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B. ACCOMPLISHMENTS

Lineament Study

Relationships between mining districts in the Utah-Nevada study

area and lineaments located on LANDSAT imagery have been studied in

the following projects:

a	 Criteria for selection of lineaments on 1:250,000 scale

LAN DSAT mosaic.

The following criteria have been used for the selection of	 {

several hundred lineaments having a total length of 7400 km:

1) Each is greater than 5 km in length	 -'

2) Each has at least 50% topographic expression by length

3) Each must cross range crests to insure its not being a

single consequent drainage line

4) Each must be obvious to at least two independent operators

The lineaments have been plotted on U.S. Army Topographic Command

maps (AMS sheets), then traced on transparent mylar overlays to

a
eliminate distracting background.

b. Identification of lineaments.

Several lineaments have been compared with geologic maps of

the same scale as the imagery (Geologic Map of Utah, Stokes, 1963,`

scale 1:250,000) to see if lineaments have geologic as well as'topo-

graphic manifestation. Lineaments on the AMS NK-12-10 (Tooele)' sheet

were chosen as _a test case because of their ready accessibility for	
i

field checking. About one-half of the total lineament length is on

or closely parallel (within 1 km) to mapped faults or geologic contacts.
1

1
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c. Control of mining districts by lineaments:
i

1) Mines in the study area have been plotted on mylar overlays

to locate and delineate mining districts. Data is taken from USGS

Commodity Resources Information Bank (CRIB) forms compiled earlier

in the preliminary literature search; from mining district maps com-

piled by Mard-irosian (1974) and from Utah and Nevada state and county

maps.

2) To test the concept that mines are controlled by lineaments

{	 or lineament intersections, direct comparison was made of mines and

lineaments. The number of mines on, within 1 km of, and between 1

ands km of lineaments have been counted. Of a total of 666 mines

plotted in the Utah-Nevada study area, 37 fell on lineaments, 80 were

within i km, and 200 between 1 and 5 km. Seven lineaments contain 2

or more mines and 20 have 2 or more within 1 km. Seven of a total of

165 lineament intersections are on or within 1 km of a mine,
I

From these preliminary data, the qualitative conclusion is that	
3

there is no apparent control of lineaments on mine locations. No fur-	 j

ther work on this study is planned at this time.-

3) To test the concept that mines are controlled by a particular

azimuthal range of lineaments, the plotted 'lineaments were grouped

into azimuthal ranges (15° classes). Of the 80 mines falling within
1 km of the lineaments . , the distribution is as follows: i

from N 52_1/2	 to 67-1/2° W _ 9 mines
N 37-1/2 0	to 52-1/2 0 W-	 9 mines
N 22-1/2	 to 37'1/ 2 ° W - 16 mines
N 7-1/2°	 to 22-1/2° W - 1`3 mines
N 7-1/2 W to 7-1/2° E- 5 mines

N 7-1/2 0 E to 22-1/2 0 E - 6 mines

N 22-1/2 0 E to 37-1/2" E - 6 mines
N 37-1/2 0 E to 52-1/2 0 E - 16 mines

-4-
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There does not appear-'from these data to be any significant

relationship between mines and lineament direction. No further work

on this project is planned at this time,

4) To find if more mines are located on lineaments than on

'mapped faults, the total length of all mapped faults within the

Utah portion of the study area was measured from the Geologic Map

of Utah, (Stokes, 1963). (This area was subdivided by AMS sheets,

as listed below.) The mines falling on and within 1 km of the faults	 >

were counted. These figures were compared with the total length, of

lineaments in the same area and the number of mines within l km of

the lineaments;

AMA SHEET	 km of lineaments per mine 	 km of mapped faults per mine

NK-12-10 Tooele	 150	 35

NJ-12-1 Delta	 33	 176

NJ-12-2 Price	 27	 35

NK-12 11 Salt Lake 	 147	 28

The mines do not show any consistent preference for lineaments.

No further work is planned at this time.

5) To find if several mines along a single lineament show any

evidence of having a common source of mineralization, the metal

content of mines on those lineaments having several mines on or within

l

1 km of the l-ineament were compared. It was found that several mines

falling on a single lineament had completely different suites of metals.

A lineament therefore does not appear to be a conduit to a single

common source of mineralization. No further work is planned at this

time.

6) A study was made to determine if lineaments bound areas having

markedly different degrees o'f"mineralization (density of mines)
3
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For a preliminary sample, the area covered by the NJ-11-4 Walker

Lake AMS sheet (see Plate l)-was selected. 	 This area has a high

density of mines and available geologic data,

•	 All	 lineaments trending within 10° of north were plotted. 	 This

orientation was chosen because it is a dominant structural	 trend

in this area, parallel	 to the Sierra Nevada front. 	 The selection of

these lineaments differed from the 	 initial	 lineament study in that:

(1)	 minimum length was 2 km

i
(2)	 all	 natural	 linear features were traced, whether

identified as topographic in origin or unidentified tonal 	 contrasts.i

i	 These are distinguished on the map by solid and broken lines;

t	 -	 respectively.

'	 These lineaments divide the area into sections from 1 to 30 km

wide.	 Some mining districts (clusters of up to 30 mines)	 fall	 between

two adjacent lineaments.	 They are sharply delineated from areas with-

out mines on either side. 	 These sections are within mountain ranges

and have exposed outcrop areas to either side of the mineralized

sections;	 that	 is,	 the boundaries between mineralized and'non-mih-

` i	 erali,zed sections are not range fronts.

The north-south extent of any particular mining district

averages about 5 km.	 Several mining districts may be aligned in a

north-south direction between two lineaments, with a total	 length

of about 25 km.

Similar tests'v'ere made with	 lineaments	 ranging within 10°

of East.	 This orientation was selected to parallel several 	 strong sY

E-1+1 topographic trends across the area under study. 	 The E-W trending l

lineaments tend to separate mining districts aligned	 in a north

-6^
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south strip but distinguished by different metals. This relation-

ship shows up particularly, well in the Pine Nut Range, the Garfield

Hills and Pilot Mountain.

This study suggests the possibility that:

(1') lineaments bound tectonic blocks and bring together

blocks having different tectonic and igneous histories

(2) some of these blocks may be elevated, bringing mineral-

ized rock to the surface.
3

Further work is being done on these relationships. The working

maps are large transparent overlays and are not included in this report.
i

7) Local areas free of lineaments were noticed when the north

trending and east trending lineament overlays were superimposed.

After basin areas were excluded, 17 areas were delineated on the

Walker Lake'AMS sheet. All of these lineament-free bedrock areas

are greater than 25 km2, their minimum width is 4 km, and their maximum

area about 100 km2 . These areas were compared with the imagery and
r

with geologic maps. 9

Of the 17 lineament free areas, 7 contain intrusive' rocks,

10 principally volcanic rocks. Nine of these areas contain mining

districts. Five are apparently related to the intrusives, and 4

to the volcanics or sediments. Only one of the lineament-free areas'

is dominantly sedimentary rocks. Sediments, where present, appear

to be highly; fractured.

The tonal 'contrast within the lineament-free areas is strong.

The north and east trending lineaments may not have been mappable

in these areas for one or more of the following reasons:

`4



(1) They may not be present

(2) They may be overprinted and hence obliterated by NE

and NW trending lineaments, which are present in the area as short

(Tess than 5 km) segments.

The relationship between igneous rocks and lineament,-free

areas is 'being further checked.

Il Special Study Areas

a. Park City District, Utah

Further work on this project has been postponed until snow
4

cover melts and field work can be started. Field checking is planned

for features visible on various types of imagery but not shown on

available geologic maps,

b. East Tintic District, Utah

Imagery studies of hydrothermal alteration in the East Tintic

Mountains has not been pursued this quarter, while waiting for ad-

i
ditional photographic data from EROS Data Center,

c. Wonder-Eagleville Area, Nevada (see 11 pl. 1)

A linear trend consisting of light tonal and topographic

features has been recognized on Landsat scene E-1397 18051 (see fig. 1)
i

Approx. lengths 60 km
Azimuth	 N25E
Location	 1,11,18°00' to 1,11 18' 15'

N39 0 00' to N39030'
Northern Mineral and southern
Churchill Countines, Nevada

Coincident to the above mentioned trend are five mining areas (fig. 2).

When these five mining areas; are connected by a straight line, the

line has the same azimuth as the tonal and topographic alignments



1

visible on the LANDSAT image (figs, 1 and 2).

Converging lines of evidence from literature documentation

suggest that this trend may have significance in future mineral

exploration in this portion of Churchill and Mineral counties.

These lines of evidence are:

(1) Coincidence of location and orientation (azimuth) of

5 mining areas (see fig. 2) along this alignment, suggesting a

continuous trend of mineralization.

(2) A fault zone extending from near Slate Mountain,, through

Fairview Peak,. past Chalk Mountain to Wonder. This fault zone is

recognized by geologic mapping i n the field ( see fi g . 3)..

(3) Recent fault activity (fig. 4) and clustering of earth-

quake epicenters along the trend (fig. 5).

(4)_ Alignment and elongation of intrusive bodies along the

trend (see fig'. 3) .

The above information.suggests that there may be additional

undiscovered ore deposits along this apparent LANDSAT trend, How-

ever, it must be understood that the LANDSAT data may not be suitable

for detailed-investigation of this trend as 'recognition of the trend 	
1

is all that was expected from the synoptic view of LANDSAT, Additional

exploration involving higher resolution imagery, geophysical methods

and 'a drilling program would be required', The latter two methods,

of course, are-not an integral part of this NASA project. A further

s	 study is presently underway,' however, to determine if this trend,

recognized first on LANDSAT imagery, will maintain its integrity or

7	 or become diffuse when viewed with higher resolution and more detailed

photography,
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A small portion of the LANDSAT trend has been analyzed by

density slice methods to delineate and quantify levels on the

imagery. A printout was prepared (fig. 6) showing the distribution

of lightest tone in the southern location of the LANDSAT trend

(see also rectangular outline on fig. 1). The density slice method
i

does- not of course, identify the surface geologic features present,

but does show that grey levels can be accurately mapped at a sub-

stantially larger scale than the original imagery permits. Geologic

maps indicate that the light areas are zones of Tertiary dacite

flows, very similar in chemical composition to the intrusive bodies

in contact with ore bodies at Wonder and Fa- irview districts,

d. Battle Mountain-Eureka mining district trend

The northern end of this trend was considered in part V of

this report. A study of the possible expression of this alignment

of mining districts on the LANDSAT imagery will be carried out`.

e. Battle Mountain^Wonder-Eagleville

Information derived from examination of LANDSAT scenes

E-1792-17491 and E-1755-17554 coupled with literature studies indi

cate a northeastern alignment of acidic intrusions, basaltic cones,

and seismic events with the Bernice, Jersey and Battle Mountain

mining districts. A southerly extension, of the alignment appears

to intersect the Wonder^Eagleville trend at a sufficiently small

angle to suggest that both alignments may in fact be related 	 On

io may rethe premise, that this direction 	 y	 resent a line of crustalp

weakness a study is now in progress which uses this direction as a

€	 template to relate mining districts, intrusive centers, seismic

i i

a
l

-10-
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events and surface expression of faults,
x

a
f.	 Yerinaton-

No work was	 initiated	 in this study area during the quarter.

4

III	 Mining District Recognition

a.	 Frequency charts have been made to show production in millions

of dollars, principal metal occurrence, host rock, hydrothermal

I' alteration, control of ore emp.=;cement and composition of 	 intrusives

' associated with the 246 mining districts found	 in the Utah-Nevada

study area.	 (see figs.	 7,	 8,	 9,	 lb, and	 11).

b.	 A list of approximately 100 descriptive features visible on

LANDSAT imagery has been compiled, based on the detailed study of

eight mining districts and two non-mineralized districts on LANDSAT

-transparencies.	 The mining districts have an average area of about

k

t

50 km2 ,	 This	 list	 includes cultural,	 linear,	 tonal`, and	 textural

features present within a specified area and to facilitate statis-

tical	 comparisons.

i A; systematic study of a	 larger population of mining districts
9

E.
is planned to see if any combination of these recognition features

can distinguish mining districts from non-mineralized areas.

IV	 Relationships of 	 intrusives	 to mining districts i

The spatial	 relationships of mining districts to known 	 intrusive

outcrops has been under	 investigation during this quarter. 	 From =`

literature sources	 (Nevada Bur. of _Mines maps #30 and #24) a'bar

i -histogram _(fig.'-12)	 has been constructed showing the number of

mining .districts within a specified distance from the nearest

i j	 ,
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intrusive body.	 It	 is understood that the nearest 	 intrusive body

may or may not have	 influenced mineralization in a district; never-

theless,	 the histogram shows conclusively that there is a preponder-

ance of mining districts 	 in the '0 to 2 kilometer distance class.

Further, 229 of the 325 districts are within 10 kilometers of the

nearest outcrop of	 intrusive.

The areas of	 individual	 intrusives 'were `measured and compiled,

along with other mining district	 location data	 (see summary table`

below).

NEVADA, North of 37° latitude:

Total area of Nevada north of 37°	 lat.	 254,119 km2 l
Total area of	 igneous	 intrusive outcrop 	 8,420 km2

3

Total	 number of metal mining districts	 325
Total	 number of districts on 	 intrusives	 :	 60
Total number within 2 km of—intrusives	 :	 90
Total	 number on + within 2 km of intrusives 	 150

Intrusive_ outcrop represents approximately 3% of the area of

Nevada under consideration.	 if a 2 km radius around each intrusive

r is	 studied,	 46% of the mining districts fall 	 in about	 12% of the

area under consideration,	 This regional	 approach suggests that

'a almost half of the deposits are located on or within 2 km of
F

intrusive bodies, 	 although the converse	 is not necessarily true.

A further conclusion	 is that a potential	 mineral	 reconnaissance

program would locate almost 50	 of the mining districts by concen-

trating efforts	 in only 12% of the area under consideration.

If the	 intrusive-ore body relationship	 is	 to have significant

merit„ a reconnaissance mineral-explo-ration program which utilizes

LANDSAT imagery must be able to consistently recognize intrusive

outcrops from the	 imagery.	 A test site with mineral vegetation was

-12-



^	
r

i

chosen to compare known intrusives with their expression on LANDSAT

imagery. Preliminary results indicate that intrusi'ves in the study

area tend to be distinguished by a conspicuous light tonal appear-

ance. Other parameters currently under investigation include

drainage, slope form, topographic expression and other geomorphic

I
^	 features. These parameters will be quantified and assessed as

to their discriminating potential. These criteria will then be

applied to other localities in the Nevada-Utah test site.
i

V

	

	 Valley-Stream lineament analysis by length and azimuth in mineralized
and non-mineralized areas

Introduction

I
As one phase in our study of possible applications of LANDSAT

imagery in the recognition of mineralized areas, valley-stream	 I
i

orientations of various length classes were compared in mineralized

I
and non-mineralized areas

1

It was proposed that those stream courses or val'.zys whose length

and azimuth could be reliably measured at the scale of LANDSAT

imagery might serve to delineate regional fracture and/or fault

traces. Further, a prefered azimuth might be related to mineralized

r	 areas.

_	 The study area which lies in 'north central Lander County, Nevada,(see

V on Plate 1) is underlain by folded and faulted euogeosynclinal

siliceous strata and includes several mining districts. The area is

also the northwestern terminus of an apparent trend of mineral`

districts which extends between Battle Mountain and Eureka.

i

-13-
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Method

Imagery on bands 5 and 7 from Landsat scene E-1072"17592 was

examined on a Bausch and Lomb model ZT-4 transfer scope. 	 The

magnification was adjusted to conform to the 1:250,000 scale of

the AMS sheets NK 11-11 	 (Winnemucca)	 and NJ	 11-2 (Millett).	 The

scale and rectification adjustments provided by the ZT-4 permitted

the various linear cultural	 elements,	 e.g ..	 roads, railroads, as

j
well	 as much of the topographic features to be placed in register

with the maps.

Linear valley-stream segments within the study area were traced

on to a mylar transparent overlay.	 The minimum segment length chosen

was 1.6 km,	 the longest segment wasapproximately 25 km. 	 After an

interval of about 3 weeks the imagery was reregistered to the map

and a new tracing of the stream ;and 'valley segments was made.	 The

two tracings were compared for the operator's repeatability in

:	 tracing the length and azimuths.	 Very little change was noted in
i

the direction of azimuth;	 .,,segment	 lengths varied up to 1	 km in

about 10% of the measurements for the two trials`.

Areas of known mineralization were then outlined on the tracing.

Because of the scale	 it was considered necessary to Include all 	 the

mineralized area's in the tally 	 in order to have sufficient measure-

ments to constitute a reliable sample.

Stream lengths were grouped	 into classes of 1.6-3,2 	 (1-2 mi);

' 3.2-6,4	 ( 2 -4 mi)	 and greater than 6.4 ;(4 mi) 	 kilometers with azimuth-
F

intervals of 30°." Because of the considerable variation in the
a

number of segments 	 in each class the data for the statistical 	 test

14



were grouped then chosen by a random number method. Working maps

for this portion of the project ,are not included in this report

due to size.

Results

A Chi-square test was applied to each length category in order

to determine if azimuthswere significantly different in mineralized

and non-mineralized areas. It was determined that within the

1,6-3.2 km and greater than 6.4 km length groups there was no signif^

!cant difference at a=0.05 in azimuths in either the mineralized or

non-mineral"zed areas. There was, however, a significant difference

at a=0.05 in azimuths of the 3.2-6.4 km group when the mineralized

and non-mineralized areas were compared.

Discussion

Due to the difference of the sample size in the mineralized and

non-mineralized areas and in view of the stratigraphic and structural

complexity within the areas, we are uncertain if the differences 	 j

reported are entirely related to mineralization. These preliminary

results suggest that additional efforts should be concentrated in the 	 1

3.2-, 6.4 km class and in an area of_less -variable lithology. Such an

area in west central Utah covered by AMS sheets NJ 12-1 (Delta) and
i

NK 12-10 (Tooele) is under study. Although this region is structurally

complex, a substantial portion of the section is composed of carbonates.

C. SIGNIFICANT RESULTS

See under parts I through U above

D. PUBLICATIONS

None
r
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i
i

E. RECOMMENDATIONS

Request additional funds in the amount of $1,472,00 in EDC LANDSAT,

account #G22840, to complete data on order,

F. FUNDS EXPENDED

Total expenditures to 5/l/76	 $ 68,439.00

G. DATA USE

i Value of LANDSAT data allowed	 $ 9,300-00

Value of LANDSAT data ordered to 3/31/76	 $ 10,761.00

Value of data received to 3/31/7 6	 S 9,289.00

This fourth quarter report for the period January through March is

i herewith submitted. Attached is the quarterly report for the same

period from the Colorado School of Mines.

Respectfull =sub fitted,

a

--,--
L. H. Lattman, Principle Investigator

M. P. Nackowski, Co-Principle Investigator

T. A. Belchak, research assistant
F	 -I

C E. C'ronenwett,?research assistant

Ms, M, R. Smith, research assistant
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Fig. 2 Southeastern portion of Army Map Service NJ 11-1 Reno AMS topo
sheet showing location of 5 mining areas (crosses) and Landsat
trend (arrow and dashed line).
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PRINCIPAL METAL OCCURRENCES 44
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65 _MINING DISTRICTS IN UTAH-NEVADA STUDY AREA
HAVING PRODUCTION GREATER THAN ONE MILLION DOLLARS

24— Data from CRIB; Mardirosian (1974)
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-- CONTROL OF ORE EMPLACEMENT
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65 MINING DISTRICTS IN UTAH-NEVADA STUDY AREA
HAVING PRODUCTION GREATER THAN ONE MILLION DOLLARS

Data from CRIB; Mardirosian (1974)
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Associated with 49 Of 65 Mining Districts
in Utah-Nevada Study Area
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130 —'
Figure 12:	 BAR HISTOGRAM SHOWING NUMBER OF MINING DISTRICTS WITHIN SPECIFIED

120 —

	

	 DISTANCE FROM NEAREST INTRUSIVE BODY (NEVADA, USA North of 37° Lat.)

REFERENCES: 1) Intrusive Pocks of Nevada Nev. Bur. Mines map #30
110 —

2) Metal Mining Districts of Nevada Nev. Bur. Mines map #24
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