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CRACK-OPENING DISPLACEMENTS IN CENTER-CRACK, COMPACT,

AND CRACK-LINE WEDGE-LOADED SPECIMENS

J. C. Newman, Jr.

Langley Research Center

SUMMARY

The theoretical crack-opening displacements for center-crack, compact, and crack-

line wedge-loaded specimens (reported in the ASTM Proposed Recommended Practice for

R-Curve Determination (1974)) disagree with experimental measurements in the literature.

The disagreement is a result of using approximate specimen configurations and load rep-

resentation to obtain the theoretical displacements. In this paper, an improved method of

boundary collocation was used to obtain the theoretical displacements in these three speci-

men types; the actual specimen configurations and more accurate load representation were

used. In the analysis of crack-opening displacements in the compact and crack-line

wedge-loaded specimens, the effects of the pin-loaded holes were also included. The the-

oretical calculations agree with the experimental measurements reported in the literature.

This paper also includes accurate polynomial expressions for crack-opening displacements

in both compact and crack-line wedge-loaded specimens.

INTRODUCTION

The theoretical crack-opening displacements for center-crack tension (CCT), com-

pact (CS), and crack-line wedge-loaded (CLWL) specimens (figs. 1 to 3), as reported in

reference 1, disagree with experimental measurements in the literature. The disagree-

ment is a result of using approximate specimen confi_marations and load representation to

obtain the theoretical displacements. These displacements are used with procedures

described in reference 1 to calculate crack lengths during a fracture test to determine

crack-growth resistance curves (R-curves). Errors in the theoretical displacements

result in systematically erroneous R-curves.

The CCT specimen displacements given in reference 1 were obtained from the ana-

lytical solution for an infinite sheet containing a periodic array of cracks (ref. 2). The

CS and CLWL specimen displacements in reference 1 were obtained from boundary-

collocation analyses of configurations which did not contain the pin-loaded holes, and the

configurations were subjected to loads applied only along the external edges (refs. 3 and

4). To represent the configuration and loading more accurately, an improved method of



boundary collocation (refs. 5 to 7) was applied to the two-dimensional stress analysis of

these specimens. The complex-series stress functions developed for these specimens

were constructed so that the boundary conditions on the crack surfaces were satisfied

exactly; the conditions on the external boundary and the circular-hole boundaries were

satisfied approximately.

The crack-opening displacements and displacements at various locations in the

three types of specimens were calculated from the complex stress functions. The calcu-

lated displacements were compared with other theoretical calculations and with experi-

mental measurements. Expressions for the crack-opening displacements in the CS and

CLWL specimens were presented as polynomial functions of crack length-width ratio.

SYMBOLS

An,Bn, Cn, Dn, En, F n coefficients in series stress functions

a distance from center line of applied load to crack tip (See figs. 1, 2, and 3.)

crack length measured from edge of plate in compact and crack-line wedge-

loaded specimens (See figs. 2 and 3.)

d distance from plane of crack to center of circular hole in compact specimen

(See fig. 2.)

E Young' s modulus

Fx,Fy resultant force per unit thickness acting in x- and y-directions, respectively

f,g resultant forces or displacements

H one-half height of the specimens (See figs. 1, 2, and 3.)

j,n indices

K stress-intensity factor

N number of coefficients in stress functions



P concentratedforce per unit thickness acting in y-direction (See figs. 2 and 3.)

P uniformly distributed line load per unit length acting in y-direction (See fig. 5.)

R radius of circular holes

r,0 polar coordinates

S uniformly applied stress

one-half length of distributed load segment (s = 0.5 R)

U,V displacements in x- and y-direction, respectively

V crack-opening displacement measured from crack line

VLL crack-opening displacement at center line of pin load

V0,V1,V 2 crack-opening displacements (See figs. 9 and 10.)

W width of specimens (See figs. 1 to 3.)

Wo total width of compact and crack-line wedge-loaded specimens (See figs. 2

and 3.)

x,y Cartesian coordinates

Y location of displacement calculations and measurements for center-crack

specimen (See fig. 1.)

z complex variable, x + iy

Zh,_ h locations of centers of circular holes, z h = -a + id

Zo,£o location of centers of distributed line loads, z 0 = -a + i(R + d)

angle between x-axis and outward normal to boundary



coordinate alongcontour of boundary

material constant; K= 3 - 4u for plane strain and _ - 3 - u for generalized
1+_

plane stress

Lame's constant (shear modulus)

u Poisson's ratio

_n

Tnt

coordinate measured from edge of plate along crack line for compact and

crack-line wedge-loaded specimens

normal stress at boundary

shear stress at boundary

complex stress functions

Bars denote complex conjugates; primes denote differentiation with respect to z.

ANALYSIS

Boundary collocation is a numerical method used to evaluate the unknown coeffi-

cients in a series stress function. The method begins with the assumption of a general

series solution to the governing linear partial differential equation. Certain terms may

be eliminated from the series by conditions of symmetry. The series is then truncated

to aspecified number of terms, depending upon the accuracy desired. The coefficients

are determined by satisfying prescribed boundary conditions. The final series satisfies

the governing equation in the interior of the region exactly and one or more of the bound-

ary conditions is satisfied approximately. The displacements at any location can be cal-

culated from these stress functions.

Various techniques have been used to satisfy boundary conditions. One technique

(ref. 8) satisfies the boundary conditions exactly at a specified number of points on the

boundary. Another technique (refs. 9 and 10) selects the coefficients so that the sum of

the squares of the stress residuals is a minimum for a specified number of points on the

boundary. These techniques have been used to analyze the stress state around a crack in

a rectangular plate (refs. 3, 4, and 11).



The present approachcombinesthe complex variable methodof Muskhelishvili
(ref. 12)with an improved boundary-collocation method (ref. 6). Rather than stresses,
this methodspecifies the resultant forces on the boundary in a least-squares sense.

The resultant forces and displacementsare expressed in terms of the complex
stress functions _(z) and _h(z) by useof Erdogan's modification (ref. 13) to the
Muskhelishvili functions as

_96(z)+ _(_) + (z - _)®'(z) : f(x,y) + ig(x,y) (1)

For resultant forces (t_ = 1 ineq. (1)) acting over the arc ¢ - _0 on the boundary,

 y-i 'x : -)(x,y/+ ig(x,y 
go

(2)

For displacements (i_ = -_ in eq. (1)) at a point _ on the boundary,

2p(u + iv)= -[f(x,y)+ ig(x,y)_ z=_

for the case of plane strain, where K = 3 - 4_, and for plane stress, where

The complex equation for the stress components on the boundary is

_n-irnt = 6'(z) + 6'(z) - !(_ - z)6"(z) - 6'(z) + g'---;(z)]e 2ic_

3 - b'

1 + /J"

(3)

(4)

The crack-tip stress-intensity factor is given by

K= 2_27 lim _7- a* 6'(z)
z-a*

(5)

where the crack tip is located at z = a*.

The present collocation method was used to analyze the CCT, CS, and CLWL speci-

mens. (See figs. 1 to 3.) This paper presents only the plane-stress displacements. The

plane-strain displacements can be obtained from the plane-stress displacements for a

(1 + g)(7 - K)
given value of _: by multiplying the plane-stress displacements by 16



Center-Crack Specimen

For the center-crack specimen configuration, consider a crack located along the

x-axis in an infinite plate as shown in figure 4. The dashed contour denoted by L

defines the boundary of the specimen. The boundary L may have any simple shape,

that is symmetric about the x- and y-axes, and may be subjected to any boundary condi-

tions that are also symmetric about the x- and y-axes. The stress functions for this con-

figuration are given by

N N

_(z)_ = _z2 a2 _ Anz2n_2_ _" Bnz2n_ l (6)

where the coefficients A n and B n are real. These stress functions automatically sat-

isfy traction-free conditions on the crack surfaces. The boundary conditions on the exter-

nal boundary L were satisfied approximately by minimizing the resultant-force residuals

along the external boundary (refs. 5 and 6) to determine A n and B n. Good convergence

was obtained with N = 40. The displacements were calculated by using equations (1)

and (3).

Compact and Crack-Line Wedge-Loaded Specimens

For the CS and CLWL specimen configurations, consider a semi-infinite crack

located along the x-axis in an infinite plate subjected to a uniformly distributed line load

p as shown in figure 5. The dashed contours L 1 (rectangle) and L 2 (circular holes)

define the boundaries of the specimen. The boundaries L 1 and L 2 may have any sim-

ple shape and may be subjected to any boundary conditions which are symmetric about the

x-axis. The stress functions for these configurations are

¢(z) = ¢50(z) + _l(Z) + _2(z_

 0(z) + %(z) +

(7)

The subscripts denote functions which are needed to satisfy conditions for the uniformly

distributed line load ((P0, $0) and to satisfy approximately the conditions on boundaries

L 1 and L2, respectively.

The stress functions for a semi-infinite crack in art infinite plate subjected to a pair

of uniformly distributed line loads, symmetric about the x-axis, were derived from equa-

tions given in reference 13. These stress functions are



%(z) - Io(z,z2_- io(z,zl)-_
/

%(7.) Jo(z,z2) - Jo(z,z_)j
(8)

where z 1 = z 0 - s, z 2 = z 0 +s, and I 0 and J0

I0(z'zJ)'_ = iP[2,f__J_ 2_ + (_z + _f_/ loge
J0(z,zj)J 4_'[ VZ l°ge - _"_] -

are given by

1 zj ip (K - 1/ ,PYj 1

+ z- _----_ ± 4"_/-K + 1] l°ge /z--_j/ ± 2_(K + 1) zj z (9)

where j = 1, 2. The functions I 0 and J0 are identical except for the last two terms

which differ by signs. In the limit, as s approaches zero while 2ps approaches P,

these stress functions reduce to those for a pair of concentrated forces in an infinite plate

containing a semi-infinite crack.

The stress functions used to satisfy boundary conditions approximately on the exter-

nal boundary L 1 are

q5l(Z_ N N

)_ = v_ _ Anzn-i + __l(Z n=l n=l

Bn zn (10)

where-the coefficients A n and B n are real. Of course, these stress functions produce

tractions on the internal boundary L 2.

The stress functions used to satisfy boundary conditions approximately on boundary

L 2 are

coil 1 , Dnm+
_P2(z).J + _-/ 1 1

n=i L(z- Zh) n (Z- Zh) n__-i (z- Zh) n (z - Zh)

N N

_Eni[ 1 'nl+: n E ' + 'n ln=l h(z Zh) n (z- Zh) n=l (z - Zh) n (z- Zh)

(11)



where Cn, Dn, En, and Fn are real. In thesestress functions, the poles zh and
fih were located at the centers of the two holes. (Seefig. 5.) The stress functions in
equations(8), (10),and (11)automatically satisfy the conditions of traction-free crack
surfaces; the single-valuednessof displacementconditions for multiple-connected regions
is also satisfied. The conditions onboundaries L 1 and L2 were approximately satis-
fied by using the methoddescribed in reference 6. Goodconvergencewasobtainedwith
N = 40 in equation (10) and N = 20 in equation (11). For convenience, the total number

of coefficients used for each boundary was the same. Again, the displacements were cal-

culated by using equations (1) and (3).

RESULTS AND DISCUSSION

Center-Crack Specimen

The plane-stress displacements at various locations Y/W along the load center

line of the center-crack specimen were calculated as functions of crack length-width ratio

for _, = 0.3. These displacements are presented in table I and are compared here with two

approximate solutions previously derived for this specimen. One approximate solution

derived by Irwin (ref. 2) is presently used in reference 1 for the displacements in the

center-crack specimen. The other solution proposed by Eftis and Liebowitz (ref. 14) is

a more accurate solution than that derived by Irwin. The present results are also com-

pared with some experimental measurements from the literature.

Figure 6 shows the dimensionless crack-opening displacement 2EV/SW as a func-

tion of crack length-width ratio for three values of Y/W. The center-crack specimen

had a height-width ratio of 2. The present collocation results are shown as symbols. The

curves show calculations from the equation proposed by Irwin (ref. 2):

co  ,/co h +SW ,, \ cos _a--_] _- l sin 7ra/W 121 1/2

" 1 ÷ _.si_ ___/,@j ]

(12)

This equation was derived by Irwin from the displacement field for an infinite sheet con-

tainingaperiodic array of cracks. Equation (12) agrees within 3 percent of the present

results for 2a/W ratios less than 0.4 and for all values of Y/W considered. Equa-

tion (12) predicts displacements about 5 to 10 percent lower than the present results for

2a/W ratios between 0.6 and 0.8.

Eftis and Liebowitz (ref. 14) proposed the following modification to equation (12) to

account for the effects of finite width:



2EV_ 2 2Wcosh-1 t_°s _/ 1/2 W

sw / sin ,a/W/2]
÷ \sinh _Y/W/ ;J

(13)

Except for the term _/_ csc W'_--aaequation (13) is identical to equation (12). Figure 7

shows a comparison of equation (13) and the results from this study. Equation (13) is in

good agreement (i2 percent) with the results of this study for Y/W ratios less than 0.5

with values of 2a/'W from 0 to 0.8. For Y/W equal to unity and 2a/W ratios greater

than 0.2, equation (13) predicts slightly higher displacements (3 to 6 percent) than do the

results of this study.

Figure 8 shows a comparison between experimentally measured displacements

(ref. 14), displacements from equations (12) and (13), and the results from this study.

The experimental displacements were measured at Y/W = 0.11 and are shown as open

symbols. The solid symbols show the collocation results for this paper. The solid and

dashed curves show the results from equations (13) and (12), respectively. The agree-

ment between the experimental data, the results of this study, and equation (13) was con-

sidered to be good.

Compact and Crack-Line Wedge-Loaded Specimens

In this section the plane-stress displacements at various locations along the crack

line for CS and CLWL specimens are presented as functions of crack length-width ratio

for v = 0.3. Figures 9 and 10 show the locations along the crack line (V0, V1, VLL , and

V2) where displacements have been calculated for these specimens. The calculated dis-

placements are given in tables II and IH. The calculated displacements are compared

here with experimental displacements obtained from the literature. For ease of compu-

tation, accurate polynomial expressions for the displacements at these particular locations

are also developed.

Figure 1 1 shows how the location of the pin-loaded holes influences the calculated

crack-line displacements for CS and CLWL specimens with a/W = 0.5. The displace-

ments in the crack-tip region (_/c = 1) are nearly identical. However, the displacements

near the pin-loaded holes are affected by the location of the holes, although it was previ-

ously assumed (refs. 1 and 4) that the displacements for the CS and CLWL specimens were

identical. The displacements near the hole center line for the compact specimen are

lower that the displacements from the CLWL specimen. However, at the crack mouth

(4 = 0), the displacements for the compact specimen are higher than those from the CLWL

specimen.



Figures 12and 13showthe crack-opening displacement 2EV1/P for the CSand
CLWL specimensas a function of crack length-width ratio. The symbols represent
experimental datasuppliedby DonMcCabeof the Armco Steel Corporation and W. F.
Brown of the NASALewis Research Center. The solid curve showsthe collocation

results from this study andthe dashedcurve showsthe results obtainedfrom reference 1.
The collocation results for the CSspecimenandthe dashedcurve (ref. 1) are both in good
agreementwith the experimental data. However, for the CLWL specimen(fig. 13), the
collocation results (solid curve) are 3 to 14percent lower thanthe results from refer-
ence 1, but are in excellent agreementwith the experimental data.

For further comparisonwith the results of reference 1, the V1/V 2 ratios for the
CSand CLWL specimensare plotted in figure 14as a function of a/W. Reference 1pre-
sentedthe V2 displacementsas V1/V2 ratios. The dashedcurve in figure 14shows
the V1/V 2 ratios obtainedfrom reference 1. The dashedcurve was consideredto be
applicable to both specimens. The solid andopensymbols showthe experimental data
obtainedfrom DonMcCabeof the Armco Steel Corporation for the CS and CLWL speci-

mens, respectively. The solid curves show the collocation results from this study for

these specimens. The dashed curve from reference 1 is 3 to 14 percent lower than the

experimental data for the CS specimen. However, the collocation results are in good

agreement with the experimental data for both specimen types.

For ease of computation, accurate polynomial expressions for the displacements at

various locations along the crack line are developed in this paper for CS and CLWL speci-

mens. Figures 15 and 16 show a comparison between the displacements V0, V1, VLL,

and V 2 determined by collocation (symbols) and the displacements calculated from the

polynomial expressions fitted (by least squares) to the collocation results. The polynomial

expression is

- A a a 2 a 3 a 4

The coefficients A i are given in table IV for the four locations considered in the CS and

CLWL specimens. The polynomial expressions were within ±0.4 percent of the colloca-

tion results for 0.35 =<a/W 5- 0.6.

CONCLUDING REMARKS

The method of boundary collocation was applied to the two-dimensional stress anal-

ysis of the center-crack tension (CCT), compact (CS), and crack-line wedge-loaded

(CLWL) specimens. The configurations analyzed were modeled more accurately than

those used in previous analytical investigations or in the ASTM Proposed Recommended

10



Practice for R-Curve Determination (1974). The effects of finite boundariesandpin-
loadedholes on crack-opening displacementsand on displacementsat other locations in
the specimenswere investigated. The displacementswere calculated for plane-stress
conditions with Poisson's ratio equal to 0.3.

The displacementsobtainedfrom the collocation analysis for the CCT specimen
were foundto agreewell with experimental measurementsobtainedfrom the literature.
The results of an approximate equationproposedby Eftis and Liebowitz for the displace-
ments along the load center line were foundto agree well (±2percent) with the present
collocation results over a wide range of crack length-width ratios (0 to 0.8), provided that
the location of the displacementmeasurementwas less than or equal to half the specimen
width. An equationproposedby Irwin was found to be in goodagreement (3percent) with
the collocation results from this study provided that crack length-width ratios were less
than 0.4.

The displacementsobtainedfrom the collocation analysis for the CSand CLWL
specimenswere foundto agree well with experimental measurementsobtainedfrom the
literature. Polynomial expressions for the displacementsat four locations along the
crack line were fitted to the collocation results. The polynomial expressions were within
±0.4percent of the collocation results for crack length-width ratios ranging from 0.35 to
0.6.

The use of these more accurate crack-opening displacementsfor the CCT, CS,and
CLWL specimensin conjunctionwith the ASTM ProposedRecommendedPractice for R-
Curve Determination (1974)should lead to more accurate determination of crack-growth
resistance curves.

Langley ResearchCenter
National Aeronautics andSpaceAdministration
Hampton,Va. 23665
June 8, 1976
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TABLE I.- CENTER-LINE DISPLACEMENTS

SPECIMENAS FUNCTIONOF Y/W AND

CONDITIONSWITH

2EV/SW FORCENTER-CRACK

2a/W FOR PLANE-STRESS

_=0.3

Center-line displacements 2EV/SW for 2a/W of-
Y/W ...........................................

0.I 0.2 0.3 0.4 0.5 0.6 0.7

0

.25

.50

.75

i.00

0.8

0,201

.536

1.021

1.517

2.016

0.410 0.635

.638 .801

1.086 1.197

1.571 1.665

2.067 2.156

0.886

1.019

1.359

1. 804

2.289

1.182 1.548

1.298 1.658

1.583 1.890

2.002 2.282

2.479 2.751

2.037

2.145

2.328

2.690

3.150

2.761

2.870

3.003

3.335

3.787

TABLE II.- CRACK-LINE DISPLACEMENTS FOR COMPACT SPECIMEN AS

FUNCTION OF a/W FOR PLANE-STRESS CONDITIONS WITH zJ = 0.3

a/W

0.20

.25

.30

.35

.40

.45

.50

.55

.60

.65

.70

.75

.80

..... i4 8.6017.69

20.91

24.90

29.89

36.18

44.23

54.76

69.00

89.04

118.7

165.5

24 5.4

397.0

17.58

21.24

25.78

31.51

38.83

48.44

61.44

79.78

107.0

150.0

223.5

363.1

11.18

14.28

18.09

22.86

28.96

36.99

47.90

63.35

86.36

122.8

185.4

304.6

2EV 2/P

4.64

8.05

12.07

17.24

24.26

34.26

49.27

73.29

115.0

195.1

13



TABLE III.- CRACK-LINE DISPLACEMENTSFORCLWL SPECIMEN

ASFUNCTIONOF a/W FOR PLANE-STRESSCONDITIONS

WITH _ = 0.3

a/w 2EVo/P 2EVl/P 2EVLL/" 2EV2/P

0.20

.25

.30

.35

.40

.45

.50

.55

.60

.65

.70

.75

.80

12.18

15.64

19.90

25.12

31.58

39.73

50.33

64.59

84.63

114.3

161.0

240.8

392.4

11.15

14.26

18.14

22.80

28.64

36.05

45.70

58.73

77.07

104.2

147.2

220.6

360.2

9.77

12.30

15.51

19.37

24 19

30.34

38.42

49.36

64 85

87 91

124.0

186.5

305.7

4.80

8.25

12.29

17.47

24.49

34.48

49.47

73.45

115.1

195.2

14



TABLE IV.- COEFFICIENTS IN POLYNOMIAL EXPRESSION FOR

CRACK-LINE DISPLACEMENTS FOR COMPACT AND CLWL

SPECIMENS (PLANE-STRESS CONDITIONS WITH v --0.3)

= A 0 +A 1 +A 2 +A 3 + A4 ; 0.35 =<W =

Specimen type

Compact

CLWL

Location

V o

VI

VLL

V 2

V o

A o

120.7

103.8

84.9

5.75

109.5

A1

-1065.3

-930.4

-794.0

-190.3

-1021.6

A2

4098.0

3610.0

3082.0

1081.5

3986.5

A3

-6688.0

-5930.5

- 5074.5

-2150.5

-6553.0

V1

VLL

V2

101.9

92.8

6.48

-948.9

-843.2

-198.7

3691.5

3210.0

1117.0

-6064.0

-5210.0

-2207.5

A4

4450.5

3979.0

3406.0

1680.5

4386.0

4054.0

3455.0

1712.5
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Figure I.- Center-crack tension (CCT) specimen.
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Fig-ure 2.- Compact (CS) specimen subjected to pin loading.

17



P

P

C

_-- a z_

I= W

2H

Figure 3.- Crack-line wedge-loaded (CLWL) specimen subjected to pin loading.
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Figure 4.- Infinite plate containing crack.
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Figure 5.- Infinite plate subjected to uniformly distributed internal line load

containing semi-infinite crack.
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Figure 6.- Comparison of displacements from collocation analysis and Irwin's equation

for center-crack specimen.
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Figure 7.- Comparison of displacements from collocation analysis and Eftis-Liebowitz

equation for center-crack specimen.
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Figure 8.- Comparison of experimental and theoretical displacements for CCT specimen.
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Figure 9.- Locations where crack-line displacements were calculated

for compact specimen.
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Figure 10.- Locations where crack-line displacements were calculated

for CLWL specimen.
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Figure 12.- Comparison of experimental and theoreticaldisplacements at

locationfor compact specimen.
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Figure 13.- Comparison of experimental and theoretical displacements at V 1

location for CLWL specimen.
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Figure 14.- Comparison of experimental and theoretical displacement ratio

for compact and CLWL specimen.
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Figure 15.- Comparison of displacements from collocation analysis and polynomial

expressions at four locations along crack line in compact specimen.
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Figure 16.- Comparison of displacements from collocation analysis and from polynomial

expressions at four locations along crack line in CLWL specimen.
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