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PERFORMANCE OF A RECOVERABLE TUG FOR PL,INETARY MISSIONS INCLUDING USE OF
PERIGEE PROPULSION AND CORRECTIONS FOR NODAL REGRESSION

Janos Borsody

Lewis Research Center

National Aeronautics and Space Administration
Cleveland, Ohio

Abstract

Mathem.,tical equations are derived by using lino
Madmum Principle to obtain ilia maximum payload ca-
pability of a reusable Tug for planetary missions. 'Ilia
mathematical formulation Includes correction for nodal
precession of Ilia Spare Shuttle orbit. The Tug performs
this nodal correction ht returning to this processed orbit.
Ilia sample case analyzed represents an Inner planet
mission as defined by ilia declination (fixed) mid right
ascension of the outgoing asymptote and the mission en-
ergy. Payload capability Is derived for a typical cryo-
genic Tug and ilia sample case with mid without perigee
propulsion. Optimal trajectory profiles and some im-
portant orbital elements are also discussed.

Introduction

At ilia present time NASA is developing a reusable
Space Shuttle (SS) that will carry po-'iads to low Eardi
orbit, For missions beyond low Earth orbit the SS will
carry In its cargo bay (In addition to ilia payload) a pro-
pulsive stage that will be deployed in low Earth orbit and
will deliver the payload to Its required injection condl-
itons,

This propulsive stage may be expanded attar pay-
load delivery, or it may be returned to a wafting SS for
a flight back to Earth, Expandable stage performnnce
can be analyzed with techniques developed for expand-
able launch vehicles and will not be discussed heroin.

respect to Initial conditions ore evaluated by perturbing
ilia Initial conditions ono at a time, Integrating the state
and ndjolnt equations, and observing Bic changes In final
conditions.

Reusable Tug trajectories, Including nodal correc-

tion without perigee propulsion, have been Investigated
In reference 1, Ilia analysis presented herein extends

ilia results of this reference by optimizing ilia 'rug total
trip time and Introducing p^rigco propulsion, Total trip
time is defined as ilia elapsed time from ilia start of the
first outbound buts to return to ilia SS orbit for rendez-
vous, I••or perigee propulsion the continuous outbound

bun required to reach payload Injection conditions Is
split Into two burns separated by an optimum coast time.
The presont analysis also Includes node regression of

ilia SS orbit, Nodal regression Is caused by the Enrthta
oblateness, which induces a rotation of ilia SS orbital
plans of about 0.3 dog/hr about the polar axis. Since the
Tug must return to ilia SS orbit and the SS does not have
performance capability to substantially alter Its lino of
nodes, ilia 'Rag is assumed to make all necessary nodal
corrections for rendezvous.

As a sample case, payload capability is derived as
a function of the declination of the outgoing asymptote
with and without perigee propulsion for a typical cryo-
genic Tug configuration and an inner planet mission. A
discussion of optimal trajectory profiles and SS launch
time constraints is included.

N
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In this paper, the maximum performance capability
of a reusable stags (Tug) Is derived for planetary mis-
sions. This is a complex mathematical optimization
problem since the Tug 1s beyond Earth-escape energy
at payload injection and must perform a relroburn to re-
turn to an Eartli orbit. Since this retrobum occurs far
frem Earth, largo velocity losses are encountered, as
will be discussed.

The mathematical optimization problem is formu-
lated by using the Maximum Principle. State n id asso-
elated adjoint equations are numerically integrated to

determine ilia Instantaneous position and velocity of the
Tug. To obtain ilia maximum payload capability, vcria-
tional final conditions are derived by using Clio Maximum
Principle, and the two-point boundary value problem is
solved by using a Newton-Raphson iteration technique.
The required partial derivative of final conditions with

Analysis

Trajectory Profiles and Assumptions

A trajectory profile for ilia perigee propulsion case
Is illustrated In sketch (a). Tug and payload are do-
played In a low Earth orbit by ilia Space Shuttle (SS),
The first outbound burn Is initiated at an optimal point
along this orbit. The length of the burn Is determined
curing ilia optimization process in solving the two-point
boundary value problem. At the end of this burn an
elliptic orbit is established with a relatively long period.

Tug and payload Con coast along this orbit to a point
just before perigee, where a second outbound burn is

performed that accelerates the payload to the given in-
jection conditions. The time at which the second out-
bound burn starts is also determined during the optimi-
zation. Planetary injection conditions are defined by

OoZ4pp +̂. ^^^
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specifying the mission energy and the declination of the
outgoing asymptote. The right ascension of the outgoing
asymptote Is not included as a final condition, because
any right ascension ma. , be obtained by selecting the
proper tiff launch time. This Is discussed In more detail
later. After the Tug reaches the given Injection condi-

tions, the Tug thrust is terminated and a fixed coast
phase is initiated, (hiring this coast the Tug and the
payload are separated, and the Tug is turned around to
orient it for the retroburn that follows. During this
retroburn the energy is reduced below Earth - escape en-
ergy, and the Tug enters an intermediate elliptic return
orbit. Itetroburn terminates when a given total trip
time Is satisfied. Total trip time Is defined as the
elapsed time from the start of the first outbound burn to
return to the SS orbit for rendezvous. The retrobum is
followed by a coast phase to the apogee of the intermedi-
ate orbit, where a small perigee correction burn is exe-
cuted. This is followed by a coast phase to perigee and
a final rendezvous burn.

The flight profile for the case without perigee pro-
pulsion is the same as just discussed with the exception

that the first outbound burn continues until the given In-

jection conditions are satisfied and thus the coast in
elliptic orbit and the second outbound burn are elimi-
nated.
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'Io obtam solutions to the two iMdnt boundary value
problem and to simplify,  the analvsis, a number of as-
sumptions were made, Theme assumptions are discussed
In the following paragra;.a:

(II The perigee correction and final circularization
burns were assumed to be ideal Impulsive. This as-
sumption was mach- to reduce the sensitivity and conse-
quentl y Impro%v the convergence characteristics of the
two-)>•.inl boundary value , problem. U the corresponding
stale equations are stable, the adjoint equations will have
unstable roots. since total trip time for the problem
utidvr consideration Is of the order of I clay (based on the
results of rt4. 1), errors Introduced in the numerical in-
tegration of slate and adjoint equations will be greatly
amplified. These errors will affect the finite difference
partial derivatives and consequently the convergence of
the Newton-Itaphson Iteration. With this ussumplion, the
problem Is numerically integrated only to the end of the
retroburn, and the remaining portion of the trajectory is
calculated In closed form (impulsively).

(2)A circular SS orbit Is assumed. This assumption
is made to eliminate the constraint on the line of apsides.
For elliptic SS orbits the Tugs orbit at the end of final
rendezvous burn, besides being In the same orbital plane,
must have Its line of apsldes coincident with that of the
SS orbit, l'sing a circular SS orbit removes this con-
straint, and rendezvous Is accomplished by small
changes In total trip lime. The trio time has to be ad-
justed so that doe Tug ,wd SS will be at the same polut
along the orbit at final rendezvous l,urn completion,

(3)A spherical nonrotating F:arth model is used.
This assumption is made to simplify the equations of mo-
tion and the adjoint equations, A nonsphe •rical F.arth
model could be included with relatively little change in
the analysis, As a result of this assumption the nodal
precession of the Intermediate Tug orbits becomes zero,
and the Tug corrects for SS orbit nodal precession only.
This gives somewhat conservative Tug performance
si. ^c, if the Tug orbits were allowed to precess, the
total nodal correction required of the Tug would be
slightly reduced, and consequently payload capability
would Increase, Nodal precession of the Tug orbits for
the nominal mission is less than 0, 2 deg Mthout perigee
propulsion and less than 0, .1 deg with perigee propulsion,
as compared with an SS orbit nodal precession of approx-
imately H deg.

(4) The SS orbit nodal precession is comp :ted from
the following equation:

Jit1. 7/2	 2 3/2
'641Il = -	 G T l^r 1 )	 (1 - e )	 cos I	 (1)

It' 3/2	 1\	 /1

RETROBURN
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This equation was derived In reference 2, Nodal pre-
cession depends on the SS orbital parameters and t o
total trip time TD.

Basic Eaur;lons Covarning the Problem

Variables and otter notation used In the following
discussion are defined In the appendix. Equations do-
scribing the flight of a rocket In an Inverse-squara
gravitational field are

V=-OF+Ve0(C) 	
(2)

r3	 in

r = V	 (3)

m=-(3(C) (4)

^ e 1 (G)

In these equations, r, V, and 
in 	 instan-

taneous radius, velocity, and mass, respectively; V.

Is the engine exhaust velocity; p Is the mass flow rate;
and [ Is the wilt thrust direction, which must be detor-
mined. The state variable I; was Introduced to remove
the explicit time dependence of mass flow rate from the
equations of motion so that tbn Maximum Principle could
be applied to this problem. The superscripts — and
represent vector and unit vec^or quantities, and • is
the total derivative of the particular variable with re-

spoct to time.

By usAng die Hamiltonian formulation of the varla-
tional calculus, the costate equations may be obtained

from die so-called tiamiltonlan on each subare. The
Ifamiltonlan. is

II=T • V+µ • [+ohir+rt +Y(f • f-1)	 (7)

In this equation, T, N, o, and 7 are the adjoint varia-
bles associated with the problem. The constraint asso-
elated with the thrust direction Is also adjoined to 11 by

y, from equation (7) the time derivatives of the adjotnt
variables are given by

A = -N	 (B)

r

v = °ep (z•n	 (10)
m2

q=-K PA 	(11)
DC

where

in

The thrust direction that hninlmlzea the Hamiltonian Is
given by

f=T
	

(13)

and

y a _ VV
fl 

7	 (ld)
2hn

Stale equations (2) to (G) and adjotnt equations (B) to

(11) make up a sat of first-order nonlinear differential
equations that must be numerically Integrated In order to
obtain a solution to the two-point boundary value problem.
Optimum thrust direction Is along the unit vector given

by equation (13).

Traloctory Constraints

In Oils section, constraints on `he problem are dis-

cussed In more detail, Sketch (b) Illustrates a slmpll-
Tied trajectory profile from a given Initial orbit to the
end of retroburn. Events a i and bl Indicated on Um
sketch are the limes at the beginning and and of phase 1,
respectively,

SEPARATION
COAST PHASE

hh^hh `pas5
FIRST OUTBOUND BURN S h

	 1, 
-hl,s2

SECOND OUTBOUND BURN T 	.p1, aA

Ihl

The first outbound burn is initiated at time al
(al = 0) at an optimal point in the Initial SS circular in-
clined orbit. Main engine thrust terminates at time bl,
which is selected to give maximum payload. At this
time an elliptic orbit is established and the Tug coasts
along this orbit to a point near perigee (time b 2). Sec-

ond outbound burn starts at time a3 (a3 = b2) and con-

tinues until the spocitled payload Injection conditions are
reached at time b3. Time a l (ql = b3) is the beginning

A

3
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of it fixed payload-separation coast that continues until
time b4.	 Tug rotrobura starts at time a s (a5 ,, 64) find
ends at b5.	 Hetroburn Is followed by Ideal impulsive
opogei, and porlgee bums and associated coast phases.
With this time convenlfon, constraints q, 	 governing Ole
problem can be written mathematically ae followoi

qt = r(al) - rl - 0 (i5, 1)

q2 = V(al) - V t - 0 (16.2)

(13 =Tfal). V(al) - 0 (1 G. 3)

%,-h(al)-f 3 -Cos it -0 (10,4)

q5 =-h(al) • f 2 -cos" " sill 1 1 -0 (15.6)

q0 - m(at) - ml - 0 (15.0)

q7 = t(al) - al = 0 (16.7)

q5 = T(a3) - T(bt) = O (1G, B)

q0 = V(a2) - V(bl) = 0 (15.0)

q10 = m(02) - m(bl) = 0 (15.10)

qll ° 9(a2) - t(bl) = 0 (15,11)

ql2 = r03) - r(b2) = 0 (15,12)

q13 - V(n3) - V(b2) = 0 (15.13)

q14 = m(a 3) - m(b2) = 0 (15.1,1)

q15 = t(a3)-t(b2) =0 (15.15)

q16 = i'04) - T%) = 6 (15.16)

917 = V(a4) - V(b3) = 0 (15.17)

ql8 = m(a4) - m(b3) = 0 (15.18)

q19 = t(a4) - t(b3) = 0 (15.10)

q20 = E[r(b4), V(b4)] - Ell = 0 (15.20)

q81 = 9[r(b4), V(b4)] - rpri = 0 (15.21)

q22 =T(as) - T(b4) - 0 (15.22)

q23 = Ties) - V(b4) =Z (15.23)

q24 = t (a5) - t (64) = 0 (15.21)

q2G ° 'r(b5)' ha(TD) = 0	 (15.25)

q2G V(b5). ho prDl - it	 (15.26)

q27 ° mills) " Its (11Va(GVa+4Vd ° it (15, 27)

q2S ° 52 - Il l - 0	 (15.28)

q29 = 0.3 - b2 = 0	 (10.29)

q30 - 0.,I - b3 - 0	 (16.30)

q31=a5-64 n 0	 (16.31)

q32 -a i +Gt-b4 -0	 (15,32)

q33 = 904) +At-t(b4) =0 	 (15.33)

Equations (15,1) to (15.7) express fixed Initial conditions
at Tug departure from the Initial SS orbit. Equations
(10.8) to (15,19) 61vo the continuity of radius, velocity,
mass, and die dummy variable t at the end of the first
and second outbound burns and at the beginning of the
second outbound born, Equations (15.20) and (15.21)
express die constraints associated with a. planetary mis-
sion, namely, fit injection the payload must have a given
enorby and declination of the outgoing asymptote. Equa-
tions (15, 22), (15.23), and (15.24) give the continuity of
position, velocity, and t at Injection, Satisfying equa-
tions (15.25) and (15.26) assures that the Tug is In an
orbit that has vie same Inclination at retroburn comple-
tion as the SS will have at rendezvous. In other words
the flight Is planar following vie retroburn, The vector
lie in equations (15, 25) and (15, 20) Is the unit angular
momentum vector of the processed SS orbit to which the
Tug must return. The vector ha is a function of the
total trip time. Equation (15, 27) Is vie constraint on
Tug mass required at b5 to perform the apogee and
perigee velocity changes mid return vie Tug empty to
the final SS orbit, Equations (15.28) to (15.31) express
the continuity of time between different trajectory
phases, -quations (15.32) and (15, 33) are the fixed
payload-separation coast time constraint and the con-
straint on t, respectively.

With these constra'nts the augmented Hamiltonian
III) to be minimized can be written as follows:

5	 33
FI' = m(a5) - m(U,I) +	 Iii +	 slgl	 (16)

1=1	 1=1

whore m(b4) - m(a5) represents the payload weight
dropped during the coast phase, which Is to be =: d-
mized; and II I are Hamiltontans during the two out-
bound burns, the live coast phases, and the retroburn.



i	 j	 I	 I

Constraints of Aro adjoined to	 11' by using arbitrary orb.multipliers	 C l .	 Auxiliary variational boundary ca •9- N(UG) + CE25rfbG) + c26V(bGJ] •	 VrT
dons may now be derived from this augmented Ilamil- aTD

tonlan.

m"
Auxiliary Variational Boundary Conditions + a(b5) V Vi AVT

0
Via following auxih,.ry varlatlonat equations must

be satisfied by using the Maximum principle and the E	 f	 1+	 25 ( ho - Lho • x%)]x(b G)) = a	 (17,20)augmented Hamiltonian In equation (16) In order to max r(b6) l	 J
Imlzs payload;

S(a)	 7r (	 AVV 1 - E2 V(a)1	 c+	 a1)	 E+	 —^1	 E5V+	 V—qL (17.1) 11(x2) = II(bl)	 (17.21)

µ(a1) = e 1 r(n1) +	 a) + eV-	 + eL r .,V-q5c, 3V ( 1	 4 rT1 (17.2) II(a^ = II(b2)	 (17.22)

F(a2) '' F(bl ) (17.3) Hier) + 11(a4) - 11%) - 11(b4 )	 0	 (17.23)

NO2) ° p (bl) (17.4) 11(b5) 	 Ê2Gr(b5) + c2a%r)] •	 (17.24)O ,^,o
D

e(a2) = o(b l ) (17.5)

T(br) - 0	 (17.25)
T(a2) = T(bl) (17.6)

Equations (17.1) and (17.2) contain six equations and five
Ti(a3 ) =Tt(b2) (17.7) arbitrary constants. 	 Therefore, there is a variational

condition that the Initial multipliers must satisfy . , max-
µ(a3) = µ(b2) (17.8) Imize payload.	 Equations (17, 3) to (17. 13) give the con-

tinuity of adjolnt variables at the end of the first and
o(a3) = c(b2) (17.0) second outbound burros and at the beginning of the second

outbound burn.	 These equations can be satisfied directly
T(a2) = T(b2) (17, 10) by setting the multipliers at the beginning of these phases

equal to the corresponding multipliers at the end of the
S(a l) = C(b3) (17.11) previous phase.	 Multipliers at the end of the payload-

separation coast are discontinuous, as shown by eora-
p (a4 ) = N (b3 ) (17.12) tlon,7 (17,14) and (17.15) • 	This discontinuity w'

rnmputed later. 	 Multiplier o is continuous m. , • 	 .
o(a4) = ak) (17.13) to 1 at the and or the payload-separation coast ph..^•

(cqs. (17. 16) and (17.17)). 	 Equations (17,10) and (17.26)
C(ar,) = T(b4) + c20V-E(b4) + E21V VV(b4) (17,14) must be satisfied at retroburn completion,	 They contain

six equations and three unknowns (E26, E26 , and o(br,)),

µ(a,,) =µ(b4) +c2oVrE(b4) +c2lVrV(b4) (17.15) The three variational conditions available for optimiza-
tion will be evaluated later.	 The ffamiltonian is contin-

o(aG) = 1 (17.16) uous at the completion of the first outbound burn and the
start of the second outbound burn, as given by equations

o(b4) = 1 (17,17) (17.21) and (17.22).	 Equation (17.23) gives the  relation
the Hamiltonian must satisfy at the end of the second

T(s4) - T(b3) +T(ar) - T(114) = 0 (17.18) outbound burn and the start of the retroburn.	 Gradients
of return time T, total delta velocity AVT = AV,

''jj	 8^i
C(bG) + IC25r(b6) + C26V(b6)J •	 OVT

AV , and declination rp were derived in reference 1
be	 herein.	 Equatlorand will not	 reproduced	 (17.24)OT 

D gives tlio llamiltonlon at retroburn completion, 	 Tho

m(b)5
vector ho Is a function of the total trip time, or return

+ o(br)	 VV AVT time, and the required partial derivatives will be evalu-
Va ated later.	 Return. time Is defined as the time from

E26 	 11 retroburn completion to return to the SS orbit. 	 Equa-
+	 (ho - [ho • V(4G)] V(bG)

J
 = 0 (17.15) tion (17.25) is the boundary condition on the multiplier

V(bb) ll associated wtth the dummy variable t.

5

j
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Variational Flnnl Condition at Departure
from Initial SS Orbit

To derive the variational final condition contained In
equations (17.1) and (17. 2), dellno the vector

C(t) =C(t) x VIC) +p(t) x TIC)	 (I8)

whore x represents the vnctor or erase product In this
equation. The vector C Ce, a constant of motion, This

can be shown by taking de time dcrlvntivo of C and
substituting equations (2), (3), (8), and (0) ford"
and p, respectively. The time derivative ut I 	 r:.

out to be Identically zero; therefore, C Is a co,

motion.

The variational condition at departure from the Inl-
tlnl orbit may now be computed as follows. Compute dto
C vector at a l giving

C (a1) _ (e4e3 - c 0e 2) x fi (al )	 (10)

From this equation Cho vdrlatlonal final condition Is ob-
tained by tatting the scalar product with It(a l), giving

C(ni ) • Itt(al) = 0	 (20)

Evaluation of Discontinuity in Slate Variabloo
at End of Paylond-Separation Coast Phase

To evaluate the discontinuity In X and ) at time
a0, two arbitrary constants (c20 and 621) must be oval-
noted In equations (17. 14) and (17.15), Those constants
are evaluated In this section. Tale the vector products
of equation (17.14) with V and (17,15) with r, add the
resulting vector equations, and apply equation (18).
Title procedure will result In

C(a5) - 6(b4) = 6211VVw x -V(b4) +Vr(y xT(b4)]	 (21)

Since C Is constant during each phase

C (a5) = C (b5)	 (22)

Using equations (17.10) and (17.26) yields

C (hs) = -ho x [c26 V(b5) +C25i(b5)]	 (23)

This equation was derived by using the results of refer-
ence 3, where It Is shown that VV yx V + Vry x r=0
if y = y(r, V, T • V). Since the return time T and the
apogee and perl ;co delta velocities are of this form, the
corresponding vector product sums are zero. From
equation (23)

C(b0)• he = 0	 (24)

Taking the scalar product of equation (21) with he lien
gives

C(b)- hc21 =	 4 An	 (20)

IV
VV x V(b4) +VTtp x r(b l)] • Fo

Given e21 and F(b4), lot

X=X(b4)+c21VV	 (^

Willi this definition, equation (17,14) becomes

X(n0) - c20V(b l) + X	 (27)

To determine the discontinuity In C and p, 620 must
be evaluated. This may be done as follows, From equa-
tion (11)

T(a0) - T (114) _ -P(a0)K(a5)	 (28a)

and

T(n,() - T(b3) _ (i(b3)K(1)3) 	 (28b)

From equations (28) and (17.18) the following equation Is
obtained:

P(a0)K(a0) = fl(b3)K(b3 ) 	 (26)

Since o = 0 on a coast phaeo (a= corstant), equations
(17.13), (17.16), and (17.17) give o(a 5) = o(b3). With-
out loss of generality, assume P(a5) - P (b3) 10. Then
equation (20) reduces to

m(aS)
1(a0) =	 T(b3)	 (26)

m(b3) 

Now 7, (a0) may be substituted from equation (27) and the
resulting equation solved for E20, giving

1620 = - v(b4)

x7C • V(U2) t	 rX. V(b4)] 2
 + ('m(a5)T(U3)^2

L	 I(, m(b3)
J

(31)

Choice of + or - sign can be determined as follows.
Assume the payload is zero, that Is, m(ab) = -(b3).
Also if the decUnntlon IS not specified, equation (20) bc-
comes X=T(b l). Furthermore, Ifpayload-separation
coast phase is zero, X(b4) =X(b3). With these assump-
tions, equation (31) becomes

620 = _
 V(b4) [x(h

4)' V(b4) I C(b l) • V(b4)]

A choice of - sign implies that c20 = 0 and that the

G



Dito
[e26r(bGl + EY6V(b6)] DTD f(bG) +7,(b G)V—V GVT + C26 +G° - [ito • V(bG)]Vlua)1

+ [c26r(ba) + c26V(ba)] Ofi0 V—'C f . F AVT o 0
DTD 1

(3a)

1N (ba) +a(b6)Vp 
GVT +rN,) f fiO - [fio" P(b6)]r(b6)}

+[r26T(b6)+E26V(UO)] Dlto VVT) . 7r GVT=0
8TD

(37)

In these equations, DitO /DTD Is given by tho vector

heOTtD = he [DTD - (rO OTD)r0]

where

into = an
DTD bT0 (r11V13"r13V11,r12V13"r13V12'0)

The components of rl and V1 in this equation are
given by

r1j = rl . i)

Vii r V1 . 21

The third variational condition Is given by using equa-
tions (17.24) 0 (17.26), and (33) as

(38)

1

f	 ,

^	 I	 j

^	 w

thrust direction Is continuous at aG unit is essentially
pointed along the velocity vector. Ilowaver, to bring the
Tug back, velocity must be reduced below escape voice-

fly mid the thrust direction should be opposite to the vo-
loelty voc(or, Therefore, the + sign should be used In 	 and

equation (31),

Variational Final Conditions ut
ltotroburn Completion

e	
, - Clbat • fi(br')	 V(b)	 (31)20	 fi(Ua) • ilo	 6

	

G-- G(ha), n	 Go 

I

In this auction, variational final conditions will be
derived at retorburn completion, Substituting equations

(17, 10), (17, 20), and (17.20) Into equation (17, 24) hives

Two variational conditions may now be obtained by taking
the scalar product of equation (17, 10) with VV GVT and
equation (17. 20) with VA. GVT and using equation (33):

% r3G V
VT• i•(bo) + VTT• V(bG) - o(ba) VoI	 G)

	

 
G	

^JJJIII 	

1xl--C' VV GVT•r(bs)+VT AVT'lt(bGJ
L r3(ba)

rV alb )
+ fl(UG)I m̀bG' - o(bGl

[,26r(b6) +c2oV(biil] • Dh
° 	(32)

8TD

However,

--C' 7—VT•r(bG)+VrT•V (b6)=dT

	

r3(ba)	
dt

and

9G Dy GVT • r(bG) +^ GVT • V(bG) ° d dt T
r (bG)

•

	

	 These equations tiro valid on a coast phase, whore ilia
delta velocity required to return the 'rug to the SS orbit
remains constant; and d GV T/dt = 0. Similarly, the
change In return time is equal to the change In time
along the coast arc but opposite In sign, that is,
dT/dt =- 1. Substituting Lhese results Into equation (32)
gives

u(b5) ° 
VON (b G)	

(33)

m(bG)

The arbitrary constants %, and s20 can be evaluated
by taking the scalar product of equation (23) with r(bG)
and V(bG), giving

ORI^^  7QU 
J^ Lim'



)	 r

1

_	 a	 W(bl), C(bG) +N(bil), V(bp) Initlnl Finnt
r3 (bfi) condl tic.,i conditions

6 (al) r(b,) • (io = 0	 (44,1)

"[r20t(bG)+c2GV(bG)] -0„6D (JO)
VUtI) V(bp)•fin	 0	 (44.2)

Variational Conditions nt Completion of First Outbound
Burn and Start of Second Outbound flown

Integrating equation ( 11) and applying equations
(17.0) and (17,10) gives

Vo] (bl)
all),) ,

m(bl)

and

V°A(nG)
c(ap) _ m(a3)

Since v Is constant on a coast phase, equations (17, 5)
mid (17, D) give u(a3) = v(bl). Therefore, since m(bl)
m(i ,), one vat lntional final condition Is given by

%(a3) - T(bl) = 0	 (41)

The second variational condition Is derived based on the
constancy of One Hamiltonian on each phase mid equations

(17.22) to (17, 25), It Is glr. n by

C(h2) • T (b2) +p(b2) • V(b2) + T(b2)
r3(b2)

1I 2_10- [4,.,^(b,,)  + s26V(b5)J 8TD = b 	 1421

where

T(b2) =J b3 K.M dt + / b5 K	 ill;	 (43)

If the Tug has a constant flow rate, T(b2) is equal to zero
and 4 need not be numerically integrated,

Initial and Final Conditions

The inlV . adjolnt variables are unknown mid must
be guessed at in solving the two-point boundary value
problem. As was shown in reference 4, multipliers T
and µ can be computed from physically more meaning-
ful parameters, such as the vehicle pitch attitude y4,
pitch rate ^, yaw attitude b, yaw rate d, and a(al)
and i(al). With those changes in variables the Initial
and associated final conditions are given by

dial) w[r(b4), V(b4)]- `'D  ; 0 (44.9)

6(ul ) Equation (30) (44.4)

u(al) Equntion (37) (44,G)
GVT/V °

m(a G) - m(ul) tm(hG) " Milo	 `= 0 (44,0)

TD Equation (30) (44.7)

bl Equation (41) (44.8)

b2 Equation (42) (44,D)

1(nl ) o(all) = u(b4) = 1 (44.10)

T(al) C(al) • h(al) = 0 (44.11)

b3 E[r(b4), Vied] - ED = 0 (44.12)

bG bG - al + T - TD - 0 (44.13)

Final condition (44,10) can be satisfied by scaling
the problem by 1,(al). Therefore, It is omitted froth the
numerical Iteration, Final condition (44,11) Is used to
compute X(a), as shown in reference 4, Final condi-
tions (44, 12) and (44,13) are used as cutoff comiltlons to
determine b3 and bG. With these simplifications the
number of final conditions to be satisfied for the perigeo
propulsion ease Is reduced to nine, namely, conditions
(44,1) to (44, D), For the case without perigee propul-
sion, conditions (44, 8) and (44. D) do not apply, and the
number of final conditions to be satisfied Is reduced to
seven.

The two-point; boundary value problem Is solved by
using a Newton- Raphson numerical iteration technique.
The iteration Is terminated when the percent of predicted
payload change and the absolute value of the normalized
final conditions are loss than 10-0.

Results and Discussion

The method mid equations derived In the previous

sections were applied to a typical cryogenic Tug config-
uration and a set of planetary Injection conditions, The
results of this analysis are presented In this section.

propulsion and weight characteristics for the re-
usable Tug are given In table 1. The initial weight of the

(400)

(4ob)

8

1

i



i

Tug and payload to assumed to be fixed to remain within
SS payload capability. To satisfy title constraint, TuT
propellant load must be varied with payload weight to
maintain this Initial Wright, Engine thrust corresponds
to the RL-10 c ghto currently In nee on the Centaur
cryogenic upper stage, but engine specific Impulse rep-
resents it 	 oriented version of the same
engine. To account for losses and flight performance
reserves, eaghhe specific impulse Is reduced by 2 lor-
cenl.

The sample ease selected (table to Is a typical Inner
planot (Mars, Venus) mission, with a mission enorgy of
12 (km/sce) 2, on Initial SS circular-orbit altitude of
186 km, and it SS orbital Inclination of 28, 6 0, This SS
orbital inclination was chosen based on the results of
reference 1, where It Is shown that maximum Tug per-
formance Is obtained (for declinations less than 30°)
when departing Irom this SS orbital Inclination.
Payload-separation coast time (the time from outbound
burn cutoff to the start of retroburn) Is assumed to be
10 minutes,

To shoo the payload gain duo to perigee propulsion,
Tug payload capability without perigee propulsion for op-
timum trip times Is also presented.

Figures 1 to 7 present results without part goo pro-
petition; figures 8 to 16 contain results for perigee pro-
pulsion cases. Thin data are given as a function of the
declination of tho outgoing asymptote (DLA), which was
parametrically varied.

It Is also shown In reference 1 that there a:o two
solutions for each declination and that the payload curves
are symmetric nbout a 00 declination, Therefore, the
data presented heroin are restricted to positive declina-
tions. Right ascension of the outgoing asymptote was not
specified In the analysis, and consequently an 11optlnal
pseudo right ascension I is generated for each DLA.
Pseudo right ascension Is defined as the longitude of :ho
projection of the outgoing asymptote in the equatorial
piano measured from the Initial SS orbital ascending
node. Right ascension may be computed by adding the
pseudo right ascension to the longitude of the SS orbital
ascending node measured from the vernal equinox.
Since the longitude of the SS orbital ascending node Is
determined by SS launch time, any desired right ascen-
slon may be obtained by selecting the proper launch
time.

Optimal pseudo right ascension Is presented In fig-
ure 1 for the case without porlgoo propulsion, To dls-
tinguish between the two solutions on all figural, a solid
and a dashed line are used. The solution given by the
dashed Line will be referred to as solution 1, and the one
given by tie solid lino as solution 2. In the region of

G GINA I PAGE IS
"r' POOR QUALITY

single solutions, where DLA exceeds SS orbital Inclina-
tion, n solid line Is used, Nato that for 00 DI.A, the cur,
going nri,Iplotos associated with the two solutlenn point
In tippet r o directions, As DLA In Increased the outgoing
asymptotes move cloned together until the two colutiona
degenerate Into a single solution, At this point the out-
going asymptote has it pseudo right ascension of approxi-
mately 000, For DLAI s beyond die SS orbital Inclina-
tion, the pseudo right ascension remains nearly constant

The Tug departure point fr(. •: the Initial SS orbit was
determined during the optimization, and the results are
presented In figure 2. Departure arguments of latitude
of die two solutions arc also 180 0 apart for 00 DLA and
converge to about 2600 as the DLA approaches the SS
orbital Inclination,

Optimum total tell) time (the time from Tug depar-
ture from the initial SS orbit to return to the rendezvous
orbit) Is given In figure 3. Total trip limes for the two
solutions are nenrly the same and decrease from approx-
imately 20 to 21.6 he as DLA to Increased from 00 to
300. Total trip time varies Inversely with the duration
or the retroburn, The shorter the retroburn, Ute more
elliptic the return orbit, and consequently the total trip
time Increases. Velocity loss during retroburn In pro-
portlonal to the burn time, Therefore, as total trip time
Is increased, the velocity loss during retroburn de-
creases. However, the nodal correction due to SS or-
bital precession will Increase with total trip time, which
Increases the velocity loss to correct for r idal preces-
sion. Therefore, there is a balance between those two
effects that determines the optimal trip time. Vnrlatlon
In trip time 1s duo to changes In orultal geometry and
associated nodal correction during outbound and retro-
burns. Tito shop increase in total trip time for DLA'a
larger than ilia SS orbital Inclination can be explained
when changes In orbital inalmallon during outbound burn
are considered. It Is well known from orbital geometry
that orbital inclination at Injection must be at least as
large as the magnitude of the desired DLA, Therefore,
largo Inclination changes are made during both outbound
burn and retroburn for DLAI a larger than the SS orbital
Inclination. Departure arguments of latitude for these
cases are approximately 2600, =it 	 outbound burn
covers about it 000 are, Therefore, the complete burp
occurs before nodal passage. Since orbital inclination
must be increased, as was mentioned earlier and the
line of nodes tends to move retrograde during the in-
clination change, It becomes easy to make large nodal
changes during the oullownd burn. These nodal changes
are in the same direction as the SS nodal precession, so
longer trip times become optimum.

Nodal correction during the outbound burn and total
nodal correction (during outbound burn and retroburn)
are given in figure 4. Total nodal corrections for the



two solutions tiro very clone and differ only because of
Ilia slightly different trip times for ilia two solutions.
However, ilia outbound nodal correction for one solution
is largo and for ilia other It In small, Thin Is explained
by ilia laeatioa of the outbound burn, For the tulle With
largo nodal correction during outbound burn, the out-
bound hum starts near or after nodal passage (fig. 2).
Since ilia outbound burn arc In approximately 00 0, the
Tug burn continues through maximum latitude, which In
no optimal region In which to change one line of nodes,
For the case with small nodal correction during outbound
burn, ilia burn generally takes place near Ole ascending
nodal passage, whore It Is difficult to change ate node.
Also note dint for largo DLA'a the total nodal correction
Increases faster than the tidal change during ilia out-
bound burn; dint is, larger nodal changes are made dmr
ing the ratroburn, This Is expected, since largo Inclina-
tion changes are being mado during this burn to return
the Tug to the SS, and it becomes optimum to combine
nodal correction with tbo Inclination change.

I•'igure 0 presents the inclination of ilia hyperbolic
orbit containing lhu outgoing asymptote, 'Dtore Is a
maximum inclination change during outbound burn of
1.1, 0 dog for DLA I a loss than ilia SS orbital Inclination.
For tho .first solution (dashed Line) the outbound burn
starts ahead of ilia ascending lino of nodes (fig. 2) and
ends past It. In Oils region It is difficult to change the
line of nodes, told nodal change (fig. 4) Is small. To
move bhp node retrograde for these solutions, the or-
Will Inclination must be Increased, as shown In figure 0.
For the second solution (solid line) the outbound burn
starts past nodal passage (fig. 2) and continues through
maximum latitude, which is an optimal region ).a
to change Ono node, Most of the nodal change is done
during this burn (fig, 4). Since ilia burn Is past Lilo node,
orbital Inclination must be decreased to move the node
retrograde (fig. 6). As tie DLA approaches Oho SS or-
bital Inclination, ilia Inclination at Injection must be in-
creased to meet ilia DLA requirements, and for the sln-
glo solutions ilia orbital Inclination is increased to coin-
cide with ilia DLA.

Tug payload capability without perigee propulsion
far ilia two solutions Is given In figure 0, The two solu-
tions have nearly the same performance (maximum dtf-
forence, 20 kg out of 4700 kg), Payload capability de-
creases wlUh Increasing DLA. Tile decrease Is ap-
proximately 00 kg betwoen 00 and 000 DLA, For DLA's
higher than 20 0 Ono payload decreases rapidly bemuse
of Ilia largo Inclination chargos required, as discussed
earlier.

Velocity losses encountered during outbound and In-
bound trajectory portions are presented In figure 7.
Velocity loss Is defined as the difference between the
velocity supplied by the Tug (based on the amount of

propellent teed and the Ideal rocket equation) and the
Ideal mission Impulsive velocity, Ideal mission impul-
sive velocity In defined an the velocity needed above
circular-orbit velocity at it 	 altitude In 	 to
reach a given energy, Total velocity loon gradually In-
creases with Increasing DLA for `ii.Ne loon than 300
An DI,A to Increased beyond 20 0, th	 ie velocity losses n-
crease very rapidly, again because of lie largo Inclina-
tion changes being made. Note that the solutions given
by the dashed line have larger total velocity lenses than
the solutions given by to solid line, yet de payload for
these solutions Is Idjohir (fig, 6), This apparent incon-
giully Is duo to rho unequal effect of velocity loan on pay-
load during outbound and Inbound trajectory portions.
The effect of ilia outbound velocity loon on pavaoad In al-
most twice ilia effect of the Inbound velocity lose,
Therefore, for Du solutions given by the dashed line the
payload Increase due to lower outbound velocity Issues In
greater than ilia payload decrease duo to higher Inbound
velocity losses when compared wtlh ilia solutions given
by the solid lino.

The outbound velocity losses of figure 7 Indicate that
large velocity losses are associated with lira finite thrust
loved of the reusable Tug. These losses can he educed
substantially by using the technique called"perfree pro-
palsies, It With perigee propv hnion the outbound burn Is
split into two separate burns, Tito first outbound burn
puts ilia 'rug and payload Into an elliptic orbit. The Tug
Is allowed to coast almost to the perigee of this orbit,
where it second outbound burn takes place. The second
outbound hum continues until the target conditions are
satisfied. After payload Injcctton at the specified could-
Uses, ilia flight sequence Is the sane an that without
perigee propulsion. Tito lengths of the first outbound
burn mid die coast phase following It tiro optimized; tint
to, they are selected to maximize payload.

b:. figures Sand 0, the pseudo right ascension and
the departure argument of latitude are given, respec-
tively, as n function of DLA for the case with perigee
propulsion. Those fiburas are very similar to those
discussed for ilia case without perigee propulsion and
will not be elaborated on furlliar.

Optimum total trip time Is presented in figure 10.
For these cases the first solution has a shorter trip
time (dashed line) than ilia second solution. The first
solutions also have shorter first outbound burns, an
shown in figure 11, 'the Ilrst outbound burn varies with
varying DLA from about 020 see to 740 see, an com-
pared with the total outbound burn of approximately
13 00 sec for the non-perigee-propulsion case. The pe-
riod of the elliptic orbit achieved at first outbound burn
completion varies between 4 and 6 hr. The second out-
bound burn is initiated along this orbit at the optimum
true anomalies given in figure 12,
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Tito total outbound nodal correction anti ilia Inellna-
llon of ilia hyporbolle orbit containing the outgoing an-
ymptoto are prevented In flgureu 11 and 14, respectively,
and are similar to those ivlllhout pongee propulsion. The
larger difference In total required nodal correction be-
tween rho two solutions with porthea propulsion than be-
tween ilia two solutlona without perigee propulsion In
caused by n lnrgor dlfferenco In total trip lime,

Payload capability with perigee propulsion In given
In flguro 10. The maximum payload difference between
ilia two solutions is about 100 kg out of about 0200 kg,
Payload again drops off rapidly as D1A In Increased be-
yand 900, Velocity lossen with perlgeo propulsion are
substantially lower than without perigoo propulsion, an
seem by comparing figure 10 with figure 7, Thls results
In ilia Improved portormanco using perigee propulsion
seen in figure 10,

For comparison, ilia Ideal Impulsive payload capa-
Witty without nodal correction and ilia payload capability
Including nodal correction with and without perigee pro-
pulelon are given In figure 17, Ideal payload capability
for the baseline Tug analyzed Is 0700 kg, as compared
Milt a maximunh payload capability with perigee propul-
slon of 0100 kg had without perigee propulcion of 4700 kg,
This shows that by using perigee propulsion ilia payload
loss due to gravitational anti othor trajectory shaping of-
focis can be reduced by abom 40 percent, of course,
doing so requires an additional bur a with Its associated
startup and shutdown losses, as well an additional guid-
ance requirements that must be considered In evaluating
the advantages of perigee propulsion,

Summary mid Conclusions

Equations aro derived In this paper shat can bo used
to maximize ilia payload capability of a reusable Tug at
energies beyond Earth escape with and without the use of
perigee propulsion, TIm analysis Includes correction
for SS orbit nodal precession, while ilia total trip time
(limo from Tug departure to return to ilia SS orbit) Is
optimized,

Based on ilia results presented for ilia baseline Tug
and baseline mission, ilia following conclusions can be

made:

1, For trajectories not using perlgeo propulsion the
payload losses duo to gravitational and other trajectory

shaping constraints are large (070 kg out of 
an 

ideal pay-

load capability of 0700 kg),

2. Tao payload loss can be reduced by approximate-
ly 40 percent by using perigee propulsion. (Payload
loss with perigee propulsion is 670 kg,)

3, Optimal total trip time varies from about 21 to

26 he without perlgce propulsion and from 18 to 21 he
with perlgeo propulsion for a declination range of 00 to
30a,

4. Any declination Ixc tween -900 and ♦600 may be
reached by departing from a 2k, 6 0 Inclined S.9 orbit, 'Ilia
variation In payload for this declination range In small
compared with the nominal payload capnbllRy. For high-
or declinations One SS orbital Inclination must he in-
crcauod to avold large payload degradation,

0, Optimal round-trip reusable Tug trajectories In-
cluding ilia SS orbit nodal precession to energies beyond
Garth escape with and without perigee propulsion can be
obtained by a straightforward Nowton-Raphson iteration
technique using ilia methodology developed harem.

Appendix - Symlwls

a time at beginning of a plume, nee

b time at end of it plume, ace

C defined by eq, (18), kg-sce

D1A declination of outgoing asymptote, deg

F•, energy, m"
n
 /scc2

a eccentricity

f thrust direction defined by eq. (13)

G gravitational constant of Garth, m3/fled

11 Ramiltonlmh, kg

II' augmented Hamiltonian, kg

b angular momentum, m2/sec

1 Inclination, rid

J oblateness parameter (1,62440 -3 1
K kappa function defined by eq. (12), sec

t P t 2 . 13 rlglnt-handed Cartesian coordinate system
(vector E l	points to tine Initial SS orbital
Lino of nodou and t a points to ilia NorOh
Polo)

m mass, kg

P orbital poriod, sea

P somilatus rectum, in

ql constraints

RE radius of F,arth (6.37816x106 m)

r radius, in

'1' return tine, see
'1'D total trip time, see

t lime, sec

At payload-separation coast time, sec

!A" Poort
L AX ^^?n,G^-kt3 US
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W

u	 argument of latitude, rad

V	 velocity, na/scc

AVa	apogeo delta velocity, m/scc

AV 	 perigcu delta velocity, Waco

AVT	total delft velocity (&VT " AVa + AVP), m/nee

X	 defined by eq. (26), kg-sec" 2/m

y	 dummy variable

p	 mesa flow rato, Ilg/aee

q	 multiplier associated with thrust direction, kg

b	 yaw attitude, rad

C	 multiplier associated with trajectory constraints

t	 dummy variable, "cc

X	 adjolnt multiplier associated with velocity,

kg-scot/no

It 	adjolnt multiplier associated with position,
kg-scc/m

a	 adjolnt multiplier 	 I, 4ad with mass, sec

r	 ad)olat multlflw. associated with t, kg

N	 dec)(natlon or outgoing asymptote, rod

a	 pitch attitude, red

R	 longitude of lino of nodes, red

Subscripts:

a	 apogee

a	 exhaust

It	 l,ardwaro

I	 variable Index

o	 processed SS orbit at time TD

p	 porlgoo

Superscripts:

time derivative

vector

unit vector
0
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Tablo 1, " Baocllne Tug characteristics

Tug initial weight (Including payload), Itg , .. , 21$522
Tug burnout wolght, kg . . . ........... 2707
Engine thrust, N . 	 . . ............ G6 722
Engine specific Impulse, sec	 400
Performance resorve, percent of

specific Impulso .. 	 2

Table 11. - Baseline mission characteristics

Mission energy, (km1scc) 2 I ........... , 12
Bongo of declination, deg ..... ..... 0 to 64
Payload-separation coast time, vin . , , , ... , 10
Initial SS orbital altitude, Ima . , , ........ 165
Initial SS orbital Inclination, deg ... , , .. , , 28.6
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Figure 1. - Pseudo right ascension of outgoing asymptote
measured counterclockwise in equatorial plane from
initial Space Shuttle orbit ascending node - without
perigee propulsion.
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Figure 2. - Argument of latitude measured in initial
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Figure 3. - Optimum Tug trip time from departure from
initial Space Shuttle orbit to return to Space Shuttle -
without perigee propulsion.
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Figure 4. - Nodal shift made during outbound burn and
total nodal correction -without perigee propulsion.
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Figure 5. - Inclination of hyperbolic orbit containing da-
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Figure 7. - Velocity loss on outbound and inbound tra-
jectory legs - without perigee propulsion.
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Figure 8. - Pseudo right ascension of outgoing asymptote
measured counterclockwise in equatorial plane from
initial Space Shuttle orbit ascending node -with perigee
propulsion.
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Figure 9. - Argument of latitude measured In Initial
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N	 Figure 13, - Nodal shift made during outbound burns and

w
required total nodal correction -with perigee propulsion.
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Figure 14. - Inclination of hyperbolic orbit containing de-
sired outgoing asymptote -with perigee propulsion.
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Figure 15. -Tug payload capability -with perigee propul-
sion.
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Figure 16. - Velocity loss on outbound and inbound tra-
jectory legs -with perigee propulsion.
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Figure 17. - Comparison of maximum Tug payload capa-
bility, with and without perigee propulsion, with ideal
performance.
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