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ABSTRACT

An isotropic sheet stiffened by means of an orthotropic quarter-
plate is considered. The quarter-plate is assumed to be perfectly bonded
to the metal sheet everywhere except an area of debonding which may de-
velop due to high stress concentrations. The adhesive which has a small
constant thickness will be treated as a shear spring. The loads are
applied at infinity and supposed to be transmitted through the metal
plate. Shear stress distribution between the two plates are obtained
from the continuity of displacements along an area where they are bonded
to each ither.

INTRODUCTION

As the composite materials are used in structures at an increasing
rate, the problems associated with the 1ife prediction of such structural
components become of major interest. Among otiiers, one can mention the
use of such stiffening elements as stringers, strips and composite cov-
er plates as some of the problem areas. Hence, significant number of

solutions are now available in the open literature related to these areas.

In this work, a sandwich panel will be considered where a metal
sheet is assumed to be stiffened by a composite quarter-plate. Two
plates are perfectly bonded to each other except an area of debonding
which may develop during the 1ife of the structure. Hence, the effect

of the cover plate as a stiffening element and the way this is influenced



by the debonding process will be investigated. The loads are applied
at the boundary of the infinite metal sheet,

The method of solution consists of satisfying the continuity of
displacements in an area where two plates are perfectly bonded to each
other [1]. The solution of the resulting integral equations gives the
shear stress distribution be‘ween the two plates. Application of this
approach requires the knowledge of Green's functions for both isotropic
([11, [2]) and orthotropic ([3], [4]) plates which are l1isted in the
Appendices. Although the solution is presented for a metal sheet with-
out a crack, by using the Green's function for a cracked plate given in
Appendix A, results can also be obtained for a cracked sheet. As in-
dicated in Appendix B, the quarter-plate solution is based on an iter-
ative process whereas the Green's function for an infinite plate with

or without a crack is known in closed form ([1], [2] and Appendix A).

Here, the boundary of the debond area will be assumed known. Other-
wise, it can be determined by an iteration and using an appropriate

failure criterion on the boundary [1].

FORMULATION OF THE PROBLEM

Let D denote the region where the two plates are bonded to each

other and hc' ha and h_ represent the thicknesses of the cover plate,

p
the adhesive and the metal sheet respectively. The elastic constants

for the orthotropic quarter-plate are Ex’ Ey. ny. and vyx and for the
isotropic plate are E and v. The shear modulus of the adhesive is Mg *

“Rea



Tx' Ty are the loads per unit length applied at infinity. Due to the
relatively small thicknesses of the plates and the adhesive, the problem
will be solved under the arsumption of generalized plane stress and the
unknown shear stresses in the adhesive will be considered as body forces
in the plate solutions [1]. This will satisfy the stress continuity

conditions and the displacement conditions can then be written as follows:

up(z) - u(2) = E% P(z)

ha
vp(z) - v (2) = ™ Q(z) , zed . (1)

5 and up. vp are the displacements of the cover plate and the

metal sheet in x,y directions, P and Q are th2 shear stresses in the ad-

where Ues v

hesive (see Fig. 2) and

z=x+ iy (2)

The displacements can be expressed as

T =vT
Up(XO.V) - “‘xE'ﬁ;l X ¥ _nup 1p ey, J I [k](xnytxotyo) =

Pxgs¥,) + kp(X2¥axga¥y AU, 0¥,)] dxody, + reb-displ.

T -vT
X 1 !
vplxs¥) = p y # EW;JJ J [kq(xsy2x40¥,)
' D
P(xouyo) ’ k4(K’Y.X0»Y°)Q(XO-YO)] dxodyo + r'b.dislﬂ' (3)



u (x,y) = J f [kg (Xa¥ s ¥ ) PIxg0y,) # KXoy X0y, )Q(x 07,)]
D

dxodyo + r.b-displ.
vebuy) = [ [ g (xayixgayg)P(agu,) + kgx,3xg 13 kg )
D

dx dy, + reb-displ. 4)

where k=(3-y)/(1+v) and the kernels kj(x.y.xo,yo) j=1,..4 are giver in

Appendix A and kj(x.y,xo.yo) j=5...8 are obtained by an iterative proc-
ess in Appendix B [4].*

Hence, from equations (1)-(4), the integral equations of the problem

is obtained as

P(x,y) + lol[k,1(x.y.xo.yo)P(xo.yo)+ k2 (Xa¥aXg 0¥ )X 0y ) Jdx dy,

(T -vT.) Ya_
= -\j B
X 'y Ehpha

Q(x,y) + I J [koq (0¥ ax sy IP(X 0¥ # Kop (X550 0¥0)QUX 0y ) Jdx dy
D

= (T,-vTy) EFE%" y » (xy)eD (5)
pa

Note that the location and orientation of the cover plate with respect
to the metal sheet is insignificant if the metal sheet does not have a

crack. In general, the rigid body displacements for both plates should
be the same.

alls



where

Ha Ya
k11 ® = B, (rkyoks) k12 = - R, (Ykaoke)
. Ha
‘217 "k, (vks-ky) k22 =~ B, (vkq-kg)
1
Ve oo +) (6)

The system of Fredholm integral equ~tions (5) with logarithmic sing-

ularities can be solved numerically as follows

P(xjuy:’) + z [k”(xj'yj'XOR’yOk)P(ka'yOK)+k]2(xj'yj ”‘ok'yok)

M
+ Qlxgya¥oy )] BAK = (T VT ) gﬁ;‘,h-a- X

Q(xj.yj) + z ["21("3'3’5 Kok Yok P OpeYor) * kzz(xjyj.xck.yok)

U
QxgyoYoy )1 2AK = (T -vT,) mp%; R L (7)

where AAk's are the appropriately chosen area elements covering the en-
tire domain D. Solving (7) the shear stresses P and Q at Xoke*Yok

locations are obtained.
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APPENDIX A
Kernels kj(x.y.xo.yo) j=1,..4: From [2] and [5]

(a) For a cracked sheet [5]:

Ky (x2¥2x0¥,) = -Re [fi(2.2,) + folz.2)]
kz(x.y.xo.yo)= -Re [1f1(z.zo) - 1f2(z.z°)]
k3(x y.xo.y°)= -Im [f](z.zo) + fz(z.zo)]

kg (X2¥sxg0y,) = ~1Im (ify(z.2,) - ify(2,2,)] (A.1)
fi(z,2;) = -«[1og(z-z,) + log(i—io)]
v 5 10)(2,2,) + 0y (£:3,)1 - § [0, (12) + 670, (2,7,)]
+ (55Y) [xo,(z) -0 (i)]+(z—°:-§-°-)0 {2,2.)
2 | XY 2 7.7, 5 0
2-2, ) )
fz(znzo) - -g:i_- -1+ KGB(Zazo) - 93(zszo) -~ 64(2.20) +K04(z'10) (A-Z)

Gl(z.zo) = log[z zo-a2 + /zé-a2 vz7-a7%)

8,(2) = log(z + Vz7-az)

. Zo'io -

8a(2,2,) = 2—/{;__? — (1 + f(z,2))]
(z-2) .

94(1.10) = e f z.zo)



(b)

0g(2,2,) = —iLl—_j_ [(f(z,z,) - (z,)]

2v2i-31

I(z)-l(zo)

f(z,z,) = =

For a vlate without a crack [2]:

ky(X.ysxga¥,) = 2Re[l0g(z-2,)] - Re[f4(z)]

ko(X,¥s%g:¥) = -Im[f4(2)]

k3(X,Y-X°-yo) - -Im[f3(z)]

ke(X,¥,%,0¥o) = HRe[log(z-2y)] + Re[f4(2)]

Z-Zo

f3(z) b = il

0

(A.3)

(A.4)



APPENDIX B
Kernels I:J(x.y.xo.yo) j=5,..8:

These kernels (Green's Iunctions) can be obtained by an iteration
(successive approximation) scheme introduced by Hetenyi and developed

in [4] for orthotropic quarter-plate.

Iteration starts with a basic symmetric system as introduced in
Fig. 3c. The stresses and the displacements for this system will be

denoted by

T 0T uC'vC(x.y) (B-])

£ L _¢
X"y xy’
Then the solutions to two secondary half-plate problems are found

(Figs. 3a and 3b) for R=1 as

UxioynT:yluatV.(x-Y)

and

o®,a2,® P vP(x,y) (8.2)

b b.b
X*y*'x

Y
which are Green's functions for half-plate problems. These can be ex-

pressed either in rioal variables [4] or in complex variables [5].

Due to the symmetry, the basic system has zero shear stresses along
the y axis, i.e., :iy(o.y)=o. but oic)(o.y)-Fo(y)fO. Hence, to obtain
the solution to the quarter-plate, non-zero normal stress distribution
Fo(y) should be erased. Using the solution to the problem (3a) and

applying a symmetric normal stress distribution a“(o.y)--Fo(y) on the



boundary we obtain the stress and displacement fields

o;.o;.t;y.u'.v‘(x.y) (8.3)

If this system is superposed with the basic system, the resulting problem
yields

ux(O.y) = 0 but oy(x.O) . F1(x) 0 (B.4)

Hence second step will be to erase these non-zero ay(:.o) stresses a'ong
the x axis. This can be done using the solution of problem (3b) thus
yielding non-zero normal stresses along y axis again. Since in this
approach,the shear stresses along the x and y axes are always zero,
repeating this process, one can obtain stress-free surfaces along these
axes and the solution of the problem of a quarter-plate, within a reason-
able degree of convergence [4]. The kernels (ks.kT) and ks'kﬂ) can be
obtained numerically by considering (P=1, Q=0) and (P=0, Q=1) respect-
ively.

If one uses the expressions given in [4] for the solutfons of prob-

lems (3a) and (3b) the iteration scheme will give

[ A

0, (x,y)
' Kok, (kytk,)

<oyixy) p= - Lﬁ—,—‘-—?—r Fo(n)dnlay (x,y,n) + 64 (x,y,-n)]  (B.5)

n=0 2 2

: ’ 3

thy(x'y)‘

where

. T



X3

¢}(x.y.n) E {’(‘(v-r)\l:}/ /{[k";x2*(y-n)z][kguz’*(y-n)zl) (B.6)
y=n

3

where

2 7,
k 1 /(2
Jlk}} . 5_2-2— [2‘12 * ‘663 ‘12"66] '“”.22]

2
] Vyx Vx |
Q44 = y A 8 e " - v 8y, F
TR TR il U R
36 ° t."‘ (8.7)
Xy
And the second iteration gives
02(x,y) )
2 Ky +ko
) pe - 52 [ R 0y 0] (5.8)
£=0 2
2 3
Ty (%s¥) 3
where
(x-£)%y
¥y (xy,8) =9y’ /0K (x-£) "4y DKy (x-£) *4y* ]} (8.9)
g (x-£)y?

etc. If these steps are repeated the final stress state can be obtained

as

i

REPRODIIC
ORIGINAL FA!



[cx(x.y) [cﬁ

, e (ky*k,) .

Ty(x.y) T ke [n_o[“;(x.ym)*og(x.y.-n))
3

| () :

F = » t'- v W=
olp.q Falmlen rEtw}(xy 0
i 3 3

I F(6))de) (8.10)

m=1,3,5

And the functions Fm.m-\.z.. are determined from the following

recurrence relations

kik,(kytk,) (= 2
! (x) = - ._'l_z..._‘I._LI F (ﬂ)dﬂ 2xn
it " =0 " (k%x’in’)(kix’ﬂ\’)
m=0,2,4. ...
k. +k 2
) = = 52 | Fy(e)de —2LE
€0 (K Ehy?) (ke +y?)
m=1,3,5..., (8.11)

Fo(n) is obtained from the solution of problem (3c), [4].

This scheme is applied to the displacements in an identical manner
by changing the functions ¢ and ¢. The use of complex variable solution

[6] may prove to be much more convenient.

-12-
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Fig. 1. Geometry of the problem.
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Fig. 3. Secondary half-plane problem;.
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