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ON ESTIMATING GRAVITY ANOMALIES — A COMPARISON
OF LEAST SQUARES COLLOCATION WITH
CONVENTIONAL LEAST SQUARES TECHNIQUES

P. Argentiero
B. Lowrey

ABSTRACT

The least squares collocation algorithm for estimating gravity
anomalies from geodetic data is shown to be an application of
the well known regression equations which provide the mean
and covariance of a random vector (gravity anomalies) given
a realization of a correlated random vector (geodetic data).
It is also shown that the collocation solution for gravity anom-
alies is equivalent to the conventional least-squares-Stokes'
function solution when the conventional solution utilizes prop-
erly weighted zero a priori estimates. The mathematical and
physical assumptions underlying the least squares collocation
estimator are described and its numerical properties are
compared with the numerical properties of the conventional

least squares estimator.
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INTRODUCTION

The problem of recovering mean gravity anomalies from geodetic data has re-
ceived much attention. The conventional approach to the problem is to employ
the discrete form of Stokes' function to obtain an equation of condition for a
icast squares estimate of mean gravity anomalies. If the best available a priori
estimates of mean gravity anomalies are included with proper weighting in the
least squares loss function, the resulting estimates are known to be optimal in a
minimum variance sense.! This approach has been simulated for satellite per-
turbation data by Hajela?, for gradiometer data by Reed3 and by Argentiero and
Garza-Robles?, and for altimeter data by Gopalapillai® and by Argentiero (et al).®
For insitu data types such as altimetry and gradiometry it can be shown that the
procedure can be used to estimate local blocks of anomalies in local blocks of
data without significant aliasing.

An alternative approach to geodetic data reduction problems called least squares
collocation has been suggested by Moritz.”7 It is claimed that the least squares
collocation method is a more general and more powerful parameter estimation
procedure than the classical least squares method.”. 8.9 10 It has also been as-
serted that least squares collocation is the only parameter estimation method
which permits the simultaneous and optimal processing of heterogeneous data
types.!1.12 Moritz!! has recommended least squares collocation as the preferred
method for estimating mean gravity anomalies from gradiometerdata. Rapp!? and
Smith !4 studied the problem of applying the collocation technique to estimat-
ing mean gravity anomalies from altimeter data, Rapp!® asserts that be-
cause of the deterministic nature of the Stokes' function, the use of conventional
least squares techniques in estimating mean gravity anomalies from altimeter
data can lead to false or misleading results. This criticism is repeated by Uotila.!?

In the following discussion the least squares collocation procedure is viewed as

a direct application of the regression equations which provide the conditional
mean and covariance of a random vector {mean gravity anomalies) given a reali-
zation of a correlated random vector (geouztic data). It will be seen that this
approach permits both a fast and simple derivation of the collocation algorithms
and a derivation of their precise relationship to the least-squares-Stokes' function
algorithm for estimating mean gravity anomalies from geodetic data. Finally the
mathematical and physical assumptions underlying the application of the least
squares collocation algorithm to the estimation of mean gravity anomalies are
discussed.

THE LEAST SQUARES COLLOCATION SOLUTION

In this presentation, least squares collocation will be treated as a parameter es-
timation procedure in a finite dimensional real vector space. Since for all



practical applications a finite amount of data is processed to estimate a finite
number of parameters, no useful generality is lost by this approach.

Let {Y'} be a set of geodetic observations. The problem is to obtain from such
an observation set a "best" estimate of a set of mean gravity anomalies {6g}.
We will define the '"best'" estimate to be the conditional expectation of {6 g} given
a realization of the observations {Y'}. Since the smallest second moment of a
random variable is the second moment about the mean, this is equivalent to ap-
plying a minimum variance criterion.

The starting point of the least squares collocation approach to obtaining the best
estimate of {8 g} is the assumption that one has full knowledge of the second order
statistics of the anomalous potential field everywhere on and outside the reference
geoid. (The first order statistics of the anomalous potential field are assumed

to be zero.) Let P(x,) and P(x;) be the anomalous potentials at points x; and x,
on or outside the reference geoid. We assume the possession of a function

K (x, x,) such that

E (P(x1)P(x2)) = K (x1,%2) _ (1)

The function K(x,,x,) is the so-called covariance function, and it is generally
defined to be invariant under rotations. Hence the second order statistics of the
anomalous potential field are assumed to be independent of location. Let {Y}

be a vector which is determined by the anomalous potential field and which, after
suitable corrections for systematic error sources in the measurement process,
is directly observable. Also, let {6g} be a set of globally distributed gravity
anomalies. Since both {Y} and {8g} are determined by the anomalous potential
field all second order statistics relating to the two random vectors can be readily
derived from the covariance function., Hence define

a) E(YYT)=A, b) E (6gYT)=B, c) E (6gbgT)=C (2)
Computational algorithms for obtaining matrices A, B, and C from a covariance
function are developed by Moritz’ and by Tscherning and Rapp.!S The actual
observations {Y’} obtained from the instruments are, of course, corrupted by
noise. Hence

Y=Y+v, E(v)=0, E (wT)=Q (3)

Equations (2) and (3) permit us to write the joint covariance matrix of the random
vectors {Y'} and {5g} as



og C B
cov [Y] = [BT A+Q] (4)

A realization of the random vector {Y'} is obtained by means of the actual meas-
urements. Symbolically we do not distinguish between this random vector and its
realization. We desire the conditional expectation and the conditional covariance
of {5g} given a realization of the correlated random vector {Y'}. By assuming
either that the random vectors are normally distributed or that the conditional
expectation of {6g} is a linear function of the measurements we can resori to the
familiar regression equations for the conditional mean and conditional covariance
of a random vector given a reaiization of a correlated random vector.! The re-
sults are

g=BMA+Q" Y (5)
cov [6g] =c -B (A +Q BT (6)

The solution represented by Equation (5) is the least squares collocation estimate
of a global set of gravity anomalies given a covariance function and given the
measurement set {Y'}.

In actuality, one would not attempt to estimate a global set of anomalies from a
set of geodetic observations obtained from a certain area. It is only possible to
significantly improve knowledge of gravity anomalies in the area covered by the
observations. Decompose {6g} as follows:

_|%8&1
Sg— [ng] (7)

where {Gg,} is the set of anomalies covering the region where the measurements

are available and where {8g;} is the set of anomalies outside of this region. Then
the matrix B can be decomposed
= | B
- [Bz] =

where
B; =E (8g1Y"), B; =E (8g2Y") )
The least squares collocation estimate for {8g,} becomes

68 =B, (A+Q) Y’ (10)



THE CONVENTIONAL LEAST SQUARES SOLUTION EMPLOYING STOKES'
FORMULA

The discrete form of Stokes' formula provides a linear relationship between the
value of the anomalous potential field at any point and a set of globally distributed
mean gravity anomalies. Since {Y} is a vector which is determined by the anom-
alous potential field, Stokes' formula provides a relation between (Y} and (5g)
which after suitable linearization can be written as

Y=8 ég (11)

The elements of the matrix S are obtained by evaluating Stokes' function at the
required computation points.

Equation (11) can be used as an equation of condition for a least squares estimate
of |6g). But the resultant solution would not be optimal unless all information
were used. Consequently if one accepts the validity of a covariance function it
would be proper to utilize the zero vector as an a priori estimate of 6g} with

a weight provided by the inverse of the covariance matrix of Equation (2) ¢). The
resultant loss function to be minimized has the form

L (88) = (Y'-S8@)TQ'(Y'-Ssg) + s8TC-1 68 (12)
The estimator which minimizes tk right side of Equation (12) is
68 = (STQ-'S + C-1)'sTQ-1Y’ (13)

Equation (13) provides the standard least squares solution for |6g; using Equa-
tion (11) as an equation of condition and using the zero vector weigh.ed accord-
ing to a covariance function as an a pr.uri estimate.

DERIVATION OF AN EQUIVALENCE RELATION

It can be shown that the conventional least squares estimate of |6g] as defined
by Equation (12) and the least squares collocation estimate of 6g; as defined by
Equation (5) are equivalent, Equation (11) defines the zero expectation random
vector {Y] in terms of the zero expectation random vector {6g,. Thus the co-
variance matrix of Y] and the joint covariance of |Y| and |6g, can be obtained
in terms of the covariance matrix of '6g; . Equation (2) c) provides the covari-
ance matrix of |6g, as derived from the covariance function of Equation (1).
Equation (11) along with Equations (2) ¢) and (3) permit us to write
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5g] [c  cst
i [Y] 5 [sc SCST + Q] (14)

The regression equation can again be used to obtain the conditional expectation
of 6g as:

58 = CST (scsT+ Q)7 Y’ (15)
A comparison of Equation (4) with Equation (14) yields
B=CST, A=8CS8T (16)

Hence the estimate of {8g| provided by Equation (15) is equivalent to the least
squares collocation estimate of Equation (5). We can use the well known Shure
matrix identity to translate Equation (15) into the alternative form:

5 =8TQIS+Cy'sTQ Y’ a7

Equation (17) is identical to Equation (13). This demonstrates that a standard
least squares approach to estimating gravity anomalies from geodetic data which
utilizes an a priori estimate weighted according to a covariance function yields
a solution identical to what is obtained through least squares collocation.

THE DERIVATION OF COVARIANCE FUNCTIONS

The implementation of the collocation technique depends explicitly on the existence
of a covariance function which provides the second order statistics of the anom-
alous potential field. Either of two basic methods may be employed in deriving
such a covariance function. Both methods assume that the statistical behavior
of the anomalous potential field is independent of location. These methods are
summarized below; a detailed exposition may be found in Reference 15.

One method derives the model from asetof ground-based gravitational anomalies,
as nearly "global" in scope as is available. The covariance function for mean
free air gravity anomalies is estimated as

= §go,MNége ,\")
C (V) = z = (18)

where 5g(¢,\) and 8g(¢’,\') are pairs of mean gravity anomalies in equal area
blocks separated by a spherical distance ¢ and N is the s'm of products at that
distance. The covariance function for the anomalous p<,~ntial can then be ob-
tained as:

o
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K (x),%;) = o ” l) Z Pg(cosdd J (‘(W)Pg(cos;IJ)smw dy' (19)

where x, and x, are two points on or outside the reference geoid which are sep-
arated by spherical distance ¢, P, is the Legendre polynomial function and 8
and s are in essence geometric factors,

This approach implies that the data set is a random sample of the Earth's gravi-
tational features. In particular, there is an implicit assumption that the char-
acteristics of gravity anomalies over ocean areas are the same as on land, or
that the sample contains a proportionate distribution of anomalies over land and
ocean areas.

An alternative approach is to obtain the covariance function for the anomalous
potential directly from a model for the spherical harmonic coefficients of the
potential field. Let 01 (%) be a model for the second moment about zero of nor-
malized spherical harmonic coefficients of degree ¢. Then the covariance func-
tion for the anomalous potential can be written as

K (x,%y) = “Z(‘) ST Qs o, S, ) Rcos (V) (20)

where again, s is a geometric factor, and y is the spherical distance between
points x, and x,. One model for the second moment of spherical harmonic
coefficients is the well known '"Kaula rule of thumb," !

Other models are described in Reference 15.

The implicit assumption of this procedure is that the magnitude of spherical
harmonic coefficients decreases monotonically with degree and is representable
as a simple function of degree. There are indications that the real field may
not have this property.'” Also the covariance functions derived from the alter-
native procedures outlined above can differ substantially.'
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COMMENTS

The least squares coilocation algorithms are a form of the regression equations
which provide the conditional mean and covariance of a random vector (mean
gravity anomalies) given a realization of a :orrelated random vector (geodetic
data). Tapley!® has shown that the collocation model can be cast into a form in
which standard least squares reduction procedures are applicable and that the
sclution so obtained is identical to the collocation solution. In addition, the
conventional approach to estimating mean gravity ~nomalies from geodetic data
which. relies on Stokes' formula and a least squares estimation algorithm reduces
to the collocation model provided an a priori estimate is weighted according to a
covariance function and is included in the loss function. Hence, assertions that
the least squares collocation procedure represents a more general and more
powerful method for estimating mean gravity anomalies than what is provided by
the conventional approach are unfounded.

Several investigators”.!4 have found that the results of a least squares colloca-
tion are not sensitive to the choice of a covariance function. The results of this
paper provide an explanation of this fact. In effect, the covariance function
supplies a weight for a zero a priori estimate of mean gravity anomalies in a
least squares reduction procedure. Jn any meaningful estimation process the
resultant solution is dependent mainly on the information content of the data
rather than the quality of the a priori estimate. Hence, in a practical simula-
tion or real data reduction one should expect the results of the collocation pro-
cedure to be relatively insznsitive to the choice of a covariance function., Fur-
thermore, this implies that for most applications the two estimation procedures
should yield almost identical results.

If the a priori information provided by a covariance function is to be included in
a solution for mean gravity anomalies it is better numerically to do so by means
of the Stokes' formula and the conventional least squares method since this pro-
cedure involves the inversion of a matrix whose dimension is the number of es-
timated parameters. The collocation algorithm as given by Equation (10) implies
the inversion of a matrix whose dimension is the size of the data set.

REFERENCES
1. Deutsch, R. "Estimation Theory.'" Prentice-Hall, Inc. 1965,
2. Hajela, D. '"Direct Recovery of Mean Gravity Anomalies From Satellite

to Satellite Tracking ' Dept. of Geodetic Science Report No. 218, Ohio
State University. Columbus. December 1974.



o«

10.

11.

12.

13.

14,

. Reed, G. "Application of Kinematical Geodesy for Determining the Short

Wavelength Components of the Gravity Field by Satellite Gradiometry." The
Ohio State Research Foundation. Report No. 201. March 1973,

Argentiero, P. and R, Garza-Robles. "On Estimating Gravity Anomalies
From Gradiometer Data," NASA/TN D-8286, February 1976,

Gopalapilli, S. "Non-Global Recovery of Gravity Anomalies From a Com-
bination of Terrestrial and Satellite Altimetry Data.'" Dept. of Geodetic
Science Report No. 210. Ohio State University. Columbus. July 1974.

Argentiero, P., W, Kahn, and R. Garza-Robles. 'Strategies for Estimating
the Marine Geoid From Altimeter Data.'" NASA/TN D-8285, February
1976,

Moritz, H. "Advanced Least-Squares Methods.' Dept. of Geodetic Science
Report No. 175. Ohio State University. Columbus. June 1972.

Krarup, T. "A Contribution to the Mathematical Foundation of Physical
Geodesy.' Publ. No. 44, Danish Geodetic Institute. Copenhagen. 1969,

. Chovitz, B. "Geodetic Theory.'" Reviews of Geophysics and Space Physics.

Volume 13. pp. 243-266, July 1975,

Uotila, U. "External Gravity Potential ¢ f the Earth, Gravimetric Quantities
and Geodetic Parameters Affected by Gravity.' Dept. of Geodetic Science
Report No. 229, Ohio State University. Columbus. August 1975,

Moritz, H. "Some First Accuracy Estimates for Applications of Aerial
Gradiometry." Contract No. F 19628-72-C-0120. Project No. 8607, Sci-
entific Report No. 15, AFCRL-TR-74-0317. July 1974,

Moritz, H. "Precise Gravimetric Geodesy. "' Dept. of Geodetic Science
Report No, 21, Okio State University. Colun‘bus. December 1974.

Rapp, R. "Gravity Anomaly Recovery I'rom Satellite Altimetry Data Using
Least Squares Collocstion Techniques.' Dept. of Geodetic Science Report
No. 220. Ohio State University. Colu.abus. December 1974,

Smith, G. '"Mean Gravity Anomaly Prediction From Terrestrial Gravity
Data and Satellite Altimeter Data." Dept. of Geodetic Science Report No.
214, Ohio State University. Columbus. August 1974.



15.

16.

17.

18.

Tscherning, C. and R. Rapp. "Closed Covariance Expressions for Gravity
Anomalies, Geoid Undulations, and Deflections of the Vertical, Implied by
Anomaly Degree Variance Models.'" Dept. of Geodetic Science Report No.
208. Ohio State University. Columbus. May 1974,

Kaula, W. M. "Theory of Satellite Geodesy." Blaisdell Publ. Co. Waltham,
Massachusettes. 1966,

Allan, R. R. '"Depth of Sources of Gravity Anomalies." Nature Physical
Science. Vol. 236. pp. 22-23. March 1972,

Tapley, B. "On {he Interpretation of Least Squares Collocation.'" Report
No. AMRL 1073. Department of Aerospace Engineering and Engineering
Mechanics. University of Texas. Austin. October 1975.



	GeneralDisclaimer.pdf
	0079A02.pdf
	0079A03.pdf
	0079A04.pdf
	0079A05.pdf
	0079A06.pdf
	0079A07.pdf
	0079A08.pdf
	0079A09.pdf
	0079A10.pdf
	0079A11.pdf
	0079A12.pdf
	0079A13.pdf
	0079A14.pdf

