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This is a final report of the work completed durinc

1975-76 on the research project "Radiative Transfer ModE

Nonhomogeneous Atmosphere." This work was supported by

Langley Research Center through Grant NSG 1153. The gra
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MODELS FOR INFRARED ATMOSPHERIC RADIATION

by

Surendra N. Tiwaril

SUMMARY

Different line and band models for infrared spectral absorption

are discussed. Radiative transmittance and integrated absorptance

of Lorentz, Doppler, and Voigt line profiles are compared for a

range of governing parameters. It is found that, for the inter-

mediate path lengths, the use of the combined Lorentz-Doppler

(Voigt) profile is essential in calculating the atmospheric trans-

mittance. Narrow band model relations for absorptance are used to

develop exact formulations for total absorption by four wide band

models. Several continuous correlations for the absorption of a

wide band model are presented and each one of these is compared with

the exact (numerical) solutions of the wide band models. By

employing the line-by-line and quasi-random band model.formulations,

F

	

	 computational procedures were developed for evaluating the trans-

mittance and upwelling atmospheric radiance. Homogeneous path

transmittances were calculated for selected bands of CO, CO 2 r and

N2 0, and these are compared with available experimental measurements.

The importance of line-by-line model for atmospheric work is empha-

sized. Model calculations were made to determine the upwelling

radiance and signal change in .the wave number interval of CO funda-

mental band. These results are useful in determining the effects

of different interfering molecules, water vapor profiles,. ground

temperatures, and ground emittance on the upwelling radiance and

signal change. This information is of vital importance in estab°

lishing the fe&.sibility of measuring the concentrations of pollutants

in the atmosphere from a gas filter correlation instrument flown on,

an aircraft or mounted on a satellite.

1 Associate Professor, School of Engineering, Old Dominion
University, Norfolk, Virginia	 23508.
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LIST OF SYMBOLS

a	 parameter expressing the ratio of Lorentz to Doppler

half-width

A	 band absorptance,	 cm-1

A(u, S)	 absorption of a wide band

A	 nondimensional A

A.	 absorptance (total absorption) of a single line (jth

line)

Aj 	average value of	 Ai l	 dimensionless

A.

Aj,D ;	 absorption of jth line over spectral intervals 	 S, D,

A
d,	 and	 respectively

3,d' 1

A.3 100

A.*	 nondimensional	 A., A.* = A./A
^

	 Ail 	 7	 n

An 	nondimensional constant,	 An = 2yD/(Qn2) 1/2	 {
1

AN (x, R)	 absorption of a narrow band

A 	 band width parameter, 	 cm-1

As 	absorption of a single line in a linear limit,	 cm-1

A
s (u,	 axial or slab band absorptance

B(w, T)	 Planck's function

c	 speed of light

E(w)	 upwelling radiative energy

ED 	total upwelling radiative energy in spectral interval

Aw = D

GE (w)	
thermal radiation of ground and atmosphere

ER (W)
solar radiation reflected from ground

E (w)	 solar radiation scattered by the atmosphere without

having been reflected by the ground

2
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ER^(w) solar radiation reflected from ground outside.the

field of view r3ld scattered by the atmosphere into

the field of view

f. shape factor of jth line

h altitude of an aircraft or a satellite

Hs sun irradiance at the top of the atmosphere

k Boltzmann constant

K(a,	 v) Voigt function	 j

L(p) Ladenberg-Reiche function

' m molecular mass of the absorbing medium 	 s

P, P partial pressure of the absorbing medium

S band intensity or band strength,	 cm-2

S. line intensity or line strength, 	 cm-2

t line structure parameter,	 t = S/2

T kinetic temperature,	 °K a

Ts surface or ground temperature

T(z) temperature of atmosphere at altitude	 z

U
;

dimensionless coordinate,	 u = Spy/A0
i

U
;

pressure path length,	 cm-atm

W. equivalent width of jth spectral line`

x optical path at the line center

X mass of absorbing gas per unit area

line structure parameter,	 S = 2t

yj line half-width of jth spectral line

E surface emittance

e(X,	 p,	 T) total emissivity

` e.
J,
	 e1 line overlapping parameter

EW spectral emissivity

3
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K0

Kw

Kwj

T

Tj,D:

Tj,d

Tw

TA

W

wj

W
0

sun zenith angle

absorption coefficient correlation, cm-1

equilibrium spectral absorption coefficient, cm-1

absorption coefficient of jth spectral line, cm-1

radiative transmittance

average transmittance of jth line in the spectral

interval D or 6.

spectral transmittance

spectral transmittance of jth line

wave number, cm-1

wave number the center of jth line

line center of the main line or band center, cn1-1
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1. INTRODUCTION

The study of radiative transmission in real (non-homogeneous)

atmospheres requires a detailed knowledge of the atmospheric

constituents that absorb and emit significantly in the spectral

range of interest. One of the important quantities required for

calculating the atmospheric transmittance is the absorption coeffi-

cient of the atmospheric constituents. An accurate model for the

spectral absorption coefficient is of vital importance in the correct

formulation of the radiative flux equations that are employed for

the reduction of data obtained from either direct or remote measure-

ments.

A systematic representation of the absorption by a gas, in the

infrared, requires the identification of the major infrared bands

and evaluation of the line parameters of these bands. The line

parameters depend upon the temperature, pressure, and concentration

of the absorbing molecules and, in general, these quantities vary

continuously along a non-homogeneous path through the atmosphere.

Even though it is quite difficult to reproduce the real non-

homogeneous atmosphere in the laboratory, considerable efforts have

been expended in obtaining the absorption coefficients of important
atmospheric constituents. With the availability of high resolution

spectrometers, it is now possible to determine the line positions,

intensities, and half widths of spectral lines quite accurately

[1-5]. 1 As a result, absorption by the strong infrared bands of
gases like CO, CO 2 , N 20, H 2O, CHy, NH3, and 0 3 are known now

-.quite well.

In theoretical calculations of transmittance (or absorptance)

of a tend, a convenient line or band model, for the variation of

the spectral absorption coefficient, is used. High spectral resolu-

tion measurements make it necessary to employ Line-by-line models



t

for transmittance calculations. If, however, the integrated signals

are measured over a relatively wide spectral interval, th,,n one

could employ an appropriate band model. The line models usually

employed in the study of atmospheric radiation are Lorentz, Doppler,

and combined Lorentz-Doppler (Voigt) line profiles. A complete

formulation (and comparison) of the transmittance (and absorptance)

by these lines, in an infinite and finite spectral interval, is

given in [6-8]. The band models available in -the literature are the

narrow band models (such as, Elsasser, statistical, random-Elsasser,

and quasi-random) and the wide band models (such as, coffin,

modified box, exponential, and axial). The expressions for wide

band absorptance are obtained from the general formulations of the

narrow band models. In radiative transfer analyses, the use of band

models results in a considerable reduction in computational time,

Essential information on various narrow band models is available

in [9-16] and on wide band models in [16-20]. The most appropriate

model for atmospheric application is the quasi-random narrow band

model which is discussed in detail in [12, 14, 15].

The earth's surface with its temperature in the vicinity of

300°K emits like a black body from the near to the far infrared

region of the spectrum. The emission in the infrared range (between

2 and 20 microns) is particularly important because most of the

minor atmospheric constituents (i.e., CO 2 e N2O, H 2O, CO, CH 4 , NH3,

etc.) absorb and emit this spectral region. The upwelling infrared
3

radiation from the earth's atmosphere, therefore, consists of the
i

modulated surface radiation and the radiation from the atmosphere. {
This radiation carries the spectral signature of all the minor

atmospheric constituents amongst which gases such as CO, CH,4 and

NH3 are called the atmospheric pollutants. Ludwig et al. [4] have

explored the possibilities of measuring the amount of atmospheric

pollutants through remote sensing. An important method of measuring

the pollutant concentration by remote sensing is the passive mode

(also called the nadir experiment) in which the earth-oriented

detector receives the upwelling atmospheric radiation. The near

infrared region is particularly suitable for passive mode measure-

ments simply because the radiation in this region is practically
Y

f
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free from the scattering effects. Radiation in the visible and

ultra-violet regions is severely affected by the scattering

processes which make meaningful passive mode measurements impossi-

ble.

The purpose of this study is to review various line and band

models and present analysis procedure for calculating the atmos-

pheric transmittance and upwelling radiance. Various .expressions

for absorption by different line and band models are presented in

sections 2 and 3. Theoretical formulations of atmospheric

transmittance are given in section 4, where homogeneous path

transmittances are calculated for selected infrared bands. The

basic equations for calculating the upwelling atmospheric radiance

are presented in section 5, where model calculations are made to

study the effects of different interfering molecules, water vapor

profiles, ground temperatures, and ground emittances on the

upwelling radiance.

2. ABSORPTION BY SPECTRAL LINES

In order to describe the infrared absorption characteristics

of a radiating molecule it is necessary to consider the variation

of the spectral absorption coefficient for a single line. In

general, for a single line centered at the wave number w j , this

is expressed as

Kwj = Si f  (w, y j 	 (2.1)

where S
i
 is the intensity of the jth spectral line and is given

by

Sj =f Kw ^ 
d(w - wj)	 (2.2)

oo

i
The line intensity may be described in terms of the molecular

number density and Einstein coefficients, i.e., it depends upon

the transition probabilities between the initial and final states

and upon the populations of these states.. For a perfect gas it may

7
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be shown that

f j (w, y j )	 is

is a function

and is normal

S.
3

	a function solely of temperature. The quantity

the line shape factor for the jth spectral line. It

of the wave number w and the line half-width yj

ized on (w - w j ) such that

f

00 

f  (w - w j) d (w - wj ) = 1 .	 (2.3)
CO

Several approximate line profiles have been described in the

literature. Most commonly used profiles are rectangular,

triangular, Lorentz, Doppler, or Voigt (combined Lorentz and

Doppler) profiles. The study of line shapes and line broadening

is an active research field. For various reviews on the subject,

references should be made to [13, 21-291. Lorentz, Doppler, and

Voigt profiles are of special interest in the atmospheric studies

and these are discussed in some detail here.

The line profile usually employed for studies of infrared

radiative transfer in the earth's atmosphere is the Lorentz pressure

broadened line shape for which the shape factor is such that the

expression for absorption coefficient is found to be

Kwj = S  f j (wo yL) = Sj yL+ [(w - wj ) 2 + yL2]1  ,	 (2.4)

where yL is the Lorentz line half-width. From simple kinetic

theory it may be shown that y  varies with pressure and temperas

ture according to the relation

yL	 yLo (P/PO)m (T C/T)n ,	 (2.5)

where yLo is the line half-width corresponding to a reference

temperature To and a pressure Po `. The values of m and n.

depend, in general, on the collision parameters and on the nature

of the molecules. A discussion on the variation of y  with P

and T is given in [22, 30-321. The value of m = 1 and n = 0.5

is employed usually for most atmospheric studies.

The maximum absorption coefficient occurs at w = wj and is

given by the expression i

8



(2.6)
\K w]/ w=wj = Sj/ 'YL °

The variation of Kw over a specific wave number range containing

n independent lines is given by

n
K w = 7_1 Kwj .

For Lorentzian line profiles, Eq. (2.7) can be expressed as

Kw =	 Kwj	 Sj YLj/ 
17r  

[(w - wj) 2 ' YLj 21'^ .

-	
^	

J	
J

Note that for the Lorentz line profile, 
YL 

varies linearly with

the pressure. Thus, in a spectral interval containing many lines

the discrete line structure will be smeared out at sufficiently

high pressure.

For Doppler broadened lines, the absorption coefficient is

given by the relation [21, 22]

Kwj = S  f j (w ' YD)

where

fj (w ' YD) = (l/YD ) (Qn 2/7T) 1/2 exp[ (w - Wi) 2 (Qn 2 /YD2), '

Y D = (w j /c^ (2 k T to 2/M) /2

(2.7)

(2.8)

(2.9)

In this equation y  represents the Doppler half-width, c is the
p speed of light, K is the Boltzman constant, and m is the

f	 molecular mass. Doppler broadening is associated with the thermal
i

motion of molecules. From Eq. (2.9) it is clear that the Doppler

width depends not only on temperature but also on molecular mass

and the location of the line center. For certain atmospheric

conditions-, therefore, the Doppler and Lorentz widths may become
s

equally important for a particular molecule radiating at a

9
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specific frequency. For comparable intensities and half-widths,

however, the Doppler line has more absorption near the center and

less in the wings than the Lorentz line (Figure 2.1).

For radiative transfer analybes involving gases at low

pressures (upper atmospheric conditions) it becomes imperative to

incorporate the combined influence of the Lorentz and the Doppler

broadening. The shape factor for the combined profile.is given by

[21, 22] .

Kwj = S
i 

f  (a , v)	 KO K (a, v) ,

where

f  (a, v) = WY D) (kn 2/7r) 1/2 K(a, v)

K (a, v) = (a/T,,) .f O fexp ( -t2) / [a2 + (v - t) 2 ] }dt
	

(2.10)

Ko = (S
j /YD ) (kn 2/70 1/2 = (S,/ y1ir) (a/YL)

v = ^w - wj)/YD] (kn 2) 102 = (w - w j ) (a/YL)

J
a = R YC + YN	

I
)/YD' (Rn 2) 12

The function K(a, v) defined in Eq. (2.10) is called the Voigt

function, y  is the collisional broadened half-width and y  is
the natural line half -width. Usually yN can be neglected in

comparison to Yc	 At very low pressures (upper atmospheric

conditions) however, ,t contributions from YN becomes significant.

The combined effect of y c and YN is frequently represented by

YL	and the parameter a is interpreted as the ratio of the

R	 Lorentz and Doppler half-widths. As the pressure becomes small,_

YL approaches zero and Eq. (2.10) reduces to the absorption

coefficient for the Doppler broadened lines which may now be

expressed as

10
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t
4

Kwi 
= K  exp ( —v2) .	 (2.11)

On the other hand, for large pressures, the quantity (YL/YD)

becomes large and Eq. (2.10) reduces to the Lorentzian case, Eq.

(2.4). In other words, the Voigt profile assumes the Lorentzian

shape in the limit of large v and reduces to the Doppler profile

for small a. The Voigt function is referred to as the reduced

absorption coefficient with K O representing its dimensional

constant. The origin and properties of the Voigt function and

methods of computing it are reviewed in some detail in [29] where

it is shown that K(a, v) is the real part of the complex error

function.

Several alternate and approximate forms of the Voigt function,

and a number of tabulations of these forms, are available in [21,

22, 29, 33-471. With the aid of computer programs developed by

Hummer [41-43], Young [45, 46], Armstrong [47], Chiarella and

Reichel [48], and Gautschi [49, 50], it is now possible to calculate

the Voigt function (for an extended range of parameters) to an

accuracy of better than six significant figures.

A simple closed form approximation to the Voigt profile that

is valid over a useful range of parameters is given, in terms of

the present nomenclature,-by [35, 39, 51]

Kwj/Kwo _ [1 - ((L/YV)] expl-11.088 I(W - wj)/YV] 2}

+ (Y L/YV)/(l + 16 [(w - w j )/YV ]2 1 ,	 (2. 12a)

where Voigt half-width is expressed in terms of Y L and YD as

YV T (YL/2)	 [(yL2/4) + YD`] 
1/2 ,	 (2.12b)

and

K	 S	 yl7 cl. 065 + 0. 447 (y, /y,) + 0 6 058 ^YL /YV) 2]	 (2.12c)
wo

This form is very convenient for numerical computation and it

3
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COfAj

For small

to an important

model used for

11 - exp ( K W 7 X)] d (W

values of the quantity

limiting form which is

K	 . This is the con

i

matches the Voigt profile within 5 percent under worst conditions.

Generally the error is within 3 percent, with maximum errors

occurring near zero pressures. A somewhat better approximation

for the Voigt function is suggested by Kielkopf [52].

The radiative transmittance at a single wave number is given
by the relation

T Wj = exp (- f X KWj dX ) .	 (2.13)

where X = f Q
o 

pa 
dk is the mass of the absorbing gas per unit

area, KWj is the mass absorption coefficient for the jth spectral
line, Z is the • length.measured along the direction of the path

which makes an angle A with the vertical, *and p a is the density

of the absorbing gas. For a homogeneous path, Eq. (2.13) becomes

TWj = exp (- K Wj X)	 (2.14)

The total absorption of a single line, in an infinite spectral

interval, is given by

A  = f COOD 

(1 - T Wj ) d(W - W j )	 ( 2.15)

where W. represents the wave number at the line center of the

jth spectral line. For a homogeneous path, this can be expressed

as

W j ) .	 ( 2.16)

(KWj X), Eq. (2.16) reduces

independent of any spectral

ventional optically thinWj
(or linear) limit in radiative transfer. This limit is obtained

by expanding the exponential in Eq. (2-.16) and retaining only the

13



first two terms in the series such that

A.
1
 = X f' Kwj d (w - w j ) = X S j	 (2.17)

Another limit, which does depend upon the particular model

employed for Kwi , is the square-root limit or the strong line

approximation for which the total absorption occurs in the vicinity

of the line center. To find expressions for absorptance in this

limit, it is required that (KWj x) >> 1 for w = w  .

The average absorption A of a single line, which is a member

of a group of lines, is given by

	

d f 00 C1 - exp(-Kwj 
X)J 

d(w - w j ) ,	 ('2.18)

where d is the average spacing, between liners. This is related

to the so-called equivaZent width of a line, W
i
(X) , by

W
i
(X) = Ai d , where the expression for W i (X) is exactly the same

as given by Eq. (2.16)	 Thus,

00W^ (X) = A^ (X)	 f 00 Aj (K w3 X) d (w - w j ) = Ai d .	 (2.19)

The equivalent width is interpreted as the width of a rectangular

line (whose center is totally absorbed) having the same absorption

area as that of the actual line.

The mean transmittance of a single line, in a finite wave

number interval D 26	 may be expressed as

T j,D - 2S 3 
S exp ( K w ^ X) d (w - w i ) ,	 (2.20)

	 (

where S is the wave number interval from the center of the line.

The mean absorption over this interval, therefore, becomes



i

ISNL 1

A^ 
^D	

1 - T^ ^ D = d f 8 [l - exp (-K w^ X)] d(w - w j)	 (2.21)

	

Note that T^ ,D and A 	 are in nondimensional form.

2.1. Radiative Transmittance by Spectral Lines

For a homogeneous atmosphere, the radiative transmittance

of a line with Lorentz profile is obtained by combining Eqs. (2.4)

and (2.14) as

T wi = TL (w) = exp[-2x/(y 2 + 1)] = T L (x,Y) ,	 (2.22)

where

y	 x = S
3 

X/27Y L 	y = (w - wjYYL

It should be noted that, for large y (i.e., away from the line

center), Eq. (2.22) approaches to unity for all. .x while for small

x it approaches to unity for all y .

FThe transmittance of a Doppler broadened line is obtained by

combining Eqs. (2.11) and (2.14) as

(TW i = T D (w) = exp [ x  exp ( -v2 )] = T D \v ' xD)
	 (2.23a)

where

xD = Ko X	 [(Sj/YD (Rn 2/7r) 
1'2] 

X

z represents the optical path at the line center. For Large v

(i.e., away from the line center), the transmittance approaches•a

value of unity while in the vicinity of the line center, it may be

expressed by

j

TD (w )	 exp (-xD,	
(2.23b)

15



As in the case of the Lorentz line profile, T D (w) also approaches

a value of unity in the linear limit.

The transmittance of a combined Lorentz-Doppler (Voigt) line

profile is obtained by combining Eqs. (2.10) and (2.14) as

Twi = TV (w) = exp [- xD K (a, v)] tt TV (a, v, xD )	 (2.24)

Note that the transmittance of a Voigt line profile also approaches

to unity in the linear limit. It can be shown that Eq. (2.24)

reduces to the Lorentzian case for large a and to the Doppler

case in the limit of small a.

The transmittance by the Lorentz line profile, Eq. (2'.22), can

be expressed in terms of the quantities x  , a , and v as

TL (w) = exp I -XD [ (a/3Tr) / ( v2 + a 2 ) ] }	 TL (a' v ' XD) .	 (2.25)

For transmittance at the line center, this can be written as

T L (a, xD ) = exp t-xD/a 3Tr>	 (2.2 6 )

Equation (2.25) is a convenient expression for comparing the results

with the transmittance of the Doppler and Voigt line profiles.

	

The transmittance of the three line profiles (Lorentz, Doppler,	
1

and Voigt) at the line center are illustrated in Figure (2.2) for

various values of the parameter a. As would be expected, for

a = 0-* 0.1	 the Voigt line transmittance is analogous to that

given by the Doppler line profile. For values of a > 5 , the	 1

transmittance by Lorentz and Voigt lines are identical for all path

lengths.

Comparisons'of the transmittance by the three line profiles

are also shown in Figures (2.3) and'(2.4) for x 	 and for= 10 ,D	 ^

values of a equal to 0.1 and 1 respectively. It should again be

notedthat at a = 0.1 the transmittance of a Voigt line can be

approximated quite accurately by the transmittance of a Doppler line.

At a = 1	 however, the transmittance by the Lorentz line provides

a better approximation for the Voigt line transmittance,
16
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2.2. Absorption of an Isolated Spectral Line in an

Infinite Spectral Interval

For homogeneous atmospheric path, the absorption of an isolated

spectral line of Lorentz shape (in an infinite spectral interval),

AL 0' 	 be obtained by combining Eqs. (2.4) and (2.16) as

AL = 2y  fo00 
{1 - exp[-2x/(y 2 + 1)11 dy ,	 (2.27)

where x and y are defined in Eq. (2.22). An exact solution of

this equation is found in terms of Ladenberg-Reiche function, L(x)

as [9, 13]

AL/27rY L = L(x) = x - exp(-x) EI o (x) + i i (x)] ,	 (2.28a)

where I o and I 1 are the Bessel functions of imaginary arguments.

By multiplying Eq. (2.4) by the mass of the absorbing gas, X , it

can be shown that the quantity x represents one-half the optical

path at the line center. In the linear limit'(sma.11 x), Eq.

(2.16) reduces to

AL = 2TryLx = S i
X ,	 (2.28b)

while in the square-root limit (large x), it becomes

AL = 2yL (27tx) 1/2 = 2 (S^ yL X^ 1̂ 2	 (2.28c)

For further discussions on absorption by the Lorentz lines, one

should refer to [6-8, 10, 13, 22]. For these lines, absorption

calculations for non-isothermal paths have been carried out by

Simmons [53] Yamamoto and Aida [54], and Cogley [55].

Several approximate solutions of Eq. (2.27) are suggested in
d

the literature. These a're,

A /2^r	 = (2x/n)' 1̂ 2 1	 exp - (^rx/2) 1^2	 ,	 (TEEN [18, 56])	 (2.29a)L YL 

xi
20



A /2	 (2x/lT) [ 1 - exp (-Trx/^)	 (VARANASIL WY L =

A L 
/21Ty 

L 
= 1/[1 + (Trx/2)]	 (RODGERS [181)	 (2.29c)

'/2A /2	 (7Tx/2)	 (GOLDMAN [58])	 (2.29d)L 7rYL 	 x/	 +

A /2	 (Trx/2) 1/2 0&	 (GOLDMAN [581) 	 (2.29e)
L TrYL 	 X/[' +

The value of a in Eq. (2.29e) range between 1 < a < 3/2	 For

a = 1 , Eq. (2.29e) reduces to Eq. (2.29d). A value of a	 5/4

is recommended by Goldman [58) for better approximation. Each

equation in Eqs. (2.29) reduces to the correct asymptotic limits.

Over the entire range of x	 however, the approximations listed

in Eqs. (2.29) agree with the exact solution, Eq. (2.28a), by a

varying degree of accuracy. As discussed by Goldman, a maximum

error of about 17% occurs in using Eq. (2.29a) while less than 8%

errors are encountered in using Eqs. (2.29b) and (2.29d). Equation

(2.29c) agrees with the exact solution within 3%, and for a value

of a = 5/4	 Eq. (2.29e) gives accurate results within 1% over

the entire range of x . 'In calculating the total absorptanc e over

a band pass, by employing the line-by-line model, a tremendous

amount of computational time is saved if an appropriate form of

Eq. (2.29) is used.

	

The absorption ' of a Doppler broadened line, A	 is obtained
D

by combining Eqs. (2.15) and (2.23a) as

00

	

A*	 A /A	 dv	 (2.30a)

	

D	 f	 1 1	 exp E-x exp (--^vD	 D

where

A 
n	

2y D (.Zn 2)

As x	 0 (linear limit), Eq. (2.30a) reduces to
D

	

A*	 (/77/2) x	 or A	 S X	 (2.30b)

	

D	 D	 D

21



and in the limit of large x 	 it yields

A** = (Qn xD ) 1/2
	

(2.30c)

Equation (2.30b) is identical to the result for the Lorentz

profile in the linear limit (Eq. 2.28b). Since the linear limit

can be obtained from Eq. (2.15), independent of line shape, the

absorption by any line profile should reduce to the same expression

in this limit. From Eq. (2.30c), it should be noted that, in the

limit of large x  , the absorption increases very slowly with the

amount of absorbing gas. For further discussions on absorption by

the Doppler lines, references should be made to [6-8, 10, 13, 22,

591.

For conditions where both the Doppler and the Lorentz .

broadenings are important, the total absorption, A V , is obtained

by combining Eqs. (2.15) and (2.24) as

AV (xD' a) = AV/An = J	 { 1 - exp E-x DK (a , v )] } dv HE 

AVE (XD' a)0

(2.31)

It can easily be shown that Eq. (2.31) reduces to the Lorentzian

case for large values of a and to the Doppler case in the limit

of small a.

By employing the numerical procedure described by Young [45,

461, Eq. (2.31) was solved for a range of parameter a , and the

results are illustrated in Figure 2.5. Similar results were also

obtained by Jansson and Korb [60], who employed a somewhat modified

version of Armstrong's [47] computer program. As would be expected,

for a = 0	 the results correspond to the case of a pure Doppler

profile while for a > 0 , the results correspond to the case of
a pure Doppler profile while for a > 10 , they correspond to the

Lorentzian shape. Kyle -[61] has given results for Voigt line

profiles in an isothermal atmosphere with an exponentially decreasing

pressure.
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The errors, in the integrated line absorption, encountered in
using the Lorentz shape to approximate the Voigt profile, are

illustrated in Figure 2.6, for a range of the parameter a	 The
nondimensional form of the integrated absorption for Lorentz
profile, AL , is obtained by dividing Eq. (2.28) by A n and by

noting that x.= xD/(2avfff- )	 As would be expected, maximum errors

occur for intermediate path lengths and for lower values of a .
The errors, however, are not significant in the two limiting cases

of small and large path lengths. As discussed earlier, for small
path lengths (linear limit), the line absorption is independent

of the line shapes. In the limit of large path lengths, however,

the central portion of the line becomes opaque and absorption

occurs only in the wing regions. Since the Voigt profile is

essentially Lorentzian in the line wings, the error encountered in
the large path length limit becomes insignificant.

The errors resulting from using the Doppler line profile to
approximate the absorption by the Voigt line profile are illustrated
in Figure 2,6 by the solid lines.	 Since	 a = o	 corresponds to the

case of pure Doppler absorption, the errors are expected to be
higher for larger values of	 a	 Maximum errors, in this case, are
found in the large path length limit.	 This is because, in this

limit, the absorption occurs essentially in the line wings and the
E Voigt profile in the wing regions is Lorentzian rather than of

f Doppler shape.

It should be emphasized that for cases of intermediate path

lengths and for moderate values of	 a (0.1 < a < 10)	 the use of the
Voigt profile becomes almost essential. 	 This situation corresponds

to the radiative transmittance in the earth's troposphere and lower	 j

E stratosphere. Consequently, for radiative modeling of the lower
atmosphere, consideration must be given to the application of
combined line profiles.

In Figures 2.7 and 2.8, comparisons of results for all three

line profiles	 (Lorentz, Doppler, and Voigt) are made for 	 a = 0..01

and	 0.1	 Comparison of results for other values of 	 a-	 is	 '.

available in	 [6, 7,	 621.	 Figures 2.7 and 2.8 clearly illustrate
1
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the range of validity of the absorption by the three line profiles.

The curves for AL and A** intersect at some point, the location

of which increases with decreasing a 	 For a > 2	 AL and

AV (cr AM curves become identical for all path lengths.

In atmospheric problems involving conduction, convection and

radiation, one ends up with an integro-differential form of the

energy equation. If use of the Voigt line profile is made in formu-

lating the expression for absorptance, then the divergence of the

radiative flux in the energy equation will involve an equation with

triple integrals even for the simple case of energy transfer between

plane-parallel atmosphere. The number of integrals appearing in

the governing equations remain the same even if one is only con-

cerned with the problem of purely radiative equilibrium. In order

to reduce the mathematical complexities and save computational

time, it often becomes necessary to express the absorptance of the

Voigt line profile by fairly accurate approximate forms. A few

such forms have been suggested in the literature.

Curtis [63] has suggested a simple form in -terms of the

absorptance by Lorentz and Doppler lines as

AV = AL I AD - AL AD/AS ,	 (2.32)

where AS = S A X is the absorptance in the linear limit and is

independent of any line shape. This is a convenient form for

mathematical operations (especially differentiation) * and it reduces

to the correct limiting forms. According to Gille and Ellingson

[64], however, this form overestimates the absorption (as compared

with the exact solution of Eq. (2.31)), especially when A L AD

with errors up to fifty percent. Rodgers and Williams [65] 'have

suggested a modified form of the Curtis approximation as

E

o,
-V = [AL2 + AD2 - (ALAD JAS ) 2] 1/2	 (2.33)

This also reduces to the correct limiting forms, is easily differen-

tiable, and is accurate within eight percent. In final calculation

=	 of 2%17 , however, approximate forms of A T and An (expressed
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in terms of series coefficients) are employed which makes this form

somewhat :cumbersome. If the approximate relation suggested by

Whiting, Eq. (2.12), is employed, then the absorption of a Voigt

line can be expressed as [6]

A^W AVW/An = f 0 1 - exp 1-xD W (a, vQ dv ,

where

W (a. v) / [Pn 21VT) F (a) ] = (1 - YLV) exp 1 -11. 088 E(v/a) YLV21 }

l	
(2.34)

+ YLV/1 1 + 16 E (v/a) YLV]21

F (a) = [a (l. 065 /YLV + 0.447 + 0.058y LV A -1

1
YLV = YL/YV = 10.5  + [0.25  + to 2/a2) ] /2 ^ -1

The results of this equation are found to be accurate within five

percent [6]. Use of this equation has been made in radiative.

transfer models for detection of atmospheric pollutants [4, 5].

The drawback of this form is that it involves integration over one

variable and its use in the final form of the energy equation

requires a considerably long computational time. Another accurate

approximation to the absorption by a Voigt line profile can be

obtained by employing the expression for Voigt function suggested

by Kielkopf [52]. However, as with the Whiting's approximation,

this form will also involve integration over one variable (while

calculating the total line absorption) and consequently would

require long computational time.

While Eqs. (2.33) and (2.34) provide quite accurate approxi-

mations to the integrated absorption of a Voigt lime profile, a

relatively simple (and equally accurate) form can be obtained by

employing the approximate formulations for AL (as given by

Goldman [58]) and AD (cf Tiwari [6], Penner [22]) into Eq. (2.33)

to yield

29
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-'4C = (VF12) {F (L) Cl - exp ( /xD) + XD  eXp (-

0.1 < x  < 20

- VC = { (Tr/4) F (L) + R n X  11	 F (L) /XD 2] ) 112 ,

x  > 20

where

F (L) = x

	

	 a = 5/4D 2/Cl + (xD 3^r/4a) a] l^a

This equation possesses the mathematical simplicity off(

(2.32) and (2.33), and reduces to the correct limiting

The solutions of Eq. (2.35) are compared with the

solution, AVE , in Figures (2.7) and (2,8) for values of the

parameter a equal to 0.01 and 0.1 . The solutions of Whiting's

approximation are also illustrated in these figures. It should be

noted that while the agreement between the results is not very good

for a = 0.01 , it is excellent for a = 0.1 . Depending on the

nature of a particular problem, use of the correlation, as given by

Eq. (2.35), in radiative flux equations could result in significant

saving of computational time.

2.3. Absorption of a Spectral Line in a

Finite Spectral Interval

Expressions for absorption by nonoverlapping spectral lines,

r in finite spectral intervals, are important in obtaining meaningful

fc- Tiitilations for narrow and wide band models. For brevity, -attention
t

	

	 is directed only to the Lorentzian line profiles in the subsequent

formulations. The procedure, however, can easily be extended to
4

obtain formulations for other line profiles.
s

The average transmission of a Lorentz line, in a finite

spectral interval may be obtained by combining Eqs (2.4) and (2.20)

as
^	
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TL 6 = d f 8 exp - (S j X YL//Tr L^w - w^> 2 + ' L2J d (w - w j )	 (2.36)

By defining nondimensional quantities

T' = YL/ 6 . ^	 (w - wj)/S

Eq. (2.36) can be transformed into

T
LSd 

= f 1 exp{-2x3 [ (E/n) 2 + 1]1 d^	 (2.37)
0

The relation for the mean absorption over the interval can, in turn,

be expressed by

ALa = 1 - 
TL S = ('l (1 - exp{-2x/[1 + ( 3^1)^9}) d^	 (2.38)

It is important to note that the parameter n in Eqs. (2.37) and

(2.38) represents the ratio of the line half-width and the wave

number interval from the line center. If required, the limiting

forms of Eq. (2.38) can easily be obtained.

Upon introducing a new variable

W - w^ = YL (1 + cost) 
i/2/ (1 

+ 2T1 2 - cost) 1/2 ,	 (2.39a)

and a new dimensionless path length

x ._ SAX/27r y  {1 + rl2)	 (2.39b)

Eq. (2.36) is transformed to give
F.

7r
T
L, s = p (1 + r1 2 ) exp [-x (1 + 2T,2)] 0 	 exp (x cost) f (t) dt	 (2.40a)



Several limiting and approximate forms of this equation have been
obtained by Yamamoto and Aida [66]. As in the previous case, the
expression for the mean absorption over the interval can be
expressed by A L6 "^ 1 - T L,6

The total absorption (not the average absorption) of a single
line over the wave number interval D = 26 can be obtained from
the expression

1/2

	

( Cl—) 2	 d-C
A	 2Df*	 (1 - exp j -2x/[1	 T1	

(2.41)L I D	 0

where fl = YT/D	 and	 W - Wj)/D

Equations (2.38), and (2.40), and (2-41) are useful in
calculating the absorption over a band pass of nonoverlapping
spectral lines.

If there are n nonoverlapping lines in a finite wave number
interval Aw (with an average spacing between the lines of d),
then the absorption of a single line over the interval D = Aw = nd
can be expressed by

A	 . D/2 1 - exp K	 X)] d (w - w i )	 (2.42)
L I D = f-D/2 I	 (- Wi I

For a line with Lorentz shape, this becomes

A	 = (d/7T) f 
n7T 

(1 - expf-2x/[1 + (z/^)1-1-}) dz	 (2.43)
L, D	 0

where	 27y L /d	 and z = 27(w - w i )/d	
It can easily be

s^own that, in the linear limit, Eq. (2.43) reduces to

A	 (2d^x/7r) tan	 (n7T/^)	 4	 tan (n7r/^)	 (2.44)
L, D	 YL x

while for large x,, it'becomes

A LID	 vrff- 1	
erf	 1	 exp(-^2)	 (2.45)
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where

^2 = 2x (R/n7r) 2 , erf(^) = (2/)/T) f exp(-t 2 ) dt .
0

The quantity S , which expresses the ratio of line width to line

spacing, is called the line structure parameter. Since y  ti P

the limit of large pressure correspond to ^ -> - .

Expressions for the average absorption can be obtained by

dividing Eqs. (2.43) - (2.45) by the wave number interval nd

The average absorption of a single line, in the spectral

interval equal to the.average spacing between the lines, can be

given by

AL,d = ( 1 /7r) 
f Tr 

(1 -- exp{-2x/ [1 + (z/R) 21 }) dz	 (2.46)

The limiting forms of Eq. (2.46)  ;: a: e obtained from Eqs . (2.44)  and
(2.45) simply by replacing n with unity.

Since the solution of a single line of Lorentz shape (in an

infinite spectral interval) is known from Eq. (2.28a), one can obtain

an alternate form for the average absorption over the wave number

interval Aw = d as

AL,d	 (1/d) AL,co - (1/70 - f 	 {1	 exp{--2x/[1 + ( Z /0) 2 ) }) dz , (2.47)

where

AL,00/d = Sx exp (-x) [I o {x) + I 1 (x)^

The absorption model expressed by Eq. (2.47), is called the Schnaidt's.

model and is often employed for calculating the total absorptance

of a band of overlapping lines. The effect of the overlap is

accounted for by cutting off each line at displacements ±(d/2)

from its center. Under normal atmospheric conditions, the line

spacing greatly exceeds the line half-width (i.e., (z/^) >> 1)

and Eq. (2.47) can be approximated by
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AL,d	
(1/d) AL,00 + 1 - exp (-u 2 ) - u3T erf (u)	 (2.48)

where

u2 = 2x ($/n) 2

All expressions for absorptance in this section are written

in non-dimensional form. It should be noted that the expressions

for absorption over finite spectral interval do, not reduce to the

correct linear limit, Eq. 	 (2.28b).

_ The solutions of Eq.	 (2.46), along with the limiting solutions,

are illustrated in Figure 2.9 for various values of the line

structure parameter	 S	 As discussed earlier, the line structure

parameter, which expresses the ratio of line half-width to line

spacing, is essentially a pressure parameter. 	 It is obvious from

Figure 2.9 that the total absorption increases with the path length.

This is physically realistic because at a fixed pressure, if the

path length is increased then more molecules become available to

interact with the radiative processes of emission and absorption.

For any particular path length, however, the total absorption'

increases as the pressure is increased (i.e.,2^L,d	 increases with

Q ).	 This increase in absorption with	 continues until the

large	 limit is achieved. 	 At this point, lines become saturated

(completely pressure broadened) and a further increase in pressure

does not contribute to the absorption.

2.4.	 Absorption of an Overlapping Line in a

Finite Spectral Interval
i;

Spectral lines of an infrared band, in general, have different

line intensities, half-widths, --:d spacing. 	 At moderately high

3 pressures, these lines overlap	 : specially in the wing regions).

While calculating the transmittance of a single line in a finite

spectral interval	 D = 25 ,	 one must account for the contribution

of the overlapping lines which occur outside the interval 	 6 v
4
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equal to the average spacing between the lines.
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The absorption coefficient of a Lorentz line, in such cases, may

by expressed by

Kwj	 S  YLj /Tr F(W - b j ) 2 + YLj 2 ]	 j = 0, 1, 2,	 . , (2.49)

where j = 0 refers to the main line under consideration and

S j 's are the wave number locations (of center of jth lines)

measured from the center of the main line. The expression for the

spectral transmittance, therefore, becomes

n
T wj = exp - (K 000

j=1
+ E Kw) X1 (2.50)

and the average absorption over the interval D = 26 is given by

n
AL j s = 2d J s a (1	 Two exp I-	 Sj^yLjX/^r C(c^ - 6j)2 + Y Lj 2] 1) d (w - coo)

J

(2.51)

Note that w = 6 denotes the center of the main line.
0	 0

By introducing quantities

nj = YLj /a 	 _ (w - w o)/6 ., xj	 SjX/27ryLj

Eq. (2.51) can be written as

_	 n
AL B	 (1/2) J 1. 1 - exp	 2xj/^l + C(^/n j) + (w o - 6 j )/YLj ]2	 dF

J=o
(2.52a)

For a particular atmospheric condition, evaluation of this equation

requires the knowledge of S j	 YLj , and S. for each interfering

line. If in the interval S , there are no contributions from the
9

lines whose centers lie outside the interval, then Eq. (2.52a)

directly reduces to Eq. (2.38)
3i
i
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By defining a new dimensionless quantity

E^ _ (W0 - 6j)/yL7

Eq. (2.52a) can be written as

ALd = A
L,S (x 7 , TI C , E7)

(2.52b)

	

1	 n	
rr(	 1

	

(1/2) l	 1 - exp( E - 2x.+ + [(E/n7) + EJJ2^ J dE(j =o	 t	 II

Since for c 7 = o	 the mean absorption of a line is independent

of the influence of neighboring lines, then c, may be treated as

an overlapping parameter.

Expressions, similar to Eq. (2.52), can easily be written for

the total absorption of a line over any spectral interval. The

absorption of an overlapping line, in a finite spectral interval

equal to the mean line spacing d , is given by

n	 l	 \
' ALr d = (d/2fl f ff
	

1 - exp (^ - 2x7 /l + [(z,/S^) + e^] 2 j) dz (2.53)
IT \ - o	

%r	 /
J

where ^ i = 2TTYLj /d , and z	 2ff,(w - Wo)/d

Y For.a fixed value of ^i (i.e., same value of	 for all

lines), the effect of overlapping can be studied simply by assigning

different values to E 7 and completing the indicated summation in

the exponential. For a fixed average spacing between the lines, it

should be obvious from the definitions of the parameters e  and

Ri 
that while c j varies inversely with pressure, S 7 is a

direct function of pressure such that the product c.R. becomes a

constant. This, of course, will not be the case if one considers

the variation in spacing between the lines. Since the quantity

E i P 
i solely depends on the locations of the main and interfering

lines and on the average . spacing between the lines, then more

realistic parameters for this problem will be s  and 
E  
i rather

than 
e  

and 3i	 In terms of these new parameters, Eq. (2.53)

can be expressed as
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AL,d = AL,d ( xi? R j , Y
n

(d/27r)f	 l - exp E
7r	

(j=o

(2.54)

- 2x j /^1 + Uz + ^ j )/R 7] 2^) dz

where

,

I j = 6
j 

R^ = 2Tr C W 0 - 6 j7/'
1/

 d

For a fixed average spacing between the lines, a large ^j value

physically means that the line centers of the interfering lines are

at larger wave number from the main line center and, therefore,

their influence on the absorption of the main line will be smaller.

If all lines in a spectral interval are equally intense and

have the same half-widths, then Eq. (2.54) can be written as

n	
('AL ^ d = (d/2Tr) f	 1	 expr-2x F, ^1 + l ^z + ^j)/Rj] 2^J1 } 	 (2.55)

 

7T (
	 \ 7 -o

If there is significant interference only due to one neighboring

line, then Eq. (2.55) is written, for average absorption, as

AL ^ d	 AL ^ d (x, Rr ^1)	
(2.56)

Tr

_ (1/27r) J	 ('1 - exp (-2x/fl + [(Z + 1)/R1 2 })) dz
-7t

3

This is a convenient form to study the effect of overlapping in a y
spectral interval equal to the mean line spacing. It should be

noted that for ^ j = 0	 Eq. (2.56) directly reduces to Eq. (2,46).

It should further be noted that, in general, the integrands in Eqs.

(2.52) through (2.56) are not symmetric because lines on either side

of the main line may have different.line intensities and-half-widths:

Therefore, one cannot simply integrate these equations between the

limit of zero to fr and multiply the results by two. This, however,

is possible for the special case considered in Eq. (2.56).

The results of Eq. (2.56) are illustrated in Figure 2.10 for

R = 0.1	 For a fixed R (i.e., at a constant pressure), the
38
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Fig. 2.10 Effect. of interference of a neighboring line on the absorption
of the main line for
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absorption of the main line is influenced solely due to the wave

number location of the interfering lines. The influence is

stronger if the neighboring line centers are closer to the main

line center. Thus, absorption will be higher for smaller values

of the parameter ^ j	This is clearly evident from the results

presented in Figure 2.10.

Other results of absorption (and transmission) by a spectral

line, in various spectral intervals, are available in [6-8).

3. BAND ABSORPTION

The absorptions by atmospheric gases, under certain atmospheric

conditions, result in overlapping spectral lines. Thus, the total

absorption within certain frequency interval cannot accurately be

represented simply by summing the absorption by individual lines.

This is because the absorption in a region of overlapped lines is

always less than the absorption calculated by considering the con- 	 {

-tributions of individual non-overlapping lines.

The total absorption of a band of overlapping lines strongly

depends upon the line intensity, the line half-width, and the spacing 	 s
between the lines. In a particular band, the absorption coefficient

`.	 varies very rapidly with the frequency and, therefore, it becomes

a very difficult and time-consuming task to evaluate the total band

absorptance by numerical integration over the actual band contour.

Consequently, several approximate band models have been proposed

which represent absorption from an actual band with reasonable

accuracy. These are discussed in some detail in this section. 	 j

The spectral absorptance of a narrow band (consisting of

sufficiently large number of spectral lines) may be expressed by

4

a 	 1 - T  = 1 - exp	 X Kw dX^	 (3.1)

where x is the mass absorption coefficient for the band. The

physical interpretation of a W is that it is the fraction of

energy which is absorbed when a' beam,of radiant energy passes
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through a slab of gas of thickness R For a homogeneous path,

the total absorptance of a narrow band is given by

A = 3Aw aw dw = f w [1 - exp (-KW  X )] 
dw ,	 (3.2)

where limits of integration are over the narrow band pass considered.

The total band absorptance of a wide band may, in turn, be

expressed by

A =	 Cl - exp- K w X)] d (w - wo)
	

(3.3)

where the limits of integration are over the entire band pass and

W is the wave number at the center of the wide band.
0

In subsequent sections, various band models are considered to

illustrate the basic features of the total band absorptance. There

are, however, specific situations where absorption of a band may be

represented quite accurately by one of the limiting forms of the

total band absorptance discussed in the next subsection.

3.1. Limiting Forms of the Total Band Absorptance

Various limiting forms of the total band absorptance are:

Nonoverlapping Line Approximation, Linear Approximation, Weak Line

Approximation, Strong Line Approximation, Square-Root Limit, Limit

of Large Pressure, and the Large Path Length Limit. Physically

realistic expressions for band absorptance in these limits depend

upon the specific band model employed. Certain characteristics of

band absorption, however, can be discussed in general terms inde-

pendent of any band model.

3.1.1. Nonoverlapping'Line Approximation	
3

€

	

	 For this approximation, it is assumed that the spectral lines

in a given interval Aw do not overlap appreciably. The total

absorptance due to n lines, in the interval, is obtained by summing
i
a
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n
the contributions of individual lines, i.e., A = 1: A i 	where

A] is given by Eq. (2.16). 	
3_1 3

As long as the criteria of nonoverlapping lines are satisfied,

this approximation is valid regardless of the value of the absorp-

tion at the line centers. Since there is no influence of overlapping

in this approximation, the absorption is independent of whether the

spacing between the lines is regular or.random. The absorption may,

however, depend slightly on the distribution of line intensities

in the band. The expressions of band absorptance for this approxi-

mation, therefore, depend on the particular band model employed.

For this approximation to be valid, it is required that the

integrand in Eq. (2.16) approach zero for (w	 w^ )	 0 (d) '
where d is the line spacing. For lines with Lorentz profile, the

nonoverlapping limit will be satisfied if

t

Kwj X = (S
i 

X/7r) [-yj/(yj2 + d 2) ] << 1 ,	 (3.4)

and if, in addition, y j << d [19]. The conditions for achieving

the nonoverlapping limit can, therefore, be stated as

(-y j /d) << 1 ,	 (S j X yj/7rd2) <<	 (3.5a)

Alternately, this can be expressed by

S << 1 , P2 x << 1	 (3.5b)

The nonoverlapping approximation is specially useful in extra-

polating the absorption to small values of pressure and path

lengths.

3.1.2. Linear Approximation (Linear Limit)

One of the important limiting form of the band absorptance,

which is completely independent of the band model, is the linear

limit (or linear approximation). This approximation is valid when

the total absorption due to all of the spectral lines is small at
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every frequency within the interval (i.e., KW X << 1 at all wave

numbers). As pointed out earlier, this is the conventional

optically thin limit in radiative transfer. Upon expanding the

exponential in Eq. (3.3) and retaining only the first two terms in
the series, the expression for band absorptance in the linear limit

is found to be

A = X f 
OD 

KW d (w - wo) = X S
	

(3. 6a)

where S is the band intensity. The total band absorptance in this

limit increases linearly with the path length and the line intensity

but is independent of the rotational line structure. Since all of

the absorption from spectral lines (whose centers are within the

wave number interval considered) occurs within Aw , this approxi-

mation is valid only when there is no overlapping of the spectral

lines. In essence, therefore, the linear approximation is valid

when this is an appropriate approximation for a single line and

when in addition there is no appreciable overlapping of lines in the

spectral range of interest. Equation (3.6a), therefore, is a conse-

quence of summing the absorption from individual lines, i.e.,

A	 Aj = X	 ('W K i d (W	 W j > = X	 Sj = S X	 (3.6b)
3 	 w	 lj 4 j 

The linear approximation fails if the spectral lines begin to

overlap strongly.

- 	 t
3.1.3. Weak Line Approximation

The weak line approximation is valid when the absorption is

sufficiently small at all frequencies in the band (i.e., the

absorption is small for each line in the wave number interval con
a

sidered)	 Thus, the effect of different spectral lines is additive
even if these are strong. overlapping of lines. Note the difference

between thisand the linear approximation which is valid only for

the case of nonoverlapping lines.
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When weak line approximation is valid, the amount of radiation

absorbed by each line is always a small fraction of the incident

flux [10, 111. If, however, many such weak lines overlap in a

given spectral interval, then almost all of the radiation can be

absorbed in that interval. The absorption coefficient is no longer

a rapidly varying function of the wave number (i.e., it is almost

constant) and, therefore, the particular arrangement of the spectral

lines in the band (regular or random) does not influence the band

absorptance significantly.

Physically, the weak line approximation is valid when the path

length is small and the pressure is sufficiently large such that

the absorption at the line centers is small. As will be shown

later, the mean absorption in this case is a function of a single

variable, Sx = S
i
 X/d , and is given by the relation

A = 1 - exp (- S j X/d) = 1 - exp (-Sx)
	

(3.7)

It should be noted that the linear limit, Eq. (3.6), is a

special case of the weak line approximation, Eq. (3.7).

3.1.4.. Strong Line Approximation

The strong line approximation is valid when the incident radia-

tion is completely absorbed near the centers of the strongest

spectral lines in the band and when these lines are primarily

responsible for the total band absorption. In this approximation,

therefore, the centers of the main absorbing lines are opaque and

further radiative contributions are primarily from the wing regions.

The physical conditions for this approximation to be valid occurs

either at large optical path lengths or for low pressure values.
The approximation is valid for overlapping as well as nonoverlapping

lines in the band. The expressions for band absorption, however,

do depend on the particular arrangement of the spectral lines

(regular or random) in the band.

The strong line approximation requires that K X >> 1 for -w
w w-	 For spectral lines of Lorentz shape, the strong line

condition is obtained from. Eq. (2.4) as-"
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S
i 

X/7r Yj >> 1	 (3.8)

As will be shown later, the band absorptance in this case is a

function of a single variable, ^2 x = 2fr Y Si 
X/d2 .

The strong line approximation should not be confused with the

square root approximation (discussed in the next subsection) which

is valid only when the spectral lines do not overlap. The strong

line approximation results are useful for extrapolating the absorp-

tion to small pressure and large path length values.

3.1.5. Square Root Limit (Strong Nonoverlapping Line Limit)

For line radiation, the square root limit (square root law, or

square root absorption, or square root approximation) is achieved

at relatively large optical path lengths. In this limit the central

portion of the line is completely absorbed and the mean absorptance

of the line is proportional to the square-root of the optical path

length [13]

For band radiation, the square-root approximation is valid

when this is a suitable approximation for a single line and when

in addition, there is no overlapping of the spectral lines. Conse-

quently, the square-root limit is a special case of the strong line

approximation. This is also referred to as the strong nonoverlapping

line limit. As the name implies, the limit requires that two

separate conditions (strong lines and nonoverlapping lines) be

se.tisfied. These conditions are described by Eqs. (3.8) and (3.5)

respectively.- .

3.1.6. -Limit of Large Pressure (Large ^ Limit)

Pressure plays a dual role in gaseous radiation. It appears

in the path length as well as in the line structure parameter R .

Its appearance in the pressure path length, py (or pk), is due

simply to the fact that absorption is dependent upon the number of

molecules which are present along a line of sight. Pressure enters

in the line structure parameter because the line half-widths are

directly dependent on pressure. For sufficiently high pressures,
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the discrete line structure is smeared out, and in this limit

(large pressure limit) . pressure enters solely through the pressure

path length py (or through py). The absorption coefficient in

this limit is given by the expression K W = S
i
/d . The average

absorption in this case, therefore, is a function of a single

variable S
i
 X/d and is given by the Eq. (3.7). As such, the

weak line approximation may be considered as a special case of the

large ^ limit.

3.1.7. Large Path Length Limit (Logarithmic Limit)

If, in addition to high pressure (large pressure limit), the

pressure path length is sufficiently large, then the total band

absorptance reaches a logarithmic asymptote (i.e., A % Qn (path

length)). In this limit the central portion of the band becomes

opaque, and radiation transfer within the gas takzs place solely

in the wing regions of the band. As such, the strong line approxi-

mation may be considered as a special case of the large path length

limit. The large path length limit is an appropriate limit for a

wide rather than a narrow band model.

3.2. Narrow Band Models

The absorption within a narrow frequency interval of a vibration

rotation band can be represented quite accurately by so-called

"narrow band models." Four commonly used narrow band models are,

Elsasser, statistical, Random Elsasser, and Quasi Random. The

application of any model to a particular case depends upon the nature

of the absorbing-emitting molecule. For example, one model may

provide an excellent agreement with experimental results for linear

molecules but it may fail completely for asymmetric and spherical

top molecules.

3.2.1. Elsasser (Regular) Band Model

The absorption of some vibration rotation band, in a sufficient

narrow frequency range, may be represented quite accurately by the

regular Elsasser band model (9], which consists of equally-spaced
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Lorentz lines of equal half-width and intensity. This is an

appropriate model to use for most diatomic gases and'some linear

triatomic molecules such as CO 2 and N 20 (if the path length is
not too large).

In an Elsasser band, the absorption coefficient is a periodic

function (with the period of the line spacing), and is given by

Eq. (2.8) which is rewritteli in a slightly different form as

Kw = ES j yL/7r E(w - nd) 2 + YL2 ]^n=- 
j (3.9)

where w is the distance from the center of any line and d is

the distance between adjacent lines. Elsasser [9] showed that Eq.

(3.9) can be expressed in an alternate form as

Kw = (S j /d) sinh S/(cosh S - . cos,z) ,	 (3.10)

where ^ and z are same as defined in Eq. (2.43).

The average absorptance of the periodic line pattern over the

line spacing d is obtained by combining Eqs. (3.2) and (3.10) as

AN (x, S) = 1 - (1/27r) f 7T exp [-Rx sinh S/(cosh S - cos z) ] dz^ , (3.11)

where An represents the absorptance of a narrow Elsasser band,
and the quantity x is defined in Eq. (2.27). Elsasser [9]

expressed this equation in the form

IAN (x,	 sinh R f Y I o (t) [exp (-t cos ^) ] dt	 (3.12)

where y = S  X,

Bessel function

in (67] for S ;
Equation (3.12)

function I e (k,

/(d sinh R) = ^x/sinh R , and I O W is the modified

of order zero. Solutions of Eq. (3.12) are tabulated

0.0001 to 1.0	 and for y = 0.02 to 1.5(10) 5 .

can be written in terms of the tabulated Schwarz

v) as
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AN (x, $) = tanh S rI e (sech S, Sx coth S)] ,

where

Ie (k, v) = f v I o (kt) exp (-t) dt

Although the numerical solution of Eq. (3.11) ca

obtained, several attempts have been made [67-71] to find the exact

solution of this equation by employing either form (3.12) or (3.13).

For exact solutions particularly applicable to the problems of

atmospheric radiation, references should be made to [67, 70].

Numerical solutions of Eq. (3.11) are illustrated in Figures

3.1-3.4 in four different ways. Figure 3.1 is simply a plot of band

absorption versus path length for different ^-values and illustrates

that absorption increases with pressure and path lengths. The

results illustrated in Figures 3.2-3.4 are convenient for comparison

with the approximate solutions discussed below.

Several useful forms of Eqs. (3.11) through (3.13) can be
obtained in the various limits and some of these are discussed

here.

For large R (i.e., high pressure) , sihh	 cosh R ->
such that sinh s/(cosh S - cos z) -* 1 and Eq. (3.11) reduces to

AN ( X , R) = 1 - exp (-Rx)	 (3.14)

In this limit, the mean absorption is a function of a single

variable ^s = S^ X/d	 the line s overlap and there is no fine E
structure (i.e., absorption is independent of the line structure

parameter	 )	 As would be expected, Eq. (3.14) is the same as

the Beer',s law (i.e., the absorption of a band is given by a simple

exponential law and the transmittance is independent of pressure).

An important form of the band absorptance is obtained in the

limit of weak line approximation which is valid when the path

4	 length is :small and the pressure is sufficiently high. For small
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x , therefore, Eq. (3.14) represents the weak line approximation.

Note that Eq. (3:14) is exactly the same as Eq. (3.7).

The results of Eqs. (3.11) and (3.14), as a function of ax

are illustrated in Figure 3.2. The uppermost curve is the solution

of Eq. (3.14). Note that the absorption can never be greater than

that given by Eq. (3.14). For x < 0.2 and S < 0.1 	 the

results of Eq. (3.14) are within 10% of the exact solution of Eq.

(3.11). For a particular 	 value, better accuracies are obtained

at lower x-values. For S > 1 , the results of Eq. (3.14) are

in good agreement with the exact solution for all x-values [111.

For x << 1 , Eq. (3.14) reduces to the linear limit as

given by Eq. (3.6). This is illustrated in Figure 3.2 by the

broken line. As noted earlier, this limit is independent of the

spectral model for band absorptance.

Another important form of Eq. (3.11) is obtained when the

strong line approximation is justified. With reference to Eq. (3.8),

the condition for the strong line approximation is that x >> 1

and following Goody [13], Eq. (3.3) may be reduced to

R
11AN (x, R ) = erf  2 ^2 x> /2] 	 x >> 1 ,

where	 (3.15)

erf (t) = ( 2/ /T 1 f t eXp (- t2 ) dt
0

As mentioned earlier, the mean absorption, in this case, is a func-

tion of a single variable ^2 x	 The expansion of Eq. (3.15) in
powers of ^ 2 x results in

AN (x. R)	 S (2x/fr) /2 [ 1 - (R 2 x/6) + - - -J	 (3.16)

Note that the first term in this equation is identical with the

strong line approximation for a single line (provided Aw = d ).

The results of Eqs. (3.11) and (3.15), as a function of ^2x

are illustrated-in Figure 3.3. The uppermost curve is the
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solution of Eq. (3.15). Note that the absorption can never be

.	 greater than this limiting solution. For x > 1.6 , the results

of Eq. (3.15) are within 100 of the results of Eq. (3.11) for all

R values [11]. For R > 1 	 the results compare well even for

smaller x-values. As discussed by Plass [11), the influence of

Doppler broadening on the absorption can be determined from the

results illustrated in the form of Figure 3.3.

Another important form for the band absorptance is obtained in

the limit of nonoverlapping lines. The conditions for achieving

this approximation are given by Eq. (3.5). The mean absorption of

an Elsasser band, in this case, may be expressed by

AN (x, R) = n A
i
/Aw = Aj /d = R L (x) , R << 1

Rex << 1 ,

(3.17)
and

AN/R = L (x)	 x e
-x [I

0 (x) + 11 (x)J ..

Thus, in this limit the expression for mean absorption of the

Elsasser band is the same as that of a single Lorentz line.

The results of Eqs. (3.11) and (3.17) are illustrated in

Figure 3.4. The uppermost curve represents the nonoverlapping line

approximation. For lower x-values, this curve has a slope of i
unity indicating the region where the weak line approximation is

j
valid. For large x-values, the curve has a slope of one-half which

is the region where the strong line approximation is valid. For

R < 1	 the nonoverlapping line approximation accurately represents

the absorption in the transitional region near x = 1

A final form for the narrow band absorptance is obtained in the

limit of strong nonoverlapping lines (the square root limit). For

Elsasser band, the expression for absorptance in this limit can be

obtained from either Eq. (3.16) or Eq. (3.17)	 While this will be

given by the first term of Eq. (3.16), it will be the limiting form
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of Eq. (3.17) for large x (as given by Eq. (2.28c)). For this

limit, therefore, one can write

AN (x,	 (2x/7r) 1^2 , x >> 1	 R << 1	 Rex << 1 . (3.181

The results of Eq. (3.18) are illustrated in Figures 3.1-3.4 and

they clearly reveal the fact that the square root limit is the

limiting solution for low pressure and large path lengths.

The Elsasser band model was originally developed for the

pressure broadened Lorentz line profiles. Recently, the model has

been extended to the Doppler line shape by Kyle [721, Golden [73,

74], and Young [75, 76], and to the Voigt profile by Golden [771.

3.2.2. Statistical (Mayer-Goody) Model

The statistical band model is based upon the assumption that,

in a given wave number interval, the spectral lines are spaced

randomly, and the intensity of these lines can be specified by some

distribution function [10, 131. The model is useful in describing

the absorption characteristics of CO 2 (especially at larger path

lengths), H 2O, and other relatively complex polyatomic molecules.

The model considers a spectral interval of width Aw D = nd

containing n total lines with each individual line having

intensity S.
3
 and wave number w.

3
 occurring within Aw 	 Let

N(w j ) dw i represent the probability that the jth lime has an

intensity between S^ and S^ + dS^ 	 If w i 's and S t 's are

mutally independent, then the probability of finding the set of n

lines with the distribution wl --- w  , S 1 --- S 	 is

n
JY, N (w^ ) P (Sj ) dw^ ds .	 (3.19)

The average transmittance at wave number w is obtained by

averaging the transmittance at w over the probability distribution

of the set of n lines as



r	 _I _

	
t	

r

_	
r	

n
T (w) = 3pw --- fAw fo --- fo F, N (w )

j=1

By assuming that the line positions are

Ow and that all the lines in Ow have

(3.20) can be expressed as

exp C-S A X f  (w, WA dw
i
 dSi

(3.20)

distributed at random in

the same intensity, Eq.

T (w) = (1/D) 
fw 

exp C S A X f  (w, w j)] dw j
)
n 	(3.21)

The absorptance over the wave number interval Qw = D = nd

may, in general, be expressed by [10, 131

AN = 1 - 11 - \
Aj , 

D/D) n

	
(3.22a)

where

A  
D (S o ► X, P) = foo Aj,D(Sj, X, P) P(Sj i So) ds i 	(3.22b)

In these equations, A j,D is the absorptance of a single line over

the entire wave number interval D, P(S ' , S o ) is the normalized

probability of finding a spectral line with the intensity S  and

S  + dS i , and S o is the parametric mean line intensity that

occurs in the intensity distribution function.

For a large number of lines in the interval D , the term nd

may be considered to approach infinity even if the mean spacing d

is held constant. By employing one definition of the exponential,

it may be shown that, for large number of lines, Eqs. (3.22) becomes

AN = 1 - exp (-Ai /d) , n >> 10 ,	 (3.23)

where A^ without the subscript D represents the absorptance of

a single line for an infinite spectral interval. Physically, this

assumes that there is no appreciable absorption by the single line

outside the interval D . If this is not the case, then amore

3

56
	

x



accurate expression for the absorption of a single line in the

finite spectral interval (as given in subsections 2.3 and 2.4)

should be employed.

Since the lines are assumed to be distributed randomly in the

statistical model, the absorption by this model is always less

than that by the Elsasser model. The advantage of the statistical

model is that it can easily be applied to any line shape. Depending

upon the variation in the intensity of individual spectral lines in

a particular band, the statistical model is usually divided into two

subclasses: uniform statistical model (equally intense lines), and

general statistical model (exponential distribution of line

intensity).

3.2.2.1. Uniform Statistical Model - Equally Intense Lines. If in

a narrow spectral interval all spectral lines are assumed to be

equally intense such that P (S j ) = 6(S i  -- S o ) , then in Eq. ( 3.22)

Aj1D(So, X' P) _ Aj,D (S o , X, p) ,	 (3.24)

and one can now write

- C - (	 / )]	 (3.25)AN = 1	 1	 Aj^D D n .

An appropriate relation for the absorption by a specific line profile

(such as Lorentz, Doppler, or Voigt), over a specified spectral

interval, should be used in Eq. (3.25). At this point, it should

be pointed out that Eq. (3.25) could have been obtained directly by

combining Eqs . ( 3.1) , ( 3. 2) , and (3.21).

In a special case, if all spectral lines are equally intense,

the use of the Lorentz line shape is justified, the absorption in a

narrow band is due to a large number of spectral lines (with an

average spacing d), and if there is no absorption by a single line

outside the interval D , then Eq. (3.24) can be expressed as

Aj /d	 A /d = S L(x)	 R x e x [I o (x) + I 1 (x)]	 (3.26)
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The expression for the narrow band absorptance can be obtained now

by combining Eqs. (3.23) and (3.26,) as

AN (x, ^) = 1 - exp j-^ x e-x[I0 (x) + I 1 (x)]^ , n >> 10 (3.27)

By employing the approximate form of the Ladenberg-Reiche function

(see Eqs. (2.27), (2.28x), and (2.29e)), Eq. (3.27) can be expressed

in an alternate form as

N (x, R) = 1 - ex i+^	 x/[1 + (7r x/2) --11/2- a 1
	

(3.28)

With a = 5/4 , results of Eq. (3.28) are within 1% of the results

of Eq. (3.27). In atmospheric radiance calculations, use of Eq.

(3.28) results in considerable savings of computational time.

The weak line approximation for this model can be obtained by

substituting the appropriate value for (A j,D/D) in Eq. (3.25).

For small x , the absorption by a Lorentz line, in an infinite

spectral interval, is given by Eq. (2.28b) and, therefore, one can

write

A
i 
/D = ^2Tr ^L x>/d = ^x	 (3.29a)

A
i
/D = A^/ (nd) = R x/n	 (3. 29b)

Upon substituting Eq (3.29) into Eqs. (3.25) and (3.26), the

expressions for the weak line approximation are obtained as

AN (xr	 ((3x/n) I n	 (3.30a)

or

°	 AN (x,	 exp (-fix)	 (3. 30b)

Note that Eq. (3.30b) could have been obtained directly from Eq.

(3.27) by using the linear form of L(x) 	 x for small x	 Eq.,

(3.30b) is exactly the same as Eqs. (3.7) and (3.14) 	 This,

however, should be expected because the particular arrangement of
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the spectral lines in the band does not influence the absorption

when the weak line . approximation is valid.

The strong line approximation for this model can be obtained

from the asymptotic form of (A j,D/D) in Eq. (3.25) for large x .

For large x , the absorption by a Lorentz line in an infinite

spectral interval is given by Eq. (2.28c) such that

A,/d = [2YL (27rx) %21/d = R (2x/ .r) %2	 (3.31)

By substituting this in Eqs. (3.25) and (3.26), the expressions for

the strong line approximation are found to be

AN (x, ^) =	 ^^ - (2R 2x/7) 1/21n

	
(3.32a)

or

AN (x, S) = 1 - exp[- (2 2x/)
1 /21 	 n >> 10	 (3.32b)

Note that Eq. (3.32b) could have been obtained directly from Eq.

(3.27) by using the asymptotic form of L(x) _ (2x/u) 2 for large

x . Furthermore, in calculating the results for ,the strong line
approximation from Eq. (3.32), an appropriately defined average

value of the line intensity should be used for finding the value of

x	 Otherwise, the term in the square bracket of (3.32a) should be

evaluated for each of the n spectral lines and the results

multiplied together.

The nonoverlapping approximation for the statistical model, iii

general, can be obtained from Eq. (3.23) by expanding the exponential

and only retaining the first term, such that

_	
/'AN	 ^^/d	 3o ^A^/d^ P ^S^ , S o ) dS j ,	 (3.33)

where again A^ represents the absorption of a single line in an

infinite spectral interval. For spectral lines of Lorentz shape,

Eq. (3.33) can be expressed as
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AN/R = f ' L (x) P (S i , S o) dS j ,	 (3.34)

where the right hand side is only a function of x

For the present case of equally intense lines, Eq. (3.34)

yields

AN/R	 L (x) = x e-x [T o (x) + I 1 (x)]	 (3.35)

Note that this expression could have been obtained directly from

Eq. (3.27) by expanding the exponential and retaining only the first

term. Furthermore, it should be noted that Eq. (3.35) exactly the

same as the nonoverlapping approximation for the Elsasser modei

(Eq. (3.17)). This, however, should be expected because it is the

intensity distribution function (and not the regq az or random

spacing of spectral lines) that influences the absorption. in this

approximation.

The square--root limit (strong nonoverlapping line approximation)

r

	

	 of Eq. (3.27) can be obtained by expanding the exponential in Eq.

(3.32b) and retaining only the first term (because for this limit

R e x << 1). This will be exactly the same expression as given by

Eq. (3.18) or Eq. (3.31).

Various results (general and limiting) or the uniform statistical

model are discussed in detail in (16].

3.2.2.2. General Statistical Model -- Exponential Distribution o f

Line Intensities. If an exponential distribution of line intensities

is assumed (i.e., in a band, the probability of finding a spectral

line of intensity S. in a given intensity range decreases
	 i

i	 exponentially), then

9

P (S^, S j = [exp (-SjIS.)]ISo	 (3.36)	
i
-r

For a particular line shape, the line absorptance in Eq. (3.22b) is

calculated by using this line intensity distribution.
1	

a

_

	

	 The absorption by the general statistical band model consisting

of Lorentz lines is obtained by combining Eqs. (3.36), (3.22) and
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(3.23) as [10]

AN `Xo • o = 1 - { l - Dx "/n, (l + 2xo) ^/2] In .	 ( 3. 37a)

AN ( x (, , R) = 1 -- exp C ^xo/(l + 2x j 1/2] , n >> 10 ,	 ( 3. 37b)

and

, where

X0 = S o X;F 2"L

It should be emphasized here that the expression for absorption

by a single line in an. infinite spectral interval as given by Eq.

(2.28a) was used in obtaining Eq. (3.37). Expressions similar to

Eq. (3.37) can be obtained for lines in a band having Doppler or

Voigt line profiles [10, 72-771.

The results of Eq. (3.37b) are illustrated in Figures 3.5-3.7

along with the limiting solutions which are discussed below.

The weak line approximation for the general statistical model

is also given by Eqs. (3.7) , (3.14) , or (3.30) but x is replaced
by x  . The results of this approximation are shown in Figure

3.5 along with the solution of Eq. (3.37b). The weak line approxi-

mation is always valid within 10% for x  < 0.1 .

The strong-line approximation for this case is given.by Eq.

(3.32) where again x is replaced by x  . The results are shown

in Figure 3.6 along with the solution of Eq. (3.37b) 	 For

x  > 2.4 , the strong line approximation results are within 10%

of the exact solution for all R values. For	 > 1 , the' results

compare well even for smaller x--values (11).

The nonoverlapping line approximation for this case is

obtained by combining Eqs. (3.34) and (3.36) as

(3.38)
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The results of Eqs. ( 3.37b) and (3.38) are illustrated in Figure

3.7 where the uppermost curve is the solution of Eq. (3.38).

The square root limit for this case is given by Eq. (3.18) or

(3.31) where again x is replaced by xo . The results are

illustrated in Figures 3.5-3.7. It should be noted that the region

,-)f validity of the square root limit as illustrated in Figures

3.5-3.7 is different than those for -the Elsasser model Figures 3.2-
3.4.

For the sake of brevity, it is often deisrable to express the

results of statistical models (uniform and general) on a single

graph. According to Plass [10, 11], this is possible if one employs

the relation x = (7r/4)xo = (S O X/8YL) in plotting the results.

From the comparison of results presented in Figures 3.2 and 3.5,

it is noted that the absorption curve for 3 = 1 is much closer to

the weak line approximation for the Elsasser model than for the

statistical model. This is because the absorption saturates at a

smaller value of ^x for the Elsasser model.

A comparison of results illustrated in Figures 3.4 and 3.7

indicates that the spectral lines begin to overlap at considerably

larger path lengths for the Elsasser model than for the statistical

model. Thus, the nonoverlapping line approximation has a considerably

larger region of validity for the Elsasser model than for the

statistical model.

Another line intensity distribution sometimes employed in the

statistical band formulation is the inverse-first-power model which

is given by [131.

P (S j)= k S^ -1 ,	 (3.39)

where k is a normalization constant. For proper normalization,

the above distribution must be cut off at some upper limit S j ' on
S.	 Depending upon its application, a lower cutoff limit for S^

might also be essential in determining the correct value of k .

For Lorentz lines, the expression for (A j /d) in Eq. ( 3.23) is
found to be
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gib /d = R ^e_x 
1  

(x) + 2x a-x [1 0 (x) + I 1 (x)l - 4 .	 (3.40)

Substitution of this into Eq. (3.23) will result in another expres-

sion for absorption by a narrow statistical model. Different

solutions of this model can also be obtained in the manner discussed

for the previous two cases.

Malkmus [78, 79] and Rodgers [80] have suggested yet another

distribution of line intensity in a band. This constitutes a super-

position of the exponential and the inverse-first-power distribution

of line intensity. For detailed discussion of this model references

should be made to [78-80].

3.2.3. Random Elsasser Band Model

In actual vibration-rotation bands, lines are arranged neither

completely at random nor at regular intervals. Within a band,

there may be a number of strong lines in certain narrow spectral

region, whereas in other regions only very weak lines may be present.
a	

There also may occur a superposition of equally intense lines in

another spectral region of the band. In cases like this, a more

accurate representation of band absorption is provided by the random

Elsasser model, which assumes the random superposition of several
i

different Elsasser bands. Each of the superposed bands may have

different line intensities, half-widths, and spacing. As many

different Elsasser bands as necessary may be superimposed in this

model. Thus, all the weak spectral lines that contribute to the

absorption for the path lengths and pressure considered can be
S

included in the absorption calculations. As the number of super-

posed Elsasser bands becomes large, the absorption by the entire
3

band approaches that given by the statistical band model. For N

randomly superposed Elsasser bands, the absorption is given by the

relation [10, 13, 71]

N
AN (x, 	 1	

i

R

=1 L[l - A
E,i (xi , g i)/S i1	 (3.41)	 3

_a

where

	

	 (X 	 S^ is the absorptance of the ith Elsasser band andE^ 
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V	
i

t

is given by

E, i/a i	 3000 AE, i (xi' a i) PE (Si , Soi ) dSi	(3.42)

With known intensity relations between individual sub-bands (e.g.,

two Elsasser bands with one having five times more intensity than

the other, etc.), the general result for the absorption from a

random superposition of N Elsasser band can be obtained from the

preceding equations.

As a special case, if exponential distribution of intensity

for narrow Elsasser band is assumed, then

PE (Si' Soi)	 (l/Soi) exp ( Si/Soi) °	 (3.43)

and Eq. (3.42) becomes

1
AE,i16 i	 (Sixoi sinh Ri)/[(Rixoi sinh Si + cosh ^ i ) 2 - 1] /2 . (3.44)

A combination of Eqs. (3.41) and (3.44) yields the expression for

absorptance by a modified random Elsasser band model as

AN 
(
x o , ^> _ (Rx o sinh (3Yf(Rx 0 sinh	 + cosh S)2 - 11 1/2	 (3.45)

The weak-line approximation for the'random Elsasser model, in

general, can easily be found to be

N
AN (x, S) = 1 - iri jexp (- Sixi)]	 (3.46)

The weak line approximation corresponding to Eq. (3.45) will be the

same as for the general statistical model.. The strong-line approxi -

mation for the random Elsasser model, in general, is given by

N
AN (x. R) = 1 - i1=11 ^	 L	 /1 - erf K ^i2 xil 1^2 	 (3.47)

For the modified random Elsasser model the strong-line approximation

is given by Eq. (3.32b) where x is replaced by xo
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The nonoverlapping line approximation and the square root limit for

the modified random Elsasser model are given by the analogous

expressions for the general statistical model.

The results of Eq. (3.4.5), along with the limiting solutions,

are discussed in detail in [16].

3.2.4. Quasi-Random Band Model

Quasir_andom model is probably the best model to represent the

absorption of a vibration-rotation band quite accurately. It assumes

neither a regular nor a random spacing of the spectral lines. The

essential feature of this model is to divide the wider frequency

interval of the actual band into much narrower subintervals. In

each of these subintervals, the spectral lines are assumed to have

random spacing. In this manner, the model accounts for the actual

intensity distribution of strong as well as weak spectral lines.

The absorption of the narrow spectral interval is calculated from

the relation of a single-line absorption over a finite interval.

The absorption of each of the n lines in the narrow interval is

calculated separately and the results are combined by assuming a

random position for the lines within the interval. The total band

absorptance is calculated by averaging the results from the smaller

intervals.

The fundamental features of the quasi-random band model are

discussed, in detail, in references [12, 14, 151. The procedure

for calculating the atmospheric transmittance by employing the

quasi-random band model is discussed, in detail, in [15] where a

listing of the computer program is also provided. Since, in the

final analysis, the quasi-random band model requires detailed

spectroscopic information on the specific molecule under considera-

tion, it has not been included in the present general parametric

study.

The absorption by four narrow band models (Elsasser, general

statistical, uniform statistical, and modified random Elsasser)

are compared in Figure 3.8 for three different values'of
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Since the absorption at small path lengths is a function solely of

the total intensity of absorbing lines, the results by all models

agree well in this region. At larger path lengths, however, the

Elsasser theory predicts higher absorption than the general or

uniform statistical model. As pointed out earlier, this is because

there is always more overlapping of the spectral lines in the

statistical models than in the regular Elsasser band.

The narrow band model formulations discussed thus far represent

absorptions of gases under homogeneous conditions. They can be

extended to nonisothermal nonhomogeneous optical paths by employing

various scaling approximations available in the literature, The

original Curtis-Godson approximation [81, 82] for computing

atmospheric transmission along an inhomogeneous path has been

updated and several improved approximations are now available in

the literature [13, 75, 76, 83-90]. In infrared signature work,

it becomes essential to use an absorption model for a single

highly inhomogeneous optical path [75]. For many atmospheric

applications, however, the atmosphere can be divided into an appro-

priate number of homogeneous layers and the models discussed in

this report can be divided into an appropriate number of homogeneous

layers and the models discussed in this report can be employed

directly [4, 14, 15, 88, 901. In most cases this gives better

results than any scaling technique employed to treat the entire

atmosphere as a single layer.

3.3. Wide Band Models

Aside from the narrow band models discussed in the previous

section, there are also available in literature the so-called wide

band models, which provide correlations that are valid over the

entire band pass [16-20, 91-941. Besides possessing the conventional

linear and square root 'limits, these models also possess another

asymptotic limit, which is called the logarithmic limit. Even though

the use of these models may be restricted for atmospheric applica-

tions, they do provide a quick and accurate information regarding

transmittance of gases at moderately high temperatures. As such,
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these models are quite useful in many engineering applications (for

some recent applications, see [19,,95-102]).

3.3.1. Box (or Coffin) Model

The simplest of the wide ba

introduced first by Penner [22].

tht the absorption coefficient,

band width Aw . -The expression

model is given as

ad models is the box model which was

For this model, it is assumed

Kw	 is constant over an effective

for the total absorptance by this

A = L  Cl - exp (_K WX)] dw = (Aw) e [1	 e-KX]	 (3.48)

where (ow) e is the effective band width, and K is the mean

absorption coefficient for the interval (Aw) e	At relatively high

temperatures, the spectral intervals between fundamental bands of

infrared active gases are filled by the combination and overtone

bands. Under these conditions, modified forms of the box model

become useful in radiative transfer calculations [103]. Further

discussion and application of the box model is available in

references [16, 22, 1041.

3.3.2. Exponential Wide Band Model

Edwards et al..[91, 92] have considered various wide band

models (rigid rotator, non-rigid rotator, and arbitrary)' and have

concluded that three parameters (the mean line intensity to

spacing ratio, the mean line-width to spacing ratio, and the effec-

tive broadening pressure) are necessary for a complete description

of the band absorption. For complete discussions of these models

and their limiting forms, one should refer to [16-20, 91-941. The

final form of the total bandabsorptance relation presented by

Edwards et al. [91, 991 is based on the formulation of the narrow

statistical band model. The expression for the transmissivity

employed in this model is given by



N	 (' w+ (Aw/2 )
Tj - 3I1 T wj - (1/Qw) 3 w- (^w/2)	 exp K X)] dw	 (3.49a)

exp ( (S j /d) X/{1 + C(S j /d) X/B Pj 1̂ 2
)
	 (3.49b)

where B is Tr times the mean line width to spacing ratio for a

dilute mixture at one atmospheric pressure,'and P e is an equivalent

broadening pressure. Use of Eq. (3.49b) also was made by Felske and

Tien [94] to develop relations for the wide band absorptance from

the general statistical band model.

In the present study, four different formulations for the total

band absorptance are presented. These are based on various narrow

band model relation for absorption. For an exponential wide band

if one assumes that the line intensity is an exponential decaying

function of the wave number [92, 991, then

Sj/d 	 (S/A.) (expl[-b o lw	 wo j]/Ao^)	 (S/Ao) ^ ,	 (3.50)

where S is the integrated intensity of a wide band, A O = nd

bo = 2 for a symmetrical band and bo = 1 for bands with upper

and lower wave number heads at 
w 
	 Equation (3.50) is used in

the relation for absorption of a narrow band model and the resulting

expression is integrated over the entire band pass to obtain the

total absorptance of a wide band as

A (u, R ) = A (u, R ) /Ao	 .fwide AN 
(u, R) d (w - wo)

band	 (3.51)

= bo 
f0 

00 

AN ( u , R r ) d^

where u S X/Ao = S P k/Ao	 The second form of Eq. (3.51)

incorporates the relation given by Eq. (3.50).

3.3.2.1. Exponential Wide Band Absorptance from the Elsasser Model.

By substituting Eq. (3.50) into Eq. (3.11), the expression for

absorptance by the Elsasser band can be written as
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K.(u, S) = 1 - (1/27r) f7r exp [ -F 1 ( u	 z	 dz	 (3.52)

where F 1 = u^ sinh R/(cosh S - cos z) and	 is defined in Eq.
(3.50). It should be emphasized here that within a narrow Elsasser

band the line intensities are constant but over a wide spectral

interval the line intensity variation is given by the Eq. (3.50).

A combination of Eqs. (3.51) and (3.52) results in

A(u, ^) _ ( 1/70 Jo' { f 1 ^ -1 [F 2 (u, ^, z, ^)j d^^ dz , (3.53)

where F 2 = 1 - exp(-F 1 )	 The inner integral in Eq. (3.53) can

be evaluated in closed form as

fv { [1 - exp	 d^ = y + Qn(^v) + E 1 (^v) ,	 (3.54)
0

where iU = F 1/^ , v = 1 , y = 0.5772156 is the Euler's constant,
and E 1 (t) is the exponential integral of the first order. The
final form of the exponential wide band absorptance (based on the

narrow Elsasser model) is obtained by combining Eqs. (3.53) and

(3.54) as

A(u , R) = y '+ (1/7r) f^ [Qn ^ + E1 (f) ] dz .	 (3.55)
0

Equation (3.55) can be reduced to several useful limiting forms.

One of the important forms is gbtained when the weak line approxi-

mation for the Elsasser model is valid. Since this approximation

is valid for large pressures, the limiting form of the total band

absorptance in this case is obtained by letting 	 in Eq.

(3.55). Alternately, this form can be obtained by combining Eqs.

(3.14) , (3.50) , and (3.51) as

A (u) = f 1 -1 [1 - exp (-u^) ] d
(3.56)

y + Qn (u) + E 1 (u)
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Note that in this limit the absorptance is independent of the line
structure parameter	 For u > 10	 El(u) < 10-5	 and Eq.

(3.56) reduces to T(u)	 y + An(u)	 and for u < 0.005	 it is
approximately equal to u . Thus, one can write

NIL

^^ = up

-K = Y + kn (u) ,

(u < < >

(U >> >

(3.57)

which are the appropriate linear and logarithmic limits of Eqs.

(3.55) and (3.56).

When strong line approximation is justified, then the absorp-
tion of a narrow Elsasser band is given by the Eq. (3.15). By

combining Eqs. (3.15), (3.50) and (3.51), the relation for the 8trong
line approximation for the wide band is obtained as

^ -1 erf ku^^/2')	 d^(u,	
fo	 V21 1

(3.58)

By introducing a new variable t2 = u^^/2	 Eq. (3.58) can be

written as

(u,	 2 Ifo 
Y (u^2) 

t -I erf(t) dt	 (3.59)

For all values df t	 the'series expansion for the error function

is given by

00
erf (t)	 (2/VF) E 

J ( _ 1) n t(2n+l) /[n!(2n + 1)1^	 (3.60)
n=o

Upon substitut i ng (3.60) into (3.59), interchanging the summation

and integration, and integrating the resulting expression, there is
obtained

CO
n	 (2n+l)/

A (u,	 (4/vr7r)	 (u^/2)	 2/[n!(2n + 1) 2 1 '̂ 	 t3.61)
n=o
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This can be considered a closed form expression for the strong line
approximation.

According to the requirements of the square root limit (see
Eq. (3.18)), retaining only the first term in Eq. (3.61) results in

K(u, a) = (4//,-ff) (u^/2) 1/1 = 2(2^u/7T) I/I ,	 ^ << 1 ,

U/^ >> 1 ,	 ^u << 1 ,
	 (3.62)

which is the correct square root limit for the wide band absorption
[19, 105]. Thus, Eq. (3.55) is seen to reduce to correct limiting
forms in the linear, square root and logarithmic limits.

Since Eq. (3.55) involves double integration, its application
in some radiative transfer analyses may require considerably long
computational time. This, sometimes, can be avoided by expressing
the equation in a series form. In order to do this, Eq. (3.53) is
first written as

T ( u l 	 f 7T {I - exp [A^/ (1 - B cos z) 	dz	 dC , (3. 63)
0	 0

where A = -u tanh ^ , and B = 1/cosh ^ . The inner integral in

this equation can be evaluated in a series form such that

CO
K(ul	

P i ^, - (A) ,n [SUM (mn)	 B + 1) n n I (n	 d^
0 n=	 A

(3.64)

where

c.SUM(mn)	 [(n + m - 1)! (2m - 1)! CM]/[2M(M!)2]
m=O

C = 2/(l + cosh ^) = 2B/(B + 1) .

Integration over	 in this equation gives a value of (1/n)
Thus, the solution of Eq. (3.53) or (3.55) in the series r-presen-
tation (which converges rapidly) is given by
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A(u,S) = n=l ^- (A) n [SUM (mn) ]/[n (B + 1) n n! (n	 1) !^	 (3.65)

The solutions of Eqs., (3.55) , (3.56) , (3.61) , and (3.65) are
illustrated in Figure 3.9 along with the limiting solutions for

four different values of the line structure parameter t = S/2 = fry/d .

No difference in the results of Eqs. (3.55) and (3.65) were noticed.

As such, the solution given by Eq. (3.65) is treated as the "exact"

solution. The uppermost curve in the figure represents the

solution of Eq. (3.56). For t > 1 , the results of Eqs. (3.55)

and (3.56) are identical. For comparison, the theoretical results

obtained by Hsieh and Greif [105] are shown also in Figure 3.9. As

would be expected, the comparison is not very good at large path

lengths.

3.3.2.2. Exponential Wide Band Absorptance from the Uniform

Statistical Model. Upon combining Eqs. (3.27) and (3.50) an

expression for absorption by the uniform statistical model is

obtained which, in turn, is used in Eq. (4.4) to find the relation

for the wide band absorptance as

A(u, 3) = fl {1 - exp	 di	 (3.66)
0

where to = uC/S , i is defined in Eq. (3.50) , and L(TI) is defined
in Eq. (2:28a). Equation (3.66) requires considerably long time for

numerical solution. To save the computational time, function L(n)

can be replaced by Goldman's approximation (see Eqs. (2.29e) and

(3.28)) and this results in

A(u,	 fl Cl -
o	 J	 f

exp ^- fin/[1 + ('rn/2) "412/5^) ^ -i d^ . (3.67)

Numerical results of Eqs. (3.66) and (3.67) are identical and

are in good agreement with the theoretical results of Hsieh and
3

Greif [1051 over the entire range of u and (3 ( see Ref. [161).

For sufficiently small n (i.e., for small u/R), function

L(TI) reduces to n and Eq. (3.66) yields the result for the weak

line approximation as
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A(u) = f 1 [l - exp(-u ^) ] C- 1 dC

= y + kn (u) + E 1 (u) .

This is exactly the same as Eq. (3.56) and is independent of the

line structure parameter S . The linear and logarithmic limits

of Eq. (3.66), therefore, are given by the Eq. (3.57).

For large fl , L(p) = (2n/u) 1/2 , and Eq. (3.66) reduces to
the strong line approximation as

A(u,	 f l ^1 - exp [- (2 ^uC/Tr) 1/2]	 -i dC
(3.68)

= 2{y	 Qn (253;i/fl + E 1 [(2(u/fl 
1/2]

For Su << 1 , this reduces to the correct square root limit as

given by Eq. (3.62) .

It should be emphasized here that the absorptance of a wide

band, as obtained from both the narrow Elsasser and uniform statis-

tical models, is the same at sufficiently high pressures. As such,

for gases whose spectral behavior could be described either by a

narrow Elsasser or a uniform statistical model, the use of Eq.

(3.56) should be made in radiative transfer calculations at

moderately high pressures (P > 1 atm).

3.3:2.3. Exponential Wide Band Absor ptance from the General
Statistical Model. For the sake of completeness and comparison

of results, the relation for the wide band absorptance formulated.

by Felske and Tien [94], is presented here. This may be obtained by

combining Eqs. (2.16), (3.49b) and (3.50) as

A(u, R)	 f1 {[l - exp(-pt) l/[C 2 + (2p U)2] 
1/2) 

d
0

(3.69)
+ fl {[ .1 - exp (- pt) ]/ } d^0

where
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P	 (uc/t)] — 1/11 + (UCAH

(3.69Pu	 {(t/U) [1 + ( t/U )]} /2	
cont'd

E = P/Pu I t = ^/2 = 7y L /d

In the linear and logarithmic limits, Eq. (3.69) reduces to the
expressions given by Eq. (3.57), and in the square root limit it
reduces to Eq. (3.62). The solutions of Eq. (3.69) are illustrated
in Figure 3.10 along with the limiting solutions.

3.3.2.4. Exponential Wide Band Absorptance from the Random Elsasser
Model. By combining Eqs. (3.42), (3.44), (3.50), and (3.51), the

expression for the total band absorptance for ^--his case can be

written as

	

(u,	 1	 ui^ sinh ^i/Gj(ui,	 d^	 (3.70)

where

G^ j * 
(
Ui l ^i)
	 Uu i ^ sinh ^ i + cosh ^i 2 - 

11 -
This is the general result for absorptance derived from the narrow
random Elsasser model. The special form of this equation is obtained
for N = 1. as

W(u,	 fl[u sinh ^/G j (u, ^)] d^	 (3.71)
0

Note that Eq. (3. 71) could have also been obtained by combining

Eqs. (3.46), (3.50), and (3.51). The solution of Eq. (3.71) is
found to be

	

A(u,	 Pn{[G2(Ul	 u sinh	 + cosh ^]/(sinh	 cosh ^)j

(3.72)

where
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G(u, (3) _ [(U 2 + 1) sinh 2 ( + 2u sinh S cosh (3] '/2 .

It can be shown easily that Eq. (3.72) reduces to the correct

limiting forms in the linear, square root, and logarithmic limits.

The relations for the exponential wide band absorptance given

by Eqs. (3. 55) , (3.66) , (3.69) , and (3. 72) are ref erred to as the

exact relations and the numerical solutions of these equations are

termed as the "exact" solutions. These solutions are compared

for three different values of the line structure parameter in

Figure 3.11. It is seen that the absorptance by wide band models

follow the same general trend as by narrow band models illustrated

in Figure 3.8. Once again it should be emphasized that, at larger

path lengths, the Elsasser theory predicts higher absorption than

the general or uniform statistical model. This fact is clearly

evident from the results of Figures 3.8 and 3.11. For t = R/2 = 1

the absorption by the random Elsasser model in Figure 3.11 is seen

to be lower than the general statistical model. This does not
6

appear to be physically realistic because the results of random

Elsasser model must fall between the results of Elsasser and general

statistical models.

3.3.3. Axial or Slab Band Absorptance Model

The primary reason for employing the band absorptance models

is to represent accurately the absorption-emission characteristics

of a vibration-rotation band and consequently eliminate the spectral

integration in the radiative flux equations. The angular dependency

of radiation usually is not included in the molecular band models.

In recent years, however, attempts have been made to incorporate

the angular integration of the equation of radiative transfer by

introducing the so-called axial or slab band absorptance models

[93, 99, 100, 106]. By use of these models, in certain cases, the

spectral as well as angular integration in the radiative flux

equations can be avoided. The expression for the slab band

p	 absorptance can, in general be written as
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As ( u . ^) = 2 fl u A (u/u) d1i
0

(3.73)

where u = cos e , and A(u/li) is the nondimensional total band

absorptance. By introducing different relations for the total band

absorptance in Eq. (3.73), various expressions for the slab band

absorptance can be obtained.

Edwards and Balakrishnan [93] have proposed that when the

pressure is high (i.e., when rotational line structure has smeared

out), then the spectral absorption coefficient of many molecular

gases can be represented by the exponential-winged band model and

this results in an expression for the slab band absorptance as

A(u) = kn(u) + E 1 (u) + y + 2	 E 3 (u)
	

(3.74)

where En (u) are the exponential integral functions. As will be

shown in the next section, the use of Eq. (3.74) is justified for

relatively large path length values.

3.4. Band Absorptance Correlations

The divergence of radiative flux usually involves multiple

integrals even for the simple case of energy transfer between a

plane-parallel geometry. In order to reduce the mathematical

complexities and save the computational time, it often becomes

essential to express the integral form of the total band absorptance

by fairly accurate continuous correlations. Several continuous

relations for total absorptance of a wide band, which are valid

over different values of path length and line s-L-ructure parameter,

are available in literature. A brief description of these

correlations is given here in the sequence that they became

available in the literature.

The first band absorptance correlation, satisfying the linear,

square root, square root logarithmic, and logarithmic limits of a

wide band absorptance, was proposed by Edwards and Menard [91]. By

comparing the results of correlations in various limits with

experimental data over a large range of pressure and temperature,
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Edwards and co-workers have determined empirically the necessary

correlation quantities S(T) , A 0 (T) , and ^(T, Pe ) for the

important bands of CO, CO 2 , H 2O, and CH 4 . These results are

summarized by Edwards et al. in [92].

A continuous band absorptance correlation has been proposed

by Tien and Lowder [18, 1071, and this is of the form

A = Qn (uf (t) { (u + 2)/ [u + 2f (t) ] } + 1) 	 (3.75)

where

f (t) = 2. 94 [1 - exp (-2. 60t) l , t = S/2

The choice of Eq. (3.75) was based on the specification of five

conditions, and the form of f(t) was chosen so as to give agree-

ment with the correlation of Edwards and Menard. This correlation

does not reduce to the correct limiting form in the square root

limit [19]. Extensive use of this correlation has been made in

various radiative transfer analyses in the past ten years (see,

for example, [19, 96, 97, 1041). The results of this correlation

are compared with other correlations in Figure 3.12 for

t = R/2	 0.01 and 1 . Comparative results for other t-values

are available :'_n [16, 171. From these results it is concluded that

the use of Eq. (3.75) should be restricted to relatively large [3

values.

Another continuous correlation for band absorptance has been

proposed by Goody and Belton [108], and in terms of the present

nomenclature this may be written as

A = 2 Qn{1 + u/ [4 + ( ,rru/4t) ] 121	 (3.76)

Although this correlation satisfies the linear, square root, and

logarithmic limits, its use is restricted to relatively small S

values [19]

Tien and Ling [1091 have proposed a simple two parameter

correlation for A(u, (3) applicable under certain thermodynamic
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conditions, and this is of the form

I

A(u) = sinh -1 (u) .	 (3.77)

This equation is valid only for the limit of large R	 By obtaining

the large ^ limit of Eq. (3.75) as

A(u) = kn { 2.94 u[ ( u + 2)/(u + 5 . 88)] + 11 ,	 (3.78)

Tien and Ling have shown that throughout the whole range of u

the maximum deviation of Eq. (3 . 77) from Eq. (3.78) never exceeds

seven percent.

A relatively simple continuous correlation for band absorptance,

which was introduced first by Cess and Tiwari [19] and later applied

by Cess and Ramanathan [110], is given by

A(u, S) = 2 Qn C1 + u/{2 + [u(1 + 1/S) 1 1/2 0 ,	 (3.79)

where R = 4t/fr = 2(/ff	 It is seen from Figure 3.12 (number 3
curves) that this correlation yields lower absorptance than other

correlations over the entire range of path length. As such, use of

this correlation is justified, at relatively high pressures, to

gases whose spectral behavior can be described by the general

statistical model.

In the limit of large pressures (i.e., Large ^ limit), the

relation for the slab band absorptance proposed by Edwards and

Balakrishnan, Eq. (3.74), can be treated as another correlation for

the total band absorptance. The results of this correlation are

found to be valid only at large path lengths. [16, 171.

Based upon: the formulation of the total band absorptance from

the general statistical model, as given by Eq. (3.69), Telske and

Tien [94] have proposed a continuous correlation for A(u, R) as

A(u, S) = 2E 1 (tp u) + E 1 (pu/2) - E , [(p./2) (1 + 2t)J

+ Qn Rt P ") 2`(1 + 2t)] + 2y	 (3.80)
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This correlation is valid for the entire range of the governing

parameters. Further discussion of the validity of this correlation

is given in the next section.

Another form of the band absorptance correlation is obtained

by slightly modifying the original correlation proposed by Cess

and Tiwari as

A(u,	 2 J,n (1 + u/{2 + [u (C + 7r/2 g) ] 1j2 	 ,	 (3.81)

where C < 1. A value of C = 1 was suggested in [19]. For

R < 1 , C = 0.1 gives an accurate fit for all path lengths. For

> 1 and u < 1	 C again is equal to 0.1, but for ^ > 1 and

u > 1 a value of C = 0.25 should be used. If it is desired to

use only one value of C for all ^ and path lengths, the value

of C 0.1 is recommended.. It should be pointed out here that

both Eqs. (3.79) and (3.80) reduce to the correct limiting forms

suggested in [19, 911. The results of this correlation (number 6

curves) are in general agreement with the results of Eq. (3.80)

for all u and S values.

The form of the absorptance given by Eq. (3.56) can be treated

as another correlation for the total band absorptance. It should

be emphasized here that the only restriction in the use of Eq. (3.56)

is that the pressure must'be sufficiently high_ Thus, use of Eq.

(3.56) is justified at all path lengths for t = (3/2 > l [16, 171.

For gases whose spectral characteristics warrant use of the

Elsasser model, the series form solution given by Eq. (3.65) can

be regarded as another corro-lation for the total band absorptance.

As pointed out earlier, the series in Eq. (3.65) converges very

rapidly and the results obtained by this are in excellent agreement

with the numerical solution of Eq. (3.55). Thus, use of this

correlation in actual radiative transfer problems will provide

mathematical flexibilities as well as will result in saving of

computational time.
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3.5. Comparison of Wide Band Absorptance Results

The results of different correlations have been compared with

each "exact" solution of the wide band absorptance in this section.

In comparing the results of a correlation with an "exact" solution,

the limitations of both the particular correlation and the exact

solution must be noted. A correlation developed from the general

statistical model should not be expected to give good agreement

when compared with the exact solution based on the Elsasser model,

or vice versa.

The wide band absorptance results of various correlations are

compared with the wide band "exact" solutions based on the Elsasser

and general statistical models in Figures 3.13-3.16 for different

values of the line structure parameter t = ^/2 . Comparative

results based on the uniform statistical and random Elsasser- models

are given in [16, 171. As would be expected, maximum errors (in

most cases) occur in the intermediate path lengths. This is because

most correlations are developed to satisfy at least the linear and

logarithmic limits. As discussed earlier, the correlation presented

by Edwards and Balakrishnan for large R is seen to be valid only

for relatively large u values. In general, the correlation by

Tien and Lowder appears to give maximum errors for low ( values.

The correlation by Goody and Belton gives maximum errors for large

u and large R values (because its use is restricted to relatively

small values of P (191).

The maximum error by Felske and Tien's correlation is +25%

(at t = 0.1	 u = 0.5) for the case when it is compared with the

exact solution based on the Elsasser model (see Figure 3.13). The

maximum error by Cess and Tiwari's correlation is +30% (at t = 0.1

u = 10) and it is also for the case compared with the exact solution

based on the Elsasser model (Figure 3.13, curve 6). The advantage

in using Eq. (3.81) is that it does not involve any exponential

integral and therefore requires significantly less computational
s
	

time for radiative transfer analyses.
(

	

	

For t	 1 , the results of correlation given by Eq. (3.56)

are within 0.6% of the exact solution based on the Elsasser model

i
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and therefore could not be shown in Figure 3.14. For t > 1 , the

results of Eqs. (3.55) and (3.56) are identical for all path lengths.

When compared with the exact solution based on the uniform

statistical model [16, 17], the results of Eq. (3.56) indicate a

maximum error of about 11% for t = 1 and 0.7% for t = 10 . When

compared with the exact solution based on the general statistical

model (Figure 3.16), the results of Eq. (3.56) :indicate a maximum

error of about 18% for t = 1 and 20 for t = 10. The use of

Eq. (3.56) should, therefore, be made in all cases at sufficiently

high pressure (P = 1 atm and higher). Eq. (3.56) is especially

useful for gases whose spectral behavior could be described by the

Elsasser and uniform statistical models.

The comparison of results of Felske and Tien's correlation

with the numerical solution of Eq. (3.69) indicates excellent agree-

ment (Figures 3.15 and 3.16) for all ^ and u values. This,

however, would be expected because the correlation was obtained from

Eq. (3.69) which was derived from the general statistical model.

The correlation, therefore, is very useful in radiative transfer

analyses involving those molecules whose absorption-emission

characteristics can be represented by the general statistical model.

3.6. Band Emissivity (Total Emissivity)

The concept of band emissivity (total emissivity or simply

emissivity) has proven to be very important in many radiative

transfer analyses. It is particularly useful in calculating

atmospheric radiation fluxes and cooling rates. As with the band

model correlations, the expressions for emissivity are useful in

eliminating the integration over the complicated line structure of

the atmospheric spectrum. A large amount of information concerning

various relations for emissivity of different gases is available in

the literature. Important formulations for emissivity of atmospheric

constituents are given in [13, 111-114]. No attempt is made here

to summarize all the information available in the literature.

Instead, a few fundamental expressions for the emissivity are

presented which,'along with the band models discussed earlier`, can

be used in many atmospheric radiative transfer analyses.
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For a homogeneous path of absorbing-emitting gases, the

spectral emissivity is defined by

E w = Aw = 1 - exp (-Kw X) ,	 (3.82)

where . Aw = a 	 is the spectral absorption defined in Eq. (3.2).

The total emissivity (or simply emissivity) refers to the emissivity

over the entire energy spectrum and for a homogeneous path of

absorber it is defined by

e (X, P, T ) = (7r/cT4) fm Aw ( X , P, T) B w (T) dw	 (3.83)
0

where a is the Stefan-Boltzmann constant.

For a single gas, whose absorption spectrum consists of bands

of rotational lines, the column emissivity may be expressed by

[13, 18]

E (X, P, T)	 Bi (T) Ai (X, P, T)]/ ,̂_
 B

i (T ) .	 (3.84)

where B i (T) is the Planck function evaluated at the band center,

Bi (T) = aT 4	and Ai represents the integrated absorptance of

the ith band and is given by Eq. (3.2). For a single band gas,

Eq. (3.84) reduces to

E (X, p, T) = a (T) A i (X, Pr T) ,

where	 (3.85)

a (T) = 'TBi (T) / (6T4 )

By employing appropriate band absorptance relations for

individual bands, theoretical expressions for emissivity of a gas

can be obtained from Eq. (3.84). Band absorptance correlations,

discussed in section 3.4, are especially useful for this purpose.

For many atmospheric applications, the process of radiative

transfer corresponds to the limit of strong rotational lines [111,
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114], and emissivity can be expressed in terms of a single parameter

(see the discussions on the strong line approximation). For

example, if one considers the statistical band model consisting of

Lorentz lines, then the band al^)sorptance for strong line approxima-

tion is given by Eq. (3.32b). A combination of Eqs. (3.32b) and

(3.85) results in

E	 a (T) Ai	a (T) [1 - exp (-V^) ]

where	 (3.86)

= 2( 2 x/ff = 4 Y SiX/d2

In the strong nonoverlapping line limit (square root limit),

AD O _	 and Eq. (3.86) reduces to

E O = a (T) r'~	(3.87)

By making use of Eq. (3.84), Eqs. (3.86) and (3.87) can be extended

to the case of multiband gases. The constants appearing in a(T)

and	 can be evaluated for a particular gas (with a single or 	 {

multiple bands) under varying conditions.

The above relations for emissivity are written for a homogeneous

path. In a real atmosphere, the temperature varies along a non-

homogeneous path and these relations should be appropriately modi-

fied. The emissivity for a nonhomogeneous atmosphere (for the path

between levels z and z') can be expressed by

E(z z') _	 Aw(z, z') [Bw (z')/B(z')] dw
0

where	 (3.88)

B (z')	 f BW (z) dw = 'oT 4 /ff -
)

Various relations for spectral absorptance can be used in Eq. (3.88)

and the resulting equations can. be properly scaled for nonhomogeneous

atmospheric applications.
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Several relations for emissivity of various gases are available

in the literature [13, 18, 111-117]. Early experimental investiga-

tions on the emissivity of the gases such as CO, CO 2 , 11 2 0, CO 2 + H2O,

SO 2 , NH 3 , NO2i and CH 4 are summarized by Hottel in [116, 117].

Rocent investigations are discussed in [18, 111-115].

It should be pointed out here that any single relation for the

emissivity cannot be expected to apply over a wide range of

atmospheric conditions. Furthermore, in radiative flux calculations

not only the expressions for emissivity but its derivatives also

are required. Different relations are needed for upward and down-

ward flux calculations. These points are discussed in some detail

by Goody [13] and Rodgers [111].

4. EVALUATION OF TRANSMITTANCE AND INTEGRATED ABSORPTANCE

OF SELECTED INFRARED BANDS

In this section transmittance and integrated absorptance

computations are made for several bands of different gases by

employing the line-by-line and quasi-random band model formulations

under conditions of pressure and temperature for which experimental

measurements are available. The sole motivation for this was to

examine the possibility of using the quasi-random band model formu-

lation for transmittance computations as required in surface

temperature retrieval and other data reduction procedures [4, 14,

15, 118, 1191.

For a homogeneous path of an absorber, the monochromatic

transmittance at any wave number location w is given by

f
T ('w) = exp [-K (w) u] ,	 ( 4.1)

s	 where K(w) is the absorption coefficient at w in cm-1-atm-1

[

	

	 and u represents the pressure path-length of the absorber in
cm-atm. To calculate the transmittance from Eq. (4.1) it is

essential to employ an appropriate spectral model for the absorption

coefficient.
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4.1. Transmittance Models and Computational Procedures

The line-by-line (direct integration) and quasi-random band

models are used in calculating the spectral transmittance. The

computational procedures are described in detail in [12, 14, 15,

1201. 

In the direct integration procedure the entire frequency range

of interest is first divided into a large number of narrow intervals

Aw	 Each interval is then divided into a variable number of

subintervals depending upon the number of lines within the interval.

Two very narrow subintervals are created on each side of aline

center. The transmittance is computed at four frequency locations

in each subinterval and is averaged finally over each interval.

Total absorption coefficient at any wave number w consists of

contributions from all the lines in the vicinity and is computed in

two parts as

K ( w ) = K  ( w ) + K w ( U1 ) ,
	 (4.2)

r

	

	 where K D .(w) and Kw (w) are called the direct and wing contribu-

tions respectively. Direct contribution originates from lines in

very close vicinity (on both sides) and for Lorentz lines this is
a

obtained from

K D (w) =	 S nyn	 r^ - wn 2 + Yn l 	 (4.3)
n	 /^

^rw	 )	 2
1.	 J

where w  refers to the center of the nth contributing line.

The wing contribution arises from lines which are farther from w

than the range of direct contribution and for Lorentz lines this

is given by the expression

Kw (w)	 SnYn/L^ \w - tv
n ^ 2] .	 ( 4. 4)

n

For complete information on the direct integration procedure

references should be made to [15, 120], 	
y

97



In the quasi-random band model, the entire band span 4 is

divided into a number of small subintervals of equal spectral width

d . The appropriate number of such intervals is obtained through

numerical experimentations. The lines within each subinterval are

distributed into five intensity decades and average intensity for

each decade is obtained first. The average transmittance over

S due to a single line of intensity S 	 is given by [15)

Tn (S)	 S f exp[-Sn u f (w, 
wn)J 

dwn 	(4.5)

where it should be rioted
line center location w 

intensity decade then the

that decade is given by

Td (S) = ^s f exp

that the variable of integration is the

If N is the number of lines in an

average transmittance due to all lines in

[_^_Sn u f (w, wn) ] dwn^ N 	(4.6)

where S  is the average intensity of all the lines within the

decade under consideration. The average transmittance clue to all

lines in the five intensity decades of the subinterval 6 is given

by

_	 5_	 5
TT ( S ) = H 	 ( s ) = rI I 1 f exp[-S

k	 d=1 d	 d=1 6k 6k	 n

where subscript k represents the kth

6 k ) of the total spectral interval A

transmittance due to the lines within

in the adjacent subintervals also make

to the absorption in 6 k . The result

subinterval 6k , therefore, is given

u f (w, wn )] dwn ,	 (4.7)

spectral subinterval (i.e.,..

Eq. (4.7) represents the

6 k	The wings of the lines

a significant contribution

ant transmittance over  the

by

K
Tk(S)	 Tk-k (S)	 11Tk-i (d) '	 (4'8)

1)4K

where Tk_ j (6) represents the transmittance in 6k due to lines
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and K is the number of adjacent subintervals (on both

sides) from which the wing contribution is considered significant.

The average transmittance for the entire range A is expressed by

_	 K
1[(A) =

	

	 T (S)	
(4.9)K k=1 k

For other computational details, references should be r,ade to

[14, 151.

4.2. Transmittance of Selected IR Bands

In this section, transmittances of selected infrared bands are

calculated by employing the line-by-line and quasi-random band

models and the results are compared with the experimental measure-

ments of Burch et al. [121]. The bands selected for comparison

are CO fundamental (4.6 u), 4.5 u N 2 0 , , 4.3 u CO 2 , and 15 p CO2

bands. Transmittance results are presented in Figures 4.1-4.4

separately for each band. Line-by-line results are shown by the

solid lines, quasi-random band model results by the histograms, and

the experimental results by the broken lines. Integrated absor_ptance

for these bands are presented in Table 4.1 for comparison. The

results for 6.3 p H 2 O band are available in [118].

The values of the computational parameters (such as the number

of narrow subintervals for the Line-by-line and band models, the

ranges of direct and wing contributions, etc.) used for each band

and the reasons.for using them are discussed in [118]. In Ref.

[121], the experimental results were obtained by using different

effective slit-widths for different bands. The theoretical results,

therefore, were also degraded with the corresponding slit functions

for comparison.

r	 For CO fundamental band, transmittances were calculated for

the spectral range of w	 2070	 2220 cm -1 and these are compared

with the experimental results in Figure 4.1. The line-by-line

results are seen to be in good agreement with the experimental

F

	

	 results while the band model results are seen to exhibit appreciable

differences (particularly'in the P • and R branches of the band).
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Table 4.1.	 Comparison of Integrated Absorptances for Various Bands.

Line-by-Line Results Band Model Results
Band

Identification Experimental Integrated Percentage Integrated Percentage
and Frequency Absorptance Absorptance Difference with Absorptance	 Difference with

Range (Burch et al.	 1962) (cm -1) Measurement (cm -1) Measurement

CO 4.6 u --.
(197 .0-2270 cm -1 ) 73.90 70.32 -4.84 67.30 -8.93

k	 N20 4.5 u
(2140-2290 cm-1 ) 57.00 56.01 -1.74 51.43 -9.77

CO2 4.3 u
(2220-2420 cm-1 )

i
73.80 74.09 0.39 69.72 -5.53

H2O 6.3
(1200-2100 cm -1 ) 334.0. 326.4 -2.28 323.1 -3.26

CO2 15 
u

(550-800 cm 66.1066.10 66.57 0.71 65.35 -1.13

I

I

I
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Integrated absorptances for this band (presented in Table 4.1) are

for slightly greater frequency range than that considered for

transmittance calculations. This was necessary because the experi-

mental value was for a greater frequency range. The results of

Table 4.1 show that the line-by-line model absorptance is about

five percent lower and the band model absorptance is about nine

pe.Ncent lower than the experimental value.

For 4.5 p N 2 O band, the spectral range selected for trans-

mittance calculations is 2140 - 2290 cm- 1 and the results are

presented in Figure 4.2. With the exception of the fact that the

experimental curve is shifted approximately 6 cm -1 toward the higher

frequency side (with respect to the theoretical curves), the agree-

ment between the line-by-line and experimental results is very good.

The band model results again show appreciably lower absorption.

Table 4.1 indicates that the line-by-line absorptance is less than

two percent lower than the experimental value while the difference

for the band model absorptance is approximately ten percent.

For 4.3 u CO 2 band, the comparison of theoretical and

experimental transmittances is shown in Figure 4.3 for the spectral

range of 2220 — 2420 cm -1 . The agreement between the experimental

and the line-by-line results is seen to be excellent. The band

model results again exhibit a slightly lower absorption. It can be

seen from Table 4.1 that the integrated line-by-line absorptance is

within 0.5 percent of the experimental value while the band model

absorptance is approximately 5.5 percent lower.

For 15 u CO 2 band, the transmittance results are presented

in Figure 4.4 and the agreement between the three results is seen-

to be excellent. Table 4.1 shows that the theoretical results

agree with the experimental ones within one percent.

From the results presented in this section it is concluded

that the line-by-line results are in better agreement with the

experimental values than the quasi-random band model results.

In view of high accuracy required for the temperature retrieval

and other data reduction work [4, 14, 15, 119], it would be

1-05



desirable to use the line-by-line model. In other atmospheric

works, however, use of the quasi-.random band model may be justified.

5. UPWELLING ATMOSPHERIC RADIATION

It is possible to infer concentrations of various pollutants

from an appropriate analysis of upwelling radiation measurements

obtained in passive mode experiments [4, 5, 15]. Since variables

dike surface temperature, surface emittance, concentration of water

vapor and other more abundant species (e.g., CO 2 ) affect the

upwelling radiance to a greater extent than the less abundant

pollutants like CO, a theoretical study of the effects of these

variables on the upwelling radiance is essential in order to be

able to obtain meaningful information regarding pollutants. In

this section, basic equations for calculating the upwelling atmos-

pheric radiance are presented. These account for the various sources

of radiation coming out at the top of the atmosphere. The line-by-

line and quasi-random band models are used for the evaluation of

transmittance and upwelling radiance in the spectral region of CO

fundamental band (2070 - 2220 cm -1 ). The theoretical procedure,

however, can be extended easily -to any other spectral range. Model

calculations have been performed to study the effect of different

interferring gases, water vapor profiles, surface temperature and

surface emittance on the upwelling radiance and signal change.

As shown in Figure 5.1, the radiation emergent . from the

atmosphere, E(w)	 may be given by the expression [4, 71

E (w)	 EG (w) + ER (w) + E^ (w) + ERA (w)	 (5.1)

where

EG (w)	 thermal radiation emitted by underlying surface and

atmosphere

ER (w)	 incident solar radiation reflected by the surface

II
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E^(w) = radiation scattered by single or multiple scattering

processes in the atmosphere without having been reflected

from the surface

ERA M = scattered energy which has undergone a reflection from the

surface.

In general, these quantities are functions of surface temperature,

atmospheric temperature, surface emittance, surface reflectance,

sun zenith angle, scattering characteristics of particles, and

transmittance of the atmosphere.

In the spectral region of infrared measurements, the effect of

scattering is negligible. The incident solar radiation reflected

by the surface, however, is important especially if the surface

reflectance is assumed to be high (0.2 and higher).

Upon neglecting the scattering and solar radiation, the

expression for thermal radiation emerging from a plane-parallel

atmosphere can be written as

E (w) = EG (w) = E(w) B (w, T s ) T (w^ o) + f h B (w, T (z)) [dT (w, z) /dz] dz

(5.2)

where e(w) is the surface emittance, B(w, T) is the Plank's
p

blackbody function, Ts is the surface temperature, T(z) is the

temperature at altitude z 	 and T(w, z) is the monochromatic

transmittance of the atmosphere. The first term on the right hand
s

side of this equation represents the radiation from the surface

while the second term is the radiation from the atmosphere.

The contribution from sunlight reflected from the surface

becomes significant at shorter wavelengths. This contribution is

given by the component ER M as

ER (w) _ ( 1/7r) [1 - e (w) ] cos 8 H S (w) [T (w) ] (5.3)

where e is the sun zenith angle and 	 = 1 + f(e)	 Function

f(6-) = sec 6 for o < e < 60° and equalsto Ch 0 for e > 600

with Ch 6 denoting the Chapman function. H S (w) is the sun
108



irradiance on top of the atmosphere, and T(w) is the transmission
vertically through the atmosphere.

The total energy emergent from the atmosphere is obtained by

integrating either Eq. (5.1) or (5.2) over the specified spectral

interval Aw as

ED = EAw = fAw E (w) dw .	 (5.4)

.J

The procedure for calculating the upwelling radiance, by

employing the line-by-line and quasi-random band-model for trans-

mittance, is discussed in detail in [15] and computer programs

are provided. A summary of the procedure is given here.

5.1. Procedure for Calculating the Upwelling Radiance

In radiation modeling for pollution measurement in a nonhomo-

geneous atmosphere, the upwelling radiation is calculated by dividing

the atmosphere into an appropriate number of sublayers. Each

sublayer is assumed to be homogeneous in species concentration,

temperature and pressure.

In a specified spectral interval in which a particular pollutant i
absorbs, the total energy emergent from the atmosphere is obtained

from Eq. (5.4). If in this interval, n independent measurements
(corresponding to the number of homogeneous layers) could be made i
to find ED1	 ED2 '	 EDn	 then the uniform concentration of	 j

the pollutant in each layer (and therefore the concentration

profile in the actual atmosphere) could be determined from Eq. (5.4).

Because of low concentrations of pollutants in the atmosphere,

however, n such measurements are not feasible. Thus, only one
independent measurement is usually made and an average value of thep	 Y	 g	 .

particular pollutant concentration in the atmosphere is obtained.' e
Even if only one value of the pollutant concentration can be
obtained from an independent measurement, it is essential to divide
the nonhomogeneous atmosphere into several homogeneous layers for

the purpose of data reduction. This is because the-pressure,
j

temperature, and amount of interfering molecules vary in the
i
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atmosphere, and spectroscopic parameters and pressure path.lengths

are strong functions of these variables.

By employing the Lorentz line-by-line model for atmospheric

transmittance, the upwelling radiance at the top of the atmosphere

is obtained from Eq. (5.4) for each narrow spectral interval Aw

The exact procedure for doing this is to evaluate the average value

of the Planck function for --his interval first, then by using the

mean value of the transmittance for the interval, evaluate the

upwelling radiance at the top of the atmosphere. The total upwelling

radiance (E = E E Aw ) at the top of the atmosphere for the entire

spectral range A is obtained by summing the radiances of individual

intervals.

By employing the quasi-random band model, the total upwelling

radiance at the top of the atmosphere can be evaluated from Eq.

(5.4). First, the net (integrated) radiance is obtained at the

top of the atmosphere for each subinterval by calculating the

Planck function and the average transmittance for that subinterval.
The total radiance for the entire range A is then obtained by

summing the integrated radiances of each subinterval.

The signal change SC = AE (in watts /cm? - sr) can be calcu-
lated by employing Eq. (5.4) as

SC	 AE = , fn. [E (w ' T s> - E (W, Tp
)
I dw ,	 (5.5)

where TO represents the transmittance of a "clean" atmosphere in
which the pollutant concentration is zero, and T  refers to the

transmittance of the atmosphere in the presence of the pollutant.

The numerical procedure for evaluating Eq. (5.5) is identical to

that described for calculating the upwelling atmospheric radiance.

Since Applications Incorporated (NASA-Contractor, responsible

for the development of non-dispersive correlation instrument for

pollution measurement (4, 5]) has compiled spectral line parameters
(position, strength, width, and lower energy level) for lines of

CO fundamental band and for lines of other molecules which inter--
fere with the CO 'band. In the calculation of transmittances,

1
i
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these line parameters are directly read from a tape provided by

SAI [5] to NASA-Langley.

Solar irradiances at the top of the atmosphere, at a few

selected wave numbers, are also available from the SAI tape [5].

Values obtained from the tape, for the spectral range of present

interest, are tabulated in [15]. In the evaluation of contribution

of the reflected solar radiation to the upwelling radiance, the

solar irradiance for each spectral subinterval is obtained from a

linear interpolation of the taL,\ulated values [15].

By employing the Lorentz line-by-line and quasi-random band

model for atmospheric transmittance, upwelling radiance and signal

change were calculated for several illustrative cases.

5.2. Results of Model Calculations

The results of integrated upwelling radiance at the top of the

troposphere (i.e., at 10 km) for different CO concentrations (uni-

formly distributed through the troposphere), in the presence of

various interfering molecules, are illustrated in Figure 5.2. The

solid curves represent -the results of the line -by-line model and
broken curves for the quasi-random band model. As would be expected,

the upwelling radiance E decreases with increasing CO concentration

and with the inclusion of different interfering molecules. Inclusion

Of 0 3 causes a slight decrease in radiance (not exceeding 0.5%) and

it was difficult to illustrate this decrease in Figure 5.2. The

agreement between the line-by-line and the quasi-random band model

results is seen to be excellent for the case of CO + H2O . The

slightly lower radiances for the next two cases is attributed to

the over-estimation of absorption by the band model. The reason

for this lies in the assumption of random distribution of many lines

(in the presence of interfering molecules) in the subintervals of

the band model. In the actual spectra, however, the lines are more

closely spaced in some regions than in others. The variation in

the signal change, AE	 with the CO concentration is illustrated

in Figure 5.3. Those results follow the general trend of the 	 a
results presented in Figure 5.2.
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The influence of different amounts of water vapor on the

upwelling radiance . anal the signal change is shown in Figures 5.4

and 5.5 respectively. Increased water vapor concentration

results in increased absorption in the atmosphere. This, in turn,

results in lower values for upwelling radiance and signal change.

It should be noted that the effect of CO concentration on the

signal change would be relatively small in the presence of larger

quantity of water vapor.

Figure 5.6 shows the upwelling radiances for surface tempera-

tures of 280, 290, and 300°K and a surface emittance of 0.8. The

strong dependence of the upwelling radiance on the surface tempera-

ture is obvious from these results. The relatively lower radiance

values obtained with the band model are indicative of slight over-

estimation of absorption by this model.

Figure 5.7 shows the signal change for three different values

of surface emittance and for a surface temperature of 288°K. As

explained earlier, the radiances obtained from the band model are

lower than the line-by-line model because of over-estimation of

absorption by the band model. The relative increase of the

difference for the lower e-values is due to lower total emission

from the earth for the small values of surface emittance. In these

cases, therefore, the increased absorption by the band model has a

greater relative effect on the radiance and signal change.

Figure 5.8 shows the variation of the upwelling radiance with

the surface temperature for a fixed concentration of CO (1 ppm by
volume) in the atmosphere and for e = 0.8	 The strong dependence

of radiance on the surface temperature may be easily explained on

-the basis of the Stefan's law. However, because of the inter-

ference from the infrared active atmospheric molecules, the :results

obtained here do not exhibit an exact fourth power relationship.

Figure 5.9 shows the variation of radiance with the surface

emittance for a fixed CO concentration (l ppm by volume) and

Ts = 288°K	 As would be expected, the results indicate the linear

dependence of radiance on the surface emittance. In general, the
ground emittance varies with the wave number. However, for the
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spectral range of CO fundamental band, it was shown in reference

[4] that the radiance is not influenced by a significant amount

when the wave number dependent ground emittance is replaced by an

averaged value.

Figure 5.10 shows a comparison of the results obtained from

the line-by-line program developed in [15] and another line -by-line

program (called POLAYER) developed by the Science Applications Inc.

[5]. In computing the total absorption coefficient at any wave

number, the program of Reference [151 considers contributions from

all the lines up to a fixed wave number location (on both sides) of

45.5 cm -1 from the wave number under consideration. This value of

45.5 cm -1 for the so-called wing effect was chosen :after several

numerical experimentations. The POLAYER, on the other hand,

considers the effect of a fixed number of 20 lines on each side of

the wave number under consideration. This causes the range of wing

effect to change depending upon the density of lines in the

spectrum. Thus, in some cases, POLAYER will not consider the

influence of lines which are only 1 cm -1 away from the wave

number under consideration. This, of course, will result in under-

estimation of absorption. This, at least in part, is responsible

for the higher integrated radiance (and, therefore, larger signal

change) for the POLAYER program.

6. CONCLUDING REMARKS

The purpose of this study was to review different line and

band models for infrared spectral absorption, compare their

absorptances and transmittances, indicate their limitations, and

establish their usefulness for atmospheric applications.

From the comparison of results of the three line profiles

(Lorentz, Doppler, and Voigt), it is concluded that the Voigt line

profile should be employed in calculating the transmittance for

the middle to upper troposphere and lower stratosphere. The use

of the Lorentz line profile is justified for lower tropospheric-

applications.

4
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From the comparison of wide band absorptance of various band

models, it is concluded that the correlation presented by Felske

and Tien provides fairly accurate results for all pressures and

path lengths. At relatively high pressure, however, the simple

correlation given by Tiwari and Batki provides a uniformly better

approximation for the total band absorptance.

The homogeneous path transmittances were calculated for CO

fundamental, 4.5 u N 20 , 4.3 u CO 2 , and 15 p CO 2 bands by

employing the line-by-line and quasi-random band models. Compari-

sons of these results with available experimental measurements

indicate that in sensitive atmospheric applications (such as surface

temperature retrieval and detection of CO concentration), the use

of the line-by-line model is desirable.

By employing the line-by-line and quasi-random models, results

were obtained to study the effects of different interferring

molecules, water vapor profiles, ground temperatures, and ground

emittances on the upwelling radiance and signal change in the

spectral range of CO fundamental band. Physically realistic values

of various parameters were used in the model calculations. This

information is very useful in interpreting the data obtained from

an aircraft or satellite mounted instrument to determine the

pollutant concentration in the atmosphere.
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