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APPLICATIONS OF FEATURE SELECTION

1. INTRODUCTION

A practical application of remote sensing which is of considerable

interest is the use of satellite-acquired (LANDSAT) multispectral scanner

(MSS) data to conduct an inventory of some crop of economic interest

such as wheat over a large geographical area. Any such inventory

requires the development of accurate and efficient algorithms for data

classification. The use of multitemporal measurements (several

registered passes during the growing season) increases the dimension of

the measurement space and thereby increases the computational load for

a classification algorithm. When statistical pattern recognition

techniques are used in classification algorithms, one method for reducing

the dimensionality of the problem is by the use of feature selection/

combination techniques.

Theoretical results pertaining to minimizing the probability of

misclassification for linear feature selection were initially obtained

by Guseman and Walker [1], [2]. A computational procedure was developed

(see [1], [3]), for the case of two n-dimensional multi van" ate normal

populations with equal a priori probabilities and a one-dimensional

feature space. Theoretical results for the general case of m

n-dimensional multivariate normal populations with arbitrary a priori

probabilities and a k-dimensional feature space (k < n) appear in

[6]. Development of a computational procedure for the special case

k = 1, based on the results obtained in [6], was initiated in December
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of 1973, and completed January 1975 under a previous contract (see [4]).

During this same period, a preliminary investigation was initiated which

involved the application of feature selection to estimation of proportions

(see [5]).

Additional feature selection algorithms based on other criteria

(e.g. divergence, Bhattacharyya, etc.) allowing transformation from n

to k dimensions (k > 1) have been developed at the University of Houston,

Investigations carried out under this contract were concerned with

Extending the feature selection procedure of [4] to the
case where the density function for each population is a
convex combination of multivariate normals.

Application of the extended feature selection procedure to
the problem of estimating the proportions of "WHEAT" and
"NON-WHEAT" in a given sample segment.

Application of feature selection to color display of multi-
channel images.

Each of these investigations is discussed in turn in the sequel.

2. EXTENDING FEATURE SELECTION PROCEDURE

The feature selection program (LFSPMC) was extended to treat the case

where the density function for each population is a convex combination of

multivariate normals. Additional modifications were made to the program

to allow for simpler data set-up and program operation. The feature

selection method formulation, associated computational technique, and

users guide for the program are contained in

L.F. Guseman, Jr., and Bruce P. Marion, LFSPMC (Version 2):
Linear Feature Selection Program Using the Probability of
Misclassification, NASA Contract NAS-9-14689-4S, Texas A&M
University, Department of Mathematics, Report #6, March 1976.
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The new version of LFSPMC is capable of working with several

populations, each of whose density functions is a convex combination of

multivariate normals.

Additions to the program include internal computation of the program

parameters which set limits on the number of iterations through the

optimization algorithm and provide the initial guess for the minimum

of the objective function.

The computational procedure for providing the starting vectors to the

optimization algorithm does not appear to work well when several component

classes are combined into one single convex combination. This situation

is still being investigated.
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3. ESTIMATION OF PROPORTIONS

Investigations were carried out which led to the formulation and

implementation of computational procedures which treat the following

problem:

Given LANDSAT data (multitemporal) over a LACIE sample segment,

and representative samples of the classes present in the

segment, estimate what proportion of the sample segment is

in WHEAT.

The approach to the above problem taken in the investigations can be

summarized as follows:

(a) The density function for each of the classes WHEAT

and NON-WHEAT is expressed as an appropriate convex

combination of multivariate normal densities with

known means and covariance matrices (usually obtained

from a training sample).

(b) Feature selection is performed (using LFSPMC (Version 2))

to produce a corresponding optimal one-dimensional

Bayes classifier for WHEAT VS. NON-WHEAT whose associated

confusion matrix is computable.

(c) Using the one-dimensional classifer and associated

confusion matrix, an estimate of the true proportion

of WHEAT in the sample segment is made.
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The mathematical formulation of the estimation of proportions

procedures, along with numerical results appear in

L.F. Guseman, Jr. and Jay R. Walton, Methods for estimating
proportions of convex combinations of normals, NASA Contract
NAS-9-14689-4S, Texas A&M University, Department of Mathematics,
Report #7, April, 1976.

The methods presented in the above report have the advantage that /

classification of multitemporal data over a sample segment is performed

optimally in one-dimensional space thereby reducing significantly the

computer time spent in classification. Another advantage is that the

confusion matrix, used in obtaining unbiased estimates of the WHEAT

proportions, can be readily computed without/the costly requirement of

obtaining a labeled sample independent of the training sample.

The estimation of proportions procedures were implemented (Program

ESTPRO), and tested using MSS measurements (four registered passes) from

Hill County Montana. The preliminary results appear to be quite good.

In one case (ESTIMATOR 4), two unbiased estimates are available depending

on the choice of sign. At present, there is no automatic rule which

dictates the choice of sign. Instructions for use of ESTPRO appear in

L.F. Guseman, Jr., Bruce P. Marion and Manot Swasdee, Users Guide -
ESTPRO: Estimation of proportions program using feature selection,
NASA Contract NAS-9-14689-4S, Texas A&M University, Department of
Mathematics, Report #8, May, 1976.

An additional investigation into the problem of formulating

minimum variance unbiased estimators was performed. Preliminary results

were obtained for the special case of two multivariate normal populations.
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Results of this investigation appear in

Jay.R. Walton, Observations on minimum variance proportion
estimation, NASA Contract NAS-9-14689-1S, Texas A&M
University, Department of Mathematics, Report #5, February, 1976.

Preliminary numerical results based on results in this report indicate

a sensitivity to the choice of variance-like function being minimized,

as well as a dependence on the sample being used in the proportion

estimation portion. In addition, no results are yet available which

indicate how one might extend the above work to the "WHEAT" vs

"NON-WHEAT" problem.
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4. COLOR DISPLAY OF MULTICHANNEL IMAGES

A common problem for an image analyst-photo interpreter (AI) is

the analysis of multichannel images of high dimensionality. For example,

satellite acquired multispectral scanner data from several temporal passes

may be twelve or more dimensional. Current color display techniques allow

split-screen displays of up to twelve channels (for up to 16-dimensional

four pass LANDSAT data). However, most AI work is restricted to one

pass data owing to interpretation, display and data management problems.

For many applications, one pass is enough. However, recognition of

crops (for example, for the ultimate purpose of a large area crop inventory)

by statistical pattern recognition techniques requires more than one pass

data to achieve acceptable performance. If these techniques are applied

in the original space (of, say, twelve dimensions), computational problems

become severe. Feature selection techniques furnish methods of reducing

the dimensionality of feature space which preserve (in some sense) data

separation, making computationally feasible refined pattern recognition

techniques.

Of course, an AI is not a computer. The AI can

(i) make use of subtle spatial relationships to recognize
fields which a computer would "see" as all boundary
(for instance, the long narrow fields of crops
alternating with fallow in dry areas)

(ii) pass over large areas (urban, forest) at a glance
(iii) adjust subjectively for differing soil types,

agricultural practices, sun angle (signature extension)

All these tasks are difficult for the computer. By making use of his

special abilities, an AI using one pass data will compete favorably with
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the best automatic pattern recognition techniques. Even so, it seems that if

multitemporal data can be reduced in size and displayed like one pass

data in a predictable form, then the accuracy of the AI product must

increase.

The reports

Jack D. Bryant, David Nobles and Manot Swasdee, Computer
Program Documentation: Program NONLN1 and NONLN2 - Nonlinear
Color Display Program, NASA Contract NAS-9-14689-4S, Texas
A&M University, Department of Mathematics, Report #9, May, 1976

Jack D. Bryant, David Nobles and Manot Swasdee, Computer Program
Documentation: Program ROTAT1 and ROTAT2 - Rotation To
Produce Color Displays, NASA Contract NAS-9-14689-4S, Texas
A&M University, Department of Mathematics, Report # 10, May, 1976

discuss first efforts to accomplish a reduction of 12 dimensional data

to 4 dimensional data in a form which can be displayed in the same

manner as one pass data is currently being displayed. The detailed

description of our methods appear there. Here we discuss in a general

way the idea of generating one pass LANDSAT-like data from the output

of a linear feature selection program mapping multitemporal LANDSAT

data feature selection program to 4 dimensions.

Several problems exist which make transformed (by a linear feature

selection procedure) data unlike one pass LANDSAT data.

1. The transformed data consists of a four vector of real

numbers. How can the transformed data be displayed at

all on a device which expects input data to be 6 or 7

bit (unsigned) integers (that is, fixed point numbers

in the range 0-63 or 0-127)?
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2. The transformed data has a much larger range than

agricultural information occupies. How can the data

be quantized without losing agricultural information?

3. After transformation, the data has no intrinsic meaning.

That is, feature selection programs produce a transformation

which optimizes some measure of separation. Obviously the

transformation is not unique. If problems 1. and 2. are

solved somehow, how can colors be assigned to the scaled

data so that comparable colors result when different

feature selection transformations are applied?

Problems 1. and 2. are easily solved. The idea is to find what happens

to the mean vectors of the classes the feature selection program was trained

on. We allow some variation, and define two 4-hyperrectangles: one, which

is used to define a map into a unit 4-cube, has its corners defined by the

maximum over all classes of means plus standard deviation sigma (square

root of diagonal element in covariance matrix for that class and transformed

channel) and minimum of means minus sigma; and another, which is used to

test for data with probably no agricultural significance by corners maximum

over all classes of mean plus 3 sigma and minimum of mean minus 3 sigma.

Figure 1 (see following page) plots the image in a unit 3-cube of transformed

means we found in test data generated from Hill County North data using

the UH Feature Selection Program. (Of course, there are four dimensions

in actual transformed data.)
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Figure 1 Six transformed means in channels 1, 2, 4
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This data could now be scaled and displayed. However, it would be

little help to an AI unless there were some way to predict which color

represented which class. (In the current example, 1 is GRASS and 5 is

WHEAT.) This is the point of problem 3: how can colors be assigned

consistently? We motivate our choices as follows:

a. In all scenes which we have viewed, at least one class

which we have viewed is GRASS.

b. There will usually be one class in which there is more

interest than in others: for instance, WHEAT.

c. The colors red and green seem to carry more subjective

information than blue. Hence we want to make the class

we have most interest in (WHEAT) red and another class

which is nearly always present (GRASS) green.

(The statement in c. is misleading. We are not trying to produce a

classification map; we only produce an enhanced display.)

The two methods we investigate (and which are described in detail in

the above reports) are quite different but accomplish somewhat the same

thing. One starts out being a composition of rotations which ends up

with WHEAT along the "red" axis and GRASS in the "red-green" plane;

some nonlinear scaling is then applied to improve this result. The other

starts out being highly nonlinear (and somewhat noise-succeptable), but

is much more efficient in computer time usage. Both do well making

WHEAT red; we think ROTAT1-2 (the rotation-based method) is best.
i
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1.0 INTRODUCTION

The problem of classification arises when an observer must

determine the class of an object by investigating a set of measure-

ments or features taken from the object. It is assumed that the object

belongs to one of a finite number of classes (e.g. crops) and that

each class is described by a probability distribution of its measure-

ment vectors. It is also assumed that combinations of classes can be

defined as convex combinations of the associated density functions.

When the dimension of the measurement vector is high and a large number

of objects are to be classified the computational load increases signifi-

cantly. As a result, one employs feature selection techniques which

allow classification in spaces of lower dimension while preserving as

much as possible the discriminatory power inherently available in the

original measurements.

In the sequel we discuss the computational procedure and associated

computer program for a linear feature selection technique. The technique

assumes:

1. A finite number, m, of convex combinations of classes

2. Each class is described by an n-dimensional multivariate

normal density function of its measurement vectors.

3. The mean vector and covariance matrix for each density

function are known (or can be estimated).

4. The a priori probability for each class and for

each convex combination of classes is known.



... The technique produces a single linear combination of the original

measurements which minimizes the one-dimensional probability of mis-

classification defined by the transformed densities. The procedure for

two classes with equal a priori probabilities was developed in [3].

Subsequent theoretical results from [4] and the original version of

LFSPMC discussed in [6] form the basis for the procedure described

herein. The computational procedure and a description of the associated

computer program appear in Section 3.0. Procedures for using the pro-

gram appear in Section 4.0. Section 5.0 contains example input and

output.



2.0 MATHEMATICAL PRELIMINARIES

Let n , II ,...,n. be distinct classes (e.g. crops of interest)
1 2 L

with known a priori probabilities a , a , ...,a, , respectively. Let

x = (x ,x ,...,x ) e En denote a vector of measurements (e.g. LANDSAT1 2 n

multispectral scanner data from either a single pass or several

registered passes) taken from an arbitrary element of U n. . Suppose
i=l n

that the measurement vectors for class II. are distributed according to

the n-dimensional multivariate normal density function

Pi(x) = (27r)-
n/2|E.|-1/2exp , 1 < i < L .

We assume that the n*l mean vector y. and the nxn covariance

matrix £. for each class n. are known with I. positive definite,

1 < i < L. The symbol |A| is used to denote the determinant of the

matrix A.

Given the partition*

of {1,2,...,L> into m subsets, let

r. = u n. , 1 - i,2,...,m,
3

where k = 0 , k = L , and let m. = k. - k. , .o m i i i -1

Then r. has a priori probability

*The program allows an arbitrary partition of the L classes into
convex combinations. We assume the ordered partition defined herein
only for purposes of simplifying notation in the discussion. See Example 2,
C«r*+ -I r\n C HSection 5.0.



ki
Y- ~ £ a. , i = 1,...,m.

Letting
ki Oj

hi = J. pi » 1 5 i < m

we see that each h^ is a convex combination of multivariate normals.

L
The mixture density for u n. in terms of the combinations of classes

3=1 J

r. , i = 1,2,... ,m is easily seen to be

m

Since, in general, the a-'s are unknown (and consequently so are the
\J

Y-'s), we allow for the specification of the a priori probabilities

6 >•••»£„, fw r . •••»rm, respectively; that is, we assume thei m i m

expression for h given by

m

The n-dimensional probability of misclassification, denoted by PMC,

m
of objects from U r. is given (see [1]) by

1

PMC = 1 - / max &.h.(x)dx
y> T ., 4 jm ' I

En

m
= 1 - I B, J h. (X)dx ,

Ri



where the sets R. , 1 < i < m , called the Bayes' decision regions,

are defined by

R. = (xe En | 3. h. (x) = max 6. h. (x)} , 1 < i < m .

The resulting classification procedure, called the Bayes' optimal

classifier, is defined as follows:

Assign an element to r. if its vector x of

measurements belongs to R. .

If B = (b ,...,b ) is a nonzero Ixn vector and x e En ,

then y = Bx e E1 and the transformed measurement vectors y = Bx

for class IT. are distributed according to the univariate normal

density function (see til) given by
p

i/o T i n (y ~ By-)
p,(y,B) = (27r)-|/^(BZ.BT)"l/^exp -- J— , 1 < i < L
1 1 1 " "

The transformed density for r. is given by
ki a.

My.B) * I v pi(y'B) • ' f- ' f- m1*^ *
m

The probability of misclassification g of an object from U r.
i=l 1

in terms of the transformed measurements y = Bxe E1 , as a function

of nonzero B, is given by



g(B) = 1 - J max a. h,(y,B) dy

m
= 1 - X Bi / h.(y,B) dy ,

where the transformed Bayes1 decision regions are given by

R.(B) = ye E1 | Q. h (y,B) = max 6- h.(y,B)
1 ' 1 n l<y<m J J

, 1 < i < m

We use G(B) to denote the probability of correct classification for

B.

The computational procedure and associated computer program

described in the sequel present a method for determining a nonzero l*n

vector B which minimizes g, or equivalently, which maximizes G.

The method yields a linear feature selection procedure in that classi-

fication is ultimately performed in E1 using only a single feature;

namely, an optimal linear combination of the original measurements.

The classification procedure in E1 is described as follows:

If B is a nonzero Ixn vector which minimizes g,

then assign an object to r. if, for its measurement

vector x, Bx e R-(B) .

Following arguments similar to those presented in [4], we obtain

the expression for the Gateaux differential (see [7], [4]) of G

(when it exists) given by

m k.

6'G(B;C) = - I a. I
1=1 ' J=t

a,
J

CZ,B
' (y-Bu,v



where the notation denotes the sum of the values of the

function at the right endpoints of the intervals comprising R.(B)

minus the sum of its values at the left endpoint.

If B is a nonzero 1 n vector which minimizes g(B) = 1 - G(B),

then B must satisfy the vector equation

9B

/<Sg(B;C ) \

6g(B;Cn)

0

\°
where C., 1 < j < n , is a Ixn vector with a one in the jtn slot

J — —
r\p

and zeros elsewhere. Using the formula for ~ resulting from the
do

above expression, and using the fact that -̂ 1- = - IK- » we obtain a
do do

numerically tractable expression for the variation in the probability

of misclassification g with respect to B. The use of this ex-

pression in a computational procedure for obtaining a nonzero B

which minimizes g is discussed in subsequent sections.
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3.0 COMPUTATIONAL PROCEDURE

The computational procedure for determining the nonzero Ixn

vector B which minimizes the probability of misclassification g with

respect to the one-dimensional transformed density functions is embodied

in the FORTRAN program LFSPMC (VERSION 2).

Apart from the various program parameters and command cards

(discussed in the sequel), the basic input data to the program consists

of the class names, mean vectors and covariance matrices which comprise

the class statistics deck. All input data to the program is from unit

reference 5 (usually punched cards). All output from the program is

printed on unit reference 6. Several additional options are built

into the program which provide the user with the capability of making

successive runs using designated subsets of the original classes or

features already provided by the class statistics deck.

The program is divided into the following four subsections which

are discussed in turn in the sequel:

Parameter Initialization

Initial Vector Determination

Optimization Algorithm

Computation of g(B) and -r§-

3.1 Parameter Initialization

All input variables to the program are of a fixed format and must

be entered as shown in Section 4.0 and as illustrated in the examples

in Section 5.0. These variables are:



MC .

N .

CIS

MTOT

NFPC

KCLS

IFEA

COVARB

XMEANB

APROB.

BETA .

ICMB .

Number of convex combinations of classes, <MTOT.

Dimension of feature space, <NFPC.

Class names, 12 characters, double subscripted

array.

Number of classes in the .class statistics deck.

Number of features per class in the class

statistics deck.

Numeric labels of the designated classes from

the MTOT classes in the class statistics deck,

single subscripted array.

Numeric labels of the N designated features

from the NFPC features in the class statistics

deck, single subscripted array.

Input covariance matrices, triple subscripted

array.

Input mean vectors, double subscripted array.

A priori probabilities for the component classes,

single subscripted array.

A priori probabilities for the MC convex

combinations, single subscripted array.

Numeric labels of component classes as defined

in vector KCLS used in defining convex combinations

(Need not be in ascending order, see Example 2,

Section 5), double subscripted array.
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Four command codes select program options as follows:

STAT - definition and entry of a given statistics deck,

FEAT - definition of a desired subset of features from the

current statistics deck,

COMB - definition of convex combinations of a subset of class

of the current statistics deck, along with associated

a priori probabilities for the convex combinations and

component classes.

FSEL - computation of the Ixn transformation vector which

minimizes the PMC expression.

When the STAT command is used, values of MTOT and NFPC for the

new statistics deck are entered. The names for the respective classes

in the statistics deck are defined on succeeding cards. The class

statistics deck, comprised of the MTOT mean vectors in the order of

ascending class numbers followed by the MTOT covariance matrices in the

order of ascending class numbers, is entered. The entries of each

mean vector in the order of ascending feature number are entered

according to the format (5X, 5D15.8). The NFPC(NFPC + l)/2 elements

on and above the diagonal of each covariance matrix are entered by

column in the format (5X, 5D15.8). It is assumed that the diagonal

elements of each covariance matrix are in order of ascending feature

number. The first entry of each new mean vector or covariance matrix

starts on a new card. The entire statistics deck with appropriate

class names is printed.

If the FEAT command is selected, a new value for N and the

numeric labels of the desired features (IFEA) are entered and printed.



11

The COMB command requires entry of the numeric labels and a priori

probabilities of the desired component classes defining each convex com-

bination. After each combination is defined, the a priori probability

for the combination is entered. The names of the classes defining the

combinations and the a priori probabilities are output. Parameters

initialized using the STAT, FEAT, and COMB commands remain in effect

until the respective command is again used.

The FSEL command requires the input of

IZ .....: initial B-vector flag

= 0 compute the initial vector. B, for the
- o

optimization algorithm.

= 1 input the initial vector B, .
0

The FSEL command must be proceeded by the STAT and COMB commands.

3.2 Initial Vector Determination

A nonzero l*n vector B which minimizes g cannot, in general,
o

be obtained in closed form, and a numerical optimization (minimization)

procedure is required. Any such optimization algorithm must be given

an initial vector B .
o

When the initial vector B is to be computed, SUBROUTINE BCOMP
o

is called. For the special case of two multivariate normal classes

with equal a priori probabilities, B is computed in SUBROUTINE
o

BC2CP using the formula (see [3], [4])

B = (v-u )T (z +£ r1
0 1 2 . 1 2
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In all other cases the initial vector is computed using the procedure

described below (see [5], [9]).

Given a., y., and E., 1 < i < L , let

, L
7 = — Y ry 7L L ̂  a. L.

and determine (using SUBROUTINE EIGEN see [10]) an nxn matrix A such that

A z A =1. Letting n. = Ay., 1 < i < L , the problem can then be

reduced to finding a fixed point of the function H defined as follows:

For a given Ixn vector C, choose indices i . , 1 < j < L , for
\J "~

the ri-j's and a. 's such that (< indicates ordering of intervals)

R. (C) < R1 (C) < ... < R. (C) ,
i 2 L

where

y | a. p. (y,C) = max a. p. (y,C)
nj ^ l<k<L \ \

R. (C) =
J

To determine the regions R. (C) , the roots between transformed
J

densities considered pairwise are computed as

ln(a./a_.) C(n,+n,)
a. (C) = 1 + —— , i 1 j , i,j = 1.....L .
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Once all the roots a. (C) have been found, the regions R. (C) ,
J j

j •= 1,2,...,L are defined by the following ordering:

a) Choose i such that

Cn. = min Cr|.

b) Choose i such that
2

a. . = min a... .
i 1<J<L J\

c) Given i and i , choose i such that
1 2 3

= mm
1<J<L

a . . a . . > a . ..
ji

2 1

d) In general choose iV.-, such thatk+1

a. = mm
l Kj<L

ai k-1

provided

If the above set is empty, the procedure is terminated.

For

In/a /a, ) C/n, +n, }
- • • • V 1 3 ; - 1 J i W + V ^ J - H ^7 T < i < ,

- A.r ~T7l \ ^ **— » I < J < L -J V 'V * -

we let

L-l
F(C) = I a. p. ( a . ,C) (r\. -n- )

= n J ' '
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Then

H(C) .
|F(C)T|

To find a fixed point of H (C = H(C)), we let C = n. - n. ,
o i J

where

and compute successive vectors C. using the mean iteration formula

(see [8])

= 0>
The number of iterations is specified by the internal parameter ITER

(25 is a reasonable value). Upon completion of the iterations, the

final C., , say C , is used to compute an initial vector B from
K • o

the formula

B = CA .
0

3.3 Optimization Algorithm

The numerical minimization algorithm used to find a local minimum

of g is SUBROUTINE DFMFP from the IBM Scientific Subroutine Package

[10], The procedure is based on the method of Fletcher and Powell [2],

Computation of the minimizing B is controlled by SUBROUTINE BVECT

which initializes the following parameters used by DFMFP:
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EST , . . . : An estimate of the minimum value of g(B).

EPS . . . . : Tolerance for the expected absolute error

of the optimization algorithm. Experience

has shown 10"1* to be a reasonable value.

LIMIT . . . : Maximum number of iterations for the

optimization algorithm.

Values for the parameters are computed using empirically determined

formulae. On return from SUBROUTINE DFMFP, the error parameter IER is

checked and a message is printed if convergence is not achieved in

LIMIT iteration, if the gradient calculations are in error, or if no

minimum is found. Calculation of g(B) and |§- is discussed
OD

below.

3.4 Computation of g(B) and |jjr

The computation of g(B) and -̂ §- using the expressions given in

Section 2.0 is performed in SUBROUTINE FUNCT. The function subprogram

DPHIX computes

used in the computation of g(B) , where ERF is a library function

subprogram given by
1 a

ERF(a) = 2(2Tr)~ 2" f exp [- 1 t2] dt .

The transformed density functions p.(y,B) , 1 < i < L are evaluated

in the function subprogram XNDF. The function subprogram FUNVAL
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computes
ki

h.,. = I ' YT Pj(y'B) » ] - 1 5 m •

(̂

In order to evaluate g(B) and -£ , it is necessary to determine

the regions R.(B) , 1 < i < m , defined in Section 2.0.
I ™ ™

To determine the regions R.(B) , 1 < i < m , the roots,

y..(B) , of the equations
* J

F..j(B) = Bi h. - B h.. = 0 , i ̂  j , i , j = l,2,...,m

are determined. If m. = m. = 1 (i.e. h. and h. each consist of

a single normal class),then the roots of F..(B) are determined in
1 0

SUBROUTINE ROOTSS by evaluating the quadratic equation

where

n,,(B) = BZ. BT - BE BT

P..(B) = (BE. BT)By - (BE BT)By.U kj k. k. KJ

and

v,.(B) = (BE. BT)(By. )2 - (BE. BT)(By. )'

+ (BE. BT)(BS. BT)ln(— Lki kj WBE. BT
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For the case where n-^(B) = 0, a single root

(BUkJ
2 3, -r
) +2(1 n ̂ -KBE. B')

Ci 3j ki
2(By By )

Kj " Ki

is obtained.

When either 1 or m. f 1 , the roots of the equation

F.,(B) = 0 are determined using Newton's method in SUBROUTINE ROOTSM,
• \J

A maximum of 2(m.+m.) roots are searched for in the interval

(x ,x ) , where
1 2

x = min

= max (By. + 3a. (By.BT)1/2/
keK ' K k k

with

K = K . I >.• • • » ̂ j
_

U

The starting values

x = Byk + ( 1 BE/12

and

\/ — D» • / _!_ Dv n \ *)x - by. - ( y- DL.O )d.
0 K f. K

are needed for each component class, k , in each of the two convex

combinations considered. Updating of the argument, x , the function

value, y , and the derivative, d , are continued until one of the
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following conditions is met:

(a) |y| < 10-" .

(b) Idl.. x .„
2 1

(c) The number of iterations of Newton's method exceeds 10 .

(d) x i (x , x ) .

Only when condition (a) is met is a root, y..i(B) , of F..(B) = 0
I J 1 J

defined.

After 2(m.+m.) starting values are used, the roots thus determined
' \J

are arranged in ascending order. Roots having approximately equal values

are combined into a single root.

Once the roots, y,--;(B) , of all the equations F..(B) = 0 have
• J * J

been found, the regions R.(B) ,1 < i < m , are determined by the

following ordering defined on a (possibly proper) subset of the roots:

(a) Choose i , such that

k\ a kj

where

y . = min fy. (B)-BE BT 1
1
2
1i l<j<m L Jr i J

l<r<m
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considering only the subset of roots at which at least one of the convex

combinations of densities has a value other than machine zero,

(b) Choose i such that
2

Rl'2 "k ^
B, I — p t(y ,B) = max B. I — p . (y ,B) ,

2 k=k. ,+1 Yi2
 K ° l<j<m J k=k, ,+1 Yj K °^ i -1 * - - j-1 J

where

y - min ^y. I y. > y. .
e \ ' I T ^ ' T ^ T « T T

l<r<m

(c) Let

y. . = mi n < y..
y i3--2 I<j<mrjl

(d) In general, choose i such that

ki k
q ak J a.

s,- I ' - P^ »B) = max e I

where

y. | y. > y. . I
jr jr -1 f

l<r<m

If ,
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y = y. . + BZ BT
0 Vq-1 1

(e) Choose

y = m1n y y •* y iq q ^ q-

if

When the above set is empty the procedure is terminated. The regions

R.(B) are given for 1 < j < m , by
J "" ~

R (B) =U {y | y < y < y 1 ,
0 I ( 'q'q-k - 'q+l'q*q q

where

The above procedure for determining the regions may detect

unnecessary roots and assign the intervals to the left and right of

such a root to the same region R^B) . The lack of machine precision

may prohibit the evaluation of densities sufficiently accurate so

that the same combination is defined to dominate at +°° and -» .

For both the initial B vector and the final normalized B

vector, SUBROUTINE FUNCT outputs R^B) , Bl^7 , B^. , g(B) ,

T|- , and B . In ouputting the transformed means and covariances, the

classes are numbered in the order entered under the COMB command. For
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the final normalized B, the entries q.. of the confusion matrix
' J

are computed using the formulas

q^. = / hj(y,B)dy
Rj(B)

and output.

The parameter IOUT is an internal output control flag provided

to SUBROUTINE FUNCT.

IOUT . . . . : Control flag

= -1 first pass (B ) printed.
o

= 0 intermediate iterations of DFMFP printed.

= 1 last pass (final B) printed.
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4.0 OPERATING PROCEDURE

In order to simulate object time dimensioning, the user must

provide a calling routine of the following form:

DIMENSION ALRGE(IDIM)

DOUBLE PRECISION BLRGE(IDIM2)

COMMON MX, NX

MX =

NX =

CALL PRDIM(ALRGE,BLRGE)

STOP

END

The values of MX, NX, IDIM and IDIM2 are determined as

follows:

MX = maximum value of MTOT for the program run.

NX = maximum value of NFPC for the program run.

IDIM = MX(23+4MX+NX(̂ )̂+NX(|flX-i|-)+12

IDIM2 = MX(7+3MX+p +3NX+2NX2)+NX(^| +

If available storage is not a problem, the user can incorporate

maximum fixed dimensions into the program.

The program is suitable for interactive operation with the

inclusion of parameter request messages. The program was written

in IBM Fortran G with development on the Texas A&M University

IBM 360-65.
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Input parameters are of a fixed format and must be in a specified

order. Shown below are the variable names as described in Sections

3.1 - 3.4 and the card formats for the command code sequences.

Statistics Definition:

"STAT",IO,NFPC

class names (one per card) [FORMAT(3A4)]

mean vectors [FORMAT(5X,5D15.8)]

covariance matrices [FORMAT(5X,5D15.8)]

Feature Definition:

"FEAT",N [FORMAT(A4,12)]

IFEA [FORMAT(24(I2,1X))]

Several cards may be used to define IFEA if N > 24.

Combination Definition:

"COMB",MC [FORMAT(A4,12)]

KCLS(1)-APROB(1), , KCLS(M1)-APROB(M1),99-BETA(1)

[FORMAT(7(I2,1X,F7.6,1X),2X,A1)]

Each card defines the component class numbers (from the current

statistics deck) along with associated a priori probabilities for each

convex combination.

After all classes of a combination are defined, 99 is entered as

a class number followed by the a priori probability for the combination.

If the a priori probability for the combination is to be the sum of the

a prioris of its component classes, the class number 99 and associated
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a priori value can be omitted. If more than seven classes compose a

combination, a slash (/) in column 80 of the current card indicates

continued definition of the combination on succeeding cards.

Feature Selection:

"FSELMZ [FORMAT(A4,IZ)]

BVECT* [FORMAT(5X,5D15.8)1

*BVECT is entered only if IZ = 1.
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5.0 EXAMPLE INPUT AND OUTPUT

Example 1.

A 5 class, 12 dimensional statistics deck from MSS measurements

of Hill County, Montana, is entered. A subset of 8 features (5-12)

is considered. Combination 1 is defined as class 1 and combination 2

is the combination of classes 2-5. Feature selection is performed.

Col. 1

STAT0512

WHEAT

FALLOW

BARLEY

GRASS

STUBBLE

statistics deck

FEAT08

05,06,07,08,09,10,11,12

COMB02

01-.347000,99-.5

02-.243000,03-.121000,04-.056000,05-.233000,99-15

FSEL

Example 2.

A 6 class, 12 dimensional statistics deck from MSS measurements of

Hill County, Montana, is entered. Each class is defined as a separate

combination. Feature selection is performed. Next, combinations of

classes 4 and 5, 1, and 2, 3, and 6 are defined and feature selection
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performed.

Col. 1

STAT0612

BARLEY

STUBBLE

GRASS

WINTER WHEAT

SPRING WHEAT

FALLOW

statistics deck

COMB06

01-.166666

02-.166666

03-.166666

04-.166666

05-.166666

06-.166666

FSEL

COMBOS

04-. 166666,05-.166666,99-.333333

01-.166666,99-.333333

02-.166666,03-.166666,06-.166666,99-.333333

FSEL
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'.!<

'£

1_

-JJ

,»!,

a
o
u.
i/;
»-
_i
O
in
Ul
a

Y '' ' •'

jji'

'.'-'•

,— <-. *»-.

O) !D BJ QJ
wx<W>^
(VJ OJ M —

ur tr-or cr

(V t\j'rv —
O op r>

GQGO "
<C .̂N O
P) IS|R O
<t c\l;o o
CM O If) O
^ C^'O" O
cv CQ tip o '
ih o«o o

•" n •*•% — «
• •''» •

; "'. C> CJ,O O

' . $'•'

,-' •" ' fe>"'

V v<v V'1
>• >^% X-'"\
V yiy v
^» r\j <<• ro
po '̂o o.

•. . ". ': '
eQ,e.O
O ^O'̂ J N
o ro ̂ * f»
t) -T OJ O
O PJ O U)

t/> v <r cf 'j-
Z Q C '̂OC X'

; ' QC7,Ut-O O
_i_rr><}:<t
O • . • ' • •
LUOOOO

1

:tf) ' :;;I :

^ Z .
^[ : ' /: '
UJ N W OJ ftj (\J •
X OOOOO

f> -

0060,00
uj o n o> ir >o
z *JIT; c\itnn
ot P"- ^ f»(V r»
U u> (7 f*'** *<J
H. m N cu u) u>
V? rn -« o Q1 co
^£ U) O OU? 00
<l <T "5 •* fO r-)
,ff • • • • •"
^ -OOOOO

IT
ai
u
z

"•• /•
0^*i
(̂3 •-* «* î .iM «-4 ,:
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:|T—i.ieî  : Oi{$OC?
itft i-«:<f r»-.\ ' | j

op op _ . . ; ; -..:'
i^c|,: i d n t e n ^ n , ^ :v;

CD (p

3$.•* *• *i•iitj
iV< *?• ^
" ^
$s
•1̂
''T
; '"<!
..;•>!
ir-S
''-^
Vu

;"-''.''
•' 1

'%•
' ?''

P
V' P

SjrS

• r

' : p
P*' • »*

" S
- • K:

/ h'1-> •'
,

•I I''5
• ,
i i

• - > , ' • ' ' / * c f F
i ' :: :•$ 4 |«

!. •' I ' : -•< 1 "•<•

' ! , .« •' £;,
\ • » ; - . ' >:•• • • - " ;v, .

i fj . • ',': P*
; ;> '< -^ v|

?• :\ i "••' S
" . • • • *^ ' . •!".' ' ' ^

'.* r. ;•
« ,-, »•' ^'.'
> '

: ' ' - ' ; '• -.- .
1 ' ."- 1 1.;. •::•',

t;S
o
LU

Q.

uu
a.



, s-aooo^gi

Q O O O O'®
«-• w-i <»• c0 m

5.DOJO
aoui(j, '«
CJ (s r- (N <f- O 0\
U.
mo

v0p cv ^-i
"

. • . t
o o o<o



€'

it-

:'*

• • -
'O

• ixi
; _l
-o.

:«=C
: x



';'
r ' •
l..

'. )

'i'

_i
•n
M

i-

*-
Z

ii
O
LL •

IS
y-
— 1

• fj '
U;
ry

to
Z

LLl CM C\j CM CVI CV CVI
r. o <-,' c- c o o

G O C C O O C
i! ' [Ti CT- p"; •_< f̂ î
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METHODS FOR ESTIMATING PROPORTIONS OF

CONVEX COMBINATIONS OF NORMALS

L. F. Guseman, Jr. and Jay R. Walton

1. INTRODUCTION

The techniques in this report were developed to treat the following

pro bl em:

Given LANDSAT data (multitemporal) over a LACIE-sample segment,

and representative samples of the classes present in the

segment, estimate what proportion of the sample segment is in

WHEAT.

The approach to the above problem taken in this report can be summarized

as follows:

(a) The density function for each of the classes

WHEAT and NON-WHEAT is expressed as an appropriate

convex combination of multivariate normal densities

with known means and covariance matrices (usually

obtained from a training sample).

(b) Feature selection is performed to produce a corresponding

optimal one-dimensional Bayes classifier for

WHEAT VS. NON-WHEAT whose associated confusion

matrix is known.

(c) Using the one-dimensional classifer and associated

confusion matrix, an estimate of the true proportion
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of WHEAT in the sample segment is made. In some

cases, the resulting estimate is unbiased.

The methods presented herein have the advantage that classification

of multitemporal data over the sample segment is performed optimally in

one-dimensional space thereby reducing significantly the computer time

spent in classification. Another advantage is that the confusion matrix,

used in obtaining unbiased estimates of the wheat proportions, can be

reaily computed without the costly requirement of obtaining a labeled

sample independent of the training sample.

The general mathematical framework of proportion estimation

procedures is discussed in Sections 2 and 3. In Section 4 we define

four particular estimators based on the previous mathematical discussion.

Section 5 contains preliminary numerical results of the four estimators

presented in Section 4.
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2. PRELIMINARY MATHEMATICAL DISCUSSION

Let n ,...,n be distinct classes with true (but unknown)

m
a priori probabilities a ,...,a , respectively. Let ft= U n.i m .=1 i

and let X : Q. ->• Rn be a random vector with mixture density

m
f = f = I .

where each class conditional density function f. = fv/ is
1

assumed to be N(y. ,£.) with u•» £.: known, 1 < i < m .

A method of estimating all ma priori probabilities a ,...,ai n

in the mixture f from a given sample was discussed in [1]. The

estimation problem discussed in [1] resulted in solving the problem:

minimize ||Pa - @|| (Euclidean norm)

n
subject t o I a . = l , a . > 0 , l < i < m

where e is the m-dimensional vector of proportions obtained by

classifying a random sample of size N , and P is the mxm error

matrix associated with the classifier used to obtain e; that is,

P = (P-jj) » where

= / fj
Ri
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and R ,...,R are given classification regions. If P is invertible,i m

then & = P~ § is an unbiased estimate of a (which, in general,

may not satisfy the nonnegativity constraints).

The following discussion forms the basis for the estimation pro-

cedures presented in the sequel.

k m
L e t r = U n . , r = un. . Then r and r have a

i i=i i 2 i=k+1 i i 2

priori probabilities y = a +...+cu and y = ak+1+.••
+CL ,

respectively. Letting

k a.
h = I — f.1 1=1 Y! 1

and

we have

m
f = J,

k
I a,f, + I a.f .

1=1 1 n i=R+l 1 !

k a- m a.-
T Y — f . + \ Y — f .
H=l Y! 1 1=kl Y

2
 1

y h + Y h
1 1 2 2
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We note that the density functions h and h are convex combinations

of normals. Henceforth it will be convenient to denote the above expres-

sion for f as a convex combinations of convex combinations by h ;

that is h = y h + Y h . Suppose we are given decision regions S
1 1 2 2 1

and S and associated decision function C : fl -»• (1,2} defined for
2

each to e ft by

C(w) = i iff X(to) e S. , i = 1,2 .

Then the probability that w e Si is classified as belonging to r.

is given by

P r ( [ X e S . ] ) = P r ( [ X e S.] n (r U r ))
1 1 i 2

2
= Pr( U ([X e S.] n r.))

J-l 1 J

2
= I P r ( [ X e S.] n r )

3=1 J

= I Y P r ( [ X e S.]|r ) .
j=l 3 J

= Y P r ( [ X e S^lr^ + YZ

Let Z = (Z , Z )T , where Z. = Xo o X and Xc is tne characteristic
1 2 ' ^ i i

function of $i C R
n . For a fixed i ,
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S (X) )

= Ac h(x)dx

Rn 1

= f h(x)dx

+ Y2h2(x))dx

si
Y / h j (x )dx + Y / h (x)dx

's i "?1

Y. P ( [ X E S,]|r ) + Y. P ( [ X e

Let w = (o> ,w ,...,w ) be a random sample of size N from n. For
1 2

each fixed i, i = 1,2, let

Zir(o)N) = Z (o)r) , 1 < r < N

Then for each fixed i, 1̂ ,...,!.̂  are independent random variables

and each has the same distribution as Zi (see [4]). Thus E(Z.r) = 1(1.)t

1 N ^ N Ni1 < r < N . Letting d. = TT V Z. , we have d.(u ) = rr- , where~ — i IN _i ir i IN

NN. is the number of elements in w that are classified as being from

/s

r. . Letting d. = E(d.) , we have

Y 2 P ( [ X



- 7 -

Then, if

/Y \ /d
, and d = I „'

lY / V« / V d
2 2 2

we obtain

d = E(d) = Qy ,

where Q is the 2x2 matrix whose entry q.. , in the i row and
' 0

j column, is given by

f h.(x)dx

The error matrix Q is determined by the classification regions

S and S and the true class conditional density functions h
1 2 1

and h for r and r , respectively; that is, h and h in
2 , 1 2 1 2

terms of the true a priori probabilities, a ,a ,...,a . If, in1 2 m

addition, the regions S and S are to be determined by h ,
1 2

h and h , as in Bayesian classification, then S and S
1 2 1 2

are also functions of a ,...,a .
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3. GENERAL PROCEDURE FOR DEFINING ESTIMATORS

Each of the estimators presented in Section 4 results from using

the following general procedure to determine appropriate decision regions

and associated error matrices.

Begin by specifying values of 6 = (B ,B ) > B > 0 , B > 0 ,
12 1 * 2 ~

T m

0 +3 * 1 , and n = (n,...,n_) , n. > 0, 1 < i < m , I n, = 1 ,
2 2 m i ~ ~ ~ j = l '

to produce approximating conditional densities

m n. m

and approximating mixture density

h(B, n : x) = B h (n : x) + B h (n : x) .
1 1 2 2

Once B and n have been specified, an existing feature selection

technique is used (see [2]) to produce a Ixn vector B* of norm

one which minimizes the transformed probability of misclassification

in one dimension; that is, a B* with ||B*|| = 1 is found which

minimizes the function g (of B only) defined by

g(B) = 8 / h (n : y,B)dy + BZ / h^n : y,B)dy ,
S (B) 2 S (B) 2
2 1

where the transformed densities (as a function of nonzero B) are

defined for y e R1 by
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2i / i (y-BV \
f,(y,B) = —TT̂ - ^i/0exp - T =L- , i = l,2,...,m,

(2ny ( B Z B ) - BZ.B

k n,
n : y,B) = I ^

m m
: y,B) = _ I ^-

and the associated Byaes decision regions are given by

S (B) = {ye R1 : 6 h (n : y,B) > 6 h (n : y,B)} .
1 1 i 2 2

S (B) = {ye R1 : B h (n : y,B) > 6 h (n : y,B)} .
2 2 2 1 1

The resulting associated error matrix Q at B* is given by

Q = (qn-j) , where

=/ hj(n : y'B*)dy • 1J = 1>2 '

Having determined the decision regions S (B*) and S (B*) , the
1 2

classification rule

(*) C(u>) = i iff B*(X(o>)) e S^B*)

is used to classify the random sample u> to produce a 2-dimensional

vector of (classification) proportions.
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4. SPECIFIC ESTIMATORS

We now discuss several methods for estimating y . The first

(ESTIMATOR 1) is nothing more than an obvious modification of the

m-class estimator discussed in Section 2 and [1]. It is used in the

subsequent discussion to obtain other estimators.

ESTIMATOR 1

The procedure for estimating a = (a ,...,a ) discussed ini m

Section 2 and [1] produces a vector a = (a ,...,a ) minimizing

|Pa - §|| and satisfying £ a. = 1 , a. > 0 , 1 < i < m .
i=l n 1 " " "

Then

-~JL_
1...1 O...0\

.0...0 1...1 /
- k

= Aa

is an estimator for y . If P is invertible and P~ e satisfies the

nonnegativity constraints, then a = P~ e and y= AP" e is an

unbiased estimate of y .

ESTIMATOR 2

Using the m-class estimator a = (a ,...,a ) , and y = (y ,y )i m 1 2

we obtain the conditional densities



- 11 -

k a.
h (x) = h (a : x) = £ -± f.

1 1=1 YI '

m Q.. .
h (x) = h (a : x) = I 2-

2 2 i=k+l Y

and mixture density

h(x) = h(v,o : x)

= Y n (a : x) + Y h (a '• x)
1 1 2 2

= ̂ Mx) + Y2h2(x) .

The subsequent feature selection produces (at the minimizing B*) the

decision regions

ST = {ye R1 : T^ty.B*) > Y2My,B*)}

S2 = {ye R1 : Y2My,B*) > Y^fy.B*)}

and associated error matrix Q = (q..) , where
' J

q . = fhj(y,B*)dy , 1, j • 1, 2.

§i

Using the classification rule (*) with the decision regions S , S to
1 2

Nclassify the random sample w = (to ,...,WN) , we obtain the vector

of proportions

I
d

-1d
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The resulting problem

1 1 " ~ i
minimize | |Q£ - d|

subject t o £ + £ ;
' ~

is readily solved to produce the estimator y of y • When Q is
s\ "I ̂

invertible and Q~ d satisfies the nonnegativity constraints, then

Y= Q d .

ESTIMATOR 3

Letting n = ( — » . • • > - ) » 8 = ( jj- > o") we obtain the

conditional densities

, k
h (x) = h (n : x) = f I f.(x)

i i K 1=1 i

m

and the mixture density

h(x) = h(n,B : x)

j h (n : x) + j h (n : x)

ih (x) + \ h (x) .

The subseauent feature selection produces (at the minimizing B*) the

decision regions
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§ i = {ye R1 : My,B*) > h"2(.y,B*)}

§ = {ye R1 : h (y,B*) > h (>

and associated error matrix Q = (q..) where

.. = f My,B*)dyU J J
. i, j = 1, 2 .

Using the classification rule (*) with the decision regions S , S ,1 2

we obtain the vector of proportions

/d \d= L 1 .
\d /

2

The resulting problem

minimize Q5 - d

subject to 5 + 5 = 1 , Ci > 0 , 1 = 1 , 2

is readily solved to produce the estimator y of y • When Q is

invertible and Q~ d satisfies the nonnegativity constraints, then

ESTIMATOR 4

Using the decision regions S , S and B* determined in
1 2

ESTIMATOR 3, and conditional densities h , fi from ESTIMATOR 2,
1 2

* *
let Q = (q. .) , where
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, i, j = 1, 2

Si

When Q is inwertible let

y* = Y ± (Y - Q"1 Q* y} .

Then y* is an estimator of y . If y = 0 d and y = AP e , then

y* = y ± Q-^d - Q*AP"1§) ,

and, for either choice of sign, y* is an unbiased estimator of y •
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5. PRELIMINARY NUMERICAL RESULTS

The four ESTIMATORS discussed in Section 4 have been implemented

(FORTRAN PROGRAM ESTPRO) and undergone preliminary testing. Testing was

accomplished using 16-dimensional data from four registered passes

(May 5, May 23, June 11, June 29, 1973) of LANDSAT 1 MSS measurements

acquired over Hill County (N), Montana. Training data was provided to

the program for the five classes: WHEAT, FALLOW, BARLEY, GRASS,

STUBBLE. A random sample of 16-dimensional vectors of size 2417

comprised of the above five classes in the following proportions was

used:

CLASS

WHEAT

FALLOW

BARLEY

GRASS

STUBBLE

# OF VECTORS

784

244

300

206

383

TRUE PROPORTION

.3244

.3078

.1241

.0852

.1585

The results for ESTIMATORS 1-4 in estimating the proportions of

WHEAT VS. NONWHEAT appear in Tables 1-4. The estimated proportions

obtained from ESTIMATOR 4 using both plus and minus signs are included.

Results for estimating the proportions of BARLEY VS. NON-BARLEY appear

in Tables 5-8. The results from all four estimators are summarized in

Table 9 for WHEAT VS. NON-WHEAT and Table 10 for BARLEY VS. NON-BARLEY.

The feature selection program used in ESTPRO is LFSPMC(VERSION 2)

discussed in [2]. Solution of the constrained least squares problem

(when needed) is accomplished using LSI from [3].
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P -

'0.71597 0.00182 0.19020 0.08376 0.01057\

0.00463 0.64462 0.00018 0.12748 0.45221 \

0.12068 0.00000 0.80158 0.00000 0.00002

0.15869 0.17698 0.00805 0.78348 0.16139 /

0.00002 0.17658 0.00000 0.00028 0.37581/

Error Matrix

§ =

.27927\

.26107 \

. 13860

.18866 /

.13240/

Classification vector

a =

,34499\

.21119 \

.12096

.06987 /

.252997

WHEAT

FALLOW

BARLEY

GRASS

STUBBLE

Y =
WHEAT

NON-WHEAT
ESTIMATOR 1

Table 1. ESTIMATOR!: WHEAT- VS. NON-WHEAT
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/. 34499 \

\.65501 /

WH EAT fnLHI } From ESTIMATOR
NON-WHEAT \

c;.90271 .07694 \
Q = | I Error Matrix

.08729 .92306 /

/.34050
d = ( ) Classification Vector

\.65950

/.31918 \

\.68082 /

WHEAT
V = ( I > ESTIMATOR 2

NON-WHEAT

Table 2. ESTIMATOR 2 : WHEAT VS. NON-WHEAT
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/.93341 .11058X
Q = I I Error Matrix -

\.06659 .884927

/.37319 \
d = ( I Classification Vector

\.62681 /

/.31541 \

\. 6S459/

WHEAT )
\ ESTIMATOR 3

NON-WHEAT )

Table 3. ESTIMATOR 3: WHEAT VS. NON-WHEAT
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/. 34499 \

\.655017

WHEAT )
Y = { 1 > From ESTIMATOR 1

NON-WHEAT 1

/.31541X

\.68459 /

WHEAT )
V = ( 1 > From ESTIMATOR 3

NON-WHEAT )

'.93341 .11058\

,.06659 .88492
Q = ( ) Error Matrix From ESTIMATOR 3

:/

/.36318\
d = I ) Classification Vector From ESTIMATOR 3

\.62681 /

'.93341 .10348X
I Error Matrix

,.06659 .896527

* /. 32470 \ WHEAT )
Y (plus sign) = I I } ESTIMATOR 4

\.67530 / NON-WHEAT I

*/ • .36529X WHEAT
(minus sign) = ( ESTIMATOR 4,.63471/ NON-WHEAT

Table 4. ESTIMATOR 4: WHEAT VS. NON-WHEAT
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'0.71597 0.00182 0.19020 0.08876 0.01057\

0.00463 0.64462 0.00018 0.12748 0.45221 \
P = I 0.12068 0.00000 0.80158 0.00000 0.00002

0.15869 0.17698 0.00805 0.78348 0.16139 /

,0.00002 0.17658 0.00000 0.00028 0.37581/

Error Matrix

§ =

.27927\

.26107 \

.13860

.18866 /

.13240/

Classification vector

a =

k

.34499\

.21119 \

.12096

.06987 /

.252997

WHEAT

FALLOW

BARLEY

GRASS

STUBBLE

Y =

BARLEY

NON-BARLEY
ESTIMATOR 1

Table 5. ESTIMATOR 1: BARLEY VS. NON-BARLEY
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Y =

,12096

.87904

BARLEY

NON-BARLEY
From ESTIMATOR 1

.93122 .00805

.06878 .99195
Error Matrix

d =
.12329

.87671
Classification Vector

Y =
.12484

.87516

BARLEY

NON-BARLEY
ESTIMATOR 2

Table 6. ESTIMATOR 2: BARLEY VS. NON-BARLEY
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Q =
.98549 .02169

.01451 .97331
Error Matrix

d =
,14522

.85478
Classification Vector

Y =

1

.12817

.87183

BARLEY

NON-BARLEY
ESTIMATOR 3

Table 7. ESTIMATOR 3: BARLEY VS. NON-BARLEY
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Y =
.12096

.87904

BARLEY

NON-BARLEY
From ESTIMATOR 1

Y =
.12817 \ BARLEY

.87183 / NON-BARLEY
From ESTIMATOR 3

Q =
.98549 .02169

.01451 .97831
Error Matrix From ESTIMATOR 3

d =
.14522

.85478
Classification Vector From ESTIMATOR 3

.98549 .03115
Q* = ( | Error Matrix

.01451 .96885

y*(plus sign) =
.11955

.88045

BARLEY

NON-BARLEY
ESTIMATOR 4

Y*(minus sign) =
.122331 BARLEY

.S7762/ NON-BARLEY
ESTIMATOR 4

Table 8. ESTIMATOR 4: BARLEY VS. NON-BARLEY
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TRUE EST 1 EST 2 EST 3 EST 4(+) EST 4(-)

WHEAT

NON-WHEAT

.3244

.6756

.3450

.6550

.3192

.6808

.3154

.6846

.3247

.6753

.3653

.6347

Table 9. ESTIMATORS 1-4: WHEAT VS. NON-WHEAT

TRUE EST 1 EST 2 EST 3 EST 4(+) EST 4(-)

BARLEY .1241 .1210 .1248 .1282 .1196 .1224

NON-BARLEY .8759 .8790 .8752 .8718 .8805 .8776

Table 10. ESTIMATORS 1-4: BARLEY VS. NON-BARLEY
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1.0 INTRODUCTION

The following is intended as a users guide for the FORTRAN program

ESTPRO. Program ESTPRO provides the necessary computations for performing

proportion estimation by the four methods discussed in [3].

The estimation algorithms available in ESTPRO were developed to

treat the following problem:

Give LANDSAT data (multitemporal) over a LACIE sample segment,

and training data for the classes in the segment, estimate

what proportion of the sample segment is in WHEAT.

The program assumes that a finite number of component classes (e.g.

crops) are present in the segment, and that each component class is

described by a multivariate normal density function with known mean vector

and covariance matrix (usually obtained from a training sample).

Under the above assumptions, the estimation algorithms performed by

ESTPRO can be summarized as follows:

(a) The density function for each of the classes WHEAT

and NON-WHEAT is expressed as an appropriate

convex combination of the component multivariate

normal density functions.

(b) One or more feature selections are performed to

produce corresponding optimal one-dimensional Bayes

classifiers for WHEAT VS. NON-WHEAT whose associated

confusion matrices are known.

(c) Using the one-dimensional classifiers and associated

confusion matrices, estimates of the true proportion

of WHEAT in the sample segment are made.
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2. SUMMARY OF ESTIMATORS

The following discussion forms the basis for the estimation procedures

in ESTPRO.

Let n ,...,n be distinct classes with true (but unknown) a priori
m

probabilities a ,'...,a' , respectively. We assume that U II. has mixturei m i=1 i

density

m
f = f - I a.f ,

x i=l n n

where each class conditional density function f. = fv/ is assumed toi «/iij

be N(y. ,Z.) with u. , S. known, and E. positive definite, 1 < i < m.

k m
Let r = U n. , r = u n. . Then r and r have a

i 1=1 i 2 i=k+1 i i

priori probabilities y = a +...+ak and Y2
 = a^+}+---+am » respectively.

Letting

k a-
h = I — f.

1 n

and
m a.
V n fL ^— T. ,j _i. iii i2 1=K+I "2

we have

f = a.f.-"
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where the density functions h and h are convex combinations of
1 2

normals. Henceforth it will be convenient to denote the above expression

for f as a convex combination of convex combinations by h ; that is

h = Y h + Y h .
1 1 2 2

Throughout, x ,...,XN will denote a random sample of n-dimensional

vectors from the sample segment. Feature selection is performed using

the algorithm LFSPMC from [2]. The constrained least squares problem

(constrained quadratic minimization) is solved using LSI from [4].

We now summarize the four algorithms available in ESTPRO for estimating

ESTIMATOR 1

Step 1. Using the mixture density

m

perform feature selection to obtain a Ixn vector B of norm one which

minimizes

m ,
g(B) -i-^J

where,

MB) = yeE1 : f,(y,B) = max f.fy.B) , 1 < i < m ,

and

j, BE.BT)
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Step 2. Compute the mxm error matrix P = (p..-,-) associated with

the decision regions R.(B*) defined by B* , where

pii = f My.B*)dy • 1, J = 1,2,....m .
*

Step 3. Using the decision regions R|(B*), 1 < i < m , classify

the random sample x ,...,XN to obtain the mxl classification vector

e = (e ,...,em)
T , where e. = jp , and N^ is the number of x. in the

sample such that B*x. e R..(B*) , 1 < i < m .

Step 4. Using P and e , determine a = (a ,...,a ) which
m

minimizes ||Pa-e|| subject to I o^. = 1 ., a. > 0 , 1 < 1 < tn .

Step 5. ESTIMATOR 1 is given by

%/ «

= Aa •

If P is invertible and P e satisfies the nonnegativity constraints,

then a = P"1^ and y = AP e is an unbiased estimate of y.
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ESTIMATOR 2

Step 1. Perform ESTIMATOR 1 to obtain a = (ol ,...,am)
T and

Y = (Y »Y ) and let
1 2

k p.

1 i=l Y 1

m a.

Step 2. Using the mixture density

•^ /N. A. /\ /\

h = Y h + Y h , .
1 1 2 2

perform feature selection to obtain a Ixn vector B* of norm one which

minimizes

g(B) = YZ h^y.Bjdly + Ya My,B)dy ,
S (B) 2 S (B) V

2 1

where

= {y e E1 : My.B) > Yh

S (B) = {y e E rah (y,B) < a h (y,B)}
2 1 1 2 2

Step 3. Compute the 2x2 error matrix Q = (q..) associated with
i ' J

the resulting decision regions S = S (B*) and S = S (B*) defined
1 1 2 2

by B* , where

S i
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Step 4. Using the decision regions S , S , classify the random
1 2

sample x ,...,XN to obtain the 2x1 classification vector
/\ s\ >N -p \̂ IN 2

d = (d ,d ) , where d = jr- , and N. is the number of x. in
1 Z I" ' J

* ~
the sample such that B x. e S. , i =1,2.

Z « ~ T
Step 5. ESTIMATOR 2 is given by that Y = (Y »Y ) which minimizes

1 2

||Q£-d|| subject to £ H = 1, £ > ° t C > 0 . When Q is invertible

and Q"*d satisfies the nonnegativity constraints, then y = Q~a .

ESTIMATOR 3

Step 1. Using conditional densities

and mixture density

h = i-h + 1 h

*
perform feature selection to obtain a Ixn vector B of norm one which

minimizes

, • i r i r
g(B) = p- / h (y.B)dy + y / h (y.B)dy ,

<: rn^ 1 «; ̂ R^ 2
o .IDJ o .\"/

where
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Sa(B) = {y e E1 : My,B) > h^y.B)}

S (B) = {y e E1 : fi (y,B) < h (y,B)} .
2 1 2

Step 2. Compute the 2x2 error matrix tj" = (q..) associated with

the resulting decision regions § = § (B*) and § = 5 (B") defined
1 1 2 2

by B , where

Step 3. Using the decision regions S , S , classify the random
1 2

sample x ,...,XM to obtain the 2x1 classification vector d = (d ,d )
. ' N.

where d.. = -jq- » and N.. is the number of x. in the sample such that

B^XJ e S. , i = 1, 2.

Step 4. ESTIMATOR 3 is given by that y = (Y ,Y )T which
1 2

minimizes | |Q £ - d|| subject to C +£ = 1 , £ > 0 , E, > 0 . When

Q is invertible and Q"*d satisfies the nonnegativity constraints, then

Y = §-l d .

ESTIMATOR 4

Step 1. Perform ESTIMATOR 1 to obtain a » (a ,...,(

Y = (Y >Y )T and subsequent conditional densities

Step 2. Compute B* and decision regions S and 5 from

ESTIMATOR 3, and obtain Q, d .
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k a.
h == I — f , | , and

1 i=l *„ n

m
h =- I -fi -

i=k+l Y n

Step 3. Compute the 2x2 error matrix Qv = (q*.) , where
' J

Step 4. When Q is invertible, ESTIMATOR 4 is given by

* ^ _ — **
Y = Y + (Y - Q" Q Y) • v

_ s\ ^

If Y = 0~ 1 d and y = AP~ l e then

^ _ ju ^

and, for either choice of sign, y is an unbiased estimator of y
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3.0 PROGRAM PARAMETERS

Apart from the various program parameters and command cards

(discussed in the sequel), the basic input data to ESTPRO consists of

the class names, mean vectors and covariance matrices which comprise the

component class statistics deck. All input data to the program is from

unit reference 5 (usually punched cards). All output from the program is

printed on unit reference 6. Several additional options are built into

the program which provide the user with the capability of making successive

runs using designated subsets of the original features provided by the

component class statistics deck.

3.1 Parameter Initialization

All input variables to the program are of a fixed format and must

be entered as shown in Section 4.0 and as illustrated in the examples in

Section 5.0. These variables are:

MTOT : Number of classes in the component class
statistics deck.

NFPC : Number of features per class in the component
class statistics deck.

N : Dimension of feature space, < NFPC.

CIS : Class names, 12 characters, double subscripted
array.

KCLS : Numeric labels of the designated classes from
the MTOT classes in the component class statistics
deck, single subscripted array.

IFEA : Numeric labels of the N designated features
from the NFPC features in the component class
statistics deck, single subscripted array.

COVARB : Input covariance matrices, triple subscripted
array.
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XMEANB : Input mean vectors, double subscripted array.

ICMB : Numeric labels of component classes as defined
in vector KCLS used in defining convex combina-
tions (Need not be in ascending order), double
subscripted array.

Command codes select program options as follows:

STAT : definition and entry of a given component class
statistics deck.

FEAT : definition of a designated subset of features
from the current component class statistics
deck. __.- -——

EST1
EST2
EST3
EST4

choice of estimator to be used with current
statistics deck and designated subset of
features.

When the STAT command is used, values of MTOT and NFPC for the new

statistics deck are entered. The names for the respective component

classes in the statistics deck are defined on succeeding cards. The com-

ponent class statistics deck, comprised of the MTOT mean vectors in the

order of ascending class numbers followed by the MTOT covariance matrices

in the order of ascending class numbers, is entered. The entries of each

mean vector in the order of ascending feature number are entered according

to the format (5X, 5D15.8). The NFPC(NFPC + l)/2 elements on and above the

diagonal of each covariance matrix are entered by column in the format

(5X, 5D15.8). It is assumed that the diagonal elements of each covariance

matrix are in order of ascending feature number. The first entry of each

new mean vector or covariance matrix starts on a new card. The entire

statistics deck with appropriate class names is printed.
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If the FEAT command is selected, a new value for N and the

numeric labels of the desired features (IFEA) are entered and printed.

Choice of estimators is made by using one of the command cards EST1,

EST2, EST3 or EST4.

Once a particular estimator is chosen, successive cards

are used to define convex combinations of the component classes. Each

card consists of the numeric labels of the desired component

classes defining that convex combination. If each component class is a

separate convex combination (e.g., as in EST1), then a single card

with the numeric labels of all component classes is used. After the con-

vex combinations are defined, the names of the component classes defining

the convex combinations and their respective a priori probabilities are

output. Parameters initialized using the STAT and FEAT commands remain

in effect until the respective command is again used.

The N-dimensional sample pixels to be used in generating classifica-

tion vectors are entered using a variable FORMAT (read in at object

time). If available, the number of sample pixels in each component class

is entered. Otherwise, any positive numbers can be entered for each

component class with the restriction that their sum equals the total

number of sample pixels.

Use of EST2 or EST4 requires intermediate determination of EST1

and consequently definition of two sets of convex combinations and two

classifications (see section 5.0).
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4.0 OPERATING PROCEDURE

In order to simulate object time dimensioning, the user must

provide a calling routine of the following form:

DIMENSION ALRGE(IDIM)

DOUBLE PRECISION BLRGE(IDIM2)

COMMON MX,NX

MX =

NX =

CALL PRDIM(ALRGE.BLRGE)

STOP

END

The values of MX, NX, IDIM and IDIM2 are determined as follows:

MX = maximum value of MTOT for the program run.

NX = maximum value of NFPC for the program run.

IDIM = MX(23+4MX+NX(̂ y-))+NX(|NX4|)+12

IDIM2 = MX(7+3MX^y-+3NX+2NX2)+NX(^|+ll-)+7

If available storage is not a problem, the user can incorporate maximum

fixed dimensions into the program.

Input parameters are of a fixed format and must be in a specified

order. Shown below are the variable names as described in Section 3.0

and the card formats for the command code sequences.
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Statisties Definition:

"STAT'.MTOT.NFPC

class names (one per card) [FORMAT(3A4)]

mean vectors [FORMAT(5X,5D15.8)]

covariance matrices [FORMAT(5X,5D15.8)]

Feature Definition:

"FEAP'.N [FORMAT(A4,I2)]

IFEA [FORMAT(24(I2,1X))]

Several cards may be used to define IFEA if N > 24.

Selection of Estimator

11 EST1",MTOT,N, 00000001

all class labels

number of sample
pixels/class

variable FORMAT for
sample pixels

sample pixels

11 EST2",MTOT,N, 00000001

all class labels

number of sample
pixels/class

variable FORMAT for
sample pixels

sample pixels

class labels, convex
combination 1

class labels, convex
combination 2

[FORMAT(26(I2,1X),A2)]

[F.ORMAT( 16(14, IX))]

[FORMAT(20A4)]

according to variable FORMAT

[FORMAT(26(I2,1X),A2)]

[FORMAT(16(I4,1X))]

[FORMAT(20A4)]

according to variable FORMAT

[FORMAT(26(I2,1X),A2)]

[FORMAT(26(12,1X),A1)]
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number of sample
pixels/class

"EST3",MTOT.N,00000001

class labels, convex
combination 1
class labels, convex
combination 2
number of sample
pixels/class
variable FORMAT for
sample pixels
sample pixels

"EST4",MTOT,N,00000001

all class labels

number of sample
pixels/class
variable FORMAT for
sample pixels
sample pixels

class labels, convex
combination 1
class labels, convex
combination 2
number of sample
pixels/class

[FORMAT(16(I4,1X))]

[FORMAT(26(I2,1X),A2)]

[FORMAT(26(I2,1X),A2)]

[FORMAT(16(I4,1X))]

[FORMAT(20A4)]

according to variable FORMAT

[FORMAT(26(I2,1X),A2)]

[FORMAT(1.6(I4,1X))]

[FORMAT(20A4)]

according to variable FORMAT

[FORMAT(26(I2,1X),A2)]

[FORMAT(26(I2,1X),A2)]

[FORMAT(16(I4,1X))]

If the same statistics deck and sample pixels are being used with

different estimators, then the variable FORMAT and sample pixels need not

be re-entered. If more than twenty-six component classes constitute a

single comvex combination, a slash (/) in column 79 of the current card

indicates a continued definition of the convex combination on succeeding

cards.
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5.0 EXAMPLE INPUT

Example 1.

A 5 class, 16 dimensional component class statistics deck of MSS

measurements from Hill County, Montana, is entered. ESTIMATOR 1 is then

called to estimate the proportions of all five classes using a random

sample of 2417 pixels. Then ESTIMATOR 2, ESTIMATOR 3 and ESTIMATOR

4 are selected to estimate the proportion of class 1 (WHEAT) versus

classes 2-5 (FALLOW, BARLEY, GRASS, STUBBLE) using the same statistics

deck and sample pixels.

Col. 1

STAT0516

WHEAT

FALLOW

BARLEY

GRASS

STUBBLE

statistics deck

EST1051600000001

01,02,03,04,05

0784,0744,0300,0206,0383

(8X,16I3,24X)

sample pixels

EST2051600000001

01,02,03,04,05

0784,0744,0300,0206,0383
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01

02,03,04,05

0784,0744,0300,0206,0383

EST3051600000001

01

02,03,04,05

0784,0744,0300,0206,0383

EST4051600000001

01,02,03,04,05

0784,0744,0300,0206,0383

01

02,03,04,05

0784,0744,0300,0206,0383

Example 2.

The component class statistics deck and sample pixels from Example

1 are entered. For this run, ESTIMATOR 1 is called to estimate the pro-

portions of all five classes. Then ESTIMATORS 2-4 are selected to

estimate the proportion of class 3 (BARLEY) versus classes 1, 2, 4, 5

(WHEAT, FALLOW, GRASS, STUBBLE).

Col. 1

STAT0516

WHEAT

FALLOW

BARLEY

GRASS

STUBBLE ; •
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statisties deck

EST1041500000001

01,02,03,04,05

0784,0744,0300,0206,0383

(8X,16I3,24X)

sample pixels

EST2051600000001

01,02,03,04,05

0784,0744,0300,0206,0383

03

01,02,04,05

0784,0744,0300,0206,0383

EST3051600000001

03

01,02,04,05

0784,0744,0300,0206,0383

EST4051600000001

01,02,03,04,05

0784,0744,0300,0206,0383

03

01,02,04,05

0784,0744,0300,0206,0383
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COMPUTER PROGRAM DOCUMENTATION

Program NONLN1 and NONLN2

Nonlinear Color Display Program

Abstract. These programs together perform a transformation of a four

dimensional real row DATA to produce a four dimensional row TDATA.

NONLN1, which is called first (and only once), sets parameters for

NONLN2. NONLN1 uses statistics (means and diagonal of covariance matrix)

on NCLASS classes and the class numbers IW and 16 of distinguished classes

(called "wheat" and "grass" here). NONLN2 takes input DATA into numbers

0. to 64. so that input data near wheat will map to TDATA high in channel

4 and low in channel 1 and 2, and input data near grass will become high

in channel 1 and low in 2 and 4. With standard color assignments used

to display ERTS data, wheat becomes red, grass green.

This method of transforming data is highly nonlinear and is quite

sensitive to noise in the input data; however, the output color spread

is spectacular.

-a • • •

Application. The program was developed for a specific application:

when multispectral multitemporal data is transformed to lower dimensionality

using a feature selection program, the transformed data has no intrinsic

meaning—no "reality." However, the transformed data (if, say, four

dimensional) should be more managable provided it can be displayed at

all. The problem is not just the range of the transformed data, or the
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fact that real data, unlike classes the feature selection program was

"trained" on, transform wildly; the real problem is the lack of any con-

sistent relationship in the transformed data. Thus it is easy to produce

a color display but hard to analyze what the colors mean. Program NONLN1-2

attempts to allign the selection of colors so that certain classes have

certain colors, and this assignment will be relatively independent of

which feature selection program produced the reduction in dimensionality.

The program is applicable to raw single pass data. Although wheat

and grass are probably not separated well enough, other classes are.

The program should greatly enhance color display of single pass data.

Source language. FORTRAN IV 100%

Restrictions. Name NONLN3 is reserved (the name of a COMMON block).

If classes IW and IG are too close the transformed data will be noisy

and lose separation. NCLASS must be at least 3.

I/O Configuration. Both programs are I/O free.

Deck Set-up. Job Control Cards
Calling program*
NONLN1
NONLN2
FOLD64
Job Control Cards
Data

*for comments on the calling program, see Usage.
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Usage. Calling sequence, NONLN1:

CALL NONLN1 (NCLASS,BMU,BSBTD,IW,IG), where

NCLASS number of classes for which training statistics
are given

BMU mean vector for each class: ,NCLASS by 4

BSBTD diagonal elements of covariance matrix: NCLASS by 4

IW class to be made red

IG class to be made green

CALL NONLN2 (DATA,TDATA,LDA), where

DATA input row, type real, LDA by 4

TDATA output row, type real, LDA by 4

LDA number of pixels in a row

Comments on the calling program. The calling program may have a

general flow as follows:

1. Set up data set with data to be transformed and transformed
data (may be the same data set since input is only needed
once).

2. Input or otherwise determine parameters for NONLN1.

3. Call NONLN1.

4. Itialize a row counter loop.

5. Input a row of data.

6. Convert to type REAL if necessary and store in DATA

7. Call NONLN2.

8. Store a row of data, packing or converting from type REAL
if necessary.

9. Next row.
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Timing. NONLN2 is fast, probably faster than whatever I/O and data

conversions are going on. For each pixel, about five floating point

multiplications and ten additions, and ten each integer additions and

multiplications are required.

Storage Requirements. Approximately 5000 8 bit bytes code for both

NONLN1 and NONLN2; array storage (assuming 32 bit real numbers) will be

about 4 * (47 + 8 * (NCLASS + IDA)) 8 bit bytes.

Possible Extension, Suggestions for Improvements.

These comments refer to batch operation only.

1. Suggestion for improving speed: This suggestion is based

on two observations: first, owing to noise, the transformed

data need have no more than (say) 64 levels. Second, numbers

in channel I between S3MIN(I) and S3MAX(I) are mapped into

numbers 0. to 64. Thus a vector for each channel can be

set up to map DATA into TDATA by simply computing an index

and referencing a vector. The following sketch of a program

shows how this might be done:

SUBROUTINE NONLN4(CH1,CH2,CH3,CH4)
DIMENSION DATA(100,4),TDATA(100,4),CH1(100),CH2(100),CH3(100),CH4(100)
COMMON/NONLN3/SIMIN(4),S2MAX(4),S3MIN(4),S3MAX(4)
get data NCLASS,BMU,BSBTD,IW,IG
CALL NONLN1(NCLASS,BMU,BSBTD,IW,IG)
DO 5 J = 1,4
X = S3MIN(J)
DX = (S3MAX(J) - S3MIN(J))/100
DO 5 I =? 1, 100
DATA(I,J) = X

5 X = X + DX
CALL NONLN2(DATA,TDATA,100)
DO 10 I = 1, 100
CH1(I) = TDATA(I,1)
CH2(I) = TDATA(I,2)
CH3(I) = TDATA(I,3)
CH4(I) = TDATA(I,4)
RETURN
END
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The output of this program could be applied as follows:

For each pixel: determine if all four values are in range~S3MIN

to S3MAX; if not, set all transformed values 0. If so, set

transformed value in channel 1 equal to CHl(KX) where

KX = 1 + (S3MAX(1) - X) * 100 / (S3MAX(1) - S3MIN(1))

and so on for channel 2, 3 and 4.

2. In a number of important applications the four dimensional data

will be type INTEGER, perhaps even six or seven bit integers

(0 to 63 or.O to 127). For instance, the data may have been

transformed and then scaled and packed; or the data may be one

pass data. In such a case it is clear that no scaling at all

is necessary to produce a transformation of the data—only

larger (perhaps) vectors CHI through CH4. Further, here the

transformation would most likely be back to integer variables

anyway, so that CHI through CH4 can be integer vectors.

3. The last possibility (that the transformation is from integer

to integer) can be improved even more if the computer has

a capability similar to the translate under mask instruction of

the IBM 360/370. Four masks can be set up and a whole row of

packed data can be translated at once (i.e., in just a few

microseconds). This would obviously be the way to go if

it were possible.

4. Suggestion for testing "tamer" versions: Most of the wildness

of NONLN1-2 is caused by the size of fudge factor GWGRN and

WGRED (see the mathematical documentation and Table 2 for

definition). For example, with the test data given WGRED
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is nearly 300 and GWGRN over twice this. (Note, however,

this only corresponds to a noise amplification factor of a

little under 5 in the red channel and about 11 for green. The

blue channel is hardly affected at all by amplification of

noise since FFBLU is relatively small.) In any case, one

may be willing to accept less spectacular colors in exchange

for less noise. One suggestion would be to decrease the number

64. in the definition of GWGRN and WGRED to, say 32. It

would probably still turn out that wheat was the reddest thing

around and grass the greenest.

5. A restriction of NONLN1 is that NCLASS > 3. If NCLASS = 2,

use instead program ROTAT1-2.

Atldition&l Information.

Mathematical description: NONLN1 and NONLN2

Table 1. Local variables : NONLN1

Table 2. Variables in COMMON block : NONLN3

Table 3. Local variables : NONLN2

General flow chart : NONLN1

General flow chart : NONLN2

General flow chart : Test program

Listing

Test program and test listing
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Mathematical Description: NONLN1 and NONLN2

The idea behind this transformation is to force one user-selected

class to be red and another user-selected class to be green. In the pro-

gram itself, these classes are referred to as "wheat" and "grass"

respectively. A third class is selected by the program to be saturated in

blue. Of course, if the user-selected classes are close together this

procedure results in a noisy image; worse, unless considerable care is

taken, much of the original separation will be lost in the transformed

data. Most of the complication of the program is concerned with preserving

as much separation as possible.

Although NONLN1 is called first to set the program parameters in

NONLN2 (which performs the actual transformation), we describe NONLN2

first. Program NONLN1 is easier to understand once the use to which

the parameters are put is known.

On each call to NONLN2, one row DATA of IDA pixels is transformed

and returned in TDATA. There is no assumption made anywhere that DATA

consists of (for example) positive numbers, or numbers in any certain

range. The first task NONLN2 accomplishes is to examine a pixel and

decide if it is almost certainly not like any of classes which NONLN1

used to define the transformation. This is done by seeing if one of

the pixel's four coordinates lies outside the largest and smallest

expected significant value as defined in NONLN1. In the program this

value is S3MAX(I) and S3MIN(I) respectively, I = 1 to 4, and represents

maximum of mean + 3 sigma over NCLASS classes and minimum of mean - 3

sigma over NCLASS classes per coordinate. Failure to be acceptable in

any coordinate results in a zero value in each output coordinate and

movement to the next pixel.
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Acceptable data is now mapped into numbers (generally) between

0 and 1 linearly in each channel by the map y = (x-m)/(M-m) , where

x is the input coordinate, M is the maximum mean + sigma over

NCLASS classes, m is the minimum mean - sigma over NCLASS classes, and

y is the output value. In the program, x and y are both stored in

DATA, m is SIMIN(I), I = 1 to 4, and l/(M-m) is SIMAX(I), I = 1 to 4.

The stage is now set for the actual transformation. Let w(i) and

g(i) denote the transformed means of class IW and IG, i = 1 to 4. (These

parameters are set by NONLN1 of course.) Let f denote the function with

f(64. 1) = 0, I even, f(64- 1) = 64, I odd and f linear between. Let

1 , i , i. and i denote the green, red, blue and other channel numbers

selected by NONLN1. The green, red and other channels are straightforward:

with input x ,

green: y(l) • f 64

/ x(1
red: y(4) = f (64 •

other: y(3) = f(64 • x(1G»

For the blue channel, things get a little tricky: let

/ , 9d'h) + w(1.) w(i.) - g(1.)
t = max(0,|x(1b) - —^

 b- | - | —* b-

Let tu denote the maximum of t for x ranging over the means of alln

classes. Then
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blue: y(2) = f(64 • t/tM) .

Now we describe the selection of channels i , i land i. . Asr g b

can be seen immediately, NONLN2 is a violent mapping if classes IW and

IG are not well separated. Thus we select for red and green the index

i with w(i) - g(i) maximum and i the index with maximum remaining

w(i) - g(i) , i f 1r . Blue index i'b , on the other hand, is selected

to be that index with minimum w(i) - g(i) . Once the indices are

set, simple variables are set equal to the various fudge factors; these

variables are passed from NONLN1 to NONLN2 through named COMMON block

NONLN3.
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TABLE 1. Local variables : NONLN1

I

J

NCLASS

SIG

BSBTD(J,I)

BMU(J,I)

TEMP

W(4)

G(4)

WMG(I)

XTEMP

IW

IG

DO loop index

DO loop index

Number of classes for which training statistics
are furnished

Temporary value of standard deviation

Diagonal of covariance matrix in channel I, class J

Mean, channel I, class J

Temporary real variable used for getting maximum
or minimum

Transformed (into unit cube) class IW mean vector
w(i) in mathematical description

Transformed class IG mean vector
g(i) in mathematical description

Another temporary real variable

Class number of wheat

Class number of grass
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TABLE 2. Variables in COMMON block : NONLN3

S1MIN(4)

S1MAX(4)

S3MIN(4)
S3MAX(4)

I RED

IBLUE

I6RN

WGRN

GWGRN

GWBLU

GRED

WGRED

WMGB2

FFBLU

Minimum over classes of mean in channel I minus
sigma in channel I, I = 1,4

1./(S1MAX(I) - SIMIN(I)), where SIMAX(I) is first
set to be the maximum over classes of mean plus
sigma in channel I.

Minimum (respectively maximum) of mean - 3 sigma
(respectively mean + 3 sigma) over classes for
channel I.

Index of red channel i

Index of blue channel i.b

Index of green channel i
9

w(ig)

64./(w(ir) - g(ir))

b) + w(ib))/2

g(ir)
64./(w(ir) - g(ir))

|w(i.) - g(i,)|/2
D D

64/tM (see the mathematical description for definition

I4TH 10-(i + i + i ) (Index of other channel)
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TABLE 3. Local variables : NONLN2

DATA(LDA,4) One row of four dimensional real data to be transformed

TDATA(LDA,4) The transformed data

IDA Number of pixels per row

IPT DO loop index—pixel numbers

ICHNL . DO loop index—channel number

TEMP Temporary real variable
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(ENTRY)

FIND SCRLE
FRCTDR5 FOR
MRP INTO
UNIT CUBE

FIND VECTORS TQ
TEST FDR OUT OF

RRNGE DHTR

TRRN5FORM
HHEHT RND
GRH55 HERNS
FIND FIND WMG

FIND RED
CHRNKIEL NUMBER

izE WMG;

FIND BLUE
CHRNNEL NUMBER
(MINIMIZE WMG;

FIND GREEN
CHRNNEL NUMBER
IMRX1M1ZE WME)

FIND FOURTH
CHRNNEL RND

R5515N CDN5TRNT5

FIND CLR55
WITH LRREE5T
COMPONENT

FROM MERN M
t G IN BLUE

RESIGN BLUE
FRCTOR 50 THRT
THIS CLR55 IS

5RTURRTED IN BLUE

(RETURN)

GENERRL FLOW CHRKTP NONLNI
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(ENTRY)
•7

CQMPRE55 DRTH
INTO CUBE

MDVE DRTH TQ
TDRTH DOING

TRRNSFDRMRTinW

(RETURN}

GEKIERRL FLOW CHRRT: NDMLW2
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(STRRT)
7 '

/ REH& MEHNS
RN& DIRGDNRL5
DF CQVHI

MRTRICE5

/̂  RERD CLR55
NUMBERS TOR

IWHERT HMD GRRSB

GENERRTE DHTR

WRITE!
DRTJRJ

CRLL
NONLN I

/ CRLL \
\NONLN I/

CRLL

WRITE
RE5UUT

BENERRL FLOW CHHRT' TEST NQNLN1 / NCINLN2
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c
C SUBROUTINE NCNLM ( NCL ASS . BMU. ES ET C. IW. IG )

c FUNCTION - TO SET PARAMETERS FOR SUBROUTINE NONLNZ
C LSAGE - CALL NC M_ M ( NCL ASS . EMU. ESBTD. IW, IG )
C P A R A M E T E R S -
C NCLASS - NUMBER OF CLASSES FOR WHICH TRAINING S T A T I S T I C S EXIST
C BMU - VFAN V E C T C P FOR E A C H CLASS: NCLASS BY 4
Z' ESBTC - DIAGONAL ELEMENTS OP C O V A R I A N C E MATRI>: NCLASS BY 4
C I* ' - CLASS NUMBER DF CLASS TO BE MAOE RF D
C IG - C L A S S NtMBEP OF CLASS TO BE *ADE GPEEN

C PRECISION - SMGLE
C RECO. PTNS.- NONE (SIN OLE PUR FOSE "C ALLE3 BEFORE NONLN2)
C R E S T R I C T I O N £
C NONLN3 - A RESERVED NAME OF A COMMON BLOCK

C NCLASS - MUST RF AT LEAST 3
C LANGUAGE - FORTRAN IV

C
SUBROUTINE NC NL M < NCL ASS , BMU. ES ET C, IW. IG )
DIMENSION BMU NCLASS.4) ,BS8 TO( NCLASS.4 ) . W (4 ) .G(4 ) , M *G( 4 )

CC**CN/NONLN3/S1M IN<4). S lMAX( 4 ).S3MIN(4) . S3MA X< 4) , I RE D.I BLUE.
* IGRN.WGRN. GWGFN ,GW BLU ,CRED. * C-RED. ̂  M GB2. FF ELU. I 4T H

C FIND FUDGE FACTORS FOR CUBE

C
DO 40 1=1.4

S I V IN< I)= BMU <l, I)-SQRT< BSBTD< I. I M
S 1 M A X (I ) =51 M I N ( I )
S1MIN{ I ) = BMU( 1, I )-2* SQRT(3SBTD( 1 ,1) )
S3MAX (I ) = S3M IN ( I )

DO 4 C J=1 .NCLASS
SIG=SORT( BSQTD{ J.I ) )
TEVF=BMU(J, D-S IG

IF( TEMP.3 T. SI MI N( I ) )GO TO 50
SIM IN ( I )=TEMP

50 TEI"P=BMU( w. I )+S IG
IF( TEMP.L7.S IMAXd ) ) GO TO 41
SI MAX C T )=TEMP

41 TEMP=BMU( J.I)-3*SIG
IF( TEMP.3T.S3MIN(I ) ) GO TO 42
S3MINU )=TEMP

42 TEWP=BMU( .« I )+3 *SIG
I F( TEMP.LT .S2MAX( I ) )GO TO 4 0
S3 MAX (I )= TEMP

40 CONTINUF
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c
C FOR EFFICIENCY REPLACE FUDGE O I VI SI CN BY MULT I PL I CAT 1C lv

C
DO OS I =1 ,4

45 SIM A X( I )= 1. /( S1MAX( I)-S1MIN{ I ) )

C
C NORMALIZE W H E A T AND GPASS MEANS AND FIND W < I ) - G < I )

C
DC 60 1=1 ,4

W< I) =(BMU( I W.I )-Sl MIN(I ) )*Sl MAX ( I )

G( I )= (RMU( IG, I )-S 1MIN< I )) *S1MAX( I )

60 HMG (I ) = A R S ( W ( I )-G( I) )
^»

C FIND RED CHANNEL

C
TEMP=V»MG( 1 )

01 70 I = 1. 4
IF (TEMP.GT .WMG< I ) ) CO TO 70

TEMP=WMG( I )
IREO=I

70 CDNT INUE

C
C FIND BLUr CHANNEL

C
DO 80 I =1 ,4
IF( I ,EQ.IRED)GO TO 60
1 F ( W M G ( 1) .GT ,TEMP)GO TO 80

TEMP = WMG( I)

83 CONT
C
C FIND GREEN CHANNEL

C
DO 90 1 = 1 .4
IF ( I«EQ. IRF.D )G"O TO 90

IF( l.EQ . IBLUE )GO TQ QQ

IF (TEMP.GT .W NG( I ) ) G C TO 90

TEMP=V!MG< I )

IG«?N= I

90 CONTINUE
f
W

C ASS ICN F3URTH CHANNEL

C

I 4TH= 1O-I REO-IBLUE-IGRN

C

C ASSIGN A FEW CONSTANTS
f*
W*

W GRN=W( IGRN )
GW0LU= CG( IELUE ) *Wf IRLUE ) )/2
GRED=G< IRED)
GWGRN=64 ./( G( IGRN )-W( IGRN) I

/ (W( IREO)-G( IRED) )
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c
C FINO R E M A I N I N G CLASS MTH L A R G E S T CCMFCNENT flU AY

c FROM THE MEAN OF WHEAT AND GRASS
c

TFMP=GWOLU

CO 100 1= t .NCLA SS

IF ( I .EC. IW .OR. t .EO . IG >GO TD 100

XTEMP=ABS( (OMU( I, I BLUE)-SI M IN< I 6LU E ) } *S 1 M /X ( I EL J E )-GW ELU )

I F( XTFMP .LT .TEMP )G 0 TO 100

TEMF=XTFMP

100 CONTINUF

C

C ^CW FIND THE B. U E FUDCE FACTOR

C

WMGB2=WMG( IBLUE )/2.

FFBLJ = 5<V ./ (AES (T EMP-WM C82) >

RETURN

END
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c
C SLBRCUTINF NCNLN2 < 0 AT A ,T 0 AT A ,LO fi )

C FUNCTION - TO TRANSFORM FOUR O I I*E K SI CNAL REAL D A T A A RCW AT A

C T I M E TO ANOTHER REAL POW OF FOUR DIMENSIONAL DATA

C IN THE RANGE 3 ,-f>4 . ATTEMPTING TO M A K E CLASS IW

C "ED (HIGH IN CHANNEL 4, LOW IN 1 AND 2) AND CLASS

C 1C GREEN (HIGH IN CHANNEL 1. LOW IN 2 AND 4).

C USAGF - C A L L N CNL N 2 (D AT A. T 0 AT A ,LOA )

C F A £ /» M FT E PS -

C D A T A - ONE R CW CF FCUP DIMENSIONAL 3 EAL DATA: LD A BY 4

C TDATA - THE TRANSFORMED D A T A : LDA 8/4

C LCA - THE NUMBER OF P IXELS IN A ROW

C PRFCIS ICN - 5 INGL E

C RFQD. RTNS.- NONLN1 MUST BE CALLED TC SET FPOGR/M V A R I A B L E S

C FUNCTION FOL064 IS REFERENCED

C RESTRICTIONS

C NONLM3 - A RFSF.RVFD NAME OF A CCMVON BLCCK

C L A N Q J A C E - FORTRAN IV

C
SUBROUTINE NQNLN 2 ( C AT A, TOA TA.LOA )

DIMENSION C AT /» (L TA .4 ) , T O A T A ( LDA .4)

C CWVCN/NCNLN3/S1 M N (4 ),S1 MAX (4 ) tS3 V I N (4 ) , S 3M AX (4), IREC, I B_ U Et

* I CRN ,WGRN .GWGRN.GW3LL .GRED.WGRED ,W MGB2 . FFBLU I* TH

C

C COMPRESS D A T A I f -TC CUBE

C

DC 130 IPNT=1,L CA

00 1 32 ICHNL=1 .4

TEMP=DA TA ( IPNTt ICHNL)

I F ( T E V P . G T .S3M AX < ICHNL ) .OR .TEMP .L T .S 3M I>4 ( ICHNL) )GO TO 145

1 32 CONTINUE

CO 136 1C HNL=1 t4

136 DA TA( IPNT. ICHNL) =( DAT A{ IPNT , ICHNL )-SlM N ( IChNL ) ) *S1MAX( ICHNL)

1 38 CON TIN UE

C
C *CVE D A T A TO TR/NSFORM A R R A Y t DCING TRANSFORMATION

T C A T A ( IPNT, 1 )=FOLD C4( ( D A T A ( I PN 1 , IGRM-WGRN) * G W G R N )

TDAT A ( I PNT, 3 )=FOL C64( C A T A ( IPNT, I4TH)*64.)

TO A TA( I PNT, 4) =F CLO64 ( ( D A T A (IPNT ,1 REO-GREC > * W G K E D )

TEMP= ABS( C A T A J IPNT , IRLUE ) -G WBL U ) - WMGB 2

IF( TFMP.LT .0 ,)TE*£=0 .

T D A T A ( I PNT, 2) =F OLD €4 ( TEMP* FF8L L )

CC TC 130

145 DO 145 I =1 ,4
146 T ! )ATA( IPN T, I )=0.

133 CCNTINUE

RETURN

END
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c
c
c
c
c

c
c
c
c
F»
t_

c
c

FUNCTION - TO MAP A REAL NUMRER IMC ONE BETWEEN 0

EY "FOLCINC" RATHER THAN CLIPPING

AND 64

USAGE - Y = F O L O e 4 < X )

PARAMETERS -

X
Y

ANY
THE

R ESTR ICT IONS

ON

REAL M.MBEP

RFSU-TANT BETWEEN C

X (MOC 64 ) IPX IS IN

W I T H i EVEN; OTHERWISE
NONE
X SHOULD NOT BE TOO LARGE

- SINGLE

AND 64. Y IS CONGRUENT TO

AN INTERVAL ( € 4* I , € 4* ( I * 1) )

Y IS CCNGPUENT TO 64-X (MOO

EFFICIENCY SUFFERS

64 )

L A N G U A G E - FORTRAN IV

FUNCTION FOLO64(x>
F3L 064 = ABS{ X )

1F(FOLD64 .LE.54 . ) RETURN

1 FOLD C4=A3 S< FOLD C 4-1 28. )

IF( F3LO64 .GT .64.IGOTO I

RETURN

END
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COMPUTER PROGRAM DOCUMENTATION

Program ROTAT1 and ROTAT2

Rotation to Produce Color Displays

Abstract. These programs together perform a transformation of four

dimensional real row DATA to produce a four dimensional row TDATA.

ROTAT1, which is called first (and only once), sets parameters for

ROTAT2. ROTAT1 uses statistics (means and diagonals of covariance matrices)

on NCLASS classes and the class numbers IW and IG of distinguished classes

(called "wheat" and "grass" here). ROTAT2 takes input DATA into numbers 0.

to 64. so that input data near wheat will map to TDATA high in channel 1

and low in channel 2 and 4, and input data near grass maps to data with

more channel 2 and low in channel 4. With standard color assignments used

to display ERTS data, wheat becomes a saturated red, grass orange or

perhaps yellow.

This method of transforming data is nearly linear and is insensitive

to noise in the input data; however, the output color spread is not

spectacular. Only two classes need be trained on.

Application. The program was developed for a specific application: when

multispectral multitemporal data is transformed to lower dimensionality

using a feature selection program, the transformed data has no intrinsic

meaning—no "reality." However, the transformed data (if, say, four

dimensional) should be more managable provided it can be displayed at all.
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The problem is not just the range of the transformed data, or the fact

that real data, unlike classes the feature selection program was "traine'd"

on, transform wildly; the real problem is the lack of any consistent

relationship in the transformed data. Thus it is easy to produce a color

display but hard to analyze what the colors mean. This program attempts

to allign the selection of colors so that certain classes have certain

colors, and this assignment will be relatively independent of which feature

selection program produced the reduction in dimensionality.

This program is applicable to raw single pass data. Even confused

classes (as, for example, wheat and grass are likely to be) can be

displayed with some enhancement of their separation.

Source Language. FORTRAN IV 100%

Restrictions. Name ROTAT3 is reserved (the name of a common block).

If the wheat vector points to the "middle" of four dimensional data some

separation may be lost.

I/O Configuration. Both programs are I/O free.

Deck Set-up. Job Control Cards
Calling program*
ROTAT1
ROTAT2
FOLD64
Job Control Cards
Data

*for comments on the calling program, see Usage.
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Usage. Calling sequence, ROTAT1

CALL ROTAT1(NCLASS,BMU,BSBTD,IW,IG), where

NCLASS number of classes for which training statistics
are given

BMU mean vector for each class: NCLASS by 4

BSBTD diagonal elements of covariance matrix: NCLASS by 4

IW class to be made red

16 class to be made yellow

Calling sequence, ROTAT2

CALL ROTAT2(DATA,TDATA,LDA), where

DATA input row, type real, LDA by 4

TDATA output row, type real, LDA by 4

LDA number of pixels in a row

Comments on the calling program. The calling program may have a

general flow as follows:

1. Set up data set with data to be transformed and transformed
data (may be the same data set since input is only needed
once).

2. Input or otherwise determine parameters for ROTAT1.

3. Call ROTAT1.

4. Intialize a row counter loop.

5. Input a row of data.

6. Convert to type REAL if necessary and store 1n DATA.

7. Call ROTAT2.

8. Store a row of data, packing or converting from type REAL
if necessary.

9. Next row.
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Timlng. ROTAT2 crunches numbers; for each pixel, about 25 each fixed

point additions and multiplications, 24 floating point additions and

20 floating point multiplications are required.

Storage Requirements. Approximately 7000 8 bit bytes code for both

ROTAT1 and ROTAT2; array storage (assuming 32 bit real numbers) will be

about 4 * (91 + 8 * (NCLASS + IDA)) 8 bit bytes. Exact storage require-

ments will depend on computer type.

Possible Extensions, Suggestions for Improvements.

1. As can be readily seen from the example, the blue channel

has maximum value less than 0.5 in each of the six classes.

This may be acceptable; however, should the user wish, this

is easily adjusted by the following changes in ROTAT1:

Change to

C(3,2) = -C(2,3) C(3,2) = -2.*C(2,3)

C(3,3) = C(2,2) C(3,3) = 2.*C(2,2) .

2. A similar change can be made in the red channel so that wheat

will be pure red; this will not be as violent as the map in

NONLN1. The change is

C(l,l) = 1. to C(l,l) = l./WNORM.

The effect of these two changes is displayed in the mathematical

description of ROTAT1-2. Changes 1 and 2 have been made in

the version of ROTAT1 delivered.

3. ROTAT2 can be speeded up at some cost in complication. This

amounts to writing out the loop which performs the multiplication
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of a vector of data by E. The reason it will be faster

is that the current version uses 16 references to array E and

16 floating point multiplications while actually E is

zero in 6 of these places. This change would probably

speed up ROTAT2 by 40 percent.

Additional Information.

Mathematical description: ROTAT1 and ROTAT2

Table 1. Local variables: ROTAT1

Table 2. Variables in COMMON block: ROTAT3

Table 3. Local variables: ROTAT2

General flowchart: ROTAT1

General flow chart: ROTAT2

General flow chart: Test program

Listing

Test program and test listing

Mathematical description: ROTAT1 and ROTAT2

The idea behind this transformation is to align the color display in

a reproducible fashion while maintaining the original geometric relation-

ships. Since this is generally not possible, the program introduces mild

nonlinearities.

Program ROTAT1 defines the transformation; ROTAT2 applies it to one

row of data at a time. There is no assumption made anywhere that the

input data has any certain range. ROTAT first examines a pixel and

decides if one of its four coordinates is out of the interval
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(S3MIN(I),S3MAX(I)) , I = 1 to 4 , the minimum and maximum of mean

+ 3 sigma over NCLASS classes per coordinate. Failure of any coordinate

to lie in the interval results in a zero output in each coordinate and

movement to the next pixel.

Acceptable data is now mapped into numbers which are generally

between 0 and 1 in each coordinate by the map y = (x-m)/(M-m) ,

where x is the input coordinate, M is the maximum mean + sigma over

NCLASS classes, m is the minimum mean - sigma over NCLASS classes,

and y is the output value. Depending on a parameter supplied by

ROTAT1, either y or -1 + y is stored. (We will see this has the

effect of complementing data in that coordinate.)

If Y denotes the 4-vector of data at this point, the transfor-

mation X = E Y is applied; E is a 4x4 matrix which is a permutation

of 64 times the product of two rotations, described in detail below.

Output X is now folded by the scalar function f with f(64-I) = 0 ,

I an even integer, f(64-I) = 64, I an odd integer and f linear

between. ROTAT2 goes to the next pixel and returns when LDA pixels

have been transformed.

We now describe ROTAT1 which supplies all these parameters. ROTAT1

first examines the NCLASS means and variances in each coordinate to

determine S1MAX,S1MIN,S3MAX and S3MIN--the maximum and minimum of

mean + sigma and mean + 3 sigma over all classes in each coordinate.

The program then transforms means for wheat and grass into the unit

4-cube and selects three of the four indices as follows:
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i is selected to maximize the separation of wheat and grass

i is selected to next maximize the separation of wheat and grass

i'b is selected to minimize the separation of wheat and

grass

i'0 is the other coordinate index.

Thus, if w and g denote the images of wheat and grass In the unit

4-cube, we have

The program examines w(i'r) , w(i ) and w(i'b) as follows:

If w(i ) < 0.5, complement data in coordinate i'r ; that is, replace

a transformed value x(i ) by 1 - x(i ) . Similarly, complement

data in coordinate i when w(i ) > 0.5 and complement data in coordinate

i'b when w(i.) > 0.5. If g(i ) < g(ib) , interchange coordinates 1

and i. . Fig. 1 depicts the result of performing these transformations to

test program data; 1 is grass and 5 is wheat. Note that 5 is as near

the i axis as it is possible to make it with this kind of mapping.

Now move the transformed vector 5 (which we again denote by w)

to lie on the i -axis by first rotating into the i - i. plane about

the i. axis and then onto the i axis by rotating about the i

axis. If wr = w(ir) , w = w(i ) and wb = w(1b), then this mapping

is given by
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A = i _v

HI

0

w

ul

WL

w.

wrwb

w.

where «'. - (̂w2, + w2 + w^) and v = /(w* + w?). Figure 2 shows the

result of applying A to the six mean vectors and then plotting the absolute

value of each coordinate. For our data,

/ A
A = -.561

0

.581

-712

.589

.702 /

Next the data is rotated about the i axis so that the transformedr
g vector will lie in the ip - i plane. This rotation is given by

C =

n
0

\ °

0

liV
n

n

0 \
"(V- ]

n

g(jg) }
n

where n = vtg(iQ)
2 + g(ij.j)2) and g denotes the transformed grass vector.

In our test data, g(ib) is very small, so that this transformation does

not do much. We have
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/ I
0

\ o

0

-.999

.036

i
0 \

-.036

-.999 /

/ .828

.561

, -.020

.394

-.556

.732

.399\

-.614

-.681 ,

c =

The product of C and A maps mean vectors as shown in Fig. 3 (with

absolute values taken). We have

CA =

Before continuing our description of ROTAT1, we comment on suggested

changes (change 1 and 2): Note that the wheat vector is not as large

as grass, even in coordinate i'r . If (this is change 2) C(l,l) is

replaced by l/||w|| , then we obtain the result shown in Fig. 4. (All

discussion from now on refers to plots of folded (rather than clipped)

vectors. This is exactly what program ROTAT2 does.) Necessarily,

||w|| > i ; it follows that the noise should not be amplified very much

by this change.

In Fig. 5 we display the affect of change 1 only, and Fig. 6 the

effect of both changes. Since these changes make the transformation

less accurate geometrically, they have the potential to degrade separa-

tion and amplify noise. We therefore generated and plotted random data

with statistics like those used as input to NONLN1 and plotted (for

comparison) the effect of changes 1 and 2. Some of this is presented

here. Fig. 7 shows wheat and grass random vectors as transformed by

the unchanged method; Fig. 8 shows the same data under change 1 and 2.
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(The line segments are drawn from the point in 3-space to the nearest

coordinate plane.) In Fig. 9, the upper plot shows all six classes after

change 1 and 2. The lower plot shows the original method. (Twenty points

in each class may have been too many; the plot is somewhat confusing.)

As a result of these and other studies we have decided to deliver

the version of NONLN1 with change 1 and 2 implemented. Final decision

which version to use will have to be based on actual real data as viewed

in color.

Returning to the description of NONLN1, a matrix E is defined

which is a permutation of the matrix

1 0 0 0

0

0 CA
0

4x4

so that coordinate i goes to channel 4, i to channel 1, i. tor g o

channel 2 and iQ to channel 3. Also, a multiplication of +64 is

performed to each row (depending on whether that row is complemented).
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Fig. 1. Coordinates i , i and i. of scaled
and complemented row mean vectors.
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Fig. 2. Absolute values of transformation of
Fig. 1 by A.
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Fig. 3. Absolute value of transformation of
Fig. 2 by C.
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Fig. 4. Change 2 applied to C to make WHEAT redder.
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Fig. 5. Change 1 applied to C to increase spread in blue channel
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Fig. 6. Change 1 and 2.
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Fig. 7. Random data transformed, original method.
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Fig. 8. Random data, change 1 and 2.
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Hg. 9. (Upper) Change 1 and 2, six classes,
(Lower) Original, six classes.
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TABLE 1. Local Variables : NONLN1

I DO loop index

J DO loop index

NCLASS Number of classes for which training statistics are
furnished

SIG Temporary value of standard deviation

BSBTD(J.I) Diagonal of covariance matrix in channel I, class 0

BMU(J,I) Mean, channel I, class J

TEMP Temporary real variable used for getting maximum or
minimum

IW Class number of wheat

IG Class number of grass

G(I,1) Image in unit cube of grass mean vector

6(1,2) 1 - 6(1,1)

W(I,1) Image in unit cube of wheat mean vector

W(I,2) 1 - W(I,1)

Kl Index 1r

LI A flag : LI = 1, do not complement in class Kl
L2 = 2, do complement in class Kl

K2 Index i

L2 Complement flag for class K2

K3 Index ifa

L3 Complement flag for class K3

K4 10 - (K1+K2+K3)

XL(4)* XL(K1) = 1 - LI ; XL(K2) = 1 - L2 ; XL(K3) = 1 - L3 ;

LX(K4) = 0 .

I ,
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TABLE 1. (Continued)

WNORM ||w||

W23 v

A(3,3) The first transformation

GH(3) The transformed by A of the grass vector

G23 (̂gd'g)2 + g(ib)
2)

C(3,3) The rotation about i to annihilate the 3 component

of GH.

0(4,4) /CA 0

0
, 0 0 0 1

E(4,4)* A permutation of D to give standard colors, taking
into account K1-K4 .

* These variables in COMMON block ROTAT3
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TABLE 2. Variables in COMMON block : ROTAT3

S1MIN(4) Minimum over classes of mean in channel I minus
sigma in channel I, I = 1,4

S1MAX(4) 1./(S1MAX(I) - SIMIN(I)), where SIMAX(I) is first
set to be the maximum over classes of mean plus
sigma in channel I.

S3MIN(4) Minimum (respectively maximum) of mean - 3 sigma
S3MAX(4) (respectively mean + 3 sigma) over classes for

channel I.
XL(4) Vector used in complementing data

E(4,4) Matrix used to perform transformation



-23-

TABLE 3. Local Variables : ROTAT2

DATA(LDA,4)

TDATA(LDA,4)

IDA

IPT

ICHNL

TEMP

SUM

One row of four dimensional real data to be transformed

The transformed data

Number of pixels per row

DO loop index—pixel numbers

DO loop index—channel number

Temporary real variable

Temporary real variable used to generate vector-matrix
product
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(ENTRY)

FIND SCRLE
FRCTORS
FOR MRP
INTO CUBE

FIND DUT OF
RHNBE TEST
VECTORS

TRHNSrORM
WHERT RND
GRR55 MEHN5
HND SET W/

I-W/ G RND 1-

FIND CHRNNEL Kl
WHICH BEST

5EPERRTE5 W RND G

SET COMPLEMENT
PLRG TO MHKE H
SRERTER THRN B.

flND CHRNNEL HC2
WHICH NEXT BEST
5EPERRTE5 W RND 5

SET COMPLEMENT
FLRG TO MRKE N
LESS THRN B.?

FIND CHRNNEL K.3
WHICH BEST

CONFUSES N RND 6

SET COMPLEMENT
FLRG TO MRKE U
LESS THRN B.?

MRKE 6(K2J
BRERTER THRN
BCK3; BY
SWITCHING

COMPUTE THE
MRTRIX R TO

ROTRTE U RBDLJT
Kl TO THE K2-KI

PLHNE THEN
RBOUT £1 TO Kl

BENERHL FLOW CHRRT: ROTHTI
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PERrORM THE
ROTflTlOM H TO B

COMPUTE MRTRIX
C WHICH RDTHTE5
H*fi HBOUT Kl TO
KIHC3 PLHNE

rORM D

MOVE D TO
E CM BY HJ
SWITCHING
CDLUMM5

SWITCH RONS Or
E TO 5THKIDHRD
1MHBE IBB COLOR
H55I6NMENT5

(RETURKlJ

GENERHL TLOU CHRRT: ROTRTI
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(ENTRY)

COMPRESS DHTR
INTO CUBE

MOVE DHTR TD
TDfltfl DO IMB

TRRN5FDRMHTI OKI

BENERRL H-DM CHHRT: RDTHT2
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(JTRRT)

5
REHD MERN5

KID DIRGDNRL5
F O3VHRIRNCE

MRTRICES
(̂r

RCHD anss
NUMBERS FDR

MHEOT HMD GRH55

BENERHTE DHTRl
• rjm —.-I
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c
C
C
C

C
C
C
C
C
C
C
C
C
C
C
C
C

C

C

SUBRCUTINE ROTJTI (N CLASS .8 MU ,BSBTO • !«• 16 »

FUNCTION - TO SET PARAMETERS FOR SUBROUTINE ROTAT2

USAGE - CALL RCT AT 1 (NCLASS, EMU, ESBTD. IW, 1G )

PARAMETERS -
NCLASS -NUMBER OF CLASSES FOR WHICH TRAINING STATIST ICS F X I S T

BMU - *EAN VECTCP FOP EACH CLASS: NCLASS EY 4

ESBTC - DIAGONAL ELEMENTS OF COVARIANCE MATRIX: NCLASS 6Y 4

I» - CLASS NUMBB* HF CLASS TO BE *ADE RED

IG - CLASS NCMBER OF CLASS TO BE MADE YELLOW-GREEM

PRECISION - SINGLE
RE CO. PTNS.- NONE (S N C-LE »U3 POSE "C *U_E3 BEFORE R O T A T 2 )

RESTRICTIONS
ROTAT3 - A RESERVED NAME OF A COMMON BLOCK

LANSLAGE - FORTRAN IV

SUBROUTINE ROT AT 1< NCL ASS.BMU* B SB TO . IG .1 W)
DI MENSICN B KM NCL ASS, 4 ), BS ST D (N CL ASS. 4 )« W( 4 , 3 ). G< 4. 2 > . A< 3. 1) .

S 3H( 3) *D( 4. 4) ,C( 3, 3)
CCMMCN / FOT AT3/S1M IN( 4} ,S1MAX( 4 )*S3MIN(4| . S3MAX{4) , XL < 4) ,E(4,4)

FIND FUDGE FACTORS FOR CUBE

DO 10 I =1 ,4
SI MINI I 1 = 8 MUC I.I )-SQRT(BSBTOU « II }

S I M A X ( I ) = S I M I N ( I »
S3MIN(I I =EMJ (1 * I ) -3*SCPT<BSETC<1 * I) >

S3MAX{ I )= S3MIN< I )

DO 10 J=l .NCLASS
SIG=SQRT( BSB1D( J. I»

TEMP=BMU( J. I »-SIG
IF(TEMP.GT.SIM INC I )» CO TO 20

S1MIN( I )=TEMP

?0 T EMP=BMU( J. I )*SIG
IFCTEMP.LT »S1 ^AX < I ) )GC TO 12

S1MA X(I )= TEMP

12 T EWPsBNU( J. I )-3*SIG
IF ( TEMP. GT.S3 MIN( I » ) G C TC 14

S3MIN(I 1= TEMP

14 TEMF=BMU <J. I)+3*S 1C
IFtTEMP.LI. S3 W A X < I ) )GC TO 10

S3MAX< I ) = TEMP

10 CCNTTNUE
DO 1 5 1=1 ,4

15 SIM *X< t 1= 1 ./( SIMAX( I I-S1MIN( I ) )
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c
C N C R W A L I Z F WHEAT AM f CRASS MEANS

CO 3O I = 1, 4

G( I.I )= (BMU ( IG, I )-SlM IN ( I) ) *S 1MAX( I )

W ( I . 1 ) = (BMU I V » . I ) - S 1 M I N ( I ) ) * S 1 I»AX< I )

W( 1,2 )=1 .0-W< I.I)
30 G( I .2 >=1 .0-G< I .1 )

C
C F IN D K 1 AND L 1

C

TEMP=0.0

Cl 41 1=1 .4

IF ( TEMP .GT. ABS ( C( I. 1 )•* ( I. 1 ) )) CO T3 40

TEMP = A3 S(G< I . 1 ) -V»( I ,1 ) )

K 1 = I

40 CONTINUE

LI - 1
IF< W ( K 1 , 1 ) .LT. 0.5 ) LI = 2

XL (Kl ) = I - LI

C
C FIND K? AND L2

C
TEMP = P. 0

HC 50 1=1 , 4
I F ( I • E O. Kl ) G C T C 5 0

IF ( TEMP .GT. ABS(G( I ,1 ) -W( I ,1 ) I ) GO TO 50

TEMP = />BS (G ( I, 1 )-W( 1. 1 ) )

K2 = I

50 CONTINUE

L2 = 1

IF ( W ( K 2 * 1 ) .GT. 0.5 ) L2 = 2
XL ( K 2 ) = I - L 2

C
C FIND K3 A^D L3

T EMP> = ? .

DO 60 I =1 ,4

IF ( I .EQ. Kl .DP. I .EO. K2 ) GO TO 60

IF ( TEMP .LT . /»EC ( C( I. 1 ) - W( I. 1 ) ) ) GO TO 60

TEMP = A H S ( G ( I , 1 ) - * ( I ,1 ) )

Kl = I

60 CCNTINUE

L .1 = 1

IF (W( K 3 . l t .GT. 0.5 ) L3 = 2

XL < K 3 ) =1 - L3
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c
C Ic THE ? CCMPONENT CF G P A S S IS S M A L L E R T H A N T t- E 1 COMPOMEMT,
C THEN S W I T C H THE 2 AND 3 INDICES

C

IF (G< K2 ,L2 ) .GT .G(K3 ,L3 ) > GO TO 70

K3=I

I=L2

L2=L3

L3 =1
TEMP=XL(K ?)

X L ( K 3 )=XL <K2 >

XL( K2) =TEMP

C

C COMPUTE A MATR IX

C
70 WNORM=SORT< W(K 1 .L I ) ** 2 +W < K? ,L? >**2«- KK3 ,L3)**2)

W23=S QRT (W (K ?,L ? ) **2+W«3.L ? )+*2 )
A ( 1 . 1 ) = W ( K 1 ,L1 ) / W ^ C B W

A( 1. 2I = W( K2.L 2) /V«NORM

A ( 1 .3 ) =W( K3 * L3 ) /W N C PM

A ( 2 . 1) = - W S 2 / W N O R M

A < 2 « 2 ) = W (Kl .LI ) *W(K2 ,L 2 )/( W23*WNORMI

AC 2,3) =W( Kl «L1 ) * W < K3 ,L3 )/( Vi21 *WNORM)

A (3, 1 )=0.

A (3, 2 )=-W (K3 ,L3 > /W23

A( 3,3) = W(K2,L2 ) /\«23

C

C DC THE A POT *T ION ON TI-E G=JASS VECTOR

C

DO 80 1= 1 , 3

80 GH(I)=G(K1 «L1 ) **( T. 1 ) 4C(K2 ,L2 )*M I* 21+G(K3 ,L3 )*A( 1.3)

C CET T I-E C M A T R I X FROM THE R O T A T E D GRASS VECTOR

C
G23=SQRT( GH< 2)** 2+GH ( 2)**2)

C(l , 1 )= 1 .O/WNORM

C(l «2'l =C.
C{ 1«3) = 0.

C(2.1 1=0 .
C( 2,2I=GH(2) /323

C(2,3 |=.GH( 3 )/G23

C(3 ,1 ) =0 .

C( 3.2)=-C( 2, 2)*? .0
C(3,3 )=C (2, 2 )*2 .0
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c
C FCPM THF EIG C M ATR IX

C

DO 90 1= 1, 3

D( I .4) =fi.

CD <JO J= 1, 3

no i oo t_=i »3
100 TEMP=TFM3 -»C( I,L > *A ( L. J>

90 D( I .J) =TFMP

D(. 4 « 4 ) = 1.

C

C MOVE T. TO E S W I T C H IhG CC3LUMNS
r*

K4=10-K1-K2'-K3
X L ( K 4 ) =0 .
DO 110 1 = 1 * 4
E( I t K l ) = 6 4 . * 0 ( I , l ) * ( ( - l . ) * * (
E( I ,K2) =64 .*D( 1.2 )*( (-1 . )** (1 H.2 ) )
F( I , K 3 ) = 6 4 . * 0 ( I , 2 ) * « - l . ) * * < l *L3 ) )

110 E< I . K 4 l=P (I . 4)-*64.

C S W I T C H R O W S TO STANDARD IMAGE 100 COLORS

C
DO 12 C I =1 t4

DC 130 J= 1, 3
JJ= Jf 1

1 30 F(J, I )= E( JJ. I )

120 E(4, I ) = TFMP

RFTURN

FMD
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c
C SU8PCUTINE POT fT 2 < CAT A ,T DAT A , LOA >

C FUNCTION - TO TRANSFORM FOUR O I VE f>S I CNAL PE/L C fiT A A ROW AT A

C TIME TO ANOTHER REAL ROW OF FOUR DIMENSIONAL D A T A

C IN T HF RANGE 0 . -64 . ATTEMPTING TO MAKF CLASS I«

C RED (HIGH IN CHANNEL 4. LOW IN 1 AND 2) AND CL/\SS

C IG CREEN (UGH IN CHANNEL 1, LOW IN 2 AND 4).

C USAGE - C A L L P CT AT? (D AT t ,T C AT A * LDA )

C PARAMETERS -

C D A T A - ONE ROW OF FOUR DIMENSIONAL REAi. D A T A : LDA BY 4
C T D A T A - THE TRANSFORMED D A T A : LDA Bf 4

C LCA - TJ-F NUMBER OF P I X E L S ISA POW

C PRECISION - S I N G L E
C RFQT. RTNS. - RO TA T 1 MUST BE C A L L E D TC SET FFOGRfM VARIABLES

c FUNCTION FOL364 is REFERENCED
C RF STRI CTIONS
C R O T A T 3 - A RESERVED NAMF OF A CCMWCN BLOCK

C L A N G U A G E - FORTRAN IV

C
SUBROUTI NF R O T A T ? ( O A T A , T O A T A . L D A )

CCI*MCN / ROT ATI/SIM IN ( 4), S1MAX( 4 ) .S3MIN(4) ,S3MAX( 4) . XL < 4) ,E( 4 ,4)

DIMENSION C A 1 A ( L C A , 4 ) ,Tr. AT A ( L O A , 4 )

LOG I CAL '_ TEMP

C

C COMPRESS C A T A I N T O CUEE
r*

DO 170 IPNT=1,L CA

LTEMP=.TRUE.

DO 172 i:HNL=l, 4
T EMP=D AT « < IPNT , I CHNL)

IF (TEMP. GT .S3 I*AX( ICHNL ) .OP.T EMP. LT ,S3MIN( 1C HNL ) )GO TO 176

172 CONTINUE
DC 178 ICHNL=J,4

178 D A T A ( IPNT ,ICHNL) =XL( I CHNL)* ( n A T A ( I P ^ , I C h N L ) - S l M l N < ICHN_ ) )

S*S1MAX< ICHNL )
LTEMP=.F ALS f. .

17€ CONTINUE

C
C DC TRANSFORM fT ION

C
CO 180 1C HNL = 1,4

SUM=0.
IF(LTEMP)GO 10 180

O3 185 1= 1. 4

185 StM=SUM+E( I CHNL, I ) *OAT A( IFNT, t)

C

C PUT DATA INTO RANGE 0-64

C

130 T DATA (IPNT. I CHNL )=FO_ D64(SUM )

170 CONTINUE

RETURN

END
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c
c
c
G
C
C

c
c
c

c
c
c

FUNCTION - TO MAP A REAL NUMBER f MC CUE BETHEENO

BY "FOLDING" RATHER THAN CLIPPING

USAGE - Y=FOLD64<X)

AND 64

PARAMETEPS -
X -
Y —

RESTR ICT IONS

PRECISION -

LANGUAGE

ANY REAL NUMBER

THE RESULTANT BETWEEN 0. AND 64. Y IS CONGRUENT TO

X ( » » C O 64) IF X IS IN AN INTERVAL f €4 * ! • £4*(I+ 1) )

W I T H i EVEN; OTHERWISE Y is CONGRUENT TC 64-x (MOD
NONE
X SHOULD NCT BE TOO L A R G E OR EFFICIENCY SUFFERS

- SINSLE

- FORTRAN IV

64 )

FUNCTION FOLOdMX)

FCLD64= ABS (X )

IF (FOL064.LE.64 . ) RF TtFN

FOLD 64= ABS(FOLD64- 128. )

IF(FOLD64 .GT .64 . ) GOTH 1

RETURN

END




