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MJ EFFICIENT NUMERICAL -OD FOR SOLVING TEIE TIWE-DEPENDENT 

COIIPRESSIBLE NAm-STOKES EQUATIONS AT HI= REYNOLDS NUMBER 

Robert W. UacCormack 

Ames Research Center, NASA 
Hoffett Field, California, U S A  

ABSTRACT 

This paper describes a new ntnserical method that has been used t o  dras t i -  
ca l ly  reduce the coatputation t i m e  required t o  solve the Navier-Stokes equations 
at  f l i gh t  Reynolds n d e r s .  Though f l o w  past complete a i r c r a f t  configurations 
a re  still beyond our reach, the new method makes i t  possible and prac t ica l  t o  
calculate arany Important three-dimensional, high Reynolds number flow f i e ld s  
on today's computers. 

INTRODUCTION 

The Navier-Stokes equations adequately describe aerodynamic flows a t  
standard atmospheric temperatures and pressures. I f  we could e f f i c i en t ly  
solve these equations, there would be no need fo r  experimental t e s t s  t o  design 
f l i g h t  vehicles or  other aerodynamic devices. Unfortunately, analyt ic  o r  
closed-form solutions t o  these equations ex i s t  f o r  only a feu simple flow 
problems. During the past decade, the computer has been used t o  generate 
many new solutions. However, with exist ing numerical ~ t h o d s  and computer 
resources, these solutions have been res t r ic ted  t o  low Reynolds number o r  two- 
d l m e n s i ~  flows. This paper describes a new numerical method tha t  has been 
wed t o  dras t ica l ly  reduce the computation time required t o  solve the Navier- 
Stokes equations a t  f l i g h t  Reynolds numbers. Though flows past  complete 
a i r c r a f t  configuration8 a r e  still beyond our reach, the new method makes it 
poooible and pract ical  t o  calculate  many important three-dimensional, high 
Reynolds number flow f i e ld s  on today's computers. 

The unsteady Navier-Stokes equations a r e  d i f f i c u l t  t o  solve because a t  
high Reynolds numbers the magnitude of the i n e r t i a l  forces described by the 
hyperbolic terms of the equations a re  much la rger  than the viscous forces 
described by the parabolic terms. Conventional numerical methods, whether 
expl ic i t  o r  Implicit ,  a re  severely res t r ic ted  t o  small t h  s teps  by the 
s t a b i l i t y  o r  accuracy requirements imposed by the hyperbolic terms; hence, 
m y  the stepe may be required before the viscous e f f ec t s  can be determined. 
The present approach t h e - e p l i t s  the equations i n to  a hyperbolic par t  and a 
parabolic par t ,  solvee the hyperbolic part  by using a new expl ic i t  numerical 
method based on charac ter i s i t i ce  theory, and solves the parabolic par t  by using 
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a new e f f i c i en t  Implici t  parabolic method. Both methods a r e  fu l l y  conservative 
and s tab le  wlth the-otepr  ordero of raegnitude la rger  rhra those allowed by 
CK (Courant, Friedrich, and Levy) s t a b i l i t y  criteria. 

Tim tire-dependant compressible Havier-Stokes equations in two dipensions 
m y  be wri t ten i n  conservation form as 

in teras of density p ,  x and y velocity components u and v, viscosi ty  
coeff icients  A and Y ,  t o t a l  energy p e t  un i t  volume e, spec i f ic  in te rna l  
energy E, and coeff icient  of heat conductivity K. Finally, the  pressure p 
is related t o  E and p by an equation of s t a t e ,  p ( ~ , p ) ,  where 
E = (elp) - i(u2 + v2)/21. 

CO?4PUTATIONAL XESH 

For calculat ing inviscid-viscous Interacting flows such a s  tha t  sketched 
In Fig. 1 f o r  a shock wave boundary-layer interact ion,  an e f f ic ien t  

INCIDENT SHOCK 

COMPRESSION 

EDGE SHOCK 

SEPARATION REATTACHMENT 
POINT POINT 

Fig. 1 Shock wave boundary-layer interact ion 

colaputational lnesh is used, shown i n  Fig. 2.  It consis ts  of a f ine  mesh near 
the  wall f o r  resolving the  flow where viscous e f f ec t s  a r e  Important and a 
coarse mesh away from the  wall where the flow is esser.t ially inviscid. Addi- 
tional eff ic iency can be gained by s t retching the f i ne  mesh away from the wall 
t o  reduce the  number of mesh points In regions requiring l e s s  resolution. 



,TYPICAL SHOCK PATH 

Flg. 2 fmqutatioaal mesh f o r  inviscid-viscous interact ion flows 

In 1970 a second-order accurate ~~umer ica l  zethod vas presented (1) 
f o r  solving the unsteady compressible Navier-Stokes equations for  L ~ 4 s c i d -  
viecot~s interact ion problems. Since then, the method t o  be cal led "former" in 
this paper, has been signif icant ly modified (2) t o  increase its accuracy 
aad efficiency. A brief  description of i t  fo l lms .  

I f  the solution j is known a t  time t = nAt a t  each mesh point 
(i,j), the  solution at t& t = (n + 1 ) A t  is calculated by 

where i ( ~ t )  is a syrmsetric sequence of time-split , one-dimensional d f  f ference 
operators f x ( ~ h )  and f y ( ~ t y ) .  For example, 

t h i s  sequence the f, operator is called twice, each t b e  advancing the 
solution i n  time by At12 by accounting only fo r  the e f f ec t  of the x-derivative 
In Eq. (1) on the aolution. Similarly, the iy operator a2vances the solution 
by A t  once by accounting only for  the e f f ec t  of the y-derivative on the 
solution. The f y  operator solves the time-split d i f f e r en t i a l  "equation" 

by f i r s t  predicting a new value from the current solution value U 

end then correcting the predicted value, 

The corrected value then becomes the current value for  the next s p l i t  difference 
operator i n  the sequence. The operator ex is  similar ly defined. 



m operators sX(dtx) and ly!dt ) are  s table i f  
Y 

and 

vhere c is the speed of sound, Y is  the r a t i o  of specif ic  heats of the gas, 
and Pr is the Rand t l  number. 

For calculating an Inviscid-viscous interact ing flow on a --mesh system 
shoom in Fig. 2, typical operator sequences are  (1) for  a l l  (1,j) In the coarse 
mesh 

&re A t  1. .ini,){2 .U A t x ,  la. A t  1, and (2) for  a l l  (1, j) i n  the f ine  mesh 
Y 

vhere m is the smallest integer such that  (dt/m) 2 mini, {max A t x ,  
2maxAt  1. 

Y 

For high Reynolds number calculations, the viscous region becomes very 
thin, requiring Ay near the w a l l  t o  be very s m a l l .  This causes A t y  of the 
5. operator also t o  be small and the integer m to be large. Values for  m 
often exceed 100, requring a great amount of calculation time in the f ine  mesh. 

PRESENT METHOD 

n w  operators have been developed f o r  replacing the gy operator 
In the fine-mesh calculation 

f ( ~ t ) -  S (dt)S ( ~ t )  
Y YH YP 

The operator i! solves for  the inviscid (hyperbolic) terms of G. It 
is explici t ,  mnservZRve, uses characteris t ic  relat ions to  predict convection 
and pressure f ie lds ,  and is stablc i f  

A t ( *  
1.1 

Because the f ine  mesh covers only a thin layer of the flow adjacent t o  the w a l l ,  
the normal t o  the wall velocity component v is very small re la t ive  to  c; 
hence, the above s t a b i l i t y  bound for  1: is  auch l e s s  r e s t r i c t i ve  than that  
for  1: YH 

11' 

The operator f y  solves for  the viscous (parabolic) terms of G. It is 
implicit ,  eonservativ?, requires no linearization, uses simple tridiagonal 
laversion instead of block tridiagonal inversion procedures, and is  uncondi- 
t ional ly stable. 

The operator sequence for  a l l  ( i , j )  i n  the f ine  mesh for  the present 
method is 



where now, because of the great ly relaxed s t a b i l i t y  requirements, m i a  a o- 11 
integer usually equal t o  2 i n  value. 

The operator f solves the s p l i t  conservation law "equation" "x 

au a% 
at + a, = 0 where GH = 

<e + E)V 

The convection velocity v and pressure p have been underlined for  l a t e r  
reference. Convent1ox.d exp l i c i t  difference methods f c r  t h i s  equation a r e  
lisriged t o  time steps 

Violation of t h i s  condition, the CFL condition, is  a violat ion of the domain of 
dependence principle and usually r e su l t s  i n  rapid numerical e r ro r  growth. The 
operator ty with t h e  s teps  A t  (Ayllvl) circumvents the CF'L condition 
by f i r s t  p r ehc t ing  a t  tim. t + A t  the convection and pressure f i e ld s  using 
charac ter i s t ic  re la t ions  which do not v io la te  the domaim of dependence prin- 
c ip l e  and then by using the predicted values, values a t  time t, and the 
equations of motion t o  determine the tine-averaged velocity and pressure 
gradients a t  each mesh point ( i , j )  t o  be used t o  integrate  the above equation 
I n  a way sfmilar t o  tha t  described for  the operator 1 

Y' 

To derive the required charac ter i s t ic  relat ions,  we f i r s t  write the above 
equation i n  nonconservation form 

I f  v is negligible compared to  c, the3 the equations of motion become 

and 
av 

8 + 7 P T = o  

Using the relat ion c = 6. we obtain th; following character is t ic  relat ions 
P 

d a a 9 + p c & = 0  h e r e  G - x + c F  
dE+ d 4  

and 

Theae re la t ions  can be solved rapidly f o r  large time steps on a character- 
i s t i c  s e t  of mesh points such as that  shorn i n  Fig. 3. The charac ter i s t ic  mesh 



OftIGlNAL MSH POtNTS )ci 
CHARACTERISTIC MESH POINTS yic 

ay, = C mat 

Fig. 3 Character is t ic  mesh 

points {yjc, j c  = 1.2.3 . . .) a r e  spaced according t o  the  loca l  speed of sound, 

although th<y a r e  shown equally spaced i n  the figure. The f i r s t  charac te r i s t ic  

mesh mint i e  positioned Qtc/2 away from the  w a l l ,  where c, is the  speed 

of eormd a t  the  wall and A t c  = min (Aylc). The j c  + lst mesh point is 
i , j  

given by yjc+l - yjC + cjCAtC where c is found by interpolat ion from 
Jc 

values a t  the or ig ina l  s e t  of mesh points {yj,  j = 1,2 . . . I .  The dependent 

variables pjc,  vjc,  and pic a r e  a l so  obtained a t  each of the new mesh points 

by i n t e rpo l a t i on .  The new- mesh has the following property: a sound s igna l  
traveling e i t he r  t o  the r i gh t  o r  l e f t  can leave any point i n  the mesh a t  time 
t and a r r ive  a t  its next neighbor a t  t + A t c ,  and a t  i t s  next neighbor a t  
t + 2Atc, e tc .  Thir property can be used t o  solve quickly fo r  v and p a t  
time t* = t + kAtc, a s  shown i n  Fig. 4 ,  where k is the la rges t  integer such 
that kAtc 5 mini, (by/ I vI ) . Approximating the charac te r i s t ic  re la t ions  by , 

and 

w obtain 

* pjc-k + qc+k  v = lc-k - vjc+k 
Pj c 2 + PjcCjc  2 

v - 
v* , jc-k + vjc+k + k - k  Plc+k 
j c 2 20, c c j c  

Pot charac te r i s t ic  pathe re f lec t ing  from the wall,  j c  - k s 0, and pjc-k and 

v a r e  replaced by P,-( c-k) and -v 1-(jc-k) ' reepectively. jc-k 



jc-k jc+k J 

Pig. 4 Characteristic solution 

An a l te rnr t ive  solution technique and the one used by the present mthod 
l a  :o replace the point values by integrated space-averaged values. Thus, 

and 

where 

Once the integrated averages have been determined f o r  point j r ,  only four 
additions end four subtractions a re  required t o  obtain the values for  point 
j c  + 1 for  any k. 

Using the values of v and p a t  times t and t* and the equations of 
motion, we can detetntiaed the ti=-averaged ve1ocit.j and pressure gradients 
reeponaible for  the change in the solution 

rt* 

d e r e  ~t - tbtC - t - t*. 
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There are the velocity md prearure gradient6 which w i l l  br umd t o  inte&rate 
Oq. (2). WI f i r s t  numerisltly iattg*.t. the mdirsttr in y to  determine v 
a d  p a t  ucb of the O S A @ ~ ~  wt  of u a h  point. iyj. j l S 2 , 3  . . 1 

uhara q, i i c  prerrure a t  tbe w a l l  and i r  found by a characteristic relat ion 
8 i o i r u  to  the onas given earl ier .  Equation (2) crra rww be integrated i n  tfPrs 
by A t  = Mtc  in  the fh meeh fa the same manner .s described fo r  the former 
metbod except that the convectioa velocity md premrure (the underlined terms 
of GiI) are replacod by their time-aver.ged valuer dc;rrmined above in both the 
predictor and corrector steps. 

The operator gym .olv*r th s p l i t  conservation law "equation" 

Tkb equation is parabolic and from domain of dependence considerations it L 
moat appropriately solved using on h p l i c i t  americal  method. Exmplee of such 
umthodr applied t o  the following model parabolic equation 

are  (a) Cruak-Bicoleon 

+ ~t [smell termel 

Ihr above difference aquatioar can be efficiently .old by a r isple  tridiylo- 
rul inversion. 

Equrrtion (3) can be written 



The f i r r t  of the above equations, the contlnufty eq n without convec- 
tion, indicate8 that density ir  rtationary I n  t h e  during % s the - sp l i t  
Interval d is thur t r i v h l l y  solved. The second and third equations, the x 
and y amerttuia equations, have u r e n t i a l l y  the same fora a8 the model parabolic 
eqqutictn and can be efficiently rolved using two simple tridiagonal invercrions. 
Unfortunately, the fourth equotlan, the to ta l  energy equation, does not have 
the same foxm a s  the modal equation beeawe thi: eolution variable 
r + ((u2 4 $)/2] doer not appea? on the rieht-hand side i n  a ucond derivative ( 
with rampect to  the y t e n ,  although parts of it do. To avoid using a more 
co8tly block tr idhgonal procedure for solution, we r p l i t  the energy e q u a t i ~ n  
inro three equatioar, a u2 kieetic energy equation, a v2 kinetic energy 
equation, .nd an internal energy equation. We obtain the kinetic energy 
equatioarr by multiplying the x and y momentum equations by u and v, 
rrrpectively. The internal energy equation is obtained by subttactlng the tuo 
kinetic energy aquatione fraa the to ta l  energy equation. The reeultiag eqw- 
tionr in model parabolic form are 

The u2 and v2 kinetic energy equations form the a m  tridiagonal coefficient 
utf ' icer  a6 the u and v momentum eqwtiono; hence, ~ o l u t i o n  of the three 
energy aqwtlonm requires the inversion of only one additionaa Drid4agonal 
au(irix. 

The operator sy rolves Eq. (3) wing either the Crank-Nicoiron or the 
Luranra a t h o d .  ThePrecond-ordcr accurate Crank-Nicol~on method is prderred 
rnrlerr the coefficient ubt/by2 h large enough that  the numerical amplifica- 
tion factor of the method approacher -1, a t  which poiat the Crank-Nicolron 
method ir known to  beiuve errat ically.  For large values of vbrlby2, the f i r r t -  
order accurate Luaoaen method in  wed, The variations of p, u ,  aad A in y 
cam no diff iculty for ei ther method. The variation8 of u,  A ,  and the 
[ m a l l  tenm) on tbe r ight  can be accounted for by rolving the equations tvice, 
f i r r t  v i th  the present valuer of u, A, and (-11 t e r n ]  and then with the 
nwly calculated valuer. Averagiry the two ralutionr tintt-centerr the diffet-  
ence equationr. The asrumption that the mixed derivative terns can be treated 
ar am11 t a m  ha8 c a u d  116 nmerical  d i f f icul t ies .  'he pxermt method f i r s t  
ralver the x and y m o m t u m  eqwtioae, urea the present and new u and v 
rs;utioru to  evaluate the dirripation term TI and T2 (not alwayr mall) in 



e i the r  a Crank-tficolson or  Lassonan manner, an6 than rolves the u2, vZ, and r 
mrgy eqrutioar.  Error. made in the uZ, v2, red c equcrtiwr because of 
large TI ."d T cancel e u c t l y  when the ro l . ; th r  a r e  (?ou&lilcrd t o  obtain 
l - pic  + [(u2 f v2>/2Jl.  

The operator Cyp inverts  three r igp le  tridiagoarrl c d f i c i e n t  r ~ . t r i c e s  
ard solves f ive  r y s t m  of equationr, Uring the cosvention of countlng only 
m l t i p l i k a t i a a r  rad divimiorrs w ,  the prssent sathod requires 21# - 16 ar i th-  
metic operations, where N is the order of the tridiagonal system. Coavea- 

::: !# bods f o r  solving Eq. (3) invert one block tridiagonrrl matrix or  
v i t h  block el-t matrices of order three and require lO8N - 18 

ojmratioar i f  the ieverrer  of the d i a g o n ~ l  block element matrices a r e  computed, 
o r  approxiartaly 451 operatioar i f  the invcrres a r e  oot  computed. 

RESULTS 

Several shock wave boundary-layer Interaction problem ware calculated 
wing the f o r ~ w r  mthod and the preeeat mathod. For each calculation the 
flaw waa a t  W.ca 2, and a shock wave incident upon A f l a t  p la te  i n c r u r e d  the 
pressure by a factor  of 1.4. Molecular viecosity war calculated uriag 
Sutherland's formula, 6ad turbulent eddy v os i ty  was calculated w i n g  6 
Cabeci-Wth turbulence atodel. Figure 5 c 8 area the r e ru l t r  of both methods, 
experhea t  0, and boundary-layer theory (Ref. 2, using Crocco's method) for  
a separated luninar boundary layer a t  a Reynoldr number of 2.96 x lo5. The 
result. of the  two methods agree w e l l  everywhere with the exception of pressure 
a t  the leading edge [Fig. 5(a)] which w i l l  be dircuesed herein. The present 
wthod required 1.0 m i a  of CDC 7600 computer tiare, and the fonner method 
required 6.4 mln. Figure 6 compares the reeul te  of both methods fo r  a turbu- 
l en t  boundary-layer interact ion a t  a Reynolds number of 2.96 * lo6. Again 
the re ru l to  of the two method8 agree well except a t  the leading edge. Pig- 
ure 6(c) displays the pressure profile6 e t  the leading edge predicted by both 
methods. The prereat mthod i r  f a r  more sensi t ive to the presence of the 
leading edge s ingular i ty than the former method and appears t o  be correct ly 
approaching the theoret ical  value o f  preesure behind 6 M~ch 2 normal shock 
wve.  The present method required 1.4 min of computation time, and the formar 
method required 58.5 min. Figure 7 compares the computing times o f  the former 
and present acthodr for a wide range of Reynolde numb8ra. 
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Fig. 7 Copparison of former and present method c-putiag times on the 
CDC 7600 vs. Reynolds number f o r  several shock boundary-layer interact ion 
calculat ions 

The present a t h o d  has reduced the computation time by one and two orders 
of q i t u d e  from that required previously t o  solve f o r  the interact ion of a 
shock wave with a boundary layer  on a f l a t  plate .  The method has been applied 
with similar success t o  several  other inviscid-viscous interact ion problems, 
including flowe paat colnpression corners, wavy walls,  axisyllll~etric channels, 
and blunt-nosed l i f t i n g  a i r f o i l s ,  a t  Mach numbers a s  high a s  8.5, with shock 
waves strong enough t o  increase surface pressure by a factor  of 80, and a t  
Reynold8 numbers a s  high a s  lo9. 
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