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SYMBOLS

q test-section éy&amic pressure, N/m? (1b/ft2)

Vor U air speed, m/s {ft/s)

S Strouhal number

Re Reynold's number

£ frequency, Hz

£ ' airfoil thickness, cm {in.)

c airfoil chord, cm (in.)

4 characteristic dimension of airfoil
3 boundary-layer thicknesz, cm (in.)
Sdbscripts

u upper surface

1 lower surface
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TEST-SECTION NOISE OF THE AMES

7- by 10-FOOT WIND TUNNEL NO, 1

Paul T, Soderman

Ames Research Centsr
and
Ames Directorate
U.S. Army Alr Mobility R&D Laboratory

SUMMARY

An investigation was made of the test-section noize levels at vavious
wind speeds in the Ames 7- by 10~Foot (2.1- by 3.0-m) Wind Tunnel No. 1.
No model was in the test section, but the microphone was mounted on a strut
in the flow, The purpose of the study was to identify as many noise sources
in the test section as possible, remove those sources, and record the resulg-
ing noise floor.

Results showed that aerodynamic noise from various struts used to monitor
flow conditions in the test section dominated the wind-tunnel baclground nolse
over much of the frequency spectrum. A tapered microphone stand with a thin
trailing edge generated less noise than did a constant-chord strut with a
blunt trailing edge., Noise from small holes in the test-section walls was
insignificant.

INTRODUCTION

Wilby and Scharton (ref. 1) recently performed a study of the Ames
7- by 10-Foot (2.1~ by 3.0-m) Wind Tunnel No. 1, shown in figure 1, to
determine the acoustic characteristics which would have to be modified to
convert the wind tunnel into am acoustic research facility, One of thelr
conclusions was that a large part of the test-section noise was generated
by various aevodynamic struts regularly used in the test section. They also
suspected that holes and cavities in the walls generated noise. The purpose
of the study reported here was to extend that work by identifying the contri-
bution of each possible source in the test section. This was done by
removing the sources one-by-one and recording the noise changes. It was
hoped that the noise floor with all test-section noise sources removed could
then be ar'ributed to the drive fam. If that were so, then sound baffles
upstr-am and downstream of the fan would be effective in reducing the test-
c.ction noise levels.

The reverberation characteristics of the test section, which are as
important as background noise, are discussed in references 1 and 2. In



addition, reference 3 and an unpublished working paper by R. E, Avndt apd -
D. A, Boxwell (A Preliminary Analysis of the Feasibility of Rotor Noise

Measurements in the AMRDL-Ames 7 10 Foot Wind Tumnnel, October, 1971) contain
reverberzation data acquived in an identical wind tumnel.

TEST SECTION APPARATUS

Airfoil Struts

Airfoil struts are used in the test section to a) support microphones,
b) support a pitot-static pressure probe, ¢) support various wake survey
probes, and d) stabillize the flow into the diffuser.

The twe microphone struts used in this study are illustrated in
figure 2(a). The tapered strut was used by Noiseux et al. in a previous
study of microphone wind noise described in reference 4. The microphone body
was faired to the strut. The constant-chord, airfoil-tubing strut was used
by Wilby and Scharton (ref. 1). The constant~chord strut had a blunt trailing
edge typical of commercial airfoil-shaped tubing.

Figure 2(b) illustrates the other airfoil struts evaluated in the study.
The pitot-static probe is used to measure dynamic pressure, which iz needed
to compute wind speed. The wake-survey strut is shown raised to its highest
position, the only position used in this study. The diffuser wvanes, used
to stabilize the flow in the diffuser, are located at the diffuser entrance.

y

Holes and Cavity

Over the years, hundreds of small holes 0.16 to 1.3 com (1/16 to 1/2 in.)
diameter have been drilled In the four walls of the test section. In the
rear of the test section a screen-covered cavity, 30 em by 1.4 m (1 £t by 4.
4.6 ft), in the ceiling is used for pressure equalization between the test
section and shop area.

TNSTRUMENTATION

Most of the noise data were recorded using a 0.6 cm (1/4 in.) condenser
microphone adapted to a 1.3 em (1/2 in.) preamplifier. Some data were obtained
with 2 1.3 em (1/2 in.) microphone. The microphones were protected with
nose cones. The data were recorded on a tape recorder for narrow-band
frequency analyses.1 On~-line third-octave band analysea of the data were made.

1Nominal bandwidths are listed on the figures. Effective noise bandwidth, . “
which is the bandwidth of an ideal rectangular filter required to pass. the:
same power as the actual filter, s 1.875 x bandwidth.
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TEST CONDITIONS

Acoustic measurements were made at wind speeds of 19.8, 30,0, 39.5,
55.9 and 79.1 m/s (64.8, 91.7, 129.7, 183.4, 259.4 ft/s) which correspond
to test-section dynamic pressures, q, of 239, 479, 958, 1915 and 3830 ¥/m?
(5, 10, 20, 40, 80 1b/ft2). Unless noted otherwise, the data presented were
recorded with a 0.6 cm (1/4 in.) wmicrophone mounted on the tapered strut,

The temperatures, barometrie pressures and relative humidities
encountered during the test are listed in table 1.

RESULTS AND DISCUSSION
Noise Floor

Figures 3(a) and (b) show test-section noise levels at various dypamic
‘pressures measured with the struts in figure 2(b) installed and all wall
holes and the cavity uncovered. Plotted on the same figures are the nolse
levels measured with all struts, except the tapered microphone strut, removed
and the holes and cavity covered. Removing the struts eliminated the tones
- and lowered the level of broadband noise by as much as 5 dB. The holes and
cavity had little effect as will De shown. Aerodynamic noise from the struts
dominated the wind-tunnel fam noise at frequencies zbove 400 Ha, except at the
lowest dynamic pressure, The acoustic effect of each potential noilse source
is examined in the next section. : '

Data reported by Wilby and Scharton (ref. 1) for the same strut installa-~
tions as above, except for the microphone stand geometry, are shown in
figure 4, The data of figure 4 are around 5 dB greater than the data of
figure 3 at frequencies above 1000 Hz. The reasons for the lack of agreement
between the two figures are not clear. Stand vibration and/or microphone
mounting procedure may .have been responsible, as was suggested in an unpub-
lished memorandum from John F. Wilby to Paul Soderman (Subject: Clarification
of Figures 19 and 54 in BBN Report 29236, dated August 11, 1975). Stand
geometry was not responsible. In any case, data repeatability during the
_study reported here was quite good even though data from the two studies do
not match exactly.

Noise Sources

Microphone strut - Figures 5(a)-(e) show test-section noise levels
measured with the two different microphone/strut configurations. The
measurements were made at five wind speeds. For these series of measurements
all other test—section struts were removed. Typically, the constant-chord
strut/microphone configuration was somewhat noisier than the tapered-strut/
microphone configuration in the mid-range frequencies around 1000 Hz and

3



above 3000 Hz. The mid-range noise can be attributed to vortex shedding by
using the method described in reference 2.

Assume the Strouhal number is

_.f.sl._
5= 0.28 | (1)

where the dimension d is given by

d = 0.6(6u + 8, 4+ t) (2)

i
and &, = 61 = 0.48 cm are the boundary-layer thickpesses at the separation
point.® Thickness t is the airfoil thickness at the same point (0.75 cm).
S0, for a speed of V = 40 m/s, the vortex shedding frequency, £, is 1090 Hz
which agrees with the peak in figure 5(c). The chord-based Reynold's number
at 40 m/s was 1380.0; a Reynold's number which lies in a regime in which
vortex tones from cylinders (ref. 5) and airfoils (ref. 6) have been recorded.

The high-frequency noise from the constant-chord strut was probably due
to flow separatlon at the blunt trailing edge. The taper:zd strut had a
sharp tralling edge and generated less noise than the other strut at high
frequencies, _ . : =

The tapered strut did not have a dominant vortex shedding tome as showm
in fipures 5(a)-(e). At first 1t was suspected thet the variation in
airfoil thickness, root to tip, spread out the vortex shedding frequencies as
predicted by equation 1. However, Schlinker et al. (ref. 5) have shown that
a tapered airfoil can generate multiple tones which are stronger than tones
from constant-chord airfoils, depending on the Reynold's number. The
- explanation for the lack of tones from the tapered strut is simply that the
r‘hovd.—-!:\ase:d Reynold's numbers were sufficientiy high (Reyoor = 1 % 105 ar v

= 40 m/s) and the airfoil was sufficiently thick (t/crOot 0.19,
t/c = 0.29) that the resulting turbulent boundary layers destroyed any
coharent vortex shedding. Paterson et al. (ref. &) showed that an 18% rhieck
airfoil had no tones for flow Reynold’s numbers from 0. 4%108 to 2,.2x108 (zero
angle of attack). ©Lower Reynold's number flow was not evaluated.

. Pitot-atatic probe - Figures 6(a)~(f) show the test section noise levels
with the pltot-probe support strut at its full 51 cm (20 in.) length and
decreased o 18 em (7 in.). This series of tests were made before the wake-
survey strut or diffuser vanes were removed and before the cavity was covered.

" However, those sources did not mask the pitot—-static tone which existed at
vind speeds above 30 m/s. At full length the upper airfoil fairing of the
pitot~static strut and the lower 0.6 cm (1/4 in.) bar were exposed to the
flow. When raised to 18 cm, only»the bar was,emposed. .

2A8 the flow-approaches sapagation, the boundary laver grows extremely
rapldly resulting in a2 very thiek boundary layer at separation.

4



The stromg tome :n the range 1600-315C Hz w.s veduced wup to 8.5 4B
by decreasing the strut length. The tone shifie.. frequency as the wind
speed channed, a characteriztir of vorteu-sheddi g noise, TFigure 6(f)
shows that a 7one still eristed at 3150 Hz (g = 20 psf) with the probe
raised to 18 em. (Note that the broadband noise in fig. 6(f) uad deereased
because other struts were remove: from the flow.) The tone disappeared only
when the strut was removed from the flow. Hence, the airfoil fairinp and
the 0.6~cm bar penerated vortex noise in the same frequency band. The airfoil
fairing generated the strongev tone. A plausible reason for the similarity
in shedding frequencies is that the vorticez shed from the airfoil fairing
near the trailing edge where the thickress was similar to that of the 0.6 cm
bar. 1In fact, the airfoil fairing had a blumt trailing edge which, we calcu~
late, allowed turbulent bsundary-layer flow separation at 85% chord.
Reference 7 contains flow-visualization photographs of tne vortex street
and resulting acoustlc radiation patterns of an airfoil with a blunt trailing
edge.

Wake~survey etrute - Figures 7(a)-(e) chow the test-section noise with
and without the waké-survey styut in the flow. The strut was tested in its
raised position only. The data show that the strut generated considerzble
noise in the mid- and high-frequencies., With more of the strut exposed to
the flow the noise probably would have been greater. TLike the pitot-—support
strut, the wake-survey strut was not well shaped. It had a 25%Z thickness-to-
chord ratio and a blunt trailing edge (see fig. 2(b)). For acoustic studies,
this type of strut should be removed from the test section.

To summarize the results of these sections, strut noise can be minimized
by using properly streamlined airfolls, such as the NACA series of airfoils,
of a mize to operate at sufficiently high Reynold's number. A sufficient
Reynold's number is one that results, for the particular airfoil, in a
turbulent boundary layer on both airfoil surfaces (ref. 6). The turbulent
boundary layers will eliminate coherent vortex shedding. At low Reynold's
number the laminar boundary layer can be tripped to achieve the necessary
turbulence (ref. 6). Blunt bodies, even airfoil tubing with blunt trailing
edges, should be avoided hecause they can shed coherent vortices in the
presence of turbulent boundary layers. It is estimated that the pitot-
support strut boundary-layer became turbulent at 50% chord (computations by
L. Olson of NASA Ames based on ref. 8) and still did not destroy the coherent
vortex shedding. In addition, the pitot—support strut had high-frequency
noise probably caused by flow separation near the trailing edge.

Diffuser-entry vanes - The struts which had the least effect on the
test-section nolse were the twe large airfoils used to stabilize the flow into
the diffuser {see figs., 8(a)-{e)). The diffuser vanes were also the farthest
struts from the microphone. However, due to the reverberant field in the
test section, the diffuser vane noise would have decayed only 2 dB more
during protagation to the microphone than did the noise from the other struts.
The lov noise of the vanes was undoubtedly due to the vanes streamlined shape,
sharp trailing edge, and high Reynold's number (Re = 1.6%108 at V = 40 m/s).

T TO
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Holes and cavity - Figures 9(a)~(e) show the test-section noise measured
with and without the numerous holes in the walls, and the ceiling cavity
covered. The holes aand cavity had very little effect on the noise. Perhaps
that was because of the lov speeds used or because the pressures inside and
outside the test section were equal so that there was no flow through the
holes., Also, the cavity had a screen cover and wag open im the back so that
a trapped vortex was unlikely. A trapped vortex is characteristic of cavity
noise.

Microphone - A comparison of the noise measured by a 1.3 em (1/2 in.)
(B&K 4£133) and a 0.6 cm (1/4 in.) (B&K 4135) microphone is shown on fig-
ures 10{a)-(e). The microphones and nose cones were mounted on the same
preamp and support stand. The acoustic spectra are quite similar except at
frequencies above 12 kHz. WNote that the 0.6 em (1/4 in.) wicrophone-data
lover limit was 60 dB, so comparisons cavnot be made below that level.

Fan notse - Tigure 11 shows the noise of the empty test section (fig. 4)
compared with predicted fan noise in the test section. The predicted fan
noise was extrapolated from noise levels inm the settling chamber measured
during the experiment described iu reference 1. The measurements and exirapo-
lation are descxibed in appendix A. Except for the lower dynamic pressures,
the data and predictions agree up o 800 Hz. Above 1000 Hz, the predicted
noise levels are much lower than the measured levels. Two possible explana~
tions come to mind: 1) other nolse sources, such as microphone strut nolse
or turning-vane noise, were responsible for the high freg-:ency sound; or

2) the fan noise prediction is inaccurate, With respect to explanaiion 1,
microphone wind noise is discounted as a major noise source based on the data
of Noiseux et al. (ref. 4) shown in figure 12, Those results shov quite low
levels of microphone self-noise for low turbulence flow.

Narrow~band Frequency Analysis

Figures 13(a)~(c), from referemce 1, show the test-section noise spectra

filtered in constant bandwidths 5 Hz and 12.5 Hz wide, The pitot-strut
tone is clearly showm. All struts were in the test section. The microphone -
was mounted to the constant-chord airfoil tubing. : .

7 Similar data measured in this study are shown in figures 14(a)~(f).

The estimated sources of the tones are noted on the figures. The airfoil
struts, especially the wak3wsurvey strut, were respon51b13 Eo the broadband
noise above 250 Hz. LT

The cleanwtest—section noise spectra are shown ln‘fiﬂﬁ;es 15(a)-(£). As

expected, the tones disappeared and the broadband noige decreased except at

the low frequencles where fan noise dominated.
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€O LUDING REMARKS

_ Degyite the entry of wind-iuunel fan nolse Into the test section,
the background noise in the 7- "y 10-Foct (2,1- ty 3.0 m) Wind Tunnel No., 1
test section sbove 400 Hz was deminated by azerodynamlic poise from various
strutz in the test section. The two major sources were a pilitot-support strut
and a wake-survey strut. Strong tones from the pitot—support sirut were
related to a vortex shedding vate. Broadband noise was genevated by the wake~
survey strut. Beth airfoils had large thickness~to-chord ratios (20 to 25%)
and blunt tralling edges which could cause flow separation and strong vortex
shedding. Although these types of airfe.ls are acceptable for their partiecu-~
lar aerodynamic functions, they are unnecessarlly noisy. Streamline shapes
1like the WACA ailrfoils should be less noisy as long as the boundary layers
are tripped when used at low Reynolds numbers.

The holes and screen—-covered cavity in the teet~section walls did not.
generate measurable noise at the Lest air speeds. It should be noted that
the wind tunnel did not have a pressure difference across the test-section
walls and, therefore, no significant air flow through the holes. Air flow
might affect hole-generated noise. :

With the struts removed, the wind~tunnel fan noise dominated the
acoustic spectrum below 1000 Hz. Therefore, acoustic treatment upstream and
downstream of the fans is necessary to reduce test—sectilon noise below
1000 Hz. ‘The noise above 10030 Hz, struts removed, did not match predicted
fan noise levels. Either the prediction was erroneous or there was some
cther nuise source in the wind tunnel, as yet unknowm.



APPENDIX A
TAN NOISE PREDICTION

(Trom reference 1 and John F. Wilby/Paul Soderman memorandum)

The estimated fan noise spectra shown in figure 11 are based on measured
fan sound pressure levels in the diffuser and estimated fan nolse variation '
with fan speed. Starting with the noilse variaticn method, it was assumed
that the fan sound level is proportional to fan tip speed to the pover
five., That assumption was based on emperical fan laws {sea ref. 1). Since
tip speed is proportional to fan rotational speed, rpm, the data would scale
as foliows:

Tpm £

AdR = 2 2
AdB = 50 log rpm1'+ 10 log 2 _ (AL

where the last term is the bandwidth correctlon factor. Since the acoustic
frequencies of blade-passage noise and vortex noise are also proportional
to rpm, f2/f1 = rpm,/rpm,, and equation (Al) can be written:

rpmy
= : 2).
AdB = 60 log Tom. (A2)
Dynamic pressure, q, is proporiional to tip speed squared. Therefore,
equation (A2) can be written: ' ' C
Gz
AdB = 30 leg — (A3)

93

The above scaling equation was checked by measuring noise levels in
~ the settling chamber at various fest-section dynamic pressures. Because
_of the low wind speeds in the settling chamber, it was felt that the noise was
predominantly fan noise. When normelized to q = 25 psf using equation (A3),
the data collapsed fairly closely to the following values.

1/3 oct. band SPL

-30 log (g/25)
125 84
250 .. B4
500 81
1000 76
2000 70
4000 _ 63
8000 55




By placing a calibrated noise source in the fan section, it was
determined that the settling chamber noise levels arc approximately 2 dB
lower than the test-section leveli. That correciion added to the above
spectyum levels resulied in the q = 25 spectrum of figure 11, The other
spectra vere estim%ed usz.ng aguation (A3).
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TABLE 1.- ATMOSPHERIC CONDITIONS

1

Time Date Run Témperaturea giiigig;b Barometer
— 6/6/75 b2 72°F .61 30.11 in. Hg
_— 6/6/75 2 72 .57 30.10
1000 6/9/75 3 70 .68 30.05
1600 6/9/75 5 82 .48 30.00
0820 |{6/10/75 6 64 .75 30.00°
1035 6/16/75 7 74 .57 29.90
1335 [6/10/75 8 77 .63 30,02
1615 | 6/10/75 9 78 43 30.02
0900 | 6/11/75 10 63 .69 30.08
1350 6/11/75 11 70 .68 30.01
1555 | 6/11/75 13 73 .53 30.10
0920 |6/12/75 14 66 .62 30.08
1045 |6/12/75 15 69 - 30.09

.59

aMEasured in test section before or after run.:

bCompﬁted from wet and dry temperature and barometric pressure.

11
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Figure 13.~- Narrowband spectra of noilse levels in test section
showing effect of retrdcting piltot strut (filter bamdwidth
5 Hz (upper curves}, 12.5 Hz (lower curves)); ref. 1.
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Figure 15.~ Narrowband spectra of test-~section noise, all struts
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