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SYMBOLS

q	 test-section dy-:-7mic pressure, N/m2 (lb/ft2)

V or U air speed, m/s (ft/s)

S	 Strouhal number

Re	 Reynold's number_

f	 frequency, Hz

t	 airfoil thickness, cm (in.)	 -.Y

c	 airfoil chord., cm (in.)

d	 characteristic dimension of airfoil

S	 boundary--layer thickness, cm (in.)

Subscripts

u	 upper surface

I	 lower surface

g

z_



TEST-SECTION NOISE OF THE A10S

7- by 10-FOOT WIND TUNNEL NO. 1

Paul T. Soderman	 _.

Ages Research Center
and

Ames Directorate
U.S. Army Air Mobility R&D Laboratory,.	 a

SUMMARY

An investigation was made of the test-section noise levels at various
wind speeds in the Ames 7- by 10-Foot (2.1- by 3.0-m) Wind Tunnel No. 1.
No model was in the test section, but the microphone was mounted on a strut
in the flow. The purpose of the study was to identify as many noise sources
in the test section as possible, remove those sources, and record the result
iug noise floor.

Results showed that aerodynamic.noise from various struts used to monitor
flog conditions in the test section dominated the hind-tunnel background noise
over much of the frequency spectrum. A tapered microphone stand with a thin
trailing edge generated less noise than did a constant-chord strut with a
blunt trailing edge. Noise from small holes in the test-section walls was
insignificant.

1NI MI DUCTION

Wilby and Scharton (ref. 1) recently performed a study of the Ames
7- by 10-Foot (2.1- by 3.0-m) Wind 'funnel No. 1, shown in figure 1, to
determine the acoustic characteristics which would have to be modified to
convert the wind tunnel into an acoustic research facility. One of their.
conclusions was that a large part of the test-section noise was generated
by various aerodynamic struts regularly used in the test section. They also
suspected that holes and cavities in the walls generated noise. The purpose
of the study reported here was to extend that work by identifying the contri-
bution of each possible source in the test section. This was done by
removing the sources one-by-one and recording the noise changes. It was
hoped that the noise floor with all test-section noise sources removed could
then be a+-'-ributed to the drive fan. If that were so, then sound baffles
upstr ,'.am and downstream of the fan would be effective in reducing the best-
z_;.tlon noise levels.

j
The reverberation characteristics of the test section, which are as

important as background noise, are discussed in references I and 2. In



addition, reference 3 and an unpublished working paper by R. E. Arndt aid
D. A. Boxwell (A Preliminary Analysis of the Feasibility of Rotor: Noise
Measurements in the . ATiiDL-Ames 7 x 10 foot Wind Tunnel, October, 1971) contain
reverberation data acquired in an identical wind tunnel.

TEST SECTION APPARATUS

Airfoil Struts

Airfoil struts are used in the test section to a) support microphones,
b) support a pitot-static pressure probe, c) support various wake survey
probes, and d) stabilize the flora into the diffuser.

The two microphone struts used in this study are illustrated in
figure 2 (a). The tapered strut was used by Noiseux et al, in a previous
study of microphone wind noise described in reference 4. The microphone body
was faired to the strut. The constant- .chord, airfoil-tubing strut was used
by Wilby and Scharton (ref, 1). The constant-chord strut had a blunt trailing
edge typical of commercial airfoil--shaped tubing.

Figure 2 (b) illustrates the other airfoil struts evaluated in the study.
The pitot-static probe is used to measure dynamic pressure, which is needed
to compute wind speed. The wake-survey strut is shown raised to its highest
position, the only position used ire this . study. The diffuser vanes, used
.to stabilize the flow in the diffuser, are located at the diffuser entrance.

Holes and Cavity

Over the years, hundreds of small holes 0 . 16 to 1 . 3 cns (1/16 to 1/2 in.)
dianmeLer have been drilled in the four calls of the rest section. In the
rear of the test section a screen-covered. cavity, 30 cm by 1.4 m (1 ft by 4.
4.6 ft), in the ceiling is used for pressure equalization between the test
section and shop area.

INSTRUMENTATION

Most of the noise data Caere recorded using a 0.6 cm (1/4 in.) condenser
microphone adapted to a 1.3 cm (1/2 in.) preamplifier. Some data Caere obtained
with a 1.3 cm (1/2 in.) microphone.. The microphones were protected with
nose cones. The . data were recorded on a tape recorder for marrow-band
frequency analyses..1 On--line third-octave band analyses of the data were made.

lNomin,al bandwidths are listed on the figures. Effective noise bandwidth,
which is the bandwidth of an ideal rectangular filter required to pass.the
same poser as the actual filter, is 1.575 x bandwidth.
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TEST CONDITIONS

Acoustic measurements were made at wind speeds of 19.8, 30.0, 39.5,
55.9 and 79.1 m/s (64.8, 91.7, 129.7, 183.4, 259.4 €t/s) which correspond
to test-section dynamic pressures, q, of 239, 479, 958, 1915 and 3830 N/m2
(5, 10, 20, 40, 80 lb/ft 2). Unless noted otherwise, the data presented were
recorded with a 0.6 cm (1/4 in.) microphone mounted on the tapered strut.

The temperatures, barometric pressures and relative humidities
encountered during the test are listed in Cable 1.

RESULTS AND DISCUSSION

Noise Floor

Figures 3(a) and (b) show test- section noise levels at various dynamic
pressures measured i-rtth the struts in figure 2(b) installed and all xvall
holes and the cavity uncovered. Plotted on the same figures are the noise
levels measured with all struts, except the tapered microphone strut, removed
and the holes and cavity covered. Removing the struts eliminated the tones
and lowered the level, of broadband noise by as much as 5 dB. The holes and
cavity had little effect as will be shown Aerodynamic noise from the struts
dominated the wind-tunnel fan noise at frequencies above 400 Hz, except at the
lowest dynamic pressure. The acoustic effect of'each potential noise source
is examined in the next section.

Data reported by Wilby azid Scharton (ref. 1) for the same strut installa-
tions as above, except for the microphone stand geometry, are shown in
figure 4. The data of figure 4 are around 5 dB greater than the data of
figure 3 at frequencies above 1000 Hz. The reasons for the lack of agreement
between the two figures are not clear. Stand vibration and/or microphone
mounting procedure may.have been responsible, as was suggested in an unpub-
lished memorandum from John F. Wilby to Paul Sodertnan (Subject: Clarification
of Figures 19 and 54 in BBN Report 2936, dated August 11, 1975). Stand
geometry was not responsible. In any case, data repeatability during the
study reported here was quite good even though data from the two studies do
not match exactly.

Noise Sources

Microphone strut - Figures 5(a)-(e) show test-section noise levels
measured with the two different microphonefstrut configurations. The

F	 measurements were made at five wind speeds. For these series of measurements
all other test-section struts were removed. Typically, the constant--chord
strut/microphone configuration was somewhat noisier than the tapered-strut/
microphone configuration in the mid-range frequencies around 1000 Hz and

3



above 3000 Hz. The mid--range noise can be attributed to vortex. shedding by
using the method described in reference 2.

Assume the Strouhal number is

s - ^ = 0.28	 (1)

where the dimension d is given by

d = 0.6(6u+ 6l + t)	 (2)

and dU = Si = 0.48 cm are the boundary-layer thicknesses at the separation

point. 2 Thickness t is the airfoil thickness at the same point (0.75 cm).
5o, for a speed of V - 40 m/s, the vortex shedding frequency, f, is 1097 Hz
which agrees with the peak in figure 5(c). The chord-based Reynold's number
at 40 m/s was 1380.,0; a Reynold's number which lies in a regime in which
vortex tones from cylinders (ref. 5) and airfoils (ref. 6) have been recorded.

The high--frequency noise from the constant-chord strut was probably due
to flora separation at the blunt trailing edge. The taperz i strut had a
sharp trailing edge and generated less noise than the other strut at high
frequencies.

The tapered strut dial not have a dominant vortex shedding tone as shoum
in figures 5(a)-(e). At first it was suspected that the variation in
airfoil thickness, root to tip, spread out the vortex shedding frequencies as
predicted by equation 1. However, Schlinker et al. (ref. 5) have shown that
a tapered airfoil can generate multiple tones which are stronger than tones
from constant--chord airfoils, depending on the Reynold's number.. The
explanation for the Zack o£ tones from the tapered strut is simply that the
chord--based Reynold's numbers were sufficiently high (Reroot 1 x 10 1 at V	 ---
V = 40 m/s) and the airfoil was sufficiently thick (t/croot 0.19,
t/ctip = 0.29) that the resulting turbulent boundary layers destroyed any
coherent vortex shedding. Paterson et al. (ref. 6) showed that an 187. thick
airfoil had no tones for flow Reynold's numbers from 0.010 6 to 2.2%106 (zero
angle of attack). Lower Reynold's number flora was not evaluated.

Pitot-static probe Figures 6(a)-(f) show the test section noise levels
with the pitot-probe support strut at its full 51 cm (20 in.) length and
decreased to 18 cm (7 in.). This series of tests were trade before the wake--
survey strut or diffuser vanes were removed and before the cavity was covered..
However., those sources dial not mask the pitot-static tone which e xisted at
grind speeds above 30 m/s. At full length the upper airfoil fairing of the
pi.tot-static strut and the lower 0.6 cm (1/4 in.) bar were exposed to the
flow. When raised to IS cm, only the. bar was exposed.

2As the flow approaches separation, the boundary layer grows e.iremely
rapidly resulting in a very thick boundary layer at separation.
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The strong tone :: n the rat_-e 1600-315[i Hz	 redi-,ced Yip to 8.5 dB
by decreasing the strut length. The tone shifte,.'. frequency as the wind
speed changed, a charac:ter-.. tir cf 'vorte.,-sheddi...g noise. Figure 61(f)
shores that a ':one still e7--15t&d at 3150 Hz (q 	 PO psf) with the probe
raised to 18 cm. (Nate that th^ broadband noise in fig. 6(f) iad decreased
because gather struts were remove:'. from the flaw.) The tone disappeared only
when the strut Taas removed from the flow. Hence, the airfoil fairing and
the 0.6-cm bar generated vortex noise in the same frequency band. The airfoil
fairing generated the stronger tone. A plausible reason for the similarity
in shedding frequencies is `hat the vorticez shed from the airfoil fairing
near the trailing edge where the thickness was similar to that of the 0.6 cm
bar. In fact, the airfoil fairing had a blunt trailing edge which, we calcu-
late, allowed turbulent boundary-layer flota separation at 85% chord.
Reference 7 contains flow-visualization photographs of $:ante vortex street
and resulting acoustic radiation patterns of an airfoil with a blunt trailing
edge.

S

Wake-surrey struts - Figures 7(a)-(e) Ehow the test-aecti.on noise with
and without the wake-survey strut in the flow. The strut was tested in its
raised position only. The data show that the strut generated considerable
noise in the mid- and high-frequencies. With more of the strut exposed to
the flow the noise probably mould have been greater. Like the pitot-support
strut, the wake.-survey strut was not well shaped. it had a 25% thickness-to-
chord ratio and a blunt trailing edge (see fig. 2(b)). For acoustic studies,
this type of strut should be removed from the test section.

. To summarize the results of..these.sections,. strut noise can be minimized
by using properly streamlined .airfoils, such as the.NACA series of airfoils,
of a size to operate at sufficiently high Reynold's number. A sufficient
Reynold's number is one that results, for the particular airfoil, in a
turbulent boundary layer on both airfoil surfaces . (ref. 6). The turbulent
boundary layers will eliminate coherent vortex shedding. At low Reynold's
number the lami-aar boundary layer can be tripped to achieve the necessary
turbulence (ref. 6). Blunt bodies, even airfoil tubing with blunt trailing
edges, shu.uld be avoided because they can shed coherent vortices in the
presence of turbulent boundary layers. It is estimated that the pitot-
,support strut boundary-layer became turbulent at 50% chord (computations by
L. Olson of NASA Ames biased on ref. 8) and still did not destroy the coherent
vortex shedding.. In addition, the pitot^-support strut had high-frequency
noise probably caused by flour separation near the trailing edge.

Diffuser-entry vanes - The struts which had the least effect on the
test-section noise were the two large airfoils used to stabilize the flora into
the diffuser (see figs. S(a)-(a)). The diffuser vanes were also the farthest
struts from the 'microphone. However, clue to the reverberant field in the
test section., the diffuser crane noise would have decayed only 2 dB more
during propagation to the microphone than did the noise from the other struts.
The low noise of the vanes was undAubtedly due to the vanes streamlined shape,
sharp trailing edge, and high Reynold's number (Re = 1.6x10 6 at V = 40 m/s).

j . Tr,,  tit i ,^ys 4 J s t ^j
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Holes mad cavity - Figures 9(a)-(e) shoe the test-section noise measured
with and without the numerous holes in the walls, and the ceiling cavity
covered. The holes and cavity had very little .effect on the noise. Perhaps
that was because of the low speeds used or because the pressures -inside and
outside the test section were equal so that there was no floe through the
holes. Also, the cavity had a. screen cover and was open in the back so that
a trapped vortex was unlikely. A trapped vortex is characteristic of cavity
noise.

Microphone - A comparison of the noise measured by a 1.3 cm (1/2 in.)
(B&K 4133) and a 0.6 cm (1/4 in.) (BEK 4135) microphone 3:s shown . on fig-
ures 10(a)-(e). The microphones and hose cones were mounted on the same
preamp and support stand. The acoustic spectra are quite similar except at
frequencies above 12 kHz. Note that the 0.6 cm (1/4 in.) .crophone-data
lower limit was 60 dB, so comparisons cannot be made below that level.

&n noise - figure 11 shows the noise of the empty test section (fig. 4)
compared with predicted fan noise in the test section. The predicted fan
noise was extrapolated from noise levels in the settling chamber measured
during the experiment described in reference 1. The measurements and a:mrapo-
lation. are described in appendix A.A. Except for the lower dynamic pressures,
the data and predictions agree up to 800 Hz. Above 1000 Hz, the predicted
noise levels are much loner than the measured levels. Two possible explana-
tions come to mind: 1) other noise sources, such as microphone strut noise
or turning-vane noise, were responsible for the high freq.ency sound; or
2) the. fan noise prediction. is inaccurate. With. respect to explanation. 1,
microphone grind noise is discounted as a major noise source based on the data
of Noiseux et al. (ref. 4) shovrn in figure 12. Those results show quite low
levels of microphone self-noise for low turbulence flog.

Narrow-band Frequency Analysis

Figures 13(a)--(c), from reference 1, shots the test- section noise spectra
filtered in constant bandwidths 5 Hz and 12.5 Hz pride.. The pitot-strut
tone is clearly shor-m. All struts were in the test section. The microphone
was. mounted to the constant-chord airfoil tubing.

Similar data measured in this study are shown in figures 14(a)-(f).
The estimated sources of the tones are noted on the figures. The airfoil
struts, especially the wake-survey strut, were responsible for the broadband
noise above 250 Hz.

The clean-test-section noise spectra are shoem in figures 15(a)-(f) As
expected, the tones disappeared and the broadband. noise decreased except at
the low frequencies where fan nose dominated.
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M? —LUDING REM RKS

Des , tt.- the entry of trind-i inmel fan noise Into the test section,
the background noise in the 7- ',:/ 10- Foct (2.1- 1:, ,  3,0 tat) Wind `funnel No. I
test section above 400 Hz was dominated by aerodynaridc noise from various
struts in the test section. The two major sources were a picot-support strut
and a wake-survey strut. Strong tones from the pi.tot-support strut were
related to a vorte.X shedding rate. Broadband noise was generated by the wake-
survey strut. Both airfoils had large thi.ckn.ess-to=chord ratios (20 to 25%)
and 'blunt trailing edges which could cause flow separation and strong vorten
shedding. Although these types of airfol-Is are acceptable for their particu-
lar aerodynamic functions, they are unnecessarily noisy. Streamline shapes
like the NACA airfoils should be less noisy as long as the boundary layers
are tripped -rhea used at low Reynolds numbers.

The holes and screen-covered cavity in the te.st wsecti_on walls did not
generate measurable noise at the test air speeds. It should be noted that
the wind tunnel did not have a pressure difference across the test-section
walls and, therefore, no significant air flow through the holes. Air flow
might affect hole--generated noise.

With the struts removed, the wind-tunnel fan noise dominated the
acoustic spectrum below 1000 Hz. Therefore, acoustic treatment upstream and
dot.mstream of the fans is necessary to reduce test-section noise below
1000 Hz. The noise above 1000 Hz, struts removed, did not match predicted
fan noise levels. Either the prediction was erroneous or there was some
other noise source in the wind tunnel, as yet unknown.



APP l Iii A

i
MAN NOISE PREDICTION

(From reference 1 and John F. Wilby/Paul SodeW-man memorandum)

The estimated fan noise spectra shozfn in figure 11 are based on measured
fan sound pressure levels in the diffuser and estimated fan noise variation
with fan speed. Starting with the noise variation method, it was assumed
that the fan sound level is proportional to fan tip speed to the power
five. That assumption was based on emperical fan lairs (see ref. 1). Since
tip speed is proportional to fan rotational speed, rpm, the data would scale
as follows:

rpm	 f

AdB 50.1og

	

	 + 10 lob f	 (Al)r P 1

where the last term is the bandwidth correcton. factor. Since the acoustic
frequencies of blade-passage noise and vortex: noise are also proportional,
to rpm, f 2 J.f	 rpm2/rpm,, and equation (Al) can be written:

rpm2

	

AdB	 .60 log	 (A2)
rpml

Dynamic pressure, q, is proportional to tip speed squared. Therefore,
equation (A2) can be written:

AdB 30 1,5 2
	

(A3)
q.i

The above scaling; equation was checked by measuring noise levels in
the settling chamber at various test-sectina dynamic pressures. Because
of the low wind speeds in the settling chamber, it was felt that the noise was
predominantly fan noise. When normalized to q = 25 psf using equation (A3),
the data collapsed fairly closely to the following values.
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By placing a calibrated noise source _n the Zan section, it was

determined that the settling chamber noise levels are approximately 2 dB
lower than the test section levelL. That rorrecLion added to the above
spectrum levels resulted in the q - 25 spectrum of figure 11. The other
spectra were estimated using equation (A3).

a



REFERENCES

1. Wilby, J. F'.; and Scharton, T. D.: Evaluation of the NASA Ames #1
7 u 10 Foot Nind Tunnel As An Acoustic Test Facility. NASA
CR-137712, 1975.

2. Soderman, P. T.: Instrumentation and Tee hn ques for Acoustic Research
in Wind Tunnels. ICIASP '75 RECORD, International Congress on
Instrumentation in Aerospace Simulation Facilities, Sept. 22-24,
1975, Ottaus, Canada, pp. 270-276, IEEE Publication 75 CUP 993-6 AES.

3. Bender, J.; and Arndt, R. E. A.: Aeroaconstic Research in Wand Tunnels:
A Status Report. NASA CR-rt14575, 1973.

4. Noiseux, D. U.; Noiseux, N. g .; and Kadman, Y.: Study of a Porous
Microphone Sensor in an Aerofoil NASA CR-137652, 1975.

5. Schlinker, R. H.; Fink, M. R.; and Amiet, R. K.: Vortex Noise from
Nonrotating Cylinders and Airfoils. AIAA Paper No. 76-81, January
1976,

6. Paterson, R. W.; Vogt, P. G.; Fink, M. R.; and Munch, C. L.: Vortex
Noise of Isolated Airfoils. AIAA Paper No. 72-656, June 1972.

7. Lawrence, L. F.; Schmidt, S. F.; and Looschen, F. W.; A Self-Synchronizing
Stroboscopic Schlieren System for the Study of Unsteady Aix Floes.
NACA TN-2509, 1951.

8. Dvorak, F. A.; and Woodward, F. A.: A Viscous/Potential Flora Interaction
Analysis Method for Multi-Element Infinite Slept Wings. Volume 1,
NASA CR-2476, 1974.

1.0



TABLE 1.— PTMOSPHERIC CON91TIONS

Y

T-

Time Date Run Temperaturea humidity
humidity Barometer

---- 6/6/75 1 720F .61 30.11 in. Hg

---- 6/6/75 2 72 .57 30.10

1000 6/9/75 3 70 .68 30.05

1600 6/9/75 5 82 .48 30.00

0820 6/10/75 6 64 .75 30.00

1035 6/10/75 7 74 .57  29.90

1335. 6/10175 8 77 .63 30.02

1615 6/10/75 9 78 .43 30.02

0900 6/11/75 10 63 .69 30.08

1350 6/11/75 11 70 .68 30.01

1555 6/11/75 13 73 .53 30.10

0920 6/12/75 14 66 .62 30.08

1045 6/12/75 15 69 .59 30.09
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Figure lb.- Tunnel operating conditions and fan geometry.
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Figure 3.-- Comparison of test section noise levels Vith struts
,-	 of fig. Zb in and out; microphone on tapered stand.
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