Functions

Function approximation in all independent variables is accom-

plished by means of piecewise cubic trial functions on triangular

elements. For a precise description of the element used, see refer-

ence 8. For purposes of illustration, the trial functions for approxi-

mating density variations are of the form

N
P (x, y) - E PJ 0i N"Y)	 •

j=1
(7)
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Here N is the total number of nodes. The functions {m j ) comprise

a local and interpolating basis for functions of the form exhibited by

eq. (7) which are continuous and piecewise cubic polynomial on n with

sectionally continuous first partial derivatives, but which are infin-

itely differentiable cubic on the interior of each triangle.

The weights p  are chosen by Galerkin's methods. Thus, the

final approximating function satisfies all boundary and initial condi-

tions at problem nodes, and approximately satisfies the governing

equations over the domain. For each trial function (density and two

velocity components) there are ten nodes per triangle; triple nodes

at triangle vertices, and a single node at the centroid ( see fig. 3).

The parameters p  each associate with a distinct node, and repre-

sent approximations to function and first partial derivative values

(p
' ax' ay) at vertices, and function values alone at the centroid.

The trial functions for velocity, defined similarly to those of

density, are of the form

N
u (x.Y) = F, uJ Yx.Y)

J-1

N
v (x,Y) = E v  Yx,y)

J=1

Discretized Equations

Consider a node at which a density independent variable p  is

not restricted by any boundary condition specification. The corres-

ponding discretized finite element equation associated with p  is

determined by setting to zero the weighted residual obtained upon

multiplying eq. (1) by the basis function ^J and integrating the

result over n. After shifting derivatives where possible onto the

basis function (integrating by parts) and letting p,u,v be the

vectors whose components consist of all nodal variables not restricted

by any boundary condition, there results the system of equations:

r

(8)
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C(u,V)p - F(u,v)
	

(9)

for determing the density of unknowns p. Here the typical element

of C is specified by

"JCJK -f f ^K (u x
a^J

+ v ^) dA + r
[YK

( udx - udy)] (10)

r

and

F  - -E CJL PL
	 (11)

The sum defining F  is over all nodes at which p  is known. The

system of discretized equations for the velocity vectors u , v may be

shown to have the functional form

	

I	 _ _ _ _
zz(u,V , p) i zR(U , V,p)	 u	 G (u,v,p)

(12)

Rz(u,V,p) i RR(u,v,p)	 V	 H (u,V,p)

These equations are the result of multiplying eqs. (2) and (3) by f 

and setting to zero the weighted residue,is obtained upon integrating

the results over O f employing integration by parts to shift (where

second derivatives occur) higher derivatives onto the basis functions.

The matrix elements of the u-momentum matricej are specified by

the equations:

ff I _ Poj / a'K	 a0K	 a0J (	 a^K a^K\1zzJK =
	

Iv - + u — ^+	
4

u ^ t 3 R 
e ax + ay /

^	 \	 \	 • (13)

+ a ^J a^K	 dA +	 a^K	 4u	 a^K

	

ay - y	 um1 77dx - 3Re ^J -5—xdY
r

e



T _

a^J
8OK

A'
O

K

K
-

B
a

f
-

J
-"

K
- dAzR

JK = f I p	 7F_X^ Cx
7^.

2 

e3R O]^ ) ♦ 	 0y Qx

(lit)

Oj 	 dx + IL 0 J a-Sy dY
J.

ffa#J
G 

=P- 
xdAmJ P dy -F (zzJL uL +zRJL vL )	 (15)

 Ir	 L

The sum in eq. (15) is over all nodes at which u,v are speci-

fied by bourdary conditions. The v-momentum equations may be obtained

from eqs. (13) to (15) by interchanging the variables x with yf

u with v ono reversing algebraic sign o- boundary integral terms.

The indices :s,K in eqs. (10) to (15) range over all nodes at which

p,u,v are unknown.

To simplify accounting in the equation solving process; it is

asswned that uK ,vK are either both known or both unknown at each

node. When one but not both is specified by boundary conditions,

both are treated as unknown in the equation assembly process, and a

corrected equation is inserted for the known component prior to equa-

tion solution. This artifice produces momentum matrices character-

ized by identical dimension, bandwidth, profile, and intraba:ld distri-

bution of zero and non-zero elements. Descriptors of any one matrix

which must be stored then suffice for all.

Numerical @uadratures

The appearance of nonlinearities in the integrands of eqs. (10)

to (15) requires numerical quadratures. In Lrder to maintain the

degree of accuracy naturally achievable with cul-ic function approxima-

tion, the analysis of Fix (ref. 9) which predicts a quadrature soheme

exact for polynomials of total degree five is needed. These requir.e-

mentc are conservatively met by the 16-point scheme (ref., 10) used by

the finite element program, which possesses seventh order accuracy.

A 7-point fifth order scheme was also tested and found to yield

9
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approximately eight seconds per iterative step decrease in CPU time,

with equivalent algorithm performance.

A NONLINEAR BLOCK ITERATIVE GAUSS-SEIDEL SOLVER

Consider now the problem of solving the systems (9) and (12) of

nonlinear algebraic equations governing the approximating finite ele-

me.-t solution. Although more rapid convergence might be expected, it

is clear that a full Newton iteration on these equations would be

characterized by coupling of both continuity and momentum variables,

implying excessive core requirements for in-core equation solving.

As well, this method would lead to a very time consuming equation

assembly process, since the Jacobian matrix would have rather compli-

cated equations describing its elements. Ordinary nonlinear point

SOR is not readily applicable-if a triangle by triangle assembly is

desired; nor could convergence be readily guaranteed.

Howevsr, a partial block Gauss-Seidel iteration* which is linear

at each iterative step and which uncouples the density and momentum

solutions is readily designed. The equations proposed for this

iteration are

C  pn+l - Fn	
(16)

zzn un+l Gn,n+l - zRn vn	 (17)

RR  vn+l Hn,n+l - Rzn U 	 (18)

Here Pn+1 is used in assembling G,H, in order to update the momen-

tum solution. One merit of this iteration is that only one system

matrix at a time need be in memory during the equation solving. This

greatly reduces core demands and avoids out-of-core solvers.

* A full block Gauss-Seidel iteration cannot be applied, assuming one
wishes for purposes of economy to simultaneously assemble both
momentum equations.

10



In the present program eq. (16) is assembled first, with the

matrix C in core. The resulting solution vector pn+l is input

to the ( simultaneous) assembly of eqs. (17) and (18) with RR in

core and element matrices for zz on disk. Equation (18) is

solved, then zz is assembled in core and eq. (17) is solved.

The matrix inversions, for the supersonic free shear flow problem

reported, were accomplished by Crout's method of TX decomposition.

NUMERICAL RESULTS FOR A FREE SHEAR LAYER FLOW

Case I. Time Independent Equations and Supersonic-Supersonic Inflow

Steady-state results for computational solution of the supersonic

free shear ilow problem [eqs. (1) to (7) and boundary conditions of

fig. 21 are now .resented. The test case computed employed Re = 1000.

For a mesh consi^..ing of 225 elements (696 nodes per independent vari-

able) iterative convergence was achieved with 15 iterations of eqs.

(16) to (18) and 2079 seconds of CPU time on the CDC-6600 computer.

Program core storage requirements were 162 K 8 . For the 16-point

quadrature scheme approximately 120 seconds per iterative step of

CPU time were required, with approximately 8 seconds per step decrease

when the 7-point scheme was employed. Total dollar costs for this

computer run were $462, as determined by the computer systems' account-

ing scheme. The convergence criterion used is

Af
Max f n	 < .001

n

where Afn = fn+1	
fn , and f is a function value of u, v, or

p. (Generally, the derivative values are less accurately modelled

and lag function values in convergence.)

For purposes of comparison these results may be considered in

relation to those obtained for the same problem by various finite

difference (ref. 7) and fini.i.e Aement approximations (ref. 4) applied

to the time dependent Navier-a.ok( equations. Each method was initial-

ized with the same starting flow field, and accuracy of the results

(19)

11



appears equivalent. Several indicators of computational efficiency

for these methods are presented in table I. (The number of steps

to convergence for the time transient finite element code is not

the best obtainable since the maximum permissible step was not

consistently applied, as for the finite difference runs. However,

due to the expense of this method no attempts to rerun with maximum

step were made.)

Figure 4 shows typical comparisons of steady-state density and

velocity variations at stations x, = 0.75 and x 2 = . 175 in the flow

(the streamwise extent of the computational domain is 0 < x < .225.),

for steady finite elements versus time transient ADI finite differ-

ences. Table II exhibits actual numerical differences between these

computations. Table III presents percent differences with the ADI

computations as base. Since the normal component of velocity is

zero over much of the field, percent differences for this component

are normalized with respect to the maximum value.

Case II. Time Independent Equations and Subsonic-Supersonic Inflow

The steady finite element code has also been applied to a free

shear flow problem resulting from the mixing of a subsonic and a

supersonic flow. For a description of this problem, refer to figure

1 with M1 = 0.11, M2 = 3.00, and the boundary conditions of figure 5.

Catastrophic failure of the method for this case resulted from

the equation solving, arising from very ill-conditioned matrices and

Gaussian elimination without pivoting. For example, a standard de-

bugging procedure is to apply the code to a constant flow problem

(say, p = .07625, u = .8018, v = 0; or v = .8018, u = 0 1 for y-

direction flow) to see if this flow reproduces itself. With large

meshes (around 300 triangles) thought necessary for the subsonic-

supersonic case the flow did not reproduce in the u-component, for

y-direction flow. It was determined that the system matrices pos-

sessed determinants of order of magnitude

det(zz) = 10-3081

det (RR) = 10-3031
	

(20)

det (C) = 10-177S

12
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This seems to indicate ill- conditioning of all, but with a much more
severe occurrence for the u-momentum equations (observe that the ratio

of det(zz) to det(RR) is 0(10-50).

As a further test for the ill- conditioning, the equation

zzu = f	 (21)

was, by proper choice of i, set to have a solution all of whose
components assumed the value of 1. This system was then solved by

Crout's method (standard finite element solver) and by a band solver

which used partial pivoting. Partial pivoting gave the best results,

but each solution was characterized by numerous values with no signifi-

cant figures of accuracy. Neither solver produced diagnostics peculiar

to a singular matrix, although the eqs. (20) indicate near singularity.

Best results, although still unacceptable, were obtained from Crout's

method with double precision inner product accumulation on the decompo-

sition, with matrix rows scaled so as to have unity diagonal elements.

As a remark on how nearly singular a matrix can be and the systems

(16) to (18) still be solvable by ordinary techniques, the computa-

tional success for the supersonic-supersonic case prevailed in spite

of the characteristics of near singularity indicated by

det(zz) N det(RR) = 10 -1700
	

(22)

To make the steady finite element formulation a generally appli-

cable tool, these ill-conditioning problems must be overcome, and the

feasibility of the resulting method evaluated.

Case III. Time Dependent Equations and Subsonic-Supersonic Inflow

During the present work period the finite element code developed

previously !ref. 4) for numerical solution of the time dependent'

Navier-Stokes equations has also been applied to the free shear flow

resulting from the mixing of subsonic and supersonic streams.

13



Figures 6 shows comparison of the finite element results (after

600 steps, At	 .01) and steady state results for the central dif-

ference ADI code. Data output from the two codes compare well with

the exception of the normal component of velocity, which exhibits a

maximum difference of 4 to 6 percent (relative percent difference)

near the top right corner of the flow field. Here the finite element

computation had not completely converged. This local slow convergence

is attributed to boundary condition errors on the top; the finite

element flow domain was obtained by truncating a region 20 finite

difference mesh increments in width from the top of the ADI domain.

Boundary conditions were then supplied by ADI steady results at the

finite element domain. Initially, a significant bulge in finite
element data occurred in this region, with the rest of the field con-

verged to steady state. After the ADI code had been run further in

time with a more solid convergence check instituted, the top boundary

conditions then supplied resulted in a rapid and significant decrease

in the bulge occurring in finite element output, to the level now

indicated. It is conjectured mesh refinement of the ADI domain would

be required in order to produce boundary condition data sufficiently
accurate to produce totally satisfactory global convergence of the

finite element calculation. Further support for this conclusion is

furnished by figure 8 of reference 7, which shows disagreement in the

inviscid region between various finite difference solutions, implying

inaccuracy near the.top of the finite element domain.

The time transient finite element code was also applied to a
high Reynolds number (Re = 80,625) supersonic-supersonic mixing problem

(see figs. 1 and 2). At a time step of .01 catastrophic failure

emerged rapidly (negative temperatures in 30 steps). At a time step

of .001 the computation was running smoothly at 150 steps, with the

usual convergence criteria satisfied. However, these convergence

criteria appeared satisfied through most of the run; it was concluded

the initial flow was also steady state or else the time span insuffi-

cient for significant changes to develop. From this result it appears

high Reynolds number flows without shocks could probably be calcu-

lated with this code.

14



CONCLUSIONS

A finite element code for numerical solution of fluid flow prob-

lems characterized by the two-dimensional time independent Navier-

Stokes equations has been developed. Proof of concept was provided

by the calculation of the primitive flow variables for a free shear

flow problem. Excellent numerical results were obtained in compari-

so" to ADI and various other finite difference methods.

For the supersonic-supersonic free shear layer problem, order of

magnitude improvement in iterative convergence rate (15 steps compared

to over 100 steps) was achieved, in comparison to the previously

developed time transient finite element code (ref. 4), with some

improvement in storage (236 K 6 down to 162 K8 ) over the most feasible

version of this code. Moreover, reduction in number of equation terms

due to the steady form of the governing equation, as well as the

diverse natures of the two numerical processes, produced reductions

in CPU time (154 seconds/iterative step down to 120 seconds/iterative

step) and O/S calls (7166/step down to 1025/step). From all these

factors there resulted a reduction in machine total dollar cost (as

calculated by the CDC-6600 operating system's accounting routine)

for obtaining the converged solution on the order of 20 to 1, not to
mention the significant reduction in man-hours necessary for process-

ing the multiplicity of computer runs required by the time transient

code. Thus we may readily conclude that the steady-state finite

element approach is far more efficient than the time transient

formulation.

On the other hand, at this stage of the investigation, there
apparently exists the drawback of a less general applicability of

the steady formulation; the weakness exhibited (ill- conditioning)
for the 300-element mesh and the subsonic-supersonic flow problem.

For broad general applicability of the code, the problem of ill-

conditioning has yet to be overcome, and the resulting feasibility

of the method then evaluated. This problem appears to be related to

the mesh size; certainly the system matrices become more nearly

singular as the number of nodes increases, and roundoff effects

have further room to propagate.

15



Moreover, even with the success of the steady finite element code

in evidence when compared with the time transient finite element code,

at this state of development this method is still not quite competi-

tive with the better finite difference techniques. However, the gap

has been significantly narrowed to the point where the finite element

method can almost be considered a feasible alternative.

As regards the time transient finite element code, it appears to

have provided a reliable computational tool, for all test problems to

which it has been applied, at the expense of much too heavy demands

on computer resources.

16



EPILOGUE

Several factors contribute unnecessarily to a broadening of the

gap between finite element and finite difference results. For example,

it has been determined that equation assembly time in comparison to

equation solving time per step is highly unbalanced on the side of

equation assembly time. This imbalance could be lessened several ways:

1. Triangular elements were employed solely for general appli-

cability of the finished code to other than rectangular regions. How-

ever, the code is being measured for competitiveness using a test

problem whose domain is a rectangular region. For such a case, the

(tensor product) Hermite cubic shape functions on rectangular elements
would lead to more sufficient equation assembly time in at least two

ways--fewer* (one-half) as many elements to process for-the same mesh

accuracy; and the existence of more efficient quadrature schemes for

rectangles than for triangles (the seventh order accuracy afforded by

the 16-point triangle scheme is afforded for a rectangle by an 8- or

9-point scheme). Finally, significant finite element results thus far
(refs. 3, 5, and 6) have been with rectangular elements.

2. A scheme originally intended to improve the efficiency of the

method actually degrades it, on the momentum equation assembly--for

example, integrals like

ff puv dA	 (23)
U

can be evaluated each iterative step from p,u,v values at the quadrature

points (which must be computed anyway to determine viscosity) by apply-

ing the quadrature scheme directly to eq. (23), or the integrals

t

* Two triangles composing one rectangle.

17



The flow field configuration of the test problem considered is

shown in figure 1. The computational domain begins downstream from

the base of the splitter plates. Numerical computations have been

performed for flow at Reynolds number 1000.

t
t

\l	 i	 ;'	 t	 r

J J 0J^^ dA	 (24)K L

may be computed once and stored, for future computations at each

step of the form

ff  puv dA =E PJ (  UK 
vLfAl

 OJOKOL dAll	
(25

J 	 \	 ( 	 /I

For an integrand with an independent variable product of degree

higher than two the second scheme is less efficient than the first,

assuming the 16-point quadrature scheme. Consequently, in terms of

number of multiplications necessary the momentum equations assembly

suffers from inefficiency, possibly a significant amount.

3. It is conjectured that a linear element code would be more

efficient on the equation assembly. Here only a 1-point quadrature

scheme is necessary for the accuracy needed (ref. 9), a great simpli-

fication. However, more (triangles) elements would be required. One

could only guess whether the iteration scheme would converge as well

and what effect alternate boundary condition implementations would

cause.

4
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TABLE M. - PERCENT DIFFERENCE BETWEEN FINITE ELEMENT AND ADI STEADY STATE RESULTS

(SUPERSONIC-SUPERSONIC FLOW)

Density, p Streamwise velocity, u Normal velocity, v

x • 0 .075 .175 .225 x - 0 .075 .175 .225 x - 0 .075 .175 .225

a 000 0.000 0.007 0.009 0.000 0.000 0.000 a 000 0.000 a000 0,000 a 000
.000 .000 .005 .007 .000 .000 .001 .000 .ODO .008 .003 .000
.000 .002 .002 .005 .000 .001 .000 .001 .000 .005 .006 .004
.000 .002 .000 .002 .000 .000 .000 .001 .000 .004 .001 .006
.000 .002 .000 .000 .000 .000 .001 .001 .000 .003 .006 .003
.000 .002 .002 .002 .000 .000 .000 .000 .000 .003 .005 .006
.000 .002 .002 .002 .000 .000 .000 .000 .000 .003 .004 .005
.000 .002 .002 .002 .000 .000 .000 .000 .000 .003 .004 .005
.000 .002 .002 .002 .000 .000 .001 .001 .000 .003 .004 .006
.000 .002 .005 .005 .000 .001 .001 .000 .000 .003 .006 .009
.000 .002 .005 .007 .000 .001 .001 .002 .000 .003 .004 .003
.000 .002 .007 .009 .000 .000 .001 .004 .000 .004 .003 .004
.000 .005 .009 .005 .000 .000 .001 .005 .000 .005 .005 .004
.000 .005 .016 .009 .000 .001 .001 .004 .000 _	 .003 .004 .012
.000 .005 .005 .009 .000 .001 .000 .000 .000 .003 .009 .017
.000 .005 .007 .007 .000 .000 .002 .004 .000 .000 .009 .030
.000 .016 .007 .000 .000 .000 .002 .01.2 .000 .012 .008 .054
.000 .007 .012 .021 .000 .002 .001 .016 .000 .014 .022 .090
.000 .002 .005 .002 .000 .004 .004 .009 .000 .004 .075 .132
.000 .019 .005 .030 .000 .005 .013 .017 .000 .039 .158 .116
.000 .009 .043 .094 .000 .005 .019 .054 .000 .111 .208 .049
.000 .040 .074 .136 .000 .002 .017 .069 .000 .129 .130 .018
.000 .065 .078 .108 .000 .004 .009 .054 .000 .001 .057 .062
.000 .043 .063 .080 .000 .001 .005 .021 .000 .167 .242 .132
.000 .012 .014 .003 .000 .005 .009 .000 .000 .136 .265 .217
.000 .056 .077 .077 .000 .005 .010 .000 .000 .022 .094 .150
.000 .028 .072 .089 .000 .001 .003 .004 .000 . 067 .095 .039
.000 .004 .019 .031 .000 .003 .005 .000 .000 .026 .089 .710
.000 .007 .017 .011 .000 .002 .004 .004 .000 .004 .021 .036
.000 .005 .013 .011 .000 .001 .002 .003 .000 .004 .009 .005
.000 .007 .009 .001 .000 .000 .001 .001 .000 .008 .014 .012
.000 .005 .001 .004 .000 .000 .000 .000 .000 .005 .005 .001
.000 .005 .005 .004 .000 .000 .000 .000 .000 .000 .003 .008
.000 .005 .005 .005 .000 .000 .000 .000 .000 .000 .000 .000
.000 .005 .005 .005 .000 .000 .000 .000 .000 .000 .000 .000
.000 .005 , nn5 .005 .000 .000 .000 .000 .000 .000 .000 .000
.000 .005 .005 .005 .000 .000 .000 .000 .000 .000 .000 .000
.000 .005 .005 .005 .000 .000 .000 .000 .000 .000 .000 .000
.0001 .005 .005 .005	 1 . r	 ; .0001 .000 .000 .000 .000 .000 .000
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Figure 3. - Node numbering scheme for the C0 cubic element.
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