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Abstract

Two-dimensional magnetohydrodynamic turbulence is explored by means of

numerical simulation. Previous analytical theory, based on non-dissipative

constants of the motion in a truncated Fourier representation, is verified

by following the evolution of highly non-equilibrium initial conditions

numerically. Dynamo action (conversion of a significant fraction of tur-

bulent kinetic energy into long-wavelength magnetic field energy) is ob-

served. It is conjectured that in the presence of dissipation and external

forcing, a dual cascade will be observed for zero-helicity situations.

Energy will cascade to higher wave numbers simultaneously with a cascade

of mean square vector potential to lower wave numbers, leading to an

omni-directional magnetic energy spectrum which varies as 
k-113 

at lower

wave numbers, simultaneously with a buildup of magnetic excitation at

the lowest wave number of the system. Equipartition of kinetic and

magnetic energies is expected at the highest wave numbers in the system.
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1.	 Introduction

In a variety of diverse situations, a plasma is known to develop

magnetic fields on macroscopic spatial scales, with the supporting electric

current distributions lying interior to the plasma itself. Several

examples will be familiar: (1) "Magnetic dynamo" generation of the earth's

magnetic field; (2) protuberances during solar flares whose geometry

strongly indicates the motion of magnetic tubes of force; (3) appearance

of megagauss magnetic fields when solid targets are irradiated by lasers;

(4) "magnetic island" formation in the poloidal magnetic field of a tokamak

discharge (though much of this behavior at present is inferred very in-

directly); and (5) consolidation of electric current filaments generated

from the Weibel instability in relativistic electron beam simulations.

Some of these plasma phenomena seem to have little in common, except

for the decision on the part of the plasma in each case to dump a certain

fraction of its kinetic energy into the creation of magnetic fields of

macroscopic dimensions. The processes by which this happens are generally

poorly understood. It is of interest to search for relatively universal

mechanisms for generating long-wavelength, self-consistent magnetic

fields which do not rely upon solving detailed equations of motion for

highly specialized cases. This is particularly true since many, if not

all, of the above plasma situations may be highly turbulent.

A precedent for the conversion of microscopic turbulent energy into

energy associated with wavelengths comparable in size to the dimensions

of the system exists in the theory of two-dimensional Navier-Stokes fluids,

in the form of inverse energy cascades. The cascade of energy to ever-

shorter wavelengths in three-dimensional Navier-Stokes turbulence is now

3

REPRODMIBILITY OE THE
ORIMNAL PAGEE tS POC*



widely known, as is the inertial-range 5/3 kinetic energy spectrum which

results. Less widely known, but one of the major developments of the

last ten years in fluid turbulence theory, is the dual cascade which may

result when boundary and/or initial conditions constrain high Reynolds

number turbulence to be essentially two-dimensional. (Atmospheric cir-

culation patterns at scales large comparable with the thickness of the

earth's atmosphere are an example.) In this case, evidence is accumulating

that two quantities are typically cascaded away from any energy source, in

opposite directions in wave number space. Enstrophy (mean square vorticity)

has a tendency to flow to higher wave numbers, while energy flows to lower

wave numbers, thus increasing the degree of long-range organization of the

flow. Kolmogoroff dimensional arguments applied to the upper and lower

wave number ranges for steady states give characteristic energy spectra of

k-3  and k7 5J3 . respectively . together with a continual buildup of enerav

at the longest allowed wavelengths. For analytical, numerical, and expe-

rimental discussion of these results, see, e.g., Kraichnan (1967); Leith

(1968); Lilly (1969, 1971); Wiin-Nielsen (1967); Pouquet et al. (1975a);

and Seyler et al. (1975).

To the extent that the plasmas in the examples treated in the first

paragraph of this paper are representable by incompressible magnetohydro-

dynamic equations, MHD provides a starting point for the dynamo problems

described in that paragraph. If in some turbulent situations, magnetic

quantities can be shown to cascade naturally to longer wavelengths, these

processes will be prime candidates for the development of macroscopic

magnetic fields. The mathematical structure employed in the Navier-Stokes

case is readily modified to incompressible MHD.
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The perception of this possibility appears to have originated with

the astrophysics group at the Observatoire de Nice, who have concentrated

on the incompressible three-dimensional case (Frisch et al., 1975;

Pouquet et al., 1975b; Pouquet and Patterson, 1976). The present calcu-

lation being reported here concerns the two-dimensional case, and extends

an earlier publication by us (Fyfe and Montgomery, 1975). We have chosen

to investigate the two-dimensional case for three reasons: (1) The two-

and three-dimensional cases are as different from each other in HHD as

is Navier-Stokes theory; (2) suggestions have begun to appear that in

strongly-magnetized situations, %MHD turbulence becomes two-dimensional

with increasing magnetic field strength (Kit and Tsinober, 1971; Schumann,

1976); (3) an inverse magnetic cascade is possible in two dimensions

within the framework of a purely isotropic turbulence theory, whereas

the three-dimensional case requires the presence of magnetic helicity

and thus a departure from isotropy. It is not known to what extent the

field variables in the five examples enumerated in the first paragraph

are satisfactorily representable by situations in which the fields are

independent of one spatial coordinate, though (1) and (5) surely are,

and probably others. Finally, external d.c. magnetic fields are easier

to include in two dimensions than in three; if they are normal to the

plane of variation of the MHD quantities, they do not affect the mathe-

matics at all.

The plan of this manuscript is as follows. Section 2 summarizes

the results of the inviscid, infinite-conductivity predictions (Fyfe and

Montgomery, 1975). Section 3, which contains the bulk of the new results

in this paper, is devoted to the demonstration, by numerical solution of
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the equations of motion, of the correctness of the statistical-mechani:al

predictions of Section Z. Section 4 discusses cascade processes, which

necessarily involves the introduction of forcing terms and dissipation

(finite transport coefficients). Magnetic energy spectra are predicted.

Numerical simulation to verify these predictions, a considerably more

ambitious undertaking, is deferred to a third paper in this series.
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2.	 Predictions of the non-dissipative theory; relation to cascades

The first step in discovering a t_rbulent cascade process can be

thought of as identification of the r_• zged constants of the non-dissipative

motion: these, apparently, are the g_?ntities which can be cascaded. ghat

are desired are the integral invariants which result when the dissipative

terms are dropped from the -overning dynamical equations. By "rugged"

constants of the motion, we mean the sub-class of these invariants which

are still invariant if both the field variables and the dynamical equations

suffer truncation in the form of Fourier series representations with large

but finite numbers of terms. In practice, these are all quadratic inte-

grals, and many constants of the motion in the untruncated representations
	 .V

(e.g., the pointwise vorticity in the two-dimensional Navier-Stokes case)

are not rugged in this sense.

Constants of the motion once identified can be used to construct

thermal equilibrium distributions by the elementary Gibbsian methods of

statistical mechanics (Kraichnan, 1975), and one can find canonical

ensembles which have exponential depe 4-ences on those constants which

are "rugged" in the above sense. Multiplying each constant of the motion

is its associated reciprocal "temperature," which enters as a Lagrange

multiplier when finding the most probable state. Some of these temperatures

may be negative, subject only to the overall requirement that the canonical

distributions shall be normalizable. From these canonical distributions,

such expectation values as mean energies per Fourier mode are calculable

in terms of the temperatures by elementary integrations. The temperatures

themselves are determined by requiring the expectation values of the

rugged invariants to match prescribed initial values for the system at

hand.
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Once the rugged constants of the motion are established, the re-

introd-Action of dissipation in the system, generally effective only at

the shorter wavelengths, is necessary for a cascade process and more

generally, for a truly realistic description of the system. If the

cascade process is to be seen in its classical, steady-state, Kolmogoroff

form, a source of the cascaded quantities, or "forcing term," is required

to balance the dissipation. It is assumed that the forcing terms can

supply the cascaded quantities at some prescribes rate. Dimensional

analysis (or more detailed dynamical arguments) lead to wave number

dependences for the spectra of the cascaded quantities.

T 7- ,.e program described above requires first of all a knowledge that

all the rugged constants of the motion have been identified. This is in

some ways the most difficult part of the theory. There is apparently no

other way to verify that the constants have all been identified than to

solve numerically the dynamical equations in the truncated Fourier re-

presentation. The carrying out of this program is the principal content

of this paper (see Section 3). In particular, thermal equilibrium modal

energy spectra depend strongly upon which constants of the motion are used

in the construction of the canonical ensemble. It is of interest, then,

to follow the evolution of the dynamical equations from highly non-thermal

initial conditions to verify the spectral predictions for the state to

which the truncated dynamical equations relax. In Section 4, we shall

return to the completion of the Kolmogoroff program for the cascade pre-

dictions.

We now summarize the results of the two-dimensional incompressible

equilibrium theory (Fyfe and Montgomery, 1975). We consider two-dimensional,

t
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ideal magneto-hydrodynamics in the case in which the field variables have

the following geometry in Cartesian coordinates. B - (B x, By , 0) is the

magnetic field; v - (vx , vy , 0) is the fluid velocity; j - VxB - (0, 0, jz)

is the electric current density. w - 7xv - (0, 0, w?) is the vorticity

vector. a - (0, 0, a 2) is the vector potential, and rxa = B. E - (0, 0, Ez)

is the electric field. All quantities are independent of the z coordinate,

but depend upon x, y, and the time t. A uniform d.c. magnetic field

B - (0, 0, B0) can be added at any step of the development without changing

the mathematics.

All quantities are Fourier-decomposed assuming periodic boundary

conditions over a large square box; e.g.,

J2	
E j (k, t) exp (ik - x)
k

wz	 E w (k, t) exp (ik • x)	 (1}
k

and so on. The k - (kx , ky , 0) are su=ed over all the values (2w/L)•

(nx, ny , 0) where nx , ny are any integers for which n2 + ny > 0, and L is

the linear dimension of the box.

In the Fourier representation, and in the appropriate dimensionless

units, the dynamical equations can be written entirely in terms of w(k,t)

and j(k,t) (Fyfe and Montgomery, 1975):

3w(k,0
at	 ' L.^ M1(r,p) a ( p + r-k) Iw (r)w(p) — j (r)j (p) ]	 (2)

3j (k It)
at	 M2(r,p) a ( p + r-k) [ j (r)w(p) - w(r)j (P) ]	 (3)

RTTRODUCIB LZ'r OF THE



where the coupling coefficients M1 and M2 , independent of the field

amplitudes, are

M1 (r,p) - M1 (P, r) - ( 1 / 2 ) ez•(rxP)	 12 - 12
"	 p	 r

and

k2
M2 ( r , p) - -M2 (p , r ) - (1/2) e^ Z* 	 2 2

"	 p r

Here, e . is a unit vector in the z-direction, and r,p are dummy wave

numbers which lie in the xy plane and which are summed over all the

values allowed by the periodf.c boundary conditions. d(p + r - k) - 1 if

p + r =	 and is zero otherwise.

Three invariants have been found which survive the restriction of

the allowed wave numbers in Eqs. (1), (2), and (3) to lie inside a

circular annulus between Ik1 - kmin and Ik1 - kmax' kmin is a minimum

wave number determined by the box size, equal to 2n/L, and k
max >> kmin

is a large but finite maximum wave number which, within the framework of

the non-dissipative theory, remains physically undetermined. These

three invariants are the total energy E, the cross helicity P, and the

mean square vector potential A. Referred to unit volume, they are

^•	 Iw(k)12 + Ij (k) 
12

E 2 L 2 J dxdy(v 2 + B2 ) - 2 E	 2
k	

k

f
(k) j (-k)

P ^L2 dxdyv • B-2 E	 2

k	
k

(4)

(5)

(6)

(7)
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1 -2	 2	 Ij ( k) I

	

A= L fdxdya • F 	 (8)

	

 k	 k

(He have suppressed the time arguments for economy of notation.)

The canonical distribution, in the phase space defined by the real

and imaginary parts of the J(k) and w(k) , is

D - r, exp 2 (-aE -E? -yA)	 (9)

wnere n is a normalizing constant, and a l ,s 1 ,Y 1 are the energy,

helicity, and vector potential temperatures, respectively.

Throughout the balance of this paper, we restrict ourselves to non-

helical flows, for which <P> - 0; from this it can be shown (Fyfe and

Montgomery, 1975) that S - 0. The case of helical flows is deferred to

a later p0lication. Omitting helicity also permits a wholly isotropic

formulation of *he theory.

For the case of zero helicity, the expectation values calculated

from Eq. (9) are

< I B(k) I 2 > . (a + Yk 2)-1	 (10)

and

< Iv(k)I 2 
> . C,-1  .	 (11)

The a and Y are determined as solutions of the pair of simultaneous

equations

11



2	
J(a + Y k 2 ) `1 + a-lii • E	 (12)

k I

and

2	
, (Y + 000-1 - A,	 (13)

k

where E and A are the initial values of the energy and integrated, squared,

vector potential for the system under consideration.

More convenient than Eqs. (10) mnd (11) for numerical investigation

are the equivalent spectra for stream function and vector potential

given, from Eqs. (10) and (11), by

2	

< (v(k)12 >

	 2 -1< Iv(k)I > -	 `2	 w (ak )	 (16)
k

and

< I B(k) 1 2 >
< 

la(k)12 
>	

_2	
- (Y + ak2 ) -1	 (15)

k

a has been shown to be necessarily positive. But y can either be

positive or negative. For fixed E and A, Y always becomes negative if

k^x is taken large enough. As k x gets larger and larger, Y + ak2
min

approaches zero, and the vector potential becomes more and more concentrated

in the lowest wave number of the system. This is the first and crucial

indication of a possible inverse cascade of mean square vector potential.

It should be noted that the sums in Eqs. (6), (7), (8) are ove. all

allowed wave numbers in all four quadrants in k. Not all of these k's

12



correspond to independent Fourier coe-z ::cients, since the Fourier coefficients

in half of the k space determine those in the other half by the reality

conditions w(k) - w* (-k) and j(k) - J " A). For numerical purposes it is

more convenient (and equally acceptab-:) to carry out those sums only over

the region k  > 0, omitting the modes :or which k  . 0 and k  < 0, in

Eqs. (6), (7), (8), (12) and (13). Tait is, we may if we choose sum only

over th= independent k-modes. This is done in Sec. 1II.

I

J
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3.	 Numerical simulation, and comparison with theory

The d4-►amical equations are solved by a spectral method closely

related to the method of Orszag (1971) and Patterson and Orszag (1971)

(see also: Salu and Knorr, 1975 and Seyler et al., 1975). Rather than

solving Eqs. (2) and (3), which are more convenient for theoretical

purposes, it is preferable numerically to solve the equivalent pair of

equations for the vorticity and vector potential,

aw
z - -v-©w + B•vj

a t	 z	 --	 z

8a
at  - -v'Daz

with the various quantities appropriately Fourier-decomposed. All other

field quantities are expressible in terms of the solutions tc (16) and

(17). It is of the essence of the spectral method that the products on

the right hand sides of Eqs. (16) and (17) are evaluated in position

space rather than as convolution sums, with a fast Fourier transform

back to k-space before the Fourier coefficients are advanced at the next

time step (see Patterson and Orszag, 1971 or Salu and Knorr, 1975).

Initial conditions are specified by giving the t = 0 values of the

Fourier coefficients. This also facilitates numerical solution of

Eqs. '12) and (13) for a and Y. As in our earlier work (Seyler et al.,

1975), we choose highly non-thermal initial conditions, by setting all

Fourier coefficients initially zero outside a ring in k-space. All

excitations then move to both larger and smaller values of !kl according

to the solutions of (16) and (17). Eventually, a state is reached in

(16)

(17)
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which the amplitudes, though still fluctuating with time, show no systematic

drift toward either larger or snaller values. We then time-average the

squares of the Fourier coefficients over a long enough interval that the

average becomes essentially independent of time. The upper limits on

the time intervals over which we may average are indicated by the time

over which our three constants of the motion (E, A, and P E 0) drift

away from their initial values. These time averages are then compared

with the theoretical predictions of Eqs. (14) and (15).

Several runs were carried out, and we illustrate the results by a

description of the two runs to which the greatest amounts of computer

time were devoted, and upon which the most diagnostics were performed.

One of-these, called run F1 hereafter, corresponds to y < 0; the other,

called run J2 hereafter, corresponds to y > 0. Table 1 summarizes the

important pare r -: rs for these two runs.

Fig. 1 zonsists of three panels. Fig. la shows the initial values

of ja(k)1 2 vs. k2 for run Fl. Fig. lb shows the time averages of the

4a(k)l 2 between times 17.5 and 26.25 for run Fl. Fig. lc shows the time

average of the Ja(k)( 2 between tines 35.0 and 52.5, at the end of run F1.

The solid curve in Fig. lc is the theoretical curve, Eq. (15). Different

values of k which correspond to the same value of k 2 have been averaged

over in all spectral plots.

Fig. 2 consists also of three panels, which are the corresponding

stream function spectra WJ(k)' 2 for run F1. Fig. 2a shows the initial

1^(k)j 2 , Fig. 2b shows the time averaged 1W(k)1 2 between times 17.5 and



Figs. 3 and 4, consisting of three panels each, show the corresponding

quantities for run J2. Fig. 3a is the initial data for the 1a(k)12,

Fig. 3b is a time average of the 1a(k)1 2 
between times 24.0 and 31.0,

and Fig. 3c is the time average of 1a(k)1
2
 between times 34.5 and 51.0,

at the end of run J2. The solid line in Fig. 3c is the theoretical

curve, Eq. (15). The three panels of Fig. 4 are the corresponding

stream function plots (IM) 12 
vs. k2 ) for run J2.

Figs. 1 through 4 are considered to be verification of the spectral

predictions of the Eqs. (14) and (15), the most important aspects of the

non-dissipative equilibrium theory.

Dynamo action (i.e., the conversion of kinetic energy into magnetic

energy) is shourn in Fig. 5. Fig. 5 is a plot of the ratios of total

magnetic energy to total kinetic energy versus time, for both runs. The

theoretical predictions are indicated by the arrows on the right hand

side of the graph.

The time history of representative modal energies, averaged over

modes for a fixed k2 , but differing k, are shown in Fig. 6 for run F1.

Fig. 6a shows 1B(k)1
2
 vs. time for k2 = 1, 2, 8, and 26. Fig. 6b shows

1v(k)1 2 
vs. time for the same values of k 2 . It is characteristic of the

magnetohydrodynamic problem (and is the principal observed difference

from the two-dimensional Navier-Stokes case) that the temporal variations

of the 1B(k)1` for low values of k are significantly slower than the

temporal variations of the 1v(k)1 2 , or of the 18(k) 1 2
 for higher values

of k. This confirms qualitatively an expectation raised by noting that,

in Eqs. (2) to (5),
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k

rt (r p ) --.. 0 ----A--7-
1 - -	 2p(p-k)

for k << p. Thus the flow of magnetic energy to the lowest order modes

is expected to be very slow compared to the flow of kinetic energy among

the same modes. This can be seen in Fig. 6.

Fig. 7 shows contour plots of constant a  at four different times

in the evolution of run F1. Fig. 8 she s similar contour plots for

constant stream function {. Fig. 9 shows contour plots of constant aZ

at four different times during the evolztion of run J2, and Fig. 10

shows the evolution of the stream function ^ for run J2 in the same

fashion. Particularly in Fig. 7, it will be seen that the migration of

magnetic energy to longer wavelengths is accompanied by the growth and

consolidation of the contours of consta;t a Z (which, in this geometry,

are also magnetic field lines). The measure of the total area occupied

by any range of a 2 values remains, howerer, approximately constant.

The result has been often quoted, but apparently not proved, that

ideal magnetohydrodynamics permits no changes in the topologies of

closed magnetic field lines in two-dimensional situations in magneto-

fluids. We do not know if the result is true, but it should be kept in

mind that in any case, the result certainly does not apply to two-

dimensional ISD in the truncated Fourier representation. If a proof

could be constructed, it would undoubtedly rely on the invariance of the

two-dimensional analogue of the Alfven flux invariant,

2

I a IeZ fdZxB,
1
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where dQ is a vector element of length along a curve moving with the

fluid between end points 1 and 2. While I is invariant for the original

ideal MiD equations before Fourier decomposition, it does not survive

the restriction of Eqs. (2) and (3) to large but finite numbers of

terms. I is, like the pointwise vorticity in the ideal Navier-Stokes

case (and like a  in the ideal two-dimensional MRD case) not a "rugged"

invariant in the sense of Sec. II. Therefore, no theorems based on its

invariance can apply to the present system. This leaves open, as the

question remains open in the Navier-Stokes case, the question of the

relation of the truncated system (Eqs. (2) and (3)) to the original

system of ideal 'IM equations. This is an important unanswered question,

though its importance is perhaps diminished by the addition of finite

viscosity and resistivity (Sec. IV), which likewise destroy the invariance

of I. No mathematical investigation of the ideal incompressible P20

equations carried out so far begins to approach in rigor what would be

necessary for a resolution of this question. For example, possible

singularities which may develop in the ideal MD equations in the incompressible

case have not been addressed; investigations are still stalled for the

case of ideal Navier-Stokes fluids, which are a special case of ideal

NHD. For this reason it seems necessary to leave this question open for

the time being.

That "magnetic islands" do indeed seem to merge in the present

truncated representation can be read'ly seen by looking at sequences of

typical closely (temporally) spaced a Z-contour plots. Some of these are

shown in Fig. 11. During the sequence shown in Fig. 11, E and A vary by

only .05% and .01%, respectively, so it is not likely that numerical

inaccuracies constitute a "dissipation" which is sufficient to overcome

any real or conjectured limitations ideal PRD may place on the merging.

18



(19)

4. Addition of dissipation and forcin ; spectral predictions

The presence of finite dissipation and forcing modifies Eqs. (2)

and (3) to read

aw(k,t)
at ~	 . Fa M1 ( r , p ) S (p+r-k) [w(r)w(p) —j (r)j (p ) )

- vk2 w(k,t) + f(k,t)

aj (k, t)

at ~	 _	 X12 (r, p )6 (p+r-k) [ j (r)w(p)-w(r)j (p) J

- 
Uk2 

j(k,t) + g(k,t)

In Eqs. (18) and (19), v is a dimensionless viscosity and p is a dimen-

sionless resistivity. f(k,t) and g(k,t) are prescribed functions of the

time which model external forces (mechanical and/or magnetic) which may

act on the system. Numerical investigation of the system (18) and (19)

is planned. At present, we are not interested in detailed solutions of

(18) and (19), but in generalizing the Kolmogoroff program of dimensional

analysis to make predictions about possible cascades of E and A which

Eqs. (18) and (19) may imply, when v and u are very small but non-zero.

Cascade processes have been considered from two different points of

view: the original, relatively simple Kolmogoroff (1941) dimensional

arguments, and much more sophisticated dynamical arguments which lead,

e.g., to logarithmic corrections (cf. Kraichnan, 1973) and which depend

upon detailed properties of the Navier-Stokes equations. At the outset,

it seems desirable to stay with the simpler point of view, since little

is as yet available in the way of accurate information on the detailed

(18)
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properties of the MD turbulent solutions, and since it is as yet unclear

what the increased sophistication has added to the Kolmogoroff result.

A natural generalization of Kolmogoroff's program seems to be to

construct cascadable quantities per unit mass by dividing extensive

rugged invariants by the total mass of the system. There are two of

these for this situation, the energy per unit mass and the integrated

vector potential per unit mass. We abandon the dimensionless variables

at this point, which can obscure the dimensional analysis, and revert to

c.g.s. laboratory variables. The quantities to be cascaded are therefore

(p - mass density)

fi 
2 pv2 + B2 /$ir, dxdy

rt
f p dxdy

fa
t dxdy

J p dxdy

rt is the total energy per unit mass and has dimensionality L 2T-2 , while

A is the integrated vector potential per unit mass and has dimensions

L4T 2 . It is assumed that external sources are capable of supplying II

and A to the medium at the rates 6 per unit time and n per unit time

respectively.

First, a decision must be made in any dual -cascade situation as to

which quantity will cascade in which direction. We proceed by analogy

with the Navier-Stokes case, and assume that the quantity which in the

the non-dissipative equilibrium theory can be sharply-peaked at small k

is the one which can be cascaded to longer wavelength: namely A. It is

also reasonable that the cascaded quantity which contains the highest

(20)

(21)
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+ power of k in its defining expression s ould be cascaded to higher k,

since it is the easier quantity to dissipate. The spectrum (omni-

directional spectrum) Ak , related to 1. by

00

fA  dk

0

has dimensionality L 5T-2 . If A  is ass::med to depend only upon n and k

in the combination n ks , simple arithmetic shows that

a 2/3
(22)

_ -7/3 .

The essential content of the second of 7-gs. (22) is that the omni-

directional n..a,gnetic energy spectrum, 2- k<I B(k)1 2> , should vary as

k 
1/3. 

Of course, eventual pile-up of the magnetic energy at the longest

wavelength will excite the lowest modes even above this level, as in the

Navier-Stokes case.

Eqs. (22) apply below the input wave numbers characterizing the

sources f(k,t) and g(k,t). Above these input wave numbers, similar

dimensional arguments~ predict an omni-directional energy spectrum -k 5/3.

Kraichnan (1965), (see also Pouquet et al., 1975b) has proposed in three

dimensions an "Alfven effect" which inhibits energy transfer at the

higher wave numbers and would lead to an omni-directional energy spectrum

~k 
3/2 

instead of _k5/3 . Present numerical experiments may f ind it

difficult to distinguish between these two possibilities. In any case,

it is our opinion that the question of most interest is the possibility

of magnetic excitations at the longest stave numbers rather than the

precise value of the exponent at large stave numbers. It is this effect

which leads to the dynamo action described here.
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5.	 Discussion

It is considered that two basic contributions are contained in the

preceding pages: (1) Verification to a considerable extent of some

previous predictions about equilibrium statistics of a truncated Fourier

representation of the two dimensional MHD equations; (2) A conjecture

concerning the cascade of vector potential to longer wavelengths for the

same system in the presence of dissipation and external forcing.

It is important to isolate, also, two or three aspects of the

problem that have not been resolved and which require further study.

Most important of these (which parallels long-standing problems in

Javier-Stokes turbulence theory) is the relation of the original ideal

MD equations to their representation in terms of a large but finite

Fourier representation. Experience with other systems of ideal fluid

equations for which exact information is available suggests the possibility

that singularities may form after finite times for most sets of initial

conditions. If this is the case, these singularities will not be visible

in any finite Fourier representation. It is also possible that while

such singularities might form for the ideal MHD equations, the addition

of small but finite dissipation might domesticate them (e.g., Grad,

1975). In this case also, the relation of the truncated Fourier repre-

sentation might obscure the process to some degree. However, all these

objections can be raised in simpler form in connection with Navier-

Stokes turbulence, and the fact that they are unanswered there has not

altered the fact that virtually everything we know about Navier-Stokes

turbulence has come about through truncated Fourier representations. To

those who are to some degree familiar with the current status of Navier-

Stokes turbulence theory, the above limitations may seem less serious

than to those who are not.
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Table 1

Independent k values for which
w(k) t 0, initially

Independent t values for which
J(k) # 0, initially

Initial E

Initial A

Initial P

• (from initial data)
• (from final data)

Y (from initial data)
Y (from final data)

Duration of run ( t - tmax)

Size of time step (:=t)

Final (^ E

Final A

Final P

Percent change in E (at end of run)

Percent change in A (at end of run)

kmin - 2n/L

k
max

(Magnetic energy /kinetic energy) Ratio
Initial
Average over last 2240 time steps
Theoretical ( from initial data)

Run F1 Run J2

(3,1),(3,2),(2,3) same as

(3 .-1 ).(3.-2).(2,-3) F1
(1,3)(1,-3)

(2,2),(3,0) same as
(0,3),(2,-2) F1

4.002 3.962

0.125 0.0484

zero zero

183.8 179.6
169.5 169.0

-157.4 92.96
-142.0 135.9

52.5 52.5

(128) -1 (128)-1

4.329 4.197

0.126 0.0490

0.065 -0.0112

8.17 5.93

0.68 1.23

1 1

16 16

	

0.361	 0.1159

	

1.047	 .9857

	

1.055	 .9873
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Figure Captions

Fig. 1	 Vector potential spectra ja(k)l 2 vs. k2 for run F1: (a) initial

conditions; (b) average over times t - 17.5 to 26.5; (c) ever-

age over times 35.0 to 52.5. Theoretical curve is solid line

in Fig. lc. For clarity, only every other value of k 2 is

plotted for 50<k2<100 and every fourth value for k2>100; the

sane convention is adopted also in Figs. 2, 3, and 4.

Fig. 2	 Stream function spectra J^ M1 2 for run F1: (a) initial conditions;

(b) average over times 17.5 to 26.5; (c) average over times 35.0

to 52.5. Theoretical curve is solid line in Fig. 2c.

Fig. 3	 Vector potential spectra Ja W l 2 vs. k2 for run J2: (a) initial

conditions; (b) average over times 24.0 to 31.0; (c) average over

ti=es 34.5 to 51.0. Theoretical curve is solid line in Fig. 3c.

Fig. 4	 Stream function spectra 1^-M 1 2 vs. k2 for run J2: (a) initial

conditions; (b) average over times 24.0 to 31.0; (c) average

over times 34.5 to 51.0. Theoretical curve is solid line in

Fig. 4c.

Fig. 5	 Computed ratio of total magnetic energy to total kinetic energy

versus time, for runs F1 and J2. Theoretical prediction is

indicated at right of graph.

Fig. 6	 Time history of ene .-ies for fixed k2 , 1, 2, 8, and 26.

(a) ;B(k)l 2 , magnetic energy, and (b)jv(k)j 2 , kinetic energy.

Both are for run F1.

Fig. i	 Contour plots a  - const at four different times in the

evolution of run F1.
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Fig. 8 Contour plots W i coast for stream function at four different

times for run Fl.

Fig. 9 Contour plots %.Z = coast at :our different times during the

evolution of run J2.

Fig. 10 Contoi l t plots	 i const at f:ur different times during the

evo-.; t •;on of run J2.

Fig. 11 Four contour plots a = cons= for run F1 at closely spaced times

showing growth and consolidation of magnetic contours,

characteristic of Y<0.
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