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AN EFFICIENT NUMERICAL METHOD FOR SOLVING THE TIME-DEPENDENT
COMPRESSIBLE NAVIER-STOKES EQUATIONS AT HIGH REYNOLDS NUMBER

Robert W. MacCormack

Ames Research Center, NASA
Moffett Field, California, USA

ABSTRACT

This paper describes a new numerical method that has been used to drasti-
cally reduce the computation time required to solve the Navier-Stokes equations
at flight Reynolds numbers. Though flows past complete aircraft configurations
are still beyond our reach, the new method makes it possible and practical to
calculate many important three-dimensional, high Reynolds number flow fields
on today's computers.

INTRODUCTION

The Navier-Stokes equations adequately describe aerodynamic flows at
standard atmospheric temperatures and pressures. If we could efficiently
solve these equations, there would be no need for experimental tests to design
flight vehicles or other aerodynamic devices. Unfortunately, analytic or
closed-form solutions to these equations exist for only a few simple flow
problems. During the past decade, the computer has been used to generate
many nev solutions. However, with existing numerical methods and computer
resources, these solutions have been restricted to low Reynolds number or two-
dimensional flows. This paper describes a new numerical method that has been
used to drastically reduce the computation time required to solve the Navier-
Stokes equations at flight Reynolds numbers. Though flows past complete
aircraft configurations are still beyond our reach, the new method makes it
possible and practical to calculate many important three-dimensional, high
Reynolds number flow fields on today's computers.

The unsteady Navier-Stokes equations are difficult to solve because at
high Reynolds numbers the magnitude of the inertial forces described by the
hyperbolic terms of the equations are much larger than the viscous forces
described by the parabolic terms. Conventional numerical methods, whether
explicit or implicit, are severely restricted to small time steps by the
stability or accuracy requirements imposed by the hyperbolic terms; hence,
many time steps may be required before the viscous effects can be determined.
The present approach time-splits the equations into a hyperbolic part and a
parabolic part, solves the hyperbolic part by using & new explicit numerical
method based on characterisitics theory, and solves the parabolic part by using
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a new efficient implicit parabolic method. Both methods are fully conservative
and stable with time-steps orders of magnitude larger than those allowed by
CFL (Courant, Friedrich, and Lewy) stability criteria.

DIFFERENTIAL EQUATIONS

The time-dependent compressible Ravier-Stokes equations in two dimensions
may be written in conservation form as

dy  AF , a¢

FE+E+T§‘ 0 ¢
o) p“Z oV
pu pu- + ¢ puv + 1
1 = F = X =
vhere U ov ouv + T e ) ¢ pv? + oy 3¢
e (e + o )u + TyxV - PPy (e + ay)v + Tyyl = 3;

3y

in terms of density p, x and y velocity components u and v, viscosity
coefficients A and u, total energy per unit volume e, specific internal
energy ¢, and coefficient of heat conductivity . Finally, the pressure »p

is related to € and p by an equation of state, p(e,p), where
e = (e/p) = [(u? + v?)/2].

COMPUTATIONAL MESH

For calculating inviscid-viscous interacting flows such as that sketched
in Fig. 1 for a shock wave boundary-layer interaction, an efficient
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Fig. 1 Shock wave boundary-layer interaction

computational mesh is used, shown in Fig. 2. It consists of a fine mesh near
the wall for resolving the flow where viscous effects are important and a
coarse mesh away from the wall where the flow is essertially inviscid. Addi-
tional efficiency can be gained by stretching the fine mesh away from the wall
to reduce the number of mesh points in regions requiring less resolution.
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Fig. 2 Computational mesh for inviscid-viscous interaction flows

FORMER METHOD

In 1970 a second-order accurate uumerical method was presented (1)
for solving the unsteady compressible Navier-Stokes equations foir inviscid-
viscous interaction problems. Since then, the method to be called "former" in
this paper, has been significantly modified (2) to increase its accuracy
and efficiency. A brief description of it follows.

If the solution u‘i j 1is known at time t = nit at each mesh point
{1,3), the solution at time ¢t = {(n + 1)At is calculated by

1
vl = feou

wvhere L(At) is a symeetric sequence of time-split, one-dimensional difference
operators £, (At,) and Iy(Aty). For example,

+1 At At
“2,3 £ (3 )£y(At)£x( 2 )U:j
In this sequence the -fx operator is called twice, each time advancing the
solution in time by At/2 by accounting only for the effect of the x-derivative
in Eq. (1) on the solution. Similarly, the L. operator advances the solution
by At once by accounting only for the effect of the y-derivative on the

solution. The £y operator solves the time-split differential. "equation"

8y . 3G
a—t-'l-s;;'O

by first predicting a new value Uip; from the current solution value U1 j
] ]

() At
U = U - G -G

1,3 = 91,1 "y Ce,3 7 Cp,3-0)
and then correcting the predicted value,

() _ 1 () _at |.(p) _ .(P)
Uy, 3 i{“i.j *U Ty [Gi.w Gi.j]}

The corrected value then becomes the current value for the next split difference
operator in the sequence. The operator -Cx is similarly defined.



The operators fx(Atx) and £y(Aty) are stable if

st < 8%
X7 Jul + ¢+ (U/e){(2vu/Prox) + [(-aw)}/2/ay]}

At < &y
Y7 vl + e+ o) (12wt 2/8x] + (2vu/Pray) )

where ¢ 1is the speed of sound, Y 1s the ratio of specific heats of the gas,
and Pr is the Prandtl number.

For calculating an inviscid-viscous interacting flow on a two-mesh system
shown in Fig. 2, typical operator sequences are (1) for all (1,j) in the coarse
mesh

W = G(T)5e0n (7],

vhere At < ll:l.ni j{z max Atx, max Aty}, and (2) for all (i,3) in the fine mesh
»

m
o - [EaE )]

where = is the smallest integer such that (At/m) < min

{max At_,
2 max A:y}. x

i,]

For high Reynolds number calculations, the viscous region becomes very
thin, requiring A4y near the wall to be very small. This causes Aty of the
Iy operator also to be small and the integer m %o be large. Values for m
often exceed 100, requring a great amount of calculation time in the fine mesh.

PRESENT METHOD

Two new operators have been developed for replacing the £Y operator
in the fine-mesh calculation

:ym)<—— IyH(Ac)tyP(At)

The operator Ly, solves for the inviscid (hyperbolic) terms of G. It
is explicit, conservative, uses characteristic relations to predict convection
and tressure fields, and is stablc if

Ats _AL
[v]
Because the fine mesh covers only a thin layer of the flow adjacent to the wall,
the normal to the wall velocity component v 1is very small relative to c;
hence, the above stability bound for fyH is nuch less restrictive than that
for £_,

y

The operator fy solves for the viscous (parabolic) terms of G. It is
implicit, conservativg, requires no linearization, uses simple tridiagonal

inversion instead of block tridiagonal inversion procedures, and is uncondi-
tionally stable.

The operator sequence for all (i,i) 1in the fine mesh for the present

method 1is \ \ \ N
t 4
U:!.lj B Ecya(z_; e K)‘x(f)‘cyp(ﬁ)‘cyn 2_:)] U,



where now, because of the greatly relaxed stability requirements, m 1is a s 11
integer usually equal to 2 in value.

THE OPERATOR £
Yy

The operator fyn solves the split conservation law "equation"

Py

b1 aGH puv
3?-0--5;--0 where GH- pv:-!+y (2)
(e +p)v

The convection velocity v and pressure p have been underlined for later
reference. Conventiornal explicit difference methods fcr this equation are
limited to time steps

Violation of this condition, the CFL condition, is a violation of the domain of
dependence principle and usually results in rapid numerical error growth. The
operator with time steps At < (8y/|v]) circumvents the CFL condition
by first pteficting at time ¢t + At the convection and pressure fields using
characteristic relations which do not violate the domain of dependence prin-
ciple and then by using the predicted values, values at time t, and the
equations of motion to determime the time-averaged velocity and pressure
gradients at each mesh point (i,j) to be used to integrate the above equation
in a way similar to that described for the operator -Cy.

To derive the required characteristic relations, we first write the above
equation in nonconservation form

[
oy’ ay’ ' u
T BT- 0 vwhere U v
P
v 0 p O 0 0 o O
0 v 0 0 6 0 0 O©
B=lo o0 v 1/e VI+lo 0 o0 1/p
0 0 yp v 0 0 yp O

If v 1is negligible compared to ¢, then the equations of motion become
-gl += 51’- =0

0 ov
;%1- sz—y' 0

and

<

Using the relation c¢ = Vy f. we obtain th: following characteristic relations

dp - 4 .2 9
d£++pcd£+ 0 where at, 5;+c5;

and

dp. _ v _d_-a_ 0
T pc 3t 0 where T Bt CE;

These relations can be solved rapidly for large time steps on a character-
istic set of mesh points such as that shown in Fig. 3. The characteristic mesh
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Fig. 3 Characteristic mesh

points {yjc,jc = 1,2,3 ...} are spaced according to the local speed of sound,
although they are shown equally spaced in the figure. The first characteristic
wmesh point is positioned chchZ away from the wall, where c,, 1is the speed

of sound at the wall and At, = min, j(Ay/c). The jc + 1% mesh point is
’

given by Yietl = Yie + c4cbte where cjc is found by interpolation from

values at the original set of mesh points {yj.j = 1,2 ...}. The dependent
variables Py Vier and pjc are also obtained at each of the new mesh points

by interpolation. The new mesh has the following property: a sound signal
traveling either to the right or left can leave any point in the mesh at time
t and arrive at its next neighbor at t + At,, and at its next neighbor at

t + 24tc, etc. Thie property can be used to solve quickly for v and p at
time t* = t + kiAt,, as shown in Fig. 4, where k 1is the largest integer such
that kit, < mini’j(Ay/|vI). Approximating the characteristic relations by

* _ *x _ -
ijc pjc-k + pjccjc(vjc vjc-k) 0
and L
* .
Pic " Pyt ~ P3c®3cge T Vyerd = 0
we obtain
* _Pyek Y Piem Vie=k ~ Vit
ch 2 pjccjc 2
oo ek Y Vien | Preek T Pyote
ic . 2 zpjccjc

For characteristic paths reflecting from the wall, jc - k 5 0, and pjc—k and

vjc-k are replaced by pl-(jc-k) and -vl-(jc-k)’ respectively.
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Fig. 4 Characteristic solution

An alternrtive solution technique and the one used by the present method
is to replace the point values by integrated space-averaged values. Thus,

v -V

* j +jc ~jc +ic
P )
JC jc jc 2
and
R T T e 1
Vie © 2 + 20, ¢C
Je je e

where

k Ek
P = .-—l-_—- p P - —-l—— p
- - ’ 1 ’
je 2k +1 i_o 3c-2 +jc 2k +1 T=e jcti

k 2k
e .
Ve "k +1 ; Vyer 8 Vo T T 1 et Vot

Once the integrated averages have been determined for point jr, only four
additions and four subtractions are required to obtain the values for point
jc+1 for amy k.

Using the values of v and p at times t and t* and the equations of
motion, we can determined the time-averaged velocity and pressure gradients
responsible for the change in the solution

K
v .1 dv dt
dy At dy
je ) e
~t% . P* -
L | o1 o .. Pic”Pie
ot Jt YP tjc pjcC§cAt
and pt¥
p 2
B Al_t v oF
jc ‘v jC
pth W -
-l ¥ 4e - e~ ge
&t J, e 5tjc de P3¢ T Bt

vhere At = kit =t - t*,
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Thess are the velocity and pressure gradients which will be used to integrate
Bq. (2). Ve first numerically integrate the gradients in y to determine v
and p at each of the original set of mesh points (yj.j =1,2,3 ...}

dy
f e e

vhere p, 1is pressure at the wall and is found by a characteristic relation
similar to the ones given earlier. Equation (2) can now be integrated in time
by At = kiAte in the fine mesh in the same manner as described for the former
mathod except that the convection velocity and pressure (the underlined terms
of Gy) are replaced by their time-averaged values dcisrmined above in both the
predictor and corrector steps.

THE OPERATOR Iy
P

The operator Iyp solves the split conservation law "equation"

v %
3?4'—3-;'0 wvhere GP'G-GH (3)

This equation is parasbolic and from domain of dependence considerations it is

most appropriately solved using an implicit numerical methiod. Examples of such
methods applied to the following model parabolic equation

du _ 9u(du/dy)
i 3y + [small terms]

are (a) Crank-Nicolson

ntl ubt -
uy uj+2Ay(jl 23"’“5“)

uat n+l _ 5,0t n+l
+ 2Ay2 (uj-l 2“.1 + “j+1

+ At [small terms]

and (b) Laasonen

?-u -+ 1;;; (j . Zuj g:i) + ot [small terms)X®

The above difference equations can be efficiently solved by & simple tridiago-
nal inversion.

Equation (3) can be written
g% »
1 dv/ox)]
R e



dv | 13[(\ + 2p)Cov/ap)]) {; a[xgau(axz]}
3t " e 3y ) ay
e +[(u? +v2)/2]} .13 uuu/dy) + (O + 21)v(3v/By) + k(3e/dy))

t P 2y

+{_1_ 9[uu(dv/dw) + Asaulax“}
[} 3y

The first of the above equutions, the continuity eq n without convec~
tion, indicates that density is stationary in time during s time-split
interval and is thuys trivially solved. The second and third equations, the x
and y momentum equations, have essentially the same form as the model parabelic
equation and can be efficiently solved using two simple tridiagonal inversions.
Unfortunately, the fourth equation, the total energy equation, does not have
the same form as the model equation because th. solution variable .
€ + [(u? + v2)/2] does not appear on the right-hand side in a second derivative i
with respect to the y term, although parts of it do. To avoid using a more
cosatly block tridiagonal procedure for solution, we split the energy equaticn
into three equations, a u? kinetic energy equation, a v2 kinetic energy
equation, and an internal energy equation. We obtain the kinetic energy
equations by multiplying the x and y momeatum equations by u and v,
respectively. The internal energy equation is obtained by subtracting the two
kinetic energy equations from the total energy equation. The resulting equa-
tions in model parabolic form are

du? 1 3[u(du?/d 1 3[2uu(dv/dx }
T'F‘JJTm*{E“_JF‘L‘U‘y -1,

t
% [ + 2u) (3v3/3y)] + {}_a[ka(aulax)j - }
ot Oy o dy 2

3¢ 1 3[k(de/d LT,
5—-{--9— Lia_yLlu.-..{——z-—
290 ) dv
T 'EB%[”(T’%*'K)]

rz-%g—;[(x+2u)g-;i+xg—;l]

'me' u? and v2 kinetic energy equations form the same tridiagonal coefficient
matfices as the u and v momentum equations; hence, solution of the three
energy equations requires the inversion of only one additional tridiagonal
matrix.

-l
[

vhere

The operator Ly solves Eq. (3) using either the Crank-Nicolson or the
Laasonen method. The' second-order accurate Crank-Nicolson method is preferred
unless the coefficient uAt/Ay? 4is large enough that the numerical amplifica-
tion factor of the method approaches -1, at which point the Crank-Nicolson
method is known to behave erratically. For large values of uAt/Ay?, the first-
order accurate Laasonen method i{s used. The variations of p, u, and 2 in y
cause no difficulty for either method. The variations of u, ), and the
[small terms] on the right can be accounted for by solving the equations tvice,
first vith the present values of 1, A, and [small terms) and then with the
newly calculated values. Averaging the two solutions time-centers the differ~
ence equations. The assumption that the mixed derivative terms can be treated
as small terms has caused no numerical difficulties. The present method first
solves the x and y momentum equations, uses the present and newv u and v
solutions to evaluate the dissipation terms T, and T, (not always small) in



either a Crank-Nicolson or Lassonen manner, and then solves the uz, v, and &
energy equations. Errors made in the u?, v, and ¢ equations because of
large T, and T cmul exactly when the solutions are combined to obtain

o =ple + [(u? § v3)/2]}.

The operator Ly, inverts three simple tridiagonal coefficient matrices
and solves five ayl:au of equations. Using the convention of counting only
multiplications and divisions (3), the praaent method raquires 21N - 16 arith-
metic operations, where N 1is the order of the tridiagonal system. Conven—
tional mathods for solving Eq. (3) invert one block tridiagonal matrix ot
order 'with block element matrices of order three and require 108N - 18
operations if the inverses of the diagonal block element matrices are computed,
or approximately 45N operations if the inverses are not computed.

RESULTS

Several shock wave boundary-layer interaction problems were calculated
using the former mathod (2) and the present method. For each calculation the
flow was at Mach 2, and a shock wave incident upon a flat plate increased the
pressure by a factor of 1.4. Molecular viscosity was calculated using
Sutherland's formula, and turbulent eddy vtouty vas calculated using a
Cebeci-Sgith turbulence model. Figure 5 cOfpares the results of both methods,
experiment (4), and boundary-layer theory (Ref. 5, using Crocco's uchod) for
a separated laminar boundary layer at a Reynoldl nunmber of 2,96 X 10°. The
results of the two methods agree well everywhere with the exception of pressure
at the leading edge [Fig. 5(a)] which will be discussed herein. The present
method required 1.0 min of CDC 7600 computer time, and the former method
required 6.4 min. Figure 6 compares the results of both methods for a turbu-
lent boundary-layer interaction at a Reynolds number of 2.96 x 105. Again
the results of the two methods agree well except at the leading edge. Fig-
ure 6(c) displays the pressure profiles at the leading edge predicted by both
methods. The presant method is far more sensitive to the presence of the
leading edge singularity than the former method and appears toc be correctly
approaching the theoretical value of pressure behind a Mach 2 normal shock
gave, The present method required 1.4 min of computation tiwe, and the former
method required 58.5 min. Figure 7 compares the computing times of the former
and present methods for a wide range of Reynolds numbers.
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Fig. 7 Comparison of former and present method computing times on the
CDC 7600 vs. Reynolds number for several shock boundary-layer interaction
calculations

CONCLUSION

The present method has reduced the computation time by one and two orders
of magnitude from that required previously to solve for the interaction of a
shock wave with a boundary layer on a flat plate. The method has been applied
with similar success to several other inviscid-viscous interaction problems,
including flows past compression corners, wavy walls, axisymmetric channels,
and blunt-nosed 1ifting airfoils, at Mach numbers as high as 8.5, with shock
waves strong enough to increase surface pressure by a factor of 8P, and at
Reynolds numbers as high as 10°.
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