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ABSTRACT

The numerical stability and accuracy of various Kalman filter algorithms

are thoroughly studied. Numerical results and conclusions are based on a

realistic planetar y approach orbit determination study. The case study

results of this reporthighlight the numerical instability of the conventional

and stabilized Kalman algorithms. Numerical errors associated with these

algorithms can be so large as to obscure important mismodeling effects and

thus give misleading estimates of filter accuracy. The positive result of

this study is that Oe Bierman-Thornton 17-D covariance factorization algorithm

is computationally effi^lent, with CPU costs that differ negligibly from the

conventional Kalman costs. In addition, accuracy of the U-D filter using;

single-precision arithmetic consistentl y matches the double-precision reference

results. Numerical stability of the U-D filter is further demonstrated by its

insensitivity to variations in the a priori statistics.
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I. INTRODUCTION

In this report attention is focused on the nonstationary linear discrete

estimation problem. Not all algorithms applicable to this problem are included

in our study. Two important omissions are the continuous-time algorithms [1]

and [2] and the Chandrasekhar-type algorithms recently reported by Morf and

Kailath [3] and Lindquist [4]. Our main reason for omitting continuous-time

algorithms is that such algorithms are heavily dependent u pon integration

methods for their accuracy and numerical stability. We thought it best not

to try, in this report, to compare the continuous and discrete algorithms in

terms of numerical accuracy. The Chandrasekhar-type algorithms were omitted

because they do not seem to be computationally competitive with our other

algorithms for this class of problems. A perhaps more cogent reason for these

omissions is that restrictions of time and computer budget prevented an ex-

haustive all-inclusive study.

The algorithms selected for study include the familiar conventional and

stabilized (Joseph form) Kalman filters [5] and [6], the Potter-Schmidt square

root filter [6], and the Bierman-Thornton factorization filter [7] and [8].

Examples of numerical failure reported by Bellantoni and Dodge [9],

Schmidt., et al. [10], Dyer and McReynolds [11], and others have alerted the

estimation applications community tn the numerical pitfalls of the familiar

Kalman algorithms. Our experience with estimation and control applications

engineers, however, indicates that they generally prefer the seemingly simpler

Kalman filter algorithms for computer implementation, and they dismiss reported

instances of numerical failure. Indeed, the attitude often displayed is that

when numerical problems present themselves, more sophisticated algorithms can

be used. The implication is, of course, that sophisticated in this context

JPL Technical Memorandum 33-771 	 1
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implies complexity, cumbersomeness, and inefficiency. In Refs.[7]and[8],we

demunstrated that our factorization algorithms are easy to mechanize and are

neither cumbersome nor inefficient. Furthermore, the case study reported here

shows in a very dramatic way that the numerical shortcomings of the standard

Kalman algorithms contrast markedly with the reliability of the factorization

methods. it is important to note that the comptitational stability of the

U-U filter does not rest on this simulation study. Gentlemen's work [12]and

[13] rviates the U-D measurement update to the numerically stable square root

free Givens rotations; and the results of Bjorck [14] show that our modified

Gram-Schmidt time updating algorithm is numerically reliable. Finally, the

work by Gill et al. [15] establishes the numerical integrity of our efficient

colored noise updating algorithm.

The Potter-Schmidt square root filter also performed very reliably in our

study, and the quality of the numerical results differed negligibly from those

of the U-D filter. Potter's algorithm, reported in Householder's book [16],

is related to Householder orthogonal transformations (cf. Bierma% [61).

Schmidt's time updating of the Potter square root matrix is also accomplished

using Householder orthogonal transformations. Thus numeric reliability of the

Potter-Schmidt filter rests on the use of orthogonal transformations. Storage

and computation requirements for the Potter-Schmidt filter are nearly twice

that for the U-D factorization, and because of this, our preference is

toward the latter formulation.

The Kalman measurement updating algorithmR contrast sharply with the

numerically stable factorization algorithms because they have no basis of

numerical soundness, and they are held in ill-repute by members of the numeri-

cal analysis community. The poor performance of the covariance algorithms

2	 1PI, Technical Memorandum 33-771



exhibited in our case study is thus no surprise to numerical analysts. The

abundance of estimation and control literature touting Kalman filter-type

algorithms indicates, however, that this information is not suWciently

well known.

As noted earlier, an attitude often encountered among estimation practi-

tioners is that they will switch to the more accurate and stable algorithms

if and when numerical problems occur. An analogy comes to mind of a smoker

who promises to stop when cancer or heart ailment symptoms are detected. To

expand on thL3 analogy,one may note the following:

*Most smokers do not get cancer or heart disease. (Most applica-

tions of the Kalman algorithms work.)

• Even when catastrophic illness does not occur,there is diminished

health. (Even when algorithms work,performance may be degraded.)

• Smokers can take precautions to lessen the danger, such as smoking

low tar or filtered cigarettes. (Engineers can scale their vari-

ables to red_ce the dynamic range or use double-precision arithmetic.)

• Lung cancer may not be diagnosed until it is too advanced for

treatment. (Numerical problems may not be detected in time to

be remedied.)

The orbit determination case study reported here highlights these points. We

hope that this report will convince the engineering community to alter their

"smoking" habits.

Our main goals in this report are:

(a) To emphasize the importance of numerics in determining system

performance. Considerable effort has been devoted to modeling,

to asymptotin stability,and to the identification of a priori

i
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filter statistics; but comparatively 3 1 ttle has been done to

stress the impact of algorithm selection on system performance.

(b) To show via simulation results that the computer numeric effects

mentioned in (a) can cause erroneous predictions based on linear

estimation theory.

(c) To show that both the conventional and stabilized Kalman filters

are numerically unreliable.

(d) To demonstrate that the Bierman-Thornton U-D factorization filter

is computationally efficient and numerically stable.

Items (a) and (b) are intended to show that numeric effects are important both

in pree..icting system performance (i.e.,accuracy analysis results) and in com-

puting estimates. The stabilized Kalman filter is often taken as a reference

against which other algorithms are compared,and the point of item (c) is to

show that this is not a reliable yardstick.

A portion of the forthcoming Mariner Jupiter Saturn 1977 (MJS'77) deep

space mission was chosen for our filter comparison study. Problems of this

nature are generally solved at the Jet Propulsion Laboratory using the sq"are

root information filter ([61, [11], and [171), a method which has proven

to be an efficient, stable,and accurate means of solving orbit determination

problems. Our reason for experimenting with other filter algorithms is our

interest in future missions involving on-board autonomous navigation. Algorithms

of the type compared in this study are more appropriate to problems; of this

nature because estimates are required frequently and data is processed pointwise.

The reason that our study should be of interest to the entire estimation

and control community is that our results do not correspond to a contri.--d,

unrealistic situation. On the contrary,this estimation problem is well posed

4	 JPL Technical Memorandum 33-771



in an engineering sense; the problem is observable, the transition matrix

is not ill-conditioned, the me$surement coefficient matrices are not unusually

large, and the a priori state error variances were chosen small enough to avoid

obvious initial ill-conditioning. Thus, the numerical failures and performance

degradations that are documented here should be of general interest.

The outline of this report is as follows. In Section II,the orbit determina-

tion problem used ii our study is stated,and details of the simulation that are

of general relevance are discussed. In Section III,results of the simulation

study are presented and discussed; and Section 1V contains our conclusions.

II. PROBLEM FORMULATION AND RELEVANT SIMULATION MINUTIAE

A. The Trajectory

The problem chosen for this study is a portion of the forthcoming MJS'77

deep space mission, which involves the approach to Saturn. The period of

our interest extends from 30 days before Saturn encounter (point of closest

approach) to the encounter. For the initial 20 days, the spacecraft (S/C)

trajectory is terry nearly rectilinear, a situation that is characteristic

of the major portion of most deep space missions. The last portion of the

trajectory has a hyperbolic bend due to the effect of Saturn's gravity. Hence,

the portion of the trajectory up to encounter is especially useful for accurate

determination of planetary mass and S /C position and velocity. This trajectory

is thus characteristic of 4 large number of orbit determination situations.

The nominal S/C trajectory and transition matrices were obtained by

integrating the equations of motion and variational equations (cf. [ 18 1) and

were donated by MJS navigation team personnel. Because this study is intended

to assess only the eff ,scts of filter numerical errors,the simulation was con-

JPL Technical Memorandum 33-771 	 5
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structed from a linear model. The actual trajectory, x(t), is defined by

x(t) - xnom (t) + Ax(t)	 (1)

where

Ax(tj+l) - t(tj+ltj )ox(t j ) + G(tj+1' t  ) w(t j )	 (2)

The components of x nom (t) are the earth-centered S/C cartesian coordinates of

position, velocity,and acceleration. The acceleration components of the per-

turbation ox(t) are modeled as colored noise with time constants of 12 hours

and standard deviations of 10 11 km/sec 2 ; and these define variances of the

white noise, w( • ), appearing in (2). The S/C model used for the orbit deter-

mination problem has a piecewise constant acceleration model with t j+l-
 
tj = At

taken as 2 hours.

Kalman filtering algorithms with no process noise are notoriously unstable.

They frequently give inaccurate but not disastrous results and sometimes give

unmistakeable signs of failure, such as negative diagonal entries in the com-

puted covariance matrix and entries of excessive magnitude. A high level of

process noise was included (by an order of magnitude) because it was believed

that such a model would be less sensitive to numerical errors. Previous experi-

ence with Kalman filter algorithms has shown that they have better numerical

stability in situations with high process noise levels. It turned out that

adding process noise to the filter model did improve the performance of the

Kalman filter algorithms, but not enough to regard the results as accurate or

reliable. More about this will be discussed in Section III.

The effect of Saturn's mass on the S/C trajectory is very significant

near encounter,and because of this,our model includes the GM of Saturn with

a 0.1% uncertainty la.

6	 JPL Technical Memorandum 33-771
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B. The Measurements

Three earth-based tracking stations are involved with monitoring the S/C.

Their locations are such that there is coverage at all times. In our simula-

tion, we include two to three doppler points every 2 hours with 1 mm/sec accuracy

(for 1 minute averaging time) and occasional range points with an accuracy of

3 meters. There were a total of 535 doppler points and 72 range points in the

30-day arc preceding the Saturn encounter. Since this study was intended to

include the significant error sources, the station location position uncertain-

ties were also included in our model (cf. Table 1).

Data for our linear simulation analysis was generated as follows. Doppler

and ra1gp partial derivatives were evaluated analytically about the nominal

trajecco-'-, using JPL's orbit determination software (181. Pseudo-observables,

z, were computed from

z=HAX+v	 (3)

where the elements of H are the partial derivative coefficients; AX is the

state perturbation (cf.Eq. 2) augmented with the GM  (gravitational constant

of Saturn) error and the station location errors. Thus, AX has a total of 19

components; 9 dynamic and 10 bias parameters. They are position (3), velocity

(3), acceleration (3), GM  and station locations (9); and v is white data noise

obtained from a Gaussian random number generator.

The statistics used to define our nominal trajectory and data sequence are

collected in Table 1.

C. The Filter Algorithms

The five covariance-type filter algorithms compared in this study were

the conventional Kalwati- f''ter, Joseph's stabilized Kalman filter, a conven-

tional Kalman filter witti 1^&^e bounding, the Bierman-Thornton U-D factoriza-

tion filter, and the Potter-Schmidt square root filter. Details of these

JPL Technical Memorandum 33-771 	 7



Variable Std. Dev.

Position 1000 km

Velocity 100 m/s

Acceleration 10-11 km2/sec (z - 12 hr)

Spin axis - 1 meter

Stn.loc. error Longitude - 2 meter

Latitude	 - 5 meter

GH (Saturn) .1X

Range 3 meters

Doppler 1 mm/sec (for 1 min
count time)

TABLE 1

Summary of A Priori Statistics Used to Generate

Nominal Data

JPL Technical Memorandum 33-771



algorithms, especially those critical to computer implementation, are dis-

cussed in Refs.[61 [8]and[17]. For reference, the algorithms are briefly

discussed here.

I. Conventional Kalman Filter

K - PHT (HP HT + r) -1 (Kalman gain)	 (4)

P - P - K(PHT) T (conventional measurement update) (S)

where P and P are the a priori and a posteriori covariance matrices, respec-

tively.

P = ff: + GQGT (covariance time update) 	 (6)

Here P is the one-step predicted error covariance.

Remark: All of our matrices are time-dependent and should be subscripted;

subscripts are omitted, however, for notational simplicity.

Remark: Whenever possible,vector outer products are used to reduce computa-

tion. Symmetry of the covariance matrix is preserved by computing only the

upper triangular elements. (An exception is our mechanization of the Joseph

stabilized algorithm noted below.)

2. Joseph's Stabilized Measurement Update

P 1 = P - K(PHT) T	(7a)

P = (P1 - (P1HT)KT) + (Kr)KT	(7b)

Symmetry was exploited in (7a) although this does not seem to be important

when K is computid using (4), and P is symmetric. P is obtained from (7b) by

arranging the computations as indicated by the parentheses.

Remark: Significantly improved results were obtained when all of P was com-

puted in (7b) and the off-diagonal elements were averaged. The fact that

numerical results are sensitive to such mechanization details is indicative of

the algorithm's instability.

JPL Technical Memorandum 33-771	 9
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Remark: An alternative arrangement of Joseph's algorithm is

W= I - KH
	

(8)

P = (WP)WT + (Kr)KT

Here too all the elements of P are computed and the off-diagonal elements

averaged. This mechanization was not included in our comparisons because it

is considerably mere wasteful of computer storage and requires far more compu-

tations than do any of the algorithms included in our study.

3. Conventional Kalman Filter with Lower Bounding

Here P 1 is computed using (7a), and the filter updated covariance is

defined by (9):

P(j,j) = max(P101j), a2 (P);	 j = 1,...,n	 (9a)

P1 (i,j)	 if P 2(i,j)<M(i,j)

P(i,j) _(9b)ISGN (Pl (i )) M(i,j) 	otherwise
where M(i,j) = pmin P(i,i) P(j,j) and i - 1,...,j - 1. The n components of omin

and the correlation 
pmin 

are chosen a priori.

This mechanization is typical of the techniques that are used to prevent

the computed covariance from having diagonals (variances) that are too small,

or negative, and correlations that are too large. Such mechanizations are,

to be sure, not optimal and the computed P is generally not the actual esti-

mate error covariance. Choosing the bounds amin and pmin 
is something of an

art,and appropriate values are generally determined from lengthy simulation

studies.

Our purpose for including this lower bound filter algorithm is merely to

illustrate that ad hoc "patching" techniques can compensate to some extent

10	 JPL Technical Memorandum 33-771
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for numerical inadequacies of the covariance filter algorithms. Introducing

numerical safeguards of this nature is not necessary when factorization

algorithms are used.

4., The U-D Factorization Filter

The error covariance matrix is uniquely factored as P = UDUT , with U unit

upper triangular and D diagonal. Measurement and time updating algorithms

for the U and D factors are given in Refs. [7]and[8].

5. The Potter-Schmidt Square Root Filter

Here the error covariance matrix is factored as P= SST with S square.

(The factorization is not unique, but that is no problem.) Measurement updating

is accomplished by updating S using Potter's algorithm,and time updating is

accomplished by triangularizing the augmented array [4)S GQ 2 1 by applying an

orthogonal transformation from the right. Algorithm details may be found

in Refs. [5], [6] and [17].

Formulae for factorization updating are not as compactly represented as

are their covariance counterparts. This should not, however, detract from

their utility. Detailed comparisons [7]and[8] have shown that factori-

zation algorithms require no more computer storage, are no harder to mechanize,

and are competitive computationally with their counterparts. Unfortunately,

space limitations force us to omit explicit algorithm descriptions.

All the algorithms discussed here propagate estimates using

AX = AX + K(z - HAX)	 (measurement update)	 (10a)

where K is the filter computed gain, and

AX = OAX	 (time update)	 (10b)

The U-D algorithms are in certain circumstances even more efficient that are

the covariance algorithms.
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Remark: There is a significant accuracy deterioration in the estimate error

when single-precision arithmetic is used to compute (10); because of this,

the error estimates are retained in double-precision (regardless of whether

the filter algorithm is single- or double-precision).

D. Numerical Accuracy

The complexity of our case study problem prohibits closed-form solutions,

and consequently the numerical solution computed using double-precision

arithmetic is used as a reference. Estimates and sigmas, computed using the

Bierman-Thornton and Potter-Schmidt factorization algorithms, agreed to 10 or

more digits when computed using double-precision arithmetic. The conventional

and stabilized Kalman filter algorithms, computed using double-precision,

agreed to eight or more digits with the other results. These comparisons

established:

• Confidence that our computer implementation of the various

filter algorithms was correct.

• Assurance that when double-precision arithmetic is used, numerical

errors due to roundoff and cancellation are of no major conse-

quence (to the orbit determination filtering problem); all four

of the algorithms were sufficiently accurate for this problem.

• Limitations on computable accuracy. Even when all filter compu-

tations were in (18-digit) double-precision, the results could not

be trusted to more than 10 digits.

One might surmise from our double-precision comparisons that we could

expect filtering accuracy to be about half of the arithmetic precision used

in the computation, With a few exceptions, the single-precision factorization

Our simulations were carried out on a UNIVAC 1108 having a 27-bit characteris-

tic (8-9 decimal digits) in single-precision and a 60-bit characteristic (18

decimal digits) in double-precision.

12	 JPL Technical Memorandum 33-771
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algorithms satisfied this rule. On the other hand,the two covariance algorithms,

when operated in single-precision, exhibited unmistakable numerical deteriora-

tion (cf. Section III) and could not be relied upon at all. The results obtained

show that accuracy of the covariance algorithms deteriorates rapidly as computer

word length decreases.

Remark: The carefully checked double-precision programs were converted to

single-precision* by removing the FORTRAN IV "implicit double-precision" state-

ment. In addition, the filter programs were arranged so that both single- and

double-precision versions used the very same (single-precision) inputs. These

precautions guaranteed that the sometimes marked differences in the single- and

double-precision estimation results was due solely to the numerics of the fil-

tering algorithms.

E. Simulation Philosophy

A single nominal trajectory,one proposed for the MJS mission, was chosen

for our case study. Transition and observation matrices were constructed cor-

responding to this nominal. The various filter algorithms, computed in single-

precision and operating from these inputs, were compared. Numerical effects

were evidenced by the differences in computed variances and gain profiles of

the various algorithms. Especially prominent was the frequent appearance of

negative variances arising from both the conventional and stabilized covariance

filter algorithms.

One might surmise from these results that since the gains and sigmas com-

puted using the factorization algorithms stayed close to the correct values,

the estimates based on these gains could be trusted. On the other hand, the

covariance filters produced negative variances and markedly different gain

*
In the single-precision programs, however, estimates were computed in double-

precision and inner products were accumulated in double-precision before rounding.
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profiles. Thus one might expect that estimates based on these algorithms

would be inaccurate. These speculations were easily corroborated using

a double-precision covariance error analysis program which evaluates the

effects of nonoptimal gains by computing actual error covariances (cf. Refs.

[1] and [171).

Remark: Since each filter operates on the same data and state transition

matrices and computes estimates in double-precision, only the gain calculations

differ. Hence, it is the gain algorithms that we are comparing.

Two principal results of the gain evaluations were:

(1) The U-D and square root covariance algorithms performed as

anticipated; i.e.,the gain profiles were nearly optimal in that the actual

and the (single-precision) computed covariances were close to each other; and

close to the optimal.

(2) Actual covariances corresponding to the covariance filters were

considerably larger than the optimal covariances. The magnitudes of the actual

variances, however, indicated that tl^a filter estimates would at least track

the actual trajectory.

To illustrate the results predicted by the evaluation program, an actual

trajectory (a perturbation to the nominal that was consistent with our assumed

filter statistics) and a data noise sequence (consistent with the range and

doppler accuracies) were included in our study problem. The gain profiles

were applied to this simulated problem, and estimate errors consistent with

those predicted by the actual variances resulted. Variations were introduced

into the simulation model to assure that the results were not coincidental.

The consistency of the results convinced us that the sample estimate results,

to be described in the next section,are not happenstance but can truly be

regarded as typical.
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III. SIMULATION RESULTS

Of the five filter algorithms mechanized in this study,we had the most

difficulty with the Kalman stabilized formulation. This is somewhat surprising

because the equations appear so simple (and we have previous experience coding

Kalman filters). Our difficulty can be traced to numerical inconsistencies

between the single- and double-precision mechanizations. 	 It turned out that

there were no programming errors, only that the single-precision results were

sensitive to the a priori statistics and to the grouping of terms in the com-

puter code. By contrast,the single-precision factorization results were always

consistent with the double-precision reference. These findings and other results

of interest are related by describing the following aspects of our study:

• Results for the basic 19-state filtering problem

*The effects of scaling the a priori and data noise variances

*Phenomena related to lower dimensional models

A. CASE 1: The Complete 19-State Model

The first case we study in detail is the 19-parameter model described in

Section I1. The a priori statistics given in Table 1 are typical assumptions

for this kind of estimation problem. In orbit determination,it is standard

practice to begin filtering with large a priori uncertainties in position and

velocity. However, to avoid the initialization numerical instability asso-

ciated with the Kalman algorithms,we chose to use relatively small a priori

variances.

Wampler (19] points out that these are sufficient reasons to declare an

algorithm numerically unstable and to abandon it. Our findings are consistent

with his conclusion.
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For this case and the others to follow,the double-precision filters agree

to at least 8 digits (and generally to 10 or more). The single-precision pro-

grams, however, produce a variety of results. Actual filtering performance

for this case is illustrated in Figures 1 and 2.

Remark: We chose the root-sum-square of position and velocity errors as a mea-

sure of estimation accuracy because these parameters are of primary interest

in navigation and are representative of the general filtering results recorded

in this study.

In Figures 1 and 2,the position and velocity uncertainties of the factored

single-precision algorithms are shown to agree with the double-precision refer-

ences. It is important to note that this consistency was observed in all of the

cases studied; i.e., the single-precision factorization results always agreed

with the double-precision reference cases.

The single-precision Kalman algorithms, on the other hand, exhibit no

such numerical stability. Obvious numeric deterioration, in the form of nega-

tive computed variances, appear at inexplicable times. Negative variances

first appear in the conventional Kalman mechanization after four days of fil-

tering and after ten days when the stabilized mechanization is used. Several

other surprising phenomena warrant mention.

(1) Both the conventional and stabilized algorithms compute intermittent

negative variances. From a total of 607 measurement updates,the

conventional algorithm computes negative variances 177 times and

the stabilized algorithm produces negative variances 69 times.

(2) Bias parameter variances are also intermittently negative. This

violates the theoretic monotonicity of constant parameter variances

Actual accuracies were obtained from the error analysis program which evaluates

computed gain profiles from the various filter algorithms.
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(i.e.,bias parameter variances should always decrease as more data

is processed). To illustrate the erratic behavior exhibited,we note

that at 9.75,days the stabilized algorithm computes aGM 	 1.8 x 109,
and at 10 days,this is adjusted to 1.7 x 104 . The correct (double-

precision) value is aGM = 5 X103

(3) As the next case will show, the numerical instability discussed here

is related to the choice of a priori statistics. However, even in the

case of the conventional algorithm (which exhibits numerical failure

earlier),it takes more than 48 time and 80 measurement updates before

negative computed variances appear.

(4) The appr rance of negative diagonal elements in the computed

covariance is not necessarily related to filter variances which are

tending toward zero. Their appearance in this case acts instead

as an indicator of algorithm numeric deterioration.

Perhaps the most surprising result of this example is the fact that the

Kalman algorithms, despite their unsatisfactory computed covariances, are able to

generate meaningful (but not accurate) state estimates. According to the error

analysis results,the gain profiles generated by the Kalman algorithms do lead

to estimates which track the actual trajectory. The results,while not accept-

able,are better than we anticipated they would be considering the intermittent

appearance of negative diagonals.

A simulation was performed to demonstrate the accuracies predicted by

the error analysis. ". data noise sequence and a trajectory were generated

using the same model assumed in the error analysis. This sinulatcd data was

filtered by each of the algorithms of our study,and estimace errors were then

compared. The results are illustrated in Figures 3 and 4. Notice how closely
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the gain evaluation results of Figures 1 and 2 predict the error curves of

the sample path.

As anticipated, the conventional algorithm in single-precision produces

enormous errors in position and velocity at 4 days. We note with interest that

the estimates and computed sigmas obtained from the stabilized Kalman filter,

when monitored at one-day intervals, show few telltale signs of numeric

deterioration. Except for the times when negative variances are printed

(only 3),these estimates and sigmas appear reasonable and consistent. Only

when the results are compared with the double-precision reference does it

become apparent that the computed Kalman estimates are far from optimum.

By comparison, estimates computed using the factorization algorithms

agree to about 4 or 5 digits with the double-precision values. This agreement

corresponds to better than 1 km in position and 50 mm/sec in velocity. These

single-precision accuracies are particularly impressive when it is noted that

estimation uncertainties are two orders of magnitude greater than these

differences; i.e., the differences in the single- and double-precision results

are in the noise level.

In every case studied, the relative position and velocity a :uracies dis-

played the same general agreement illustrated in Figurr3 1-4. Simulation and

error analysis results were also consistently similar. We utilize these ob-

servations to restrict our subsequent discussions, for the most part, to the

cotira^ son and analysis of position uncertainties. Thus, unnecessary dis-

cussions of velocity uncertainties, and simulation results are omitted. To

further curtail the length of this report, we omit the conventional Kalman

algorithm from our subsequent discussions; the numerical instability of the

conventional algorithm is already well documented in Refs. [51 and [9] - [11).

We note in passing that our experience reinforces this point; viz.,almost

every conventional Kalman (single-precision) test case contained computed
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covariance matrices with negative diagonal elements.

An Aside: Recall that the stabilized update formula was introduced as a com-

putational improvement to the conventional formula and was supposed to assure

nonnegativit y of the computed covariance matrix. Th= results of our study

show Oat the stabilized algorithm does not guarantee nonnegativit y of the

computed covariance (or even nonnegativity of the diagonal elements). 	 Indeed

our study shows, contrary to popular belief, that one can actually obtain worse

results using the stabilized formula in place of the conventional one (worse

in the sense that negative diagonal elements appear more often and position

errors are at times larger in the case of the stabilized algorithm). Because

it does give improved performance in various other applications,we do not sug-

gest that one abandon the stabilized algorithm and return to the simpler con-

ventional formula. Actually we think that both formulae are bad and should not

be used as computational algorithms.•

Numerical divergence of the Kalman filter is often associated with com-

puted covariance matrices that lose their nonnegativity. Hrnce it is a common

practice to attempt to preserve nonnegati vity by bounding the diagonals from

below (to prevent computed variances from becoming too small) anti to limit

the correlations between pairs of variables. Trying to stabilize the con-

ventional Kalman algorithm with such patches opens a pandora's box of filtering

alternatives; e.g.,should the lower bound on the velocity sigmas be 1.0 m/sec

nr 0.1 m/sec? Sh)tild the n.ximum correlation be .99 or .98? Should the bounds

be time-varying? etc. Experimenting with this multitude of alternatives c

be frightfully expensive, eupecially when (as is often the case) the choice of

pater factors is problem-dependent.

*This numeric instability is not caused by the vector outer product algorithm

mechanization; similar results have been observed using the matrix product

mechanization.
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For this case study,filtering results are indeed sensitive to the choice

of bounds, as Figure 5 illustrates. This figure displays the RSS position

error profiles produced by the single-precision patched algorithm for various

bounding schemes. Comparing Figures 3 and 5,it can be seen that patching gives

a narked improvement over the stabilized Kalman results; but all of the patched

curves are far above the optimal result. Filtering accuracies are compared

in Figure 6, and the poor performance of the patched filter is demonstrated.

Continuing the comparison,we note that the patched algorithm is not even effi-

cient. To see this,one has only to include the simulations required to choose

an appropriate set of patch factors and the extra computation and logic that

the patched algorithm requires.

Our conclusion from the study of this algorithm is that the practice of

introducing ad hoc patch factors to combat Kalman filter numerical divergence

results in algorithms that are significantly less efficient and accurate than

the factorization methods. We omit patching techniques from further considera-

tion but close our discussion of this subject with the observation that results

analogous to those of Figs. 5 and 6 were obtained for all the other cases studied.

B. CASE: 2: Scaling of the A Priori State and Data Covariances

Numerical ill-conditioning of the Kalman filter can often be attributed

to the presence of large initial uncertainties and relatively small data

covariances. These effects can be reduced by scaling the filter inputs, but

the improved numerical conditioning is somewhat offset by the effects of

using incorrect a priori filter statistics (cf. Figure 7). By comb`)ling orbit

determination intuition and numerical experimentation, we found that reducing

the initial velocity uncertainty by an order of magnitude (to 10 m/se_--) and

increasing the range uncertainty (from 3 meters to 10 meters) resulted in a

of
	 stabilized algorithm. For this choice of filter statistics neither
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the conventional nor the stabilized Kalman algorithm computed negative variances.

Moreover, for this example the simulation estimate errors are consistent with

the filter format statistics. Such a situation creates a false sense of security

because,while the Kalman algorithms appear to operate well, they are, in fact,

woefully suboptimal. Refer to Figure 7 and note that the Kalman filter errors

(the middle flagged ritrv-e) are much larger than the achievable filter performance

(the bottom curve). To appreciate the seriousness of the Kalman algorithm posi-

tion error,we note that the incremental error due to the use of the Kalman

algorithm is larger than mission navigation requirements allow.

The results in Figure 7 also show that the Kalman filter is more accurate

when suboptimal (av - 10 m/sec, a R = 10 meters) rather than optimal (a v = 100 m/sec,

a  = 3 meters) covariances are asstm►edI For the larger part of the filtering

period,the suboptimal Kalman estimates, with scaled inputs, are an order of

magnitude more accurate than are the "optimal" computed results.

If only one of the a priori uncertainties (a v or a R ) is scaled,the stabilized

Kalman algorithm continues to produce negative computed variances. The situation

with scaled a
v	 v

is illustrated in Figure 8. When a is scaled down an order of

magnitude, the initial velocity variance is scaled down by two orders of magni-

tude. However, instead of improving filter numerics, the stabilized algorithm

with reduced a priori increased the number of times that negative variances

were computed (from 69 to 114). Note in Figure 8 how the position errors peak

earlier (6 days) than when the larger a  a priori was used.

In a filtering problem with observability and significant amounts of

process noise,one would expect that estimates should depend, loosely speaking,

r'
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only on the recent past. Thus, estimate orror profiles corresponding to the

use of different a priori statistics should, except for initial transient

effects, look quite similar. Such is the case with the factorization filters,

as the bottom two curves of Figure 8 illustrate. In contrast,the stabilized

Kalman algorithm produces error profiles which are quite sensitive to the

choice of a priori statistics (cf. the topmost curves of Figures 7 and 8).

The conclusion to be drawn from this discussion is that numerical insta-

bility can cause unpredictable results which violate established estimation

principles.

C. CASE 3: Reduced-Dimension Problems

The results reported in the previous cases were obtained using the com-

plete 19-state model. In this section,models of smaller dimension are examined.

Our results here show, among other things, that the numerical instability of

the Kalman algorithm is not caused by the dimensionality of the model; and that

the inclusion of process noise improves the appearance of the computed covari-

ance but not the accuracy of the estimate.

The smallest, physically meaningful model corresponding to the planetary

approach problem has only the six position and velocity variables. This 6-

state system is a parameter estimation problem because, even though the

variables are time-dependent, there is no process noise. The Kalman updating

algorithms are known to be numerically unstable for parameter estimation prob-

lems,and consequently we were only mildly surprised to find that the stabilized

algorithm computed 96 covariances with negative diagonal elements. Just as in

case l,the stabilized filter intermittently computes covariance matrices with

negative diagonal elements. This 6-state filter was applied to the simulated
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trajectory (based on the complete 19-state model) and managed to partially

track the spacecraft.

A question that immediately comes to mind is whether the stabilized Kal-

man estimate errors for this case are due primarily to the use of a reduced-

order filter model, or to the numerics of the algorithm. The answer becomes

obvious when the factorization algorithms are applied to this problem. The

factorization filters computed covariances which were, as usual, close to the

corresponding reference double-precision results. The actual position uncer-

tainties in Figure 9 show, however, that position errors corresponding to the

single-precision stabilized algorithm are orders of magnitude larger than the

position errors corresponding to the single-precision factorization algorithms.

By comparing the factorization curves of Figures 1 and 9,one can see that the

accuracy loss due to mismodeling is considerable. Comparison of the stabilized

curves for these two figures suggests that either the stabilized algorithm

compounds the effects of mismodeling or the numerical errors are so large

that trey have become the dominant errors.

To further separate the effects of mismodeling from the numerics,we

calculated the actual covariances corresponding to the reduced model (i.e.,

assuming no mismodeling). Comparing Figures 9 and 10,one finds that position

uncertainties corresponding to the stabilized algorithm are very nearly the

same. The results indicated in these figures show that the numerical errors

associated with the stabilized algorithm are so large that they completely

obscure the effects of mismodeling. By contrast, the factorization curve of

Figure 10 demonstrates the accuracy of the U-D and Potter-Schmidt algorithms.

Because the numerical errors have been removed,the factorization curves of

Figures 9 and 10 clearly show how 6-state filtering accuracies are affecte'

by the preserce of unmodeled parameters.
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We chose as our second model a 9-state system which includes the three

colored noise accelerations in addition to position and velocity. The reason

for choosing this model is that it includes a significant amount of process

noise (cf. Table 1). and process noise is generally assumed to stabilize

Kalman filter numerics.

Computed filter results appeared to corroborate this theory. For example,

the stabilized Kalman filter produced covariances, gains,and estimates (based on

our simulation sample) which looked reasonable. The results differed, however,

from those obtained using the U-D and Potter-Schmidt algorithms. Error analysis of

the two sets of results (cf. Figure 11) shows that the factorization results are

free of numerical errors and that Kalman results are severely degraded. Note how

the numerical deterioration of the Kalman algorithm translates into position

errors that are orders of magnitude larger than they need be. Our conclusion

here is that while the inclusion of process noise improves the performance

of the Kalman algorithms, the results still lack the accuracy achievable

using factorization methods.

IV. Conclusions

Excellent numeric accuracy and stability were demonstrated throughout this

study by both the U-D and the Potter-Schmidt factorization algorithms. Both

algorithms mechanized in single-precision gave results that were close to the

double-precision references. In every case of our comprehensive sr..udy,these

algorithms out-performed all of the Kalman algorithms. Accuracy improvements

were generally substantial, and often the improvements were orders of magnitude.

Numerical stability of the factorization algorithms was evidenced by their lack

of sensitivity to the choice of a priori variances and process noise levels.
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The Kalman filters were, in contrast, very sensitive to the input sta-

tistics. Numerical deterioration was rampant in both the conventional and

stabilized algorithms, and computed covariance matrices with negative dia-

gonals were a common occurrence. Even when the input statistics were modified

to stabilize the numerics,the Kalman algorithm performed poorly. In these

cases,the accuracy degradation was not apparent but had to be identified

using a double-precision error analysis program. Our analysis showed numerics

to be the dominant error source in the Kalman algorithms, and they completely

obscured the effects of mismodeling. This result is of special interest

because engineers rarely include the effect of numerical error in their con-

struction of error budgets and mission design requirements. Our results sug-

gest that when factorization algorithms are employed,the engineer can justi-

fiably ignore numeric effects.

Since good things are seldom free, one might surmise that the accuracy

and stability associated with the factorization methods must be balanced with

additional, and perhaps prohibitive, amounts of computation. References [7]

and [8] contain detailed arithmetic operation counts which show that the

Potter-Schmidt algorithm is not unreasonably costly (and generally compares

with the stabilized Kalman algorithm), while the Bierman-Thornton U-D

algorithm is competitive with the conventional Kalman mechanization. For the

problem at hand,we have more complete information about computer costs; viz.,

computer overhead costs associated with indexing, logic, etc.,are included in

our CPU timing records. Table 2 gives the CPU times for the 19-state model

of case 1. The Potter-Schmidt algorithm is the most expensive of the algorithms,

and this is our primary objection to it. Indeed, it was this cost problem that

triggered our quest for a more efficient factorization algorithm. Our success
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is evidenced in Table 2; viz.,the U-D filter was even faster than the conven-

tional Kalman algorithm. Time propagation costs are influenced by the numbers

of bias and colored noise variables (cf. j8]). While the U-D method is not

always cheaper than the conventional Kalman algorithm, it is generally com-

petitive.

Demonstrating with a meaningful engineering problem, we have shown that

numerical errors can dominate performance of the Kalman algorithms, that the

U-D and Potter-Schmidt factorization algorithms dramatically reduce the effects

of numerical errors, and finally that the cost of using the U-D algorithm

differs insignificantly from the costs of the conventional Kalman filter.

Thus our U-D filter offers numerical reliability at an affordable price.

Filter Algorithm Single-Precision Double-Precision

Conventional Kalman 39 49

Stabilized Kalman 45 59

U-D 38 46

Potter 63 80

TABLE 2
*

Comparison of Filter Execution Times

*CPU time in seconds
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8. COMPARISON OF ACTUAL
POSITION UNCERTAINTIES
SCALED VELOCITY A PRIORI*
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9. COMPARISON OF ACTUAL
POSITION UNCERTAINTIES

6-STATE FILTER EVALUATED FOR 19-STATE MODEL
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10. COMPARISON OF ACTUAL
POSITION UNCERTAINTIES

6-STATE FILTER EVALUATED FOR 6-STATE MODEL

r
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11. COMPARISON OF ACTUAL
POSITION UNCERTAINTIES

9-STATE FILTER EVALUATED FOR 9-STATE MODEL
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