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ABSTRACT

An analytical approach to determine an optimum laminate for a

variety of thermal and mechanical_ loading combinations is presented.

The analysis is performed for a linear elastic material under static
z

mechanical and uniform thermal loadings. €

The problem is restricted to a unit width and length laminate

with angle orientations resulting in an orthotropic, symmetric and

balanced configuration.	 This allows for the elimination of bending-

extention coupling effects, furthermore only in-plane loads and uni-

form temperature change through the thickness are considered.	 Thus

the problem is reduced to that of a plane stress state.a

The optimization is performed by a general purpose program,

AESOP	 (Automated Engineering and Scientific Optimization Pro gram) x

developed for NASA by the Boeing Co. 	 An objective function defining fr°

total strain energy, is formulated and an optimum laminate design:

determined subject to constraints on stiffness, average coefficient of

thermal expansion, and strength.	 The objective function is formulated

in terms of the orientation angles, number of plies and material

properties.

The method presented has, in varying degrees, shown that the de- s:

sign of a laminate can be accomplished using strain energy minimiza-

tion as the primary criteria.	 It is felt that by minimizing strain

energy, reserve strength is maximized. 	 The inclusion of a-failure
4

criteria may result in a non-feasible solution based on the purpose of r

j a failure criteria to maximize stress, within failure bounds.	 The

results of various combinations of applied constraints in the opti-

mized design process are presented and discussed'.

i
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Chapter T

IxNTRODUCTION

1.1	 GENERAL

-' The goal of structural engineering is $ for the most part, to

arrive at a design which is the most economical and at the same time

satisfies all load and deflection requirements. 	 This goal is best met

byimplementing some optimization technique to aid in the design pro-

cess.	 the use of optimization is a relatively recent development in

i the design of structures and has not yet enjoyed the intensive study

needed to yield the potentially powerful tool it promises to be.

Design, at present, usually amounts to a series of analysis procedures,

or	 iterations,	 until a suitable solution is found, however with the

advent of modern high speed digital computers the use of an optimiza-

j. tion	 echnique to solve the same problem can yield a superior design,

and a ,savings in computational effort.

Laminated composite materials, being composed of many plies at

various angles of orientation, readily allow the direct application of

optimization techniques to arrive at an optimum design.	 Previous- f

investigations have dealt with this problem on the basis of a minimum

weight design with various constraints applied. 	 Many of these efforts`
66

;. have been of the "try them all" approach.

The "try them all" approach amounts to the systematic perturbing

of angular orientations by a set increment until all pos§ible configura-

tions have been analyzed. 	 This is fine for a very small number of ;.

plies in the laminate but the total computational time involved for
f

Y

;r: l

j

1
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a large number of p'l'ies is prohibitive.	 This leads to the use of 	 non

linear programming techniques to arrive at an optimum design.

Little attention has been paidto the effects of thermal loading

on the design, or the need for tailoring laminates for certain thermal i

expansion characteristics. 	 This type of problem is becoming critical

as higher temperatures environments and extreme temperature ranges are

encountered, especially in spacecraft and hypersonic flight.

1.2	 OBJECTIVES

The primary objective of this report is to develop a computer code

which can be usedto find an optimum composite laminate design, given
a

the mechanical and temperature loadings. 	 In addition, the capability to

use the code purely for analysis is provided.

} -	 The design is found by perturbingthe design variables until the

objective function, consisting of total strain energy, is minimized
T

q subject to constraints on stiffness, coefficients of thermal expansion

.

and failure criteria.	 The use of the total strain energy of the i

t laminate as the objective function to be minimized is thought to be

,	 d A ` a means of maximizing the total reserve strength the laminate has

available.

V^4Y'^@V  .._s	 .cSzalF^. vv:f^_	 a^ vmi. s yaa^k-d*sa	 casYxzr^._i +- 	 ^	 ^
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Chapter 2

LITERATURE REVIEW

A number of schemes for optimum laminate design have been formu-

lated during the early years of composite material technology develop-

ment.	 The earliest cf these deals with fiberglass laminate design by
a

G Hackman and Stotler [1].	 This procedure uses the number of plies,

individual ply material type and ply orientation as the design y

variables.	 A combined load envelope is developed and adjusted to

reflect fatigue and environmental factors.	 The design is then found,

by means of a polar loading diagram, through a series of material and

ply orientation selections." This type of design method lacks the

ability to consider ply interaction.

The computer program RC7 written by General Dynamics [2] de-

r , termines an optimum laminate by means of a series of ply additions

e and reorientations.	 RC7 has the capability to handle 20 plies, con-

tains two strength criteria, Tsai-Hill and maximum strain but stiffness

is not considered.	 The ply angles are allowed to vary. from 0 to 180 ti

degrees in increments of 5 degrees,	 This procedure would seem to be

very good for their laminates but the large number of reorientations

theinvolved tend to negate	 value for a large number of plies.

^; Approaching the problem by a different method, Foye and Baker [3]
x

use a random search technique as opposed to the exhaustive, systematic

search.	 Initially this procedure determines thenumber of plies by a

random search method then in the second step uses non-linear pro-

gramming techniques to find the optimum orientations.

3
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An analytical approach is taken by Bush [4] to the , optimizati'on

problem.	 This procedure uses a unique simultaneous equation solution
r

approach formulated on the basis of the load-stress and stress-strain

relations.	 The design variables include total thickness and ± angles.

The design is constrained to be	 orthotropic about the pr=inciple load

directions.

F Another type of laminate design optimization procedure has employed

families of plies.	 Two such programs,'OPLAM by Grumman Aerospace [5]

and OPTLAM by Douglas Aircraft [6], follow a procedure similar to RC7

.k

F-

' using [0/±45/90] orthotropic laminate. 	 Basically, these two procedures

go through a series of ply reorientations, restricted to the previously n

mentioned angles, and ply deletions until a minimum ply solution is

obtained,

The method found in the Advanced Composites Design Guide [7] is a

a more general constrained minimization program. 	 This procedure uses

r the method of centered circles to arrive at a constrained optimum

solution.

i
Schmit and Farshi [8] present a method for optimum laminate

design using a series of linear programs to approximate the nonlinear k

` programming formulation. 	 The solution implements the method of in- 1
M scribed hyperspheres to obtain the optimum laminate. 	 This procedure

^ considers multiple in-plane loads, strength and stiffness.

All of the methods reviewed above involve laminate design. 	 The

next logical step is the assemblage of these laminates into structural T
3

i

Y

t
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!.
elements.	 In references '[9-28] these types of applications are discus-

.

=. sed in great detail.	 The general structural element application usually

' r involves finite element analysis in conjunction with a laminate analysis

program.	 A further step in this direction involves the design of com-

plex structural elements, such as complete wings. 	 The details of these

t applications are discussed in references [29-31] which are beyond the

scope of this ;investigation,
LL

The methods presented in the detailed review, include, systematic l

search techniques, random search techniques, analytical approachs and

more sophisticated non-linear programming methods.	 Many of these

` methods tend to be computationally exhaustive for a large number of
r

j

plies, and as a result this investigation shall deal with the usage of

a series of non linear programming techniques as a means of obtaining

an optimum solution.

" All of the methods reviewed used weight as the function to be

minimized with various combinations of constraints, either strength or

stiffness generally employed but coefficients of thermal expansion

were neglected for the most part.

. The current investigation shall be restricted to laminate designs

;. with thermal effects included. 	 Total strain energy shall be 'employed

as the function to be minimized, subject to stiffness, strength, and
J

' coefficient of thermal expansion constraints.

i
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Chapter 3

THEORETICAL FORMULATION

3.1	 LAMINATE ANALYSIS
1

The laminate analysis is 'based on a single, integral structural }

element made up of two or more laminae bonded together.	 The indivi-

dual lamina properties govern the response of the laminate. 	 Logically

the lamina is the initial step in formulating the laminate analysis.

The lamina is assumed to be a homogenous orthotropic material in

a plane stress state. 	 Orthotropic materials have three planes of

s maiterial property symmetry (Fig. la).	 The general constitutive equa-

tions for a lamina in its natural coordinate system (Fig. lb) may be

F expressed as:

el	 Sll	 S12	 S16	 ':'1

K
e2 	= S 12	 S22	

S26
Q2	

(3.1)

Y 12 , S16	 S26	 S66 s12
?

'.

Where, the components of the compliance matrix, S, are:

1
5 11	

E1

v12 _	
v21

S1 2 	 E1	 E2

R

3

22	 E2	 (3.2)

-	
1

S66 - G12

S,c = S2 6 = QV

_

6
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The strain-stress relations of (3.1) can by matrix inversion, yield

the stress-strain relations:

Q1	
Qll	 412	

416	 1

t

i
I

' 62 Q12	 Q22	 Q26 E2 (3.3)

T 12	 Q16	 Q26	 Q66J	 Y12

where, the components of the stiffness matrix, Q, are: nx

S22	 E 1
u

}}

_	 _

Qll	
S	 S	

_S2 	
1-vl2v21

11	 22	 12

I-

5 12	 v 12E 2	 v21E1
Q12 

=	 _	 =

S11S22-S12
	 12 21	 l2 21

°	 { (3.4)

r^ 4	
S11	

E2

22	 -v
l ^2v21S	 S2

k

-11	 22- 12

Q66 - S66 - G1
2 i

n	 ,

Ql 6 = f=(
26 = 0 =

The stresses and strains must now be expressed in terms of an
x

arbitrary coordinate system (Fig. lc) rotated by an angle theta from f

the x-axis to the 1-axis.	 These stresses and strains can be expressed'

in the following form,

I	 Qx	 al ..,

Q 	
CT3-1
	v.

-y	 2 (3;5)

T xy	 T12

Y

+x

rr
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r

and

(	 ^

Ex	

^1

y	 2 (3,6)

Y	
X12

2	 2

where the coordinate transformation matrix, T, is

c2	 s2 	2sc

[T] =
s2	 c	 -2sc (3.7)

-sc	 sc	 c2- s2 f

and the superscript -1 denotes the matrix inverse,
t s

2c	 s2 2sc

` 1[T] s2	 c2 	2sc (3.8)„

sc	 -sc	 C2-$2

u

where
k

c = cosine o

s = sine o

In	 (3.6) it is noted that strains transform via the same transforms-
k

k

tion if the tensor definition of shear strain is used (engineering

shear strain divided by two).	 However, if the matrix

1	 0	 0°

0	 1	 0 (3.9)
a

0	 0	 2 -1 ,.

.=,3P'
t_• 'F'+FnA,.	 ..,":i4:w+'3is'^' tdaiZii6*R `tF.+ P7e%s'a...tx'L',.̂C

	 _	 .,	 _	 ..	 "^{11^1(I G1
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10

due to Reuter [32] is implemented, the strain vectors become,

E
1	el

€2 	[R]	 e2 (3.10)

k Yl 2	 Y12 r'
2

and

EX	 Ex

Cy
	 _ [R]y

(3.11)
y

YxY 	
Y
XY
2

. Thus, in order to obtain the stress-strain relations in the x,y coordin-

ate system in terms of the material properties and the laminae orienta-

tions equations (3.3), 	 (3.5),	 (3,10),	 (3.6) and (3.11) are combined to

yield,

61
Ex

I

QX

Qy	= [T]
-1	a2 	[T]-l[Q][R][T][R]-1 (3.12)

=^

EY

T 
XY	

T12
YxY

however [R][T][R]-1 	 [T] -T where superscript T denotes matrix trans-

;a

pose, thus abbreviating

[] _ [T]-1[Q][T]-T (3.13)

and in simplified form (3.12) becomes, r

3
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\ T xy !	 l Yxy l
F

! The derivation for the strains follows a similar path and can be foundj

in more detail	 in [33] Jones.
x

` The previously expressed relationships are valid for any lamina

of a laminate.	 Thus the stresses for the 
kth 

ply are,

{a }	 = Cql fe	 }xk	 x (3.15)k	 k

In order to derive the stress strain relationships for the lamin-

ate the Kirchhoff hypothesis for plates must be introduced to

account for the variation of strain through the thickness. This

representation of strai n for the kth ply in terms of the mid-plane

4 strain and curvature may be wr itten as

ex	
ex	 K X

t
€

^y	 sy	 + z	 Ky
(316)

•

Yxy	 Yxy	 k xy

{ where z is the distance from the laminate midplane to the lamina mid-

u
plane and the stresses in the k th` ply as,

oQx	 Ex	 K,x

Qy	 = [ Q]k	 ey	 + z	
K

(3.17)

;wo ;
YTxy	 k	 xy	 xy

i



The strains vary linearly through the thickness but due to possible

	

variation of the	 matrix from ply to ply the stress variation .will,

in general, be nonlinear.
t:

The resultant laminate forces (force per unit length) and moments

(moment per unit length) (Fig. 2) are obtained by integrating the

stresses of each ply through the thickness (Fig. 3) as follows,

	

H	 nZk

	

{N}	 {cr} dz E 	{Q}dz

	

-H	
_^ x k	

k=1 zk-1
	

x k
	

4

(3.18)

	

H	 n zk

	

tM} 	 {6 } zdz	 E	 {6 } Zdz

	

-H	 x% 	k=1 zk-1	
x k

4

Substituting (3.17) in (3.18) 'yields,

zk	 Zkn

	

{N}	 E [^ak	 {e° }dz+	 {K,}zdz
k=1	 izk-1	 zk=1

	

f^	 (3.19)
z k 	zk

	

n	 `

{M}_ E [] k 	 {e° }zdz +	 {K}zdz i

	

k'	 z'k-1	 Zk-1

Simplifying (3.19) yields,	
-

L

	

'	 a	 {N}	 [A]{ E °} + [B]{K}

(3.20)
{M}	 [B]{e°} + [D] {K}

where

n
p i j - kEl 

(Qij)k (z k' k-1)

i
,j

a
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. n
Bij - 2	 «ij)	 (Zk%k-T)	

(3.21)

k-1	 k

n
Oi3	 I	

E	 ( Oij )	 (zk-z3_ 1) 	for i, j _ 1,2,6

Y

r
k=1	 k

Rewriting (3.20) in combined form results in

N _A_: B[

	 B

or in inverted form	 (3.22)
r

o -1

{ K
= [A-,r B-	 j p-l

JL
AI

tt
Complete details of this derivation may be found in [33]. r- M

3.2	 THERMAL .A'NALYSIS

The .thermal analysis for laminated composites is developed by ,

_ following the strain history of the individual lamina from the un-

cured state through curing to the final bonded state.	 The material

properties of the lamina are assumed to be constant through the-^

temperature range, thus neglecting any degradation effects. 	 Com-

bining these thermal curing effects with the effects of increased or {

decreased operating temperature on the laminate, the total thermal

f ., _	 p	 y, examining the coefficients ofanalysis can be developed. 	 Initial l y, 'v

thermal expansion in the natural coordinate system, the strains due

to a temperature change for the k th ply can be obtained. 	 Thus the }

expressions for the free thermal strains in natural coordinates are,
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e l = QlAT
(3.23)

:. e= a2AT
2- M

p	 th p	 re,or more simpl y in vector form for the. k	 1y a
k

^

,f

el	
al

a

E: 2
	 =	 a

	

AT	 (3.24)
 2

OY12
t.

4 1. 1.
IRC	 it- F

'c
9

•
The strains of (3.24) may be transformed to x,y coordinate system by

means of (3.6) and (3.11) as expressed below,

k

X	 01	 / ax

u

C
y
	 [R][T] k l

	a2	 OT=	 ay	AT	 (3.25)

Y xy	
k	

k	 axy k

1.
where the coefficients of thermal expansion are transformed to the x,y

coordinate system and noting the axy term as an apparent coefficient of +

F' thermal' shear.	 The expressions for stress resulting from thermal strain,

if the lamina is restrained, may be found by substituting (3.24) in (3.3),

yielding,
F

r al	 al `

Q2	
[Q]k	

a 2	AT	 (3..26)

T 12	 k	 k

Also in x, y coordinates the stresses may be found by substituting

rt
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J

(3.25) in (3.14) yielding,

6x	 aX
r	 v

a[
	 a
	

AT	 (3.27)
Y	 k	 Y

l a

T

t' Txy
	

xy
k_	 k

The next step 	 s to devel op an expres sionp	 p	 p	 Sion for the coefficients of

thermal expansi.on.for.the laminate. 	 Substituting (3.27) in (3.18) to r

obtain the equivalent forces due to the thermal loadings fora

symmetric laminate [B] = 0 yields,;

H. i

{N} _ AT	 Clk{ax} dz	 (3.28) n
. -H	 k `.

and

n
{N} _ [A]{e°}	 = AT	

EC1k{ax}k(Zk-zk-1)	
(3.29)

k=l r

k where {N} is the equivalent thermal force and {e°} is the equivalent

rN thermal midplane strain which is uniform through the laminate. 	 Thus,

if (3.29) is rearranged to yield midplane thermal strain,

v
n;

{£°} = [A]
_ 1 	

E	 [Q];k{ax }	 (zk-ZK- 1)AT_	 (3.30)
k 	 k

where, simplifying to separate the laminate coefficient of thermal

Y
expansion yields,

Ih

n
{a } _	 [Q]k{aX}k(zk-zk(3.31)

-l)
kEl

The analysis 'via the strain history is now developed. 	 The indi- x

aR

moo• rr
:..	 .
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vidual plies are laid together in the specified angular orientations

at ambient temperature and are then subjected to pressure and heat.
JO

The temperature is raised to a maximum and then decreased through the

stress free temperature down to .ambient, the specifics of the cycle

' may vary but this isa general description. 	 The lamina are considered

cured into a laminate after the stress free temperature is reached and

no longer act individually.	 The laminate behaves as a single struc-

tural component from the stress free temperature down to the ambient

temperature and then either up or down to the operating temperature.

A typical	 laminate cure cycle may be seen in (Fig. 4). _ Due to this i

change from the unbonded to the bonded state at different temperatures,2

each effect must be accounted for in the analysis. 	 With this tempera-

ture history in mind the strains of the laminae (Fig. 5) are formulated,
as

} {ex}	 _ {ax }	 AT 	 + {a
x

}	 AT2 + {a} AT 
1	 1	 1

 (3.32)
i

{ Ex }	 - {ax }	 AT 1 +'{ax }	 AT2 + {a} AT
2_	 2	 2

µ

a nd
f ;

K

AT 	 + AT 	 + AT 	 = 0	 (3.33)

thus,

k
AT3	 - (AT 1 + AT2 )	 (3.34) ;.

{ The strains produced in the curing process will, be ,designated
^a

residual thermal strains and expressed as
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^I

{ex }R {q,x } ( -AT3 ) + GO AT3 = AT 3 ( {a} - {ax } )
1 1	 1

(3.35) ,3

{ Ex }R = {ax } (-AT3 ) + Ia_J AT 3	 AT3 ({a}'- {ax } )
2 2	 2

or in general form,
k

J

E : {ex}R = AT3[{a} - 
{ax

} ] (3.36)
k	 k;

where, x;

{e°}R = 
AT 	 {a} (3.37) f

and the equivalent forces

,i {N}R 	 [A]{e° }R (3.38)

Substituting (3.36) in (3.14) results in the expression for the

equivalent stresses,

{6X}R = [] kAT3({a} - {ax}) (3.39)
k	 k

In a simi lar manner the expressions for the stresses and strains due to

f the temperature change from ambient to operating can be derived.
x
s	 ,u

During this change the laminate is bonded and no effects for the in-

dividual lamina are included, thus,

jE:	
_ {E:	 _ AT4{a} (3.40)

k

and the additional equivalent forces are,

{N}E 	[A]{e°}E (3.41)

` Substituting (3.40) in (3.14) results in the expression for the
r

I

s.l

-	 _ -:iaww, ..as».pt:. 2,.4f 	 swGGaS.re3'steaw.4a"^	 .aa ev...	 ..

y
'"
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k'

additional equivalent stresses

{ QX }E = CQJkAT4
{a} (3.42)

k

The total temperature effect may now be formulated by combining the

two effects, however, first the term eT may be defined as,

eT	 AT3 + AT4 (3.43)

The results of (3.413)) may be used to simplify the equations that

follow, thus the total midplane strain is,

{E:	 {C= {e°} R + {e°}E	oT{a} (3.44)

and total equivalent forces are,

{N}T = {N}R + {N}	 = [A] {e° } (3.45)'

The lamina strains may be expressed as

{eX}T	{E } R + {eX }E = eT{a} - AT3 {a } (3.46)
x	 x-k

and the resultant equivalent stresses are,

fad 	 = {ax R + {ax }E 	 [Q] koT({a} - {ax}) (3.47)
k	 k	 k	 k-

Thus, if the cured state is restored (oT=O) or in other words the

l amina strains are present but the stress-free state is satisfied as is

4 now shown,

{E:
= AT 

{aX
} (3.48)

k	 k

e



(aX }T = 0
k

(3.49)
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k 3.3	 LAMINATE ENGINEERING CONSTANTS

The laminate engineering constants may be determined for a

symmetric laminate by applying a unit inplane load, only in the

direction of the desired constants. 	 This may be shown by the fol-
r

lowing relationship,

01	 =1	 -1
ex 	 A11	 Al2	 A16 x
o_

ey	 -
1	 -1	 -1

Al2	 A22	 A26
-

(3.48)ay
0y
xy

1	 -1-1

'^16	 A26	 A66
-
Txy

- where the average stresses fa I are,

cr	 Nx

! ' 'y	 = 2H	 Ny 	 (3.49)

Txy	 Nxy

and `2H i s the total thickness.

Defining Youngs modulus as,

E	
__i	 i=x,y,xy	 (3.50) r

t

Thus for Nx equaling unity the relationships for average stress and

midplane strain become y

ax	 Nx (ZH)	 (3.51)
E

REPWDUCIBH4=
PAGE 13 POOR

r:	 -
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P

and

eX = A^
1

Nx	 (3.52)

a	
1

	

l	 Substituting (3.51) and (3.52) in (3.50) yields, 	 1^
i^

T	 1

E = Nx c H ) ,	 =	 1	 (3:53)
x A

1
—^ 1 N AA All(2H)

In a similar manner Ey and Gxy are

i
; Ey-	 1	 (3.54)

A2
^

2( 2H )

a nd

Gxy	 _^	 (3.55)
A66 (2H)

The expressions for Poisson's ratio may be derived by the same

method, first defining Poisson's ratio as

k	
ti	 v.3 _ - -^ i,J =x,y 	(3.56)

I: 

yields

A21vx =	 E _ -	 1	 (3.57)

	

a	 Y	
x	 A11

and

1
Ex	

A21	 (3.58)
vyx	 Ey	 A21

Further, constants of interest are those of [34] by

Lekhnitski called coefficients of mutual influence. These are simply

e
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a!

presented here, more detail may be found in the previously mentioned

reference,

e

n i ,ii = 

^ 
i aJ =x,y	 (3.59)

4Y `^J

for T i j	 1 and all other stresses are zero, -similarly,

T1 	
= eyij 	 i ^J =x,y	 (3.60)

i

for a i	 1 and all other stresses are zero. Thus these coefficients

may be expressed as follows,

1
A16

nx^ x	
=

Y
(3.61)

A66

^. q26

n	 =
y'Yx

(3.62)

A66

1

A16^.

t

n	 =

xy,x

(3.63)

A 11

-1

A26n

yx ,y
	A :

:T
(3.64)	 t

:i 3.4	 FAILURE ANALYSIS

The failure analysis is formulated on the basis of the Tsai-Hill

[35] criteria for a lamina. Failure of the laminate is based on

the first ply failure theory such that if one ply fails the entire 

laminate is considered to have failed. 	 This criteria may be expressed

in terms of the lamina natural coordinate stresses and the individual

is

i



26

lamina strengths as follows,

2	 2	 2
. ql	 a l a2	

°2	 T12-	 -	 2	 +	 < l	 (3,65)
Y 2	S2

This criteria was chosen over the Tsai-Wu theory [36] in order to

avoid the laboratory determination of a key value needed for the

` evaluation.

The Tsai-Wu theory is of a more general nature and offers a more

responsive strength determination due to the greater number of terms.

This greater accuracy requires the knowledge of an experimental value

that must be determined bymeans of a biaxial test to failure. 	 Also,
a

the results from the two theories differ only to a small extent over

the range of most angular orientations.

f 3.5	 STRAIN ENERGY 3

The total strain energy of the laminate is determined by means of

a summation of the components strain energy due to the various mechan-

ical and thermal loadings.

The general expression for the elastic strain energy of a linear,

. elastic body may be found by considering an infinitesimal element

- (Fig.	 6 ) of dimensions dx, dy and dz. 	 Thus for the uniaxial stress -

R state the force acting on the right or left face is a x dy dz where dy

dz represent an infinitesimal area ofthe element.	 Due to this force

the element deforms an amount ex dx where ex is the strain in the x

:d

direction.	 Having assumed linear, elastic material, stress is pro= a

y.

a
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portional to strain and further, the force acting on the element	 f

} increases from zero to its full value in a linear value. 	 The average

force acting on the element during the time that deformation is taking

place is ady dz/	 The average force multiplied by the distance
x

through which it acts is the total work done on the element.	 There

is no dissipa tion of energy for a perfectly elastic body and therefore

the work done on the element is stored as recoverable internal strain

energy.	 The strain energy may be expressed as

_	 l	 1
dll	 (2 ax dy dz)	 (cx dx) _	 a	 ex dV	 (3.66)

where dV is the element volume. 	 Rearranging (3.66) yields the strain-

energy density

dU- 0 = ^x ex
	

(3.67)	 a

dV	 2

Similar expressions may be derived for a
y 

and Txy.

'x The total strain energy for the laminate 4), is expressed as,

n
U	 - 2
	

Z	 (
{ a i

}M {E i }M + {
a i}

r{S i lt )	 (3.68)

k= 1	 k	 k	 k	 k

where repeated subscripts i indicate summation and,M denotes mechani-

cal loading effects.

7

_



Chapter 4

OPTIMIZATION FORMULATION

4.1	 GENERAL

The optimization procedure used is the AESOP program described in

4

Ref. [37,38].	 Basically, this program is a series of multivariate search

techniques for non-linear systems. 	 The optimizer is easily coupled to

the synthesis program by means of storage linkages. 	 The synthesis

program computes the objective function and the constraints functions

which are then supplied to the optimizer for evaluation. 	 The optimizer

then perturbs the design variables until an optimum design, consistant-

with constraint conditions, is obtained. 	 Nine different search tech-

niques may be employed, either separately or in any combination to seek

an optimum, thus allowing freedom from method dependent solution-pro-

blems.	 A maximum of one hundred design variables are permitted while Ei

'	 1 as many as twenty constraints functions may be utilized.	 Details may
i

be obtained from the references. k

` The search techniques available in AESOP and a brief description of +.

each follow,

1 (1)	 Sectioning - series of one-dimensional searches parallel w

i to the coordinate axes.

(2)	 Pattern - search in direction of the previous favorable

search. x

y (3)	 Magnification - search in direction of gain due to pro-`

I portional change at all parameters.

(4)	 Steepest-Descent - search along the weighted gradient ..
r,

1 '

I 29
r
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direction

(5)	 Adaptive Creeping - similar to (1), but small 	 increments in

e	
general minimum direction.

(6)	 Quadratic - similar to (4) but search direction is along a

fsequence of second-order surfaces as opposed to first-order
1

surfaces of (4).

(7)	 Davidon's Method - series of searches of (4) type to
z

approximate a search of type (6).

(8)	 Random Point - evaluation of function at a set of uniformly

random points.
s

(9)	 Random Ray - search along a sequence of random rays hav`sng

A

uniform distribution.

4.2	 MATHEMATICAL FORMULATION

The mathematical formulation of the multivariate optimization is

presented for the general case without any technique dependent aspects.

Basically, the goal is minimization of an objective function of the form, s

i=11,21,..,m	 (4.1)

where s^ are the design variables subject to a system of constraints,
J

(s i	(4.2)

Constraints may also be applied directly to the independent variables 3

by specifying a feasible control space as follows,a	 ,

s^ < s i	< RH	 i=1,2,.	 ,m	 (4.3)

f

J
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Further, constraint functions of an equality nature may be treated

as an unconstrained problem by replacing the objective function with a

penalized objective function as follows

= G + P W.^	 (4.4)
j 

where if the W^ (the positive error weighting constants) are sufficient

x	 ly large in magnitude, minimization of (4.4) is the equivalent of mini -

mization of (4.1) subject to (4.2).

This method is referred to as the exterior penalty function ap -

proach. Use of this approach results in the design only being valid

if all constraints are satisfied, thus only the final solution, if met,

is a valid design. This is opposed to an interior penalty function

approach, where each design satisfies a set inequality constraints and

each successive design approaches the minimum.

<<

a

Irk _.
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Chapter 5
X.

s`	 RESULTS AND DISCUSSION

The computer program developed in accordance with Chapter 3 and 4 3,

was used to solve a series of example problems to demonstrate the
i'

various design options.	 These example problems used Boron/Epoxy, AVCO
f

5505/4 as the design material.
F

Designs were determined for one mechanical and one temperature

loading case with constraints on stiffness and/or coefficients of

F
thermal expansion and/or ply strength. 	 These desired constraint

values correspond to the material properties of titanium, aluminum and
k

an all composite [0,±45,0] 8 ply, symmetric, Boron/Epoxy laminate
A

r
(Table 1).

.e The mechanical loads represent a case where ply failure will be

' critical and therefore tax	 the Strength criteria. 	 Temperature loads

were chosen for a typical cure and operating environment. 	 These

loads will be used for all problems. unless noted otherwise (Table 2).

Additionally, all examples were run for 300 function evaluations }

with all other optimization parameters being identical. '=

The design options are broken down into the various_catagories in

the results.	 The major division is whether or not the strength -cri-

teria is considered as in sections 5.1 and 5.2.	 These sections each
d

have subsections according to which method is chosen, either letting

the angles vary from -93	 to 90° for a set number of plies or to let

the number of plies vary for each set ply, angle.	 Only the first of

32
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TABLE 1

MATERIAL PROPERTIES

Boron/Epoxy Boron/Epoxy Titanium Aluminum
AVCO 5505/4 [0,±45,0]

J Ex(msi) 30.0 17.05
15.8 10.4	 r<

Ey(msi) 2.7 5.23

E
GXy(msi) 0.93 4.43 6.0 3.9

0.21 0.67 0.34 0.33vxy

i
ax(pin/in/oF) 2.5 2.28

4.8 13.1
a(pin/`in/°F) 13.1 6.45

^

y

' XT(ksi) 188 ^

a Xc(ksi) -362
{ 140 80

Y	 (ksi)
T

9.1

YC (ksi) -45

I

Z(ksi) 1.9.2

I

t

33
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these options is available in section 5.1 for designwithout a strength

criteria.	 It is felt that the problem of constraints on material

properties, or material property matching, can best be resolved by means

- of reorientation alone. 	 Furthermore, the option for perturbing the

number of plies is felt to be needed ,primarily for strength considera-

tions.	 It may be noted that for the option of perturbing ply angles

for a set number of plies that the number of plies will fluctuate.	 This

is due to the fact that for angles of the range -90
0
 < e < 00 and

D° <-a < 900 (angle ply laminate) a positive theta ply is always ac- 	 a

4

companied by a negative ply

l Initially, a test problem to check out the minimization process was

r
run for temperature loading only and without constraints. 	 Intuitively,

it was felt that this should yield some unidirectional laminate, having

a total	 strain energy of zero. 	 Three problems, using 2, 4 and 8 plies,

q { yielded the following results (Table 3). 	 The results demonstrated that

the computer program was performing as expected and on this basis the

following examples were run.

I These designs are constrained to match various, feasible material

properties while minimizing the total laminate strain energy.	 The	 F'

results obtained are presented and discussed to validate the design

process employed.

' 5.1	 DESIGNS WITH MATERIAL PROPERTIES CONSTRAINED

This section deals with the problem of using a composite laminate

;..'` to match the material properties of another material. 	 There are many

-.a.	 ,....rf .• -..	 ,^	 i.e.^.r..^.;.....,,.;i.,, 	sy. _.,.	 _.'	 :msi&_: ,+	 _.:cr_	 .	 .-zesaer^_..-^...



lrµs:.:r	 rw>kr"

_.s..c.	 .,,..gym.-om_-,^^r..+vv.zx am+u .sx	 In	 s

n
-ns+x.	 nPd..Tfl'..	 _	 :..

K

i

1
r

TABLE 3
f

I UNCONSTRAINED STRAIN ENERGY RESULTS
r

Number of Final Strain Number of

1
Plies Configuration Energy Evaluations

2 [24]s 0.3980 E-14 17

4 [7.4,7.6,8.0,7.2] 0.9048 E-03 68
G

8 [8.8,7.6,8.0,8.0] 0.3873 E-02 134
S

s

k

r
36
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occasions where strength is not of primary consideration, due to the

fact that the design is minimum thickness critical, such as aircraft

skin designs.	 Another area where material property considerations are

critical	 is that of extreme, thermal deflection requirements.

These applications represent a large part of the present thrust
r	 ^

of composite hardware technology, which deals with the replacement of

present hardware with a composite design. 	 The importance of property

matching is illustrated when the composite replacement part is compared`

j
to the present part, for properties being equal, the composite is

advantageous on the basis of weight. a

5.1.1- DESIGNED BY PERTURBING PLY ANGLES FOR A SET NUMBER OF PLIES

This approach to a non-strength critical design relies entirely

on the angles or orientation to satisfy the stated constraints and
i

locate a minimum strain energy laminate. 	 The possible number of com-

binations of angles increases as the number of plies increase, there-

` fore the number of plies chosen for the starting point deserves serious

consideration and should be adequate to allow the process the proper

amount of freedom to satisfy the various constraints. 	 The examples of

4 this section were run for 2 plies, thus the maximum number of plies is

8 for an angle ply laminate and 4 for a unidirectional or cross ply

laminate.	 The factor of two is dueto the assumption of symmetry for

the laminate.
3

:
f

i

Y

a

.T
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5.1.1.1	 COMPOSITE LAMINATE TAILORED TO MATCH THE PROPERTIES OF A

[0, ±45,O] s LAMINATE

The use of an all composite example is to check out the program for

convergence to a known feasible design. 	 The boron/epoxy [0,±45,O] s was

analyzed, using the analysis option, to obtain the laminate properties

' that were given earlier in this chapter. 	 Seven various cases were run

for this target material for the standard mechanical and temperature

loads, unless noted.	 The constraints and nonstandard conditions for

these were, as follows;

(1)	 EX, EV and GXy constrained;

(2)	 EX and Ey constrained,
^i

(3) ' ax and ay constrained; E

(4)	 EX , Ey and G
xY 

constrained, NY = 0

(5)	 Ex , Ey and Gxy constrained, N
Y 

= Nxy	 0

(6)	 Ex ,-Ey and Gxy constrained, N X = N= Nxy = 0
Y

(7)	 Ex , Ey and Gxy constrained, AT3	 AT4 = 0.

A

These results are shown in Table 4.
k a

` Cases (1), (2) and (3) offer the best overall convergence to target

ti'	 v properties and also demonstrate reduced strain energy at between 5 to

^ 10 percent compared to the target material. 	 Case (3), oddly enough, ha s

good convergence to properties, other than those constrained and has

excellent thermal tailoring abili ty.

The nonstandard loading conditions yield reasonable property

tailoring, with (4) being the most responsive for variations of

r

mechanical	 loads.	 Deletion of temperature loads, in example (7),
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4 TABLE 4

J COMPOSITE LAMINATE - [O,t45,O] s RESULTS FOR PLY ANGLES PERTURBED WITH MATERIAL PROPERTIES CONSTRAINED

a
Cases !!

1 2 3 4 5 6 7 I
f Target E	 E	 and GEx , E	 and E a	 and a E	 E	 and G

x'	 y E	 E	 and Gk'	 y	 xy
E	 E	 and G E, E	 a;,d G

Material
y	 xy

Constained

x	 y
Constrained

k	 y
Constrained

xy
Constrained Constrained

x	 xyy
Constrained

x	 xys
Constrained

f Ny 0 NY 
NxY=O

N=N Y Nx =0 aT3-aT4=0 f

Laminate [O,t45,O]s [t51,^73s [>-50,i7]s [t45,t12)s Et5o,t4]s rt20,+_25]s [t14.t301s [n49,-_5]s

n; Ex(msi) 17.05 15.87 15:92 15.05 16-35 x7_51 18.07 16.30
W S -6.9 -6.6 -11.7 -4.1 +2.7 +6.0 -4.4

E(msi) 5.23 6.70 6.41 4.92 6.49 2.53 2.85 5.19 1
y S +28.2 +22,6 -5.9 +24.0 -51.6 -45.5 +18.4

Gx (msi) 4.43 4.48 4.53 5.01 4.39 4.43 4.32 4.46
i

r y % +1.2 +2.3 +13.0 -0.8 0.0 -2.5 +0.7

C_
0.67 0.54 0.57 0.76 0.55 1-25 1.12 0.58

I
`

vxy
S -19.4 -10.9 +13.4 -17.9 +86.6 +67.2 -13.4

ax(.in/in/oF) 2.28 2.59 2.53 2.17 2.54 1,23 1.47 2.42

k

-^
% +13.6 +11.0 -5.0 +11.4 -46.1 -35.5 +8.8

ay(uin/in/ oF) 6.45 5.30 5.46 6.47 5.47 11.85 10.80 5.64
-17.8 -15.3 +0.3 -15.2 +83.7 +67.4 -12.6

ff Strain energy (varies with 1356 1369 1424 841 297 9 1267
)f.

f
loading)

-9.7 -8.9 -5.2 -3.7 -10.0 -51.4 -7.1 )s

`. ray NOTE: all percentages refer to variations with respect to tt.e target material.

7
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also resulted in rather good overall property coavergence. Cases (5)

and (6) exhibit a fairly wide spread of values othe r than 
Ex 

and Gxy,

The larger variations of Ey can be attributed to its smaller value,

relative to E x and Gxy combined with use of equal error constraint

weighting factors.

Using nonstandard load conditions demonstrates the ability of the

optimization procedure to respond to different load environments. 	 This

ability is apparent, except for the variation of E	 for the previouslyy
stated reasons, in the error range found for 

Ex 
and Gxy , which is

similar to the standard load cases.

The overall response was quite good for this target material and
a ^

K. demonstrated the ability to selectively tailor proper±ies by means of

' the strain energy optimization method. 	 There was no effort made to

constrain all six parameters. 	 It is felt that this may not be a

h realistic design situation.	 The failure of the method to return to

the [0,±45,0] s laminate used for the target properties may be explained w

by the fact that the penality function, with constraint error weights

j included, may be smaller than the strain energy alone for the target'''

'
I

^

laminate.	 The design, found by this method may be termed a more
1

'. feasible one if bounds can be formulated for the desired properties.

.r	 r

5.1.1.2	 COMPOSITE LAMINATE TAILORED TO MATCH THE PROPERTIES ,

OF TITANIUM

This section deal's with- tailoring_ properties to match 'those of
g

the material which is most closely in competition with composite

y

S
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TABLE 5

COMPOSITE LAMINATE -'TITAN,IUM RESULTS FOR PLY ANGLES PERTURBED
WITH MATERIAL PROPERTIES CONSTRAINED 	

3
r

Cases
1 2 3

Target E	 Ey and Gxy EX and Ey ax and ayk

Material Constrained Constrained Constrained

Laminate [±28,+62]s [±77,±13] s [±59,±31] s

E (msi) 15.80 9,12 14.83 7.66
x % -42.3 -6.1 -49.2

E (msi) 15.80 9.12 14.83 7.66
y % -42,3 -6.1 -49.2

G.	 (msi) 6.00 6.74 2.28 6.38
y3 -4.4 -62.1 +6.3

°! 0.34 0.46 0.13 0.55vxy
+36.2 x-62.7 +61.8

ao °^ 3.52 3.52 3.52

t= % _26.6, -26.6 -26.6

ay(pinoin/°F) 4.80 3.52 3.52 3.52
1

-26.6 -26.6 -26.6

.;
Stain energy 1103 1741 1061

NOTE:	 All percentages refer to variations with respect to the target

material.

r
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laminates from the standpoint of strength, stiffness and weight.	 Three

k

cases were run for this target material, all with standard loadings and

M

the following constraints;

(1)	 Ex , Ey and GXy constrained; t

g
(2)	 Ex and Ey constrained;

(3)«x and ay constrained.

The results of these examples may be found in Table 5.

These cases were constrained to have properties equal in both x
F

and y directions.	 This may not be a reasonable situation.	 The results

of case (1) show good agreement only for G Xy.	 The agreement of E x , Ey j

and G	 simultaneously may not be possible due to the relatively high

Q

Xy

' stiffness in all three directions of titanium.	 This may be shown in

case (2)where the constraint on Gxy is relaxed and E x and Ey are more

readily satisfied.	 Continuing to case (3), the thermal	 values are not

satisfied, but the values determined are equivalent to those of a cross-

ply laminate, thus this is as close as it is physically possible to

come to the constrained situation.

This material	 illustrates the need for selective tailoring. -A

cross-ply	 aminiate [0,90,90,0] s would be a viable solution but only

by paying a large penalty in strain; energy and still violating both

^R,. Gxy and v xy very seriously.	 Case (2) best satisfies E x and Ey but

also has the highest strain energy. 	 It may also be noted that each ;.

of these cases resulted in a laminate which contains two sets of plies,

each 90 degrees opposed.

Although results were not as appealing as in the previous section,

r

Y

_v
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for a known feasible design, this section reveals the possibility of t

mutually inconsistent design parameters. 	 This highlights the value of F

selective tailoring as an essential	 in laminate design.

5.1.1. 3 	 COMPOSITE LAMINATE TAILORED TO MATCH THE PROPERTIES

j OF ALUMINUM
f

The cases run for aluminum present a different type of problem.

The elastic and shear modulus for aluminum is low enough that matching z

E these properties is not difficult but the thermal properties are out of

I
the feasible range of composite laminates. 	 For this reason the case

1 for matching thermal properties was dropped and only the following two
a

cases were run for the standard loading conditions-;

r (1)	 E x , Ey and Gxy constrained;

(2)	 EX and Ey constrained.

As expected these results (Table 6) were good for the stiffness
A

properties an,' inadequate for the thermal properties.	 The ,relaxation

of the shear constraint resulted in some slight improvement of stiff-

ness properties but not appreciably..	 Once again the resultant laminate

I^ has approximately two sets of plies 90 degrees opposed, but at a

slightly different orientation.
A

This case shows the readily available opportunity for replacement

of a!uminum hardware as long as thermal expansion is not critical.

5.2	 DESIGNS WITH MATERIAL PROPERTIES AND PLY FAILURES CONSTRAINED

Strength requirements acquire greater importance in primary

t,,

^ IA.



TABLE 6
a

COMPOSITE LAMINATE - ALUMINUM RESULTS FOR PLY ANGLES PERTURBED
WITH MATERIAL PROPERTIES CONSTRAINED

Cases1	
2

	

Target	 Ex,Ey and GXy	 Ex and Ey

	

Material	 Constrained	 Constrained	 x

Laminate	 [±69,±21] s	 [±64,±28]s

E (msi)	 10.40	 12.25	 9.29` t 	 x %
	 +17.8	 -10.7

E (msi)	 10.40	 12.25	 9.92
Y %	 +17.8	 -4.6

G (msi)	 3.90	 4.06	 5.50xy %	 +4.1	 +41.0

	

vXy	 0.33	 0.28	 0.42
15.fi	 +27.3

ax (uin/in/0F) 	 13.10 -	 3.52	 3.63
	I 	 -73.1	 -72.3

a (P in/in/oF) 	 13.10	 3.52	 3.42
Y	 % 	 -73.1	 -73.9

Strain energy	 1276	 1121'

Note: All percentages refer to variations with respect to the target
1 material.

2	
44



zLw ­

45

structure applications.	 In these areas, the ultimate load carrying

capacity is most generally the governing factor in design. 	 The consid-

eration of a strength criteria in the design is included by means of

one constraint for each ply failure computation.	 The Tsai-Hill failure

criteria is used where the numerical value must be less than or equal

to unity to assure that the individual ply has not failed.	 The laminate

is- considered failed if one ply has failed.

On this basis two example problems were run, first by perturbing

the ply angles for a set number of plies and secondly by perturbing

the number of plies for a set ply angle with constraints only on 'ply

failure.	 The results of these problems may be found in Table 7.

These results are for the standard load conditions and the design
i

material used previously. 	 The mechanical loads used should evolve an
4

.	 initial design such that the worst case is present from a strength

standpoint.	 As can be observed from the results, ply failures occur
k

for both methods and furthermore, these failures take place inplies

which are roughly perpendicular to the shear force. 	 The placement of

these plies is usually the result of the balanced plus-minus angle

requirements.

k	 The relative emphasis to be placed on each aspect of the design,

either property matching or ply failure, must be decided by the

designer.	 This emphasis may be implemented by means of Toad factoring,

constraint error weighting or some equitable combination of both. 	 The

examples presented use the same data throughout for the sake of

comparison.

ff	
r	 ^
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TABLE 7

COMPOSITE LAMINATE RESULTS FOR PLY ANGLES OR NUMBER OF
PLIES PERTURBED WITH PLY FAILURES CONSTRAINED -.

i Cases1 2
Ply Ply Angles Number of Plies

Number Perturbed Perturbed

Laminate +30 90 +21C-	 ,	 ^-	 ] 90±45±45[90,,,,O]ss

1 0.6015 0.6240

2 2.1987 0.6240

3 0.7666 0.2974

Th
ply failure > 1	 4 2.0196 1.0911

5 0.7034 0.2974

6 - 1.0911

7 - 0.4832

F
strain energy 1084 748

3.	 w a
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5.2.1	 DESIGNED BY PERTURBING PLY ANGLES FOR SET NUMBER OF PLIES

The method of perturbing ply angles for a set number of plies

4,

relies on the computation of an initial design based on the applied
x

loads.	 This design is then subjected to a series of angular reorienta-`

tion until an optimum design is found. 	 From this standpoint the ini-

tial design provides the number of plies to be considered, within the

restriction that any plus angle is balanced with a minus angle.

The loads in the cases run will 	 result in a [0,+45,90] s initial

i laminate design which automatically becomes a [0,±45,90] 	 laminate dues

to the above restriction. 	 Thus the resultant design could be between

6 and 12 plies with the factor of two due to symmetry as discussed ^a

before.

s
5.2.1.1	 COMPOSITE LAMINATE TAILORED TO MATCH THE PROPERTIES OF A

[0,±45,0]	 LAMINATE t
s

The all composite material design is geared toward matching a

E known feasible laminate and satisfying ply failure requirements.	 Com-

parisons are also made for strain energy in each laminate.	 Three f'

cases were run for the standard load conditions and the following n

constraints;:

re. (1)	 Ex , Ey and Gxy constrained;

(2)	 Ex and Ey constrained;
r.

(3)	 ax and ay constrained.

The results of which can be found in Table 8.	 Cases (1) and (3)

yield the best convergence with (3) being the superior design from a

^.	 ®'	 -•-sJr' ..^	 •.^	 ..^.	 _	 ..._	 ....:tit.	 ^,._^.a..ria	 .	 ....-.s£.,.,y,-..	 .,..	 _	 _..,...^.-nr	 .... 	 _ u. ,_
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TABLE 8

COMPOSITE LAMINATES - [0, ±45,0]	 RESULTS FOR PLY ANGLES PERTURBED
s

WITH MATERIAL PROPERTIES AND PLY FAILURES CONSTRAINED

Cases
1 2 3

Target EX,Ey and G xy Ex and Ey ax and ay

Material Constrained Constrained Constrained

Laminate [0,-45,O]s [_29,90,_22]S [_l,_89,_15]S [±27,±51,±21]_ s

E (msi) 17.05 15.43 19.67 12.30
x %

-9.5 +15.4 -27.9

E (msi) 5.23 8.05 11.80 4.76
y % +53.9 +125.6 -9.0 .

IlkY

Gxy(msi) 4.43 4.29 1.52 5.73 R

-3.2 -65.7 +29.3

t v 0.67 0.44 0.10 0.83

y -34.3 -85.1 +23.9

ax(uin/in/ oF) 2.28 2.81 3.11 2.12
+23.2 +36.4 -7.0

a (uin/in / 0F) 6.45 4.69 4.18 6.16
y	 % =27.3 -35.2 -4.5

,'

Strain energy 1502 1085 1590 923A
/ -27.8 +5.8 -38.6

Number of plies 4 4 6
failed

Note:	 All percentages refer to variations with respect to the target -
material.

48
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property standpoint. 	 Case (2) seems to be invalid and raises the
f

possibility that a local minima was found due to the glaring disparity

of values.	 Case (1) shows good stiffness tailoring, although the Ey

Qk.	 value is high, which may or may not be beneficial. 	 The thermal

tailoring characteristics of case (3) are quite good and as a by-

-	 product give reasonable sti ffness values.
s

Once again ply failure occurs in the plies perpendicular to the

r	 applied shear force. 	 This is due to the high value of transverse

stress in each case.	 The method is reasonable from the property

matching standpoint and exhibits capability in both stiffness and
i

^.	 thermal	 tailoring in addition to greatly reduced strain energy.

5.2.1.2	 COMPOSITE LAMINATE TAILORED TO MATCH THE PROPERTIES l
OF TITANIUM

Three cases were run for standard loads and the constraints that
i

follow;	 w	 1
^ 

(1)	 E	 E	 and G	 constrained;
x	 y	 xy	 >:	 i

r	 (2)	 Ex and Ey constrained;

' y	 (3)	 a	 anda	 constrained.x
The results closely parallel those of the preceding section

. (Table 9).	 The thermal case yielded the best results in all respects
i

but all	 suffer from the same fault discussed in section 5.1.1.2

dealing with the possibility of mutual exclusion of constraint values.

The method suffers similar ply failure characteristics dealing

with high transverse tensile stresses in plies perpendicular to the

'	 3
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TABLE 9
qi

COMPOSITE LAMINATE - TITANIUM RESULTS FOR PLY ANGLES PERTURBED
WITH MATERIAL PROPERTIES AND PLY FAILURES CONSTRAINED

Cases
1 2 3

Target Ex, Ey and 
GxY

Ex and Ey a. and ay	 f'

Material Constrained Constrained Constrained

Laminate [±55,±74,x-43] [±34,±75,±64] [0±89,±29]s
;

E	 (msi) 15.80 4.36 6.11 14.10
x % -72.4 -61.3 -10.8

s'

k E (msi) 15.80 11.49 14.54 13.77
Y % -27.3 -8.0 -12.8

G	 (msi) 6.00 5.96 4.96 2.95
xy % -0.7 -17.3 -50.8

r,t

-0.34 0.34 0.26 0.18
?

vxy

%0
0.0 -23.5 -47.1

«x (uin/in/
0
F) 4.80 6.43 5.46 3.50

+34.0 +13.8 -27.1

ay (uin/in/°F) 4.80 1.96 2.48 3.55
-59.2 -48.3 -26.0

Strain energy 926 929 1230	 a

Number of pli es 6 6 2
failed

Note:	 All percentages refer to' variations -with respect to the target
material,

F

f
I
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shear force. The tailoring ability remains quite good, relative to

the constraint values required.

5.2.1.3 COMPOSITE LAMINATE TAILORED TO MATCH THE PROPERTIES

OF ALUMINUM

The cases are, once again restricted to standard loads and -conii
straints on; s

I.
(1)	 Ex, E	 and GX	 constrained;

y	
y

(2)	 Ex and Ey constrained.

I The results yield good stiffness tailoring for each case, and quite
:a

naturally, poor thermal	 tailoring (Table 10). 	 Additionally, each case

1 yields a laminate not far removed from the initial design.	 This

coupled with the ply failure problem would indicate that the initial

design should conta;n a larger number of plies.

i

5.2.2	 DESIGNED BY PERTURBING THE NUMBER OF PLIES FOR A SET PLY ANGLE

I . The method presented here relies on the addition or substraction - `(

of plies for each set ply .angle. 	 Ply angles are in five groups con-

h . si_sting of 90°, ±60°, ±45°, ±30
0
 and D°.	 Initia'l designs consist of

90	 _45° and 00 angle combinations depending on the appliedloads.

w The optimization proceeds by perturbing the number of plies,

for each set angle, between 0 and 2 until an optimum design is found..

The strain energy is minimized with respect to the constraints on

strength and properties.	 Varying the number of plies should satisfy

r.

I
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TABLE 10

COMPOSITE LAMINATE - ALUMINUM RESULTS FOR PLY ANGLES PERTURBED r	 ,

WITH MATERIAL PROPERTIES AND PLY FAILURES CONSTRAINED
3

Cases
1 2

Target EX, Ey and Gxy Ex and Ey

Material Constrained Constrained

Laminate [0,90,±51]S [±57,90,±5]s

f
Ex(msi)	 10. 40 10.59 13.77

}

^. / +1.8 +32.4

E (msi)	 10.40
y

13.18 12.95
.., % +26.7 +24.5 j

tt

{
G	 (msi)	 3.90
xy

4.28 3.35
% +9.7 -14.1

vXy	 0.33 0.27 0.22

x
-18.2 -33.3

a (pin/in/°F)	 13.10 3.84 3.45 ix	
% -70.7 -73.7

a {pin/in/°F)_	 13.10 3.26 3.50 n
y -75.1 -72.5

.:. Strain energy 1254 1151

r Number of plies 6 4'

failed ;a

Note:	 All percentages refer to variations with respect to the target
material.

a

a

r
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the strength requirements and provide enough variety of angular orienta-

tion to satisfy material property constraints.
r

is
s

5.2.2 .1 	 COMPOSITE LAMINATE TAILORED TO MATCH THE PROPERTIES OF

ii

A [0,±45,O] s LAMINATE

The cases for this target material use standard load conditions
ll ^ L

with the following constraints;

(1)	 Ex , ty and Gxy constrained;
f

I (2)	 Ex and Ey constrained;

(3)	 a	 and a	 constrained. '.
x	 Y

These results are summarized in Table 11. 	 Of the three cases only ;.

(3) responded with viable results. 	 Variations of Ey have been dis-

cussed previously and those	 arguments may also apply here. 	 The

failure of the stiffness constraints to yield material properties

L of an appropriate nature may be due to the large number of ply pfc

failure constraints overwhelming the other constraints.

Ply failure due to transverse stresses of negative angle plies

continues to appear.	 The explanation for this may be involved in

the use of strain energy as the function to be minimized. 	 Another

P possibility that offers an explanation is that of stiffness con-

T straints and ply 'failure constraints, for this loading case, may be

mutually exclusive.

The thermal case offers reasonable tailoring along with a large

reduction in strain energy. 	 The ply failure constraints for the

thermal_ case are close to being satisfied.	 The total outlook for
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TABLE 11

8

COMPOSITE LAMINATE - [0,±45;O]S RESULTS WITH NUMBER OF PLIES
i?	 f

PERTURBED WITH MATERIAL PROPEPTIES AND PLY FAILURES CONSTRAINED

Cases
1 2 3

Target Ex , Ey and GXy Ex and Ey ax and ay

Material Constrained Constrained Constrained_

Laminate	 [0,±45,O]S [90,±45,0] s [90,90,±60,±45,O] s [90,±30,±30,0]s

E	 (msi)	 17.05 11.64 8.02 15.51 ;a
x %

-31.7 -53.0 -9.0 a

E (msi)	 5.23 11.64 15.00 7.41
y % +122.6 +186.8 +41.7

G	 (msi)	 4.43 4.43 4.43 4.43
xy % 0.0 0.0 0.0

(msi)	 0.67 0.31 0.24 0.49vXy %

-53.7 -64.2 -26.9

a (pin/in/°F)	 2.28 3.52 4.65 2.71
X	 % +54.4 +103.9 +18.9

a (pin/in/°F)	 6.45 3.52 2.82 4.93
y	 % -45.4 -56.3 -23.6

Stain energy	 1502 1227 809 935
. -18.3 -46.1 -37.7

Number of plies 6 4 6
failed

Note:	 All percentages refer to variations with respect to the target
material. w

r
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case (3) is reasonably good but rather poor for the other two.

5.2.2.2 COMPOSITE LAMINATE TAILORED TO MATCH THE PROPERTIES OF

TITANIUM

Three cases were run for titanium with standard loads and the

following cons"t-,raints;

(1)	 Ex , Ey and Gxy constrained;

(2)	 E x and Ey constrained;

(3)	 ax and ay.

Results of these cases are found in Table 12 and compare favorably

with those of the previous section. 	 Cases (2) and (3) have reasonable

property values but case (1) approaches failure compliance more readily.

Overall, case (2) would possibly be viable if the Ex _ Ey constraint

were relaxed to some extent, additionally the strain energy is quite low.
f 	 1i
'i

5.2.2.3	 COMPOSITE LAMINATE TAILORING TO MATCH THE PROPERTIES OF
i

ALUMINUM

The two cases for aluminum included standard loadings with con-

straints on the following;
r

(1) Ex
 
	 Ey and Gxy constrained;

(2) _Ex and Ey constrained.

Results found in Table 13 follow the same trend, although the
4	 -:

stiffness properties are easily match, ply failure of the same nature

is encountered.

The aluminum results show that case (1) provides better property

siy

i
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TABLE 12

•q

COMPOSITE LAMINATE - TITANIUM RESULTS FOR NUMBER OF PLIES

i
PERTURBED WITH MATERIAL PROPERTIES AND PLY FAILURES CONSTRAINED

Cases
^. 1 2 3

Target EX, Ey and G Xy E	 and Ey a and ay
x

Material Constrained Constrained Constrained,

} Laminate {90,-7-60,±60,±30]s [90,±45,±45,O] s [90,90,±45,0]s

EX(msi)
15.80

/
6.38 9.43 10.18

-59.6 -40.3 -35.6

E	 (msi)	 15.80 12.63 9.43 15.32 r
_y Y % -20.1 -40.3 -3.0

i;.
GXy(msi)	 6.00 5.43 5.59 3.73

F €. -9.5 -6.8 -37.8

V	 0.34

y

0.32 0.45 0.21 j

^ -5.9 +32.4 -38.2

« (pin/in/°F)	 4.80 5.02 3.52 4.12x	
/ +4.6 -26.7 -14.2

a (pin/in/°F)	 4.80 2.59 3.52 3.09
Y -46.0 -26.7 -35.6

r,
Strain energy 765 793 1115

4 «° Number of plies 4 4 6
failed

-t

Note:	 All percentages refer to variations with respect to the target

rc

material. ;.

.. x	 .y
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TABLE 13

COMPOSITE LAMINATE - ALUMINUM RESULTS FOR NUMBER OF PLIES
4 PERTURBED WITH MATERIAL PROPERTIES AND PLY FAILURES CONSTRAINED

Cases
1 2

Target Ex, Ey and Gxy EX and Ey

Material Constrained Constrained
3

Laminate [90,±45,O]s [90,90,±60,±45,O]s
j `

t ' E(msi) 10.40 11.64 8.02
x

+11.9 -22.9

` E (msi) 10.40 11-.64 15.00
y % +11.9 +44.2

G	 (msi) 3.90 4.43 4.43
xy

+13.6 +13.6 1

0.33 0.31 0.24vxy
-6.1 -27.3

a (}yin/in/ oF) 13.10 3.52 4.65
x	

% -73.1 -64.5

a (Pin/in/ 00 13.10 3.52 2.82
.+. y -73.1 -78.5r

Strain energy 1227 809

Number of plies 6 4
failed

, j Note:	 All percentages refer to variations with respect to the target	 -
material.

1

G
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matching, which is unusual due to extraconstraint for shear modulus

being relaxed in case (2). This may be an example of the strain energy
	 1
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Chapter 6

SUMMARY AND CONCLUSIONS

The results and discussion presented in the preceding chapter

T	
offer several points for observation. 	 f

The results for the optimization without a strength criteria

proved to be quite good. The ability to tailor a composite laminate"

for desired stiffness or thermal properties was readily apparent.

Various load conditions provided results which exhibited the respon-

siveness of the optimization method. Laminates containing a minimum

of strain energy were found to be feasible to varying degrees,

dependent upon the constraints applied.

The inclusion of a strength criteria greatly degraded the quality

of results.	 Although the property tailoring capability 	 remained

viable, it was somewhat restricted. 	 Ply failure, in the plies perpen-

dicul ar to the applied shear force was a problem for both angles

variable and number of plies variable, primarily due to high transverse

tension stresses.	 The methods used in this section produced laminates 	 +
i

with lower strain energy values, also dependent upon constraints

applied.	
-;

rŷ

;.

_

Commenting on the overall design technique, leads to several clear

x points that should come into play during design implementation.	 The

first of these deals with selective tailoring of 'laminate properties.
t

Tailoring should be applied on a priority basis with possibly upper

and lower bounds set for each property.	 Using a "broad brush"

approach to tailoring may result in a non-feasible solution situation.

h
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Further, along this same vein, constraint values in various directions

may need to be restricted along with recognizing properties which are

out of the feasible range of the design material, such as the thermal

k	 properties of aluminum. 	 Another point that should be noted is that
1J

of constraint contributions to the penalty function. 	 The effect of

each constraint should be approximately equal with respect to the

penalty function.	 The example problems were all run for the same
i

optimization parameters-, for comparison purposes.	 Variation of pro-

m

blems would Ui^ta'a the tailoring of the optimization parameters to

suit the particular problem.	 The random point search was found to
_ tl

3
yield excellent starting points for subsequent searches of which the

creeping search proved the most effective for the example problems.

Initial designs proved to be somewhat inadequate and should be given

serious consideration, although this is dependent on applied loads.

There are some limitations in the 'design process.	 The AESOP pro-

gram is formulated on the basis of an exterior penalty function a

approach to the optimization problem.- This means that constraints

are allowed to oscillate about the desired constraint value instead

of being bounded by the desired value.	 This method poses problems,
q{

especially for failure_ constraints, where it is essential that the

values not exceed the desired constraint value. 	 Another limitation_

exists in the number of plies variable method. 	 This method involves

the use of the number of plies as a continuous design variable.- The

approach is fine for the optimization algorithm	 but when the function

evaluations take place the number of plies must be discretized, and

a

t
fi

3
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thus used in integer form. Truncation.to  an integer results in some-

what erratic behavior in the optimization scheme as was shown in the

numerical results.

The first limitation may possibly be alleviated by the use of

an interior penalty function formulation to impose inequality type

constraints as opposed to the present equality constraint used. The

second limitation may be solved by formulating this type of method in

an integer programming framework, the discussion of which is beyond

the scope of this investigation.

f The method presented has, in varying degrees, shown that the design
L

of a laminate can be accomplished using strain energy minimization as

the primary criteria.	 It is felt that this criteria offers a means of

maximizing the reserve strength that the laminate has the potential to

exhibit.	 The inclusion of a failure criteria may be counter to the

j, strain energy criteria.	 This may be viewed by the fact that the energy

criteria seeks to preserve reserve strength while the failure criteria

tends to maximize stresses, within failure bounds.	 Viable trade offs

may be reached to make these two purposes compatible.

An optimization method allows the designer the freedom to choose;

directional properties and to eliminate excess material capability in

R non-critical directions. 	 Although, the number of plies variable

method encountered truncation difficulty, this type of design, using

families of plies, is the most practical from the present technology

manufacturing standpoint and as such deserves continued development. u	 i

This type of method coupled withnonlinear programming techniques and

F

p
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continued development of high speed digital computational hardware

4	 promise to yield a design tool of an extremely powerful nature. The

use of a tool, such as the AESOP program, should be supplemented with

both a knowledge of the analysis technique and a background knowledge
t

of the optimization procedure. These tools and this knowledge must,

in the final analysis, be tempered with sound engineering judgment

which only the experienced designer possesses,

g.



BIBLIOGRAPHY

1. Hackman, L.E., Stotler, C. L., "Laminate Optimization for Fila
mentary Composites", 10th National SAMPE Symposium, San Diego,
1966.

2. Waddoups, M.E., "Structural Airframe Application of Advanced
Composite Materials, Volume VI - Analytical Methods", AFML-TR-
69-101, Feb. 1969.

3. Foye, R.L., Baker, D.J., "A Method for Minimizing Weight and
Maximizing the Critical Safety Margins of Thin Laminates",
Proceedings of the 6th St. Louis Sym. on Composite Materials
in Engineering Design, St. Louis, May 11-12, 1972, pp. 383-390.

4. Bush, H. G., "Analytical Design Method for Strength Optimization
	

I
of Composite Orthotropic Laminates", Proceedings of the 6th St.
Louis Sym. on Composite Materials in Engineering Design, St.
Louis, May 11-12, 1972, pp. 391-401.

5. McCuller, L.A., "Automated Design of Advanced Composite Structures",
Structural Optimization Symposium, New York, NY, Nov. 	 17-21, 1974,
American Society of Mechanical	 Engineers, pp. 119-133.

6. Purdy, D.M.,	 "Composite Structures", in Structural Mechanics
Computer Programs, ed. by W. D. Pilkey, University Press of
Virginia, CharlTttesville, VA,	 1974, pp. 411-438.

7. Schmit, L.A., Tung, T.K., Advanced Com posites Desi gn Guide, Vo.	 2,
Sect. 2.3, Advanced Development Division, Air Force Materials
Laboratory, Wright-Patterson AFB, Ohio, 3rd Edition, Jan. 	 1973.

8. Schmit, L.A., Jr., Farshi, B.,	 "Optimum Laminate Design for
Strength and Stiffness", Int. J. for Numerical Methods in
Engineering, Vol. 7, No. T,-1973,pp. 519-536.

9. Harris, G. Z., "Optimum Fibre Arrangements for Reinforced Sheets
under Combined Loading", Aeronautical Research Council, London,
England, Nov.	 1966.

10. Ashton, J.E., Waddoups, M.E.,	 "Analysis of Anisotropic Plates",
Journal of Composite Materials, Vol. 3, Jan. 1969, pp. 	 148-165.

11. Waddoups, M.E., McCullers, L.A., Olson, F.D., Ashton, J.E.,
"Structural Synthesis of Anisotropic Plates", Presented at 11th
AIAA/ASME Structures, Structural Dynamics, and Materials
Conference, Denver, CO, April	 1970.

63



64

	

	 l

i .

o

12. Brandmaier, H.E. "Optimum Filament Orientation Criteria", Journal
of Composite Materials, Vol. 4, July 1970, pp. 422-425.

,13. Verette, R.M. "Stiffness, Strength and Stability Optimization of
Laminated Composites", Northrop Report No. 70-138, Northrop
Corp., Aircraft D.V., Hawthorne, CA, Aug. 1970.	 y

14. Mroz, A., "Optimal Design of Structures of Composite Materials",
Int. J. of Solids and Structures, Vol. 6, 1970, pp. 859-870.

15. Verette, R.M., "Sandwich Panel Design Program (Spade)", Northrop
Report NOR 71-85, Northrop Corp., Aircraft Div., Hawthorne, CA.,
May 1971.

16. Kicher, T.P., Chao, T._L., "Minimum Weight Design of Stiffened 	 it

Fiber Composite Cylinders", Journal of Aircraft, Vol. 8, No. 7,
July 1971, pp. 562-569.

17. Bryzgalin, G.I., "Optimal Design of Locally Orthotropic Elastic
Flat Bodies with Weak Binding", Air Force Systems Command, Wright
Patterson AFB, Ohio, Transl. into English from Inzh. Zh., Mekh:
Iverd. Tela No. 3, 1971, pp. 169-175.

1$. Vinson, J.R., Shore, S., "Minimum Weight Web-Core Sandwich Panels

k	
Subjected to Uniaxial Compression", Journal of Aircraft, Vol. 8,
Nov,, 1971 pp. 843-847.

19, Dharmarajan, S., McGhie, R.D., "Optimization of Composite Columns
of Various Cross Sections", Proceedings of the 6th St. Louis Sym. 	 }
on Composite Materials in Engineering Design, St. Louis, May 11-12,
1972, pp. 402-416.

t,

20. Khot, N.S., Venkayya, V.B., Johnson, C.D., Tischler, V.A., "Optimum
Design of Advanced Composite Structures for Static Loads", Pro-
ceedings of the 6th St. Louis Sym. on Composite Materials in
Engineering Design, St. Louis, May 11-12, 1972, pp. 417-427.

21. Lowery, R.D., "Optimization of Orthotropic Layered Shells of
Revolution by the FiniteElement Method", SAWE,Paper 939, 31st
Annual Conf. of the SAWS, Inc., Atlanta, GA. May 22-25, 1972.r .	 ;

22. Harris, G. Z., Bartholomew, P., "Optimum Fibre-Reinforced Sheets
for Two Alternate Loadings%, RAE=TR-73012, Jan. 1973, Royal Air-
craft Establishment, Farnborough ,(England)

23. Laakso,`J.H,, Zimmerman, D.K., "Synthesis of Compression Panels
Having Non-Uniform Stiffener Sections", AIAA ASME, and SAE,
Structures, Structural Dynamics, and Materials Conference, 14th
Williamsburg, VA., March 20-22, 1973,,AIAA Paper 73-347,

ei



65

24. Lai, Y.S., Achenbach, a.P., "Optimal Des,ign of layered Structures
Under Dynamic Loading", Computers and Structures, Vol. 3, May 1973,
pp. 559-572.

25. Khot, N.S., Venkayya, V.B., Johnson, C.D., Tischler, V.A.,
"Optimization of Fiber Reinforced Composite Structures", Int.
J. of Solids and Structures, Vol. 9, Oct. 1973, pp. 1225-1236.

26. Patnaik, S., "Synthesis of Waffle Plates in the Post Buckled Domain
Computer Methods in Applied Mechanics and Engineering, Vol. 4, July

4	 1974, pp. 47-68.

27. Khot, N.S., Venkayya, V.B., Berke, L._, "Optimum Design of Composite
Structures with Stress and Displacement Constraints", AIAA Paper
75-141_, Presented at the AIAA 13th Aerospace Sciences Meeting,
Pasadena, CA., Jan. 20-22, 1975.

28. Chao, C.C., Sun, C.T., Koh, S.L.,	 "Strength Optimization for R

Cylindrical Shells of Laminated Composites", Journal of Composite _	 3

Materials, Vol.	 9, Jan.	 1975, pp.	 53-66. f
3

" 29. McCullers, L.A., Lynch, R.W., "Composite Wing Design for Aeroelastic
Requirements", Proceedings of the Conference on Fibrous Composites
in Flight Vehicle Design, AFFDL-TR -72-130, U.S. Air Force, Sept.	 1972,
pp.	 951-972.

"a 30. McCullers, L.A., Lynch, R.W., "Dynamic Characteristics of Advanced
' Filamentary Composite Structures", Vol. Ii - Aeroelastic Synthesis

Procedure Development, AFFDL-TR-73-	 Convair Aerospace Div. of

r General Dynamics - Fort Worth Operation March 1973. ,=

31. Stroud, W.J., "Automated Structural Design with Aeroelastic Con-
straints:	 A Review and Assessment of the State of the Art",
Presented at the ASME Sym. on Structural Optimization, 1974 ASME
Winter Annual Meeting, New York, NY, Nov.	 17-21, 1974.

32. Reuter, r. C., Jr., "Concise Property transformation Relations for
an.Anisotropic Lamina", Journal of Composite Materials, April 1971,
pp.	 270-272.`

33. Jones, R.M., Mechanics of Composite Materials, Scripta Book Co.,
Washington,-D.C.,	 1975.

F
34. Lekhnitski, S.G., Theory of Elasticity of an Anisotropic Elastic

Body,-Holden-Day, San Francisco, 1963.

35. Tsai, S. W., "Strength Theories of Filamentary Structures", in
" R. T. Schwartz and H.S. Schwartz (eds.), Fundamental Aspects of

z

y f

r



66

Fiber Reinforced Plasttc Composites, Wiley Interscience, New York,
1068	 3-11pp.

IL	 36. Tsai, S.W., Wu, E.M., "A General Theory of Strength for Anisotropic
Materials". Jnurnal of rmmno-,itP Materials. Januarv. 1971. nn. SR-RO.



_...^	 ..	 ,_.	 .,.t„^ 	 A.,

-r,.v	^

	

_	 ^ _.	 _N



I

68

A.1 LAMAES USER'S GUIDE

LAMAES is the name chosen for the total design-analysis program,

consisting of the laminate analysis program coupled with the optimiza-

tion program, AESOP.

The LAMAES program is set up to be used in two basic modes, either

analysis or design. This description is divided into three parts;

first information general to both modes, second specifics of the analy-

sis mode, and third specifics of the design,mode.

A.1.1 GENERAL

General data for any computer run,_

CARD 1 format I5
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2. ISIGEP - lamina input selection

0 stresses given, strains computed

1 strains given, stresses computed

3. ISTRFR - laminate input selection

1 strains and curvatures given,

forces and moments computed -

2 forces and moments given,

strains and curvatures computed

4. ISYMM — symmetry computation selection

0 symmetric laminate

1 asymmetric laminate

5. IECON - engineering constants computation selection

LAMAZE = 0	 LAMATE = 1

0	 none	 none
`.	

1	 laminate only

2	 lamina and laminate	 lumina only

6. NREPT - not used at this time

7. LAMX force, moment, strain & curvature computation

selection

O none

1 all

2 R - curing thermal loading effects

_3 E	 operating thermal loading effects_

note; mechanical effect computed automatically'
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8. LAMY - lamina stresses and strains x,y coordinate

system computation selection

0 none

1	 all
r

2 M - mechanical loading effects

h 3R

4E
a

5 M & R

6 	 l	 E

7 R & E

9. LAMZ - lamina stresses and strains 1 ,2 coordinate
x

system computation selection

0 none

1	 all

2M
c 3R

4f

5 M & R

6 M & E

7R&'E

10. MAXLAY - option allowing doubling of laminate size

-i number of plies remains unchanged

0 doubles	 he number of plies symmetrically

11- NOPTYP - type Df design method option

-1 no strength criteria considered, angles

^k	 „JrJau..<saawaxsr:.mrrskavaiYanYc^Sk^l^,^"
_.
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j

variable, number of plies constant

0 strength criteria considered, angles 
5

variable, number of plies constant

1 strength criteria considered, number

of plies variable, for constant ply

angle
Y

note:	 an initial design must be supplied for

NOPTYP = -1, other options result in

the automatic determination of an initial

design (may be unidirectional)

CARD 5	 format 715

1.	 IOUTA - materialro ert	 and la up	 p	 y	 lay up print option

1 no printing
3

0 printing

2.	 IOUTB - lamina stiffness print option

1 no printing

0 printing

3.	 IOUTC - laminate stiffness print option

1 
no printing

z

0 printing

r,!	 4.	 IOUTD - engineering constants print option

1 no printing

i	
2 printing

E	 5.	 IOUTX	 force, moment, strain & curvature*

'	 6.	 IOUTY - lamina stress and strain in x,y coordinate

F	 '

1

...	 pus	
_..	 y ,,,F,=M	asn	 A, •̂rw	 ,v...-,-.	 ., . -_._._	 r	 +-'^ann.m.	

q
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TEMCHG - temperature change, ambient to operating

DELT 3 - temperature change, cure to ambient

CARD 7, 8, ... format 7P10.3/010.3

ELP (7, NUMMIAT) - lamina material properties

ELP	 (1, -) - elastic modulus El

ELP	 (2, -) - elastic modulus E2

ELP (3, -) - shear modulus G12

` ELP	 (4, -) - coefficient thermal expansion, al
{

ELP (5, -) - coefficient thermal expansion, a2

ELP	 (6, -) - Poisson's ratio v12

ELP	 (7, -) - ply thickness

P; ELPP (5, NUMMAT) - lamina ultimate strength parameters

ELPP	 (1, -) - tension ultimate XTX'

ELPP	 (2, -) - compression ultimate IC

ELPP 	 - tension ultimate YELPP	 (3	 T,	 ,

ELPP (4, -) - compression ultimate YC

ELPP (5, -) - shear ultimate Z

note:	 there should be 2 cards for each different	 F

material, lst card material property and

;a. 2nd card strength parameters.

4 CARD 9,	 ... format 8 (;I5,F5.0) see note

MATER (NUMLAY) - matertal type

THETA (NUMLAY) - orientation angle w

note:	 4 plys per card

w <.._^.	
7!	 1111
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CARD 10 format 6D12.5

t	 Loads given

EPSIL (3, 1) for ISIGEP = 1

g	 or	 for LAMATE = 1

SIGMA (3, l) for LSIGEP = 0

or

AM05T (3)

and	 for ISTRFR	 1	
}

i

AMDCR (3)
a

or	 for LAMATE 0

FORCE (3)

d
and	 for ISTRFR = 2

AMOMN (3)
-	 a

^<

	

	 r

A.1.2. ANALYSIS

This section 'deals with specifics of the analysis mode which may

require various combinations of data values.

CARD 4

Use ISIGEP only if LAMATE = 1

Use ISTRFR only if LAMATE = 0

Use ISYMM only if LAMATE = 0

If thermal effects are desired in LAMY then LAMX must

be compatible, likewise LAMZ must be compatible

with LAMY.

Use MAXLAY only if LAMATE = 0, NOPTYP does not apply.

r _,

y.: .r

T

A^
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CARD 5

t	 All print options must be compatible with computations

or zero's will result.

}44
	 N	 CARD 6

Must supply for analysis.	 rk

CARD 9	 P

Must supply for analysis. r.

CARD 10
r

Must supply for analysis.

A.1.3 DESIGN
t

This section deals with specifics of the design mode which mayi

a	 ^.	 require various combinations of data values.

CARD 4

LAMATE 0
j	

ISIGEP does not apply 	 ! j

ISYMM must_ be compatible with MAXLAY

IECON	 1 or 2

LAMX = 1

LAMY = l
T	 LAMZ = 7

CARD 6

NUMLAY	 1 or greater even if design is determined internally.

CARD 9

Must supply for design '(1 or greater)
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CARD 10

Must supply for design.

With each set of case data, the control input for the

optimization procedure must be input. 	 This is the

form of '=,)RTRAN NAMELIST type input data. 	 NAMELIST

input must be preceded by a card denoting the start

i	 of the NAMELIST input.

& IAESOP - denotes NAMELIST input to follow, begins in

column 2.
z

NUMOPT -	 - number of optimization searches to be

employed. 1

METHOP (20) _	 - sequence of searches to be employed

1 Sectioning
k

2 Pattern

3 Magnify
i

4 Steepest Descent

5 Creeping {

6	 Quadratic

7 _Davidon
k.	

8 Random Point

9 Random Ray

MAXJJJ _	 ,-- maximum number function evaluations

NALPHA =	 - number of control parameters to be employed
I ^

ALPHA (100) _	 - nominal values of control parameters

ALPHI (100) _	 - upper control parameter search limits
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lower control parameter search limits

►er of functions to be considered

fiber of constraints, maximum of 20

constraint function numbers 	 r

2 elastic modulus E x direction

3 elastic modulus Ey direction

4 shear modulus GXy direction

5 Poisson's ratio vxy direction

direction

.1 7 coefficient of thermal expansion ay

p. direction
a^

8-21 ply failure, set internally

IPRTAL = - detailed print option for optimization output

0 no print output

1 print output for design variables, and

constraint and objective functions, and

evaluation number.

1

4
note:	 many more control variables may be

set, to obtain more detailed documen-

tation on the control variables

see [381.

& END
r	 ^

& IAESOP i
EOF = .TRUE., l
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& END

This last card ends one complete set of data for a problem, if
e

more problems are run then a complete set of data for each would follow.

»	 z
It may also be noted that the NAMELIST input for a, design mode	

F

problem will override the same input data given in the general data

section.
i

A flowchart (Fig. A.1) describing the basic program branching 	 5
Y

will follow.	
F

i

i
x

7

f









L	 NUMBER OF :CASES
1

-TEST PROBLEM TITANIUM ^^**s*y^*}sa ♦*s*•*******•*ss*sr*srs*sss*^*•ss^ss*ss*sssss
02	 0	 1	 0	 1	 1	 1	 0-1
0	 1	 1	 0	 5	 S	 S
1	 1	 0	 0	 1	 1
2	 1	 100.	 -200.

.308	 Vol. 	 .9306	 .250-5	 .1310-4	 .2L	 .0052
!.' .18806	 -.36206	 .9104	 -.45DS	 .19205

1	 0.	 1	 0.
..144114	 .14404	 .10204

CIAESOP
NFUNC=Sr

4ALPHA-2r
ALPHA-100*0. r.
IPRTAL=Or
NUMOPT-Tr
METHOP-8.5r2,4,3,t.?.13*Or

" MAXJJJ=300. i

I: ALPHI = 100090.. M

ALPL0-100*-90...
SIBAR=1.58,1.58,4.8,4.8.16*.8. j
PSIWT-20*10000:•

' FTOL-200.1, d

- TTOL=20*t.s
7MAXCRP=Sr

111-934058127•
MAXRPT-100r 00
CREPMN=IOO*L... PO

OCREEP.100*1.,
' (PLt,AML-Or

LEND M

CIAESCO
k

EOF-.. TRUE. •
:.

' LEND

L•

i
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r
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PROBLEM TITANIUM" •:• •ss^^^^^ •• titt^s^t^^sFSi4^^ts^^u^tsa^s^s • •s^s^a^^st ►► E^^rs^a^r^^^ts• e^

DESIGN OPTION

" PLY ANGLES PERTURBED - NO STRENGTH CRITERIA

MATERIAL PROPERTIES CONSTRAINED
LONGITUDINAL X 4000LUS - i-
TRANSVERSE Y.M000LUS
THERMAL EXPANSION . COEF X E:

^- - THERMAL EXPANSION. COEF Y
j

GENERAL COMPUTATION OPTIONS
1

NUMBER OF LAYERS	 2 t^

NUMBER OF MATERIALS	 1

TEMPERATURE CHANGE — AMBIENT TO OPERATING 100.

TEMPERATURE CHANGE — CURE TO AMBIENT —200.

Ei
ANALYSIS LEVEL — LAMINATE • SYMMETRIC 00

G_t FORCES AND MOMENTS GIVEN — MIOPLANE STRAINS AND CURVATURES COMPUTED
1

^. OUTPUT OPTIONS

LAMY• 1 i
LAMZ-

f IOUTB• 1
IOUTC• L

t IOUTO. 0

a^^

t	 :•

s

fi,'

z
a

r
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x.

INITIAL REPORT

s

ALPHA VALUES
0.00000	 0.00000
FUNCTION VALUES 1

18246.	 3.0000	 0.27000	 2.5000	 13.100	 0.67407E 06

as••' GAIN s•ss
1t3

METHOD *	 9	 OLD PHI •=	 0.674071E 06	 NEW PHI =	 0.148292E 05	 PERCENT GAIN	 91.80017	 JJJ =	 2 E

•ALOHA	 = . -0.28056E C2-0.62959E_92

FUNCTN =	 0.22054E 04 '0.91197E 06 0.91197E 00 0.35235E 01 0.35235E 01 0..14828E 05 -.

• t r i s•• a s • s• s• s s • t• s s•• s s ,END OF SEARCH 	 8	 CYCLE Ni.	 1	 JJJ _	 101	 s s s s•• s• s

PHI AT . START OF SEARCH n 	 0.674071E _06	 PHI XT END OF SEARCH =	 0.148282E 05	 PERCENT GAIN _	 97.03317. i	 3a
• t•• t s s• s s r s s s's s s• 1't •• s• r s s s •'• • v•• s• s t a•••• s s s•. s_r • s t s• s• s•• s••• s g

.E

a
'• t • tr.t s • s s t' • t s s s s= • s s M. • s s s a E40. OF SEARCH 	 S	 CYCLE NO.	 1	 JJJ •	 114	 • • s • s- a s s • 00

cil	 +

PHI AT START OF SEARCH =	 0.298165E 05	 PHI. AT END OF SEARCH	 0.268291E 05	 PERCENT . GAIN	 10.01926
3

• s •• • •_•s • •-ai r ♦ s's s s•r , s• • • a • as • ss • s r:• s s ...a s. ra a rs • • s • ♦ • r.•• s • s• • ) a • •. • s ^

h

r^

• r • e s • a s s s. •.s s s rt • s s • s s • t s END OF SEARCH	 2	 CYCLE NO.-	 1.	 JJJ	 LI5	 • • • s s Y •- s s '-

-	 PHI AT START OF SEARCH	 0.268291E 05	 PHI AT END OF SEARCH =	 0.268291E 05	 PERCENT GAIN =	 0.00000

^ f •tt r a•_-• c• s• s r •'• t s s • s• s s• s s r •.•'• • s s s s • s• s•. s. s •.• a• s t •• • s s.• • s a a • s s• r r•

E y • • • • • ♦ • • • s s • s • r • • . • . • s-.r ♦ ENO OF SEARCH	 4	 .CYCLE NO.	 1	 JJJ	 138	 • s • • a • • • '• -

' PHI AT START OF SEARCH	 0.515871E 05	 PHI AT END OF SEARCH a	 0.513855E 05..	 PERCENT GAIN =	 0.390.72
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• • • s • • i • • s • • a s ♦ • • a • s s • s t • END OF SEARCH	 4	 CYCLE NO.	 Z	 JJJ	 245	 • • • s s • • • •

PHI AT START OF SEARCH; _	 0.309066E 97	 PHI AT £N0 OF SEARCH	 0.309066E 07	 _	 PERCENT GAIN	 X0.00000

F • t t s s s •• r• a a• s's s.s s s a• t• ♦• r s•• r s s s•• s •'s s s s s• P•• i•• s s• s•• s••• ♦ s• s s t ^1

r 4,} • 
s s as • • s • • • • s s s s: s • s s s • • • END OF SEARCH	 3	 CYCLE NO.	 2	 JJJ =	 .248	 • • r s • • a. r •	 - -

i, PHI AT START OF SEARCH _	 0.617753E 07	 PHI AT END OF SEARCH 	 0.617753E 07	 PERCENT GAIN -	 0.00000

• • • • •	 • • ♦ 's • s • s s • • s s • • • s s • s s ^ • s • s s s • s • s s • s • a • s s s • • s • s • a • • ♦ • • s • s • • s {

1

s ♦ ♦' •• s s s• • s• s s s s•• s a ♦ s s s s END OF SEARCH	 I	 CYCLE NO.	 2	 JJJ	 292	 •• s •• s s s s

PHI' AT START OF SEARCH = 	 3.123513E OR	 PHI AT END OF SEARCH =	 0.123513E 08	 PERCENT GAIN s	 0.00000

f • t s• s• a s s s•• s s• t• s s s s•• s i s s s s a a• s• s• s s s• s s• s••• s s•• r• s• s•• s• s a• s•

GAIN

• METHOD =	 7	 dLD PHI =.	 0.24698TE 08	 YEW PHI	 0.246987E 08	 'PERCENT GAIN =: 	 0.00000.	 JJJ	 296 00	 y

F

I

ALPHA -O.:L748SE 92-0.73274E 02

FUNCTN -	 0.29101E 04 0.13695E 01 0..13695E 01 0.35235E 01 0.35235E 31 0.24699E 08 j

i ^,^' •••• GAIN ••••

METHOD = '7	 OLD PHI 0.246987E 08	 NEW PHI =	 0.246987E 08	 PERCENT. GAIN	 0.00000	 JJJ =. 291

ALPHA -0.17485E 02-0.73269E 02

^I r-, 1,^ ! FUNCTN =	 0.29101E 04 0.1. 3695E 01 0.13695E 01 0.35235E 01 0.35235E 01 0.24699E 08 -

^#

R b 1
METHOD - 7	 OLD PHI =	 0.246987E 08	 NEW PHI =	 0.246987E 08	 PERCENT GAIN =	 0.00000	 JJJ =..298 t

f ALPHA -0.17485E 02-0.73269E 02

fFF
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r	 —

• • • s ♦.. • • • -• ♦ s a a • t •> r • • s s s • s • END OF SEARCH	 3	 CYCLE NO.	 1	 JJJ =	 t41.	 • s s • s • • r • .a

PHI AT START OF SEARCH	 0.998328E 05	 PHI AT END OF SEARCH =	 9.998328E 35	 PERCENT GAIN	 0.3000.1

• t s s • s•.. ♦• s it • a•s-.s •• • st t t s.• •• • a' si s s r•. •s ss • • • ♦ a • ♦ s s • ♦ •. s f ♦ s i • ♦ • t • s • •
t

• •	 ENO OF SEARCH	 I	 CYCLE NO.	 I	 JJJ	 L94	 • • • • • s a • •

PHI AT START OF SEARCH =	 0.196343E 06	 PHI AT END OF SEARCH = 	 0.196203E 06	 PERCENT GAIN =	 0.07124

• f ss• s ss•r i s ass's s s • ss rs •ss ♦ s •s s• s t • • s•s •• s a ast s ♦ s•• s • • r ♦ i•• s • • s ♦

^s••t••sssssssssss••ss..ssassssss4ss••s••s DAVID04 SEARCH FAILED TO GA lyssasst ♦sasNtasssrsssssssssassssa•sss•ss

•• f r`s s t s: t s•• ♦ s • s t • t f s a s s END OF SEARCH	 7	 CYCLE NO.	 1'	 JJJ-=	 208	 s s s• s t s••

PHI AT START . OF SEARCH=	 0.389590E 06	 PHI AT END OF SEARCH -	 0..389590E 06	 PERCENT GAIN =	 0.000 00 1

:. • f..t f.•s t ♦ • t`t ss •s • t • s f t f • a s 1 s tf s •. •• •a is i • •s ts ♦ s s • s • ♦ s s s.'a • ♦ s • • • s ♦ ♦♦ (	 1

i • • • • i • t f • • • • t t • • t • t t t • i • t END OF SEARCH	 8	 CYCLE. NO.	 2	 JJJ =	 208	 • • s s •s s ••
Cp

PHI AT START OF SEARCH = 	 0.7764Z4E.06	 '. PHI . AT . END OF SEARCH	 w.389590E_06	 PERCENT GAIN .=	 49.8ZZ53	 V

•t•r ♦ tts•••:s•tt..••s•.•t•sto•s•f•sts•st•sst•it•tss•is ss s: ♦ s•• . ••t s. •t•a -	 ^
I

• • • • • • • •,• ♦ s • • • s s • f s • s s • a s ENO OF SEARCH	 5	 CYCLE NO.	 2	 JJJ	 226	 s s • a • s • • •j
PHI AT START OF SEARCH =	 0.154851E 07	 PHI AT END OF SEARCH	 0.154722E 07.	 PERCENT GAIN =	 0.08298

:••s`t••+sssa••is.s•stsssssssss•••t•ssstt•••sss•ssss•••f.•s•ats•i•.•sf.

• • • • t • t v • t s s t • ♦ • • • s • • • t t • END OF SEARCH	 2	 CYCLE N0.	 2	 JJJ	 227	 t s • • • s • • s a
PHI AT START OF SEARCH =	 0,154722E 07	 PHI AT END OF SEARCH _	 O.L54722E 07	 PERCENT GAIN _	 0.00000

t•• ♦ s.•aa•ss••rs•ts••ss••••• ♦♦•. r ♦ s ♦ ssas•s•.ass•• ♦ i•••sr••s ♦ s •s s•,•st. '+
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e

METHOD _	 7	 DLO PHI = 0.246997E 08	 NEW PHI =	 0.246987E 08	 PERCENT 'GAIN = J.000J0	 JJJ _	 299

ALPHA -0.1.7485E 02-0.73269E 02

FUNCTN = 0.29t0IE 04 O.13695E 01 0.13695E 01'0.35235E 01 0.35235E 01 0.24699E 09

prr GAIN ssq

METHOD =	 7	 OLD .PHI 0.246981E 08	 NEW PHI	 0.246987E 08	 PERCENT GAIN 0.00000	 JJJ =	 300

ALPHA.	 _ -0.17485E 02-0.73269E 02.

FUNCTN. 0.29101E 04.0.13695E Ol 0.13695E 0.1 0.35235E 01 0.35235E 01 0.24699E 08

•sir GAIN •err. -

METHOD =	 7	 OLD ` PHI 0.246987E OS	 NEW PHI :	 0.246987E 09	 PERCENT GAIN = .0.00000	 JJJ =.	 301
s

ALPHA	 _ -0.17485E 01-0.73269E 02

FUNCTN - 0..29101E 04 0.13695E 01 0.13695E 0.1 0.35235E OL 0.35235E O1 0.24699E 08

_ FINAL REPORT JJJ	 301
00ALPHA .VALUES 00

-L7.485 -73.269
FUNCTION VALUES

f 2910..1 1.3695'	 1..3695 3.5235	 3.5235	 0.24699E 08.
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' DESIGN ,UPTION' i

PLY ANGLES PERTUQdED — NO STRENGTH CRITERIA

MATERIAL PROPERTIES CONSTRAINED
N	 '' LONGITUDINAL X 4000LUS

TRANSVERSE Y MODULUS
THERMAL EXPA.'61ON COEF X
THERMAL EXPANSION COEF Y

C

GENERAL COMPUTATION OPTI :NS	 -
z

I	 i NUMBER OF LAYERS	 8	 -
r

- NUMBER OF MATERIALS 	 l '.
- t

TEMPERATURE CHANGE — AMBIENT TO OPERATING 100.

TEMPERATURE CHANGE — CURE TO AMBIENT —200.

ANALYSIS LEVEL --. LAMINATE • SYMMETRIC	 -

NUMBER OF LAYERS INPUT -. DOUBLED z

j
FORCES AND MOMENTS GIVEN — MIOPLANE STRAINS AND CURVATURES COMPUTED

Co

]UTPUT OPT ;IONS p.3
LAMB- 1 p

C	 j LAMY= I 6:
' LAMZ- 1

L" ,I IOUTA- 0 f
IOUTB- i !
IOUTC- i
1OUT0= 0

a.

I

^ ^

F

4'I

.rte-Yx	 yroa..N+:zU513ANM+kiMf4ii+



ow
F,

LAVER MATERIAL	 LATER '.
-	 HUNGER ' NUMBER	 OREINTATION

2 1	 ll.

1	 -73. E

i
♦ ►	 73.

€ S t	 73. rr

1

MATERIAL PROPERTIES

O1

li# MATERIAL LDhCi [TUJI4.L	 TRANSVERSE-	 SHEAR	 POISSON RATIO	 POISSON RATIO.. THERMAL 'EXP THERMAL EXP
4UM9ER 40OULUS	 MODULUS	 MODULUS	 LONG - TRAN	 TRAN - LONG COEF - LONG COEF - TRAN THICKNESS

p

4^1
i 110'+

I 0.30900 08.	 O.Z700D 07.	 0.93300 06	 0.21000 00	 0.18930-0.1 0.250,30-05 0.1310D-04 0.52000-02

`r LONGITUDViAL LONGITUDINAL	 TRANSVERSE.	 TRANSVERSE
PATER TENSION 	 Gi.-4PAESSION. 	 TENSION	 C04PR:ESSION	 SHEAR

S NUMBER STRENGTH	 STRENGTH	 STRENGTH	 STRENGTH	 STRENGTH

rl
^, 1 0.18807 36	 -0.36230 06	 D.910,3D 04	 -J.4500D 05	 0.19203 05



i

n LAMINA COEfFICIENT OF.fHERMAL EXPANSION1 - X..Y.Z DIRECTION:

LAY80.':
!W.4 ER	 ALPHA X	 ALPHA Y	 ALPHA XY

^ l	 0.34061010-050.12193900-04	 0.5927445D-0s
7

2	 0.340610LD-05	 0.1Z1939OD-04	 -0.59274450-05 -

3	 0.12193900-54	 0.34061010-05	 0.59274450-05

•	 0.12193930-04	 : 0.3400101.0-05	 -0.5927445D-05

5	 4.12193900-04	 0.3406LO10-05	 -0.5927445D-05

,. 4.	 0.12193900704	 0.,34061010-05	 0.59274450-05	 -

9	 0.34061010-05	 0.121939OD-04	 -0.5927445D-05

'f

j

•	 0.34061010-05	 0.121939JD-34.	 0.59274450-05

1

a

y; LAMINATE.COEFFICIENT OF THERMAL EXPANSION - X#Yr2 DIRECTION

_ALPHA X	 A! PHA Y	 '...ALPHA XY

E	 _ 0.35Z35330-05	 0.35235330-05	 0.00000000 00

a!
CaMPUTED. LAMINATE ENGINEERING CONSTANTS

LOYCITUOINAL	 TRAN5VERSE	 SHEAR	 POISSON XY	 PGTSSO4 YX	 CROSS COEF	 CROSS COEF CROSS COEF	 CROSS COEF
@	 j. X MODULUS	 Y MJ7ULUS	 - X.Y MODULUS	 RATIG	 RAT 10	 AY - X	 XY'- Y X - XY	 Y - XY

+ 0.1369D 08	 0.1369D 08	 0.3117D 07	 0.1.9370 00	 0.19370 00	 0.00000 00	 0.00000 00 0.0JJ00 00	 0.03000 00

" TOTAL LAMINATE FJRCES AVD. OISPLACEMENSS

FORGE X	 FORCE Y	 .FORCE. XY	 MOMENT X	 MUMENT V M04YEN7 XY

0.1191 .:440 5'4	 0.1191044D 04	 0.1020000D 04	 0.00J0500D 30	 0.00030000 06 0.000J0330 00

STRAIV X	 STRAIN Y	 STRAIN XY	 CURVATURE X	 CURVATURE Y CURVATURE XY

f 0.16857153-02	 0..i16857150-32	 0.78671210-02 	 ; 0.00000000 J0	 3.00005000 JO 0.00030000 00

a

:
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