
General Disclaimer

One or more of the Following Statements may affect this Document

 This document has been reproduced from the best copy furnished by the

organizational source. It is being released in the interest of making available as

much information as possible.

 This document may contain data, which exceeds the sheet parameters. It was

furnished in this condition by the organizational source and is the best copy

available.

 This document may contain tone-on-tone or color graphs, charts and/or pictures,

which have been reproduced in black and white.

 This document is paginated as submitted by the original source.

 Portions of this document are not fully legible due to the historical nature of some

of the material. However, it is the best reproduction available from the original

submission.

Produced by the NASA Center for Aerospace Information (CASI)

J

L/S- C HAL/S-360

Cornp ' ler Sys ern
Program Descrip ion

IR-182- 1

13 Y 1976

NASA CR,

../~7791-

(S -CB-1 7797) H1L/S-PC D H L/S-360 76-2788
CO PI ,EF SISTE FROGS ESCBIPTIO
(In era tries, Inc .) 839 p HC 21 . 25

CSCL 0913 One a

Prepared
by

Intermetrics Inc 0

G3/60 45760

/.

JUl lQ7S
RECEIVE.J

NASA STJ FACILITY
INPUT BRMcIf .

"ul...."l~ul na d in° t arion

L DO B. }OH TER
Hou ton ~ %(U

L

HAL/S-FC HAL/S-360

Comp'ler System
Program Descrip ion

IR-182-

13 ay 1 976

Prepared
by

Intermetrics, Inc .

ado I ro"U~1U(;3

DO B.}O
Hou t n, Texm

dmin · tration

TER

II
I •

FOREWORD

This document was prepared for IBM Federal Systems
Division, Houston, Texas, under purchase order #479270-
Z-44 Alteration 2.

The HAL/S-FC and HAL/S-360 Compiler System -- Program
Description was prepared by the staff of Intermetrics, Inc.
Technical direction by Dr. Bruce Knobe, typescript by
Valerie Cripps.

L

INTFRMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840
,"

-.---~ ,~"" "' ~ ~··~======;;;;;..,. __ iOiiiii~!'li1i!!!!!I!!'tE!7!'lE· . .c: :===~_....:.:..:.:;:;;:.;;.;~ ... :: ... :;::-===.::X:~~

•

I ••

1.0 INTRODUCTION

1.1 Scope of Document

This document supplies information necessar.y for
main,taining the HAL/S-360 and HAL/S-FC compilers. It
is intended as a companion to the source listings,. A
large portion of the required material can be found in
the Int~rmetrics' documents:

HAL/S.-FC Compiler System Specification,!R-9S-3.

HAL/S~360 Compiler System Specification, IR-60-3.

HAL/S-FC Compiler System Functional Specif~cation,
.IR-59-4.

HAL/S-360 compiler System Functional Specification,
PDRL # IM004 •

.
and in the IBM Federal: Systems Division documents:

Interface Control Document: HAL/FCOS. Revision 3.

Interface Control Document: HAL/SDL,Revision 5.

In order to eliminate the problem of maintaining multiple
up-to-date copies of the same information, matieralavailable
in the above documents is in general not duplicated here.

F~iliarity with the above documents. is presumed through
out this document. References to the above documents appear
in appropriate places and occasionally short sections have
beerireproduced here for convenience or clarity of presentation.

This manual is for the HAL/S-360l and HAL/S-Fc~eompilers
and their associated run time facilities which implement the
full HAL/S language3 • The compilers are designed to operate
"stand-alone" on any compatible IBM 360/370 computer and within
the Software Development Labor.atory (SDL) at NASA/JSC, Houston,
Texas.

1 HAL/S-360 User's Manual, 10 May 1976, IR-5S-l3.
2 HAL/S-FC User's Manual, 10 May, 1976, IR-S3-S.
3 HAL/S Language Specification, 24 November 1975, IR-6l-7.

1-1
tmERMETRICS INCORPORATED~701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSEITS 02138· (617) 661-1840

. ;-
._--'---------_.-

.,
~ ,

I-

t __ .. _._ __._ __

Table of contents

1.0 INTRODUCTION

1.1 Scope of Document
1.2 Outline of the Document
1.3 Status of Document

2.0 OVERVIEW OF THE HALlS SYSTEM

3.0

2.1 Once Over Lightly
2.2 A Firm Foundation

2.2.1
2.2.2
2.2.3
2.2.4
2..2.5
2.2.6

2.2.7

The Sub-monitor
Phase 1
Phase 1.5
Phase 2
Internal Data Transfer
XPL and The Translator
System
Debugging Aids

COMMON DATA STRUCTURES

Writing

3.1 Literal Table
3.2 Symbol Table
3.3 The COMMunication and VALS Arrays

4.0 PHASE I

4.1 The Parser

4.1.1 Global Variables Used by the
Parser

4.1.2 Procedures of the Parser

4.2 The Scanner

4.2.1 SCAN
4.2.2 STREAM

4.3 The Output Writer

Page

1-1

1-1
1-2
1-4

2-1

2-1
2-3

2-3
2-3
2-14
2-15
2-19

2-21
2-24

3-1

3-1
3-3
3-17

4-1

4-2

4-2
4-6

4-11

4-12
4-37

4-·50

4.3.1 Local Variables of the Output
Writer 4-50

4.3.2 Global Variables Referenced by
the Output Writer 4-54

4.3.3 Procedures of the Output Writer 4-62

4.4 The Semantic Routines 4-66

i

INTERMETRICS INCORPQ8ATED • 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

-1
I

1

Table of Contents (Cont'd.) , .

4.4.1 Global Variables Accessed by
the Semantic Routines

4.4.2 <block stmt> and
< ••• inline def>

4.4.3 <declare group>
4.4.4 <variable>
4.4.5 <expression> and

<relational exp>
4.4.6 <statement>
4.4.7 <compilation>
4.4.8 HALMAT and Initialization

Routines

4.5 Global Names of Phase 1

4.5.1 Variables
4.5.2 Index to Procedure Descriptions

5.0 PHASE II

5.1 Data Structures

5.1.1
5.1.2
5.1.3
5.1.4
5.1.5
5.1.6
5.1.7
5.1.8
5.1.9

5.1.10

5.1.11
5.1.12
5.1.13

Block Definition Tables
CALL STACK
INDIRECT STACK
REGISTER TABLE
Storage Descriptor Stack
DO Loop Descriptor Declarations
ARRAY-DO-LOOP Declarations
HALMAT and Assiated Material
Arguments of Procedures and
Functions
Runtime Stack Frame and Local
Block Data Area
Vector-Matrix Optimization
Other Useful Compendia
Alphabetical Listing of Global
Phase 2 Data

5.2 Procedure Descriptions

6.0 PHASE 1.5 - THE OPTIMIZER

6.1 Introduction

6.1.1
6.1.2
6.1.3
6.1.4
6.1.5

General Description
Design Comments
Optimizations Attempted
Scope of Optimization
Programming Considerations

ii

Page

4-88

4-109
4-116
4--1314

4-l·~7
4-169
4-188

4-191

4-193

4-193
4-235

5-1

5-1

5-1
5-4
5-5
5-13
5-16
5-17
5-19
5-22

5-32

5-34
5-41
5-45

5-50

5-116

6-1

6-1

6-1
6-1
6-2
6-6
6-8

INTERMETRICS INCORPORATED - 701 OONCORDAVENUE -CAMBRIDGE, MASSACHUSETTS 02138- (617) 661-1840

1-1

! ~-i

l~
!~'
!"l
!'1
,A '
i:
l,~
!~
i1
H
" i!
Ii

a
fl
U
f .I
li
t: !

~ ;

.i

,r:: ""
-.;JJ!r

Table of Contents (Cont'd.)

6.2 Functional Description
6.3 Global Flow

6.3.1
6.3.2
6.3.3
6.3.4
6.3.5
6.3.6
6.3.7
6.3.8
6.3.9
6.3.10
6.3.11
6.3.12
6.3.13
6.3<14
6.3.15
6.3.16
6.3.17
6.3.18
6.3.19

MAIN PROGRAM
INITIALIZE
STORAGE MGT
PRINT DATE AND TIME
PRINT-TIME-
NEW HALMAT BLOCK
PREPARE HALMAT
MOVECODE
OPTIMISE
DECODEPOP
NEXTCODE
PUT HALMAT BLOCK
PR IN'l' SUMMARY
X BITS
ERRORS
RELOCATE
DECODEPIP
OPOP
VAC OR XPT

Page

6-10
6-12

6-12
6-13
6-13
6-13
6-13
6-14
6-14
6-14
6-15
6-15
6-16
6-16
6-16
6-17
6-17
6-17
6-17
6-17
6-].7

6.4 Stalking the Wild CSE: Table Building 6-18

6.4.1 CHICKEN OUT
6.4.2 ZAP TABLES
6.4.3 RELOCATE HAL~~T
6.4.4 DETAG
6.4.5 CSE TAB DUMP
6.4.6 FORMAT
6.4.7 CSE WORD FORMAT
6.4.8 HEX
6.4.9 EXIT CHECK
6.4.10 ASSIGNMENT
6.4.11 ST CHECK
6.4.12 NAME CHECK
6.4.13 SYTP-
6.4.14 GROW TRUE
6.4.15 BUILD NODE LIST
6.4.16 LIT CONVERSION
6.4.17 CONVERSION TYPE
6.4.18 CLASSIFY
6.4.19'CHECK TRANSPOSE
6.4.20 PRINT_SENTENCE(PTR)
6.4.21 SET NONCOMMUTATIVE
6.4.22 NO OPERANDS
6.4.23 PTR TO VAC
6.4.24 FORM VAC
6.4.25 FORM-TERM
6 . 4 • 2 6 ''IIERMINAL
6.4.27'BUMP CSE

iii

.'

6-18
6-19
6-19
6-20
6-20
6-20
6-20
6-20
6-20
6-20
6-21
6-21
6-21
6-21
6-22
6-28
6-28
6-28
6-29
6-29
6-29
6-29
6-29
6-29
6-30
6-30
6-30

INTERMETRICS INCORPORATED· '701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETIS 02138 • (617) 661-1840

Table of contents (Cont' d.)

Page

6.4.28 ELIMINATE DIVIDES 6-30
6.4.29 COLLAPSE LITERALS 6-30
6.4.30 COMBINED-LITERALS 6-30
6.4.31 FILL DW 6-31
6.4.32 LIT ARITHMETIC 6-31
6.4.33 SAVE LITERAL 6-31
6.4.34 GET LITERAL 6-31
6.4.35 MESSAGE FORMAT 6-31
6.4.36 VALIDITY 6-31
6.4.37 SET VALIDITY 6-31
6.4.38 ASSIGN TYPE 6-32
6,4.39 TERM CHECK 6-32

6.5 Recognition 6-33

6.5.1 GET NODE 6-33
6.5.2 TYPE 6-34
6.5.3 CATALOG 6-35
6.5.4 CATALOG ENTRY 6-36
6.5.5 GET FREE SPACE 6-36
6.5.6 CATALOG SRCH 6-36
6.5.7 SORTER 6-36
6.5.8 SEARCH SORTER 6-36
6.5.9 CSE MATCH FOUND 6-37
6.5.10 SETUP REVERSE COMPARE 6-37
6.5.11 CONTROL 6-37
6.5.12 COMPARE 6-37

I· 6.5.13 COMPARE LITERALS 6-38

6.6 Bringing Home the Bacon: HALMAT
Rearranging 6-39

6.6.1 SETUP REARRANGE 6-39
6.6.2 REARRANGE HALMAT 6-40
6.6.3 SET HALMAT FLAG 6,:",41
6.6.4 COLLECT MATCHES 6,..41
6.6.5 FLAG NODE 6-41
6.6.6 HALMAT FLAG 6-42
6.6.7 SET FLAG 6-42
6.6.8 FLAG MATCHES 6-42
6.6.9 FLAG-V N 6-42
6.6.10 FLAG-VAC OR LIT 6-42
6.6.11 SET WORDS - 6-43
6.6.12 NEXT FLAG 6-43
6.6.13 FORM OPERATOR 6-43
6.6.14 FORCE MATCH 6-43
6.6.15 SWITCH 6-43
6.6.16 ENTER 6-44

iv
INTERMETRICS INCORPORATED' 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSEnS 02138 • (617) 661-1840

Table of Contents (Cont'd.)

6.6.17 MOVE LIMB
6.6.18 FORCE TERMINAL
6.6.19 PUSH OPERAND
6.6.20 SET VAC REF
6.6.21 PUT-NOP-
6.6.22 REFERENCE
6.6.23 BOTTOM
6.6.24 GET LIT ONE

6.7 Table Updating'

6.7.1 STRIP NODES
6.7.2 SET O-T V
6.7.3 TABLE-NODE
6.7.4 CATALOG VAC
6.7.5 REVERSE-PARITY

Page

6-44
6-44
6-44
6-44
6-44
6-44
6-44
6-45

6-46

6-46
6-47
6-47
6-47
6-47

6.8 RALls Option Specifications and
Compiler Directives 6-48

6-49

7-1

8-1

6.9 Alphabetical Index of Names Used in
Phase 1.5

7.0 RUNTIME LIBRARIES

8.0 HALLINK

8.1 General Comments 8-1
8.2 Description of the HALLINK Program 8-1

8.2.1 Detailed Description of the
Functioning of HALLINK 8-3

8.3 General Comment.s and Warnings Regarding
HALLKED 8-4

8.4 Description of the Initialization Phase 8-5
8.5 Table of CSECT Version Numbers 8-6

8.5.1 Usage of Variables in the Table 8-7
8.5.2 An Example of the Construction

of the CSECT Version Number
Table 8-7

8.5.3 Version Number Cross Referencing 8-9
8.5.4 Composite External SyrnbolDic

tionary and Relocation Diction-
ary 8-11

8.5.5 External Reference Table 8-13

v

1 ,
1

"

,.

,
J
~
,1
1
,

,
, .,

~INTERMET_RICS ~NGORPORATED' 701 CONCORD AVENUE ·CAMBRIDGE, MASSACHUSEITS 02138' (617) 661-184~

- - -.~ .. ~. '" -.--~ - -~- .. _--
".~~. '''''~'~~'-''~'''-''-;;::;;'=:::::':'~-~'-"-~-'~~l~~'-~'l

Table of Contents (Cont'd.)

9.0 THE HALlS SUBMONITOR

Page

9-1

9-1
9-2

10.0

9.1 Compiler Execution
9.2 As an Overseer

Processing Dynamic Invocation 9.2.1

9.2.2

9.2.3
9.2.4
9.2.5
9.2.6
9.2.7
9.2.8
9.2.9

Parameters 9-2,
Processing of User Specified
Options 9-4
Parallel File Accessing 9-6
Interrupt Handling 9-6
Compiler Timing 9-6
Opening Initially Needed Files 9-7
Initial Compiler Phase Execution 9-7
The Linking Process 9-7
Returning to OS 9-9

9.3 As a Co-routine 9-9

9-13
9-14
9-15
9-15
9-15

9.3.1
9.3.2
9.3.3
9.3.4
9.3.5
9.3.6

9.3.7
9.3.8
9.3.9
9.3.10

Sequential String Input (GET)
Sequential string Input (PUT)
Current Line Count
Setting SYSPRINT Lines per Page
Forcing an Immediate Exit
Obtaining TIME and DATE
Information.
Linking
PARM Field Accessing
The Monitor Call
Direct Access Input and Output
(READ and WRITE)

9.4 OS Accessible Code
9.5 Error Handling
9.6 Flowcharts

REAL TIME EXECUTIVE

10.1 Design Overview

9-16
9-16
9-16
9-16

9-16

9-17
9-17
9-19

10-1

10-1

'10.1.1 HAL/S-360 Real Time Implementa-
tion Summary 10-1

10.1.2 HAL System 'Load Module 10-2
10.1.3 HALlS .Process Management &I

Control 10-4
10.1.4 PrOcess State Transition 10-4
10.1.5 The Process Control Block

(PCB) 10-6

10.2.' Mechanization and Structure of HAL/S-
360 Real Time 10-9

vi

I '

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661.;1840

,1

\
i

I

I··

Table of Contents (Cont'd.)

10.2.1
10.2.2

10.2.3

10.2.4

10.2.5
10.2.6
10.2.7

HALSTART Routine
HAL/S-360 Process Manager -
DISPATCH
The Process Scheduler -
SCHEDULE
CANCEL Process Service
Routine
TERMINATE
Event Handling
Timer Management

10.3 Statement Processor

11.0 THE MACRO LIBRARIES

12.0 ACCESS ROUTINES FOR THE SDF TABLES

12.1
12.2
12.3
12.4
12.5

Paging Area
Virtual Memory Considerations
SDF Selection
FCB Area
Paging Strategy

13.0 XPL -- INTERMETRICS VERSION

13.1
13.2

13.3
13.4
13.5
13.6
13.7

Direct Extension of the XPL Language
Additional Implicitly Declared
Procedures and Variables
MONITOR Calls
Documentation Aids and User Options
Updater
XPL ZAP
JCL and DD Names

vii

Page

10-11

10-11

10-15

10-16
10-16
10-22
10-31

10-35

11-1

12-1

12-2
12-4
12-5
12-6
12-7

13-1

13-1

13-3
13-5
13-9
13-12
13-15
13-20

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

0<

I °
1

~ ,·i

I ,

I
I

. ;1

'i ."'
1.·.· ,

!

"

~ .. -r-' -~-. -_._-- .. -------~. --.-~~--,-----.. --~ ~.~ .. ----~~ .. -~. -~ .. -"--'-~. ,...."...,.w __ • -."-::'~'::' C"i!' _ --_. - I i!'" """-.. .-.-......

,
I
L-

1.0 INTRODUCTION

1.1 Scope of Document

This document supplies information necessary for
maintaining the HAL/S-360 and HAL/S-FC compilers. It
is intended as a companion to the source listings. A
large portion of the required material can be found in
the Intermetrics' documents.~

and

HAL/S-FC Compiler System Specification, IR-95-3.

HAL/S-360 Compiler System Specification, IR-60-3.

HAL/S-FC Compiler System Functional Specification,
IR-59-4.

HAL/S-360 Compiler System Functional Specification,
PDRL # IM004.

in the IBM Federal Systems Division documents:

Interface Control Document: HAL/FCOS, Revision 3.

Interface Control Document: HAL/SDL, Revision 5.

In order to eliminate the problem of maintaining multiple
up-to-date copies of the same information, matieral available
in the above docmnents is in general not duplicated here.

Familiarity with the above documents is presumed through
out this document. References to the above documents appear
in appropriate places and occasionally short sections have
been reproduced here for convenience or clarity of presentation.

This manual is for the HAL/S-360 l and HAL/S-FC 2 compilers
and their associated run time facilities which implement the
full HAL/S language3 . The compilers are designed to operate
"stand-alone" on any compatible IBM 360/370 computer and within
the Software Development Laboratory (SDL) at NASA/JSC, Houston,
Texas.

1 HAL/S-360 User's Manual, 10 May 1976, IR-58-l3.
2 HAL/S-FC User's Manual, 10 May, 1976, IR-83-B.
3 HAL/S Language Specification, 24 November 1975, IR-6l-7.

1-1

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE' CAMBRIDGE. MASSACHUSETTS 02138 • (617) 661-1840

-' -'

./.

; j
i "r;

: .. ;
l:
: 1

- ,
"

t
I

l'

1.2 Outline of the Document

The HALlS compiler sys'tern consists of:

1) A sub-monitor, cOded in assembly language which
interfaces the rest of the compiler to its operatinq
environment. The rest of the compiler is written
in XPLI.

2) Phase 1 of the Qompiler which performs lexical,
syntactic, and semantic analysis passing the accumulated
information along to subsequent phases. Phase 1
also produces an annotated source listing~

3) Phase 1.5 of the compiler which performs machine
independent optimizations.

4) Phac:;e 2 cf the compiler which performs code generation
and assembly for either the IBM 360 (HAL/S-360) or
IBM AP-lOl (HAL/S-FC).

5) Phase 3 of the compiler which generates a set of
simulation tables to aid in run time verification.

6) HALLINK which augments the function of the normal
linkage editor.

7) A comprehensive run-time library which provides an
extensive set of mathematical, conversion, and
language support routines.

1 McKeeman, Horning, and Wortman, A Compiler Generator,
Prentice-Hall, Englewood Cliffs, N.J. (1970).

1-2

L

&

1
I
j

1
j
1 ,

~
'1
I
1
.~

i , 1

i
1
"

1
l
1

1

,
.. , 7· f INTERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

~
.£

jH

<,,:·"·~:f::" J! -;-... , .. ,;J

r I (----.--,-= =~~=~~~-~=: ... :.:.:. -=.~· .. I:=- ,

Section 2 provides an overview of the compiler and
the run time environrn6nt it expects.

Section 3 provides a detailed description of the data
structures used by more than one phase.

Section 4 provides a detailed description of the data
and subroutines in Phase 1.

Section 5 provides a detailed description of the data
and sub-routines in Phase 2 of HAL/S-·FC and where necessary,
a second description for the HAL/S-360 routine.

Section 6 provides a complete discussion (data and
procedures) of Phase 1.5 - the optimization pass.

Section 7 discusses the libraries.

Section 8 discusses HALLINK.

Section 9 provides details for the sub-monitor including
flow diagrams.

Section 10 discusses the real time simulation facility
available in HAL/S-360.

Section 11 discusses the macru libraries used for writing
AP-lOl or 360 assembly language programs compatible with HALlS
compiler generated code.

Section 12 deals with the routines available for accessing
the SDF tables produced by Phase 3.

Section 13 explains those features which Intermetrics
added to the standard 360 XPL implementation.

This document was compiled over a long period of time.
Material was acquired from many different people and several
internal documents. Because of these factors, the level of
detail varies greatly. An attempt was made to define a
reasonable level of documentation, the level depending on
the importance and complexity of the thing to be documented.
When more detailed material already existed, however, it was
included.

1-3

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

,

. ,

• i

1.3 Status of Document

This document plus. the d.ocuments mentioned in Sections 1.1
and 1.2 plus the source code comprise the complete maintenance
documentation for the HAL/S-FC and HAL/S-360 compilers. This
publication documents release 10 of the HAL/S-FC compiler and.
release 14 of the HAL/S-360 compiler •

1-4

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

i r

! ~." .' . u --.,.. -" --.-- '''_'''''h''_'''~'_~.,",~_m~~~.~..,..,.,~~~-::". ., ., ~., ''''~=''''"''''''''''''''T'.'~~-'''''''''''' ~~_. .

••• :H ~;::2!IM!lii,a __ ~~~~~_n_"" __ "'~"""""F+, ... ,." ... 'V..,.!""J!' __ $l!S3£.0 ~t_·~_,lJM!'1l1l8!!e ill!!Lt:',".I~. 41 ... ,~ ,

2.0 OVERVIEW OF THE HAL/S SYSTEM

2.1 Once Over Lightly

HAL/S is a large sophisticated language and its imple
mentation on the AP-10l and 360 computers produce very high
quality translations. It is no surprise, therefore, that
the compiler is a la~ge multi-pass design. The overall
compiler can be broken into four phases:

Phase 1 inputs the source language and does a
syntactic and semantic analysis generating
the source listing, a file of instructions
in an internal format (HALMAT) and a collec
tion of tables to be used in subsequent
phases.

Phase 1.5 massages the code produced by Phase 1,
performing machine independent optimization.

Phase 2 inputs the HALMAT produced by Phase 1 and
outputs machine language object modules in
a form suitable for the 05-360 or FCOS
linkage editor.

Phase 3 produces the SDF tables.

The four phases described above are written in XPL, a
language specifically designed for compiler implementation.
It is essential that the reader be familiar with most of
the contents of the book, "A Compiler Generator",by McKeeman,
Horning and Wortman, which describes the XPL compiler writing
system. The XPL compiler (XCOM) requires more sophisticated
interaction with the operating system than that provided in
the XPL language; thus, the compiler (written in XPL) is aug
mented by a sub-monitor (written in assembly language). The
HAL/S compiler has a substantially larger but conceptually
similar sub-monitor. Thus, the compiler itself is built of
four phases written in XPL plus, a sub-monitor written in
assembly language.

In addition to the compiler, there is a large library
containing all the routines that can be explicitly called
by the source language programmer plus a large collection of
routines for implementing various facilities of the language
(e.g. matrix operations, I/O, etc.). These routines are
written in the assembly language of the target machine.

2-1

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE • CAMBRlDGE, MASSACHUSETTS 02138 • (617)661-1840u:Ji~ ..

:.'! .,',.-'

1--- ·l~~~-~;Y'r';>;'r.-.Y"T- ~~'I/;~~~-;",,::,..---'-.- .,.~l'l~ ,.- r"''"'~P ,Ii' ~"""~ii,"",:- ;,.. 2:;"n;.' ,OJ 4. ;:;:;.'1" 4 _'f. .f '«3""'F'" ;;~., _.AZI: +.~:_. \ .. ;.S~~.~.'?.'.:~I_4kj£ ,4(. % :~:_l(t._'i -t __
~!'!.#i! .. ~ __ . _. __ ~ .. _._ ~~._.~"".~"_ ... ~_,~,~_.,. __ .~,. __ ._,_.~. ____ ~ __ ,~-------..~~ __ ._~!>.~"'- __ •• ~~""' 4- __ • _ •• _.~ _______ ~ <"'" _ ~ __ .• __ • __ •

Certain information only becomes-available at the
link step of a job. Since ~he OS 360 linkage editor is
not capable of per;eorming all the functions required, it
is augmented by HALL INK; this step is not required on
the flight computer where the FCOS linkage editor is
more closely aligned with the HALlS compiler's object
modules.

HALlS has substantial facilities fordoing real time
programming. These facilities are intended for use on the
flight computer where they are supported by the operating
system. In order to allow testing of such programs using
HAL/S-360, a real time executive has been produced to
simulate flight computer real time in the HAL/S-360 environ
ment.

A considerable quantity of assembly language has been
written to interface with HALlS object code (e.g. the
libraries). To facilitiate this process, a library of
macros has been produced for the AP-IOI and ~nother for
the 360.

The above material constitutes the complete HALlS
system. In addition to that system, we also describe some
changes made in the XPL language to facilitate construction
of the HALlS compiler.

2-2

f ' INTERMETRICS INCORPORATED· 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138· (61'7) 661-1840
\ .,

~i .. ~

U ;"":':""-"111

J
r
~

)

,.~

2.2 A Firm Foundation

As described in Section 2.1, the HAL/S compiler is
made up of separate modules, each module performing a
distinct function in the compilation process. The relation
ships of the various modules in the compiler to each other
and to the compiler environment are shown in Figures 1 and
2. The five modules of the compiler (sub-monitor, Phase 1,
Phase 1.5, Phase 2, Phase 3) are described in more detail
in the following 'sub-sections.

2.2.1 The Sub-monitor

The sUb-monitor is the controlling modul.e in a
compilation. It performs all sequencing and control
operations.

The sequencing function of the sub-monitor directs
the compilation by deciding which of the other modules are
in the computer memory. The sub-monitor makes use of overlay
techniques to make maximum utility of available memory. The
sub-monitor supervises loading and execution of the other
modules and passes any required information between the
modules.

The control function of the sub-monitor handles all
interfaces between secondary modules in memory and the
operating system under which the entire compiler runs. These
interface functions include all Input/Output operations, all
memory management, and all special requests to the operating
system such as time-of-day information.

The sub-monitor is written in OS/360 Basic Assembler
Language.

2.2.2 Phase 1

The basic design cf phase 1 started with the XCOM
design. The scanner routine has been replaced by a much
more complicated routine to handle the multi-line format
that HAL/S supports and an entire new module, the output
writer, was added to produce the indented, annotated, multi
line HAL/S source listing. The MSP parser has been replaced
by a LALR parser. Notice that since both MSP and LALR
parsers reduce the handle, the rest of the compiler does not
care which parser is being used. Anybody working on the
parser should first familiarize himself with the work of
DeRemer ("Simple LR{h) Grammars", Corom. ACM 1971) and Lalonde

(CSRG Report #2, University of Toronto).
2-3

'INTERMETRICS INCORPORATED· 701 CONCORD AVE~UE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

• ¥¥ -
- , J" • , ___ -. ~,', ,~,~ - ".' ",., "-'-~'~~~ y

-"II!

~ ,

!
~ ,
~ z

~
:0
~
m
-i
~
()
Cf)

r--.----~

HAL COMPILER

1
I

t
~

I
I I

! . I / / \\\ \ \ / 11- \ I / f· I
j

i
i

r:v
I

,j::o

i
J

. :!
,

.. '

1
I , r ~

~. . I I
. . ." .. _ ,"' """""""""'--='''''''''" •• ,''''"'''''''''''''' -._.''''-" .. '''''' '''' ., .-....... =. A "'"?t;ili_lIii,iiIlriilili," ljiljinilf'lt'6I'iil," '.111', "11115 [110.,1 PI. j

_':==:::==:::~:=:===~::~::~. __ ~~l~~."~~U __ ~L~~~~~~'"'''''W'£$M,'wrl'.WnMt'hh'''"wW 'b, 4r&~"'",M"" "~"£.-L." '

-,ott

I'·" '. - .-~ .. "~~'~"""""'""' ..
j~ -- .,., ' ,
~, , .

I\J
I

In

f>ii:,
"f

J'

\:

.___ . (l\ t::\
I _ -- --t-V r------p

• I •

•
L

Cor'lSUB I I
SOURCE I I

I I I
~ ,

• \)

I I HAL I
f

COMPILER I I
, I .

COMPOOL
SOURCE

V
HAL

Cor'iPI LER

I
I

I
I

I
I

I

VIA INCLUDE
DIRECTIVE-

---- _ ---J L __ -- - __ J

l
.

, .

-

~ SYMBOLIC DATA
~ OBJECT DATA

..
~ ..-

....
~ -

----- -

:';"MBOLIC
-·I~NPLATE

LIBRARY

OB-dECT- -
MODULE

IJBRARY .

FLIJure .2.

HAL ~{LATION SYSTEM

to

G}--·----l
i I I ' • • PROGRAM I

SOURCE

HAL
COMPILER

LOAD
MODULE

,LI'L '"""l

"
tr'

,

~
i
1
~

~

1
1

'~

J

J
~

. . !

1
~
~
~

I 1
·;ijl.;i1nrii.'~'i~T~i~'~.": i;::·rtpittll!.!t:::.!!:~j~::~~::_!~:~~lk!~i~~~~~~!!~I~~!I!~~!!~T~~

','

~~. ~ ..

.~hase 1 performs all sY~ltactic and semantic
analysis of the user's HAL/S source statements. This
analysis is driven by a parsing system which generates
a complete parse of the input. The parsing algorithm
detects and identifies all syntax errors in the source
statements and makes information generated as a result
of the parse available to other sections of Phase 1,.

Phase 1 is responsible for the i.dentification of
all compiler directives and for the proper implementation
of the facility which allows separate compilation of COMPOOLs,
COMSUBs, and PROGRAMs.

This separate compilation facility is illustrated in
Figure 2. The boxes labeled 1 through 3 each identify a
separate unit of Compilation. A Unit of Compilation is the
minimum element of the HAL/S language which may be compiled
separately •.

Units labeled 1 and 2 illustrate the system which
is implemented by the compiler to allow separate compilation
of COMPOOLs and external PROCEDUREs and FUNCTIONs (COMSUBs).
This system allows the compiler to perform complete static
verification of all data types and formal parameters even in
PROGRAMs (Unit 3) which reference separately compiled Units.
This system is implemented by producing a symbolic template
for each unit 1 or Unit 2 compilation as well as any object
code. When a PROGRAM makes reference to one of these separate
Units, the symbolic template must be INCLUDE'd (identified
by an INCLUDE compiler directive) by the programmer. Phase 1
automatically generates these templates whenever a unit of
Compilation of type 1 or 2 is compiled. The t.emplates are
compatible with standard INCLUDE library formats.

Phase 1 is also responsible for production of the
source listing and the symbol table/cross reference table
listing. Phase 1, written in the XPL language, consists
of four distinct parts:

1. The Scanner

2. The Syntax Analyzer

3. The Semantic Analysis Routines

4. The Listing Synthesizer

Figure 3 illustrates the organization of Phase 1 in
more detail.

2-6
INTERMETRICS INCORPORATED- 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617)661-1840

requests

-
I
I symbols

I
I

I

scan
tables

- -'

-
syntax
tables

I
I I -- -' / ! I

/
/

symbol
table

/
/

/

/

-_ ... cross-ref
table /

/ ---

modified

token

strram \

formattiAg

___ -I commands\

I \
\

,
\

-

\
\
\

" '\
" " " '\

constant
table

literal
table
page

'.,r-----.....
~ HALMAT

block

r

Figure 3: Phase 1 Organization

2-7

- -0

"

......,- NO. ' •• -,1.'" .»--."' """"", .. ~[~~' .. ~
~ "" .. _" , ... ,_ •. "_._L ~_ ~.~.~...

It ,
;l

i~

The Scanner. The Scanner is sometimes called the
Lexical Analyzer. It scans the sequence of characters
that comprise the source input (letters, digits, punctu
ation, spaces) and generates a stream of tokens which
are meaningful symbols to the Syntax Analyzer, (e.g.
reserved words, identifiers, literals, and other
terminals). It discards the semantically irrelevant text
and handles embedded comments. The proper int~ll:'p;!:etation
of multi-line input is done in the Scanner.

Each symbol is converted to an internal "token" in
a simplified format so that the analyzer is presented with
a stream of uniform symbols. This permits the rest of
the compiler to operate in an efficient manner using fixed
length numerically-formatted data instead of variable length
character strings. The Scanner is called upon by the Syntax
Analayzer as needed to deliver the next token from the
input stream.

The requirement for a scanner moclule rather than the·
much simpler standard XPL scanner is generated by the multi~
line HALlS input format and the more complicated grammer.
The HALlS source statements are originally entered into the
compiler in the form of card images. The text of the state
ments occupies columns 2-80.

Column 1 is reserved for defining the type of the
individual card as follows:

'c' in column 1 indicates a comment card. The
contents of the card will be ignored by the
compiler.

'D' in column 1 indicates a compiler directive
card. Compiler directives inform the compiler
of user requests for specific compilation
features.

'M' in column 1 indicates the main line of a HALlS
statement. Columns 2-80 of the card may contain
HA,L/S statement text.

'E' in column 1 indicates the exponent line of a
HALlS statement. Columns 2-80 of the card may
contain HALlS statement text. These cards may
only occur in association with an 'M' card.

2-8

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 ! (617)661,,1840.

I
I.

I
g

j
! \
II

i-.... _ ~ .. ~~-.... ""----"..........".--;-'''"".
...

., +-, '-'.-'"~~~ ~- ~ ___ ft. ___ • --:-:--:-7~·-·""O.- .,. ~c:=..:.;:~~-------"'-'"¥-.--.... ;:--_::::'::"".'=',;'.lt'-1.~~.';.~."'t".J."...,_ '-,:,. l_ ~...a

IS' in column I indicates the subscript line of
a HALls statement. Columns 2-80 of the card
may contain HALlS statement text. These cards
may only occur in association with an 'M' card.

'~' blank in column I will be treated by the compiler
as if it were an 'M'.

All other characters occuring in column I are treated as
errors. Such illegal characters will cause the card on
which they occur to be treated as a comment card. The
compiler also flags any illegal sequence of cards as an
error. The HALls compilers accept user input in single
line or mUlti-line form as described in the HALlS Language
Specification.

The scanner reads source statements from either
the normal source (SYSIN) or from an INCLUDE library.
An include library contains auxiliary source inputs that
may be called in by user requests. The source to be
included may be either user-written source statements or
template data generated by the compiler for COMPOOLS or
COMSUBs. The INCLUDE library takes the form of a partitioned
data set. An individual member of the data set is the
minimum data which can be INCLUDE 'd.

In addition to its principal input function of
reading source programs, the scanner has a secondary
function of reading the Program Access File (PAF). This
file contains information used by the compiler to assign
ACCESS rights to individual users. The structure of the
data set is a partitioned organization with each member
specifying the ACCESS rights for one Program Identification
Name (PIN).

The scanner also has an output function. Since the
primary source listing is completely reformatted by the
compiler, an optional secondary source listing may be
requested which lists the original card images as they
were input to the system.

The Syntax Analyzer. The Syntax Analyzer decomposes the
input stream as delivered by the scanner to determine if it is
legal according to the grammar of the language. Once the parser
verifies the syntactic correctness of the input, control is
passed to the appropriate semantic analysis routine.

The parse is conducted using the table-driven algorithm
of DeRemer and Lalonde.

2-9

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

c~~_Cc __ 'Cc_.cc ••• _c._ _.~._._~.~.~"'"""._ :4

The Semantic Analysis Routines. Once a complete
syntactic check has been performed and the format identi
fied, a semantic routine is invoked. Given the particular
construct and access to the compiler tables, the analysis
routine checks for semantic correctness and then interprets
the meaning. The result of this interpretation is some
action taken by the compiler to properly implement the
language construct in question. This action may range
from adding information to the symbol table to generating
some intermediate code language elements (HALMAT). The
HALMAT is a machine independent representation of the program
being compiled. It is used to drive the code generation
process. The HALMAT is further discussed under the topic
of internal compiler data transfer.

In addition to its principal analytic function, the
semantic analysis phase also adds useful information to
the source listing. Specifically:

a) alock Summaries. At the close of each PROCEDURE,
TASK, PROGRAM, FUNCTION, or UPDATE block, a
summary of interactions between the block being
closed and the outer scope in which.the block is
nested. The information includes both variable
and block references (e.g. a block summary for
a PROCEDURE lists all variables used in that
PROCEDURE and any code blocks referenced by that
PROCEDURE) •

b) Program Layout. At the close of any PROGRAM,
a summary of all blocks contained within
the PROGRAM. This summary lists the name and
type of each block and will indicate by indenta
tion, the nesting relationships which exist
between the blocks.

The semantic analysis module is also responsible
for producing templates for COMPOOLs and external procedure
COMSUBs. Whenever a COMPOOL or COMSUB is compiled, the
HALlS compiler produces a symbolic template of the compiled
module. Refer to Figure 2 for a graphic representation of
the compilation process. The templates generated in this
manner serve to define all interfaces between the COMPOOL
and COMSUB's and the HALlS programs in which they are used.
The templates are generated to be compatible with the INCLUDE
library.

2-.10

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETIS02138 • (617) 66'1~1840

l

Ij r
I-I

I

I
I ;
II) l~
"111:

~
iZi
:i'

;f
[!
if
~
l:j
w
I!
:':
r
if
~4 .,
[j

I :*
f!
;'1
;,:

U
t· I j';

t;

t , .
. }

.~

j

'1
t;

1
1
~
.~

i

1~ ., .. ;,
~
L~
,~
;T

:i
2.'£ \7_
'~

,.

r

On recompilation of a COMPOOL or COMSUB a mechanism is provided to generate a new template only when the old template needs to be changed.

The Output Writer. At appropriate points in the analysis, the Outpu,t Writer is given control. This routine generates the fully annotated primary source listing by synthesizing the source statements. The synthesis is driven by the tables and other data generated during syntactic and semantic analysis.

The requirement for an output writer module rather that the simpler existing XPL system is generated by th~ format of the HALlS primary source listing. This listing provides standard, automatic annotation to enhance the ' readability of the HALlS source code. It allows each' programmer to enter his programs in free-form input consistent with his own coding preferences. The compiler edits the input during compilation into a standard listing form so that all program listings observe the same coding rules.
Although original HALls source input is in the form of card images, the compiler treats the input as a continuous stream of information. Elements of the source listing are generated statement-by-statement, regardless of the original input form.

The editing performed by the compiler includes expansion of any single line HALlS input into fu!.l multiline form, the addition of annotation marks (overpunches, structure and array brackets), ~nd the logical indenting of statements.

The annotation generated by the compiler is in the form of marks supplied to indicate the type or organization of individual symbols. The marks are generated as follows:
Overpunches - Variables of type vector, matrix,

character, bit, or structure appear
in the listing with a characteristi~
mark above the variable name as in M
for a matrix. The marks are:

* for matrix,
for vector,

, for character,
• for bit or boolean,
+ for structure.

2-11
INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMSRIDGE, MASSACHUSETIS 02138 • (6'17) 661-1840

,t
"~ .~

,.. ,

Brackets

Underlining

Variables which have dimensioned array
or structure organization are enclosed
in brackets:

[A] for arrays,

{S} for structures.
I

Bracketing occurs in addition to
overpunching.

All REPLACE variables are underlined
when they appear in the listing,

e • 'oJ • REPL~.CE A BY "B":

C = A + D:

Statement indentation is done to highlight the
logical construction of the program. In general, the
more deeply a statement is indented, the deeper it is in
the logical construction of the program. The indentation
performs alignment of associated statements (e.g. END and
CLOSE statements are indented identically as their respective
DO or PROCEDURE statements.)

The primary source listing identifies each HAL/S
statement with a statement number. The listing also
identifies program blocks by listing the name of the block
in which a statement occurs in the right margin associated
with that statement.

~leanups. In addition to the four major modules
described above, phase I also has a collection of cleanup
routines which append additional material to the listing.
In particular, they produce:

a) Symbol Table Listing. A display of the complete
symbol table generated during the compilation.
The table is sorted alphabetically and identifies
each user-defined symbol by name. The table
identifies all attributes of the symbols, such as
type, array/structure size, matrix/vector size,
character string length, precision, etc.

2-12

'l
.1
1

I
1
j

1
.1
1
l

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

.::

.,. '-"',<,~, ,.;,;~ .",., .---,,_ . .d

-I
I

,. ,

b) Cross Reference Table Listing. In the Symbol Table Listing, a display of the complete cross reference map for each symbol defined. This table indicates, by number, the statements in which indi-vidual symbols appeared in the compilation. In . addition, the listing indicates the type of reference made to the symbol by distinguishing between assignment, simple reference, and use as a subscript. Also, the cross reference listing summarizes total usage of variables (e.g. if a variable is declared, but never used, the listing will indicate this condition). If the usage summary indicates that a variable is referenced but never assigned a value, the compiler will flag this condition as an error.

c) Replace Text Listin~. For each variable defined to be a REPLACE var1ab1e, the compiler lists the text that was substituted for the variable.
d) Error Message Summary. When compilation errors were detected, the compiler already inserted an error message in the primary source listing at the point of detection. At the end of the primary source listing, a summary of errors is printed indicating which statements in the compilation received such error messages.

2-13

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE] MASSACHUSETTS 02138 • (617) 661-1840

'.

I •

2.2.3 Phase 1.5

Phase 1.5 attempts machine independent optimizations
on the HALMAT. Since an understanding of Phase 1.5 is not
necessary for the rest of the compiler, it is treated as a
separate topic after the discussion of phase 2, At present,
phase 1.5 eliminates common subexpressions, folds constants,
eliminates unnecessary matrix transpose operations and
reduces the strength of some operators. Long term plans
call for a substantial extension of these facilities. Before
doing any work on phase 1.5, the Intermetrics Report, Common
Subexpression Recognition, IR #127-1 (7 July 1975) should be
carefully studied.

2 ... 14
INTERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS0213S- (6:17) 661-184.0

11
it

~ 1 ~
~

1
~
i~
:1
,oj
r~
'il

'~j '. ,I , ~
;~ ,~
" i i:
" , :a -,i

I
l,· ,
:1 1

·1

1

J
" ~

j

1
3.

1

I
I

j ,

'"
~

1
I
1

.'
'ii_IiLd .. '~

r

2.2.4 Phase 2

By the end of phase 1.5, an optimized machine indepen
dent representation of the program exists in the form of
HALMAT plus tables. Phase 1 and 1.5 are identical for the
Fe and 360 compilers. Phase 2 translates the HALMA'!' into
object modules using a three pass design.

Pass 1 allocates storage for data and translates
to a second intermediate code resembling 360 machine language.
Pass 2 resolves all forward address references and compactifies
the code by eliminating unnecessary base register loads on
the 360 and using short form addressing on the AP-lOl. Pass 3
produces object modules for either the 360 or AP-lOl.

Phase 2 for the AP-lOl is an adaptation of phase 2 for
the 360; consequently, the two programs have the same overall
design and many routines are identical or differ only in
minor details. A major part of phase 2 deals with keeping
track of register contents, storing intermediate values, etc.
This part is essentially identical. The code dealing with
compactification is substantially different.

The Code Generation Phase acquires all necessary data
from previous phases and uses that data to direct the genera
tion of object code for the target computer.

Phase 2 pr,oduces, on request, a formatted mnemonic
listing of object code produced. In addition', Phase 2 must
supply proper object code interfaces to the runtime system.

Phase 2 contains four distinct sections operating in
three passes:

1. Declared Storage Allocation J
2. Initial Co~e Generation

Pass 1

3. Code Compaction Pass 2

4. Object Module Creation. Pass 3

Figure 4 illustrates the organization of Phase 2 in
more detail. Phase 2 is written in the XPL language.

2-15

INTERMETRICS INCORPORArED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

L
i: I ~

~

j
i, 1
~,

1 ,
1

I
.~

I
I
I

1
~
1
J
]
1
J
1
.J
'1

I
i
~

j
.1
~ ,
.1
1
1 ,
;1

j

i
1
]

",

I, '

, , ,

I
/

\ .
,

, DECLARED
"" STORAGE
, ' 'ALLOCATION

from Phase 1

- -'~
Augmented Symbol

Table INITIAL
CODE

GENERATION

- /' / I~--------------~

/
/

-- /
/- - 'ill Generated Constants

/
/

~
/

CODE
CO~PACTION ,/'

/

/'

/
/

./

/

./

/
/

/

/
/

/
/'

/'
/

/'
/'

/ \ ,-----"---." \,/
OBJECT
MODULE

CREATION

'--------

I
+

'\ '1/

,J

/'
,/

cross reference
table

to Phase 3

Fig.ure 4:. Phase 2 Organization 2-16

--

,'/

I
,
,
I

........

]
f: I .,
L.

i
~

:4
~~

•

~
I
:1 '. j

1
"':"l" j fi "
¥iI'

t
J

,. '"
"""""f1~,-~.;m'- ',;,,~

Pass 1

Declared Storage Allocation. Using symbol table information generated by Phase 1, this module (INITIALISE) allocates the necessary memory data explicitly declared by the user. The assignment of storage is done in a manner to best take advantage of word alignment and frequency of use. Base registers are assigned to data at this time.
Initial Code Generation. This module (GENERATE), translates the HALMAT from Phase 1 into a second intermediate code resembling an extension of 360 machine language. Register allocation, loads and stores, etc. are all determined at this point.

During this pass, local machine dependent optimizations are performed to reduce the amount of code generated. Each time a variable is to be forced into a register, a check is made to determine if the variable has been previously loaded or still exists in the register which last assigned the variable. If so, the register version, rather than the storage copy, is used for the associated arithmetic operation. This scheme also works for indexed variables. Also, constant terms involved in additive operations are carried at compile time until they must be incorporated into the variable part of the expression. Thus,

J = 8 + «K + 3) - 2) + 4;

is compiled as if the statement were:

J :::: K + 13;

Operations which are cummutative are commuted if:

1. the right-hand operand is in a register,

2. the right-hand operand is a literal which can be loaded by an immediate instruction.

Included in the Code Generation is the building of the list of generated constants. This data is originally obtained from the Literal File, which contains the constants in a generalized internal form. The generated constants are specific to the context in which they are to be used; (e.g. generate an integer constant rather than a floating point constant). The last operation in pass 1 is outputting the generated constants onto the intermediate code file using GENERATE CONSTANTS.

2-17
INTERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

T

Pass 2

Code Compaction. This pass (OBJECT CONDENSER) operates
both on generated object data and generated object instruc
tions.

The generated constants are output starting with those
requiring the largest boundary alignment being emitted first.
This compresses the literal pool to its smallest possible
size.

During initial code generation, all branches "1::0 unknown
labels (i.e. any forward references) .generate an instruction
sequence to reach any possible destination. The compaction
process attempts to reduce this to a short instruction on
the AP-IOI and to eliminate the base register load on the
360.

This section will also compute the actual length of code
and the data in each control section.

Pass 3

Object Module Creation. This pass (OBJECT_GENERATOR) trans
forms the internally coded instructions and data into standard
FCOS or OS/360 object module format. This includes generation
of:

a) ESD cards for each control section.

b) SYM card for SYMBOLS defined in program.

c) TXT cards for code and initial data.

d) RLD cards for necessary address constants.

e) END card for each PROGRAM.

f) Object Code Listing. On request, this module will
also produce a formatted, mnemonic listing of object
code produced by the code generation Phase. This
listing identifies basic machine instructions by
their standard assembler language mnemonics. References
to data and to program addresses are identified by symbol
reference. Corresponding HAL/S data names are indicated
in the listing. The assembler code listing shows generated
instructions on a statement by statement basis, following
the same order as the HAL/S source statement (i.e. nesting
of HAL/S code blocks which produce separate CSECT's
will cause the assembler code listing to display the
generated CSECTs in a nested manner). The individual
lines in the assembler code listing are compatible in
format with the absolute listing function of the link
editor.

2-18
INTERMETRICS INCORPORATED· 701 CONCORD AVENUE' CAMBRtDGE,MASSACHUSETIS 02138 • (617) 661-1840

.
f I
~

i
~:

;t
;,

F
~

~
H
~
l~ ;a
11
11
~
j;
it-(

t1
j~

1 r;
1:; .1 .,
~~

'1 I;
,~

Ii .;1

;. - i~
t~
,.
"

2.2.5 Internal Data Transfer

Communication between Phases of the HAL/S compiler
occurs in two ways: 1) via direct, in-memory tables (i.e.
common areas) and 2) via data stored on direct access I/O
devices by one Phase and retrieved for use by another Phase.

Figure 1 shows the data relationships that exist
in the compiler. The relationships to be discussed in
this section are those involved in inter-Phase communica-
tion. "Data transfer is in one direction only; i.e. since
phases operate in sequence and not concurrently or iteratively,
data can only flow from earlier to later phases.

Monitor/Phase Data Relationships

The Monitor does not participate in the actual
generation or retrieval of any inter-Phase data. It
acts only asa central channel for managing I/O operations
on such data, or as an overlay supervisor in the handling
of memory-resident common data. The Monitor may receive
data from individual Phases in the form of completion
codes i~dicating whether the compilation sequence is to
continue. "

Phase l/Phase 1.S/Phase 2 Data Relationships

The interface between Phase 1 and 1.5 and Phase 2
has been designed in the most target-machine-independent
manner possible. The degree to which this machine-independence
has been achieved has determined the ease with which the
c~de generator (Phase 2) can be modularly replaced. Since
Phases 1 and 1.5 are identical for both the 360 and AP-lOl
compilers, the design has been completely successful.

Phase 1 passes information to Phase 1.5 and Phase 2
via both in-memory tables and external files. The data
passed via a common memory area includes all symbol table
and cross reference table information. These tables contain
complete descriptions of all user-defined symbols and the HALls
statements in which they are used. Since this table. data is
tied to HAL/S source code it is in a machine-independent form.
Additional data passed in memory includes status information,
special request information, error condition data detected
in Phase 1. and some literal data information.

2-19

lNTERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 66t-1840

~. , [.. ~r~.'._.~.--'.-.'~~'~: __ ~ •. r "'''''' -,.--~~~,..",~~_~.-r~_.~ .• ~~ •. ~~- .•. ~'m~' .. 0",.

~~1,,,. ":'.: ,~~"'.;:-;".,'t1.~~'?i€~~I\' .. ;,""1- ,.I"",. "':'"""0":,<."',=<,-,,,,·,,0..,,.,.- '= ~. , ' _~~,cA_~ _~_+-.~ __

¢ ¢ """",4 ."""P_"'j""'"""'''''''''' ~. N.."...· .. '.,.,.,"~r'""" ._"'4..,.,iji1F-n.....,~ -.,-

_n. . j

Data is passed from Phase 1 via two files on IIO
devices. One file contains representations of all numeric
literal data encountered by Phase 1 during the compilation.
The literal data is in an internal, coded form which
allows Phase 2 to produce object code literals in the proper
target machine format.

The second IIO file contains a description of the compiled
HALlS program in an intermediate language form known as
HALMAT. HALMAT is defined in the HAL/S-360 Compiler System
Specification. The HALMAT for a given compilation describes
the llAL/S source program in an elemental, operation-by
operation form. All HALls statements are represented as groups
of operations. The operations consist of an operator (e.g.
vector add) and operands upon which the designated operation
is requested. The operands may be, for example, simple data
items (e.g. simply indicating a particular symbol table entry)
or results of previous operations (e.g. re~erences to previous
HALMAT operations which produced some intermediate result).
The principal job of phase 1.5 is to replace sequences of
HALMAT instructions by a reference to some previous HALMAT
instruction which has already computed the result. Thus, the
interposition of phase 1.5 between phases 1 and 2 has no effect
on the data flow between them. Phase 1.5 is a transparent but
distorting window. The HALMAT language itself describes only
HALlS constructs and refers only to the tables generated by
Phase 1. It therefore is independent of the target machine's
object code format. The form and organization of the HALMAT,
however, permits an orderly, operation-by-operation generation
of target code by Phase 2.

Data Passed to the Table Generation Phase

Information generated in Phase I and modified by Phase
II is passed to Phase 3 via both in-memory tables and an
external file. Symbol table and cross-reference information,
augmented by relative address information from the code
generator is passed in the cornmon memory area.

The external file passed to the table generator contains
information concerning the individual HAL source statements as
scanned by Phase 1 and translated into object code in
Phase 2. The file contains information to identify and
locate in the generated code each executable source state
ment with regards to type, symbolic references, and modified
variables, Each of these features refer to the source code
so that table generation is independent of the target machine's
object code.

2-20

REPRODUCffiILrry OF TIll
pRIGINAL PAGE IS POOl-f.

(

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

I

0'

.. -,~=.~-~, .. " ".~~~-- ... -...•. ,-.-.. , 'k.- .. ,'.,.'", •... ,,, ,- ... ~" ~--.~. ~ ... =-, .. ~ .. ~=~~-~~_._.......;,·~"iwi' -dl!!.!!'

1

j

,
,"

. ,

~ "!i \

:.," , ~

2.2.6 XPL and The Translator Writing System

The HAL/S compilers have been implemented using the
XPL Translator Writing System (TWS) , as the primary tool.
The TWS is a program or a set of programs comprising a
tool to assist in the writing of translator-compilers,
interpreters, assemblers, etc. Its usefulness is
derived from its ability to supply uniform functional
modules for standard functions such as text scanning, and
to automate the production of language-dependent portions
of the compiler. The problem of correct syntax analysis
is solved by using a scheme in which all parsing of input
is driven by automatically generated tables. The tables
ar~ produced from an explicit specification of the language
gran~ar. This produces a more complete, thoroughly checked
compiler, and yet one that lends itself easily to modifica
tions and changes.

The use of the XPL TWS has had its major influence
in Phase 1 of the compiler where the syntax analysis is
performed. Figure 5 illustrates the use of the XPL system
in the generation of Phase 1 of HAL/S. The Grammar Analyzer
is an independent program whose purpose is to accept a
description of a grammar, analyze it for ambiguities, and
produce a set of parsing tables. The parsing tables become
a part of the syntax analysis routines in the compiler.
Table look-up procedures to access the analyzer-generated
tables are part of the XPL system. Thus, a correct parse
of sentences in HAL/S is guaranteed by this separation of
parse rules from semantic processing rules. The semantic
processing routines and other utility functions form the
remainder of Phase 1.

Certain aspects of the XPL language have had a significant
effect on the HAL compiler and should be kept in mind.

XPL procedure parameters are passed by value; thus it
is impossible to return a value through a parameter.

XPL does not allow arrays as procedure parameters; thus
a very large amount of material must be global.

XPL does no type checking, a value is TRUE if its low order
bit is 1; TRUE=l and FALSE=O when used as arithmetic
quantities.

XPL does not check that a call passes the correct number
of actual parameters.

2-21

INTERMETRIOS INCORPORATED· 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSEnS 02138 • (617) 661-1840

~, "~:' ,r~~_~~:;:"~ .. ---'~'Ii!!"'!!l'IfIiI!!3i£!!I!AI!\I!!Z_!lI!lI"""'"_"''''','''''dm ft)'''~"''''''t'''$''')r:"",.'-",", .• ~ ~t1'""" _____ ... rzw""-....... m ' ... ·!lb ... H ilii __________ ~"'~,"""_"I"__2..__;:;:;;:_ __ ..

r

I'

A

HALlS GRAMMAR~ ____ ~~.,rtuALR GRAMMA ~ DIAGNOSTICS &
SPECIFICATION --..."\ ANALYZER .-----1 LISTINGS

'- ---.I

SEMANTIC &
UTILITY

" ROUTINES
(XPL SOURCE)

TABLE LOOKUP"
PROCEDURES
(XPL SOURCE)

,
, ,

••
If
SYNTAX TABLES
(XPL SOURCE

STATEMENTS)

../I
I' .~

" ,
If
y

-

-
I

, V

Figure 5.

-

~ XPL .. COMPILER

Using the XPL TWS to Implement Phase 1

2-22

....

I . £ 'r· · , ~w . ..,.. £ ... • .. "T "'¥""" • ..,. ,

. ,
l

,

I
l
I

LISTING

\ INTERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETIS 02138 • (617) 661-1840
(

;~I ""~

'_-,..Jl:""o:.:, '-_ .-•• ~.:.:.~ -',-j _~ L-~~~,:r_"""'O~_'E_-.,=,.~,-"-,_~",.=-.·-,,, ~·",.."",-~W=~· 0." - •• ,,,,,,,,,,~~ __ y,,:.,,,,:""";,,,,,",,,,;.;'-~.........,~,~,;.;.· -""'T == ""'· ·"·· ·~· i" · -...... " :;;'ik..,.::~_. ",",",,",,' g""'-.... ·)r -p}.,.,w-··'""'''"". .. !l!!!· P!!!iii!l!l!~_··iMI('I3_==-... miIIIllI···d

I.;

2_
-- -- ~.......-~------

__ ---.-~ __ ~_..--. __ ~";~-~~~~-~....,.-....., ~~ J ;;:C HfI!Wl¢"" "4 ~~ """""" j\4C:'f'~) lOU'" if r

Certain language/implementation details about string manipulations in XPL are important to an understanding of the HAL compiler. XPL maintains an area for string storage. This area is accessed via descriptors; that is, the direct value of a character string variable is a descriptor, not a string. The code A=B copies the B descriptor into A, not the B string. This makes for a large saving in space. There are pitfalls. When using BYTE in an assignment context, the string itself is modified, thus,

B = 'XYZ"
A = B;
BYTE (A, 1) = BYTE ('V') ; .

will change the sole copy of the string XYZ to VYZ, changing both A and B! SUBSTR is fairly innocent, but it never checks its arguments -- this can lead to some very strange effects when the argument is invalid.
If BYTE is to be used to assign to a string it is essential to force a new string (not a new descriptor) into existence. Concatenating something onto an existing string will have this effect unless the string is null in which case an optimizer will victimize you.

2-23
lNTr::RMETRICS INCORPORATED· 701 CONCORD AVENUE· OAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

1
I
t
i

2.2.7 Debugging Aids

If a D (compiler directive) card has EB or EBUG as its first token, a ¢ or H debugging directive is expected. The legal directives are:

¢O Interlist HALMAT in the primary listing

¢l stop processing at the end of Phase 1

¢2 Stop processing at the end of Phase 2

¢3 Turn on Phase 1 identifier trace

¢4 Turn on Phase 1 token trace

¢5 Print HALMAT from Phase 2 (as reordered)

¢6 Print intermediate code listing from Phase 2
¢7 print Phase 1 symbol table after next HAL source statement and turn off option

¢8 Print Phase 1 production trace

¢9 Print Phase 2 diagnostic information

¢A In Phase 1 ABEND NOW

¢B Print Phase 1 HALMAT by block. This will reflect any reorderings performed after the '¢O printing.
¢C Print Phase 1 state trace

¢D Turn on standard Phase 1 listing

¢E Print literal table from Phase 1

¢F Set to expand symbol table printing

All debugging information is printed in the primary source listing.

If T is a toggle as defined above, ¢T + turns on the option, ¢T - turns off the option, ¢T inverts the current sense of the toggle.

2-24
INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02.138 • (617) 661-1840

.'[.... ~
x

f'"
I

... ,.

--,.. .. --......-.;--~--,...-.--.. -~. ~ .. ~, ~~~~_."' _I.=al,,_..-~_ ,-_-""".q __ t.:.~ .. ""+"''l'''' __ .''' .. "" ~;w: _ ~"'.""!'.'I'!Iz, _""_""'. =-:!e~,,,,,£ ak"'~2i!'l!llAO""Ml £a'l"'plI!IIIIIIIIi""'VlIII!a"'ZA!I!!'!'!IIIIII; -$ItIII![I!II .. !,""'!.~ .•• ., .. _-.-,,.,,.,.. ~

_""::'~;'O:~"£'!~'O;':"S-'~~-::.'!.'~.~-::.~~~:'"':' . .:~~,'?~,~~~.~..J.F.":"~~ .. ':"i!S!. p "!iJ~!¥'->.Q_l .. ; Ji) 1.41. \.l A!t1Ii<,. lIJ ~' .•• ;~;,). }

The ¢ toggles are primarily useful in Phase 1 because
the toggles are flipped when the DEBUG card is read. In
order to provide similar facilities to Phase 1.5 and 2,
the H'On) option is available. If H (n) appears on a DEBUG
card, the number, n, will be inserted in the next HALMAT
SMRK instruction issued.

o < n < 127 is reserved for Phase 1.5 (see Sec. 6.8)

128 < n < 255 is reserved for Phase 2.

200 - off HALMAT, assembler code, stack trace
201 - on HALMAT, assembler code, stack trace
202 - off HALMAT, assembler code
203 -
204 -
205 -
206

207 -
208 -
209 -

is:

on HALMAT, assembler code
invert register trace

invert HALMAT
invert assembler code

invert binary code

invert subscript trace.

invert stack trace

When an option is selected to print HALMAT, the format

operator words

operand words

OP (N), T, P

0(0), Tl, T2

2-25

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETIS 02138 • (617) 661-1840

·r --

~I"

3.0 COMMON DATA STRUCTURES

The phases of the HAL/S compiler communicate in two
ways: via the HALMAT file and via commonly used data
structures. The format of the HALMAT file is described
in the HAL/S-360 Compiler System Specification, Appendix
A. This chapter provides a detailed description of those
data structures used for inter-phase communication.

3.1 Literal Table

The HAL/S Literal Table is used to convey literal infor
mation from Phase 1 to subsequent compiler phases. Certain
single valued variables declared as CONSTANT also use the
literal table.

There are three parallel arrays used to specify literals:
LIT1, LIT2, and LIT3. Not all literals need be in memory at
the same time. An intermediate file is used to pass literal
information. The LITl, LIT2, and LIT3 arrays are stored n.ext
to each other and their commulative size is the size of one
I/O block. Thus, one FILE statement serves to transfer all
three arrays. The LIT qualifier on a HALMAT operand indica'tes
that the operand is to be retrieved from the literal table.

There are only three types of literal entries: 1) character,
2) arithmetic, 3) bit. Each has a different format-·on the lit:eral
file. Each type may undergo transformation during the code
generation process, thus eliminating the emission of unnecessary
code for literal conversions.

Character Literals

Format

o LITl

address LIT2

LIT3

The length specified is one less than the actual length of
the string, consistent with XPL descriptor notation. The
address refers to an entry in the array LIT CHAR, which is
a BIT(8) array whose size is determined by the LITCHARS
compiler option. If over LITCHARS bytes of character
literal information is encountered in a HAL/S program, the
compilation is abandoned (LIT CHAR cannot be kept on an
intermediate file). -

3-1
INTERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETIS 02188 • (617) 661-1840

I
I

~ ... '

.,

• 1

Arithmetic Literals

Format

1 LITl

double precision LIT2

floating point '* LIT3

This is the most general form of numeric literal. The code
generator transforms the number to single precision or integer
as required by the context in which the literal appears. I.f
LIT2 = "FFOOOOOO", then the number was found invalid by
Phase 1.

Bit Literals

Format

2 LITl

Bit Pattern LIT2

length LIT3

The first word contains up to 32 bits of information, as required,
to specify the bit literal. The length field specifies the bit
count as determined by the source input. It is always a
multiple of 4 for hexadecimal. For decimal .1iterals only,the
length represents the number of significant bits in the literal
value. For all others, the length reflects the number of
characters in the string specifying the literal, including
lending zeros •

3-2

p,EPRODUOIBll.;lTY OF TpT~
QlUGlNAL 'PAGE IS POuR
..-

'*.'" J ..

"."
INTERMETRICS INCORPORATED· 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661~1840 ~

~
-·-··-.::......-:.." ,-·-..... -'"-~:.:::...·-·;~~ .. ·-"'=~~·,,:;.;;..i..:..~~~"" mi'r:1m,;;...:'£-:' :?,,·~.;,:!'.;. .. ;"....-::......:~:., . '",', - •.•. ,. '. .', ,~-•... - .. :.' ,~

- ---"'"'--- -- ·~c·iFM+¥=;w.s.+:i:tf*~ie,mr- .--' -~1.£·~t'f&&f···(;..; .. -i.5ras.lrm"'t*i.i'(-7-.(ti5icr§B,.

~
I

I, '

•... :.I~H)~$4;;~.::,',~.~: ... ~.-'-- .. _.".~.~- ~-.. '.-.~_"~." ,~-'.'.'~-.'.' .• ~~-.-_'.'.' .. , . n.",., £'_""'''',c"saaw,:::!:-''' '"=:'"" -T"""''' w, - u""'[~~~
,.' .. " _. -_., " .. --.• " .. - . ,'.,""c.'.",-,,· ·0 ... ·"""- ". - - ' . -,C-CC" "."'··."~=d~,.c,"~=··c~_/,'· ,."",.", .• ':''''!''''''''W",''f'''O!>~1!t'!!'!!''''''_'''''''''''~lIS <,F •• ,,~""" '1

, ,
, .

CURLBLK is the number'of the page of the literal file
currently in memory.

LIT TOP is the index of the last entry in the literal
table.

LITLIM is the highest literal index number in the page'
currently in memory.

LITMAX is the number of pages in the literal table.

LITORG is the lowest literal index number in the page
currently in memory.

LIT CHAR FREE is the number of character positions still
available in LIT CHAR.

LIT CHAR AD is the address of the next available character
in LIT CHAR.

3.2 SymbOl Table

The HALlS symbol table consists of a large group of
parallel arrays of length SYT SIZE (can be set with JCL
option SYMBOLS) plus a small group of arrays augmenting the
parallel ones, which describes all the properties of declared
variables and labels. The symbol table is created by Phase I
of the HALlS compiler and augmented by Phase 2. It is available
in the COMMON communication area for use by subsequent phases
of the compiler. The names of the arrays and their associated
bit widths are listed below. A detailed explanation of the
contents of each array follows.

3-3

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE. MASSACHUSETTS 02138 • (617) 661-1840

1

~-~.,,~-~, ,. ~~.~-,. ,'~~-~{!=.-~~', '~·_·C'~ '--~'~-=--·-'-~-"-'-"-r~'. N",~ ••• ,"A • ",.~.,. ~~'.,......,' ~-........ ',--".,..,.._,....,..,. +. "'J~

.. -«''''.'' _ ""'" .. • . '" ".' '.' ,- ,. ,," .. ,. , .• , ~'~~"-":: 1

Created by Phase 1
and Passed to All Subseguent Phases

EXT ARRAY (16)
SYT NAME CHARACTER
SYT-ADDR (32)
SYT-CLASS (8)
SYT-TYPE (8)
SYT-DIMS (16)
SYTARRAY (16)
S YT-F LAGS (32)
SYT-LOCK# (8)
SYT-NEST (8)
SYT-SCOPE (8)
SYT-LINK1 (16)
SYT-LINK2 (16)
SYT-PTR (16)
SYT XREF (16)
SYT-LABEL literally SYT LINK2
VAR-LENGTH identical to SYT DIMS
XREF (32)

Created and Used Onll by Phase 1

SYT HASHLINK (16)
SYT-HASHSTART (16)

3-4

Createdbl

SYT SORT
SYT BAS:E.~
SYT-DISP
SYT-PARM
SYT-CONST
SYT-LEVEL
EXTENT

Phase 2

(16)

} (16)
(16)
(16)
(32)
(16)
(32) }

used only
in Phase 2

Passed to
Phase 3

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138' (617)661-1840

,. j

~

,.' , • .;l

::::;,;~~=,~:~,";",,~~-=~ .. ;~.~:;,:,-~~~,·~~,;:~ .. #··7· -. '_ "'~:-~:.:O-·~:~~~~~~.~~::·;.:~~L::'"..:':=-~~~L:f-.;_:if .. 1@i[~(iJlllYTillEl]]'J.,'?4 "4

t '
!
! ~<
) ,
\

EXT ARRAY

For dimensioned variables, each SYT ARRAY entry points
to an entry in EXT ARRAY which contains information about the
entry's arrayness.- EXT ARRAY contains the number (n) of array
dimensions specified. The following n entries contain the
actual array sizes. For * size arrays, the array size is
specified as a negative pointer back to the symbol table entry.
These entries are entered starting from 0 and EXT ARRAY PTR
points to the last entry.

For block names, EXT ARRAY contains an entry for each
unique error referenced in an ON ERROR or OFF ERROR statement.
The form of the entry is:

I alII GROUP I NUMBER
.'.--,. .-6 .--

where NUMBER is "3F" if the entry is for the entire group
and the entry is "3FFF" if it is for-all errors. These
entries are entered starting from the end of the array and
moving down towards O. ON ERROR PTR points to the last
(i.e. lowest) entry. If the block is still being processed,
SYT ARRAY is a negative pointer to the first EXT ARRAY entry
for-the block. When the block is closed, SYT ARRAY becomes:

1::1 =1=y~_=1=2:::;11==A:;:::-=L;Ie[===C::::~v:,U=N=T===,J
3 1 12

where COUNT is the number of EXT ARRAY entries, and ALL is 1
if there was an entry for all errors. After transforming
SYT_ARRAY, the counted EXT ARRAY entries are discarded.

3-5

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138- (617)661~1840

M

EXTENT

This array contains the number of halfwords necessary to hold the entire data item unless the item has * arrayness. If the item has * arrayness, EXTENT contains the width of one copy.

NDECSY

Points to the last entry in the symbol table in Phase 1.
SYT ADDR

The relative location of the declared variable. For block labels, it is the relative location of the block header within the program data area. For formal parameters and AUTOMATIC variables of a function or procedure, SYT ADDR is the relative location of the variable within the runtime stack frame of the procedure. For structure template nodes, it is the relative location of the node from the beginning of the template. For major structure template, the STRUC SIZE

SYT ARRAY

The SYT ARRAY array is used for any data type which can exhibit arrayness or copiness. For arrays, see EXT ARRAY. If SYT ARRAY is zero, no arrayness is present. For-structure copies~ a positive value indicates the number of copies; a negative number indicates * size copiness, and points back to the symbol entry.

For block names, see EXT ARRAY.

3-6

INTERMETRIGS INCORPORATED· 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

I
1

f .

-:if ,+. ,jilt

SYT BASE

The base register used for addressing the declared variable.
If SYT BASE is negative, the register is virtual and code must
be generated to load a real register instead. .

INITIALISE uses the space to hold the size of the data
item; for aggregates, the size of a single element; for structures,
the size of the largest element. The size information is required
for setting up proper boundary alignments when assigning storage
addresses.

SYT CLASS

The SYT CLASS array is used to classify a symbol into
major categories (cf. SYT TYPE). These classifications are
used to determine which type of token must be generated by
the scanner to properly compile the statement. The classifica
tions are:

Name Value Classification

VAR CLASS 1 Variable name
LABEL CLASS 2 Label name
FUNC CLASS 3 Function name
REPL-ARG CLASS 5 Replace argument
REPL-CLASS 6 Replace macro name
TEMPLATE CLASS 7 Structure template variables
TPL LAB CLASS 8 Structure template label
TPL-FUNC CLASS 9 Structure template function

1) When agdressing aggregate data, the HAL compiler
computes addresses relative to the oth element because
this generates the most efficient code. Since all
HAL subscripts start at 1, the address of a variable
is the address of its 1st element. Thus, the base
address for subscripting is:

address (variableO) = address (variable l) - constant.

SYT CONST is this constant.

For. simple variables and single copy structures, SYT CONST
is o.

2) For update labels, this indicates the lock group numbers
involved in the block.

3-7
INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02J38 • (617) .661-1840

.:~.: "'::'C··:::~::"-;::c:7''''''''':::-C.''';c''''-··· "·-C·.::. ..,. --... ~-.... - ... -"'"
..o_~----"--:.:.. __ ::..:d .. :....±fA!tflttt-.rme'''''''.~_ ''''i.,....."..... ''" __ .. _ •. __ ~~~,-"'-.~_~:,,_~'~_~_~~~:":'~';i;:':":'-~;-: ,- ~._ . ,Teiftefif!;<

SYT DIMS

1)

UC1t[tL.2 S$, 4Q,

The SYT DIMS array is interpreted as follows for
each name type:

BIT

CHARACTER

MATRIX

VECTOR

STRUCTURE
TEMPLATE

STRUCTURE
VARIABLE

Bit width

Maxim~un character length

row size column size I
8 8

Vector length

There is not static information in SYT DIMS
for the root node of a structure template.
When analyzing operations between two
structures it is sometimes necessary to
perform a structure walk. This walk may
reach a node of type Q-structure. In
that case, SYT DIMS(Q) contains a negative
pointer back to the containing structure's
node for operand 1 and SYT LINK2(Q)
contains the equivalent for operand O.

A node of type structure template, which
has no descendants (i.e. SYT LINK1=O)
must be of type Q-structure ~or some Q.
In this case, SYT DIMS points to Q's
template.

Pointer to the symbol table entry for
the template.

STMT LABEL - 0
1
2
3

- defined only
- unlabelled update block

labelled update block
reached by GO TO

4-7 - unreachable by GO TO (IF labels)

MACRO Number of parameters.

2} For arrayed character formal parameters, SYT DIMS
is a negative pointer to the symbol table entry.

3-8

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

."
...... _..-iI

,.JI' - .• ,
I"":",, • .;::l

.. \ .

SYT DISP

The displacement used for generating base-displacement
addresses for accessing the data items. For an aggregate
data item, it is the displacement necessary to generate the
actual address minus SYT CONST, i.e. the address of the oth
item. -

In INITIALIZE, 0 indicates program data area; i

~o then value is scope# = csect# of item.

For structure templates, the number of extra bytes required
to achieve the same alignment as the beginning of the node.

SYT FLAGS

SYT FLAGS contains many descriptive flags used by Phase 1
to determine conflicting declarative attributes for symbols.
The following list of flag entries is used by the subsequent
compiler phases:

Name

ACCESS FLAG
ALDENSE FLAGS
ALIGNED-FLAG
ARRAY FLAG
ASSIGN FLAG

ASSIGN OR NAME
ASSIGN-PARM
AUTO FLAG

AUTSTAT FLAGS
CONSTANT FLAG
DEFAULT ATTR

DEFINED BLOCK
DEFINED-LABEL
DENSE FLAG

DOUBLE FLAG
DUMMY FLAG

DUPL FLAG

ENDSCOPE FLAG
EVIL FLAGS

EXCLUSIVE FLAG

Value

"00010000"
"OOOOOOOC"
"00000008"
"00002000"
"00000020"

"10000020"
"00000020"
"00000100"

"00000300"
"00001000"
"00800208"

"10100000"
"00000060"
"00000004"

"00400000"
"01000000"

"04000000"

" 00004000"
"00200000"

"00080000"

Attribute Tested by the Flag

ACCESS protected
ALiGNED FLAG or DENSE FLAG
It.em is-declared ALIGNED
Item is an array
Entry is a formal parameter

requiring an assign parameter
NAME FLAG or ASSIGN FLAG
Same-as ASSIGN FLAG-
Entry requires-automatic initiali-

zation
AUTO FLAG or STATIC FLAG
Entry has the CONSTANT attribute
Attributes for implicit declara-

tions
NAME FLAG or EXTERNAL FLAG

3-9

Label reference is resolvable
Entry is subject to dense alloca-

tion rules
Use double precision
Formal parameter of a procedure

or function which had no declara
tion

Duplicate name in structure
template

Indicates end of COMPOOL list
Structure template not properly

completed
Procedure or function is to have

exclusive usage

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

... ~
.-'

· .. ,,: ",,11 .. _ , _, ""..,..,-..,.-~--... --.-....... ""'-'-.. -' , u ... ,~. ",< ,. · .. "'· ... ' .. i .. ··"·'" M .. O 1--"'" '~,
• _~ ~5'~". -~

Name Value

EXTERNAL FLAG "00100000"

IGNORE FLAG " 01000000"
IMP DECL "00000010"
IMPL T FLAG "00040000"

INIT CONST "00001800"
INIT-FLAG "00000800"
INP OR CONST "00001400"
INPUT PARM "00800208"

LATCH FLAG "00020000"

LATCHED FLAG
LOCK BITS "00000001"

LOCK FLAG
MISC-NAME FLAG "40000000"

NAME FLAG "10000000"
NON HAL FLAG "02000000"

PARM FLAGS "00000420"
PM FLAGS "00C20080"

POINTER FLAG "80000000"

POINTER OR NAME "90000000"

READ ACCESS FLAG 20000000
REENTRANT FLAG 00000002
REMOTE FLAG 00000080
RIGID FLAG 04000000
SD FLAGS OOCOOOOO
SINGLE FLAG 00800000
S!>1 FLAGS 10C2008C

STATIC FLAG "00000200"
TEMPORARY FLAG "08000000"

SYT HASHLINK

See SYT HASHSTART

SYT HASHSTART

Attribute Tested by the Flag

Block name is not part of the
compilation unit

Routine INITIALISE ignores this
Symbol implicitly declared
Is used with a transpose opera-

tion
CONST FLAG or IN IT FLAG
"'INIT-CONST
INPUT-PARM o~ CONSTANT FLAG
Variable is a formal parameter

of input type
Event variable entry has .the

LATCHED attribute
See LATCH FLAG.
Entry is a member of a lock group

indicated by SYT LOCK#
See LOCK BITS -
The structure contains a name

variable somewhere in it
Entry has the NAME attribute
Procedure or function uses non-HAL

linkage conventions
Entry is a parameter
Flags which must match .for assign

by reference
Entry is a formal parameter passed

by reference
Entry is a formal parameter or has

the NAME attribute
Read only
Procedure or function is REENTRANT
Entry has the REMOTE attribute
Entry has RIGID atribute
SINGLE FLAG or DOUBLE FLAG
Use single precision
Flags which must match on structure

terminals
Item is declared STATIC
Entry is a DO group temporary.

The symbol table is accessed via a hash function.
SYT HASHSTART is an independent array whose elements point

I

to the first entry in the symbol table with a particular I
hash code. Entries with the same hash code are linked using' "
SYT_HASHLINK which is one of the parallel.SYT arrays .

. 1),0
lNTERMETRICS INCORPORAtED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

~
if ::i

~
~1

~
II

~
" fl .,
~l\

~
ii
"

'?
j
i~ ,.
;~
I";
;~~

l' ,i
~ .:;r
;:l

i'l
;~
r<~

~~
1
~{
:i

15

T "J:

",J~u:.~",. __ ~~,;.,;:~.<..,~~..,."m;~~~w.;.~ ;;;;j.ew~.J~th~~~~""-"'':'..!i'~~~~~.i.;.,-, .. .!.<i..~-~'-<'.~~,~~.i{~'':.I~~_=-<-'C:_' _" z

i
!

F'

"
r

I'

, , ,

ft
~

~)
~ f
iii
:;
,',

1i
:·1
:;
:j
;!
il
'I
!
I
I
1 , ,

f

~ SYT-LABEL: literally 'SYT_LINK2'

,x

......

A statement number generated by Phase 2 for every entry
in the symbol table of label class (cf. GETSTATNO) •

SYT LEVEL

1) A pointer to the symbol table entry for another
variable in the same block. SYT LEVEL provides a
linked list of all the variables-declared in a
block. The entry for the block's name is the
beginning of the list. This entry is pointed to
by PROC_LINK (scope# (block».

2) Used to form a linked list of all structure
template names. STRUCT START points to the list's
beginning.

3) For formal parameters with * arrayness or character
size, SYT LEVEL indicates the presence of zero, one,
of both of these features by value of 0, 1, 2,
respectively. This is the number of words of storage
necessary to pass the information.

4) INITIALISE saves NDECSY of the node here for later
use by ALLOCATE TEMPLATE before use 2).

SYT LINKI

1) For structure templates: See SYT LINK2.

2) Used to form a linked list of all procedures and
functions using non-HAL linkage conventions. XPROGLINK
points to the beginning of this list.

3) Used to form a chain of all tasks. SYT LINKI of the
main program points to the beginning of-this list.

4) If the entry is the label of an exclusive block,
it is a number identifying the block.

5) Used to form a chain of all REMOTE variables. FIRSTREMOTE
points to the beginning of this chain.

6) Used to form a linked list of all external labels.
ENTRYPOINT points to the beginning of this list.

3-11

lNIERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

__ "~_"=:~~ .. ' _- ... '''', -.. · .. ~~::_~ =~~:=-·~.:~~~~:·~"..--'=;:~~:~er~~=:J:~"~~~::L ¥.:::~'~

7) For REPLACE names points to beginning of <text>
in MACRO_TEXT.

8)

9)

SYT LINK2

Labels

Used to form a list of TEMPORARY variables.

For labels in phase 1, -DO LEVEL at the point of
declaration of the label.

Phase 1 uses this entry to back chain label definitions. The beginning of the list (i.e. the last label) is in SYT LINK2(O). Phase 2 uses the name SYT LABEL (see that entry for-definition) •

structure Templates

The symbol table format for a structure template consists of a linked list to define ordering, using the companion arrCl.ys SYT LINKl and SYT LINK2.

A structure walk begins with a major structure pointing to a template name via SYT DIMS, as described earlier. The tree walk, if performed properly, will begin and end at the same template reference point. The following general rules apply to structure walks:

1) SYT LINK2 generally points to the next terminal symbol or node point at the same level number
as the current symbol (i.e. its right brother); SYT LINK2 is usually zero for the structure name entry,however see SYT_DIMS for structure templates.

2) If SYT LINKl of an entry is non-zero, the entry is a node-(i.e. not a terminal) and SYT LINKI points to its first descendant. -

3) If SYT_LINK2 of an entry is negative, it indicates the last item in a minor node, and the absolute value of SYT LINK2 refers to the minor node point (i.e. its father); the structure walk proceeds from SYT LINK2 of the minor node.

3-12

'INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS Q2138 • (617) 661-1840

,.,. ,~. __ • __ w,~·_ i. :l;.''"'': ,;, .,. j-S"' , -~., . -'. ", ··.;..···-'?#eM;,....:....~...s_-:.:!d.,,-.: ::..:-=,.-.~.:· ... ,..::...::.::~.:...n....;·---'-'-'~'"-;;..;~~-~·~ _'""-"~":-• ...:.~~."f.:..~:...:. _. i.~.,:..:.:....--.-..!."~"'.:...'L.m'-"-_O"'_~··~u : . .a.:, -0" ~'""'""'~~;;_t::'.i.:..L.:,:..=~.=.....:.,::~:.:~':;;~:Iiii,:: ~!.itIr~t.·~.:::. """"Jlfrr

It: ~.

~~
ri
,~

J'

L{-

" t
" Jli

t : ..
~;

~
T

-J:<

Ii

;'
~

"
i.

.1

~

1
:j
;
j

1
i .
1

1
j , ,
1
~
1

1
..
I

j
.j

~
~ ,
j .,
j

1
1
~
'1

i
,~

~
~

",I
.r
7;:

e
Example:

SYT # SYT LINKl SYT LINK2

STRUCTURE A: 1 2
1 B, 2 3 5 2 C, 3 0 4

2 0, 4 0 -2
1 E, 5 6 -1

2 F, 6 7 9
3 G, 7 0 S
3 H, S 0 -6

2 J; 9 O. -5

SYT LOCK#

If SYT FLAGS indicates that the variable is a member of
a lock group, SYT_LOCK# indicates the lock group number.

For templates of external units (e.g. compools, comsubs,
etc.) SYT_LOCK# is the version number of the template.

For the root node of a structure template SYT .LOCK#="SO" •

. ~ SYT NAME

i
!

[~,

The actual name of the variable.

SYT NEST

SYT NEST indicates the nest level at which a variable
or label-is defined. It is useful for determining proper
name scoping.

SYT PARM

1) If the entry is a formal parameter, this
is the register in which it will be passed.
If there are insufficient register SYT PARM is
negative. -

2) If the entry is a task, this is a number
identifying the task.

3) If the entry is a function, 0 indicates the function
requires an area for returning a result; -1 indicates
that the result will be returned in a register.

3-13
INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

. •. ;~:lir. .
.-C.,-,-,. _::~.c.:c~:c ... _:...:c.

'.~'

I ~

SYT"PTR

For block names, SYT PTR points to the first declared symbol in the block. If the block has arguments, SYT PTR is quarantee to point to the first argument in the list.

For unqualified structures, SYT PTR of the template name refers to the corresponding major structure name.

For REPLACE names, the MACRO INDEX.
For CONSTANTs, a negative pointer to the literal table.'
For labels, SYT PTR links together all labels for the same statement.

SYT SCOPE

SYT SCOPE uniquely identifies the block in which a variable-or label appears. A number is assigned to each block as it is defined.

SYT SIZE

The size of the symbol table as determined from the JCL SYMBOLS option.

SYT SORT

Array used for sorting the symbol table entries. An entry has the form:

scope # Isymbol table pointerl

16
SYT TYPE

The SYT TYPE array gives a more detailed description of the symbol, and is meaningful in the context of the associated SYT CLASS. The following is a list of the allowable types and-their associated reference number:

Name l /Name 2

BIT TYPE/BITS
CHAR TYPE/CHAR
MAT TYPE/MATRIX
VEC-TYPE/VECTOR
SCALAR TYPE/SCALAR
INT TYPE/INTEGER
BORC TYPE

Phase 1
Value

1
2
3
4
5
6
7

Phase 2
Value

1 or 9

3 or 11
4 or 12
5 or 13
6 or 14

Description

Bit string
Character string
Matrix data
Vector data
Scalar data
Integer data
Bit or Character string -

used for built-in functions
which allow more than one
type of argument

(3-14
I

\ INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETIS 02138 • (617) 661 ~1840

;I
"

,
1
.~

J
1
j
1

1
I
1

1

.~ Ii"

-<r,"'-<,- .--.,"'''- • .,......,.,"....-~- '''''''JIIf'' ."." -.• --~,,- .• ~ ... _,_ ... ' _·_.n"~ ... _ .. ""_,-__ · ___ ~ ... '"'-_-=-"'-_ -~.....,..,-----1~¥~--- · .. ---'I~- ' ~- ... -"'"-
, ¥_ ""L. -_-;;"_ 'j\':: \-~~·._:!"-~-1··":'-·'" ""'"~_"\:;":4·_·'-,..,-'"Je".'f'....,,k.;l. ~~:,""""""",-,'''f

IORS rYPE

Event Type/EVENT
MAJ_STRUC/STRUCTURE

ANY TYPE

TEMPI, NAME
ANY LABEL

STMT LABEL
UNSPEC LABEL

IND CALL LABEL

PROC LABEL

TASK LABEL
PROG-LABEL
COMPOOL LABEL
EQUATE _LABEL

Phase 1
Value

8

9
10

11

62
64

66
67

69

71

72
73
74
75

Phase 2
Value

17
16

Description

Integer or Scalar data
(see BORC)

Event variable
Major structure or struc

ture node
A number greater than

all real data types
Structure template name
Not an actual type, but

used to distinguish
labels from other
types

Statement label
Used by Phase 1 to

classify labels until
enough information
is available to sub
classify them

See description of
procedure labels
below

See description of
procedure labels
below

Task label
Program label
Compool label
Name is an external name

defined by an EQUATE
declaration

PROCEDURE LABELS create a difficulty unlike any other
HAL/S name. If a procedure is declared in a given scope
and called in tbe same scope, there is no complication; however,
the declaration may appear after the call. Thus, if a procedure
is declared in an outer scope, at the point of call it is not
yet known whether the outer scope declaration is the correct one.
To handle this problem, a new symbol table entry is made for
the procedure at the point of call with SYT TYPE = IND CALL LABEL
and SYT PTR pointing to the previous entry for the name. If
a new definition for the name is encountered, the chain is
traced back to the proper NEST level and pointed at the new
declaration by procedure SET LABEL TYPE. The label on a procedure
is therefore of type PROC LABEL and all and only those calls which
definitely call a specific declaration point directly to that
entry.

3-15
1

~
'I(

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

\
.'

" ~ ;,t. 'l: "
~~~~, 

i, 

t 

1 

I 
1 
l 

1 
l 

1 

1 
~ 



L 

l' <. 

Pha.se 2 uses SYT TYPE to distinguish between single and 
double precision by OiHng in a bit in the "S" positiQn. This 
requires renumbering EVENT and STRUCTURE to values that do not 
conflict with the double precision convention. The complete 
set of phase 2.names can be found in Section 3.3.S ("operand . 
types and properties"). 

SYT XREF 

References to variables are accumulated in array XREF. 
An XREF entry is in the form: 

I pointer flag statement I 
number 

" ../ ~ ... - ,,/ 

v 3 v 
16 13 

Where pointer points to the next entry for the same variable; 
flag indicates a declaration, assignment, reference, or 
subscript u8age; statement number is the statement number of 
the usage. 

The 1is,t is maintained in the order of occurrence so 
references later on 'the list are at higher statement numbers. 
Multiple references to the same variable in the same statement 
may set more than one bit in the flag but do not generate 
multiple entries in the list. . 

SYT XREF for a variable points to the beginning of the 
list. SYT_XREF (SYTSIZE) is the STMT NUM of the line opening 
the block. 

XREF LIM is the size p£ XREF table as determined by JCL 
parameter-XREFSIZE. 

XREF FULL is set when the XREF table overflows so that 
the overflow error message will be issued only once. 

XREF_INDEX points to the last entry inXREF. 

XREF_ASSIGN is a ,mask for an assignment usage. 

XREF REF is a mask for a reference usage. 

XREF SUBSCR is a mask for a subscript usage. 

XREF MASK is a mask for the statement number section. 

3-16 
INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS02138· (617) 661-1840 

:; 
g . 

i 
1~ 

I {' 
"~j' 



SYTSIZE 

Same as SYT SIZE. 

VAR LENGTH 

Identical to SYT DIMS. 

XREF 

See SYT XREF. 

3.3 The COMMunication and VALS Arrays 

The array COMM is reserved for inter-phase co~~uncation. 
Most of the COMM array is unused. The defined portion is: 

COMM 
a- LIT CHAR ADDR - -

:c 1 LIT CHAR LEFT 

2 LIT TOP f,: 
\ 

3 STMT NUM 

~ J 4 FL NO MAX 

11 5 MAX SCOPE:/!: 
'I 6 TOGGLE I 

i 

1 7 OPTION BITS 
1 

10 SYT __ MAX ! 

1 
j 20 OBJECT MACHINE 
,I 

") '~ ~ 

i 21 OBJECT INSTRUCTIONS 

i, 22 WALKBACK LOOPS 
" 

3-17 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE,MASSACHUSETTS 02138 • (617) 661-1840 



. , COMM(7) = OPTION BITS 

Hex JCL Earm field name P1 P2 P3 P1.S 

Q.0000001 DUMP _ ,~t~ OiF.G ... 
00000002 LISTING2 v' 
00000004 LIST v' v' 
00000008 TRACE v' v' v' 
00000010 XO . .NO TEMP 
00000020 Xl NO CSE v' 
00000040 X2 NO VM v' v' 
00000080 X3 CSE WATCH _I 

00000100 X4 360 - o TIMES v' / FC - Fa COMP 

00000200 XS CSE TRACE v' 
00000400 . ZCON v' 
00000800 TABLES v' v' 
00001000 TABDMP v' 
00002000 X9 

00004000 XA 360 - Extra Data v' v' FC - ABSLIST 

00008000 TABLST v' 
00010000 PARSE v' 
00020900 LSTALL v' v' 
00040000 FCDATA v' 
00080000 SRN v' v' v' 
00100000 ADDRS v' v' v' 
00200000 LFXI v' 

I, ' 00400000 DECK v' v' 
00800000 SDL v' v' 
01000000 X6 Print Phase 1.5 statistics v' 
02000000 SCAL v' 
04000000 MICROCODE v' 
08000000 XB v' 
10000000 XC v' 
20000000 XD 
40000000 XE 
80000000 XF 

3-18 

L
,:· 
~ 

.~ 

.~ . .,~-~ 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 



c: 

"""I"""'"'~"-,,,-~'-''''''' _ .. ~'~·.'~~'-'.--~·'-·~~CT.',C.'.·~·,"n~~~~'·,,~~_ .. ··~~'W~"","=,,~= •. q,,~p", , .. ".,....,.,." •• ' ... _.'_',.,."......MX_.,..,.."..,:oe::z:::::.~-::::'"'4~.,,~k_""""""'.~'. ~ .... ....--..,--. --f9 - -." l .......... ~·~· 
~:- ~.~ ••• -~,,:;.'.' • ,,,: •• c '~- ••• ;_:--\."~_ •• - •••• ,_.".,_ ....... "-'-'-""--'~'- •• ,"_'_ ;'. ,.-.• ~,'_ -.... r. '-<r"'~~·\':'.~7:::;, ' .. , ' •. ~ , 

. ~} 
'::1 "1 

VALS 

VALS is a collection of parameters for the compiler. 
The address of VALS is in the 4th word of the sub-monitor's 
communication area; therefore, VALS must be initialized by: 

TMP = MONITOR(13) 

COREWORD(ADDR(VALS» = COREWORD(TMP+16) 

The VALS array contains: 

0 title 

I linect 

2 payls 

3 symbols 

4 macrosize 

5 litstrings 

6 compunit 

7 xrefsize 

8 card type 

9 labelsize 

10 data sector 

3-19 
INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETIS 02138 • (617) 661-1840 

~ 

'1 



4.0 PHASE I 

Phase I of the HALlS compilers is a classical syntax 
directed compiler Whose input is HALlS source code and output 
is the intermedia~e code HALMAT. The description of such a 
compiler is naturally broken up into: 

4.1 The Parser 

4.2 The Scanner 

4.3 The Output Writer 

4.4 The Semantic Routines 

In general, the data is described in the subsections; however, 
some items are used in many places so Section 4.5 defines all 
the global names used in Phase I. 

4-1 
. / 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 



4.1 The ·Parser 

Phase 1 is a classical syntax directed .compiler. Thus, 
the parser has the responsibility of overall 'logical control.' 
It calls the scanner (Section 4.2) to input .tokens, the output 
writer (Section 4.3) to print the listing, and the semantic 
routine (Section 4.4) to generate code. In this compiler, the 
parser is LARL(l), the parse routine is COMPILATION LOOP and 
like most bottom up parsers, the semantic routine is called just 
before reducing the stack. The code generated is HALMAT, an 
intermediate code which is translated to machine code by Phase 
2. 

4.1.1 Giobal Variables Used bi th~ Parser 

# PRODUCE_NAME (production number) 

APPLYl (I) 

APPLY2 

BCD 

CHARACTER STRING 

CONTEXT 

FIXF 

FIXING 

FIXL 

FIXV 

IMPLIED TYPE 

The left side of the production. 

Enter APPLYl by current state and 
search for match with state before 
stacking production. If match found, 
APPLY2(I) is the new state. 

See APPLY!. 

See SCAN. 

See global definitions -- TOKEN. 

See SCAN. 

Stack of FIXINGs, indexed by SP. 

See SCAN. 

Stack of SYT_INDEXs, indexed by SP. 

Stack of VALUEs, indexed by SP. 

See SCAN. 

4-2 

· UP 

lNTERMETRICS INCORPORATED! 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 

, ,.'~ - - - - --. '~--~=~"""'.--''''''''''-''-''''''''''''''','-'.'''-' " 
~,:::',~_>_. ~_~.~ .. ~;~:...:.:.~;_ __~~_;.:.,_,_,.~::,.::,: .. ,-;:.:..;. __ :,:~ii.~~~ .. -_6·'ri~E:'·iFrrti ~>-' ~5l575!-'f~ ,.scJ'd;"'~t..~~&"1i..':.:...:....1."'_~~·":':·-··"" 3. 

I 



· .. _____ m_. __ • ____ ~~--- ..... -~, .. , ~>-,~ ,~",''' ... ~ .... ~,. '"-' •. ~ •. " ',..,.".".,...."""' .... _ ..... "..,.,.", .. c,~_~~ ..• 1
"

" . £ I~~ 

~'i".,·~I'!!;N,"I'~,l.w·:"',."'''' .. ;''''.~,.;,~'''~ .. _, .. ''''_.~'''''.''' .. ,. ", ___ ~,~"C~"', cc" ,~., •• - .- •. c .. ,' --- ,-- - ---• ..."....--.,.,..j. -.... :11 

INDEXl(state) 

INDEX 2 (state) 

LOOK 

LOOK STACK 

LOOKl(I) 

LOOK2 

MAXL# 

MAXP# 

MAXR# 

MP 

MPPI 

Points to the beginning of the entries 
for state in READI, APPLYI,and LOOK!. It 
is the new STATE for null productions. 

Points to the end of state's entries ,in 
READI. When doing reduction, the number 
of ~tems in the production's right side. 

Holds the old state when a new state is 
computed by a look ahead. 

Is where LOOKs are stacked -- indexed 
by SP. 

Enter by state, search for match with 
look ahead token. If match found, 
LOOK2(I) is the new state. 

See LOOKI. 

See STATE. 

See STATE. 

See STATE. 

See SP. 

See SP. 

NO LOOK AHEAD DONE Is true if the parser has not buffered 
one token ahead by doing a look ahead. 

PARSE STACK 

READI' 

READ 2 

Stack of grammatical items, terminal 
or non-terminal -- indexed by SP. 

An array of tokens, indexed by INDEX I 
and INDEX2. READl is entered by STATE 
and searched for TOKEN; when a match 
is found, the associated READ2 entry 
is the new STATE. If no match is found, 
there is a syntax error. 

See READI. 

4-3 

j 

? INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 
I~ , 



{ 
\ 

REDUCTIONS 

REPLACE TEXT 

RESERVED WORD 

SEMI COLON 

SP 

STATE 

STATE_NAME (state) 

STATE STACK 

STMT END FLAG 

STMT PTR, 

SUBSCRIPT LEVEL 

SYT INDEX 

TEMPORARY IMPLIED 

VALUE 

VAR 

Total number of reductions made by 
parser. 

See global definitions -- TOKEN. 

See SCAN. 

See global definitions -- TOKEN. 

Is the stack pointer for the top of the 
parser's stacks; MP is set to the index 
of the left-most symbol of a production 
when doing a reduction; MPPl = MP+l. 
After a reduction, naturally SP is set to 
MP. 

An integer used to encode the current 
state of the parser. This is used to 
index into the rest of the parser tables. 

If a ~ STATE ~ MAXR#, it is a read state. 

If MAXR# < STATE ~ MAXL#, it is a lookahead 
state. 

If MAXL# < STATE ~ MAXP#, it is a read a null I' 
state. 

If MAXP# < STATE, it is a reduce state. 

Is the token associated with this state. 

Is the controlling stack of the parser. 
This is where STATEs are stacked -- indexed 
by SP. 

See global definitions GRAMMAR FLAGS. 

See global definitions GRAMMAR FLAGS. 

Incremented for each $, decremented at 
the end of the subscript. 

See SCAN. 

See SCAN. 

See SCAN. 

This is Where BCDs are stacked -- indexed 
by s". 

4-4 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETIS 02138 • (617) 661-1840 

, 

I , 
1 
1 

1 

.J 

.~,.;","" 



, ...... ,_oj(o~t ....... ailli,.,''',,", t;!;::ty;;;;;o:;:;:;;;:::Z ..., -- ....... 1--···'·...".·· , 

VOCAB INDEX See procedure SCAN -- identifiers. 

4-5 

INTERMETRICS INCORPORATED· 701 QQNCORDAVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 



! 
i 

4.1.2 Procedures of the Parser 

COMPILATION LOOP 
ADD TO STACK 

1542300 
1543400 

COMPILATION LOOP is the main program of the parser. 

At any given moment, the parser is in some state. Depending 

on the state, the parser will either: 

1. Read the next token and stack the current state using 

ADD TO STACK. Then compute a new state based on the 

old-state and the new token. This is the only place 

that syntactic errors are discovered. 

2. Reduce the top states on the stack, call SYNTHESIZE 

to perform the semantic analysis associated with the 

production and compute a new state based on the new 

top of STATE_STACK an d the current state. 

3. Look ahead one symbol and change state depending on 

the current state and the next symbol. 

4. Read a null token, push the state stack and change 

state. 

Possibilities land 2 are the real heart of the parser, 

3 and 4 enable a clean bookkeeping algorithm. Figure 4.1 

is an example of the parser at work. 

4-6 

J , 

·r . 

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02188- (617) 661-1840 



1\ ....... ,-~.~~'''-'''--::?" • - $$ 

• 

:t 

~ 
,I 
~' 

1: 

,. 
\ !. 

~ 
~ 
f: 
~ 
~ 
I 
\ ~ , 
~> f,,. 

!I 
ir 
il 

II 
I~ ,. 
i' 
" j .. 

~., 

Z 
-l 
m 
::IJ 
s: 
~ 
::IJ 
o 
(f) 

z 
o 
o 
::IJ 
\J 
o 
::IJ 

~ 
m 
o 
-.J 
o 

o 
o 
z 
o 
o 
:IJ 
o 
» 
< m 
z 
c 
m 

o » s: 
CD 
::IJ 
o 
(j) 

sn 
s: » en 
en » o 
I 
C 
en g 
en 
o 
N 
-" 
c.v 
a> 

Q) ...... 
.::::! 
(j) 
(j) ...... 
I ...... 
a> 
~ 
o 

/' . ., 

"'" I 
-...I. 

scan &l I;!r : <LABEL'> = "s 1M f'L E" 
se.an net:: ": " 

ceduct.ion Dumler 3C4 
scannEr: "PRCGRAI1" 

reduct.ion Dumler 3C5 
reducticn nUltJ:er 307 

seaaner: tI." • 
reduct.ion llumter 301 
red uc ticn num.b.er 298 

scurce ~ine vas: SIMPLE: 
source line was: PRCGRAM; 

scanner: "CECLARE" 
scan,.er: <IDENTIFIEF.> :: " A" 
scanner: fI_II 

• 
reduction numter 358 
reductien nu~ter 356 
reduct.ion numter 342 
reduction numl:er 340 
reduction numl:er 339 

source line vas: DECLARE A; 

reduction numter 3~9 
reduction numter 345 

scanner: <ARITS ID> = "A" 

scanner: "= II 

reduction num~~r ~91 
reduction numLer 2~2 

reduction rium~er 230 
reduction numler 216 
reduction numter 193 

scann~r: <ARI~H ~D> = "A" 

scanner: "+" 

reduction numter 248 
reduction numter 222 

reduction Dumeer 230 
reduction nu~ter 216 
reduction nUlIIl.er 27 
reduction numeer 15 
reduction DUIIl·ber 11 

i~ 

<LABEL DEFINITION> ::= <LABEL> 

(LABEL EXTERNAL> ::= <~lB!L DEFINITION> 
(BLOCK Sr~T HEAD> ::= <LABEL EXTE~N1L> P~CGEA~ 

<BLOCK SI~T TOP> ::= <BLOCK STMT H~AD> 
(BLOCK STMT> ::= (fLOCK STMT TOP> : 

<NA~E ID> ::= <IDENTIFIER> 
<DECLABAIION> ::= <NAME ID> 
<DECLAR~TION LIST> ::= <DECLAEATICN> 
<DECLA~E BODY> ::= <DECLARATION LIST> 
<DECLARE STATEMENT> ::= DECLARE <DECLARE BODY> 

<DECLARE ELEMENT> ::= <DECLARE STATEMENT> 
<tECLABE GROUP> ::= <DECLARE ELEMENT> 

<BLOCK BODY> ::= <tiCLAhE GROUP> 
<EEEFIX> ::= 

<SUBSCRIPT.> ::= 
<AEITH VAR> ::= <PREFIX> <ARITH ID> <SUBSCRIPT> 
<VARIABLE> ::= <A~ITH VAR> 

<=1> ::= = 
<PREFIX> :: = 
<SUBSCRIPT> :~= 

<ABITH VAR> ::= <PREfIX> <ARITH IO> <SUBSCRIFT> 
<PEIMARY> ::= <ARIlH VAR> 
<FACTOR> ::= (PRIMARY> 
<fRODUCT> ::= <FACTOR> 

Figura 4.1 ~~g!E!~~! g!!§~! - ~~gllll§! AC!!Q~ 

--~--, 

" 

~ 
1 

j 
~ 

1 

I 
11 

, ~J-
,1!;.1> ",- ,.,;C.;' 'N 

..• .:::::~::~::.:::::::~~'""'-."" ...... '" .......... -.~-;...-... = . .,.;..-~'"'-,.,-................ " .......... "~ ',"' ,,'w ~-~'~.~''''"" ..... .,. ''I , ",.,*' "'.w' ..... ,.." ;.. .. ". " ... "".",~,.~.,.~ ... 



r:, i ~".~ ".-,,;vo" • -

fir. 
~~ 
i~'lj, 

~ • ~ '7~ 

~, 

I, 

f 

r' 
" ~ 
I 
I n, 
I' 

i~:~ 

~, 
". 
i 
~ 
~ 
~: 
:,' 

m' 

~' 
~, 
~ 
!~; 

l 

;" 

" 

I 
:j 
I, 

'I 

Z 
-t 
m 
::IJ 
s::: 
m 
-t 
::0 
o 
(,I) 

z 
o 
o 
:D 
\J 
o 
::0 
}> 
-l m 
o 
-.j 
a 

0 
0 
Z 
0 
0 
::0 
0 
}> 
< m 
Z 
c:: m 

() 
}> 
s::: 
ro 
::0 
0 
G) 

£Tl 
s::: 
}> 
en 
en 
}> 
() 
I 
c:: 
en 
m 
-t 
-l en 
a 
I\) .... 
UJ 
Q) 

0> .... 
.::! 
0> 
0> ..... 
I .... 

Q) 
~ 
a 

~ 
I 

(X) 

@; rs 
~§ 
~@ 
g;t=1 
tB~ 
t;J 
~.~ 

~~ 
I'-l:-
"-~ 

" 

reduction nu~ter 9 
reduction numcer 4 

scanner: <SIMiLE NUMDEi> = "1" 
reduc~ion numter 4~4 
r~ducticn nUltc(:r 19 scanner: rI • ., 

• 
reduction nu~ter 31 
reaUcticll ~ulllJ:.er 15 
reauction numter 11 
reduction Dumter 9 
reduction Du~ter 7 
reducticn nu~ter 1e1 
reduction nUIl:.j;er 136 
reduction num~E~ 41 
reducticn DumkeI' 36 

source line was: A = A .. 1; 

r~duction Dumeer 38 

scanner: "CleSE" 
reduction number 292 

scanner: <L~BEL> = "SHIPLE" 
reduction numeer 427 scanner: II- .. • 

<TER~> ::= <PEODUCT> 
<AFITH EXP> ::= <TERM> 

<NUr.BER> ::= <SIMPLE NUMBER> 
<PiE ~B:r:Mlil> ::= <NUMBER> 

<PFIMARY> ::= ,P~E P3IMhRY> 
<FACTO~> ::= <?RIMARY> 
<PEODUCX> ::= <FACXOS> 
<TERM> ::= <PRODUCT) 

._-----_. __ ._-

<AiITH EXP> ::= <A?ITH EXP> .. <TERM> 
<EXPRESSION> ::= <AiIXH EXP> 
<ASSIGN~ENT> ::= <VARIABLE) <=1> <EXPRESSION> 
<BASIC SlATE~ENT> ::= <ASSIGN~ENT> 
<SXATEMENT> ::= <BASIC STATEMENT> 

<!.NY S'UIEi1EHT> ::= <STATEME1JT> 
<arOCK BCDY> ::= <fLOCK aODY> <ANY STATEMENT> 

<CLOSING> ::= CLOSE <LABEL>. 

r~duction numter 289 
<arocA DEFiNITION> ::= <BlOCK STMT> <BLOCK BODY> <CLOSING) 

source line was: CLOSE S:r:r.PI.E; 

scanner: "_,_" 
reduction numt~r 2 <CCMEILE LIST> ::= <BLOCK DEFINITICN> 

reduction numter 1 <COMPILATION> ::= <COMPILE LIST> _1_ . 

NOlES: 

Nctic€ t~at the first ti~. (in the DECLAiS s~atment) the scanner 
sees "~", it r~turns an <ZDINXIFIEE>; however, all subsequent times 

it returns an <ARITH It>. 

Source lines appear at t:ht i'oiD~ t:hat: ,'the output wri·t:er liould writ", thew. 

~ .. 
~. 

~ 

. .., 
~~; 

:IiIIIII 

I~ 

J 
-I 

:~ 

L " r. ,~~ 

I: l 
1 

" 1 
!i 1 

1 
1 
I 
i 
j 

I 
f 

; I 
1 
,i I 

'dj 



.4 '\ 
~,.r 

RECOVER 
STACK DUMP 
SAVE DUMP 

1534500 
1087300 
280600 

RECOVER is called by COMPILATION LOOP when a syntactic error is discovered. Its job is to throwaway enough of the parser's stacks and of the input stream to enable the parser to start working again. 

Call STACK DUMP to dump the current STATE STACK. STACK DUMP formats up-lines and calls SAVE DUMP to insert them in SAVE_STACK_DUMP for eventual printing by the output writer. 
Advance the input stream to a se~icolon or _,_. 

Reset principle global flags to default status. 

Pop elements off the STATE STACK until CHECK TOKEN indicates- that STATE STACK is compatible with TOKEN. Dump the reduced stack, output all the skipped material via the output writer and then pick up in COMPILATION LOOP. 

CHECK TOKEN -- 1529700 

This routine is called by RECOVER to check whether the current stack top, NSTATE, or pre-look ahead state, NLOOK, is compatible with the next token, NTOKEN. It returns 0 if not compatible or a new STATE number if okay. 

For a read state, NTOKEN must appear in the appropriate part of INDEX2. 

For a reduce state, do the reduction and try the reduced state. 

For a look ahead state, search for a look ahead match and if found, do the reduction and continue checking. 

4-9 
INTERMETBICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 



I' 

:~ ---r -,~ .. ~-~~-'-~-~~=~~'" ".". - ... -"""., •• "*" "~~-~" ... -'T~~-=~~,::~~·-·---.~~r~.'-~-- -~--l~ 

I~"'''''·. ~""",.":~~::~_-m::'~., -... 

EMIT'EXTERNAL -- 764600 
EX WRITE -- 765300 "'~. 

EMIT EXTERNAL is called by COMPILATION LOOP to format 
up templates and output them via EX_WRITE. 

At any given moment it is in one of five states 
determined by EXTERNALIZE. EXTERNALIZE is set by SYNTHESIZE 
which also calls EMIT EXTERNAL to change its state. 

o 

1 

Not doing anything. 

Format templates -- be careful to handle macro 
texts properly (see MACRO TEXT in SCAN). 

2 - Clean up and set EXTERNAL-~E to zero. 

3 - Initialize and set EXTERNALIZE to one. 

4 - Temporarily not doing anyting. 

4-10 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETIS 02138 • (617) 661-1840 

l 



::..' 

4.2 The Scanner 

The scanner provides the input interface between the 
compiler and the world. The rest of the compiler deals with 
tokens and strings assembled by the scanner. The rest of 
the compiler deals with I-dimensional format regardless of 
the input. The rest of the compiler deals with a single 
input stream regardless of include statements and macro 
expansions. 

The scanner is divided into two parts. STREAM gets 
the next character and SCAN assembles characters into tokens. 
Since symbol table information is necessary to determine the 
token type, SCAN contains the symbol table routine -- IDENTIFY. 
Since some character strings are not delivered to the parser, 
they must be delivered directly to the output writer~ thus, 
SCAN contains the routines for saving tokens. Since compiler 
directives and access rights are not part of the gra~~ar, 
SCAN contains routines for handling these concepts. 

4-11 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 



r 

4.2.1 SCAN 

SCAN receives characters from STREAM and returns 
tokens to the parser. All symbol table searches are made 
here, macro expansions are processed here, a considerable 
amount of macro definition work is done here. The 
principle interfaces to the parser are TOKEN which is 
set to the internal code for the syntactic item read and 
SYT INDEX which transmits additional information for semantic 
processing. 

Notice that each call to SCAN returns a token~ conse
quently, macro expansions must be done on the fly. 

4-12 

....,. 
I if,' ',-.,.. 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 



4.2.1.1 Local Variables of SCAN. 

CHAR ALREADY SCANNED 

CHAR NEEDED 

DEC POINT 

DONT ENTER 

ESCAPE LEVEL 

EXP BEGIN 

EXP DIGITS 

EXP SIGN 

FLAG 

I 

INTERNAL BCD 

L 

OVERPUNCH ALREADY SCANNED 

SEARCH·NEEDED 

. SIG DIGITS 

contains character which SCAN read 
after a "I" during look-ahead for 
comments; =0 if empty. 

Switch off when a character has been 
obtained from STREAM and has not 
yet been used. 

switch ON if decimal point has already 
been found in current numeric token. 

Count of escape characters prefixed 
to NEXT CHAR. 

Index in INTERNAL BCD of first 
character of exponent in current 
numeric token. 

Length of exponent in characters. 

Sign (+ or -) of exponent of current 
numeric token. 

In IDENTIFY, used to accumulate flags 
for SYT FLAGS. 

In IDENTIFY, the symbol table index 
of the identifier. 

Copy of BCD used within SCAN. 

In IDENTIFY, the length of the identifier. 

See CHAR ALREADY SCANNED. 

SCAN attempts to position the input 
after all embedded comments before 
returning a token. If it is not 
successful, then SEARCH NEEDED is set 
so that it will search for comments 
the next time it is entered. 

4-13 

Number of significatn digits in current 
numeric token. 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 



4.2.1.2 Global Variables Referenced by SCAN. 

ADDR FIXED LIMIT 

ADDR FIXER 

ADDR VALUE 

ARITH FUNC TOKEN 

ARITH TOKEN 

ASSIGN PARM 

BASE PARM LEVEL 

BCD 

. BI INDEX 

BI INFO 

BI _NAME(J) 

BIT FUNC TOKEN 

BIT TOKEN 

BIT TYPE 

BLANK COUNT 

Address of a location containing, 
in floating format, the largest numeric 
literal allowed by HAL/S. See DW. 

Address of a location containing an 
increment to be used while checking .a 
literal against fixed limits. See ow. 

Address of a location used to store the 
value of a numeric literal in full floating 
format. See ow. 

See global definitions 

See global definitions 

TOKEN. 

TOKEN. 

See symbol table SYT FLAGS 

See STREAM. 

Character string of current item being 
assembled by SCAN. 
Similar to V INDEX but for the names of 
built-in functions. 

Indexing by built-in number gives word 
of information: 

type (see pointer to 
SYT TYPE) of args BI ARG TYPE 

32 25 24 17 16 9 8 

For more detail, see SYNTHESIZE. 

Is the character string containing the 
name of the Jth built-in funct~on. 

See global definitions TOKEN. 

See global definitions TOKEN. 

See symbol table SYT TYPE. 

See STREAM. 

4-14 
INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETIS 02138 • (617) eel-1840 



., ' 

BUILDING TEMPLATE 

C 

CHAR FUNC TOKEN 

CHAR OP (0 or 1) 

CHAR TOKEN 

CHAR TYPE 

CHARACTER_STRING 

CHARTYPE 

COMMA 

COMMENT_COUNT 

CONCATENATE 

See SYNTHESI ZE. 

See O-W. 

See global definitions -- TOKEN. 

Translates from 0 or 1 escapes to equiva
lent over punch escape character. 

See global definitions 

See global definitions 

See global definitions 

See STREAM. 

TOKEN. 

SYT TYPE. 

TOKEN. 

See global definitions -- TOKEN. 

See o-w. 
See global definitions -- TOKEN. 

4-15 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETIS 02138 • (617) 661-1840 



:- ~ -.-, l'----'''-
, . - .-

CONTEXT 

" -, 

The type of identifiers is determined 
by the scanner. Since the proper sy~bol 
table lookup depends on the context in "r 
which the identifier appeared, this ~.~ 
context must be known to the 'scanner. 
EXPRESSION CONTEXT means that compile 
time constants are expected fo~ dimen
sion information. DECLARE CONTEXT 
means that the identifier Is being 
declared for the current scope. 
PARM CONTEXT means that the identifier 
is a-formal parameter which is not 
yet declared in this scope, but will 
be. ASSIGN CON'rEXT is a special case 
of PARM CONTEXT for assign parameters 
of procedures. 

REPL CONTEXT indicates that a REPLACE 
definition is being processed and so 

. a macro name that .otherwise would 
be "previously defined" can be 
defined. Once the macro name has 
been defined, we switch to REPLACE PARM 
CONTEXT which allows formal parameter 
names to conflict with anything 
except other formal parameters of 
the same macro. 

Since a new CONTEXT is often started 
by a reserved word, SET CONTEXT gives 
the appropriate context-for each re
served word. 

There are some other flags which 
augment CONTEXT. TEMPLATE IMPLIED 
augments DECLARE CONTEXT indicating 
that the token name is a template 
name (i.e. either a declaration of a 
template or of a structure variable). 
LABEL IMPLIED indicates that a look 
ahead-has found a colon and the context 
implies that the : is a label delimiter. 

4-16 

'1:1 INTERMETRICS INCORPORATED· ?01CONCORD AVENUE·· CAMBRIDGE, MASSACHUSETTS 02138· (51?) 661-1840 
1" 
I~ • 

-, 



. , 

. i 

CPD NUMBER 

DECLARE CONTEXT 

DEF BIT LENGTH 

DEF CHAR LENGTH 

DEF MAT LENGTH 

DEF VEC LENGTH 

DEFAULT ATTR 

DEFAULT TYPE 

DEFINED LABEL 

DONT SET WAIT 

DUPL FLAG 

DW 

See global definitions -- TOKEN. 

See CONTEXT 

Default lengths for implicit declarations 
of variables. 

See symbol table -- SYT FLAGS. 

Identical to SCALAR TYPE. See symbol 
table -- SYT FLAGS. 

See symbol table -- SYT_FLAGS 

See PRINTING ENABLED. 

See symbol table -- SYT_FLAGS. 

56 byte area reserved for floating 
point and literal operations; the area 
is needed because the operations are 
performed by MONITOR calls. 

byte 
offset index 

~ll f f I -

24 

32 4E 00 00 00 

0 
40 48 7F FF FF 

FF FF FF FF 
48 40 7F FF FF 

> 

FF FF FF FF 

4-17 

o +- DW AD 

1 

6 +- ADDR VALUE 

8 +- ADDR FIXER 

10 +- ADDR FIXED LIMIT 

12 +- ADDR ROUNDER 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 

J ... 



! 
1 

r 
[ 

EOFILE 

ESCAPE 

EVENT TOKEN 

EVIL FLAG 

EXP OVERFLOW 

EXP TYPE 

EXPONENT.IATE 

EXPRESSION CONTEXT 

FACTORING 

FIRST FREE 

FIRST TIME 

FIRST TIME PARM 

FOUND CENT 

GROUP NEEDED 

ID TOKEN 

IDENT COUNT 

IMP DECL 

IMPLICIT T 

See global definitions -- TOKEN. 

The escape character. 

See global definitions -- TOKEN. 

See symbol table -- SYT FLAGS. 

Switch ON if a character representation 
could not be converted to floating point 
number. 

Exponent indicator on current numeric 
token; 'E', 'H', 'B' allowed. 

See global definitions -- TOKEN. 

See CONTEXT. 

See SYNTHESIZE. 

See MACRO TEXT. 

See STREAM. 

See STREAM. 

On if macro substitution markers (i.e. 
¢name¢) were found while scanning the 
macro parameter. 

See STRE]\ .. M. 

See global definitions -- TOKEN. 

Total number of calls to IDENTIFY, for 
compilation statistics. 

See symbol table -- SYT_FLAGS. 

Switch ON if token may be the matrix 
transpose symbol 'T'. 

4-18 

REPRODUCIBILITY OF THE 
ORIGINAL PAGE IS POOR , . 

! INTERMETRICS INCORPORATED· 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 
I 

! 

.. ( 
~";A;;:':"~ 

J 

___ . _:...:-..:._ .... __ .~:.~~::':~:._'~,c:-;" ~~. ':: ..• ~~_~"'_.,=_;::;;_:=:::::~~.":':~~~" .... ~.!, .::-' •• -=. ~-::_b,~_~''''-.'''('.,:,,!'.''''''""'''i .... -r'''·?''''··_f''''''_! ."_1.2.1 ____ ....... " "iiali/ .c8iiiI.iIiI"·~I';r' 



:'~t"~'~'C'-'-'--'~~-~' ",."" -,~,.,. .~., .'.0'=. ',0" "" H, -- - ""'.h,......,.,,,...·'·- ' ... a.~" " ,,' H'" '" .... ' _ ..... ""q .• ,. -.~, "-'"."., '." .. ', .. ,. ,.~ .. i .• ~_ •••• " .... "".i"_,,., •• ,".'~"'. _,_ '.",1', ."', .. !.~',.'.'".' ... f" .J.'. 
;' " . . I~~""i;~!"""'··~~~=':":'-""" '. ,.-,,"","' ,"",,, •. :", •. ": ":~.=:. , ... ':: .. '!'::'''i'''',. "":'.",,'" ~.i·h, ":~ ". • ". ' ':,,:' '" "'" .:"" ",,'" ",,',_ ..•. ,0. ' •. -. '. '~~/'"" _ "'" .... ",,:'::-J ", ':, '~ 

;..1&" .... 

f;· 
I.,.,JI' 

IMPLIED TYPE 

INACTIVE FLAG 

IND CALL LAB 

INPUT PARM 

INT TYPE 

KIN 

LAB TOKEN 

LABEL CLASS 

LABEL IMPLIED 

LEFT PAREN 

LETTER OR DIGIT 

LEVEL 

LOOKUP ONLY 

Token type, as implied by presence 
of overpunch .• 

See symbol table SYTFLAGS. 

See symbol table SYT TYPE. 

See symbol table SYT FLAGS. 

See symbol table SYT TY~E. 

Index in symbol table of a structure 
element underneath the structure indexed 
by QUALIFICATION.' 

See global definitions -- TOKEN. 

See symbol table SYT CLASS. 

See CONTEXT. 

See global definitions -- TOKEN. 

See STREAM. 

See global definitions --. TOKEN. 

Swi t.ch ON if IDENTIFY should only 
search the symbol table without creating 
a token. 

M BLANK COUNT (macro_expan_1eve1) 

M CENT 

M_P (macro_expan_1evel) 

Is the BLANK COUNT after reading the 
complete macro invocation. 

See STREAM. 

Is the saved value of MACRO POINT 
for this level. 

M PRINT (macro_expan_level) 

Is the saved value of PRINTING ENABLED 
for this level. 

4-19 

INTERMETRICS INCORPORATED· 7,01 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138~ (617) 661-1640 

1, ~ 

'iJ "j. 
".'.~ '. -

.... '. "'4 
~ a 
, 11 >f . 

i~' 
J. ·1'. 1···· 

1·':1 

'\1 '.,. ".",~ 

I 
.~ 
.~ 

..• ~ 
! 



! 
! 
" , 
( 

) 

I 
I 

M TOKENS (macro_expan_level) 

MACRO ARG COUNT 

MACRO ARG FLAG 

MACRO CALL PARMTABLE 

MACRO EXPAN LEVEL 

Equals number of tokens created while 
expanding this macro. 

The number of formal arguments so far 
encountered in REPLACE definition. 

See global definitions -- GRAMMAR_FLAGS. 

contains the character strings for the 
values of t~e actual parameters of all 
currently expanding REPLACEs. Outer . 
REPLACEs are lower in the table and the 
left-most parameter is lower than the right
most. 

Nesting depth of macro expansion. 

MACRO EXPAN STACK (macro_expan_level) 

MACRO FOUND 

MACRO NAME 

MACRO POINT 

MACRO TEXT 

M.-~J STRUC 

MAT TYPE 

NAME HASH 

Equals symbol table entry for REPLACE name, 

On if REPLACE name has been found and 
requires expansion •. 

REPLACE name being defined. 

Pointer to current point in <text> of 
current macro in MACRO TEXT. 

The <text> part of a REPLACE statement 
is stored in MACRO TEXT by SCAN 6 START POINT 
points to the beginning of the current-<text>, 
T INDEX points to the next character 
position, and FIRST FREE points to the 
beginning of the next <text>. Pairs of II 
marks have been replaced by single II 
marks. Multiple blanks have been replaced 
by IIEE" followed by BLANK COUNT. The 
<text> is ended by an "EF". 

See symbol table SYT TYPE. 

See symbol table SYT TYPE. 

See STREAM. 

4-20 
INTERMETRICS INCORPORATED· 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETIS 02138 • (617) 661-1840 

.,. ... 

" 

t 
t 
! I :1 
'J 
I 

1. 

. 
:], • , ,. 
t ., 
j I i , 
I 
't 

.. { 1 
:-r 1 1 

;~ 

J ! 
l ~ , 

1 
, 

l: 
., , i , 
~ j i ] 

~~ ;~ 
'.~ 

, ,t 1 
:tr 

'~ . , 
i .~ 

it 
J 

1 ',! 
'; , .X , 
L~ 

1< 
i ! '" 

! 
. 
1 
1 

j' j 
I I 

" 

~ 
! 
1 

I j 
.'~ , 
1 

4().o. 

~ 

" . 



1-

-- --l'-----------~'-----~-T-------~-~' --
i ~""iII'!!,~---''''','':~,-''''-,.,:-~--~,---~-~-_.,_.~,._-''''--

NAMING 

NDECSY 

NEW MEL 

NEXT CHAR 

NO ARG ARITH FUNC 

NO ARG BIT FUNC 

NO ARG CHAR FUNC 

NO ARG STRUCT FUNC 

NONHAL FLAG 

NUM OF PARM 

NUMBER 

OLD MEL 

OLD MP 

OLD PEL 

OLD TOPS 

OUTER REF 

See SYNTHESIZE. 

See Symbol T~ble. 

See OLD MEL. 

The next character from STREAM. 

See global definitions 

See global definitions 

See global definitions 

See global definitions 

TOKEN 

TOKEN. 

TOKEN. 

TOKEN. 

See symbol table SYT FLAGS. 

See STREAM. 

See global definitions -- TOKEN. 

Saved value of MACRO EXPAN LEVEL to 
enable detection of -an exit from a macro 
expansion. 

Saved value of MACRO POINT -- enables 
some look ahead in the text. 

Similar to OLD MEL for PARM EXPAN LEVEL. 

Saved value of TOP OF PARM STACK~ 

Used to collect uses of scoped in 
variables for printing by BLOCK SUMMARY. 
An entry has the form: 

I flag I symbol 

3 13 

where flag is as in XREF and symbol is 
a pointer to the symbol table entry 
for the referenced variable. OUTER REF 
INDEX points to the last entry in 
OUTER REF and OUTER REF LIM is the size 
of OUTER REF. OUTER REF PTR(nest) has 
the form: 

4-21 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSEnS 02138 • (617) 661-1840 

" 

I 
1 
1 
'I -.' 
I 
:~ 

~ i' 
ii , 

"y 
, 

~ i 
'.d 
} j if 

'?! 
Ii< 

:~ 
"~ 
j 

-, , , 
'~ 

: ~ 
r 



I/' 

OUTER REF INDEX 

OUTER REF LIM 

OUTER REF PTR 

OVER PUNCH 

OVER PUNCH TYPE 

P CENT 

PARM CONTEXT 

PARM COUNT 

'·-7~'p_,.,_ < -,----,,~ -""''''~'''"'''>::::.::-:.,.-'-~,--.,. ----r' ~-~--'-r""'-;'~"'" 
j 

pointer 

1 15 

where pointer points to the first 
OUTER REF entry for level nest and ' 
switch is set after printing the over
flow message to inhibit multiple 
printing of the message. 

See OUTER REF. 

See STREAM. 

If OVER PUNCH TYPE(I) = char then 
an over-punch-of char implies that 
the identifier is of type I. 

See STREAM. 

See CONTEXT. 

Number of parameters in stack examined 
by PARM FOUND. TOP OF PARM STACK - PARM COUN1 
gives the stack offset of the current -
macro's parameters. 

4-22 

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 



I 

II 

PARM EXPAN LEVEL 

PARM REPLACE PTR 

PARM STACK PTR 

PASS 

PC LIMIT 

PCNAME 

PERCENT MACRO 

PRINT FLAG 

PRINTING ENABLED 

PROC LABEL 

PROCMARK 

QUALIFICATION 

RECOVERING 

REF ID LOC 

REPL ARG CLASS 

REPL CLASS 

REPL CONTEXT 

REPLACE PARM CONTEXT 

See STREAM. 

See STREAM. 

See STREAM. 

Used for saving value of 
PRINTING ENABLED during macro 
expansion. 

Length of longest %macro name. 

String containing names of %macros, 
left-justified in 16-character fields. 

See global definitions TOKEN. 

See global definitions GRAMMAR FLAGS. 

A token is ultimately printed if 
PRINT FLAG is on in GRAMMAR FLAGS. This 
decision is made by an AND of 
PRINTING ENABLED (general context) 
and SUPPRESS THIS TOKEN ONLY (local). 
When changing PRINTING ENABLED it is 
possible to delay its effect for 
one word by setting WAIT. WAIT is 
set when exiting a macro expansion. 
If the expansion generated no tokens, 
setting WAIT is inhibited by 
DONT SET WAIT. 

See symbol table -- SYT_TYPE. 

Index into symbol table - everything 
below it was declared in other (outer) 
procedure blocks. 

See Section 4.4. 

See O-W. 

See Structures and Templates. 

See symbol table SYT CLASS. 

See symbol table SYT CLASS. 

See CONTEXT. 

See CONTEXT. 

4-23 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 

.. ~ 



I 
I 

! 

REPLACE TEXT 

RESERVED LIMIT 

RESERVED WORD 

RESTORE 

RT PAREN 

SAVE BLANK COUNT 

SAVE COMMENT 

SAVE NEXT CHAR 

SAVE OVER PUNCH 

SAVE PE 

SCALAR TYPE 

SCAN COUNT 

SET CONTEXT 

SOME BCD 

SQUEEZING 

SRN 

SRN COUNT 

SRN PRESENT 

START POINT 

STMT LABEL 

STMT PTR 

STRING OVERFLOW 

See global definitions -- TOKEN. 

Length of long.est reserved word. 

Switch ON if current token is a HALlS 
reserved word. 

Used to save the value of PRINTING ENABLED 

during macro expansion. 

See global definitions -- TOKEN. 

When SCAN is searching for a hon-blank 

(on macro exit this can be a problem) 

SAVE BLANK COUNT is u.sed 'to save the last 

BLANK COUNT. 

See O-W. 

See STREAM. 

See STREAM. 

Saved value of PRINTING ENABLED used to 

make printing decisions-at the end of macro 

or macro parameter expansions. 

See symbol table -- SYT_TYPE. 

Total number of TOKENs SCANned -- for 
compilation statistics. 

See CONTEXT. 

Contains the substrIng of BCD up to the 

point where ¢name¢ was discovered. 

See O-W. 

See MACRO TEXT. 

See symbol table SYT TYPE. 

See GRAMMAR FLAGS. 

Switch ON if character literal is too 

long. 

4-24 

INTERMETRIGS INCORPORATED' 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETIS 02138 • (617) 661~1840 

I . 

1 
i 
j 
1 

I 
1 
I 
1 
1 
i 

1 
1 -, 
i 
1 

1 
;j 

1 
I 
j 
1 

J 

1 
I , 



" 

STRUC TOKEN 

STRUCT FUNC TOKEN 
,~I, STRUCT TEMPLATE 

STRUCTURE WORD 

SUPPRESS THIS TOKEN ONLY 

SYT INDEX 

T INDEX 

TASK LABEL 

TEMP STRING 

TEMPL NAME 

TEMPLATE CLASS 

TEMPLATE IMPLIED 

TEMPORARY 

TEMPORARY FLAG 

TEMPORARY IMPLIED 

TOKEN 

TOREN FLAGS 

TOP OF PARM STACK 

" J' 
" . 

See 'global definitions TOKEN. 

See global definitions TOKEN. 

See global definitions TOKEN'. 

See global definitions TOKEN. 

See PRINTING ENABLED. 

For literals, its absolute index in 
the literal tables; for built-in~i the 
index of built-in functions in BI INFO; 
for %macros, ,the internal number of the macro; 
for other identifiers, a symbol table pointer. 
SYT INDEX is zeroed at SCAN START. 

See MACRO TEXT. 

See symbol table -- SYT TYPE. 

Used to accumulate character strings in 
analyzing macro calls. 

See symbol table SYT TYPE. 

See symbol table SYT CLASS. 

See CONTEXT. 

See global definitions -- TOKEN. 

See symbol table -- SYT FLAGS. 

Switch ON if TEMPORARY keyword has been 
read in this statement. 

The type of the current token. 
of -1 indicates a REPLACE name. 
definition of other values, see 
variables. 

A value 
For 

global 

See global definitions -- GRAMMAR FLAGS. 

Points to the top of the MACRO CALL PARM TABLE. 
Parameter lists being scanned are built -
immediately above this point. 

4-25 

INTERMETRICS INCORPORATED· 701 CO~'SORD AVENUE· CAMBRIDGE, MASSACHUSETIS 02138 • (617) 661-1840 

I 



TRANS IN (Char) 

TX (Char) 

UNSPEC LABEL 

V INDEX 

VALID 00 CHAR 

VALID 00 OP 

VALUE 

VAR CLASS 

VAR LENGTH 

VEC TYPE 

VOCAB INDEX 

WAIT 

XREF REF 

Xl 

Is a two byte translation table for 
char. The right byte is the single 
escape translation and the left byte 
is the double escape translation. 

Is the internal TOKEN code for the ~pecial 
character char. 

See symbol table -- SYT TYPE. 

See procedure SCAN -- identifiers. 

Input character that can be escaped to 
give II 00" • 

Overpunch required to translate 
VALID 00 CHAR to ·"00". 

Numerical value of current token (if 
token is numeric). 

See symbol table SYT CLASS. 

See symbol table identical to SYT DIMS. 

See symbol table SYT TYPE. 

See procedure SCAN -- identifiers. 

See PRINTING ENABLED. 

See symbol tabl.e -- SYT XREF. 

1 blank. 

4-26 
INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 



I 

SCAN 
CALL SCAN 
BUILD BCD 
BUILD-INTERNAL BCD 
ID LOOP 
CHAR OP CHECK 
BUILT COMMENT 

577700 
967400 
579000 
580000 
606200 
578708 
755800 

SCAN is called from three places: INITIALIZATION, RECOVER 
and COMPILATION LOOP. The call from INITIALIZATION is executed 
once and gets everything primed, the other calls are all routed 
through CALL SCAN and are genuine requests for another token. 
The purpose of interposing CALL SCAN is to allow clean handling 
of some diagnostic printing. SCAN calls STREAM to get characters 
one by one in NEXT CHAR. It puts them together in BCD until it 
finds a delimiter and then determines the TOKEN type of BCD. 
TOKEN SYT INDEX, and BCD are SCAN's principal interfaces to the 
outside world. 

The global structure of the routine is a DO CASE on the 
type of the first character of the next token. Each case in 
turn accumulates the rest of the token and builds BCD and an 
internal version via BUILD BCD and BUILD INTERNAL BCD. In 
addition, it may issue error messages based on the context; 
for instance, if the first character is a digit, the token 
must be a number which can contain only characters from a 
given set and may be delimited only by characters from some 
second set. 

Since all macro and macro parameter expansions are handled 
at the scanner level, a large number of items may be read before 
a syntactic token is obtained: thus, the routine may very well 
execute several cycles of "pick up '.-lord; set up to expand word; 
go back to the beginning". 

After accumulating a token but before actually returning it, 
SCAN looks to see if the next thing in the input stream is an 
embedded comment. If it is, the comment is accumulated one 
character at a time using BUILD COMMENT to save the characters in 
SAVE COMMENT. Finally, the token is returned. 

4-27 

J INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 
r 
\ 

1 
1 

1 

" 

J i 
~* 



.. -- ----.-.---- ----~,-'"---. -'-~~-"-'r'-' ---------~-r==-- --, '1 
-'~-- f 

Details of the Central DO CASE 

1 - numbers 

Accumulate the entire number including exponent if 
any. Convert number to 360 floating point, check it for 
range and enter it in the literal table via PREP LITERAL. 

2 - identifiers 

This is where most of the work ~tarts. First, use ID_LOOP 
to accumulate the identifier and set IMPLIED TYPE if there is 
an overpunch. Then search the list of reserved wprds for the 
identifier. The tables are organized like this: . 

V INDEX VOCAB INDEX VOCAB 

f length 2 ---.----- I I 
) descriptors - * * 

I ~in alphabetical orde~AT 

_______________ {length 3 
2 . descriptors 

in alphabetical order 

{

length RESERVED_LIMIT 
descriptors 
in alphabetical order 

"'ay 

The reason for the explicitly hand crafted descriptors 
is to prevent overflow of the limited size descriptor table. 
If the identifier is a reserved word, set up the CONTEXT (see 
data description) and return. 

If the identifier is not a reserved word, it may be a macro 
parameter. Check this via PARM FOUND and if it is, expand the 
parameter. Notice that the parameter never generates a token itself. 

If the identifier is not a macro parameter, then look it up 
in the symbol table via IDENTIFY but do not return it yet --
maybe its a macro call. If it is not a macro name then return 
TOKEN as set up by IDENTIFY; otherwise, set up the macro expansion 
via PUSH MACRO and then start taking characters from the expansion. 
Notice that the macro call itself does not actually generate a 
token. 

4-28 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAM8RIDGE, MASSACHUSETTS 02138 • (617) 661-1840 

J 



iT I' 

, 
'" 

) . 
~ 
j 

I 
L 

"~'V >_ .. _,.....,...~, __ ... '. ~<_~,' ..... '~>~~ •• -'-•• ' ... ~ •• ' .... ~.<~ ..... -~-::.--.. <~~."l""'.~......,...4:~~-:-."~~~'"'::: •. ". '~'<"':'"_, ,__ '!" ~ " , _ ... _----. "1 

4 - period 

If next character is a digit, build a decimal fraction 
in the normal way; otherwise, return dot product TOKEN. 

5 - character literal 

Build the string by concatenating characters. Be 
careful to: 

- expand multiple blanks 

_ check for ' , and replace it by , 

_ translate escaped characters using CHAR OP CHECK. 

Return a character string TOKEN. 

7 - I or I L 
Return either an OR or a CAT TOKEN. 

8 - * or ** 
Return either a cross product or exponentiate TOKEN. 

9 - "FE" = end of file 

Return an end of file TOKEN. 

10 - Special Characters Treated as Blanks 

Simulate blank and reenter SCAN. 

4-29 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 

'WT JIV 

1 

I 
j 

" 

j 
! 
,1 

. ~ 

rMl J 



r 

11 - " = REPLACE Text 

Insert the text in MACRO TEXT. ~e careful to: 

replace " " by " 

encode BLANK COUNT for multiple blanks 

insert "EE" end of macro character. 

Return a replace text TOKEN. 

12 - %macros 

Accumulate entire name; return index of name in 
SYT INDEX and return percent macro TOKEN. - . 

13 - REPLACE macro call 

This code is reached if the first character is a "¢" 
or if a ¢ was found while scanning an identifier in case 
2. In the former situation, after accumulating and setting 
up for the expansion of the macro or parameter name, the code 
simply starts from the beginning of the scanner. In the 
latter situation, the code must set up for expansion and then 
return back to finish accumulating the identifier it was 
originally working on. Notice that if the source is: 

¢macro_name(args)¢ 

then the second ¢ is not read by this code. It is checked by 
PARAMETER PROCESSING and skipped by PUSH MACRO. 

4-30 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETIS 02138 • (617) 661-1840 



.~ 

,-' I". 
I 
I 

;,1"-

PUSH MACRO -- 625200 

PUSH MACRO is called to handle a ,macro call. 

Push symbol table entry for macro onto MACRO EXPAN STACK, 
push the macro name onto STMT STACK via SAVE TOKEN, set-up 
NUM OF PARM so that number of-actual parameters can be compared 
with the number of formal parameters. Read in the actual 
parameters via PARAMETER PROCESSING. 

, PARAMETER PROCESSING 

PARAMETER PROCESSING is called by PUSH MACRO after 
finding a macro name to build a list of the-actual macro 
parameters in MACRO CALL PARM TABLE. The parameters are 
entered into STMT STACK via SAVE TOKEN. The bulk of the 
routine simply updates pointers and counters described in 
the data description section. Notice that although 
PARAMETER PROCESSING reads a lot of information, it does not 
actually generate any tokens but simply prepares for a macro 
expansion. 

PARM FOUND -- 615700 

580900 

PARM FOUND is called for each non-reserved word ide,ntifier 
to check If it is a formal parameter of a macro being expanded. 
The symbol table entries for the formal parameters are immediately 
after the entry for the macro; thus, PARU FOUND need only loop 
comparing BCD to SYT Nk~E. If a match is-found, it is stacked 
in the parameter stack and TRUE is returned; otherwise, FALSE 
is returned. 

4-31 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE' CAMBRIDGE. MASSACHUSETTS 02138 • (617) 661-1840 

.y 



I 

, ...... "'r"'-'~"""''"''-'-'''---~~-'~~='~T~'~-''-''~'-~'~-"~~"'''''''=~-~~~='-T''''''~~~~~=:~~''''''''''''''''~'l---'~~ 

~~"P~'''' ~~"".~".".,. .. .....A'&·"""''''""''-''''';!!'''J'~J·''''·~1 '1 
': 'I 

IDENTIFY -- 557900 

IDENTIFY builds the symbol table and searches it for 
identifiers. In principal, this should be a triviality; 
however, the mass of detail and the requirement of performing 
IDENTIFY at SCAN time makes things substantially more complex; 

IDENTIFY receives two arguments. BCD is the character 
string to be looked up. CENT_IDENTIFY is true if the name was 
enclosed in "¢" ~igns. It returns values in SYT INDEX and 
TOKEN. 

To look up a name in the symbol table, compute NAME HASH = 
HASH(name}. NAME HASH is an index into the hash table HASHSTART, 
thus, if I = HASHSTART(NAME HASH), then I points to a symbol 
table entry with the given hash code. Symbol table entries with 
the same hash code are linked via their SYT HASHLINK fields; thus, 
if entry I is not the right one, try I = SYT HASHLINK(I). If 
the link is zero, there are no more entries for that hash code. 

Before looking up a name in the symbol table, if it is a 
template name, prefix it with a blank; if it is an EQUATE name, 
prefix it with a @; try looking it up in the table of built-in 
function names. 

The universe of names is divided into two parts, those 
that are already in the table and those that are not. 

Name Already in Table 

If the name is a macro name then either set up to expand 
it or simulate a "name not found" to permit a new declaration 
for the macro name. 

It would be nice now to simply return the symbol table 
pointer but the actual actions required depend on the context 
in which the identifier appears (cf. CONTEXT). 

For the run of the mill situation: 

variables 

- labels 

set TOKEN appropriately. 

set TOKEN, create cross reference, check 
legality. 

- functions -- check legality, set TOKEN appropriately. 

4-32 

INTE:RMETRICS INCORPORATED· 701 CONCORD AVENUE • CAMBRIDGE. MASSACHUSETTS 02138 • (617) 661-1840 



I 

~ .. !" .. ~ .. '~~'~ .. -- '~~--' ~- -~~-~ .. '.-'_'~'-C r<~ ", •• ,~~--,->-~,,,~_.~ .. , __ _ 

.,.". '-r-" 

- templates -- notice that all qualifier names in a 
structure reference are template names. 
Search the descendants o.f the node currently 
reached (as indicated by QUALIFICATION) • 
If the name is there, move QUALIFICATION 
to this entry; otherwise, move through hash 
link for an alternative symbol table entry· 
to try. 

In EXPRESSION_CONTEXT, process like run of the mill. 

After a GO TO, if the name is not local or not a label, 
create a new entry; otherwise, check l.egality. 

After a CALL, if the name is not local, create a local 
entry of type IND CALL LAB pointing to the non-local entry. 
Check for legality. -

After SCHEDULE, process normally. 

In DECLARE CONTEXT, if the existing entry is from an outer 
scope, make a new one. If in the middle of constructing a template, 
set to indicate that the name already ex:lsts (which is legal in 
a structure qualifier) and go pick up in the hash links. 

Name Not Already in Table 

Once again, the appropriate action depends on the CONTEXT. 

For the ordinary case; labels are detected by spotting the 
colon and defining them to be of type UNSPEC LABEL (see SYT FLAGS); 
a T ought to be a transpose operator; everything else is a use 
of an undeclared name (this is not DECLARE CONTEXT) and is therefore 
illegal so print an error message and default type it. 

Only declared names may appear in EXPRESSION CONTEXT. 

After a GO TO, create an entry for a label that will be 
defined later. 

After a CALL, create an entry for a procedure name which 
will be defined later. 

After a SCHEDULE, create an entry for a task name which 
will be defined later. 

In DECLARE CONTEXT, create an entry and return it unless 
the name was pre-viously located in which case just return the 
previous entry. 

After REPLACE, make an entry for a macro name and switch 
CONTEXT to expect formal parameters. 

4-33 
INTERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 

'i 

. ' 



I , 

SAVE TOKEN 
OUTPUT STACK RELOCATE 

399700 
400500 

The source listing is ultimately prin;ted by the output 

writer. The output writer is invoked only when appropriate 

"new E/M/S group" points are reached; thus, t.he material to be 

printed must be saved somewhere in the interim. The saving 

operation is performed by SAVE TOKEN which is called by the 

parser whenever it receives a token. Since macro calls are 

invisible to the parser, they are transmitted directly to 

SAVE TOKEN from SCAN. 

SAVE TOKEN receives the token code in TOKEN, the character 

string in-CHAR, and the type (i.e. SYT TYPE) in TYPE~ It puts 

the type in TOKEN FLAGS. If the item is not a reserved word 

it saves the character string in SAVE BCD and a pointer to SAVE BCD 

in TOKEN FLAGS. The token is saved in STMT STACK. GRAMMAR FLAGS 

is set to-indicate whether or not to print the item. 

There are two things that can overflow. STMT PTR can get 

too large or BCD PTR can get too large. If either-happens, 

OUTPUT STACK RELOCATE is called to force some printing and then 

a relocation-of all unprinted material down in the stack. 

4-34 

INTERM~TRICS INCORPORAiED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 

", 

., ,. 



, 
I 

I 

I' 

ENTER 
SET XREF 
ENTER XREF 
SET OUTER REF 
COMPRESS OUTER REF 

556200 
552300 
549400 
547800 
533000 

ENTER receives a name and class for an identifier and cr~ates 
a symbol table entry for it. The hash table is modified to point 
to this symbol table entry first and the identifier usage is 
entered in the cross reference table via SET XREF. Notice that 
if the entry is a formal parameter of a macro, it is entered 
after the current entry in the hash link if possible. 

SET XREF receives a symbol table pointer (LOC) , an XREF 
flag (FLAG), and a second XREF flag (FLAG2). SET XREF 
builts a new (or .adds to an existing) XREF entry and connects 
it to the appropriate linked XREF list via ENTER XREF. If the 
variable is declared in an enclosing scope, SET OUTER REF is 
called to'make FLAG2 entry in OUTER REF. Notice that-unless 
told otherwise, a subscript usage will be converted to a 
reference usage for SET OUTER REF. If the OUTER REF array 
overflows, SET OUTER REF will-in turn call C0r.1PRESS OUTER REF 
to compress out duplicate entries in OUTER REF. - -

4-35 

f INTERMETRICS INCORPORATED '701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 

!, 

j 

.. j )~ 

~1 

.1 
:~ I i 

~ 
~< 

-; L 

~-



r' 

SAVE LITERAL 
PREP LITERAL 
GET LITERAL 

-- 569800 
574100 
175900 

SAVE LITERAL adds literals to the literal table (see Section 3.1). Before performing any manipulations on the paged part of the table, it uses GET LITERAL to load the proper page and convert the absolute-literal table index to an index relative to the current page. SAVE LITERAL returns the absolute literal table index for the literal saved. 

When dealing with character strings, INLINE code is necessary because it is necessary· to copy the character strings to LIT CHAR. The obvious XPL code would copy only the descriptor-: 

Not.ice that at this level, multiple instances of a literal generate multiple copies in the literal table. Phase II will generate only one copy of each desired literal. 

PREP LITERAL takes a floating point number fresh from creation by a MONITOR(lO) call, checks it for proper limits, enters it in the literal table via SAVE LITERAL and sets SYT INDEX to the absolute index of the literal. 

4 ... 36 

REPnontJcmlLrJ:Y OF TIlE 
ORIGJNJI..L p~t\n:~ T" 11i)f:(I?, 

INTI;RMETRtCS JNCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 66-·H840 

.lI ~~-'.- .-~-- ,,-,~~~~".z.;; .':~~:~'L"'-'_~il!roit;,'<.~ ~·~AW~.~~;':;:;&~~.:i-;;;'~::',,-;;;::'·"-:,:,~·,·-·~··· .~. """,_!'I!!a,...· , . .,.....,._.L_.U .... W!M ___ .~¥ ... "'~-~~ •. - .. ----



4 • 2 • 2 STREAM 

STREAM is the character level half of the scanner. 
It actually reads the input, processes compiler directives, 
and passes to SCAN a single linear stream of characters. 

4.2.2.1. Variables of STREAM. 

ARROW 

ARROW FLAG 

BLANKS 

CP 

E BLANKS 

E COUNT 

Displacement, in number of lines, of the 
current character relative to the last 
character transmitted: used to detect 
flying exponents and to regenerate parentheses 
around E or S groups. 

When returning created. characters, the infor
mation about the next real character is saved 
in SAVE BLANK COUNTl, SAVE NEXT CHARI, and 
SAVE OVER PUNCHI. ARROW FLAG indicates that 
this information should be restored and used 
before moving to the next character. 

Blank field, 44 characters long. 

Card pointer - index of character being 
scanned on current card. 

E IND indicates blank compression internal to 
E-STACK. E BLANKS indicates blank compression 
at the end.- That is, there were E BLANKS blanks 
compressed off the end of E STACK.- E BLANKS can 
be: -l--E STACK ends with non-blank; O-~E STACK 
ends with-a single blank: >O--blanks were
compressed off. 

Number of E-lines in current group. 

4-37 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 

JL III '[11l1li 

1 



! - .. r 
! 

E IND 

E INDICATOR 

ELINE 

E STACK 

EP 

IND SHIFT 

INDEX 

INPUT PAD 

M BLANKS 

M LINE 

POINTER 

PREV CARD 

RETURN CHAR 

If E STACK(~oint) is blank, then E IND(point) 

blanks were compressed out; otherw1se, when 

E STACK (point) was copied from E LINE(index}, 

E-IND(point) was copied from E INDICATOR(index). 

S:IND is reached just like S INDICATOR. 

See procedure COMPo 

See procedure COMPo 

Holds complete exponent ready for transmission -

strings of blanks have been compressed using 

E IND. If no non-blank characters were found 

in the exponent BUILD XSCRIPTS set E STACK 

to null. 

o - Index of last character in E STACK. 

1 Index of last character in S STACK. 

Literally 7 -- used to create references to 

S array name(sub) by writing 
E=array name (sub + 2IND __ SHIFT). 

Index of next non-blank character in M line. 

Special M-line card generated at EOF = 
[M /**/ @ @ , @ @]. The /**/ terminates any 

open comments; the @ is' an EOF mark and 

the ' closes any open quotes. 

See E BLANKS. 

The actual character string of the M line. 

When returning characters from an exponent 

or subscript, POINTER points to the next 

character in E STACK or S STACK. 

Card type of previous input line - used to 

check EMS sequencing via ORDER OK. 

See TYPE CHAR. 

4-38 

I 
~ 

I 
INTERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617)661-1840 

;j 
A~ 

·--·-"""~~~"'~"--~_t/IO:I!& __ 1tiIlil"'. ,_. _;1&"",. ,......., ... .,..p-,., .. -.,., . • '"","~c_"_ ~;:-"7'7'".~:;",,~:\,~~:.,"L~ ~._~,"::'~~"::::.~~ ..... _......,.,~j~ 

I 
I 
1 
; 

1 , 



·\ 
" 

r 
j 

RETURNING E 

RETURNING M 

RETURNING S 

S BLANKS 

S COUNT 

S_IND (i) 

S INDICATOR 

S LINE 

S_STACK (i) 

SAVE BLANK COUNTI 

SAVE NEXT CHARI 

SAVE OVER PUNCH I 

SP 

TYPE CHAR 

Switch ON if in the process of returning 

characters from E_Iine, initially false. 

See RETURNING~,'initially true. 

See RETURNING_E, initially false. 

See E BLANKS. 

Number of S lines in current group (see 

procedure COMP). 

E_IND (i + ~ND_S~IFT) but used for subscripts. 

See procedure COMPo 

See procedure COMPo 

E_STACK(i + ~ND~SHIFT) but used for subscripts. 

See ARROW FLAG. 

See ARROW FLAG. 

See ARROW FLAG. 

EP(I), but used for subscripts. 

When reading multi-line input, STREM1 

simulates linear input by adding subscript, 

superscript, and parenthesis characters. 

Whenever the line level changes, the necessary 

characters are inserted in TYPE CHAR and 

returned on successive calls to-STREAM. 

Since sometimes the same TYPE CHAR appears 

several times in succession, RETURN CHAR is 

used to hold a repeat count. 

4-39 

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 

. ' _ .'-iii *, 1 

) ",. 

1 
.I 

i 



i ' 

'-

r'- .. ,-- -l-Y~-'~ 

::::::':;"~'~-" .:."'- .. ,,'" 

4.2.2.2 Global Variables Referenced by STREAM. 

ACCESS FLAGS 

ACCESS FOUND 

See symbol table -- SYT_FLAGS. 

Switch ON if any ACCESS attributes have been 
coded in this compilation. 

BASE_PARM_LEVEL(macro_expan_1eve1) 

BLANK COUNT 

BLOCK MODE 

CARD COUNT 

CARD TYPE 

CHARTYPE (byte) 

COMMENTING 

CURRENT CARD 

END GROUP 

END OF INPUT 

ENDS COPE FLAG 

The value of PARM EXPAN LEVEL on entry to this 
macro. When PARM-EXPAN-LEVEL > BASE PARM LEVEL, 
parameter expans·ion is underway. - -

If STREAM finds a string of blanks, it returns 
only one in NEXT CHAR and sets BLANK COUNT 
to the number compacted out. -

=0 before encountering the primary unit 
of compilation (after which 'D PROGRAM' 
cards are invalid). $ee SYNTHESIZE for more detail. 

Number of cards read from all input files. 

Indexing by hex card type (E, M or blank, 
S, C, or D) yields DO-CASE code (1, 2, 3, or 
4, respectively). 

Is the type of the associated character, 0= 
illegal, 1 = digit, 2 = alphabetic; 

Switch ON for every card read after the first 
one in a series; used to suppress double 
spacing on output. 

Card image buffer, filled by READ CARD 
from input file. -

Switch ON if CURRENT CARD contains the 
beginning of a new EMS group -- set by ORDER OK. 

Switch ON if EOF read on input file. 

See symbol table SYT FLAGS. 

4-40 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· OAMBRIDGE, MASSACHUSETIS 02138 • (617) 661-1840 

~ :t.~f!';.-,-m.:.~~'.:JIIn11~"~ , ... -... ~.-......, ___ _ 



J 

I 
t 
~ 
I , 
1 
l 
j 

f 
1 

: ,; 

1-- "r' 
".1 .. _,_ , __ 

! ... ~. . ." 

FIRST TIME (macro_expan_level) 

True almost all th~ time. Set false 
after putting out created blank after macro 
expansion so that only one blank is created. 
M CENT indicates that the macro call was in 
¢-signs so that not even the first blank 
should be created. 

FIRST TIME PARM (parm_expan_level) 

Like FIRST TIME but used for actuai p~rameters. 

GROUP NEEDED Switch ON if STREAM buffers have been exhausted 
and GET GROUP must be called. 

INCLUDE END On if just read END on INCLUDE file. 

INCLUDE COMPRESSED Switch ON if current include file is in 
compressed format. 

INCLUDE LIST 

INCLUDE LIST2 

INCLUDE MSG 

INCLUDE OFFSET 

INCLUDE OPENED 

INCLUDING 

Switch ON if include file is being listed at 
all (default is ON - turned OFF by 'D INCLUDE 
NOLIST' card option) • 

switch ON if include file is being printed 
on secondary listing (cf. INCLUDE_LIST). 

Name of current include file - used in messages, 
set by PROCESS_COMMENT. 

Absolute position with respect to input stream 
of first include card -- the relative position 
of the current card within the include file can 
be calculated from CARD COUNT-INCLUDE OFFSET. 
When reading from primary file, INCLUDE OFFSET 
is set up to subtract out the sum of all previous 
include files; thus giving the relative 
position within the primary file. 

Switch ON if include file open. 

On if reading from INCLUDE file. 

INITIAL INCLUDE RECORD 

INPUT DEV 

INPUT REC 

Switch ON if first record of include file is 
already in CURRENT CARD. 

Current source file (O=SYSIN, 4=include file). 

Input buffer for DECOMPRESS, (0) SYSIN, (1) 
inclu.de file. 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138' (617) 661-1840 

, i 

1 
J 

1 
1 
! , 
j 
l 

j 
-I 
-1 

.'-~ j }i" 

1 
i 
j 
~ 



r 

! 
f 

I 
1 

:\ 

IODEV See SYNTHESIZE. 

LETTER OR DIGITS (character) 

LISTING2 

LRECL 

M BLANK COUNT 

M CENT 

M P 

Is true if and only if charact:er belongs 
to the set {A-Z I a-z I I 0-9}. Wh(;.m 
reading ACCESS files I '$ is temporar,'ily added 
to the set. 

Switch ON if secondary (unformatted) listing 
is being produced. 

Le~gth of records in INPUT REC. 

See SCAN. 

See FIRST TIME. 

See SCAN. 

MACRO CALL PARM TABLE See SCAN. 

MACRO EXPAN LEVEL 

MACRO FOUND 

MACRO POINT 

MACRO TEXT 

NAME HASH 

Current depth of macro expansion nesting -
indexes macro processing stacks. 

ON if a macro name has been identified and 
needs expansion. 

See SCAN. 

See SCAN. 

Hased code for a name - used to index 
SY'!' HASHLINK. 

4-42 

INTERMf:TRICS INCORPORATED 0701 CONCORD AVENUE 0 CAMBRIDGE. MASSACHUSETTS 02138 0(617) 661::'-18'40 

J,,-"" "~~ __ .c .~ __ "~ __ ~~ .. 
i' 

~~~"" .~_~.-'"~ __ ~~~~ __ '_.-,,>"~ --:=-=d~_""_~~ __ ~~~:' -,..:..c.~_._. _~'. '~.' ~. ~ ~"._~ __ .~~~~"._.~" ~_~_.~ .. , ~----,.' __ .,~~~ 


"

I;
I;

,.-: .. -
£!

NEW LEVEL

NEXT

NEXT CHAR

NONBLANK FOUND

Relative to line number of line containing
the current character. Value is 0 for M
line, 1 for line above M line, -1 for
line below M line, etc.

Index of last line in SAVE GROUP.

This is the principal interface between
STREAM and SCAN. The next character as
a bit(8) is delivered here. See also
BLANK COUNT.

Switch ON if STACK found a non-blank
character when stacking sub/super script.

NUM OF PARM (macro_expan_level)

OLD LEVEL

OVER PUNCH

P CENT

Is the number of parameters required for
that macro.

,
Level of last character transmitted (cf.
NEW_LEVEL) •

If ~ 0, character is punched directly over
NEXT_CHAR (i.e., on Eline).

Like M_CENT only used for actual parameters.

PARM EXPAN LEVEL When expanding REPLACE parameters, this
indexes the stacks required by the observa
tion that actual parameters may in turn con
tain parameters from calling macros which
must be.expanded in line.

PARM REPLACE PTR (parm_expan_level)

Is a pointer to the next character in
MACRO CALL PARM TABLE (PARM STACK PTR)
to be-passed by-STREAM. - -

PAID1. STACK PTR (parm_expan_level)

PROGRAM ID

READ ACCESS FLAG

SAVE CARD

Is the actual parameter being expanded.

Name of access control file, from 'D PROGRAM'
card.

See symbol table -- SYT FLAGS.

Copy of CURRENT CARD made by READ CARD,
stored by SAVE INPUT for secondary listing.

4-43
INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE,MASSACHUSI::TTS 02138· (617) 661-1840

! .;

I-I

; \

. j

- ---""I ------------ -----~-~-----------------.-----~--~---~-~--~-~~-=~~~-_~~"_m. ,,- ,- ... ",..; ,;p=;:' ..:.::~ ··>1"" ;U, .:;a UlfIIIH B r % 4¥ *"

I
1-______ - C-.

SAVE GROUP

SAVE NEXT CHAR

SAVE OVER PUNCH

STARS

TEXT LIHIT

TOO MANY LINES

TOP OF FARM STACK

Xl

X4

X70

X8

Stack of lines to be printed on LISTING2
file, collected by SAVE INPUT, printed by
OUTPUT GROUP. -

Most recent value of NEXT_CHAR~ saved here
while macro processing goes on.

See SAVE NEXT CHAR.

Field of 5 stars - used in listing messages.

Number of columns reserved for HALlS text on
inpu~, ca~d - everything to the right is put
into SRN.

Switch ON if SAVE GROUP is full.

See SCAN.

Blank fields of 1,4,70 and 8 characters.

Blank fields of 1,4,70 and 8 characters.

Blank fields of 1,~,70 and 8 characters.

Blank fields of 1,4,70 and 8 characters.

4-44

"

INTERMETRICSINCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

.f

I'

4.2.2.3 Procedures of STREAM. STREAM
STACK RETURN CHAR

350000
384500

The routine is essentially broken into two independent parts,
the- first part delivers characters from REPLACE expansions and
the second part delivers characters from source lines.

When expanding macros it is possible to be nested inside
several macro expansions and several parameter expansions
the necessary detail is part 1.

When handling source lines, characters are created to
simulate the linear input format -- created but undelivered
characters are saved in TYPE CHAR using STACK RETURN CHAR.
Characters can come from the-M line, th~ S line, or the Eline.
After trying them in turn, get some more input via BUILD_XSCRIPTS.

BUILD XSCRIPT.s
STACK-
CHOP

408400
405300
403900

BUILD XSCRIPTS advances to the next non-blank in the
M line, accumulating a compressed exponent in E STACK and
compressed subscript string in S_STACK. -

STACK is called from BUILD XSCPTS with argument 0
for exponent and 1 for subscript. STACK appends the
character to the appropriate S or E STACK unless it is
a multiple blank in which case it just counts it.

CHOP advances to the next character position.

4-45

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

em 7-

GET GROUP 395200

The principal function of GET GROUP is to read in a
single E/M/S group and linearize it for easier handling by
the rest of STREAM.

COMP(O) is called to handle E lines.

COMP(l) is called to handle S lines.

The M line is simpler and so is handled in line.

PROCESS COMMENT is called to handle comments.

The linearized exponents and subscripts are described
in COMP; the M line is already linear. The three lines are
returned· in E_LINE, M_LINE, and S LINE.

OUTPUT GROUP -- 191800

OUTPUT GROUP is called to print the previous group as
saved by SAVE INPUT on the secondary listing. It is usually
called by GET-GROUP but is also called once by PRINT SUMMARY
to clean up at the end.

4-46

.... · t' M.ii!$c <. '< .. .,

< ««<,"<::,-":,,L. -j

'INTERMETRICS INCORPORATED' 701 CONCORD AVENIJE',-CAMBRIDGE, MASSACHUSETTS 02138 . (617)--661~l840-

r

.i

. 'j~' ... ~ .
"r;·~.:'T"~'H'_, ._~,

- --.. - --~~ -

COMP
SCAN CARD
READ-CARD
SAVE-INPUT
NEXT-RECORD

'ORDER OK

392200
389800
385700
187800
343800
345500

Notice that the declarations for E INDICATOR and
S INDICATOR are such that they will be allocated contiguously:
thus, when subscripting E INDICATOR with values greater than
127, the S INDICATOR is set •

E INDICATOR . 1.
128-256

S INDICATOR

The computations POINT=SHL(TYPE, IND SHIFT) E INDICATOR(CP+POINT)= •••
have this effect since TYPE=O for E lines and-l for S lines
implies that POINT will be 0 for E lines and 128 for S lines.

A similar procedure is followed for the E_LINE/S_LINE pair
and the ECOUNT/SCOUNT pair:

ELINE = ELINE(O)
S LINE = ELINE(l)

All exponent lines are linearly compacted into ELINE
and all subscript lines are linearly compacted into S-LINE.
E INDICATOR and S INDICATOR contain the line number of the
llne originally containing the character where the highest
of N exponent linesis numbered N and the number is decremented
down to 1 for the line immeuiately above the M line. The
first subscript line is numbered 1 and this number is incremented
for each succeeding subscript line.

4-47

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE -CAMBRIDGE, MASSACHUSETIS02138 - (617) 661-1840

. , , ~

I'" ~. ,
.... L~~ .. ·.,~.

--, ... ,.. .. __m, __ ._. __ ~~_ -~-~-~·~~~c ____ ,_'._-.-=.=,~~: "-~=-~'~' '.~~"~~ M~~ ~"""'''WT'''l ,,~.--''"''''-' m""""_"",,,,* -·~"""'''·T-''-'<=&!£!i ,--.. H¥"-,_,

SCAN CARD is called by COMP to set up E_LINE, E INDICATOR,
S LINE, and S INDICATOR, and issues error messages for illegally
overlapping characters.

READ CARD is called by COMP to obtain the next input card
via NEXT RECORD: to manage EOF indicators: to save the source
lines for the secondary listing via SAVE INPUT and to count
cards.

COMP itself keeps track of a change in the type of the
cards, checks their order via ORDER OK, and switches the
exponent line numbers from 1. •. N to-N, ••• 1.

COMP is called by GET GROUP with TYPE=O for E lines and
TYPE=l for 5 lines.

PROCESS COMMENT
PRINT COMMENT
D TOKEN

356500
357200
354900

PROCESS COMMENT is called by GET GROUP to hande C or D
cards. C cards are scanned for ¢ toggles which are set, reset
or inverted as requested. D cards are scanned for directives
using D_TOKEN to get the next token from the card.

The entire processing of D card directives is performed
here including the opening of an INCLUDE file and the processing
of PROGRAM directives via INTERPRET ACCESS FILE.

Comments and directives are printed on the secondary
listing via PRINT COMMENT.

4-48

REPRODUOIBlLITY OF. M
ORIGINAL PAGE IS POOR

1

1

I !
1
j

I I
J

I l
1
1

f INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138,0 (617) 661-1840
~

f

(,

~

INTERPRET ACCESS FILE 316800
'ADVANCE CP 323100
NEXT TOKEN 324800
ACCESS ERROR 317600
LOOKUP 321600
RESET ACCESS FLAG 320700

INTERPRET ACCESS FLAG is called by PROCESS COMMENT when
a PROGRAM directive is processed. INTERPRET ACCESS FILE reads
and processes the access file (unit 6).

ADVANCE CP is used to increment the Card Position by I,
reading a new card when necessary and: finally setting EOF FLAG.
The function NEXT TOKEN reads the input out of S(CP) using
ADVANCE CP and builds tokens returning either 0 and a token
in A TOKEN or a deiimiter number.

The 'file is read and errors are reported using ACCESS ERROR
which takes an error message number and a character string arguments
to be printed. When an identifier is read, it is located in
the symbol table using the function LOOKUP which takes an
identifier as an argument and returns a symbol table pointer
or -1. When a symbol to be accessed is located, it's access
protection i~; turned off using RESET ACCESS FLAG. Notice that
the symbol ti:ible is built so that entries for a single COMPOOL
reside in successive slots enabling the easy traversal of all
entries of a COMPOOL.

4-49

INTERMETRICS INCORPORATED· 70:1 CONCORDAVENUE· CAMBRIDGE, MASSACHUSETTS 02138· (617) 661-1840

, ,
;-.."
4
,~

,
, ;

I --

f

"I

4.3 The Output Writer

Phase 1 generates the primary sou'rce listing. This
listing is indented, underlined, overlined, bracketed,
and in several other ways reformatted. The items to be
printed are stored in the statement stack (see data descrip
tion of GRAMMAR FLAGS). They are actually printed when
a new line point (e.g. end of statement) occurs or when
the statement stack overflows. It is the sole responsibility
of the output writ.er to layout and print the entire primary
source listing.

4.3.1 Lucal Variables of the Output Writer

BUILD E

BUJ.LD E IND

BUILD E UND

BUILD M

BUILD S

BUILD SIND

BUILD S UND

I

}

See BUILD S.

The output writer constructs an entire
E/M/S group before printing it. All
the subscript lines are positioned in
BUILD S, exponent lines in BUILD E,
and the M line in BUILD M. Since the
subscript and exponent lines are multi-
line items, the line number for each
character of BUILD S'is indicated in
BUILD SIND -- simIlarly BUILD E IND.
Any character may require underlIning
this is indicated in BUILD S UND,
BUILD E UNO, and M UNDERSCORE. If
M UNDERSCORE is not empty then
M-UNDERSOCRE NEEDED is true. The next
character position in each line is indicated
by S PTR, E PTR, and M PTR. These pointers
are updated-properly to keep in step. In
particular, on calls to EXPAND, M PTR
will always be at least as large as E PTR
and S PTR.

See BUILD S.

4-50

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETIS 02138 • (617) 661-1840

I
l

E CHAR PTR

E CHAR PTR MAX

E LEVEL

E PTR

ERRORCODE

EXP END

EXP START

FIND_ONLY

IMBEDDING

INCLUDE COUN'l'

LABEL END

LABEL START

LINE FULL

M CHAR PTR }
M CHAR PTR MAX

H PTR

See SAVE S C.

See SAVE S C.

Index of E line currently being
built or referenced.

See BUILD S.

Code of current error message to be
printed, extracted from SAVE ERROR MESSAGE -
used as key for retrieving canned message
from file #5.

See SUB END.

Sec SUB START.

Switch ON if MATCH is not to zero out
the parentheses it finds.

Switch ON if error message includes
some optional text to be inserted into
canned message (variable ident., etc.).

From SRN COUNT(2) - substitute SRN
during include file, incremented from
SRN on 1st include card.

If there are any labels, points to colon
on last label; otherwise, LABEL_START-l.

Index of first item to print -- if there
.are any labels, they start here.

Switch ON if EXPAND should be called
to dump the buffers.

See SAVE S C. M CHAR PTR is also used
to index REPLACE text-in MACRO TEXT
when printing REPLACE definitions.

See BUILD S.

4-51

INTERMETRICS INCORPORATED ·701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETIS 02138 • (617) 661-1840

I
1

I
1
; ,
j

I
1
1
~
1
1
I

.D
t"'~

--"--,----",-".-.--------- - - __ ... "_~.~_"" __ ,~---=._:._::::;::_:;.~--o---.-- .. :--~,. ,---.-~.-.~-:-::~----------------.~---~--~~ - ---~---.. -.--- ."-.--~J

M UNDERSCORE

M UNDERSCORE NEEDED

MACRO WRITTEN

I>1AX E LEVEL

MAX S LEVEL

NEXT CC

PRNTERRWARN

PTR

PTR END

PTR START

SCHAR PTR

SCHAR PTR MAX

S LEVEL

S PT:R

SAVE E C

SAVE MAX E LEVEL

SAVE MAX S LEVEL

See BUILD S.

See BUILD S.

Switch ON if a macro name was written
'out anywhere in the statement.

Number of E-lines required to print
part of statement scanned so far.

Number of S lines required to print
part of statement scanned so far.

Carriage control cha.racter for next
E/M/S group.

Switch ON if error overflow warning
has never been printed - turned off
so me~sage only printed once.

Index of token being currently processed.

Parameter #2 - index of last token in
statement STMT STACK.

P~rameter #1 - index of first token in
statement STMT.:3TACK.

See SAVE S C.

See SAVE S C.

Index of S-line being built or referenced.

See BUILD S.

See SAVE S C.

On statements that will not fit on one
line, these save the original values of
r1AX E LEVEL and MAX S LEVEL, so continuation
lines-will be in the same format -- used
to restore their values after call to EXPAND
clears them.

4-52

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

,~

:~_~:·~'::-=-~'=-~='~~~~'_'~':=~~'-'~l-'_~ .. :...~."':~~~~l nan ... , n;"',;,'''~~~ ",".~~~~~:..=:~=".~_=-~~~..:~~~£.~~

" I
I

:.1
I

,/ '""i''T"

.' ~!', {

·f

'j
tI tJ.
',1

~ 1
H

i .,
:1
;(

n
ii ,;

I
I.E
'1

II q
it

II
11
,;
I'
i

! .~ I''>
"

j " I"""
,!

i
~
i

),
I
a;.;;:-

SAVE S C

SDL INFO

SEVERITY

SPACE NEEDED

Character strings in HAL are limited
to 255 characters; however, when single
quotes are expandGd to double quotes in
ATTACH, the string can grow to more than
twice that length. The array SAVE_S_C
is used to save the 1, 2, or 3 character
strings necessary for a character string
in the subscript and SAVE E C does the same
for exponents. SCHAR PTR MAX is the
number of characters in the SAVE S C array
and S CHAR ~TR is the current character.
Notice that the low order eigltt bits
(i.e. O~~55) is a byte count and the next
two pits select the array component.
E CRARPTR MAX and E CHAR PTR perform the
same functIons for SAVE E-C. A similar
procedure is followed for-the M line, using
M CHAR PTR MAX and M CHAR PTR but there is
nO' SAVE M C because-the M line can be
taken directly out of C -- the string
returned by ATTACH.

First 6 characters are SRN of current
statement, next 2 are record revision
indicators (only present if SOl, OPTION
is ON), last 8 is change authorIzation
from file #5.

Of error, as retrieved from file #5.

Set by ATTACH to number of blanks required
In front of the token it just returned. It
is always either 0 or 1.

SUB END Index in statement stack
of last token of sub
script.

Subscript runs between
1 these two -- both are

vebtors, with one entry
for each possible level
indexed by S LEVEL. See
GRANMAR FLAGS.

SUB START Index in statement stack
of first subscript
token.

UNDER LINE

UNDERLINING

Buffer for underscore that will overprint
E or S-line for macro indication.

Switch ON if UNDER LINE contains anything
to be printed. -

4-53

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

, ,---

:; ,

,
" l

4.3.2 Global Variables Referenced by the Output writer

BCD PTR

C

CHAR OP

CHARACTER STRING

COMMENT COUNT

COHPILING

CURRENT SCOPE

DOLLAR

DOT TOKEN

DOUBLE

DUMP MACRO LIST

ERROR COUNT

ESCAPE

EXPONENTIATE

FUNC FLAG

See GRAMMAR FLAGS.

Temporary character string vector -
ATTAc~r returns token names here.

The overpunches used in character literals
to cause translation to alternate character
set - corresponds to prefix of ¢ or ¢¢.

See global defi~itions -- TOKEN.

Number of characters of comments associated
with this statement (limit is 255).

Switch ON while compilation is continuing
normally -- turned OFF to indicate fatal
error -- execution will be halted in
COMPILATION LOOP.

Name of the block actually being read by
STREAM.

See global definitions TOKEN.

See global definitions TOKEN.

Carriage control character to cause double
spacing.

Set by MACRO TEXT DUMP when a printing
of the REPLACE texts rather than the current
line is required from the, output writer.

Nurnberof errors accumulated during compila
tion.

Escape, character for I/O of non-HALlS
characters.

See global d,efinitions -- TOKEN.

See GRAMMAR FLAGS.

4-54

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

~j'
~.,,;,:;::.,...

.'

i:

i

11-"
~ ,

GnAMMAR FLAGS The statement stack is used to store up
a source statement before printing. The
stack is built of three parallel arrays
as indicated in the diagram. STMT PTR
points to the top-most entry in the stack.
Notice that, the actual character strings
are stored' in SAVE BCD. TOKEN FLAGS simply
contains an index into SAVE BCD. BCD PTR
points to the last entry in-SAVE BCD.-In the
general case, some of the material in the
stack has been printed and LAST WRITE 'points
to the first unprinted item.

A Statement Stack Item:

token code

,~16~ ____ ~,_._------~~~6 7 6
v

•
!J
IfI

fi'

1 /.1.:,:6'--______ --. ____ ---=1::.../

In order to associate items in the parser's
stack with their entries in the statement
stack, the parser maintains STACK PTR entries.
STACK PTR (parser stack pointer) points to
the element's entry in the statement stack.

GRAMt4AR FLAGS vaiues

0042 ATTR BEGIN_FLAG

0428 FUNC FLAG To]~en is a function call.

0577 INLINEFLAG

0671 LABEL FLAG

0687 ·:hEFT BRACE FLAG

0688 LEFT BRACKET_FLAG

0786 MACRO ARG FLAG

0976 PRINT FLAG

0978 PRINT FLAG OFF

4-55

Token is an inline function.

Token is a label.

Preceed token by , { , on output.

Preceed token by , [' on Qutput.

Token is an argument to a macro.

Token should be printed.

., PRINT FLAG -- Used to turn off
l?RIN.T FLAG.

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138· (617) 661-1840

,,~

~m..;.: __ =-_____ ~_~ ___ __ -..;,--....:..........;.~~ .. o~~_,.~_._-_ _ ~_~~, __ _._.~. ___ ~. _~ ___ • __ .. ~~_,,~ __ ... _ "-__ .~~._ •• _____ .. _~_".~ •• _~.~~. ____ ... c~ __ ~ __ .~.

I" 't·,,·", . ""'> " ''', ' • ., • - '~~" .:p",,"'" • '" .,.". "'~~" ". - ... "-- ... '~ ."" ' ... --~~~'" r"~'- "--'- ~'~If""""""'~'''-' • '"

I ~~'I?"'!-'''.; &.,i4*\,~.ifl'\OJ!!iItiJ'll1l!il)IIOj,".~~c.:,: .. ,:-"""'''~'iT''._.,.~ .. ,~· .. -..... __ ... -....: ___ -_, __ ~ __ "'1>'~_ ... ,..""""'''''§,....''''''''.L .. "'.. ~

1047 RIGHT BRACE FLAG

1048 RIGHT. BRACKET_FLAG

1160 STMT END FLAG - -

AppenQ "},, after token on output.

Append "]" after token on output.

Final token in statement.

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

I ~

!

:~

:~
!~

1 ~
11

I !', ..
. :1: '
111
:1'

I
!~
;,.-.:'
,~

ffi
!I i' ,

~ i'

t
'$

[1
,~

Ii
~I
Ll
;i
il

q
;.)

:i
:~
l~
I';

)~
fl
ii]
;:;,
~ 1
~
n ,,'

;~
"
:!

i~ .,

~~
1~'
:.~
>~
"

'" R
':;,;

!1 ", .'.
if,

~
1~
!~
~.~
p"

~
;J~
f

ii;
~

~~
~~
!~

!i
i~
'y
,.1':

~
~

l
.~
· J

l
.~

;
.~
I
J
~
~ ·
1
1
'!
~ · 1 .,

1
~
:J

1
I
'J
~

.,;
.. ,"i~

'r-~'
t ' ••
I
f

INCLUDE CHAR

INCLUDE END

INCLUDING

INDENT LEVEL

INFORMATION

INLINE }fLAG

INLINE INDENT

INLINE INDENT RESET

LABEL COUNT

LABEL FLAG

LAST

LAST SPACE

ji

LEFT BRACKET FLAG

LAST WRITE

LEFT BRACE FLAG

LEFT PAREN

LINE LIM

LINB MAX

Character printed on the listing
next to the statement number if the
source was read from an include
file - otherwise blank.

Switch ON if just read EOF on include
file.

Switch ON if reading from include file.

Column number of current left margin
indention.

Information to be printed with SAVE_SCOPE
to the right of the source statement (DO
CASE numbers, etc.).

See GRAMMAR FLAGS.

Column number for indention of current
in line function.

Used to restore INDENT LEVEL to value it
had before interruption by inline function.

Number of labels on ourrent statement
(each is two tokens -- label and :).

See GRAMMAR FLAGS.

The number of errors in the current
statement.

Usually the value of post spacing
on last token - may be altered in special
cases.

!

See GRAMMAR FLAGS.

See global definitions -- TOKEN.

Number of lines in listing page as read
from JCL LIST = option.

This is usually LINE LIM -- it is set to
o to force a page eject.

4-57

~ INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138· (617) 661-1840

'k~

.~"'-,.,~~

MAC NUM

MACRO ARG FLAG

MACRO INDEX

MACRO TEXT

MAJ STRUC

MAX SEVERITY

OUT PREV ERROR

Symbol table pointer for the last
REPLACE name defined.

See GRAMMAR FLAGS.

The number of REPLACE texts that have
been defined in this compilation unit.

See SCAN.

See symbol tab-le SYT FLAGS.

Maximum SEVERITY of errors found so far
in program.

Statement number where last error message
was printed.

OVER PUNCH_TYPE(token) Is the overpunch character to apply (bit ".",
char",", vector ".", structure "+", matrix "*").

PADl

PAD2

PAGE

PAGE THROWN

PLUS

PREVIOUS ERROR

PRINT FLAG

PRINT FLAG OFF

Blank field the width of the statement
number info on the M-line - used to pad
Sand E lines on the left.

As PADl, plus space for line type and VBAR
used to pad underscore lines on the left.

Carriage control character to cause page
eject.

Switch ON if page eject just done -
used to reduce multiple paging to a
single eject.

Carriage control character to enable over
printing of underscore characters.

Set to STMT NUM at the time an error is
detected and used to set OUT PREV ERROR.

See GRAMMAR FLAGS.

See GRAMMAR FLAGS.

4-58

INTEBMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

.

:1
"

il r
if

I ;~
~!

I

II 1"'

;~
:~
;,Jf
f;l
"J ;t
;1
t.! :..:
:Ii
'i i ,''i

'~ '~
' .. ~ '. ,.

.1 .~ ,<
j ~ ,,I

d ~ \1: , ',~

"
L

i~

f;~
~ j
"

..~

'r

J

'1 ': "

r

RECOVERING

REPLACE TEXT

RIGHT BRACE FLAG

RIGHT BRACKET FLAG

RT PAREN

SAVE BCD

SAVE COMMENT

SAVE ERROR MESSAGE

SAVE SCOPE

SAVE_SEVERITY (I)

SAVE STACK DUMP

SCALAR TYPE

SDL OPTION

SPACE_FLAGS (token)

Set by RECOVER - overrides PRINT FLAG OFF
to force printing of all output stacks.

See global definitions -- TOKEN.

See GRAMMAR FLAGS.

See GRAMMAR FLAGS.

See global definitions -- TOKEN.

See GRAMMAR FLAGS.

Text of comment to be printed with this
statement.

Stack of error messages for this statement.
Each entry is a character string containing
an eight character code followed optionally
by text to be imbedded.

Is the number of the line containing the
Ith error.

Name of the block to which the current
statement belongs. Required because
CURRENT SCOPE may be updated before printing
some material accumulated in the older
scope.

Is the SEVERITY of the Ith error message.

Array of formatted lines corresponding
to dump of parse stack.

See symbol table -- SYT TYPE.

Switch ON if printing extra SDL info
(SRN, change authorization field, record
revision indicator) on listing; OFF if
NOSDL option specified.

Specifies the pre and post spacing for
token. The pre-spacing is the high order
four bits and the post-spacing the low
order four bits. Since spacing is done
one way on the M line and a different way
on E and S lines,

SPACE FLAGS (token + number of tokens}

is the spacing for E and S lines.

4-59

INTERMETRJCS INCORPORATED,· 701 CONCORD AVENUE· CAMBRLDGE. MASSACHUSETTS 02138· (617) 661-1840

i'

,
l
1
:;
J
·i ,
:]
;

.1
i
"!

SQUEEZING

SRN

SRN COUNT

SRN PRESENT

STACK DUMP PTR

STACK DUMPED

STACK PTR

STATEMENT SEVERITY

STMT END FLAG

STMT NUM

STMT PTR

STMT STACK

STRUC TOKEN

SYT LINKl

o - always wants a space, if not over
ridden by the other token

1 - only want a space if the other
token wants one too

2 - never wants a space

3 - always gets a space

Switch is set by SAVE TOKEN when it
needs more space to save the current
item. In this case, the output writer
should write out the minimum amount
of material (one E/M/S group) and
return. The switch is cleared by
OUTPUT WRITEIt.

Statement reference number and additional
SDL info, obtained from source card to the
right of the text area (TEXT_LIMIT).

M-card count when reading from include
file - indexed in such a way as to be the
card number of the current token.

Switch ON if SRN is being read from input
cards.

Index of last item in SAVE STACK DUMP -
= -1 if empty.

Switch ON if STACK DUMP and SAVE DUMP have
just filled SAVE_STACK_DUMP.

See GRAMMAR FLAGS.

Maximum SEVERITY of errors in this statement.

See GRAMMAR FLAGS.

Line number of current statement.

See GRAMMAR FLAGS.

See GRA~~R FLAGS.

Se.e global definitions -- TOKEN.

See symbol table.

4-60

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138· (617) 661-1840

" '

·TOKEN FLAGS

TOO MANY ERRORS

TRANS_OUT (char)

See GRM1MAR FLAGS.

Switch ON if error stack was filled
up - some messages may not have been
recorded.

Yields a 16 bit description of char's
printable form. The low order byte is
the character to print. If TRANS OUT is zero,
print char itself; otherwise the high order
byte indicates the number of escapes
(0 + 1 escape~ 1 + 2 escapes).

TX(special character) Is the TOKEN code for the character.

VBAR A vertical bar, "I", used to delimit the
listing margins.

VOCAB INDEX See procedure SCAN -- identifiers.

WAS HERE Used only by PRINT TEXT to print 2
double quote marks-for each embedded one.

Xl Blank field of length 1.

X70 Blank field of length 70.

4 61

INTE;RMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

4.3.3 Procedures of the Output Writer

. THE
RgPl'tODTICIDILfrY °:00&
ORIGINAL PAGE IS

OUTPUT WRITER
PRINT TEXT

291000
377500

OUTPUT WRITER is the entry point and central control
of the output writer module. It assembles and prints E/M/S
groups followed by error messages.

Set up LABEL_START and LABEL_END.

Calculate positioning of subscripts. Use MATCH to find
and eliminate parentheses around subscripts, then if the sub
script is a subscripted expression, restore the parenthesis.
If the subscript is subscripted, find the end of the lowest
subscript.

Do the same thing for superscripts.

Now that an entire subscript has been located, divide
it up for multi-line printing using SUB START (S LEVEL) and
SUB END' (S LEVEL). The actual character string to be printed
is built in BUILD S with associated indicators in BUILD SIND
and BUILD S UND. -The character strings to be printed including
spacing and-braces and brackets, are computed by ATTACH.
S LEVEL is incremented for each $ and decremented when the
end of a subscript is reached.

Do the same thing for superscripts.

BUILD M is set up in a similar manner without the
difficulties of mUlti-line format. Notice that the text
of a REPLACE statement must appear on the M line and thus
presents a problem only here. PRINT TEXT is used to print
the macro text in a straightforward manner. When printing
labels, un-indent far enough so that the label ends just
before the indentation point.

If the label will not fit, un-indent to the left margin
and print the labels on a separate line.

After everything has been built and overflowing lines
have been printed, print the current buffer and clean up all
the hanging indicators for the next time around.

If there were any error messages pending, print them. Notice
that the error message text must be read in from an auxiliary
file and imbedded text must be inserted instead of "??II.

If DUMP MACRO LIST is set, then the output writer
simply prints all the REPLACE_TEXTS. It starts off at the
beginning of all the texts, PRINT TEXT prints a single text
advancing M CHAR PTR to the end of the text. Then increment
M CHAR PTR one more position and PRINT TEXT again.

4~62 \
(INTERMETRICS INCORPORATED - 701 CONCORD AVENUE -CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840
't
r
~, ~

• ••

I: .,

I,.

I,

ATTACH
ADD

295400
299300

ATTACH is called by OUTPUT WRITER to compute the
character string for an item to-be printed. ATTACH must
compute the character string, the pre-spacing, the enclosing.
brackets or braces, the display character for non-HAL
characters, and the expansion of embedded single quotes
in character strings. Since the spacing in exponent/subscript
lines is different from the spacing of M lines, OFFSET is
also delivered to allow proper lookup in the SPACE FLAGS
table.

Formatting character string tokens can be complicated
(see data description of SAVE S C), so a separate procedure,

ADD, is used to append a character to the existing substring.

4-63

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

.1

1
i

i
l

I .,
~
~
1 ,
J
l
j

.1
1
~ .;
j
j
~ ,
~ ,
l
1
1
l
j

y,

1
"'1 ~

~
"l

,~
j

.~
~
:i
~
~

,]
~
1

MATCH 325800

When OUTPUT WRITER is scanning ~ubscripts and super
scripts, it looki for the end of parenthesized sub/superscripts
and eliminates the parenthesis. It then replaces the parenthesis
if they are necessary. The search and elimination is performed
by MATCH whi~h'takes as argument the index of the left paren'
and returns as value the index of the right paren. If
FIND ONLY is set, the elimination is suppressed.

CHECK FOR FUNC
SKIP REPL-

329500
328500

If a sub/superscript is not parenthesized, then
OUTPUT WRITER locates the end of it via CHECK FOR FUNC.
This searches for the end of a function call Tpossibly
subscripted with nested calls), skips macros via SKIP REPL,
and locates the end of qualified structure names. CHECK FOR FUNC
receives a starting point as argument and returns the location
of the end as value.

~ ;
I

,I

'i

! '

-I'

EXPAND
COMMENT_BRACKET

EXPAND is called by OUTPUT WRITER to actually print
an E/M/S group which has been formatted in BUILD E,

305700
306900

BUILD H, and BUILD S. If the group contains an end of
statement then EXPAND will add to it any accumulated comments.
Comments are printed in the M line if they fit. 'If the
comment will not fit,and the .statement is short, it is
printed on the M andS lines; if the statement is long, it
is printed after the statement. Comments are inserted into
the output string by COMMENT BRACKET. which takes a string
and a position within the string and modifies the argument
string using the BYTE pseudo-function.

4-65

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETIS 02138 • (617) 661-1840

l
, '

1

l ,
~ , 1 ,
j

r

1/

I~·-··-··-r' .. --- -'-~~--,--'C-',~~·,....,..... -"",-~·-"",,,,~ .• r~, ~~~~~.:~~SX:""'Ai ... 4&"*:,,,,,,,·4 ___ \ W ... , A),·;;: .. ·-.V'¥",,, .• Si. """'*""Ia::::::i::tE:::'I;,+ .":=«"'>:"" , .. ,;
r' .,,' ""[

I
"';,

4.4 The Semantic Routines

The HALlS compilers handle semanti'cs in a very standard
manner. Immediately before performing a reduction, the parser
calls SYNTHESIZE. SYNTHESIZE is an enormous CASE statement
on the production number.

We have broken up the entire grammar into six sections.
The individual productions are covered as follows:

1-3
4-32
33-81
82-135

136-176
177-178
179-180
181-192
193-205
206-208
209-249
250-272
273-288
289-292
293-328
329-425
426-428
429-449

4.4.7'
4.4.5
4.4.6
4.4.5
4.4.6
4.4.5
4.4.6
4.4.5
4.4.4
4.4.5
4.4.4
4.4.5
4.4.6
4.4.7
4.4.2
4.4.3
4.4.7
4.4.6

When working through semantic routines of this nature,
it is important to figu,.:'e out the reduction sequence. We
include here the complete reduction sequence for a meaningless
program which has a large collection of constructs in it.

4-66

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS ,02138 • (617) 661-1840

C I DECLllltIO'. OP 1 PROGlllft

, ,-
----------------------------:------,-~.-------------:-------------------

reiuction 304

reiuction 305
reduction 307

rea uct. ion 301
reduction ,298

scanner ~eturns toke* nuaber 98

scanner returns tekeq nu.ber 16

scanner retu~ns tpken nu.ber 107

scanner retur.s t~ken nu~ber 10

ril SIMPLE:
MI PROGRAM:

CI DECLARAXION WITH IMPLIED TYPE

-----------------------------------~-----~--------~-------------------

reiuction 358
red uct ion 356
rea uction 342
reduction 3:"0
reiuction 339

reduc.tieD 329
rea uet i01) 345

M I DECLARE Ai

seann-er returns toke. nUllbe~ 103
scanner returns token Duaber 131
scanner retu~ns t~ken number 10

Cj STANDARD FORM DECLARATIOR

. !

---~--

red uet 101) 358
red uet,ion 385

scanner returns taken number 103
scanner returns eokeR nu.ber 131
scanner returns ~oke. number 105

scanner returns t~ke. no.ber 10

4-67

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETIS 02138 • (617) 661-1840

1..,..--,

I
reductioR 382
reducf;ion 376
red ucr ion ,370
reduction ,362
red UCl: ion 357
reduct ion 342
red uction 340
reduction 339

M, DECLAilE B INTEGER;

reduction 329
reduction 346

CI DECLlRA~ION WITH FACT~~ED TY~E

-. 1 --

red uct ion' 385

reduct ion 382
reduction 376
reliuct ion 370
red.uction 362

red uction 358
red uction 356
reduction 342
reduct,ion 341
reduction 339

reduction 329
red u c t ion 3 4 6

scanner returns tQken nu.ber 103
scannar retnrns token nu.ber 105

scanner returns t.oken; nUlIber 14

scanner returns tpkeA number 131
scanner returns tokea number 10

i'lj D:t.CLARE IN'rEGER, C;

CI AN EQUATE DECLARATION

- .. ---
scanner ceturns t.QJteq number 82
scanner cetll!'ns token number i 12
scann~r returns toke. number 131
scanner returns toke.f\ number 30
scanner returns tpken number 1.26

red.uction 222

scanner returns b~ke. nu.ber 10

4 ... 68

,J

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

~

~" ::

-

."
-'.'.~ .. -,~"~""~~~

I~ "
[-<It:'

red'uct,ipn230
retuction 216
reduct ion 193
reduction 332

MI EQUATE EXTERNAL X T0 A;

C, A STRUCTURE DECLARATION

. . . .

------------------------------~--~----------------~------------------

r.eiuction 348

MI

scanner returns token nu_ber 123
scanner returns tpkea nu_ber 131
scanner returns tokeDj nuaber 16
scanner returns baken nu.ber 99

STRUCTURE Q:

--~-------~------------------------------------~---------------------

reQ uct ion 358
reduction 356

reduction 350

HI 1 Q1,

scanner returns takea nuaber 131
scanner returns tpkeA number 14

scanner returns token number 99

------------~--------------~-----------------~------------------------

reduction 358
red uct ion 356

reduction 350

Mj

READ TOKEN 131
READ TOKEN 14

READ TOKEN 99

2 Q2,

____ :-a ______________ , ___________________________________ --__ :-' ____________ _

reduction 358

READ 'I'OKEN 131
READ 'I'OKEN 10

4~69

iNTERMETRICS INCORPORATED' 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

,~

!
I.

Li
!1i

f'

reduct.ion 356
re"ucti~' 351
reductio!) 347

rell UC1: ion 331
reduction 346

MI 2 03;

C I DECLARE A SIMPLE STRUCTURE VARIABLE

-----~--------~------------~-------------------~--~-----_._--------
R'EAD TOKEN 103
READ TOKEN 131
READ TOKEN 1.3 9

reduct ion 35S

R'EAD TOKEN 12
READ TOKEN 123
R'EAD TOKEN 10

reduction 353
.,
reduction 352
reduct ion 373
reduct: ion 370
De4uction 362
reduction 357
reduct ion 342
reduction 340
reduction 339

MI DECLARE CQ Q-STRUCTURE;

red.uct ion 329
reduction 346

CI DECLARE A SlRUCTUHE VABIABLE WITH COPIES

~----~,---------~---------------------------'----:.---------------------
READ TOKEN 103
READ TOKEN 131
READ TOKEN 139

red uct ion 356

R'EAD TCKEN 12
READ TOKEN 123
READ TOKEN 3

red uct ion 355

BEAD TOKEN 99

reduct ion 425

4-70

INTERMETRIGS INCORPORATED· 701 OONOORD AVENUE· OAMBRIDGE, MASSACHUSETIS 02138 • (617) 661-1840

I'

i
I

i
I
~i!

I
W,

i
~
~
§
!~

I
~
fu
"

~
i'
" ~
~
(,1

;'1

:~
;';.
t;
t

i~
~

• ... j ;,
ti

~,.

.1
1
"
i

I
~

I
I

l,% ::~

~ s
.~

,.~.

:;
1 ; ~

'~ I
1
j
J

~

t
l

~l
~
~

'<Ie
''1

i
~
)

,.J

.-_·.,.~~..,·-""7':'.-·:~ .. :_·'T~ __ ~_1·1IIIIif~~.:;z::;:::;::~ ~ :_.~ .••• u ___ ~_· __ • .::.:::........:... ~~~ __ • ... ·.~-~~·:-."-:=.::..-.i..:.:~~~_=_ __ A ~-;o;;o;·~"""!?!F!'I'!O'. 17_7.' ___ 10_ ... _._· : __ -_~

I :

'''"' r'

reduction 19

reduction 31 I

reduction 15
red uct. ion 11
redu.ction 9
reduc1:.ion 4
red uct i.on 391
red'uc t. ion 351+
reduction 352
reduct.ion 373

reduc1:.ion 370
reduct,ion 362
reduc1:.ion 357
reduct ion 342
reduc1:.ibn 340
reduction 339

red UC1: ion 329
reduction 346

JlIEAD TOKEN 9

READ TCKEN 10

MJ DECLARE Q_COPIES Q-STRUCTU~E(3i;

CI DECLARE A ONE DIMENSIONALARBAY

---------------------------~-------------------~--~----------------

reduction 358

red uct. ion 368<

reduct ion 425
red uct. ion 19

red uct. ion 31
.rE;:.duct ion 15
red uc·t. ion 11
red uct ion 9
reduction 4
reduction 391
red uctioll 363

READ TOKI;N 103
READ TOKEN 131
READ TOKEN 64

READ 'l'OKEN 3

~EAD TOK1N 99

R'EAD TOKEN 9

4,:",,7l

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

j
'1
j
1
J

~
1
1
.i

I
j
d

J
" -!

.~
~

1
j
I
1

1
~
~
~

I -, ,
1
J
j

reduction 361
reduction 357
reduction 342
red uct ion 340
reduction 339

reduction 329
red UCt io~ 346

R'EAD TOKEN 10

M f [ECLARE ONE ARB AY (5) ;

Ct- DECLARE A TWO DIMENSIONAL ARBAY

--~------------------------~-------------------~--~----------------
READ TOK"N 103
READ TOKEN 131
READ TOKEN 64

reduct ion 358

READ TOKEN 3

red UCt ion 368

HEAD TCKEN 136

rediuct ion 424
red uct: ion 19

READ 'lOKEN 14

reduction 31
reduction 15
reduct.ion 1 1
reduct ien 9
reduction 4
reduction 391
reduction 369

READ TOKEN 99

reduct ion 425
red uct ion 19

READ TOKEN 9

red uct ion 31
reduction. 15
I:ed ucr. iou 11
reduction 9
red ucr. ion 4
reduct ien 391
reduction 363

4 72'
INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

..--"",.,~-.'--~.~~_ _-~~ .. ~--::-~_ - , -;.-0::;;.,:,;''':, _.;._.,> __ ,."< ~.:,.",~."'",..,.,~~
_'" .. __ ... _ ~. ___ " ." ,":_ :"~~'.:.'.l.~> :.....» .~~ _:: '>;"";:" I tivr,...,.. , .. ~_,~....;...._~: __ . ______ ; .. ____ 0 ... -. _____ • _. __ .. '"~ ._ • .-__ •••

"
r~

~
~ ,
~

~
l
j

j
'j

J
cJ

l
,1

t
J
,~

L·~ ~.
-,,-

I ' 1" '" ' '" -~ " -, , -,'---' -"--""',--,--.. ",--' --'-~~-""""~~ .. "7'--'"~ .. -"-~~--:-",.,.....,-,=

_ ~ ~~+$,~'li_~ L" 1f,.yq:It!,~;q;ii'f1l';l~ijt@IifP~yl}i ~!\ip'·!,/·~;<',:::.-~~-~~::.r~';;F·br;"'~~.\~~'!o:.-k-'·~:~fii<'"""'·,·~~';:';;;"tU"'''1'l'''}f'=!it~,,:.: -¥;"-~". ._--

l)

reduc"t ion 361
reduc"tion 357
reduction 342
reduction 340'
reduct ion 339

red uct ion 329
reduction 346

WEAD rOKEIf 1{)

MI DECLARE TWO ARR'AY (5, 5);

C, A NO ABGUHENT FUNCTION DECLAWATION

------.--~----------

redu(!;tion 291

reduction 304

red UCt ion 305
reduc,t ian, 316

reduction 386

reduc"tion ,382
reduction '376
reduct ion 319
reduction 313
reduction 301
reduction 298

RtEAD TOKEN 98

READ TOKEN 16

READ TOKEN 113

READ 'rOKEN 89

READ 'rOKEN 10

• ~11 FUNe:
, MJ FUNCTIOK SCALAR;

-----------'-----------------------------------:-.-------------_.

red uct ion 290

ced UC1: ion 424
redllct.,ion 19

R'EAD 'I'OKEN 88

READ TOKEN 136

4 ... 73

INTERMETRICS INCORPORATED' 701 COf'.!CORD AVENUE' CAMBRIDGE, MASSACHUSETIS 02138 • (617) 661-1840

I
I
~

;;:

1 « :';:
- j

~
:j
i
j
~
~

~ , ,
~"

,,1 .,
1

1
1
~ ,
$

" ,~
l

,i
1
1
'~

t .,

1
1
;'

~,

" '~" '''''' • ..;x''';=_~,,_,. _....mE

reduction 31
reduction 15
red uct ion 11
reduction 9
reduction 4
reduction 181
red uct. ioq 53
reduct ion 36

reduction 38
reductioij 292

reduct·ion 427

reductiou 289

reduction 39
red UCt ior~ 292

!rEAD TOKEN 10

RETURN 1;

R3AD TOKEN 65
[(EAD 'l'OKEN 90

B'ZAD TOKEN 10

~ 1 CLOSE FU14 Ci

C I. JUST A LABEL

. .
----------------------------------~------------~~------------

READ TOKEN JlB-
READ TOKiN 16 --.-.-

reduction 304

READ TOKEN 10

reduction 47
reduction 40
.red·uction 36

MI· LEL:
MI

reduction 38
reduct ion 292

CI A SIMPLE ARITHMETIC EXPRESSION

---~~------------.----

READ TOKEN 126

4~74

'l", .. '

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETIS 02138 • (617) 661-1840

... (~
~ --c

red'uct ion 222

READ TOKEN 19

re.duction 230
reduction 216
red UCl:. ion 193

READ TOKEN 126

reduct ion 24e
reduc~ ion 222

READ TOKEN 4

red UCT. ion 230
reduction 216
reduc~ ion 27
reductio,\ 15
reduct ion: 11
reduction 9
reducl:.ion 4

R'EAD TOKEN 136

reduction 424
red uct. ion 19

READ TOKEN 10
i

reduction 31
reduction 15
reduc:t:ion 11
reduction 9
reduct. ion '1
reduction 181
reduction .1.36
re.duction 41
reductiol~ 36

MI ;A .= A + 1 ;

reduct ion 38
reductioll 292

CI A ONE DI,l!ENSIONAL SUBSCRI<PT

_______ :...l--____ -l ____________ ~ ________ .. ________ . ___ ~-----__ ~_

READ TOKEN 126

reduction 222

READ TOK~N 7

4.,..75

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· OAMBRIDGE, MASSACHUSETTS 02138· (617)661-1840

i
!
I

reductioIl: 424
reduction: 228
red uct ipn 216
l:'eduction:193 .

red uc~ ion: 248
red.uc:tion 222

reduction 249

reduction 424
reduction 228
reduction 216
reduction 27

reduction 15
reductioIl 11
red ucr. ioq 9
reduction 4
reduct ion 181
reduction 136
reduct iOIl 41
red'u.ction 36

reduc"t:.ion 38
reduction 292

HI S. ONE = ONE
1 1

BEAD TOKEN 136

READ TOKEN 19
READ TOKEN 126

IfEAD TOKEN 7

B'EAD TOKEN 136

READ TOKEN 10

CI A TWO DIMENSIONAL SUBSCRI~T

___ ..-__ . _______ :... ____________ . .J ______________ ~ ____ :__ _____________ _

reduc"t:. ion 222

reduction 249

red uct ion 231
4.-76

BEAD TOKEN 126

READ TOKEN 7

READ TOKEN 3
READ TOKEN 136

REPRODUCillILITY Oli'Tn',
ORIGINAL PAGE IS POOR

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETrS 02138 • (617) 661-1840

r

/'Ii"

~~ ...

'-' .•. --"'-"'~--~'-~-'~-"'~--~--""""""-"'",",",,"",", ~"-"":";"';;;==" 'LC_,.....,..,...., .••.""".,.., ", ..."..,.,....-··1',........",.,,'· ... ~_i.,', '-. w'll~"'"

,'. ___ __~ " .• ~_~ •• ~"..:i."'I ... '~~\~~~ :!f,~.:,~ ~

reduct,ion 424
red uc:tion 19

reduction 31
reduction 15
reductio~ 11
reduct,ion 9
red uct. ,i on 4
reduction 243
reduct-ioll 238
reduction 237
reductioI) 235

reduction 425
reduction 19

reduction 31
reduction 15
reduct-ion 11
reduction 9
red·uct-ion 4
I:'ed uct ion 2q3
reduction 238
reduction 237
.reduction 226
reduct ion 216
reduction .193

reduction 248
reduction 222

reduction 249

reduction 231
reduction 424
reduction 19

reduction 31
reduction 15
reductioOQ ,11

READ TOKEN 14

{(lEAD TQKEN 99

il'EAD TOKEN 9

READ TOKEN 19
READ TOKEN 126

'READ TOKEN 7

READ TOKEN 3
H'EAD TOKEN 136

a'EAD TOKEN 14

4-77

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETIS 02138 • (617) 661-1840

"

....
.;1'>

r~---C~I~- C~~> >->~~-->-~-----------~- ~

1 f

l

red'lIcJ;}io_ .9
reduction 4
reduction 243
reduction 238
reduction 237
reduction 235

reduction 425
reduction 19

Deduction 31
reduc:t ion 15
reduct:. ion 1 1
reduction 9
reduction 4
reduction 243
reduction 238
reduction 237
reduction 226
reduction 216
reduction 27

rediuct;ion; 15
reduction 11
reduction 9
reduction 4
reduction 181
r.eduction ;136
reduction 41
Deduc.tion 36

reduction 38
reduction 292

BEAD TOKEN 99

RIEAD TOKEN 9

READ TOKEN 10

111 'rwo = TiO
S j 1,. t 1, 1

CI A SIMPLE gUALIFIED STRUCTURE REFERENCE

. T'·-"""'OC~ -
--,,- ·".-,1. -

'. J
----------------------------------~------- ----~_~ _______________ M

reduct:.ion 220

reduction 221

) 4~78

READ -rOKEN 13.5

HEAD TOKEN 1
READ TOKEN 135

READ TOKEN 19

r
~ INTERMETRICS INCORPORATED' 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

j
I
i
J
i

I
!

I
] ,

1

, I" ~"""~l"""""""'-'
"'t"- .~,-., ... ,,~ ,.~~~'" - >~' ~

-"- - -

reduc~ion 230
reductioQ 215 -~

reduction 194 :~

~
WEAD TOKEN 135 ,~

'J

reduction 2·48
red'Uc~ion 220

Rt:AD TOKEN 1
READ TOKEN 13.5

reduction 221

READ TOKEN 10

reduction 230
reduction 2t5
reduction 186
reduction 184
reduc~lon 136
reduction 41

I reduc~ion 36

EI + +
til U~. Q1 = QQ. Q1 ; 1

!

reduction 38
reduction 292

CI A SU BSCRIPT ED STRUCTURE R'EP'ER'EI~C E
.~ .

---------------------------~-------------------~---------~--
READ TOKEN 13.5

red uct ion 220

B'EAD TOKEN 1

reduction 249

READ TOKEN 136

reduction 424
reduction 228
reduction 215
reduction 194

~
J

J
'j

.,.

1
READ TOKEN 19
READ TOKEN 135 j

i
reduction 248
reduction 220

, RElD TOKEN 1 r' ...
t ... ·

4~79

1
~

"- I
. ~

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661~1840

~ r- ~ ... ~.. ~ ~ ... ~~. .~. ~- ~ .. ~-.-... ~ ~. -~-~
1
i
L

reduction 2L19

reduction 425
red uct ion 228
reduction 215
red uc't iOI} 186
reduction 184
red uct ioD,. ,136

reduction 41
reduction 36

reduction 38
red uc-,; iou 292

E· ~
lil
51

C I.

. -

READ TOKEN 99

READ TOKEN 10

..
Q COIJIES =

1

+
Q COPIES :

2

A SUBSCRIBXED MINOR STRUCTURE REFERENCE

---------------------------~-----------------------------------

reduction 220

reduct,ion 221

reduction 2L19

rE:d uct ion 424
reduc-,;ion 228
cE:duction 215
reduction: 194

reduction 248
reduction 220

READ TOKEN 135

READ TOKEN 1
READ TOKEN 135

R'EAD TOKEN 1

R tAD TOKEN 136

READ. TOKEN 19
READ TOKEN 135

R'EAD TOKEN 1
READ TOKEN 135

"

reductio~ 221 "<I. . .lo'

4~80

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

~ i ±

I
1

I
j

1

I
j

J
:1

i
i

r ':
l.,

reduct ion 2q9

reduct ion
reductian
~eduction
I:'eduction
reduct ion
reduction

4:25
228
215
186
184
136

reiuction q1
reduction 36

I:'eduction 38
reductipn 292

CI

READ TOKEN 1

READ TOKEN 99

READ TOKEN 10

+
.Q_CO.PIES. Q1 =

1

A BUILT-IN FUNCTION CALL

---------------------------~--------------~-------------------~
READ XOI<. EN 126

recruction 222

READ TOKEN 19

reduction 230
reduc.t ion 216
reduction 193

R'EAD TOKEN 130

reduct ion 2q8
~eduction 21

READ TOKEN 3
READ TOKEN 126

reduction 222

READ TOKEN 9

r~duc"t ion 230
red uct ion 216
reduction 27
red uct ion 15
reduct. ion 1 1

4~81

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

red UC.i: ion
re.duct ion
red uc.~ ion
red'uet ion
reduction
reduct.ion

reduction
reduction
reduc·t ion
r-educt.ion
reduction
reduction
reduction
ced'uction
reduction

ceduction
reduction

9
4
181
.19 t
177
28 .

31
15
1 1
9
4
181
136
41
36

38
292

READ TOKEN 10

rq A = SIN (;A) ;

CI DEFINE A TWO ARGGMENT FUNCTION

. . ---.. --.... ------------.------------.-----------------~---------

red uct ion 304

red uct ion ,J 05
red uct iOIl 316

reduct ion 325

re.d uction 326

reduction 324

reduct:. .ion 386

4 ... 82

H BAD TOKEN 98
R'EAD TOKEN 16

HEAD TOKEN 113

READ TOKEN 3

RIEAD TOKEN 131
R SAD TOKEN 14

READ TOKEN 131
R'EAD TOKEN 9

RIEAD TOKEN 89

BEAD TOKEN 10

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETIS 02138 • (617) 661-1840

E
k

I
!
t
I
!
I
g

t
li
~

" I
i
I lj

~
ri

I
~ ,!

~
~
"
~
lS
tl
Ui
i1
" ~
.~,

:~
~

~ 1'(
~

11 .~
" ., '.,1

tl
:l
.~

~
i
"~ ,
,~

1 i~
~
~

" 1 .,
~ ·i ~

~ 1 l.~

]

J
'1
1
~
;
5
~
l
j
.~

j
1

J
1
.~

I
!
1

I

rejuct ion 3:82
reduction 376
reduction 320
reduct.ion 313
red'uct ion 301
reduct ion 298

l'1, FUNC2:
MJ FUNCTION(ARG1, ARG2) SCALAR;

----~-----~-----~----------~--~-~------------------------~-

.reduct ion 3.86

redu<:;tion 382
re.duction 376
reduction 370
reduct.ion 362

reduC't ion -358
reduc't.ion 356
reduction 342
red uc tioll 344

READ TOKEN 103
ll'EAD TOKEN 89

KIEAD TOKEN 14

READ TOKEN 131·
READ TOKEN 14

M, DECLARE SCALAR,

. .
--------~--

reduction 358
reduction 356
red uct ion 3:43 .
reduction 341
re.duC'tion 339

reduction 329
r'eduction 345

reduction 291

reduction 222
4 83

rtEAD TOKEN 13'1
READ TOKEN 10

A RG 1, ARG2.;

READ TOKEN 88

READ TqKEN 126

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

r

reduction 230
reduction 216
reduction 27
red \lct ioij. .15
reduction 11
reduction 9
reduction 4

reduction 222

reduction 230
rE:duction 216
reduction 27
reduction 15
reduction 11
reduction 9
reduct iol). 7
reduction 181
reduction 53
reduct.ion 36

reduction 38
reduc1:ion 292

reduct ion 427

reduct ion 289

reduction 39
reduction 292

READ TOICElf "

.R'EAD TOKEN 126

READ TOKEN 10

MI., RETlfRN ARG1 + A~G2;

READ 'l'OKEN 65
READ TOKEN 98

READ TOKEN 10

MI CLOSE FUNC2;

CI CALL A TWO ARGUMEN'I. FUNCTION

------------------------------~-------------------------,
READ TOKEN 126

reduction 222

READ TOKEN 19

reduct iOA 230
4-84

r

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 021:38 • (617) 661-1840

J
.. ~

1 ,

j

I ,~
red uc<t. ion 216
reduction 193

reduction 248
reduction 21

rediuc'tion 222

reduction 230
reduct.ion 216
reduction 27
red,uct.ion 15
reduction 11
red uct.ion 9
reduction 4
reduction 181
reduction 191
reduction ,177

red UCt ion 222

red uct ien 230
reduction 216
reduction 27
red ucr. ion ,15
reduct ion 11
reduction 9
ceo uct ien 4
red uc t ion 1 81
reduction 191
red UCt iOIl 178
reduction 28

red uction 31
red uC't ion 15
reduction -11
reduction 9
,reduction 4
red uctioll 181
red<uct ion 1.36
L"ed uc-cioQ 41
reduction 36

4 85

READ TOKEN 130

READ TOKEN 3
READ TOKEN 126

RIEAD TOKE·N 126

READ TOKEN 9

R :!:AD TOKEN 10

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

,<

.~ ,

- t-~_---

-'--'-~l~""'~' -___ CH~.~-'-.~,_-~,.--' y~.~ -=-'~~--'~~~~"~'''''''4''

red uc'c ion 38
reduction 292

"I A = PUNC2(A, 1) ~

CI CALL A NO ARGUMENT FUNCTION

---~~---------~----------------------------------.

red uC't. ion 222

reduc't.lon 230
reduc't.ion 216
reduction 193

reduction 248
reduct i,on 222

reduction 230
red UC1: ion 211
reduct.ion 29
reduction 15
reduction 1,1
reduc't.ion 9
reduction 4
re~ uc't. ion 181
reduction 136
reduction 41
reduction 36

reduction 3H
reduc't.ioq 292

READ TOKEN 126

. READ TOKEN 19

READ TOKEN 141

READ TOKEN 10

MJ A = FUNC;

Ct CLOSE A PROGRAM

----------:..---'---------------------~-----------~

reduction 427

reduction 289

4!:'"86

READ !'OKEN 65
READ ',rOKEN98

READ TOKEN 10

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617)661~1840

HI CLOSE SIIPL!,

reduction 2

READ TOKEN 31

r ad uc.t j on1

i
"l
'i , 1 ,
I
J
1
l
"
1
i
3
j
j
1
,J

:~
~

1 ,
:l

,1: ,1
~
j

4-87

" ~$ I ~

~i'

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

l'

4.4.1 Global Variables Accessed by the Semantic Routines

ACCESS FLAG

ACCESS FOUND

ARRA Y SUB COUNT

ARRAYNESS STACK

AS PTR

ASSIGN ARG LIST

ASSIGN CONTEXT

ASSIGN TYPE

ATOM# FAULT

ATOM# LIM

ATTOMS

1
1

See symbol tab1e"-- SYT FLAGS.

See STREAM.

If the number of arguments in a % macro
does not match PCARG#(i), use ALT_PCARG#(i).

LITERALLY VAL P(PTR(MP» initialized to -1.
Reset to SUB COUNT - STRUCTURE SUB COUNT
on finding a -" : ", in a subscript.

See VAR ARRAYNESS.

See VAR ARRAYNESS.

True when processing %COPY to inhibit
lack group checking.

See CONTEXT in SCAN.

Specifies possible legal type transforma
tion.

11 10 9 8 7 6 5 4 3 2 1 0
a-nULL 0 0
I-bit 0 0
2-char 0 0
3-mat 0 0
4-vec 0 0
S-seq 0 0
6-int 0 0
7-borc 0 0
8-iors 0 0
9-event 0 '0
O-struc 0 1
I-any 0 1

See NEXT ATOM#.

See NEXT ATOM#.

See NEXT ATOM#.

4-88

0 0 a
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 I~ 0
1 1

0 0 a 0 a 0 0
0 0 0 0 0 1 0
1 1 0 0 1 0 1
0 0 ,0 1. 0 0 1
0 0 1 0 0 0 1
1 1 0 0 0 0 1
1 1 0 0 0 0 1
0 0 0 0 0 0 0
1 1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
1 1 1 1 1 1 0

'NTERM~TRICS INCQRPORATED· 701 CONCQRD AVENUE' CAMBRIDGE, MASSACHUSETIS 02138 • (617) 661-1840

~
<~·,~-_.',~':.,~"c.:~,,,,;"'-~~~m.:.,,,",,,-,,,, :O"'~~:<""~;Z:';"'L.r:,,:o.·,:,;.,~~.:_~:7·~;;~ii~7··:;i-"Wfr?*t1itx:f.ii·" ==.~.!'O'.MO_@f! .. ,,!!,l§.""" :-......... _ ... _""' _·, ·taMemu--.. _ ___ ~~""'""' . .:..>..~~

ATTR FOUND

ATTR LOC

ATTR MASK

ATTRIBUTES

BI ARG TYPE (bi_info)

BI FLAGS

BI FUNC FLAG

Is turned off after finding the first
<declaration> of'a <declaration list>.
It is turned on if SAVE TOKEN forces an
output writer call and after the second
<declaration>. It is used by SYNTHESIZE·
to make the output writer line up declara
tions properly.

Is set to point to the name (in the
statement stack) being declared unless
it is a template. declaration -- it is
reset by SAVE TOKEN if the statement stack
overflows forcing an output writer call.

See ATTRIBUTES.

This is SYT FLAGS kind of information
for an identifier being declared. When
an attribute is found it becomes illegC'!-l .
to specify that attribute again and .
conceivably several others (e.g. DOUBLE
outlaws DOUBLE and SINGLE). The illegal
attributes are accumulated in ATTR MASK.

Specifies the type of argument required.
Notice that anything that can be converted
to this type is acceptable; consequently,
ASSIGN TYPE(BI ARG TYPE) is the thing to
use in-tests. - -

1 1

if i/c =

if SQ=l,
if TR=l,

1 4

1, tnen function has special proces
sing in i/c context and number
selects the special processing.

argument must be square.
result has dimensions of transpose
of argument.

On when handling built-in function in
initial/constant context.

4-89

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

BI INFO

BI_XREF(loc)

BIT LENGTH

BLOCK_MODE (nest)

BLOCK_SYTREF(nest)

BUILDING TEMPLATE

CHAR LENGTH

CLASS

CLOSE BCD

CMPL MODE

8 8 16

If the function takes more than one argument,
pointer+l points to entry for second argu
ment, etc. BI INFO (0) is a copy of BI_INFO
(current funct10n).

For loc> 0, serves the same function for
built-in functions that XREF serves for
other names. BI XREF(O) is set true when
a cross reference is built.

Length of bit string specification being
processed.

Type of block at nesting level nest.

4 PROG MODE - program;
3 CMPL-MODE - compool;
5 TASK-MODE - task;
6 UPDATE MODE - update block;
2 FUNC MODE - function declaration;
1 PROC-MODE - procedure declaration;
7 INLINE MODE - inline function.

Symbol table pointer for name of block
at nesting level nest.

On when building template from a structure
statement.

Length of character string specification
being processe.d.

Identifier being declared is:

o - none of the below,
1 - procedure, program, task,
2 - function.

The name of the identifier to be removed
from the hash table.

See BLOCK MODE.

11 • "-'

t

REPRODUCIBlLtrY Olf TUB
ORIGrNAL PAGE IS POOR e

4-90

iNtERMETRICS INCORPORATED- 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

,
~
~

~
~
~
~
H
H ,
fl

I ~
" ~
~
u
" f.
}.:

I
il
~
J'.
\.

~
~:

~ tl ,1

I
~

1
~
1

1
'I
i

i ,
~

" . j

J
j

~

I·

' ' .~,.~-.-.~~ .. ~~-~.. . -~-"~'~~~~~-~.'~.~ •..•. ~ ... ~.=~=~~. --~_~n: ~~--~. ~~ ... --~~'l~ ~r-,
.' ."!" ,-:c:." C"'::'-'''-''''''~''-i'~<;~''''X£.!'''._'''''W!''''':~"'' ~~ I

CONTEXT

CUR IC BLK

CURRENT ARRAYNESS

CURRENT ATOM

CURRENT SCOPE

DEF BIT LENGTH

DEF CHAR LENGTH

DEF MAT LENGTH

DEF VEC LENGTH

DELAY CONTEXT CHECK

DO CHAIN

DO IN IT

DO INX

DO LEVEL

See SCAN.

See IC LINE.

See VAR ARRAYNESS.

See NEXT _ATOM# •

The name associated with the current block.

Defaul t values fO,r the length if the
declaration contains an illegal or un
specified value.

On when processing the arguments of a % macro
or NAME pseudo-function.

See DO LEVEL.

A flag indicating whether accumulated
initialization should be transformed to
HALMAT.

See DO LEVEL.

Since DO groups can be nested, the compiler
must maintain a stack for all "active"
DO groups. The stack is indexed by DO_~EVEL.

DO LOC is the flow number of the instruction
following the end of the DO group. DO LOC+l
is the flow number of the repeat point~
DO LOC{O) counts the number of DO groups
encountered after the DO stack overflowed
so that proper 'processing can be restored
at the right time.

DO INX = 0 DO;
1 for discrete DO FOR;
2 DO CASE;
3 DO WHILE/UNTIL.

DO CHAIN = symbol table pointer for first
temporary declared in the group. The rest
are linked by the SYT LINK field.

DO PARSE = Points to the parse stack position
immediately nelow the DO keyword.

4-91

"j

'i?l
i

,-..

.

i'
.f.
~

" ,.;,'.t
p
• .t ,.
"5
'J
~~

,;t

'"

1 -;
-l
j

A

.1

.I
1
:l
~

" ii
,~

, ,1

j
1

J

1
,,-!,,' I

'-i

1
~

1
1
1
i
1

i
j

j

11,~' ..
INTERMETRICS INCORPORATED· 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

~

) .
\ .

r
t

DO LOC

DO PARSE

EXT P

EXTERNAL

FACTOR FOUND

FACTORED IC FND

FACTORED_T~PE

FACTORING

FCN LV

FCN_MODE(fcn_1v)

"','.

See DO LEVEL.

See DO LEVEL.

See PTR TOP.

Set to 1 on finding definition of external
level and reset to proper mode (e.g. PROC MODE,

CMPL MODE) when the rest of the information
is acquired.

See FACTORING.

On if an initial/constant value was
encountered while FACTORING.

Any TYPE information accumulated while
FACTORING is copied here. Notice that
this has the same pseudo-array structure
as TYPE.

When processing a DECLARE statement, any-
thing found before an identifier is a factored

attribute. FACTORING is on until the identifier
is encountered. FACTOR FOUND is on if a
factored attribute is act:ua11y found.

The number of arguments encountered for
the function. -1 for declared but not yet
defined functions. -2 for non-HAL functions.

FCN MODE Value

0 symbol table pointer

1 bi-info pointer

2 shaper number

3 shaper number

4 bi-info pointer

Since function calls may be nested, a stack
is required to save partially examined func

tion calls. FCN LV is the stack pointer
it is 0 for procedures and I/O.

o - procedure, I/O, user function
1 - normal built-in function
2 - arith shaping function
3 - string shaping function
4 list function

4-92

INTERMETRtCS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

" ,.

, "

,;:
~'

:;,
.1

/

L - ."

I!

FIRST STMT

FIX DIM

FIXF

FIXL

Line number of first statement of block.

The size of the dimension just subscripted
(e.g. 3 AT 1 would yield FIX DIM = 3,

14 would yield FIX-DIM = 1,
4 TO 8 would yield FIX-DIM = 5).

Parser stack initialized to FIXING by parser.

for <statement>
<basic statement>
<any statement>
<other statement>

a pointer to the
previous label on the
same statement.

.Parser stack initialized to SYT INDEX by
parser and usually maintained as a symbol
table pointer.

- for <minor attribute> something to incorporate
into ATTR MASK.

- for <prec spec> something to incorporate
into ATTR MASK.

- for <double qual name head> the TYPE.

- for <repeat head> Ie LINE at the time of the
reduction.

- for <qual struct> symbol table pointer for
template.

for <# expression>

1 just a #
2 - # + <term>
3 - # - <term>

- for <subscript>:

"1" bi~ on for real subscript,
off for null subscript.

"2" bit on for user defined function,
off otherwise.

4"'93

INTERMETR1CS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETIS 02138 . (617) 661-1840

.,. ..~~
~~-,-""-·,·al_~--"-~~ __ --.i.- _____ . __ ::......".;_-,.,--;,,,, • ·...:.....~"L-~-.~.:h..·-'!->.::.t....:..-_-_-_~~~'!=_~:;..._:;,.ill.:::=_·AL •.• ~:._-=,,-~~. -;,.,._.:.... .. _~s..:,.:.=--.:.~:!.::z:oI'.:l;;""':.u.:~ ~ .. ~~.:.:..:::...: - it";;...···.- .~j.;i,;;,~I::..:...-irii;:,-F'··-~·"bi:::.~'~:.....l.~~,:.::c-_·· ... _ ... ,~

- i .

FIXV

- for <bit const head> the value of the
r:epeti tion factor ~.

for <FOR KEY> symbol table pointer in FOR
TEMPORARY, otherwise,O.

- for <while key> and <stopping>:
o for WHILE,
I for UNTIL.

- for <terminator> HALMAT CANC or TERM.

Parser stack initialized to VALUE by parser.

- for <struct stmt head> the current value
of level.

- for <minor attribute> something to incorporate
into ATTRIBUTES.

for <prec spec> something to incorporate into
ATTRIBUTES.

- for <doubly qual name head> the first
dimension of a matrix.

for <repeat head> the number of elements
affected.

for <prefix>:

o - dummy prefix.
I - real prefix (i.e. qualified structure

reference)

- for <qual struct> symbol tabel pointer for
major structure.

- for <for key> a pointer to the DFOR
instruction.

- for <iteration body> a pointer to the last
AFOR issued.

- for <terminator>:

TERMINATE "EOOO"
CANCEL "AOOO"

- for <file exp> the device number.

4-94

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

r

• .¥II. \'.

I·,
'",~

FL NO

FUNC MODE

HALMAT BLOCK

HALMAT FILE

Ie FILE

Ie FND

Ie FORM

Ie FOUND

Ie LEN

Ie LIM

IC LINE

Whenever the compiler wants to refer to
a point in the HALMA'!' it generates an
internal label called a flow number. When
the appropriate point in the HALMAT is
reached, the flow number is defined by an
LBL HALMAT: operator. FL NO is simply
incremented each time to-generate unique.
flow numbers. It is stacked in lots of
places (e.g. the DO stack).

See BLOCK MODE.

See NEXT_ATOM#.

See NEXT_ATOM#.

See IC LINE.

= TYPE(•••) on if an ilc has been found.

See IC LINE.

o no initialization pending.
1 - factored initialization pending.
3 - non-factored initialization pending.

See IC LINE.

See Ie LINE.

The ilc que is stored as the paged file,
IC FILE. The current page CUR IC BLK, resides
in-IC VAL which contains the lines
IC ORG < line number < IC LIM. IC MAX is the
largest-value attained by-CUR_IC_BLK.

IC FORM is the form of the ilc que entry.

IC FORM = I -.entry is an <arith exp> for a
repeat count

2 - entry is a constant for an ilc
value

3 - entry is made after all value
entries in a <repeated constant>
and is used to generate the ELRI.

When IC FORM (i) = 2,

IC_LEN(i) is the PSEUDO_FORM of the entry.

IC_TYPE(i) is the PSEUDO_TYPE of the entry.

IC VAL (i) is NUM ELEMENTS at the time the
entry was made •

4,..95

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

IC LOC

IC MAX

IC ORG

Ie PTR

IC PTRI

IC PTR2

IC TYPE

IC VAL

ICQ

ID LOC

ILL_ATTR(type)

IC_LOC(i) is a literal table pointer.

When IC FORM (i) = 1, - .
IC LEN (i) is number of values affected by
thIs repetition count.

IC VAL (i) is a nesting number used by Phase 2
to--check matching SLRI, ELRI operations.

IC_LOC(i) is the repeat count.

See IC LINE.

See IC LINE.

See IC LINE.

At the beginning of processing an i/c
"statement", an indirect stack entry
is created to describe the rest of the
list. IC_PTR points to that entry.

Value of IC PTR in factored case.

Value of IC PTR in non-factored case.

See IC LINE.

See IC LINE.

When doing initialization ICQ takes on
the value of I~ PTRI or IC PTR2 -- which
ever is appropriate.

Symbol table pointer for name being declared.

Is a SYT FLAGS style bit string of attributes
illegal for that type.

ILL_CLASS_ATTR(class) Is a SYT FLAGS style mask of attributes
illegal for that class.

Is a SYT FLAGS style mask of attributes
illegal for EQUATE.

4 ... 96

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 '

rI

~I

!
;

i

: "#'

ILL INIT ATTR

ILL LATCHED ATTR

ILL MINOR STRUC

ILL NAME ATTR

ILL TEMPL ATTR

ILL TEMPORARY ATTR

Same for initiaization.

Same for latched event.

A SYT FLAGS style mask for attributes
illegal for a minor structure node.

Same for NAME operation.

Same for templates.

Same for temporaries.

A SYT FLAGS style mask for attributes
illegal for a structure terminal node
with or without name attribute.

IMPLIED UPDATE LABEL Counts the number of unlabelled update
blocks. Used to generate unique labels for
those blocks.

IND LINK Points to the last subscript entry processed
by REDUCE_SUBSCRIPT.

INDENT INCR

INDENT LEVEL

INIT EMISSION

INLINE LABEL

INLINE LEVEL

INLINE NAME

INX

The indentation increment.

See Output Writer.

On if some initialization has been issued.

Incremented by 1 for each inline function
processed.

Incremented on entering inline function de
cremented on leaving it; consequently, it
should be 0 or 1.

The name of the inline function being
processed.

See PTR TOP.

4-97

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

1

i:: .. ·.· , .
. L

IODEV

LABEL COUNT

LAST POP#

LOC P

LOCK#

MAT LENGTH

MAX PTR TOP

MAX SCOPE#

MAXNEST

Indexing by device number (0-9) yields
the device's characteristics in the form
of an eight bit descriptor.

4 2 1842118

=='71~-r--~~--- input flag
DEVICE card output flag

found - print flag

bad DEVICE - . conflict flag
card device
found declared. but

unused

conflict - DEVICE Says print but READ or
READALL was found.

Total number of labels declared so far.

See NEXT ATOM#.

See PTR TOP.

The value of <constant> in the
LOCK «constant» declaration. "FF"
indicates the value was illegal.

dim 1 dim 2

8 8

where the current matrix declaration is for
dimensions dim 1, and dim 2.

See PTR TOP.

When entering a new scope, a new SCOPE#
must be generated. Since SCOPE# can decrease
when exiting a scope, MAX SCOPE# = maximum
value achieved by SCOPE# is required.

Maximum value of NEST.

4-98

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETIS 02138 • (617) 661-1840

j
'~ " 1

1
" ~

1 ,

]
1

i
.j ,

, ,J , ,
~

1
, ~

j

i
]

1

I
~
I
l

-- ~.

-..;:;'

MISC NAME FLAG

N DIM

NDECSY

NEST

NEXT SUB

NON HAL

NUM ELEMENTS

NUM STACKS

ON ERROR PTR

OUTER REF INDEX

OUTER REF PTR

PARM CONTEXT

PARMS PRESENT

PARMS WATCH

See symbol table -- SYT FLAGS.

The number of dimensions in a declared array.

See symbol tablo.

Every time a scope is entered, NEST is
incremented; every time a scope is exited,
NEST is decremented; thus, NEST is the
number of enclosing scopes.

The HALMAT is kept on a paged file, HALMAT FILE.
The current block, number HALMAT BLOCK, is
stored in ATOMS. NEXT ATOM# points to the
next available location in ATOMS; LAST POP#
is the NEXT ATOM# value for the last HALMAT
operator word. CURRENT ATOM is a word to be
inserted in the HALMAT rile. ATOM# FAULT
is used to control HALMAT OUT. If It is -1,
clear out the whole buffer; otherwise, out-
put that part of the buffer up to, but not
ihcluding, ATOM#_FAULT.

Pointer to the indirect stack entry for the
next subscript item to process.

The value of <level> in NONHAL«level>}.

Number of elements to set in an initial list.

Number of i/c que entries for an initial list.

See symbol table -- EXT ARRAY.

See OUTER REF in SCAN.

See OUTER REF in SCAN.

See CONTEXT in SCAN.

Number of formal parameters encountered.

Expecting formal parameters.

4 ... 99

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661~1840

1

1
~

1
j

1

I
"

1 .' " 1 ,
~

l.
,j
1 ,

l
1 -,

:;;
:,

f j '!:

,~
."~

3)

' .. ~

.~--~~=~-~~_&.-?~-~.-------~~--_&~.~~~.~-----.~~I--~·~rp.~·~·~E~' .. ~ .. ~~ ~ .. ~R~1~-~·~~
... -~':,~._"':-::_~-':'-:-~_~='-:C ~:!:"~::::...-~:;.::::-:_- :~"':'~:'.',,:::,:-:E-~-<;;:':]:;('.t0'lO'~'-~-' 1'I~ -rw,~~_~_, t _,~,,~,_~~~~

PCARG# (i)

PCARGBITS

PCARGOFF(i)

PCARGTYPE

The number of arguments expected for the
ith % macro.

Restrictions on % macro arguments.

ars legal

(unsubscripted)

--contiguous area

--constant legal

-to be assigned into

arrayness/compiness illegal

name copiness illegal

NAME context checking

funny storage illegal

A pointer (for the ith % macro) to the beginning
of the list of descriptors in PCARGBITS and
PCARGTYPE.

Legality indicators for % macro arguments.

structure

vector
scalar

integer

func.

4-100

struc
ture

char

matrix

vector

scalar

integer

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETIS 02138· (617) 661-1840

~ ~1
l.i . ,

·"'_ *4:" ¥k...........:a:: .. '" "=, .. ".0,"'''_,,,&,"". , 'K",. _'1~

"'±,---"'''_--"","-':"""=~"'"="'_,,'C"'_",:"'~·.,~,~"''''''.,._"., .. ·,'.""..~U "I .• ~\r~ ~~ ~I 'J

, '!

PCCOPY INDEX

PROCMARK

The index in pc ••• of %COPY.

Pointer to the first symbol table entry
for the current block.

PROCMARK_STACK(nest) The PROCMARK for the enclosing nesting
level.

PROG MODE See BLOCK MODE.

PROGRAM LkYOUT Contains the symbol table pointer for
the block name of the associated block.

PROGRAM LAYOUT INDEX Points to the last entry in PROGRAM LAYOUT.

PSEUDO FORM See PTR TOP.

PSEUDO LENGTH See PTR TOP.

PSEUDO TYPE See PTR TOP.

PTR See PTR TOP.

PTR TOP When the semantics of an item require more
space than is available in the parser's
direct stack, space is allocated in the
indirect stack and the parser's PTR stack entry
is set to point to the entry. PTR TOP points
to the top of the indirect stack and MAX PTR TOP
is the greatest value achieved by PTR_TOP. -

EXT P

INX

INDENT LEVEL before entering inline
function.

STMT NUM before entering inline
function.

VAL P masks are:

"1" item has arrayness
"2" item has copiness
"4" major structure
"8" array or component subscripting

"10" subscripting illegal for assign parameter
or name, i.e. subscript is not a
numeric index; character or bit compon
ent subscript; vector and matrix not
scalar; subscript not removing array
copies; name(?) ~ arrayed subscript;
subscript removed some but not all
copiness

4-101

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

i
.j
]
~

1
~

~

4
"

1

1 ,
l
I

I' •. '.~

"
j

1
~
1
1

1
1

'1
.1
;

I
'~

l

!
" -:.,~

r 4'JiI ''!'o/'''!'' K ,. 3f; 4 ,

"20" item contains subscripting
"40" item contains precision modifier
"80" item is SUBBIT(something)

"100" item is NAME (something) or NULL
"200" name attribute
"400" null
"800" name (?) nesting warning

"1000" leaf node is a template name
"2000" some but not all conditions for status

"10" have been found, be on the look
out

- for <init/const head> PSEUDO TYPE:

- for <repeat head>

- for <arith exp>

o no * in' declaration,
1 * in declaration.

LOC P = number of elements affected

VAL P = number of GVRs used

PSEUDO LENGTH = length of list including
- this item

PSEUDO FORM = 0

INX = value of IC LINE at the beginning
of the list

INX = number of elements specified in
repeat count.

Of form XLIT, LOC P = literal table
pointer.

- for values associated with IC PTR or ICQ
See <inft/const head> above.

- for <constant>, <bit constant>

- for < ..• var>:

or

.•. a literal table pointer.

PSEUDO TYPE = SYT TYPE of id

PSEUDO LENGTH = VAR LENGTH of id

{
PSEUDO FORM = SYT

LOC_P = symbol table pointer of id

{
PSEUDO FORM == XPT

LOC P = HALMAT pointer

EXT P = STACK PTR of id

INX = NEXT ATOM# value for first operand
of-TSUB is one was issued.

4-102

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE! CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

for <prefix>
or <qual struct>:

- for <subscript>
or <$>:

All of the entries for the qualifiers
are immediately above the entry for <prefix>.
INX10 means there is another entry. LOC P
of each such entry is a symbol table pointer
for the qualifier PSEUDO TYPE = MAJ STRUC,
EXT P = STACK PTR. - -

LOC P contains the value for numeric sub
script.

VAL_P, see ARRAY SUB COUNT.

PSEUDO_LENGTH, see STRUCTURE_SUB COUNT.

INX, see SUB COUNT.

- for <sub> and its constituents :

INX = 0
1
2
3

*
sub exp

TO
AT

type
type
type
type

LOC P = value if <sub> is a number,
VAC pointer if it is computed.

VAL P =0
I
2
3

no #
just a #
+ <term>
- <term>

The INX entr~ is transformed by
REDUCE SUBSCRIPT so that the low order bit
indicates partitioning down to a single
element, 4 indicates array subscripting 8
indicates structure subscripting.

PSEUDO LENGTH links together entries for
the parts (i.e. array, structure, •••) of
an entire subscript. PSEUDO LENGTH(O)
points to the beginning of the list.

- for <list expression>:
Same as <expression> except that INX =
<arith exp> in <list expression>s of the
form <arith exp> # <expression>.

4-103

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

J • 1

..~

- for <bit prim>:

- for <qualifier>:

INX = 0 not an event
1 event 'found with REFER LOC > 0
2 event found with REFER-LOC <=0

PSEUDO FORM = 1 SINGLE
2 DOUBLE

- for <bit qualifier>:

radix

PSEUDO LENGTH = 1 - BIN
2 - DEC
3 - OCT
4 - HEX

- for <while clause>:

- for <for list>:

INX, = 0 for WHILE
1 for UNTII.J

PTR = 0 discrete for
1 DO FOR TO
2 DO FOR TO BY

- for <any statement>:
PTR = 1 for <statement> and update block

o otherwise

- for <terminate list>:

EXT_P = length of list

_ for <label var> or REFER LOC

INX = bits mean

"1" AT
"2" IN
"3" ON ----------------------------
"4" priority specified

_:~: ______ Q~~~~Q~~~_~E~~!E!~~
"10" REPEAT
"20" REPEAT EVERY
:~Q: ________ g~E~~!_~~!~g-----
"40"
"80"
"CO"

UNTIL <arith exp>
WHILE <bit exp>
UNTIL <bitexp>

t

I

r
i

I

~l~~_',,"'d"_'~_"'''--''---',

for <read key> or <write key>:

INX = 0 - READ
1 - READ ALL

·2 - WRITE

for <block body>

QUALIFICATION

REF ID LOC

REFER LOC

REL OP

RIGID FLAG

SAVE SCOPE

SCOPE#

SCOPE#_STACK(nest)

SRN COUNT MARK

PTR = 0 - just declarations
1 - at least one statement

When reading a qualified structure name
(e.g. A,B,C) a separate call is made to
IDENTIFY for each name. QUALIFICATION
is reset each time that the symbol table
entry for a node name is found, so that
when searching for C, we find the Changing
from B which is hanging from A rather than
some other C. QUALIFICATION is zero when
not reading a qualified structure name.

When building a structure template, a pointer
to the symbol table entry for the root node.

For WAIT -- 1,
for SCHEDULE -- indirect stack pointer

for program or task.

The kind of <relational op> 0 - =, 1 - NOT=,
2 - <, 3 - >, 4 - <=, 4 - NOT >, 5 - >=,
5 - NOT <.

See symbol table -- SYT FLAGS.

The size of the ith dimension of the current
identifier being declared. -1 means *
arrayness.

The name associated with the current block.

Each naming scope requires a unique identifier
to resolve the problems of nested declarations.
This is SCOPE# and it is saved in SYT SCOPE
for each variable.

The SCOPE# associated with the enclosing
nest level.

Saves SRN COUNT (2) while processing inline
functions:-

4-105

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

,-:f

~ ,;;

~
:{
;~

1 : "

" { .. ,
,::

I !~
,i

; ~
t;)

:~

_e_e_,,, ... _:....-.-.. ___ . __ e ___ ._~ '...." ,,,"""',,, , .~, '~=:;:;::a:::::,!""e"""'5e,"""," "...,.,',.~ • ...,..;~"""':e~~ ~e~ ~.l"'""~~·~ :.~",....:c" '~ ·:'",....,e&.· "]-eI G""".,ii' • '.,..,,'-e

1

SRN MASK

STAB MARK

STAB STACK

STAB STACKTOP

STACK PTR

STARRED DIMS

STRUC DIM

STRUC PTR

STRUCTURE SUB COUNT

SUB COUNT

SUB SEEN

Saves SRN(2) while processing in1ine
functions.

Saves STAB STACKTOP while processing
in1ine functions.

Is a stack of information for generating
simulation information. STAB STACKTOP
points to the topmost entry.

label entry =

3

See STAB STACK.

See GRAMMAR FLAGS.

symbo~ tab1el
po~nter

13

Number of dimensions specifying * arrayness
in current declaration.

The copiness of a structure declaration.
-1 implies * copiness.

When processing a structure declaration,
this is a pointer to the symbol table
entry for the template of the structure.

LITERALLY PSEUDO LENGTH(PTR(MP» initialized
to -1. SUB COUNT is copied here on finding
a "i" in a subscript. If no structure sub
script is found before a ":" in the subscript,
it is reset to O.

LITERALLY INX(PTR(MP». The number of
<sub>s encountered in the entire subscript.

o no <sub> encountered,
1 <sub> encountered in current group,
2 - <sub> encountered in previous group but

not yet in current group.

4-106

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE. MASSACHUSETTS 02138 • (617) 661-1840

1

]

,1

I

I
1
~
1 e,
~ , ,

:,~

-1
"~

,.\

ee~]
:4·

;~ .~
~

}- ,]

j

t
t
1
"

:~I
,
J
~

, --,-...... --,,~ -.....--.~> ,-".-~~.~ ~~-",,~> ' -~' ... ""'''''',- ~--=" -'-""--~-":":--~-~->-~"''''''-:-~-'~P~ . __ • ____ ~-,.-.-•. - ... -.-

SUBSCRIPT LEVEL

SYT SCOPE

TASK MODE

TEMP3

TYPE

UPDATE BLOCK LEVEL

UPDATE MODE

VAL P

VAR

VAR_ARRAYNESS (i)

-, ... --~ ...

Zero for unsubscripted item, increased
by one Ior each level of subscripting.

See symtol table and SCOPE#.

See BLOCK MODE.

o - radix was DEC,
I - was BIN,
2 - radix was DEC, converted in

production 259,
3 - radix was OCT,
4 - radix was HEX.

TYPE (0) is the type just read from an
attribute list. Notice that TYPE(I) =
BIT LENGTH •••

Incremented on entering update block,
decremented on leaving. Since update
blocks may not be nested, it should
always be zero or one.

See BLOCK MODE.

See PTR TOP.

Initially the name associated with an element
on the parse stack. For blocks, it is replaced
by CURRENT SCOPE at the time the block is
entered. -

i = 0 - the number of subscripts possible.

I < i < VAR ARRAYNESS(O) - the maximum for
- the-i th subscript.

After all subscripts have been processed,
any residual arrayness is copied to
CURRENT ARRAYNESS. If CURRENT ARRAYNESS~O,
then the residual arrayness must match.

CURRENT ARRAYNESS must often be stacked
on ARRAYNESS STACK, (e.g. when evaluating a
function argUment) . This is done by
SAVE ARRAYNESS. The stacking is done
upsiae down. That is, stack-
CURRENT ADDRESS (CURRENT ARRAYNESS) ...
until finally, stack CURRENT ARRAYNESS(O)
on the top. AS PTR points to the topmost entry
in ARRAYNESS STACK.

4-107
INTERMETRICS INCORPORATED· 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETIS 02138 • (617) 661-1840

j

VEC LENGTH

XCDEF

XFDEF

XMDEF

XPDEC

XTDEF

XUDEF

Length for vector declaration being
processed.

Compoo1 indicator.

Function indicator.

Program indicator.

Procedure indicator.

Task indicator •.

Update block indicator.

4-108

:"4 S W MAr- - .
• ~~ .""",,,,,,,--~ ___ ~::t'!t....!'t.

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 66.1-1840

il
ij

I.'

-

1 .,'

i
I

j.
~i

r

-,
• c

4.4.2 <block stmt> and < •.• in1ine def>

~ As can be seen from the grammar fragment below, the
<block stmt> is the opening of the block. This is where
new scopes are entered, procedure, function, ••• , names are
defined, etc.

\-

1 <compilation> ::= <compile list> I
2 <compile list> ::=<b1ock definition>

39 <any statement> ::= <block definition>
289 <block definition> ::= <block stmt> <block body> <closing>

Although the inline functions appear in another part of
the garmmar, they are most naturally treated here.

This section deals with productions 293-328

293 <ARITH INLINE DEF> ::= FUNCTION <ARITH SPEC>:
294 FUNCTION;

295 <BIT INLINE DEF> ::= FUNCTION <BIT SPEC> ;

296 <CHAR INLINE DEF> ::= FUNCTION <CHAR SPEC> ;

297 <STRUC INLINE DEF> ::= FUNCTION <STRUC SPEC>

4-109

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

.- ,.,,""- ••••••• ~~-"~.-.,.._ •••• "~~_"l. ~~~,....;~_~~~.~' ~.-:-... .,.....·.-T~··~_. -; '-,-',-=-"""l_~~l 4'~"~'~~~"~~J~~'~
- . • _._' •. _?~.,_., . __ •. _,, __ ~t._.~._.~_", ___ .. v •• _~.~,~~: ~~L~~'~~'~ ,

298

29q <~LOCK ST~~ T~P> ::= <BLOCK STMT ~"P) lCC!SS
3rc· <EI.:1C;-: S'T':-'~ TOO) !<rr;I')
!~1 (PLOCK smMT HEA~)

302 <PLOCK C:;!'~T' II:'.'!. ') -=:XCLflSIVE
313 <BT.'lGK 5'!'!'!'!' HV\!» 'Rr-::'NrtUNT

10~ <LAOFI. !XT~R~~L) ::= (LAR~L n:?I"I'T'IO~>
306 I <1"Il~T. """DiI"'T'J'I> "X't'''':PN'L

3')7 (BLOCK S':'1'4'" H1:'.\1» ::= <1.1'ID-I ~J("''''-~! ',!.) PFOG~A)!

308 <L.\f1!:L '·''(''''''R~!hl.'> eCl1POOL
30Q <L~r."J. ~r""':::~T:'-:':!)'I> ':'A5!<
310 <LBEJ. !1EFINI"''£.O!D IJPn'j,'?
311 " I? r. ~':' -: .
: 1 2 '(1)IIN''':'['!0N NII11r-:>
313 <PII!lCTIJ!' ~B~T') <"'rJ~C S~~'t' BODY>
3,.. <p?()c~r'IIR:: NA 11'-:>
31~ <PROr.::l'll?:: H"'~> <P?oe s,:,;,'!' no!"Y>

~16 <PUN~!!CN Nl\~~> ::= <LABEL !X!PFUAL> "'U~CTION

317

311\
319
320

321
322
:23

325
326

327

328

<p~oc~ro?~ ~A~~) ::= <lA9EL ~X~~PN~L> PROC!DriRE

(PURe STMT BO~Y> ::= <PAqA~ET!R LIST>
<TY!?E sp:;e>
<F6~AM~T~~ LIST> <TypE SP'C>

<PRoe STMT Bony> ::= <PAPAMETER LIST>
QSS n;N LIS'!)
<PARAMETEr LIST) <ASSIGN LIST>

<PIR'~!!EF HEAQ) ::= (~
<PA~AMET1P H~AD> <ID!!~I?r~D> ,

<ASSIGN LIST> ::= <;.SSIG~> <PARII~t:;'1't:;R L'IS'!')

4 ... 110

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

1\

!

Productions 293-297

<arith inline def>

<bit inline def>
<char inline def>
<struc inline def>

· .-· .-
· .-· .-· .-· .-· .-· .-

FUNCTION <ar'ith s};lec>
FUNCTION;
FUNCTION <bit spec> ;
FUNCTION <char spec>;
FUNCTION <struc spec>;

Set TEMP to the size of the function result, 0 for
integer or scalar.

Build an indirect stack entry for the result. Save
the various simulation and SDL information until the inline
is finished.

Augment the name of the function with a unique number
and make a symbol table entry for it.

Issue an IDEF instruction. SAVE ARRAYNESS.

317.
Finish normal procedure processing by joining production

4-111

. INTERMETRICS INCORPORATED -701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

"~~-~"'Z""""-~~-- ""2!'-ii-!'~·~'''''!!QL~~l'''·''''~~=--·='-· ,WlJi,IIlJ$IJW· ''''-~~;;;:4¥ ~!ri ... ~~~-,~I ~~

"'I~""i':~':~:!"!~~""'~S'"T""'i""'-""''''''''>''''=''::="'."·"",,,,, ,~~c: =~~·".·.'·~C·'''.;~ .• ;,~''''"'~., .··,~,'~""'~:'i'.'~·.;C :.·.~.cc~=,~,"~~~.,~,,:.,~,,~ ... '~=- .•.. ~

Production 298 <block stmt> ::= <block stmt top>;

Clear out the listing buffers, t~rn off template genera
tion, set to indent the rest of the block, and emit a HALMAT
statement mark.

Production 299 <block stmt top> ::= <block stmt top> ACCESS

Set ACCESS FLAG for the block's name.

Production 300 <block strnt top> ::= <block stmt top> RIGID

Set RIGID FLAG for block's name.

Production 301 <block stmt top> ::= <block stmt head>

Nothing.

Production 302 <block stmt top> ::= <block stmt head> EXCLUSIVE

Set EXCLUSIVE FLAG for the block's name.

Production 303 <block stmt top> ::= <block stmt head> REENTRANT

Set REENTRANT FLAG for the block's name.

Production 304 <label definition> ::= <label>

Generate HALMAT to define the label.
and SYT LINK2 entries. Count the label.
requested, stack the label's symbol table
Set the LABEL FLAG in the label's GRAMMAR
cross reference entry.

Set up the SYT LINKl
If a simulation-was
entry via STAB LAB.
FLAGS entry. Make a

Production 305 <label external> ::= <label definition>

Do nothing.

4-112

i,
~
~

(

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETIS 02138 • (617) 661-1840 1

j

Production 306 <label external> ::= <label definition> EXTERNAL

Set external flag in SYT FLAGS. Temporarily turn off
acquisition of simulation information~

Production 307 <block stmt head> ::= <label external> PROGRAM

Set to no parameters. Insert PROG LABEL as SYT TYPE and
check for consistency using SET LABEL TYPE.

Most of the time, control will proceed to DUPLICATE BLOCK
(including from compools, tasks, and ,~pdate blocks) where

BLOCK MODE is usually zero. Here, we initialize for the new
block~ set up EXTERNALIZE and call EMIT EXTERNAL to start
template production. Finally, we join all other control flow
paths which can enter a new scope at NEW SCOPE in production
317.

Production 308 <block stmt head> ::= <label external> COMPOOL

Set for one parameter. Define SYT TYPE of the label via
SET LABEL TYPE. Join production 307.

Production 309 <block stmt head> .. -.. - <label definition> TASK

Define SYT TYPE of label via SET LABEL TYPE. Set LATCHED FLAG
for task name so it will behave like a latched event. Join
production 307.

Production 310 <block stmt head> ::= <label definition> UPDATE

Set for labeled update block and backspace over HALMAT
which defined the label. Unlabeled update blocks join here.
Define label to be normal statement label via SET LABEL TYPE.
Join all scope defining statements at NEW SCOPE.

Production 311 <block stmt head> ::= UPDATE

Generate a label and simulate an UPDATE statement with
that label. Join labelled update blocks.

4-113

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

I
!¥,

,I "

J
,~

:~
'~
~;

.S
:,~
i'l
"~ . ~
if:
"

'#
" ''; .,
;'0;;

:~ 1 ' ,
l

~ .~
.~

J j
~ ~
i

1

1 ~ ~
'i

1
:j
';,
I! 'z
;$
'/

;~ ! '" I);

J ~
,:11:

i , ,
1

.
1
j

f'

Production 312 <block stmt head> ::= <function name>

Check the type for legality and fill in scalar if not
specified. If it is numeric and the necessary attributes
have not been specified, fill in the default.

If the function was not defined earlier, SET SYT ENTRIES;
otherwise, check that this declaration agrees with the earlier
one.

Clear out the TYPE information, set FACTORING and clear
DO._INIT in preparation for handling the declaration part of
the function.

Production 313 <block stmt head> ::= <function name>
<function stmt body>

Same as production 312.

Production 314 <block stmt head> ::= <procedure name>

Turn off PARMS WATCH.
done in <procedure name>.

Everything else has already been

Production 315 <block stmt head> ::= <procedure name>
<procedure stmt body>

Everything has already been done.

Production 316 <function name> ::= <label external> FUNCTION

Set ID LOC to symbol table entry for label. Fill in symbol
table entry7 Join <procedure name> in production 317.

Production 317 <procedure name> ::= <label external> PROCEDURE

Define label as procedure using SET LABEL TYPE.
<function name> joins in here from production 316. Set for
no parameters seen, turn on PARMS WATCH and join up with
everything else at DUPLICATE BLOCK. Later, everything comes
back down here at NEW SCOPE.-

Clear the SYT LINKI entry and remove the name from
the SYT LINK2 list-of labels. Back up the HALMAT to eliminate
the label definition. Notice that this has already been done
for update blocks.

4-114

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

Issue HALMAT to define the label. <arith iriline def>
joins here from production 293. Initialize all the descriptors
for this new nest level (see data descriptions for their meanings)
and stack the old ones. If the block is an inline function;
save listing information, set up special listing format for
an inline and emit a HALMAT statement mask.

Production 318 - 323

Productions 313 and 315 require a <func stmt body> and
<proc stmt body> respectively. These items are purely
syntactic; however, there are semantics associated with their
constituents covered by productions 324 - 328 and 372 - 377.
The latter group handles the <type spec> on function declarations
arid is discussed in the section on declarations.

Production 324 <parameter list> ::= <parameter head> <identifier>

Count the last parameter.

Production 325 <parameter head>

Just get prepared for 326.

.. -.. -

Production 326 <parameter head> ::= <parameter head> <identifier>,

Count all the parameters except the last.

Production 327 <assign list> ::= <assign> <parameter list>

Nothing.

Production 328 <Assign> ::= ASSIGN

Reset the context properly.

4-115

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617)661-1840

fl.· ~ ..

!]

i
I

. ,
\
,!

ti
: I , ,
' .
. ' ,

1
;'\

4.4.3 <declare group>

As can be seen from the grammar fragment below,
the <declare group> is the declaration' s~ction of the
<block definition>. This is where all new variables for
the newly opened scope are defined.

1
2

39
289
290
291
292

<compilation> ::= <compile list> I
<compile list> ::= <block definition>
<any statement> ::= <block definition>
<block definition> ::= <block stmt><b1ock body> <closing>
<block body> ::=

\
<dec1are group>
<block body> <any statement>

This section deals with productions 329-425.

32q <DECtA~! !l~M7"r> ::= <~~C1An~ S~A~t~~N~>
:30 <~~PL~C~ S:M~> :
331 <ST?lJC'P'~~ 5TH!:>
332 :OlJA"':; :::X'::'::;!'~lH <!t'::n!1"!;:;E> '1'0 <VlI"'Ud3'L~>

333

334
:nc.

. '... -

::= FFPL1CE <B~PLACE HEAD> BY <TEXT>

.. - <Tl)~'l'1?I?P'!»
<!n!~~IFI~~> (<A~G 'LIST)

(!DfN'1'1"1-': Q)
<puG LI~~) , <T"~~~I~t~P>

4-116

INTERMETRICS INCORPORATED' 70'1 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 66t~1840

it
~

~";

·"'V"
,..:llt'

,?3fl

339

3'.~
341

;14 2
343

'411

3115
31~6

341

JIll'!
J4 q
350

351

352

3"53
354

355

356
.'351

358
359

36(}
361
362

3fl3
3511
36')
366
167

'3flc\
36q

37('1
371
37 2

373
1711
~..,C;

1"16
-;:77

-~- -~-.'-~~""'~'~~""'~""""""""~''''''''''''''!''''1'''''''''-'''''_~_'''''.'''''' (. •. -~Il!Ii. =:::::::!",",. """""", '1"'1" _,.,...,..,..' -u"""""'r--
"''''''''''':.'J._'C'.'''.'c~'~:··''' ." •..• -,.",,~ ,v.""1L-'-"'--_ ',., ~ •• ' . •• -'V"_~"'" ,.,,"...,,-_ •. -..,.~f.. . ,,,,,,,

"
(~rl4rn!?l~Y ST"T> ::,;, ,orr."r-Op.AnY (OF.CLA~E AOOY)

<~ECLAn~ STAT~M~NT> ::= DrCLAq~ (~£CLA~~ BODY)

<~rCLAn! B~~Y> ::= <r~Ct\~ATION LI~T>
t <~TTR!RUTr.S> , <Or.CLAP.ATICN LIST)

<n!CLAFA!lC~ ~IST> ::= (~~Ctft~~TTO~>
t <DCl ~!ST ,> (~!CLARATION>

<PCL LIS! ,> ::= <OFCLAqATtON LIS~> ,

(~!CLA?! GFOnp) ::= (~!CLAr! ~L~~rNT>
t (DECLAqE GPOUP> (nECLAR! EL!"!~T> ._--_ ... ---,--' .

<~TRnCTUR! 5T"T> ::= SiRnCTUR~ <STFUC~ ST~~ H~AD> <STRUCT STMT.TAIL)

<STRUCT ST~T H~Ar> ::= <tn~NTT~!!rj : <LfV!L)
<In~N~IFIBg> <MI~O~ ~TTR LIST> : <LEVEL>
<ST~UC! ST~! H~A~> (D~CLARATIO~> , <L~~!L>

(S'IR!1CT. ~PEC> :: = <STRtlCT "'E'4PLAT~> <STRUCT SP~C BODY)

(ST~qCT SPFC BODY> ::= - STF"CTUR~
<STRUCT SP!C HF.AO> <LITE~AL.!XP OR .))

<S'!'RIlCT ~p"c H'!A!'> ::= - S'::'PIIC'!'tJR!

<DECLARA'!'!C~> ::= <N~~! I~>
<NAME ID> <ATTRIEUTRS)

<N~~~ Tn> ::= <Ir!~TI:T!~>
t <IDF.NTIPIER> NA'E

<ATTR!BUT~S) ::= <ArF~Y SP~C> <TYPl & !IN~R AT,TR)
<APR Il Y SP~C>
<TYP~ f, ~INOP ATTP)

<Attny SP!C> ::= <.HF..!.Y HRAn> (LITERAL FXP OP .>
FU!!C'l'IO,{
fF.Cc:::rURE
PROGRA'i
TASK

<AFRAY HF~n> ::~ ARqAY (
<AHAY H:-At> (LI·'!'tRU ""Xl' OR *> ,

<TYP~ r. MINOE A~TP> ::= (TYPE SPPC)

<TVP'7 SPEC> .. -
e .• -

, <TVPP. SPEC> <MI~OP. ATTR LIST)
.. <M INO? AT"'? !, rs'l'>

<ST?tJC'!' SPP.C>
en!'!" C;!!~c>

<CHr,R ~~'::C>
<A~TTH 5?"C>
!V~NT

4-117

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

';i

r '

<AIT SFFC> ::: nCnt~A~
nJ~ (<tI~~r.~t ~X? OR *)

<C"A~ SPEC> ::= CHAnACT~R ((LtT~R~L !XP oa *)"

~q1 <~r~~H SP~C> ::: <?F~r. SP~C>
,Q2 <'>0. D{l Nli"I~>

303 <sO no tI~n> <[,R~C 'H'l~C>

~Rq <so no ~.'M~> ::= <T)Oll"ty QI, l\L !lJ\M~ Ul:t>. t> :<LITF~r..J. PoX? OP *> ,
38') !'ITEG"''l
3~6 SC~L~P
391 V~CTnR
3811 I! A'l' FTX

Jq9 <nOURLY onAL ~A~E HEAD) ::= v~rTOR (
3q~ , ~A~~IX (,<LITB~AL !XP OR .) ,

391 <lI'!'~FAL EXP Oil "'> ::= (APTTH !XP>
3q2 *
3q) <PE7C sp~c> ::= SINGL~,
394 t DOU8LE

39') <IHN·,)F A'!TP I.!S'!'> ::= <~I'I~~ l'!:'TPTBIJ':'''>
396 <~INOP ATTR LIST> <~INOB AT~R!BU~E>,

3q7 <!tNor A!T?IB"~~> ::= S~ATIC
]98 A~~O~ATIC

399 ~3NS3
1100 hLTG'ED
401 ACCF.SS
0')2 I !)CK (<LIT!,::lIl. ~X!? O!{" *>
4~3 ?~~OTF
4CQ FIGI!) ,
1105 <I'H'l'/CONST HElin> <RFoPEATED CONSTANT>
4C6 <T~I~/CONST H~~"> * ,
1J07 UTCIIF!O
11,) 8 WPIIIA L (<LE Yin>

4~q <INIm/CCNST H~A~> •• - TNITTAt (
410 CONSTANT (
1111 <INIT/CONST H~AP> <~3P~ATrD CONST~NT> ,

012
lin
O~f.I

415
1116

<REPEATED CONST\NT> <BXPR"'SSIOtl>
<r~o~A~ U"Ar> <VA~IA~L~>
<R~P~ftT H~A~> <cn~srAN~>

<~FS:'''fI P~'PE'''1' IIfrlO> <REI?:ATED CONSTANT>
<?~p1:'r,,:' Hr H»

417 <REPEAT HEAD) ::- <Anr~H EXP> •

U1Q <'PS~'F1) f;:?EA'!.' 'It:'.~'» ::= (~"!,;.'~m W'",F» (
1J1<;i I ('lvS':''::D ?FP·'.a,'I,' H":I1) <r:'i'.F.1>,-r::D CI)~STAN'!> ,

020 <CO~ST~NT> ::= <rD'r~q>
421 <co ..,pn'I'j" ~'I'i 6!-:':)
~22 (r!~ ~0~S~>

'~23 <CII'I:' CC:-lS"'>

<Nn~1~?) ::= <SIMPLE N"~BER>

(T.t:V"'L>

4-118

,.,
~

"' ..
INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • {617} 661-1840

;1
:1
r.;

'" :}!I
:~r

;~
" ,i!i
:~
.. ~
,~

.1
:~1
!
;j
l~

f. i t
, ~:" ! ' 1;
'('

j
I

l " .,? 1
{; J

',.'. A 'i
'<~

, ~
\~

Jl .~
.. ,.~

1 .. ~
,(.~

,~ J
',J: ~ J

I :}
:,~

1

I
i
I
1

I'

" :

, T~~"~"---~I-=-~~T-

" .• -" '. c - - ~ _ ••. .. ~~- _ .. - - ----.. -_.----, ---~----

As can be seen from productions 345 and 346, a
<declare group> is simply a list of <declare element>s~
thus, the interesting question is "what goes into a
<declare element>?"

As usual, the highest level productions do a little
bookkeeping.

Production 329 <declare element> ::= <declare statement>

Nothing.

Production 330 <declare element> ::= <replace statement>

Seve~al productions come here to clean up. Clear output
writer buffers and emit a statement mark.

Production 331 <declare element> ::= <structure statement>

Save the size and join 330.

Production 332 <declare element> ::= EQUATE EXTERNAL
<identifier> TO <variable>

The EQUATE EXTERNAL feature is inconsistent with the
rest of the language; therefore, the whole mechanism which
handles all the other declares is by-passed.

Set SYT PTR of <identifier> to point to the <variable>.
Check that the EQUATE is legal, generate HALMAT initialization
to perform the equate. Drop any accumulated arrayness. Pop
PTR TOP down to before the EQUATE statement.

Production 333 <replace stmt> ::= REPLACE <replace head> BY <text>

The <text> is already in MACRO TEXT. Just fill in the symbol
table entry for the replace name and drop any context.

Production 334 and 335

<replace head> ::= <identifier> I <identifier> «arg list»

Drop the context.

4 ... 119

l "

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

l
1

I
I
~
,!

1 :,.-.

C~"---··-·~r __ ~ __ ""·_r-~_~_· __ ·"·~~'~"'" ~".."..,...."., ''''''''''''''''M'' T"'w~'"", ~." t~"""l

Production 336 and 337 <arg list> ::= <identifier>
<arg list>,<identifier>

Count the argument and build and cross reference entry.

Production 338 <tempora.ry stmt> ::= TEMPORARY <declare body>

See production 339.

Production 339 <declare statement> ::= DECLARE <declare body>

This production basically cleans house.

Set to accumulate new factored attirubtes. Discard any
i/c information that was used up in <declare body>. Diddle
the output writer to make everything line up.

Production 340 and 341

<declare body> ::= <declaration list>
<attributes>, <declaration list>

Drop accumulated factored attributes.

Production 342 <declaration list> ::= <declaration>],
Adjust for output writer.

Production 343 <declaration list> ::= <decl list,> <declaration>

Nothing.

Production 344 <dcl list,> ::= <declaration list>,

Call output writer in parts to make things line up nicely.
Emit a statement mark if any initialization was done.

Production 345 and 346

<declare group> :: = <declare element>
<declare group> <declare element>

Nothing.

4-120

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

1

i~"-"l-""~-"--'~-~~~"~~"=~"~" ~-.~,,, ~''''''''~~''~-~''-'~~'_~" .. a. ,'., "-~,

~(""":""':'~'"~~'"'''''''''''''¥''':''''''' , "" ' -' _. ""'''''' .--.....,-
"'""" '"' "* ~~[____ 7 - ."

. ~" ,

Production 347

<structure stmt> .. -.. -

Set FACTORING.

STRUCTURE <structure stmt head>
<structure stmt tail>

Move FIXL and FIXV stacks down to simulate status in 350
and then join 350.

Production 348, 349

<struct stmt head> :: = <identifier> :'<level>
<identifier> <minor attr list>:<level>

Turn on BUII,DING TEMPLATE. Initialize for a new template.
Insert SYT CLASS and SYT TYPE for identifier. Clear out
TYPE array. Clear out output writer buffers. Join 350.

Production 350

<struct stmt head> ::= <struct stmt head> <declaration>,<level>

By this point the structure template has been initialized
in 348 or 349 and zero or more nodes have been accumulated by
recursive application of this production.

If DUPL FLAG is on, turn it. off and walk the structure
checking that the duplicate name is not in the same template.

If <level> is greater than the current one, then the node
being processed is a minor structure, not a leaf. Increment
the current level and check that the declaration of the minor
structure node contained nothing illegal for such a node (e.g.
it cannot have a type and it cannot have arrayness). Set the
SYT CLASS of the minor structure. Copy in ALDENSE and RIGID
attributes from the root node. UP9ate tne symbol table entry
via SET SYT ENTRIES. Stack the old containing node on the
indirect stack, set that the containing ni.)4t:~ is the node being
processed, set SYT LINK1 to point to the next symbol table
entry so that that-entry will be the first son.

If <level> is less than or equal to the current one then
we have just accumulated all the sons of a node. Fill in the
SYT LINK2 entry of all last sons as a negative pointer to the
father. Notice that several subtrees may be terminated so a
loop popping all entries off the indirect stack is necessary.
The entry just finished is a leaf so it must be a data entry -
check it like any other data declaration. Update symbol table
entry via SET SYT ENTRIES. If the new level number is greater
than zero, build a link from its left brother; otherwise, clear
out the template building variables. The latter condition is
achieved by finding the closing Hi", reducing to

4-121
lNTERMETRICS INQORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

r

<struct stmt tail>(35l), reducing to ~structure stmt>(347) and
jumping to STRUCT GOING UP.

Production 351 <struc stmt tail> ::= <declaration>

Nothing -- see 350.

Production 352

<struct spect> ::= <struct template> <struct spec body>

Set STRUC PTR to point to the symbol table entry of the
template, generate cross reference.

Production 353 <struc spec body> ::= -structure

Simple case is just syntactic; diddle the output writer.

Production 354

<struc spec body> ::= <struc spec head> <literal exp or *>

Check dimension and set STRUC DIM. Reset CONTEXT back
to DECLARE CONTEXT after handling <literal exp or *>.

Production 3.55 <struc spec head> ::= -STRUCTURE

This is here only to allow diddling the output writer.

4-122

~ . •
INTERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

. 7tX1IttrW

... ~

)

r
) ,

.-==.'

Productions 356 and 357 <declaration> ::= <name id>
<name id> <attributes>

By this time we have accumulated· an identifier and all of its attributes including i/c attributes. This is the place where all of the hanging flags actually get installed permanently.

Set that any any pending initialization should be issued.

CHECK CONFLICTS is called to check conflicts between factored and non-factored attributes. The factored ones are then copied to the non-factored to produce a complete description of the name. CHECK CONSISTENCY is called by CHECK CONFLICTS to check that the attributes are self consistent. ~

If the name is a formal parameter, decrement the number of expected parameters and check that the attributes are legal for a parameter. If it is not a parameter and we are looking for parameter declarations -- error.

If the name is an event, call CHECK EVENT CONFLICTS to check that the other attriubtes are consistent-with an event.

If the name is not NAME variable, then:

NONHAL must be either a procedure or. function and cannot be in a COMPOOL.

Functions cannot be declared in a COMPOOL.

The only CLASS I objects that can appear in a DECLARE are tasks. For tasks(we must be in the outermost nest of a program block.

If there was an illegal initialization attempted on a non-CLASS 0 name, issue error message and set to not perform initialization.

Only CLASS 0 variables can.be temporary.

Check consistency of attributes for TEMPORARY CLASS 0 variables.

If the name is a NAME variable, check that the other attributes are consistent with NAME.

If the name is a structure, call CHECK STRUC CONFLICTS:

If the name is not of variable class, it must be qualified with no copies.

4-123
INTERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

~
I

f' I
)
;

If we have an unqualified structure: it must have
a template in the current scope; there must not
already be an unqualified structure for the template;
the template must have no duplicate names; the template
must not reference any other structure.

If the template conta.ins a name variable then the
structure cannot be temporary and any other template
referencing the template must inherit the property
of containing a name variable.

The accumulated information about the variable is finally
inserted in the symbol table using SET SYT ENTRIES (described
separately). Notice that SET SYT ENTRIES In turn calls
HALMAT IN~T CONST to actually-emit HALMAT initialization for
the variable.

If the variable is TEMPORARY, then link it into the list
of temporaries for the current do nesting level and issue.

Production 358 <name id> ::= <identifier>

Set ID LOC to point to <identifier>.

Production 359 <name id> ::= <identifier> NAME

Set NAME IMPLIED and point ID LOC at <identifier>.

Productions 360 and 361

<attributes> ::= <array spec> <type & minor attributes>
I <array spec>

. .' ~ ,

Check that dimension specifications were legal and fall
into 362.

Production 362 <attributes> ::= <type & minor attributes>

Check the declaration for consistency via CHECK_CONSISTENCY.

If FACTORING is on then the attributes
attributes so copy them and set FACTOR FOUND.
for initial/constants.

4 124

are factored
Similarly,

· 1
--- ,,- •

J

INIERMETRICS INCORPORATED' 701 CONCORD AVENUE' OAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

. - A
irIIrI!!l!\lI!II!~II'ilIii1I!l1'1111-"""'--__ ~~~rllllillIii'iIIIi=. ~.".~~"~'..I....=._.~._-__ ~"_-:-' __ :-;:-;"''''~''=~4;"'''-..... '~~-;;;W_'i'W~'''"". ... er:i<ll· .. ;t1 ___ ''''_"':b&_.~_H""b,.""~"'· .. :t:!:"'!!:2!!i:i""'_''-· ___ ~_Oa __ ~~

... "-
I
-it ,.

·'"~-~-~'r-·~W~~~~-~.~. ,~~~~''''''''''",m,..,,,, . ..:'~=.w ... '~'~~""'1 g", ••• " .. _n,' _ •• "'I~

.,. -.. ,',.',,'."-,"'_~~ ... ,~. ,_,','« ,,,,.,,,,,~,,~ .. , .",.,:",:.,,:,,;,:,;:~ , __ . ..':: '" .,.;,.~I ,.'w"'.":. ~

Production 363 <array spec> ::= <array head> <literal exp or *»

Reset CONTEXT to DECLARE CONTEXT after <literal exp or *>
and fall into production 369.-

Production 364 <array spec> ::= FUNCTION

CLASS = 1.

Production 365, 366 or 367 <array spec>

Set TYPE and CLASS appropriately.

Production 368 <array head> ::= ARRAY

PROCEDURE
PROGRAM
TASK

Prepare to accumulate dimensions by zeroing existing values.
Set FIXL(SP) and FIXV(SP) to ARRAY FLAG for use in production
396. Join 396.

Production 369 <array head> ::= <array head> <literal exp or *>,

Save dimension in S ARRAY.

Production 370 and 371

<type & minor attr> ::= <type spec>
<type spec> <minor attr list>

Check for valid CLASS.

Production 372 <type & minor attr> ::= <minor attr list>

Nothing.

Production 373, 374, 375, 376, 377

Set TYPE if not already set.

4-125

<type spec> <struct spec>
<bit spec>
<char spec>
<arith spec>

EVENT

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 ·(617) 661-1840

:

;
::i

~,

:i
.,

' ,~

":1
"":!

I

I
! .,

,
~

:1

Production 378 <bit spec> ::= BOOLEAN

Simulate BIT(l).

Production 379 <bit spec> ::= BIT «literal exp or *»

Restore CONTEXT to DECLARE CONTEXT after <literal exp or *>.
Set TYPE to BIT TYPE and BIT_LENGTH to declared length.

Production 380 <char spec> ::= CHARACTER «literal exp or *»

See production 379.

Production 381 and 383 <arith spec> ::= <prec spec>
I <sq dq name> <prec spec>

Incorporate accumulated information into ATTR MASK and
ATTRIBUTES.

Production 384

<sq dq name> ::= <doubly qual name head> <literal exp or *>)

Restore CONTEXT to DECLARE CONTEXT after <literal exp or *>.
Set up VEC_LENGTH or MAT LENGTH~

Production 385, 386, 387, 388 <sq dq name> : : I
I
I

INTEGER
SCALAR
VECTOR
MATRIX

Set TYPE appropriately and initialize length to default
length.

Production 389 <doubly qual name head> ::= VECTOR (

Set up FIXL for production 384.

Production 390 <double qual name head> ::= MATRIX «literal exp or *>,

Set up FIXL and FIXV for production 384.

4-126

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

r

f
I'
I

- .-.~-.----~~._ .. __ ~-.=.~~_~~~c~'~~·~~""""'~_f~~· ''-:'''--::--" .. , .• @.'''., '1 '''" .' ... ---[

... ~. ~ ".",..--~-. .- .. -::"~_:_ ... ,: '-l(o.' _-._~"_~_~- _~:, _~ ""' __ -,':' __ ' '~~_ _ ~:---". ': :-~o:---~:- ._;- ":-,--::"-:::: .~---~ ::-;:--::,:::::;-::':::,-::---' ,~-.;:' - .~-:::;;..--::: :-~":-- _ -:,'::''':~: ',-:~- .. ,,_._. ~~_:_ '._ ~ '-., ___ ,_ _ __ ,__ _ . _ _ :!~~~_

Production 391 <literal exp or *> ::= <arith exp>

Drop any storage on the indirect stack accumulated by
<arith exp>. Drop any arrayness accumUlated. Put integer
value of <arith exp> in FIXV'. Notice that if the <arith exp>
was not a compile time constant, 0 is returned. Negative
constants will be detected elsewhere; however, -1 means "*"
so it is transformed to the equally illegal value O.

Production 392 <literal exp or *> ::= *

Set FIXV to -1.

Production 393 and 394 <prec spec> ::= SINGLE
DOUBLE

Set up FIXL and FIXV for 381.

Production 395 and 396

<minor attr list> ::= <minor attribute>
I <minor attr list> <minor attribute>

Accumulate attributes in ATTRIBUTE and illegal attributes
in ATTR MASK.

Production 397, 398, 399, 400, 401, 403, 404, 407

<minor attribute> : : T
I
I
I
I
I
I

See FIXL and FIXV for 396.

STATIC
AUTOMATIC
DENSE
ALIGNED
ACCESS
REMOTE
RIGID
LATCHED

Production 402 <minor attribute> ::= LOCK «literal exp or *»

Restore CONTEXT to DECLARE CONTEXT after <literal exp or *>.
Set LOCK# to the value of the literal expression and set up PIXL
and FIXV for 396.

4-127

INTERMETRICS INCORPORATED' 701 CONCORD ~VENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

j i

• ~~ ~ j

·r
, ~.

r
,
"

r

t , ,
,
" f , '
I

I
. I

·1

I

r t·
'~::-~~"7";;:;:-:::.z.=~'~"~'--~. ··T:--~"l-~-~l

Production 405, 406

<minor attribute> ::= <init/const head> <repeated constant>
<init/const head>*

Set that there is or is not an *. Drop BI FUNC FLAG.
Drop any implicit transposes. Restore CONTEXT to DECLARE CONTEXT.

Fill in final data in indirect stack entry which describes
i/c list. (The entry was built by 409). Save a pointer to this
entry, it is the key to the whole i/c list.

If all this happened while processing a template declaration,
throw out the whole thing since you cannot initialize a template.

Production 403 <minor attribute> ::= NONHAL «level»

Save'<level> in NONHAL. Set up FIXV and FIXL for 396.

Production 409 and 410 <init/const head> ::= INITIAL (
CONSTANT (

Set up FIXV and FIXL for 396. Set BI FUNC FLAG. Get and
initialize indirect stack entry which will-describe the i/c list.

Production 411

<init/const head> ::= <init/const head> <repeated constant>,

Everything done in <repeated constant> ::= .••

Production 412, 413, 414

<repeated constant> ::= <expression>
<repeat head> <variable>
<repeat head> <constant>

If initializing to the NAME of something, set bit in
PSEDUO TYPE and check that the usage of the NAME pseudo function
was legal in initialization context.

Drop any arrayness. Build an i/c que entry, count the
value as one more element affected, and count the i/c que entry.

If there was a repeat count, then build an i/c que entry
for the repeat count. Since FIXV «repeat head» is the value of
NUM ELEMENTS at the beginning, NUM ELEMENTS-FIXV ii3 the number of
elements affected by the repeat cOu.nt. MultiplyintJ that by the
value of the repeat count and adding FIXV back in again yields
the correct number of elements affected by the i/c list.

4-128
INTERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSAOHUSETTS 02138 • (617) 661-1840

~

1

J

.... -~

~~ Finally, everything is in the i/c que so pop the ~ indirect stack entries.

Production 415

<repeated constant> ::= <nested repeat head> <repeated constant»

Join middle of 414.

Production 416 <repeated constant> ::= <repeat head>

Accumulate the number of elements to be skipped and then discard the i/c que entry and indirect stack entries for the <repeat head>.

Production 417 <repeat head> ::= <arith exp> #

Drop any ctrrayness. Build INX and FIXV entries. Build i/c que entry.

Production 418, 419

<nested repeat head> ::= <repeat head> (I <nested repeat head> <repeated constant>,
"Everything is done by 414 and 417.

Production 420, 421 <constant> ::= <number>
<compound number>

Create and initialize an indirect stack entry.

Production 422, 423 <constant> ::= <bit const>
I- <char const>

All the work was ~~ne by 266 or 271.

Production 424, 425 <number>

Purely syntactic.

.. -.. -

4-129

<simple number>
<level>

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • f617) 661-1840

~"',
. ..:~ .:j

I
;~
.. ~

,.
~.!
; f:

I
~

1

1 . :1
'f

-i
I

SET SYT ENTRIES
ENTER DIMS

1047500
1043400

This routine is called to fill in information accumulated
about an identifier. The information is in various global
variables. ID LaC points to the symbol table entry.

Fill in type. Check for consistency and set LOCK FLAG.
Copy ATTRIBUTES to SYT FLAGS.
Check * size on character strings.
Enter dimension information via ENTER DIMS.
Check copyness for structures.
Make tasks and programs latched events.
Do any initialization.
Zero ,the TYPE array.

ENTER DIMS sets SYT ARRAY(ID LOC) to point to an EXT ARRAY
entry that-describes its-dimensions. A new EXT ARRAY entry is
produced only if an appropriate one does not already exist.

HALMAT IN IT CONST
HOW TO-INIT-ARGS
ICQ=ARRAYNESS_OUTPUT

1015200
1013200
1002000"

All initialization is initiated here.

If no initialization pending, just return.

If this is not a factored case, reset IC LINE to return the
i/c que space and reset PTR_TOP to return the-indirect stack space.

If initialization was cancelled due to an error, return.

Call HOW TO INIT ARGS to figure out relation between the
variables to be Initialized and the values found. The argument
is the number of values in the list. The value returned is:

o - there are fewer values than required

I - just initialize with a single value

2 number of values matches one element of an array
or one copy of a structure

3 - number of elements exactly matches number of values

4 - number of values greater than number of elements

4-130

I;

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

W i t~
8
ii

I
~
}A

~
k
it
~
fi
g
it
~
:~

~
~
l€ ",
\;t

~

1 ~"<

{i;
l'
,j

~
f
~

~1 ,',
t!
l~
"

;~
,:1
~,~
!;
it
F ,
" E
1,
:i
1':

Case 0

Is legal only if there is an * in the value list --
then ICQ_OUTPUT handles the element-by-element initialization'.

Case I

I.f there was an *, everything is simple -- just call
ICQ OUTPUT to initialize one element.· If there was not an
*, scan through the i/c que until a i/c value is reached. Now
issue HALMAT to do the initialization unless it is a constant
element and a constant value.

Case 2

Output initialization for one array element. If there
was no * in the value list call ICQ_ARRAYNESS_OUTPUT to
issue:

an ADLP or IDLP operator

one operand for each dimension of arrayness

a DLPE operator.

The ADLP or lDLP operator will be moved back by phase 1.5.

Case 3

Do elernent-by-element initialization using lCQ_OUTPUT.

Case 4

Same as 3, but issue error message first.

4-131

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138· (617) 661-1840.,

.. ~ ..•. c· ..••.... ".~'. c-••. ".c· •... ~.,- .. _ c~,"" .. " ___ ._ .•..•• ~.- __ • _____ ~, __ ,.c~ ... _.,_ .. ~ .. d_= '"'~ .. "~~_, __ .:,.·; ~_.·.""'c .. • c •••.. ~ ... £.~ c •• ,·.c .••.•.• ~~.~.~~==".k.".~=.:..~._~~.""'=-"".

r:

I"

ICQ_CHECK_TYPE -- 1003900

Check that the type of the i/c value (received in first
argument) is compatible with the type.of the element to be
initialized. Return HALMAT initialization operator of proper
type. If second argument is false, use SCALAR TYPE instead
of actual type of element to be initialized when computing
HALMAT operator.

-- 1007200

This routine handles element-by-element initialization.

If the item to be initialized is a structure, issue:

0 2 EXTN 0 0

sym pointer 0 SYT 0 1

temp pointer 0 SYT 0 1

0 1 STRI 0 0

HALMAT pointer 0 XPT 0 1

The field HALMAT pointer should have an arrow coming
out of it as shown in left margin.

If the item is simple, issue:

0 1 STRI 0 0

sym pointer 0 SYT 0 1

Having issued the initial list header code, we will now
traverse the list in the i/c que issuing HALMAT for each queued
value.

CT

K

CT tIT

Counts the values in the list.

Points to the current value.

Counts the number of successive initializations
into consecutive locations.

If IC FORM=2, this is a value to be used f not an indicator
of some kind. If the previous element was also IC_FORM=2, there
were fewer than 256 such, it was immediately before this one
in the initial list, and the value was immediately before this
one in the literal table, the short form can be used -- just
count in CT LIT. In the other case, we have to issue a sequence
of HP,.LMAT:

4 ... 132

"I~'-'"
.~. z.. >

t

"

X" ")Iv

INTfRMETRICS INCORPORATED· 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

~

1
l
l
j
I
,j

1
'l
j

j
"

1 ,!
,I

J
j
1

j
j
,~
"

j

1 ~~

~
, ,

~ ~ 'c
~

' .
. ".!

~
1

\ ~

: type 2 ?INIT 0 0

NUM+ELEMENTS 0 OFF' 0 1

literal pointer 0 form 0 1

where ? == B, C, M, V, S, I, or T depending on the type of
the item to be initialized.

If Ie FORM~2, then this is an administrative entry. First
go back and fill in the proper count in the second operand of
the initialization operator. If Ie FORM=l, this is a repeat
count -- issue the HALMAT: -

nest level 2 SLRI 0 0

repeat count 0 IMD 0 1

number of items
0 IMD 0 1 repeated

If Ie_FORM=3, this is the end of a repeated sequence, just issue:

nest level 0 ELRI 0 0

where the nest levels are check for consistency by phase 2.

When the list of values is exhausted, fill in the proper
count in the second argument of the last initialization operation
and then terminate the initialization with an ETRI.

4-133
INTERMETRICS INCORPORATED -701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

4.4.4 <variable>

This section deals with productions: 193 - 205 and
209 - 249.

193
194
195
196
197
198

<STRUCTURE VAR>
<BIT VAft)
<EVENT YAR>
<SUBBIT HEAD) (VARIABLE>
<CHAR VAR>
<NAME KEY> (<NAME VAR>)

199 <NAK! V1R) ::= <VARIABLE>
200 (LABEL VAR>
201 <MODIFIED ARITH FUNe>
202 <~ODIFIED BIT FUNC>
203 <r.ODIFIED CHAR FUNC>
204 <MODIFIED STRUCT PUNC>

205 <NAK! EIP> ::= <NA"E KEY> (<NA"E VAR>

209 <LABEL VAR>,::= <PREFIX> <LABEL> (SDBSCRIPT)

210 <"ODIFIED ARITH FUNC> ::= (PREfIX> <NO AFG ARITH FUNC> (SUBSCRIPT>

211 <MODIFIED BIT FUNC> ::= <PREFIX> <NO ARG BIT FUNC> <SUBSCRIPT>

212 <MODIFIED CHAR FUNC> ::~ <PREFIX> <NO ARG CHAR FUNC> <SUBSCRIPT>

213 <~ODIFIEO STRQCT FUNC> ::= <PREFIX> <NO ARG STRUCT PUNC> <SUBSCRIPT)

21q <STRUCTURE VAR> ::= <QUAL STBUCT> <SUBSCRIPT>

215 <ARITD VAH> ::= (PREFIX> <ARITD 10) <SUBSCRIPT>

216 (CHAR YAR> ::= <PREFIX> <CHAR 10> <SUBSCRIPT>

217 (BIT VAR> ::= <PREFIX> <BIT 10> <SUBSCRIPT>

218 <EVENT YAH> ::: <PREFIX> <EVENT 10> <SUBSCRIPT>

219 <OUAL STRUCT> ::- <STRUCTURE 10>
220 I <QUAL STRUCT) • (STBUCTUR! 1D>

221 <PREFIX>::=
222 I (QUAL STRUCT> •

223 ,(SUBBIT HEAD> ::= (SOBBIT KEY> <SUBSCB1PT> (

224 (SUBBIT KEY) ::- snBSIT

225
226
227
228
229

230
231
232
233
234

<SUBSCBt~T> ::= <SUB HEAD>)
<QnUUIER)
<$> <NU~BER>
<$> <ARITH VAR>

<SUB START> ::= <$> (
<$> (~ <PREe SPEC) ,
<SU8 READ> ;
<SUB HEAD) :
<SUB HEAD> ,

4-134

R~RODUCIB1L1TY OF Tttm
'PlUGmAL P AGJ1 1S POOR

IN1ERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

1
~

:

1 >"
;~
"

1
.¥
'i
,j
,~. .

l'

J
,.

fe, ..
i
L

235 <SUB HEAD) ::C <SUB START)

• 236 I (SUB STAU> <SUB>

237 <SOB> ::- <5UB ElI'>
238 •
239 (SUB RUN HEAD) (SOa EXP)

240 (ARITH ElI'> AT <SOB EIP>

241 <SOB RUN HElD) ::a <SUB ElI') TO

21&2 <SUB ElI') ::~ <A~ITH EXP>
243 I <t EXPRESSION>

244 <. EXPRESSION> ::= ,
245 1<1 ElC PRBSS ION) + <TER!!>
246 I <. EXPRESSION> - <TERI!) I
247 (=1> ::'" '"

248 <$> :::a $

249 (AND> ::= &

1

1
1
~

4-135

INTERMETRICS INCORPORATED ·701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

"1-'" -" "--"--.------"---".-."--.-- -~---~----~-----~---",..,..,....

--,. "-.--<"--.-.~~:'::::...::..:'~"::~:::- ::'::;:.:::::.::.:~".--=-"- -.- .--~.-~ " .•.• --.:: "-"

----.........

Production 193, 194, 195, 198 <variable> ::= <arith var>
<structure var>
<bit var>
<char var>

If possible, check that the <variable> is legal in
an assign context and make a cross reference table entry
all via CHECK ASSIGN CONTEXT.

Production 196 <variable> ::= <event var>

Make it look like a <bit var> of length 1.

Production 197 <variable> ::= <subbit head> <variable»

Check against nested SUBBITs in an assignment context.
Close out the SUBBIT via END SUBBIT FCN. Set SUBBIT bit
in VAL P.

Production 199 <variable> ::= <name key> «name var»

Call CHECK NAMING to check that the argument of NAME was
legal, generate cross references and CHECK ASSIGN CONTEXT. It
also builds the indirect and direct stack entries-for <variable>
by copying the information from <name var>.

Production 200 <name var> ::= <variable>

Cannot have NAME(NAME(•••)) or NAME(SUBBIT(•••)). Set
TEMP_SYN accordingly for CHECK NAMING.

Production 201 <name var> ::= <label var>

Only tasks or programs allowed. Set TEMP SYN for
CHECK NAMING.

Production 202, 203, 204, 205 <name var> ::= <modified arith func>
<modified bit func>
<modified char func>
<modified struct func>

Set TEMP SYN for CHECK NAMING.

4-136

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

Production 209 <name key> .. -.. -
Set various context flags.

NAME

Production 210, 211, 212, 213, 214

<label var> ::= <prefix> <label> <subscript>
<modified arith func> ::= <prefix> <no arg arith func> <subscript>
<modified bit func> ::= <prefix> <no arg bit func> <subscript>
<modified char func ::= <prefix> <no arg char func> <subscript>
<modified struc func .::= <prefix> <no arg struct func> <subscript>

For non-built-in functions, fall into production 216.

For built-in functions there cannot be any subscripting. Set
up TEMP SYN for CHECK NAMING. Copy the FIXL and VAR fields from
the function to the modified function. Pop the indirect stack
down to the modified function.

Production 215 <structure var> ::= <qual struct> <subscript>

Jump into production 216.

Production 216, 217, 218, 219

<arith var> ::= <prefix> <arith id> <subscript>
<char var> ::= <prefix> <char id> <subscript>
<bit var> ::= <prefix> <bit id> <subscript>
<event var> ::= <prefix> <event id> <subscript>

HI points to the indirect stack entry for the <prefix>.
This will become the indirect stack entry for the < ••• var>.

If the <prefix> was
STACK PTR and VAR entries
<prefIx>, append the rest
the output writer.

empty, copy the symbol table pointer,
from the ide If there was a real
of the name to the prefix and diddle

ATTACH SUBSCRIPT is described immediately after this produc
tion. If we have structure subscripting issue the TSUB now.

maj struc
sym-pointer for structure

1
o

TSUB
form

o
o

o
1

Emit the rest of the subscripting information via EMIT SUBSCRIPT
and then repair the number of operands field in the TSUB. Change
the < ••• var> into a VAC pointing to the TSUB.

4-137

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

i·

Pop the indirect stack.

If we have a qualified structure, issue an EXTN operator
followed by one operand for each level of qualification. Fill
in the VAL P entry for the qualified structure and fill in
accumulated information into the EXTN operator.

At this point H2 = {points to,EXTN operator is issed
-1 otherwl.se

If there is a chain of subscripts hanging, issue a DSUB
to take care of them; issue the subsc+ipts via EMIT SUBSCRIPT,
fill in the proper number of a.rguments in the DSUB, -indicate
that the whole subscripted item is a VAC.

.. , hri $; X17Z5Q
.~ "!

_. -~!iit __ ;'J9I~~"_E~

1
[1
~

r< '}-,
i

,-~,j,t

ATTACH SUBSCRIPT

ATTACH SUBSCRIPT
GET ARRAYNESS
ATTACH SUB STRUCTURE
ATTACH-SUB-ARRAY
ATTACH-[3UB -COMPONENT
MATCH ARRAYNESS
SLIP SUBSCRIP'I'
AST STACKER
REDUCE SUBSCRIPT
CHECK SUBSCRIPT
EMIT SUBSCRIPT

When this routine is entered:

INX«subscript>} = SUB COUNT
VAL P«subscript>} = ARRAY SUB COUNT
PSEUDO_LE~GTH«subscript»-= STRUCTURE_SUB_COUNT

PSEUDO LENGTH«prefix» = VAR LENGTH(id}
PSEUDO-TYPE «prefix» = SYT TYPE«id>}
FIXL«prefix>} = symbol table pointer of id

955700
871100
953100
949300
942800
887800
941900
940400
932600
922700
962300

GET ARRAYNESS sets up the VAR ARRAYNESS array and fills
in arrayness, copiness and NAME bits in VAL_Po

In general, there will have been some subscripting so
INX(INX} is usually positive. PTR«subscript>} points to a
descriptor of the entire subscript. Stacked immediately
above this descriptor on the indirect stack is one entry for
each sub, number, etc. NEXT SUB will be incremented as parts
of the subscript are handled so that it always points at the
current part under examination.

If there was a structure subscript terminated by a ,,;n,
check it for validity via ATTACH SUB STRUCTURE. If there
was an array subscript terminated by-a n:n, check it for
validity via ATTACH_SUB_ARRAY.

If the item can have component subscripting: call
ATTACH SUB STRUCTURE and ATTACH SUB ARRAY to simulate n*"
subscrIpting. Then process the-component subscript via
ATTACH SUB COMPONENT.

~'Otherwisee if the item has arrayness and did not
have a n:n demarked array subscript, simulate
an n*n structure subscript and process the remaining
subscript as an array subscript. .

4-139

INTfRMf:TRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

1 ;' .

1

,ti

--.-----~-----~

,m" 'T_>;~~l~

l.. 1

Otherwise, if the item has copiness and did not
have a "i" demarked structure subscript, process the remaining subscript as a structure subscript.

Finally, call MATCH ARRAYNESS to check that the residual arrayness matches the rest of the statement's residual arrayness and return false if the item before subscripting had no copiness, true, otherwise. .

ATTACH SUB STRUCTURE and ATTACH SUB ARRAY handle structure and array subscripts respectively. They check that the number of subscripts is legal and then call AST STACKER to simulate an ,,*n subscript or REDUCE SUBSCRIPT for-real subscripts. If too many subscripts are specified, SLIP SUBSCRIPTS advances NEXT SUB over them.

REDUC'E SUBSCRIPT receives three arguments:

MODE

SIZE = the size of the dimension being processed.

FLAG = indicator for level of checking required on
TO and AT partitions:

o - normal
1 - even zero length permitted
2 - must be greater than one

In addition, NEXT SUB is pointed at the subscript entry just processed. -The aim of the routine is to check the validity of the subscript, generate correct forms, types, etc., for the subscript and generate HALMAT for scalar/integer and #I expression calculations.

For an n*" subscript, just set FIX DIM to the size of the dimension being processed.

For a simple index, CHECK_SUBSCRIPT, FIX DIM=l.

For Tl TO T2 CHECK_SUBSCRIPT for Tl and T2 and make
sure partition is of an acceptable size.

For Tl AT T2 a simplified version of TO.

Other important effects of REDUCE SUBSCRIPT are the setting of IND LINK to the last subscript processed and the linking of all entries for a given subscript via their PSEUDO LENGTH fields.

4-140

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE. MASSACHUSETTS 02138 • (617) 661-1840

I
I
! I ,
I J
i

I
~
~
¥
if
li
H J
I' g
}!
!l
fi I Ii ,1
it ,!

1 Ii
~)<

I'
I' it

1
Ii (t

It L

Ij
I,
\\

n .~
i,'~ 1

!i ~
ii

1
1i

11
I'

" U q
):

U 1 .,
~ ; J p

~ H .1 H '.'.j II

1
; ~

" ij
U "

1
1 ~ '! .,

I !~
~ ~

~
i ., . ,

d
1

I
I

:1

..... . ..
~~~ 



1-
~'t.-'hr"! -"M!" .......... i'''*$pI.,...~iP' iCi!'='! .... ¥ -""'- ..... ~ .... 

CHECK SUBSCRIPT fills in the proper PSEUDO FORM and 
PSEUDO TYPE for an entry. If runtime arithmetic is needed 
for #I-expression or scalar to integer conversions the 
HALMAT is generated here. 

ATTACH SUB COMPONENT handles component subscripting 
for character and bit strings, vectors and matrices. It 
basically does a REDUCE SUBSCRIPT, fills in the proper 
bits in VAL P and checks for proper number of subscripts. 

4-141 

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-.1840 



;: .~. [. ',~~ ... ~~'~=.~~: .. = . - . . .. -'--':~:·~.=·:·~~·~~'':-~· .. ~C~:~~-·~d.~~l· "l 
l 

Production 220 <qual struct> ::= <structure id> 

Build an indirect stack entry for <qual struct> and 
fill in FIXL and FIXV. 

Production 221 <qual struct> ::= <qual struct> <structure id> 

Build an indirect stack entry for the qualifier. This is 
right on top of the previous entry so it needs no pointer to 
be accessed. 

Diddle the output writer. 

Production .222 <prf!fix> ::= <empty> 

Build a dum;;:-.y indirect stack entry. 

Production 223 <prefix> ::= <qual struct>. 

Diddle the output writer. Inherit all stack entries 
from <qual struct>. 

Production 224 <subbit head> ::= <subbit key> <subscript> ( 

Copy indirect stack entry from <subscript> to subbit head • 

If the <subscript> was non-empty, then check that there 
is exactly one component subscript. 

Production 225 <subbit key> ::= SUBBIT 

Set up for pretty output. 

Production 226 <subscript> ::= <sub head» 

The <sub head> cannot be an empty subscript. Descrement 
SUBSCRIPT LEVEL. 

4-142 

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 

" <£ itz 

; 
j: ! 

I 
I 

1 
1 

1 
I 



I 
l. 

Production 227 <subscript> .. -.. - <qualifier> 

Zero all the counts. Notice that STRUCTURE SUB COUNT 
and ARRAY SUB COUNT are normally initialized to -1 not zero and 
that tests for negative are made in several places. 

Production 228 <subscript> ::= <$> <number> 

Build an indirect stack entry for subscript. Fill 
in form and type of stack entry for number. 

Production 229 joins here. 

Fill in INX and VAL P entries for <number> or <arith var>. 
Initialize the subscript-counters (n.b. these are all LITERALLYs). 
Decrement 'SUBSCRIPT LEVEL. 

Production 229 <subscript> ::= <$> <arith var> 

Guarantee that the <arith var> is either an integer or a 
scalar via IORS, generate a cross reference, and join 228. 

Production 230 <subscript> ::= <empty> 

Set FIXL to indicate that this is a dummy and join 
production 249. , 

Production 231 <substart> ::= <$> ( 

Initialize counters which describe number of various kinds 
of subscripts. 

Production 232 <substart> ::= <$>(~ <prec spec> , 

Copy the precision into PSEUDO_FORM«substar:t» and 
join 231. 

4-143 

INTERMETRICS INCORPORATED· 701 CONOORD AVE:NUE • CAMBRIDGE, MASSACHUSETIS 02138 • (617) 661-1840 

:j 

1 

, j 
.1 
j 

1 
j 
~ 

1 
1 
j .. , 
j 
1 
i 

-! 
i 

" I .. 
1 
1 ., 

j 

I 
I 

, ~ 
~ 



Production 233 <sub start> ::= <sub head>; 

There has to be a <sub> preceding the 
must not have been a preceding ";". 

II • II , 

Production 234 <sub start> ::= <sub head>: 

and there 

There has to be a <sub> preceding the ":" and there must 
not have been a preceding ":". 

Production 235 <sub start> ::= <sub ~ead>, 

There has to be a <sub> preceding the ",H. 

Production 236 <sub head> ::= <sub start> 

Reset SUB SEEN so that checks on SUB SEEN will show false 
but it still indicates the whole listing~ 

Production 237 <sub head> ::= <sub start> <sub> 

Count the <sub>. 

Production 238 <Gub> ::= <sub exp> 

Set INX to indicate <sub exp> type <sub>. 

Production 239 <sub> ::= * 

Build an indirect stack entry for <sub>. 

Production 240 <sub> ::= <sub run head> <sub exp> 

Set INX to indicate that <sub run head> and <sub exp> are 
parts of TO <sub>. 

Production 241 <sub> ::= <arith exp> AT <sub exp> 

Check that <arith exp> is an integer or a scalar. Set INX 
to indicate that <arith exp> and <sub exp> are parts of an 
AT<sub>. Copy PTR«sub exp>} down one space in the stack so that 
the two top stack elements will point at the two <sub> constituents. 

4-144 
INT~RMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661~1840 

~ .. 
, '.' ',." ,.' , __ ." .,,:,,=-_=, .::::...:.:~===:::=:::====~====-.:,_~::::::"".==_. ,:,;""" , ___ , __ , .. _7" .. ,,:'7:',.0.,; .. ,...,.......-_ ...... """"""""""''''''''"'z ........... ~=,~ ,,'=~~ ... ~'" _",~',:':" .". !';···.·.;-"';';;;·i::.....~ ___ .~~_. ''-''-_-'-... -''_-. _-,-,.-._~"_. __ ,, 



r 

Production 242 <sub run head> ::= <sub exp> TO 

Nothing. 

Production 243 <sub exp> ::= <arith exp> 

Check that expression is integer or scalar. 

Production 244 <sub exp> ::= <# expression> 

If <# expression> = #, generate an indirect stack entry. 

Production 245 <# expression> ::= # 

Set FIXL to indicate only a #. 

Production 246, 247 <# expression> ::= <# expression> + <term> 
<# expression> - <term> 

If <# expression> is just a sharp, set FIXL to indicate + or -; otherwise, call ADD AND SUBTRACT to add together the current non-# part of <# expression> and the < term>. 

Production 248 <=1> ::= = 

Save arrayness of left side. 

Production 249 <$> ::= $ 

If this is a subscript on a function invocation issue: 

function level 
sym pointer for 
function name 

1 
o 

XXST 
SYT 

N 
o 

o 
1 

If this is not already a subscript then SAVE_ARRAYNESS. 

Increment SUBSCRIPT LEVEL by 0 for <empty> subscript or 1 for $. Build empty indirect stack entry for the subscript. 

4-145 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138· (617) 661-1840 

, 
; 

, " ~ 

1 
1 
l 

I 
1 
\ 
j 

.~ 
" j 

I 

1 



ADD AND SUBTRACT 
ARITH LITERAL 
LIT RESULT TYPE 
MATCH ARITH 
MATCH-SIMPLES 
MATRIX 'COMPARE 
VECTOR-COMPARE 

851000 
843600 
849500 
847500 
834100 
819200 
818500 

ARITH LITERAL sets up its two arguments for a MONITOR 
call and returns true if they are both literals. 

LIT RESULT TYPE returns INT TYPE if both of its arguments 
are integers and the result of the operation is integerizeable; 
otherwise it returns SCALAR TYPE. 

MATCH ARITH checks that addition and subtraction are defined 
between its two arguments. If they are integer/scalar MATCH SIMPLES 
generates any necessary integer to scalar conversion. If they 
are matrices or vectors, MATRIX COMPARE and VECTOR COMPARE 
check that the sizes match. - -

ADD AND SUBTRACT performs an addition (arg=O) or 
subtractIon (arg=l) on the elements pointed to by SP and MP. 
If both operands are literals, the computation is done by 
a MONITOR(9) call. If they are not both literals, then 
HALMAT code is generated to do the arithmetic creating a 
VAC. In either case the result goes into MP and the indirect 
stpck is popped down to there. 

ASSOCIATE -- 1095700 

Check that any overpunches are consistent with the final 
type after subscripting. Insert proper type for the output 
writer. 

If this is a NAME or % macro argument, then SAVE ARRAYNESS. 
If all the copies were subscripted out, pop off the value just 
saved and, if requested, fix up the. HAL MAT pointed to by the 
argument (TAG). 

Set brace and bracket flags for the output writer. 

4-146 

f ; 

INTERMETRIOS INOORPORATED' 701 CONOORD AVENUE'CAMBRIDGE, MASSAOHUSETTS 02138, (617) 661-1840 

;; 
~ ____ ~\ __ ~~·~-=4 



I 
~ 

· r ---~--~-~ 
t,,··-

4.4.5 <expression> and <relational exp> 

This section deals with productions: 

4-32, 82-120, 121-135, 177, 178, 
181-192, 206-208, 250-272. 

Notice that productions 18-20 are grouped with production 
28 immediately before 27, rather than in the obvious numerical 
order. 

4 <APTTH FIF> ::= <T!P~> 
5 + <~F.~~> 

- <';"'R'I> .; 
7 
8 

<A~T'1'1I ~xp> + <'!'EFM> 
<ARITI! ~xp> - <T~~M) 

<T'!:'PI1> ::: <P:~ODIJC'l'> 
I <pt'ort'c~> I <"'E!'M> 

11 <PPODUCT> ::= <FICTOR> 
12 <~'CTO~> * <FEonDC"'> 
13 <F~C~OD> • <pponUCT> 
14 <F~CTOE> cpr-eDUCT> 

15 <FAC~0?> ::= <PPIMARY> 
1fi <PRIMAPV> <**> <FACTOR> 

1A 
19 
20 

21 
22 

<PRE PFIM~,r.y> ::= ( <UITI! rxp> ) 
, <tHT"!!lE'R> 
,. <CO!1 r('l!J~ 1:' NO M B::=P> 

<ABITH lONC HEAD> ::= <ABITH PUNe> 
, CAoI~R COJV> <SUBSCPtPT> 

23 <ABITH C0,,> ::= I~TEG~R 
24 SCALAP 
25 VFC"'OR 
26 MAT?IX 

2s:l CPR!': P;:Pl.'.PY> ::= <!dnrl! F'IlNC I!":AD> ( <CAI.L LI<;;T> 

2q <PFI'l?Y> ::= <~ortFt~r n~TTH PoNC> 
30 <AFI~H INLtN~ D~P> <BLOCK BODY> (CLOSING> 
31 <PFR P~J~A?Y> 
32 <PF! PO!~A!Y> <OUALIYI~P> 

4-147 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 

; 'J 



T 
I 
j 

~---~'-, --- ----~~~'~, ~~~~" '~#"ZA""f(""'''~~"::_'M_-'.:_=d=-''''_-~--"~-'''''r~' "~-~-l~r-', 

- - 1 

<BIT PPI"> ::; (PIT V~~> 
< l.!\ Ir" t 'H:' > 
<fVENT VA~> 
<[lIT ,c')~;s!'> 
( <SIT "XI?> ) 
<~O~Trlrn ET~ ~~~~> 

<PIT !NtI~~ P!~~ <RL~C~ A~ny) <CLn~ING> 
<~UBPI~ q~~") <~,prrS~:0'> ) 

<BIT FUNC "FAO> ::= <RTT FUNC> 
I OI~ <500 O~ Q"ALI~!~F> 

<PI~ CA~> ::~ <SIT PRI~> 
<~r~ C~T> <C~T> <nr'!' PRY'> 
<Nr~> <BIT r?!~> . 
<BIT CAT> <CA~> <NOT> <RIT PRI~> 

97 <DIT F~CTor> ::= celT CAT> 
OR I. (SIT nC'IOR> <AND> <SIT CAT> 

90 <nIT Fxr> ::= <BIT ~AC~O~> 
100 I <BI~ FXP> cOP> caIT FAC~OB> 

1~1 <RELATTCHAL on> ::= = 
10::1 <NOT) = 
1 (13 < 
104 > 
1(1') < = 
11)6 > = 
117 <ptOT> < 
leA oo~> > 

1 I) '1 

11!i 
11 1 
112 
113 

114 
115 

116 
117 

11 A 
11'1 
120 

<CQ~PAPISON> ::= <AFITH ~xp> CPRLATIONAL OP> <ARI'!'H EXP> 
<cnAn PIP> <eFL1~IO~AL ~p> <CHA~ ~XP> 
<DIT CA~> <?~LATI0NAL OP~ <SIT CAT> 
<STFUCTUP.E EXP> <FFU!ICNH OP> <S!?UCTU~B EXP> 
<JAM! PKP) <!!LATJONlt OP> <NAMF EXP> 

CPFLATICNAL FACTOR> ::= <REL pftIM> 
I <pF.LA~rONAL ;ACTO~> <AN'> <F~L PRI~> 

<RELATICNAL ElP> ::= <PELATIONAL FACTOR> 
I <?~LATIONAL EXP> <OF> <RELATIONAL fACTOR) 

<FFL PFIM> ::= ( CP.FLATTONAt rxp>.) 
<~OT> ( <SELATI0NAL EXP> ) 
<CCMP1\PISON> 

4-148 

-, 

! 
1 

1 
; 

~ 

I 
.~ 
j 
1 
j 

1 

l 
~ 
l 

j 
l 

I 
J 

I 
INTERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETIS 02138' (617) 661-1840 



r 

-

~ 

""j 

121 
122 
123 
12 '~ 
12'3 
no 
127 
12~ 

129 
1Vl 

1? 1 
i32 
133 
1H 
no; 

177 
178 

I'll 
H!2 
1.Q 3 
1~4 
lAC:; 

1% 
1')7 
1q8 
lqq 

1QO 

lq 1 
192 

206 
207 
208 

<CijAR PPIM> ::= <CHAD VAH> 
<CHAP CONST> 
<~or~FI~D CHA~ rUNC> 
<CHAP INLTNE DEF> <BLOCK BODY> (CLOSI~G> 1 
<CfH.~ ""nc H":A!'> ( <CALL T, tST> ) 
( <CIIA ~ EXP> ) 

<CHAR FUNe H!~n> ::= (CHI! ~UNr> 

I CHA~ACT~! <SUB OR OUALIPI~R> 

<SUB O~ OURLIP!!R) ::= <SU~SCRIPT> 
, <BT~ OijlLI~!!~> 

<CHAR '"'Y.P> ::= <CHAF P"'T"l> 
<CHAF ?Vp> <CAT) <CP~~ P~IM) 
<C~AR ~yn) <Cft~> <PFI~H ~xp> 

<HIT!' "'Y"';I) <C" .... > <l!'T'!'H "'Xl''> 
<A~I~" .,.Xo> <CA~> <CH~r 0RT'> 

<~~LL lIS~> ::= <LIST !xr> 
<CALL LIS~) , <LIST !XP) 

<2XP?!SStCN> ::= <ArITH ~xp> 
<SI'" I:,(P> 
<ClIA'l ,,!,(p> 
<S"'P IJ C'1"IJlH' ';:'XP> 
< NA!!r! r:: IP> 

<S!p~C7~nr ~Y.?> ::= <S!?nC7np! VAP> 
<~O~TPIED STRueT FO~C> 
<~Ta"c IYtI~~nEP> <BLOCK "ODY) <CLOSt'"> 
<~TRijCT PUKC hEAD> ( <CALL LIST> 

<LIS~ EXF> ::= <p.xpr~~sro,> 
I <~RlrH FXP> • <EXPRFSSION> 

<NAM? EX~> ::~ <NA~E K~Y> 
'lOLL 
<NAME K'::n 

<NA"E VA-R> 

NULL ) 

4-149 

'-'.~ -·t·c.........,.~ ... , 
c. , ~,;,~: .... - - _ ' ",~,",,"1: 

~- ~-. .. ," 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 



~5r 
251 

2')6 

257 

25~ 

259 

2110 
261 
262 
263 

,264 
265 

266 
267 
268 
269 
270 

271 
272 

<ANO>::'"'f,' r A'{f) 

<o~> ~::= I 
I fiR 

<'JC'.:'> ::= .., 
"0':' 

<CA .... > ::= II 

CAT 

«HlALr'!."I!"R) ::= <$> I Ii) 
I <PHFC SPEC> » 

<B!'!.' onl r.~FP·R> 

<RADIX) ::= !lEX 
, OCT 
, I3tN 
I D;?e 

<aI'!' eeNST An!) 

: : = < $) ( 7t ~!' A D IX > 

::= <FB.DlX> 
<?ADlX) ( <NUMBER) ) 

<BIT r:c~s'!') ::= <PIT ec~ I TRUEST "~Ar> <CHA? ST~ING~ 
I FALSE 
I CN 
I OFF 

<CHAr eCNST) ::= <CHA~ Sr&ING) 
I CHAB ( <Nrr~BEP.> ) <CRA_" 

!'I STRING) 

4-150 

j 

IN -ERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-181\0 
r 

... _ •... c: •.•. _._._.c: .... ,; .. ,.:c:., ........ ,...:, . ... c.-"-~ 



\

. -" '.' - ......... «-.. ~." .... ,. - .. ,- ,., ··0-·,......·-...--.. ·· ...... _~'." ... _ ....... ' •. _." .... ".~ .. ".,.-..... "'"., .• ~~ ..• O;-'-_,..,~..,.. . ..,..·...,r-.,' .... · .. ~-· ~-""'r'" ." 
~.I.W.LUUI h'A •• . _. ___ . ___ ... ,. .. , , ... , _._. ____ '"""'.~,.""".·' .. ,.,".n'."' ••• '''.c'''''''. a ... .&IM!dE a_I ... £!!!ULai1li!!ia.I,likL k22!id . !!!ill ~ 

'" ,-
i 
!-.t.,. 

Production 4, 5 <arith exp> ::= <term> 
+ <term> 

Nothing. 

Production 6 <arith exp> ::= -<term> 

If the <term> is a constant, negate it at compile time; 
otherwise, generate HALMAT to do the nega~ion. 

Production 7, 8 <arith exp> ::= <arith exp> + <term> 
<arith exp> - <term> 

Generate HALMAT (or perform compile time add or subtract) via 
ADD AND SUBTRACT. 

Production 9 <term> ::= <product> 

Nothing. 

Producti()n 10 <term> ::= <product>/<term> 

If the arguments are constant, do the division at 
compile time. 

Force divisor to be scalar. If numerator is integer, 
force it to scalar. Issue HALMAT to perform the division. 
Pop the indirect stack. 

Production 11 <product> ::= <factor> 

Because, multiplication is associative, the compi,ler can 
perform multiplies in the order it wants to. The best order 
is much faster than the worst. By making productions 12, 13, 
and 14 right recursive, the compiler forces all mUltiplies 
to stack up. This pr.oduction is reached at the point where 
all the multiplies must be issued ~nd it issues them, thus 
leaving nothing for productions 12, 13, and 14. 

Count up the number of dot products, cross products, 
matrices, vectors, and scalars involved in the whole 'product. 
If there are no multiplications to be done, do nothing. 

Move through the stack generating multiplies for all the 
scalars via MULTIPLY SYNTHESIZE. 

4-151 

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 



,it 

If there are no vectors in the product then move through 
the stack generating multiplies for all the matrices. Multiply 
the final matrix product by the final product of scalars -- all 
done. 

If there are vectors then we want to do the matrix*vector 
calculations first. Scan from left to right finding strings . 
of the form: 

matrix i * matrix2 * ••• * vectorl 
and generating HALMAT to compute: 

vector 2 = matrixi * (matrix2 * ••• * (matrixn*vector» 

followed by HALMAT to compute: 

t 3 « * . ) * t' ) vec or = vector2 matr1xn+1 + ••• rna r1Xn+m • 

If there are no vector -- vector multiplications, multiply the 
final product of vectors by the final.product of scalars. Now copy 
all the information about the result into the indirect stack 
entry of the leftmost factor in the product. The only product 
that can be left is a single outer product so generate the 
HALMAT if necessary -- all done. 

Move through the stack generating HALMAT to do all the 
cross products. If there are no dot products then join the 
preceding code for "all vector products done". 

Move through the stack generating HALMAT to do all the 
dot products. Join preceding code to multiply in the final 
product of scalars. 

Productions 12, 13, 14 

See production 11. 

<product> .. -.. -

Production 15 <factor> ::= <primary> 

Just syntax. 

4~152 

<factor> * <product> 
<factor> <product> 
<factor> <product> 

-J 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 

~ . 
~ 
~ 

I 
M 
~ 
i 
k 

I g 
~ 
g 
}' U 
!1 

II 
;, 
I' 
I} 

~ 
l 

ii 
r; 

fj 
.1 

~ 

~--'_'?~~-";c:'~i"'-'c,-~, "---y-~" ,,'" .. ____ ._""';<i--'-.. ,.~_'. " ' __ ~~-,_' "_~_~c,~:.:..;,,;;;;,c'-- --:-;---:-~_=:~~'~,r.''''''.'_''''P''''''WI01 ... ' .... '>k .... ' .... ' ......... ="'"'=....-_ ..................... _-... -..... v_-~ 



Production 16 <factor> ::= <primary> ** <factor> 

Generate a cross reference for primary and decrement 
EXPONENT LEVEL. 

For matrices, check that the exponent is not a "T" 
and that it is an integer constant. Then generate a HALMAT 
MEXP. If the exponent is a "T", gen~rate a HALMAT MTRA. 

Vectors cannot have exponents. 

For integers and scalars, try doing it at compile time. 
If that fails then generate an IPEX tor an integer to a positive 
integer constant power. If that fails, force <primary> to a 
scalar and generate an SEXP or SIEX. 

Generate a cross reference for <factor>. 

Production 17 <**> .. -.. -
Bump EXPONENT_LEVEL. 

** 

Production 21 <arith func level> ::= <arith func> 

.. START NORMAL FCN. 

Production 22 <arith func head> ::= <arith conv> <subscript> 
, 

Set global flags to point to <subscript> entries on indirect 
stack. If the subscript is null, then fill in default sizes~ 
otherwise, use ARITH SHAPER SUB to compute the correct size and 
check the subscript for validity. Build a function stack entry. 
Issue HALMAT to start the shaping function reference. 

Production 23, 24, 25, 26 arith conv 

Set up FIX~ for production 22. 

4 .... 153 

INTEGER 
SCALAR 
VECTOR 
MATRIX 

INTE:RMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 

\ , I 

,f 

.L" ••.. ~."'."' __ ~ •. ~ __ ~.~~,j!!lI!L.~ 



I , 
, 

Production 18 <pre primary> .. -.. - «arith exp>) 

Copy the VAR and indirect stack entries from <arith exp> 
to <pre primary>. 

Production 19, 20 <pre primary> ::= <number> 
<compound number> 

Build an indirect stack entry. 

Production 28 <pre primary> ::= <arith func head> «call list>) 

END ANY FCN. 

Production 27 <primary> ::= <arith var> 

Nothing. 

Production 29 <primary> ::= <modified arith func> 

SETUP NO ARG FCN. 

Production 30 <primary> ::= <arith inline def> <block body> <closing>; 

Set up and then join production 289 to handle the closing 
of the inline block. 

Production 31 <primary> ::= <pre primary> 

Just drop FIXF. 

Production 32 <primary> ::= <pre primary><qualifier> 

Generate code to do the precision conversion and then pop 
indirect stack down to the <primary>. Drop FIXF. 

4-154 

,I c, 

'",:,,,, 

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 

I 
I 
1 



Production 82 <bit prim> ::= <bit var> 

Generate a cross reference and set that this is not 
an event. 

Production 83 <bit prim>: ::= <label var> 

Generate a cross reference. Set PSEUDO TYPE and 
PSEUDO LENGTH to bit string length 1. 

Production 84 <bit prim> ::= <event var> 

Same as 83. 

Production 85 <bit prim> ::= <bit constant> 

Same as 82 without the cross reference. 

Production 86 <bit prim> · .-· .- «bit exp» 

Copy the indirect stack entry from <bit exp> to 
<bit prim>. 

Production 87 <bit prim> ::= <modified bit func> 

SETUP NO ARG FCN. Join 82. 

Production 88 <bit prim> · .-· .- <bit inline def> <block body> <closing>; 

Same as production 30. 

Production 89 <bit prim> ::= <subbit head> <expression» 

END SUBBIT FCN. Set that was not an event. 

Production 90 <bit prim> ::= <bit func head> «call list» 

END ANY FCN. Set that was not an event. 

4 ... 155 

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 



, ""."""'''1''''''''' "''''"fOiiliCIl " 
Q4M3 I. t $;44£.4 (1 L ,: t, 3.~ '::)fAd h. . JIli¥B awa::::'" • 

I- " ___ ~:e!'t.:':..~_ . .;.~~,,,",,, ..",." ... ~ __ , ___ .... 

Production 91 <bit func head> ::= <bit func> 

START NORMAL FUNCTION. If user defined function, 
ASSOCIATE. 

Production 92 <bit func head> ::= BIT <sub or qualifier> 

Set for pretty output. Copy the indirect stack entry 
from <sub or qualifier> to <bit func head>. Set that the 
type is bit. Build a function stack entry. 

Production 93 <bit cat> ::= <bit prim> 

Just syntax. 

Production 94 <bit cat> ::= <bit cat> <cat> <bit prim> 

Set that it is not an event. Generate HALMAT to do 
the catenation. 

Production 95 <bit cat> ::= <not> <bit prim> 

If <bit prim> is a literal, do the NOT at compile time; 
otherwise, generate HALMAT to do it. Drop the "2" bit in 
INX. Copy the indirect stack entry from <bit prim> to 
<bit cat>. 

Production 96 <bit cat> ::= <bit cat> <cat> <not> <bit prim> 

Generate HALMAT to do the NOT and then join production 
94. 

Production 97 <bit factor> ::= <nit cat> 

Just syntax. 

Production 98 <bit factor> ::= <bit factor> AND <bit cat> 

If both operands are literals, do the AND at compile time; 
otherwise, generate HALMAT to do it. Notice that BIT LITERAL 
also puts the values of the literals in their FIXV entries. 

Production 99 <bit exp> ::= <bit factor> 

Just syntax. 

4-156 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 



":'" 
~ Production 100 <bit exp> ::= <bit e~p> OR <bit factor> 

Join production 98. 

Production 101, 102, 103, 104, 105, 106, 107, 108 

<re1ationa1op> ::= = 
<not> = 
< 
> 
<= 
>= 

<not> < 
<not> > 

Set up REL ,op for <comparison> productions. 

Production 109 <comparison> ::= <arith exp> <relational op> <arith exp> 

Match the types of the operands if possible. Issue 
a HALMAT comparison for the appropriate arithmetic type. 

Production 110, 111 

<~omparison> ::= <char exp> <relational op> <char exp> 
<bit cat> <relational op> <bit cat> 

Emit appropriate HALMAT comparison operation. 

Production 112 

<comparison> ::=<structure exp> <relational op> <structure exp> 

STRUCTURE_COMPARE (a1 , a 2 , ec1ass, num) does a structure walk 
of templates al and a2. If they are not equivalent, it issues the 
error message 1n class ec1ass and number num. 

Emit a structure comparison HALMAT operation. 

Production 113 

<comparison> ::= <name exp> <relational op> <nameexp> 

NAME_COMPARE (a1, a2, ec1ass, num, fs) compares the names 
described by stack entries a1and a2. If they are not NAMES 
of comparable things, issue the error message in class ec1ass 
and number num. If fs then their arrayness stack entries must 
match; otherwise, the arrayness stack entry of a1 must match 
CURRENT ARRAYNESS. Also check that the data is not locked. 

4-157 
INTERMETRICS INOORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 



---

COPINESS(l,r) compares the copiness of its operands. 

identical copiness + return 0 

copies(r) = 0 + make copies(r) = copies (1) and return 2. 

copies (1) = 0 + return 4 

none of the above + return 3 

NAME ARRAYNESS(SP) sets up CURRENT ARRAYNESS to describe 
the item the NAME is pointing at. -

Finally, emit a name comparison HALMAT instruction. 

Production 114 

Just syntax. 

Production 115 

<relational factor> .. -.. - <reI prim> 

<relational factor> ::= <relational factor> <and> <reI prim> 

Generate a HALMAT CAND instruction. 

Product~on 116 <relational exp> ::= <relational factor> 

Just syntax. 

Production 117 

<relational exp> ::= <relational exp> <or> <relational factor> 

Issue HALMAT COR instruction. 

Production 118 <reI prim> ::=«relational exp» 

Copy indirect stack pointer to <reI prim>. 

Produ~tion 119 <reI prim> ::= <not> «relational exp» 

Issue HALMAT CNOT instruction and then copy indirect stack 
pointer to <reI prim>. 

Production 120 <reI prim> ::= <comparison> 

Relational operators other than = and -r= are defined only 
for unarrayed integers, scalars, and character strings. 

EMIT ARRAYNESS. 
4-158 

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 

i 

;<>,t 

---~ 



I 
L 

Production 121 <char prim> ::= <char var> 

Generate a cross reference. 

Production 122 <char prim> ::= <char const> 

Just syntax. 

Production 123 <char prim> ::= <modified char func> 

SETUP NO ARG FCN. 

Production 124 

<char prim> ::= <char inline def> <block body> <closing>; 

Join production 30. 

Production 125 <char prim> ::= <char func head> «call list» 

END ANY FCN. 

Production 126 <char prim> ::= «char exp» 

Copy indirect stack pointer to <char prim>. 

Production 127 <cha.r func head>:: <char func> 

START NORMAL FCN. 

If it is a user defined function, ASSOCIATE. 

Production 128 <char func head> ::= CHARACTER <sub or qualifier> 

Setup for pretty output. Reserve space on function stack. 

Production 129 <sub or qualifier> ::= <subscript> 

Check that subscript is not a precision modifier. There 
must be 0 or 1 component subscripts and nothing else. 

4-159 
lNTERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETIS 02138 • (617) 661-1840 



,1 

'i 

Production 130 <sub or qualifier> ::= <bit qua1ifer> 

Drop INX. 

Production 131 <char exp> ::= <char prim> 

Just syntax. 

Production 132 <char exp> ::= <char exp> <cat> <char prim> 

If both operands are literals, do the catenation at compile 
time~ otherwise, issue a HALMAT CCAT instruction. 

Production 133 <char exp> ::= <char exp> <cat> <arith exp> 

Call ARITH TO CHAR to check type of <arith exp> and issue 
HALMAT STOC or ITOC instruction. 

Join production 132. 

Production 134, 135 <char exp> ::= <arith exp> <cat> <arith exp> 
<arith exp> <cat> <char exp> 

See production 133. 

Production 177, 178 <call list> ::= <list exp> 
<call list>, <list exp> 

Call SETUP CALL ARG to check that the function nesting 
is not too deep-and that the argument is legal for a function 
if this is a function. 

For user defined procedures and functions 

Cannot make these calls from in1ine functions. 

Issue an XXAR instruction for the argument. 

Arguments for procedures can be NAMEs -- drop the 
NAME_PSEUDO and clean up. 

Use GET FCN PARM to get the symbol table entry describing 
the formal parameter. 

4 ... 160 
INTERMETRICS INCORPORATED ·701 CONCORD AVENUE· CAMBFlIDGE, M·ASSACHUSETTS 02138' (617). 661~1840 

, 

, 1 
1 
j 

1 



; -

Ii 

t' 

-~-.---~-~~---~~-~~-.--,--~~~~.-,.-.---.&_------.~~-~.--~j;~~--'-'--'-'-.-j-~'-j"I~~~ 

"'f~"_' . .;;'"'~, .·,t!~,...~~~~~ j"~~ .• 

Build a pseudo indirect stack entry at level 0 of 
the stack. Build a CURRENT ARRAYNESS entry. Check 
that the formal and actual parameters agree. 

For normal built in functions 

Just count the argument. 

For arithmetic shapers 

Check that the argument's type is legal. Issue an 
SFAR instruction for the argument. Count the argument. 

For string shapers 

Just count the argument. 

For list functions 

Issue an SFAR instruction for the argument on and 
count it. 

Production 181, 182, 183, 184, 185 <expression> ::= <arith exp> 
<bit exp> 

Production 186 <structure exp> ::= <structure var> 

Generate a cross reference. 
. 

<char exp> 
<structure exp> 
<name exp> 

Production 187 <structure exp> ::= <modified struct func> 

SETUP NO ARG FUNC. 

4-161 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 

1 
1 
~ ., 

i 
1 , 
.1 

" l 
oj 
'I 

;1 

1 , 
~1 

" 'I .. 

l ;~ 
'J J 

\: { 

j 

I 
j 
~ 



Production 188 

<structure exp> ::= <struc inline def> <block body> <closing> 

Join production 30. 

Production 189 <structure exp> ::= <struct func head> «call list» 

END ANY FeN. 

Production 190 <struct func head> ::= <struct func> 

START NORMAL FCN. 

If it is a user defined function, ASSOCIATE. 

Production 191 <list exp> ::= <expression> 

Drop INX for non-built-in functions. 

Production 192 <list exp> ::= <arith exp> # <expression> 

The function must be an arithmetic shaping function. Copy 
indirect stack entry from <expression> to <list exp>. 

Production 206 <name exp> ::= <name key> «name var» 

CHECK NAMING and drop DELAY CONTEXT CHECK. 

Production 207 <name exp> ::= NULL 

Build an indirect stack entry describing the null 
pointer. 

Production 208 <name exp> ::= <name key> (NULL) 

207. 
Drop NAMING and DELAY_CONTEXT_CHECK, then join production 

4-162 

REPRODUCD3ILITY OF 'J:HE 
ORIGINAL PAGE IS POOR 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138· (617) 661-1840 



r 

; 

'. 

Productions 250-257 <and> : : = & 
AND 

<or> · .- , · .-,. OR 
<not> · .-· .- .., , NOT 
<cat> : : = " CAT 

Just syntax. 

Production 258 <qualifier>::= <$> (@ <prec spec» 

Set PSEUDO FORM to 1 for SINGLE and 2 for DOUBLE. 

Decrement subscript level. 

Production 259 <bit qualifier> ::= <$> (@ <radix» 

If <radix> was DEC, set TEMP3 to 2. 

Set up PSEUDO_FORM. 

Decrement SUBSCRIPT LEVEL. 

Productions 260-263 <radix> ::= HEX 
OCT 
BIN 
DEC 

Set TEMP3. 

Production 264 <bit const head> ::= <radix> 

Set that there was only a radix. 

Production 265 <bit const head> :~= <radix> «number» 

Point FIXL at value of number. 

Production 266 <bit const> ::= <bit const head> <char string> 

Convert the character string to a number in the base 
defined in <radix> (i.e. TEMP3). Check that all the digits 
and the total size of the number are legal. For non-decimal 
radix,repetition factors are legal and are implemented by 
shifting and ORing. Finally, build an indirect stack entry 
for the constant. 

4 ... 163 
INTE:RMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETIS 02138 • (617) 661-1840 

§ U 

;, 



, , 

, I 

""-'~""~~~"""~-=-=~:': .. ="='~ -----"~--~~ 
Production 267 - 270 <bit const> ::= TRUE 

, FALSE 
, ON 

" OFF 

Build an indirect stack entry for the constant with 
the proper value. 

Production 271 <char const> ::= <char string> 

Build an indirect stack entry. 

Production 272 <char const> ::= CHAR «number» <char string> 

Build the character string by multiple concatenations, 
then join 271. 

4-164 

j 
,.' 



Build an indirect stack entry. 

For built-in functions 

START NORMAL FCN - -PUSH FCN STACK 
896300 
841500 

Generate a cross-reference entry. Fill in the type, 
form and symbol table pointer in the indirect stack entry. 
Build a function stack entry via PUSH FeN STACK. If necessary, 
SAVE ARRAYNESS and issue HALMAT for beginning of list function. 

Return false. 

For user defined functions 

Fill in indirect stack entry. Build a function stack 
entry. SAVE ARRAYNESS. Issue HALMAT to start function 
reference. Guarantee that update blocks do not call non
imbedded functions. Setup FIXL and FIXV properly for structure 
valued functions. Generate a cross reference. 

Return true. 

4-165 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSEITS 02138 • (617) 661-1840 



i i 

I '1-', -
LL~,-;~_~ 

SETUP NO ARG FCN 
SET BY XREF 
UPDATE-BLOCK CHECK 
STRUCTURE FCN 

For built-in functions 
-,.,,~-

Build a cross reference entry via SET BI XREF. 

891000 
551300 
842800 
890200 

If this is an initial/constant context and the function 
has special processing in that case, do the special processing; 
otherwise, generate HALMAT for a built-in function call. ' 

For user defined functions 

Check that the function is not access protected. Use 
UPDATE BLOCK CHECK to check that update blocks do not call 
non-imbedded-functions. Use STRUCTURE FCN to convert FIXL 
and FIXV of the function to the structure form if the value 
of the function is a structure. Generate HALMAT to do the 
function call: 

function nest 
sym pointer for fnc 
function nest 

Generate a cross reference. 

For all functions 

1 
o 
o 

FCAL 
o 

XXND 

o 
o 
o 

o 
1 
o 

After generating the call, if there was a precision 
modifier specified in the argument to SETUP NO ARG FCN, 
generate the HALMAT to do the conversion. - - -

4~166 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 



END ANY FCN -- 964900 

For procedure and user defined functions 

Generate a HALMATPCAL or FCAL. Then end it off with 
an XXND. 

For normal built-in functions 

Check that the proper number of arguments were encountered 
and that the types match. Then branch depending on the type 
of the first argument. 

BIT 

CHARACTER 

MATRIX 

VECTOR 

SCALAR 

INTEGER 

INTEGER or SCALAR 

Set length of result string. 

Generate HALMAT to convert 
operands to proper types if 
necessary. 

Check and set up dimensions of 
argument and result. 

Set up dimension of result. 

Attempt to perform compile time 
evaluation via BI COMPILE TIME. 
Generate integer to scalar con
versions if necessary. 

Same as scalar case except 
scalar to integer conversion are 
performed. 

Make type of arguments match 
via MATCH SIMPLES. Then set 
type of returned value to type 
of arguments if it was originally 
IORS. 

After handling the individual cases, generate the HALMAT 
call of the function. 

I 
built-in function # 2 BFNC 0 0 

3 

type form 
(1,2,or pointer to arg of of 0 I 
3 args) arg arg 

4-;L67 
INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 



I' . I 
, 

For arithmetic shaping functions 

For integers and scalars -- restore arrayness of 

argument. If argument is simple, generate HALMAT shaping 

function call targeting to scalar or integer result~ 

otherwise, generate an MSHP HALMAT instruction, taking 

the arguments from LOC_P (ARG# + 1), ••• 

For vector and matrix shaping functions issue an 

MSHP HALMAT instruction. 

For string shaping functions 

Check that the call is legal. Generate a HALMAT shaping 

function call targeted to either bit or character string. 

Issue one or two HALMAT operands for each subscript (AT and 

TO require two operands). Go back and fill in the proper 

number of arguments in the operator. 

For list functions 

Check that the type of the argument is okay and that 

there is only one argument (an array). Generate a HALMAT 

LFNC to call the function followed by an SFND to end 

the function invocation. Finally, RESET ARRAYNESS. 

4-168 

"':''Ir 
, t: 

","'11" 

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 



4.4.6 <statement> 

This section deals with productions: 33-81, 
136-176, 179, 180, 273-288, 429-449.' 

33 <OTHER STATEMENT> ::= <ON PHRASE> <STATEMENT> 
34 I < IF STATEMENT> 
35 I <LABEL DEFINITION> <OTHER STATEMENT> 

36 <STATEMENT> ::= < BASIC STATEMENT> 
37 I < OTHER STATEMENT> 

38 < ANY STATEMENT> ::= < STATEMENT> 
39 I < BLOCK DEFINITION> 

40 < BASIC STATEMENT> ::= < LABEL DEFINITION> <BASIC STATEMENT> 
41 I < ASSIGNMENT> : 
42 I EXIT ; 
43 I EXIT <LABEL> : 
44 I REPEAT ;. 
45 I REPEAT <LABEL> 
46 I GO TO < LABEL> ; 
47 I 
48 I <CALL KEY> ; 
49 I <CALL KEY> ( < CALL LIST» ; 
50 I <CALL KEY> ASSIGN ( < CALL ASSIGN LIST> ) 
51 I <CALL KEY> «CALL LIST» <ASSIGN> «CALL ASSIGN 
52 I RETURN ; 
53 I RETURN < EXPRESSION> ; 
54 I <DO GROUP HEAD> <ENDING> ; 
55 I <READ KEY> 
56 I <READ PHRASE> 
57 I <WRITE KEY> 
58 I <WRITE PHRASE> 
59 I <FILE EXP> = <EXPRESSION> 
60 I <VARIABLE> = <FILE EXP> 
61 I <WAIT KEY> FOR' DEPENDENT ; 
62 I <WAIT KEY><ARITH EXP> 
63 I <WAIT KEY> UNTIL <ARITH EXP> 
64 I <WAIT KEY> FOR <BIT EXP> 
65 I <TERMINATOR> 
66 I <TERMINATOR> <TERMINATE LIST> 
67 I UPDATE PRIORITY TO <ARITH EXP> 
68 I UPDATE PRIORITY <LABEL VAR> TO <ARITH EXP> 
69 I <SCHEDULE PHRASE> 
70 I <SCHEDULE PHRASE><SCHEDULE CONTROL> 
71 I <SIGNAL CLAUSE> 
72 I SEND ERROR <SUBSCRIPT> 
73 I <ON CLAUSE> 
74 I <ON CLAUSE> AND <SIGNAL CLAUSE> 
75 I OFF ERROR <SUBSCRIPT> 
76 I <% MACRO NAME> 
77 I <% MACRO HEAD><% MACRO ARG> ) ; 

4-169 

LIST> ) 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 

,-
-I 

,,' ~ ! 

t 



78 <% MACRO HEAD> ::= <% MACRO NAME> 
79 <% MACRO HEAD> <% MACRO ARG> 

80 <% MACRO ARG> ::= <NAMEVAR> 
<CONSTANT> 

136 <ASSIGNMENT>::= <VARIABLE> <=1> <EXPRESSION> 
137 <VARIABLE> ,<ASSIGNMENT> 

138 <IF STATEMENT> ::= <IF CLAUSE> <STATEMENT> 
139 <TRUE PART> <STATEMENT> 

140 < TRUE PART> ::= <IF CLAUSE> <BASIC STATEMENT> ELSE 

141 <IF CLAUSE> ::= <IF> <RELATIONAL EXP> THEN 
142 <IF> <BIT EXP> THEN 

143 <IF> ::= IF 

144 <DO GROUP HEAD> :: = DO; 
145 DO <FOR LIST> 
146 DO <F0R LIST> <WHILE CLAUSE> 
147 00 <WHILE CLAUSE> 
148 DO CASE <ARITH EXP> 
149 <CASE ELSE> <STATEMENT> 
150 <DO GROUP HEAD> <ANY STATEMENT> 
151 <DO GROUP HEAD> <TEMPORARY STMT> 

152 <CASE ELSE> ::= DO CASE <ARITH EXP> ELSE 

153 <WHILE KEY> ::= WHILE 
154 UNTIL 

155 <WHILE CLAUSE> ::= <WHILE KEY> <BIT EXP> 
156 <WHILE KEY> <RELATIONAL EXP> 

157 <FOR LIST> ::= <FOR KEY> <ARITH EXP> ~ITERATION CONTROL> 
158 <FOR KEY> <ITERATION BODY> 

159 <ITERATION BODY> ::= <ARITH EXP> 
160 <ITERATION BODY> , <ARITH EXP> 

161 <ITERATION CONTROL> ::= TO <ARITH EXP> 
162 TO <ARITH EXP> BY <ARITH EXP> 

163 <FOR KEY> ::= FOR <ARITH VAR> = 
164 FOR TEMPORARY <IDENTIFIER> = 

165 <ENDING>::= END 
166 END <LABEL> 
167 <LABEL DEFINITION> <ENDING> 

168 <ON PHRASE> ::= ON ERROR <SUBSCRIPT> 

4 .... 170 
INTERMETRICS INCORPORATED ·101 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETIS 02138 • (617) 661-1840 

il .~ . , 

It. 

I 
i 
I 
~ 

I 
I 
I 

. , 
~;~~E-~" '~.-. ~~_~~~......, "_. _ ,.~~~,.--~=.:.~,~.~;;;;._ ~ _~~_._. _~ .. ~-d.'~~~~ -1".«;"-· VY' ":' .. £ft'-r '-¥i :-- ;'.---~ ';<---'1·">r--~Y;·;;~;;;·;:;;A~~·;;·~;;:;;~'",~,~~:;_~¥.1~~·:~~.1.~~·_;_iIIlIJ1.l!iIIl1!Ji.-·_II!!IIi ___ ;;;;;:_!lL.~;"M~IIio· .i,I1' ~ 



, 
" 

169 <ON CLAUSE> ::= ON ERROR <SUBSCRIPT> SYSTEM 
170 ON ERROR <SUBSCRIPT> IGNORE 

171 <SIGNAL CLAUSE> :: = SET <EVENT VAR> 
172 RESET <EVENT VAR> 
173 SIGNAL <EVENT VAR> 

174 <FILE EXP> ::= <FILE HEAD> , <ARITH EXP> 

175 <FILE HEAD> ::= FILE ( <NUMBER> 

176 <CALL KEY> :: = CALL <LABEL VAR> 

179 <CALL ASSIGN LIST> ::= <VARIABLE> 

273 
274 
275 
276 
277 

278 
279 

280 
281 

282 
283 

284 
285 

286 
287 

288 

<CALL ASSIGN LIST> , <VARIABLE> 

<IO CONTROL> : := SKIP ( <ARITH EXP> ) 
TAB ( <ARITH EXP> ) 
COLUMN ( <ARITH EXP> 
LINE ( <ARITH EXP> ) 
PAGE ( <ARITH EXP> ) 

<READ PHRASE> : := <READ KEY> <READ ARG> 
<READ PHRASE> , <READ ARG> 

<WRITE PHRASE> : := <WRITE KEY> <WRITE ARG> 
<WRITE PHRASE> , <WRITE ARG> 

<READ ARG> : := <VARIABLE> 
<10 CONTROL> 

<WRITE ARG> ::= <EXPRESSION> 
<10 CONTROL> 

<READ KEY> :: = READ ( <NUMBER> 
READALL ( <NUMBER> 

<WRITE KEY> :: = WRITE «NUMBER> ) 

4-171 
INTERMETRICS INCORPORATED· 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 

I 
~ 

J 
j 

1 , 

. " ~J 

.~.;, .. ;~~~:::<~_-l"":"'':-''~'';~i~"~ .. ,.~~'''';'-i'/.~_;k~'''''''';~dh:~~".;,--;;;,,,_'';~~0;.;,.;54";'~~~'liJi.-..i~~~.~"";;'t:~~~~".o).~~ru..:;..t.lli~',,.'.'''>.i::-,oj'~.:~J:O!-L .. t~~'''-'''"''''-~,·;,I,;";;"';~o0,--::'..'ri.,;;;·~ __ z,,--," ::~-_;~ 



429 <TERMINATOR> ::= TERMINATE 
430 CANCEL 

431 <TERMINATE LIST> ::= <LABEL VAR> 
432 <TERMINATE LIST> , <LABEL VAR> 

433 <WAIT KEY> ::= WAIT 

434 <SCHEDULE HEAD> ::= SCHEDULE <LABEL VAR> 
435 <SCHEDULE HEAD> AT <ARITH EXP> 
436 <SCHEDULE HEAD> IN <ARITH EXP> 
437 <SCHEDULE HEAD> ON "<BIT EXP> 

438 <SCHEDULE PHRASE> ::= <SCHEDULE HEAD> 
439 
440 

<SCHEDULE HEAD> PRIORITY ( <ARITH EXP> 
<SCHEDULE PHRASE> DEPENDENT 

441 <SCHEDULE CONTROL> ::= <STOPPING> 
442 I <TIMING> 
443 I <TIMING> <STOPPING> 

444 <TIMING> ::= <REPEAT> EVERY <ARITHEXP> 
445 <REPEAT> AFTER <ARITH EXP> 
446 <REPEAT> 

447 <REPEAT> ::= ,REPEAT 

448 <STOPPING> ::= <WHILE KEY> <ARITH EXP> 
449 <WHILE KEY> <BIT EXP> 

4-172 
.. - -

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE • CAMBRIDGE. MASSACHUSETTS 02138 • (617) 661-1840 c 



, 
'j 

I 

~ >. - "--,.,,~-•• _. -~, - ,- '~-""-''''':--T~e~-~'_~---·~~_~_~~7.:~~_''_ ''''"-''':'''~-''''''7''''-~~~'~-=-",:,"''"'_, -~''1 _ q;:;;--<:-"I...."..'":.~~.r--~I~.~.~I~~~~~I~_~ _ 

.. ~.--.~.~'".j .. -... "._."m"'_· ___ "._,.· .••• ~. __ "'''.>la ... !i!~ ;;1 

Production 33 <other statement> ::= <on phrase><statement> 

Define an internal label to jump to after executing 
the ON statement. This is necessary because the <statement>· 
code is generated in line and must be jumped over. Check 
that there have been no branches to <statement> via 
UNBRANCHABLE. Set that no labels have been processed yet. 

Production 34 <other statement> ::= <if statement> 

Set that no labels yet processed. 

Production 35 

<other statement> ::= <label definition> <other statement> 

Link in the label in the SYT PTR chain for this 
statement. SET LABEL TYPE. 

Production 36 <statement> ::= <basic statement> 

There should be no transposes hanging. Print the 
statement. EMIT SMRK. 

Production 37 <statement> ::= <other statement> 

Just syntax. 

Production 38, 39 <any statement> ::= <statement> 
<block definition> 

Reset PTR. 

Production 40 

<basic statement> ::= <label definition> <basic statement> 

See production 35. 

Production 41 <basic statement> ::= <assignment> 

Pop all old entries off indirect stack. If the assignment 
involved a NAME operation call NAME ARRAYNESS. Fill the number 
of left sides into the HALMAT assignment operator. EMIT ARRAYNESS. 
Set that no labels have been processed yet. 

4-173 

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 

. t 

! 
1 

I 
~ 
1 
1 
J 

'I 1 .'> 

J 
J , , 
j 

.I 
;·1 

J 
1 ., 
.1 

1 
] 
1 ., , 

. ~ 

~ 

I 
~ 
~ 
) 
:0 

1 



Production 42, 43 <basic sta'tement> · .-· .- EXIT; 
EXIT <label> 

Search through enclosing DO nests until LABEL MATCH 
detects a DO with a label matching <label> (a null--<label> 
matches everything). Issue a HALMAT BRA to the statement 
immediately after the end of the appropriate DO group. 
Set that no labels have been processed yet. 

Production 44, 45 <basic statement> · .-· .- REPEAT; 
REPEAT <label>; 

The same as 42, 43, except the BRA targets to the test 
on the loop instead of the outside of the loop. 

Production 46 <basic statement> ::= GO TO <label>; 

Check that the <label> is a legal target from the current 
DO nest position. Generate a HALMAT BRA to <label>. Set that 
no labels have been processed yet. 

Production 47 <basic statement> ::= ; 

Set that no labels have been processed yet. 

Production 48-51 

<basic statement> ::= <call key>; 

END ANY FCN. 

<call key> «call list»: 
<call key> <assign> «call assign list»; 
<call key> «call list»<assign> «call assign 

Production 52 <basic statement> .. -....... RETURN; 

Check that the current block is compatible with a RETURN 
containing no <expression>. Generate a HALMAT RTRN. Set 
that no labels have been processed yet. 

Production 53 <basic statement> ::= RETURN <expression>; 

Drop any residual effects from a NAME pseudo via KILL NAME 
and generate an error message if there were any. Same for-array
ness. Check that this is a function block. 

Check that the <expression> is compatible with the type of 
the function and generate any necessary conversions. Generate 
a HALMAT RTRN instruction with <expression> as operand. 

Set that no labels have been processed. 

4 ... 174 

list> ~ 

c: 
INTEAMETR1CS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617)661-1840 



r'-' -'-,,----.-'----- '-"--'~'~'..,...--,-'~~--'- ., .... ' ~....,~~,k...,.."_,ffl_' __ .. __ ~'_~,M-" __ '""E1"-~ .. ...","'''''''''''_ .... =*"...".." .""'p'!'ll'_./"" ......... , ........ ..-. ......... 

• 1~n*st-'Uil@!¥t:a • .._:>!! .~~"'-!. .... ~,..>~: .... , ...... , -'-I""**'---"-"~.~~.·" .. ·. ,--- __ ._" .. ,=<w.......:L -.. 1 
Production 54 <basic statement> ::= <~o group head> <ending>; 

For a DO CASE, fill in the tag on. the last CLBL opera
tion to indicate it is the last. 

Issue the appropriate ending HALMAT (i.e. ESMP, EFOR, 
ECAS, ETST). 

Pass over the list of labels: for each label defined 
in the group being closed, remove the label from the list 
and make its DO level an impossible value so that no other 
references can target it. 

DISCONNECT all of the group's temporaries from the 
hash table. 

Decrement DO LEVEL and set that no labels have been 
processed yet. 

Production 55-58 <basic statement>::= <read key>; 
I <read phrase>; 
I <write key>; 
I <write phrase>; 

Issue a HAL MAT I/O instruction. 

Issue a HALMAT XXND to terminate the I/O (which 
looks like a subroutine call) reference. 

Set that no labels have been processed yet. 

Production 59 ~basic statement>. ::= <file exp> = <expression>; 

Issue a FILE instruction and fill in the specific informa
tion about <expression> in argument 2. 

EMIT ARRAYNESS. 

Set that no labels have been processed yet. 

Production 60 <basic statement> ::= <variable> = <file exp>; 

Issue a FILE instruction and till in the specific informa
tion about <variable> into argument 2. 

Check <variable> for legality. 

Set that no labels have been processed yet. 

4 .. 175 

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 



Production 61 <basic statement> ::= <wait key> FOR DEPENDENT1 

Issue a WAIT instruction. 

Check that the context is valid for a real time statement. 
Set that no labels have been processed yet. 

Production 62-64 <basic statement> ::= <wait key> <arith exp>1 
<wait key> UNTIL <arith exp>; 
<wait key> FOR <bit exp>; 

Check that the <arith exp> or <pit exp> is valid. Issue 
a WAIT instruction. Join production 61. 

Production 65 <basic statement> ::= <terminator>; 

Issue the HALMAT instruction built by the <terminator> 
productions and join production 61. 

Production 66 

<basic statement> ::= <terminator> <terminate list>; 

Issue the HALMAT instruction built by the <terminator> 
productions -- EXT P is the length of <terminate list>. Issue 
one operand for each program/task on the list. Join produc
tion 61. 

Production 67, 68 

<basic statement> .. -.. - UPDATE PRIORITY TO <arith exp>i 
UPDATE PRIORITY <label var> TO <arith exp>i 

Check that the <label var> is a program or task and that 
the <arith exp> is an unarrayed integer or scalar. Issue a 
HALMAT PRIO instruction. Join production 61. 

Production 69, 70 

<basic statement> ::= <schedule phrase>; 
<schedule phrase> <schedule control>; 

Issue a HALMAT SCHD instruction. Issue an operand for each 
of the optional clauses that were specified. Join production 
61. 

4-176 
INTERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETIS 02138 • (617) 661-1840 

~ 
, ... 1 

.~~....;....~--' .... '~=-"';;";~',;;;;,;-"=."'"' ~="-"'"'-:':'C::;;_::;;:~::::. ==~,~-... ~. ~'."'1"', -~"--____ "'Ill\l~.-<+ ~ 

1 
1 

I 



r 
1 

! 

Production 71 <basic statement> ::= <signal clause>; 

Issue a SGNL instruction. Set that no labels have 
been processed yet. 

Production 72 <basic statement> ::= SEND ERROR <subscript>;, 

ERROR SUB checks that 
specification for: 

the <subscript>is a legal error 

SEND ERROR arg = 2 
ON ERROR arg = 1 
OFF ERROR arg = 0 

sets up FIXV «sub?cript» for use as an operand in the HALMAT 
instructlon and adds the error specification to the EXT ARRAY 
list if it is a new one. The internal routine ERROR S8-FIX 
examines the individual components of the subscript and-returns 
their values. 

Emit an ERSE instruction. Make an entry for the block 
summary. Join production 61. 

Production 73, 74 

<basic statement> ::= <on clause>; 
<on clause> AND <signal clause>; 

Issue ERON instruction (see ERROR SUB) and go set that 
no labels have been processed yet. -

Production 75 <basic statement> ::= OFF ERROR <subscript>; 

Use ERROR SUB to check the <subscript> for legality and 
to set up FIXV. Issue an ERON instruction. Go set that no 
labels have been processed yet. 

Production 76 <basic statement> ;:= <% macro name>; 

Issue PMHD and PMIN instructions. Check that the % macro 
does not expect arguments. Set that no labels have been 
processed yet. 

4-177 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661~1840 



", r "' 
L.':: ..... _ , ,:'< 

Production 77 

<basic statement> ::= <% macro h~ad> <% macro arg» ; 

Check that the correct number of arguments have been seen. 
Issue a PMAR for the last argument. Restore normal checking 
of variables. Issue a PMIN instruction to close the % macro 
invocation. Restore lock group checking. Set that no labels 
have been processed. 

Production 78 <% macro head> ::= <% macro name> ( 

Issue a PMHD instruction. DELAY CONTEXT CHECK. ,If this 
is %COPY, inhibit lock group checking~ 

Production 79 

<% macro head> ::= <% macro head> <% macro arg>, 

Issue a PMAR instruction for the argument. 

Production 80 <% macro arg> ::= <name var> 

Check that the <name var> meets the specification for 
the macro's arguments as listed in PCARGTYPE and PCARGBITS. 

Production 81 <% macro arg> ::= <constant> 

Similar to production 80 but simpler. 

Production 136 <assignment> ::= <variable> <=1> <expression> 

Initialize count of operands of HALMAT assignment operator 
to 2. Issue a NASN or XASN instrl)ction to perform the assign
ment and check that the left and right sides are compatible 
for an assignment. Copy the description of <expression> into 
<assignment>. 

Production 137 <assignment> ::= <variable> ,<assignment> 

Issue another operand for the assignment operator issued 
in production 136. Add 1 to the count of operands. Check that 
the left and right sides are compatible for assignment and copy 
description of <expression> to < assignment>. 

4.-178 

. "'1" ,,.,,-
.- . . ~ . . 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661~1840 

j 

j 



j .~ ""'. 

I 

Production 138, 139 

..... ~.,.----.. ~ .. -... -,~.=". -.~.--~~= . .,.".. .. ~" ."".." .. """"'"""'~"T"""" "..". .... _ou.""..,. """""""'j--'" --.. -

_ ••••• m •• ___ __ •• _._. ...~ ; ,:._ • 

<if statement> .. -.. - <if clause> <statement> 
, I <true part> <statement> 

Do not allow branching to <statement>. Issue an LBL 
instruction to define the flow number generated to allow 
branching around the <statement>. 

Production 140 <true part> ::= <if clause> <basic statement> ELSE ,; 

Do not allow branching to the <basic statement>. Drop 
any implicit transposes. List everything up to but not including 
ELSE. EMIT SMRK. SRN UPDATE. List the ELSE. Issue a BRA 
instruction-so that the <basic statement> code does not fall 
into the ELSE statement code. Issue an LBL instruction to 
define the flow number for the false branch on the IF, and 
save the flow number in FIXV for production 139. 

Production 141 <if clause> ::= <if> <relational exp> THEN 

Issue a branch to the false part and save the flow 
number for definition by production 140 or 138. List the 
statement. EMIT SMRK. 

Production 142 <if clause> ::= <if> <bit exp> THEN 

Issue a BTRU to transform the <bit exp> to a condition. 
Check that the <bit exp> is one bit long. EMIT ARRAYNESS. 
Join production 141. 

Production 143 <if> ::= IF 

Issue an IFHD instruction to start things rolling. 

Production 144 <do group head> ::= DO; 

Issue a DSMPand EMIT PUSH DO. 

Check that there are no implicit transposes hanging. 
List the statement. If there was a TEMPORARY, issue a TDCL 
to declare it. EMIT SMRK. 

4 .... 179 

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 

, 
" 

I 

J 

." 
... ," ... _~~ .. _ .. _ . __ ._.,...::..~_._'-::...";'~_-,-,-,.,_..:-~-.::,_-::..::.~~:~~!.::...~ .. j:~.:..... __ ~<hl,-,---:..~.~,_ .. ··~.~~~~~·"'J':k·1<;'· ,,,:-.If··~.....:......u.:"'=~"'~~~.,b,·"'·,]±" *~~;....:.d ... ;,,:.·~ 



r 

;, 

Production 145 <do group head> ::= DO <for list>; 

Fill into the DFOR a tag indicating whether it is a 
discrete DO, an implicit 1 increment DO, or an explicit 
increment DO. 

Join 144. 

Production 146 <do group head> ::= DO <for list> <while clause>~ 

Fix the DFOR as in 145, including also a high order 1 
bit if there is an UNTIL clause. Issue a CFOR to end the 
condi tional. 

Join 144. 

Production 147 

Issue a CTST to close the DTST. 

Join 146. 

Production 148, 152 <do group head> ::= DO CASE <arith exp>~ 

Check that <arith exp> is an unarrayed integer or 
scalar. 

Emit a DCAS (n.b. FIXL indicates whether or not there is 
an ELSE). EMIT PUSH DO. Emit the second operand describing 
the <arith exp>. 

Check that there are no hanging transposes. 

If there is an ELSE, print the statement without the 
ELSE. EMIT_SMRK, SRN_UPDATE. .Print: the ELSE. 

If there is no ELSE, print the statement,EMIT_SRMK. 
Join production ~49. 

Production 149 <do group head> ::= <case else> <statement> 

Check that there are no branches to <statement>. 

Initialize that no cases have yet been processed in 
this nested case. Join production 150. 

4-180 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 

A 
>_"~~~k..'~~~;.M;'ii:t'.~~~~~~~~· .;"~ ,~x~x¥i~ ;4- ... ·~~znW "'7' :'~:~i;w~~ii~~:~~' >< ~~_~~~~;~~~=.~,-"~;;~~~::~~~;;::"~,;~~:"=,~:-~~~·~X~_. _. ~~~ _____ v.~ 



r 

, 
i 
1 
f: 

I :' 

/'\ -~. 

I --- ---- '- -------_._---.--.-." 
:' ··I."~c.,,, ... '. 

Production 150 

<do group head> ::= <do group head> <any statement> 

If the DO group is a DO CASE and <any statement> is 
not a real <block definition> then: 

Set up for pretty output of case number. 

Issue a HALMAT CLBL instruction which points to the 
end of the DO CASE and defines the location of the case. 

Point FIXV at the last CLBL 9perator 

Production 151 <do group head> ::= <do group head> <temporary stmt> 

Check that the <temporary stmt> is at the beginning of 
the DO group and that the group is not a DO CASE. 

Output the statement. EMIT SMRK. 

Production 152 <case else> ::= DO CASE <arith exp>; ELSE 

See production 148. 

Production 153, 154 <while key> ::= WHILE 
UNTIL 

If this is not a DO FOR then issue a HALMAT DTST and 
EMIT PUSH DO. 

Set FIXL: 

o for WHILE 
1 for UNTIL 

Production 155 <while clause> ::= <while key> <bit exp> 

Check that <bit exp> is an unarrayed boolean. Emit a 
HALMAT BTRU to transform it to a relation. 

Copy WHILE/UNTIL indicator to INX and copy indirect 
stack pointer. 

Production 156 <while clause> ::= <while key> <relational exp> 

Join production 155. 

4-181 

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 

I 
-~ 



I, ' 

Production 157 

<for list> ::= <for key> <arith exp> <iteration control> 

Check that <arith exp> is an unarrayed integer or scalar. Issue a DFOR. EMIT PUSH DO. Emit two or one operands depending on whether or not there is a BY clause. Point FIXV at the DFOR. Set PTR to the number of operands. 

Production 158 <for list> ::= <for key> <iteration body> 

Fill in tag field in last AFOR to indicate that it is the end of the list. 

Set PTR to indicate a discrete DO. 

Production 159 <iteration body> ::= <arith exp> 

This is the beginning of the list of values so issue the HALMAT DFOR operator here. 

Call EMIT PUSH DO to build a DO stack entry, reserve enough flow numbers-for the entire DO group processing and emit the first operand of the DFOR which is the flow number of the instruction immediately following the end of the DO group. 

Issue a HALMAT operand for the variable in the <for key>. 

Set FIXV of <for key> to point to the DFOR. 

Fall into production 160 to finish processing <arith exp>. 

Production 160 <iteration body> ::= <iteration body>, <arith exp> 

Check that the <arith exp> is an unarrayed integer or scalar. Issue a HALMAT AFOR instruction for the <arith exp>. Reserve a flow number just in case. 

Set FIXV of <iteration> body to point to the last AFOR issued. 

4-182 
INTERMETRICS INCORPORATED· 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 

l 

J 
~ 
" 

i 
, 4 

1 
" Ji 

'" .. 
" 

, ~ 
. .., 

,. 

l 
.~ , 



" 
i 

j , 
1 

) 

Production 161, 162 

<iteration control> ::= TO <arith exp> 
TO <arith exp> BY <arith exp> 

. Check that <arith exp> is an unarrayed integer or 
scalar. Set TEMP2 to 2 if BY is present; otherwise to 1. 

Production 163 <for key> ::= FOR <arith var> = 

Check legality of assignment. 

Check that <arith var> is an unarrayed integer or 
scalar via UNARRAYED SIMPLE. Drop <arith var>'s FIXL entry. 

Production 164 <for key> ::= FOR TEMPORARY <identifier> = 

Build an indirect stack entry to describe <identifier>. 

Production 165 <ending> ::= END 

Just syntax. 

Production 166 <ending> ::= END <label> 

Check that the <label> matches the <label definition> 
on the innermost DO. 

Production 167 <ending> ::= <label definition> <ending> 

SET LABEL TYPE. 

Production 168 <on phrase> ::= ~N ERROR <subscript> 

Check the <subscript> for validity and set up FIXV. 
Issue an ERON instruction and save the "branch around" flow 
number in FIXL. List the statement. EMIT SMRK. 

Production 169, 170 <on clause> .. -.. - ON ERROR <subscript> SYSTEM 
ON ERROR <subscript> IGNORE 

Save action in FIXL. Check the <subscript> and set up 
FIXV. 

4-183 

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 



Production 171-173 <signal clause> .. -.. -
I 

·1 

SET <event var> 
RESET <event var> 
SIGNAL <event var> 

Check that this is not an lnline and that the event is 

latched (except for SIGNLA). Check that there is not any 

arrayness. Save the action in INX. 

Production 174 <file exp> ::= <file head> , <arith exp> 

Check that the device number is small enough. Check 

that <arith exp> is an unarrayed scalar or integer. 

RESET ARRAYNESS. 

Production 175 <file head> ::= FILE «number> 

Save device number = ·<number>+2. 

SAVE ARRAYNESS. 

Production 176 <call key> ::= CALL <label var> 

Tr.ace back through the IND CALL LAB chain to locate 

the symbol table entry for the procedure and check that it 

is a procedure and not access protected. 

Initialize argument count to O. 

Production 179, 180 

<call assign list> <varjable> 
<call assign list> , <variable> 

Count the argument. Issue an XXAR instruction to specify 

the argument. Drop any arrayness. Check that the argument 

is legal for an assign parameter. 

Production 273 - 277 <io control> .. -.. - SKIP «arith exp» 
TAB «arithexp» 
COLUMN «arith exp» 
LINE «arith exp» 
PAGE «arith exp» 

Save the control function in TEMP. Check that the <arith exp> 

is an unarrayed integer or scalar. 

4~184 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617)661-1840 

• [ 1 fil , .. .IUII 



Production 278, 279 

<read phrase> .. -.. - <read key> <read arg> 
<read phrase> , <read arg> 

TEMP = o - <expression> or <variable> 
1 - TAB 
2 - COLUMN 
3 - SKIP 
4 - LINE 
5 - PAGE 

If this is a READ, check that the argument is legal. 
Otherwise, call READ ALL TYPE to check whether the argument 
contains any non-character string variables. 

Production 280, 281 

<write phrase> ::= <write key> <write arg> 
<write phrase>, <write arg> 

Just syntax. 

Production 282-285 <read arg> ::= <variable> 
<io control> 

<write arg> ::= <expression> 
<io control> 

Check that the item is legal for I/O and that this is not 
an inline function. Issue an XXAR instruction for this operand 
of the I/O subroutine call. If it is a structure, there cannot 
be any NAMEs in the structure. EMIT ARRAYNESS. 

Productions 286-288 

<read key> 

<write key> 

: : = 
.. -.. -

READ «number» 
READALL «number» 
WRITE «number» 

TEMP = 0 - READ 
1 - READ ALL 
2 - WRITE 

Issue an XXST instruction to start the I/O reference. 
Build an indirect stack entry for <read key> or '<write key> 
describing the device. Check that the device is legal for 
the I/O requested. Save TEMP in INX. 

4-185 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 



Production 429, 430 <terminator> ::= TERMINATE 
CANCEL 

Incorporate type of terminator in FIXL, FIXV. 

Production 431 <terminate list> ::= <label var> 

Set up to count the number of <label var>s in EX~ P. 
Join production 432. 

Producti0n 432 <terminate list> .. -.. - <terminate list>, <label var> 

Count the <label var>. Build a cross reference. Check 
that the <label var> is either a program or a task via PROCESS CHECK. 

Production 433 <wait key> ::= WAIT 

Initialize REFER LOC. 

Production 434 <schedule head> ::= SCHEDULE <label var> 

Check that <label var> is a program or task. Initialize 
REFER LOC. 

Production 435-437 

<schedule head> ::= <schedule head> AT <arith exp> 
<schedule head> IN <arith exp> 
<schedule head> ON <bit exp> 

Check that the <arith exp> or <bit exp> is legal. Check 
that only one of the three forms was specified. Set 
INX«label var» to indicate which of the three forms. 

Production 438 <schedule phrase> ::= <schedule head> 

There must be a priority specified. 

Production 439, 440 

<schedu].e phrase> ::= <schedule head> PRIORITY «arith exp» 
I <schedule phrase> DEPENDENT 

Set bits in INX«label var». 

4-186 

A " :",' -4. 
1; ~ 

~'~. ",.' 

INIERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETIS02138 • (617) 661-1840 

... 
. ~ 41!~i iZlil![ ,=...,.,..,.."...,..,---....... ---.~""""~ 



i 

j .. ~ 

Productions 441-443 <schedule control> 

Syntax. 

.. -.. - <stopping> 
<timing> 
<timing> <stopping> 

Productions 444-446 <timing> ::= <repeat> EVERY <arith exp> 
<repeat> AFTER <arith exp> 
<repeat> 

<arith exp> must be an unarrayed integer or scalar. 
Set the appropriate bit in INX. 

Production 447 <repeat> ::= , REPEAT 

Syntax. 

Production 448 <stopping> ::= <while key> <arith key> 

Check that this is UNTIL situation and <arith exp> is 
an unarrayed integer or scalar. Set bit in INX. 

Production 449 <stopping> ::= <while key> <bit exp> 

Check that the <bit exp> is legal via CHECK EVENT EXP. 
Set bit in INX. 

4~187 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 

I 

J 
.,.r 

.. ~ 



I. ' 

I 

, ! 

4.4.7 <compilation> 

This section deals with productions 1-3, 289-292, 
and 426-428. 

1 <COMPILATION> ::= <COMPILE LIST> _1_ 

2 <COMPILE LIST> ::= <BLOCK DEFINITION> 
3 <COMPILE LIST> <BLOCK DEFINITION> 

289 <BLOCK DEFINITION> ::= <BLOCK STMT> <BLOCK BODY> <CLOSING> 

290 
291 
292 

426 
427 
428 

<BLOCK BODY>:: = 
, I<DECLARE GROUP> 

I <BLOCK BODY> <ANY STATEMENT> 

<CLOSING> CLOSE 
CLOSE <LABEL> 
<LABEL DEFINITION> <CLOSING> 

4 ... 188 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 



, 
;. 

"C'~'C"··-;:-,;;;:,:-,::::-··-~"···~~-~-···-r-~·-· -~~~-l-~~'l 

j 

Production I <compilation> ::= <compile list> _,_ 

Check that the parse stack is empty and that this is a 
compilation unit. Issue an XREC instruction and flush the 
HALMAT buffer. Flush out the LITFILE. Set COMPILING. 

Production 2, 3 

<compile list> ::= <block definition> 
<compile list> <block definition> 

Just syntax. 

Production 289 

<block definition> ::= <block stmt> <block body> <closing> 

TEMP = ICLS for inline, 
CLOSE for normal. 

TEMP2 = INLINE LEVEL for inline function, 
o otherwise. 

Issue the ICLS or CLOSE instruction. 

'-~' Make a pass over all the symbol table entries for this 
scope; DISCONNECTing them along the way. 

functions should have been defined 

statement labels should have been defined 

in the outermost scope, procedures and tasks 
should have been defined 

in embedded scopes, block summary information should 
be supplied for undefined procedures and tasks 

if a procedure call referencing an IND CALL LAB 
can definitely be associated with a procedure 
definition, add the cross reference data from the 
IND_CALL_LAB to the definition entry using TIE XREF 

If the <closing> specified a name, check that it matches 
the name of this scope. 

If it is an inline function, save the inline counters 
and restore the regular ones. 

4-189 
INTERMETRICS INCORPORATED' 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETIS 02138 • (617) 661-1840 

j 

I 

1 

1 
" 

1 
J 

.j 

1 
1 

-J 
I 
I 
i 
J 
1 
1 
1 
i • 
~ 
J 

1 
.. -~ 

1 
.1 

l , 
~ , 

I 
~ 
i 

1 



r-- r- ---
I 

If it is not an inline BLOCK_SUMMARY prints the block 
summary information for the scope being closed. 

Count the unique errors handled by the block, encode 
the information in SYT ARRAY and discard the now useless 
EXT ARRAY entries. 

Productions 290, 2:;1, <blo~k body> .. -.. -
<declare group> 

Issue an EDCL indicating whether or not there was a 
<declare group>. 

For functions and procedures, check that all parameters 
have been declared. 

Set that no statements have been processed yet. 

Production 292 <block body> ::= <block body> <any statement> 

Set that a statement has been found. 

Production 426-428 <closing> :: T 
I 

CLOSE 
CLOSE <label> 
<label definition> 

If there is a <label definition> SET LABEL TYPE. If 
,there is a <label> save it in VAR«closing» to-check it 
in production 289. 

4-190 

<closing> 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 

I 

~ ... 



~ , 
!. 

I . 
I 

1 

'I 

4.4.8 .HALMAT and Initialization Routines 

HALMAT .POP 
HALMAT-FIX POPTAG 
HALMAT FIX PIP# 

CALL HALMAT_POP(OP, n, C, tag) creates 

CURRENT ATOM = tag n OP 

8 8 .12 3 1 

804000 
808000 
807200 

This is inserted in the HALMAT block and LAST POP# points 
to it. 

HALMAT_FIX_POPTAG resets tag field. 

HALMAT_FIX_PIP# resets field n. 

HALMAT PIP 
HALMAT-FIX PIPTAGS 

CALL HALMAT_PIP(A, B, c, D) creates 

CURRENT ATOM = A C 

16 8 4 3 

and enters it into the current HALMAT block. 

1 

805000 
808800 

HALMAT FIX PIPTAGS resets field C with argument 1, 
and field D-with argument 2. 

HALMAT TUPLE -- 805900 

CALL HALMAT TUPLE (op, b, oprndl, 
rndlt2, rnd2tl, 
o 

tag 1 op 
2 

sym pointer 1 tndlt1 form 1 
sym pointer 2 rnd2tl form 2 

4-191 

oprnd2, tag, 
rnd2t2) 

b 0 

rnd1t2 1 +-

rnd2t2 i +-

rndlt1, 

if oprndl~O 
if oprnd2~1 

! 

:'! INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 
'j 

j 
I 



r: 

t: 
'I 
'I 

~. ,_. ,"~"- '" .......... '''''~'-''''','~-''''-~' . '~--~~-'~~"~"~ .. 

Jf'§:'" ·'"'';~4'.''':'''''''''::· ""::': 

HALMAT 
HALMAT BACKUP 
HALMAT-BLAB 
HALMAT-RELOCATE 

801100 
803400 
790000 
794100 

HALMAT calls HALMAT OUT to output the current block if 

necessary and then puts CURRENT ATOM into the block. HALMAT BLAB 

prints a HALMAT instruction. HALMAT RELOCATE moves down some 

HALMAT code when the previous code has been forced out leaving 

an empty space. HALMAT BACKUP resets the pointer, thereby 

erasing some HALMAT. -

INITIALIZATION 1055200 

Pick up the options specified in the JCL invocation of the 

compiler. Print the heading using the TITLE if supplied; other

wise, the default. Print the parameter field from the JCL. 

Print the type 1 and type 2 options and store their values in 

more ~ccessible places. 

Allocate space for the based variables other than the symbol 

table used in Phase I via STORAGE MGT. 

Define all the pointers into the DW area. 

Allocate space for the common and then non-common symbol 

table arrays. 

Define the card type characters using the defaults and 

the CARDTYPE parameter. 

Read.a card, determine the style of input and if the first 

card could not follow a comment, skip cards until a reasonable 

one is found. 

Initialize the scanner with calls to STREAM and SCAN. 

Initialize the parser to the initial state and build the 

VOCAB INDEX arraY,fol;' it.' 

4-192 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 

fl'tt 'm' w er 

I 



l 
I, 

4.5 Global Names of Phase I 

4.5.1 Variables 

# PRODUCE _NAME 

ACCESS FLAG 

ACCESS FOUND 

ADD AND SUBTRACT 

ADDR FIXED LIMIT 

ADDR FIXER 

ADDR PRESENT 

ADDR ROUNDER 

ADDR VALUE 

ALDENSE FLAGS 

ALIGNED FLAG 

ALMOST DISASTER 

ANY TYPE 

APPLYl 

APPLY2 

ARITH FUNC TOKEN 

ARITH LITERAL 

ARITH SHAPER SUB 

ARITH TO CHAR 

ARITH TOKEN 

ARRAY DIM LIM 

ARRAY FLAG 

ARRAY SUB COUNT 

ARRAYNESS FLAG 

} 

See Parser. 

See symbol table 

See STREAM. 

Procedure. 

See SCAN. 

See SCAN. 

SYT FLAGS. 

On if ADDRS option requested in JCL. 

See DW. 

See SCAN. 

See symbol table -- SYT FLAGS. 

Label. 

See symbol table SYT TYPE. 

See Parser. 

See Parser. 

See TOKEN. 

Procedure. 

Procedure. 

Procedure. 

See TOKEN. 

The maximum size of an array dimension. 

See symbol table SYT FLAGS. 

Section 4.4. 

Current expression is arrayed. 

4 ... 193 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 



:, ",- , T'~-"'" 

ARRAYNESS NEST 

ARRAYNESS STACK 

AS PTR 

ASSIGN ARG LIST 

ASSIGN CONTEXT 

ASSIGN PARM 

ASSIGN TYPE 

ASSOCIATE 

AST STACKER 

ATOM# FAULT 

ATOMS 

ATTACH SUB ARRAY 

ATTACH SUB COMPONENT 

ATTACH SUB STRUCTURE 

ATTACH SUBSCRIPT 

ATTR BEGIN FLAG 

ATTR FOUND 

ATTR INDENT 

ATTR LOC 

ATTR MASK 

ATTRIBUTES 

AUTO FLAG 

AUT STAT FLAGS 

BASE PARM LEVEL 

BCD 

Not used. 

Section 4.4. 

Section 4.4. 

Section 4. 4. 

See CONTEXT in SCAN. 

See symbol ,table 

Section 4.4. 

Procedure. 

Procedure. 

Section 4.4. 

Section 4.4. 
,. ! 

Procedure. 

See GRAMMAR FLAGS. 

Section 4.4. 

SYT FLAGS. 

The amount to indent after an attribute. 

1 Section 4.4 

See symbol table 

See symbol table 

See STREAM. 

See SCAN. 

4-194 

SYT FLAGS. 

SYT FLAGS. 

INTERMETRICS INCORPORATED,' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 

"",,£1..11, 

,I 
" 
J 



BCD PTR See GRAMMAR FLAGS. .... 
BEGINP Temporary. 

BI ARG TYPE Section 4.4. 

BI FLAGS Section 4.4. 
i. ) 

BI FUNC FLAG Section 4.4. 

BI INDEX See SCAN •. 

BI INFO See SYNTHESIZE. 

BI NAME See SCAN. 

BI XREF Section 4.4. 

BIT FUNC TOKEN See TOKEN. 

BIT LENGTH Section 4.4. 

BIT LENGTH LIM Section 4.4. 

BIT LITERAL Procedure. 

BIT TOKEN See TOKEN. 

BIT TYPE See symbol table -- SYT TYPE. 

BLANK Procedure. 

BLANK COUNT See STREAM. 

BLOCK MODE See SYNTHESIZE. 
. 

BLOCK SUMMARY Procedure. 

BLOCK SUMMARY ISSUED Not used. 

BLOCK SYTREF Section 4.4 

BORC TYPE See symbol table SYT TYPE. 

BUILDING TEMPLATE Secti.on 4.4 

4-195 
INTERMETRICS INCORPORATED· 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 

----- ~~ 
"' _'_1 .... ","'::. : .• ,---"~",-""_~_,"."_,_ • .c.:,,,, .. _ (M:·~\:."'''--~"''-~:''::At.L_·'''-'C_ ~"';" .. ~.:.~"ct...:--=:-.:::O~-"'L~~""~'_.~~J:'.U;>;~_·_:"'_~k~<_J:"",,,,,:,miiL*,,"!..ii~~i. .... .J.~""-'..;.::.:e~"".:~~.:::""'"'-~::...,."'.:....:,_ 



C 

CALL SCAN 

CALLED LABEL 

CARD COUNT 

CARD TYPE 

CASE LEVEL 

CASE STACK 

CHAR FUNC TOKEN 

CHAR INDEX 

CHAR LENGTH 

CHAR LENGTH LIM 

CHAR LITERAL 

CHAR OP 

CHAR TOKEN 

CHAR TYPE 

CHARACTER STRING 

CHARDATE 

CHARTIME 

CHARTYPE 

CHECK ARRAYNESS 

CHECK ASSIGN CONTEXT 

CHECK CONFLICTS 

CHECK CONSISTENCY 

CHECK EVENT CONFLICTS 

CHECK EVENT EXP 

CHECK IMPLICIT T 

Temporary. 

Procedure. 

Not used. 

See STREAM. 

See STREAM. 

Section 4.4. 

Section 4.4. 

See TOKEN. 

Procedure. 

Section 4.4. 

Section 4.4. 

Procedure. 

See O-W and SCAN. 

See TOKEN. 

See symbol table -- SYT TYPE. 

See TOKEN. 

Procedure. 

Procedul;e. 

See STREAM. 

Procedure. 

4 ... 196 

REPRODUOIBILITY OF 'Inn 
ORIGINAL PAGE IS POOR 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 

.. ~ 

.~ 

.j 



-~-__ ~-~_-·~ ____ .~._¥*-~ __ .,._.~ ••• ,u,~,. __ -~-w~~~.~_r_T~-~'-'~I~ 

~ .• · .••. ".~2:~,.·.~='-:0'---'-"~.,,"!"':E"". :~:t''''''.~~··~'''l!'''-''c~ '~"".}'k~""'" '1 

CHECK NAMING 

CHECK STRUC CONFLICTS 

CHECK SUBSCRIPT 

CHECK TOKEN 

CLASS 

CLASS A 

CLASS AA 

CLASS AV 

CLASS XM 

CLASS XU 

CLASS XV 

CLOCK 

CLOSE BCD 

CMPL MODE 

COMMA 

COMMENT COUNT 

COMMENTING 

COMMON_SYTSIZES(i) 

COMPARE 

COMPILATION LOOP 

COMPILING 

COMPOOL LABEL 

COMPRESS OUTER REF 

CONCATENATE 

CONSTANT FLAG 

CONTEXT 

Procedure. 

Section 4.4. 

Error codes -- see User's Manual. 

o - beginning of time. 
1 - time at end of set up. 
2 - time at end of processing. 
3 - time at end of clean up. 

Section 4.4. 

Compiling a COMPOOL. 

See TOKEN. 

See O-W. 

See STREAM. 

The number of bytes for an entry in the 
ith common symbol table array. 

Procedure. 

Procedure. 

Switch on while computation is continu
ing normally. 

See symbol table 

Procedure. 

See TOKEN. 

SYT TYPE. 

See symbol table -- SYT FLAGS. 

Se.e SCAN. 

4 ... 197 

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 

. . 

1 
i 

-
-~- ... 

~""'L>,,"_::...·,·-..._.;.r_,-,,_ .. ,~'''::''C-'_'~'~..!%'~'''';'·;'''''"''-.'.~±.:~_...z.·_'-=--.'i:::-"-~_",,':;..,e,,..oz~~~=.~~~~~~t'-r.!1:~~~-""""""""""""'~·~""'~'-:-'.r.~~""" ~.:.Gms..;.t0 e;.7>j-JibJt":".s~~.;,~,....;~"," 



CONTROL 

COPINESS 

CPD NUMBER 

CROSS 

CROSS COUNT 

CROSS TOKEN 

CUR IC BLK 

CURLBLK 

CURRENT ARRAYNESS 

CURRENT ATOM 

CURRENT CARD 

CURRENT SCOPE 

DECLARE CONTEXT 

DECLARE TOKEN 

DECOMPRESS 

DEF BIT LENGTH 

DEF CHAR LENGTH 

DEF MAT LENGTH 

DEF VEC LENGTH 

DEFAULT ATTR 

DEFAULT TYPE 

DEFINED LABEL 

There are a collection of diagnostic 
control toggles that can be set by 
¢toggle on 'DEBUG directives (Section 
2.2.7), CONTROL (0) is status of ¢O,' ••• , 
CONTROL ("F") is status of ¢F. 

Procedure. 

See TOKEN. 

Signal for a cross product. 

The number of cross products in a product. 

See TOKEN. 

Section 4.4. 

See literal table. 

Section 4.4. 

Section 4.4. 

See STREAM. 

Name of the block actually being read 
by STREAM. 

See SCAN -- CONTEXT. 

See TOKEN. 
, 

Propedure. 
I 

! 

S'ee SCAN. 

See symbol table -- SYT FLAGS. 

4 ... 198 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 



· "" .......... - ..... --.~ .. -c··-.·""·-·~-~.~-~;;"",·~=·~-.. u, .. ",.".~= ..... _ ,.ft~ ... "", """_'_'*"1""-* ; 1 i .• '[ . 

-' .. '.' ". ,.p'''' .".... " ...•. 'c-,'" ··;""'U'~C'·"'''·''·.," Y. '~'C'''''' __ -''~' ___ '''''lift7 '>:""'~ .~ ... ~ 

DELAY CONTEXT CHECK Section 4.4. 

DESNE FLAG See symbol table SYT FLAGS. 

DESCORE Procedure. 

DISASTER Procedure. 

DISCONNECT Procedure. 

DO CHAIN 1 
DO INIT 

DO INX 
Section 4.4. 

DO LEVEL 

DO LOC 

DO PARSE 

DO TOKEN See TOKEN. 

DOLLAR See TOKEN. 

DONT SET WAIT See SCAN -- PRINTING ENABLED. 

DOT Signal for a dot product. 

DOT COUNT Count of dot products in a product. 

DOT TOKEN See TOKEN. 

DOUBLE See O-W. 

DOUBLE FLAG See symbol table SYT FLAGS. 

DUMMY FLAG See symbol table SYT FLAGS. 

DUMP MACRO LIST See o-w. 
DUMPIT Procedure. 

DUPL FLAG See symbol table -- SYT FLAGS 

4-199 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02i38 • (617) 661~1840 



DW 

DW AD 

EMIT ARRAYNESS 

EMIT EXTERNAL 

EMIT PUSH DO 

EMIT SMRK 

EMIT SUBSCRIPT 

END ANY FCN 

END GROUP 

END OF INPUT 

END SUBBIT FCN 

ENDITNOW 

ENDSCOPE FLAG 

ENTER 

ENTER DIMS 

ENTER XREF 

EOFILE 

EQUAT'E _CONTEXT 

EQUATE_IMPLIED 

EQUATE_LABEL 

-- . - -~- ~ -- ~-,- --~ -........ _- -- --~ ~ ~l-~- --~-- ~-'---l='=-

- ~ .; • "I '> I 

An area set aside for communication with 
the MONITOR. 

Map of D!-'7:" 

" byte 
~ 

o 
4 

24 

32 

40 

,48 

'F t- 1= 

4E 00 00 .• .,22. i-==----
0 

40 7F FF Fi" 
FF FF FF r'P 
40 7F FF FF 
PP PF f"P PP 

The address of DWeO): 

;.... Procedure. 

See STREAM. 

See STREAM. 

Procedure. 

Procedure. . 

6 • ADDa VALUE 
~ 

8 ."ADDR FIXER 
. -' 

lo+ AOOR_FlXEO_LIHI~ 

l2. ADOR_ROUNOER 

See sywbol table -- SYT FLAGS. 

Procedure. 

Procedure. 

Procedure. 

See TOKEN. 

See CONTEXT. 

EQUATE names are kept in the symbol table 
with a @ prepended to them. EQUATE_IMPLIED 
is on until this transformation is made. 

See symbol table -- SYT TYPE. 

4-200 

"fl>-
[ 

"". 
INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 

" 

~ 

1 
4. 

j 
f:~ l ~I 

" ~ "! 
:'. .J J .~ ~ .~ ~ 

, .. ~ . 1 . ) 

...... 



EQUATE_TOKEN 

"''' ERROR 
"'Jr' 

ERROR CLASSES 

ERROR COUNT 

ERROR SUB 

ERROR SUMMARY 

ESCAPE 

EVENT TOKEN 

EVENT TYPE 

EVIL FLAG 

EXCLUSIVE FLAG 

EXP OVERFLOW 

EXP TYPE 

EXPONENT 

EXPONENT LEVEL 

EXPONENTIATE 

EXPRESSION CONTEXT 

EXT ARRAY 

EXT ARRAY PTR 

EXT P 

EXTERNAL 

EXTERNAL FLAG 

EXTERNALI ZE 

FACTOR 

FACTOR FOUND 

See TOKEN. 

Procedure. 

A character string used to produce .the 
two letter error class code. 

Number of errors accumulated during 
compilation. 

Procedure. 

Procedure. 

Non-HAL escape character. 

See TOKEN. 

See symbol table SYT TYPE. 

See symbol table SYT FLAGS. 

See symbol table SYT FLAGS. 

See SCAN. 

See SCAN. 

See TOKEN. 

Incremented by one for every **, de
cremented at the end of the exponent. 

See TOKEN. 

See SCAN -- CONTEXT. 

See symbol table. 

See sym~ol table EXT ARRAY. 

Section 4.4. 

Section 4.4. 

See symbol table SYT FLAGS. 

Section 4.4. 

See TOKEN. 

Section 4.4. 

4..;201 

? INTERM~TRICS INCORPORATED· 701 OONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 i 
~ 

j 
'v"n Ii 

~ 
'1 

i 

.1 

l 
1 , 

~~ J 
·t I ~ 
.~, 

1 .:i 
~ry 

i ~) 

.. ~~ 



FACTORED ATTR MASK 

FACTORED ATTRIBUTES 

FACTORED BIT LENGTH 

FACTORED CHAR LENGTH 

FACTORED CLASS 

FACTORED IC FND 

FACTORED IC PTR 

FACTORED LOCK# 

FACTORED MAT LENGTH 

FACTORED N DIM 

FACTORED NONHAL 

FACTORED S ARRAY 

FACTORED STRUC DIM 

FACTORED STRUC PTR 

FACTORED TYPE 

FACTORED VEC LENGTH 

FACTORING 

FCN ARG 

FCN LOC 

FCN LV 

FCN MODE 

FIRST FREE 

FRIST STMT 

FACTORED XXX is copied to and from 
XXX by a-loop copying between the 
"array" TYPE and the "array" 
FACTORED TYPE. 

1 Section 4.4 

1 
See MACRO TEXT in SCAN. 

Section 4.4. 

4-202 
INTERMETRICS JNCORPORATED' 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETIS 02138 • (617) 661~1840 



.... ", 

'oiJlJP' 

'-"---~'--~-. -.--'~--" ~~~~ .. W=L •• , ... ,...". "~'"M' __ ,"on,~.,,::;::.,,:':"~_W ... "_,,~U .,-~" T ~'''-'~·t~·~ 

_. '-1 1 

FIRST TIME 

FIRST TIME PARl-l 

FIX DIM 

FIXF 

FIXING 

FIXL 

FIXV 

FL NO 

FL NO MAX' 

FLOATING 

FOUND CENT 

FUNC CLASS 

FUNC FLAG 

FUNC MODE 

GET ARRAYNESS 

GET FCN PARM 

GET_ICQ 

GET LITERAL 

See STREAM • 

See STREAM.' 

Section 4.4. 

Section 4.4. 

See SCAN. 

Section 4.4. 

Section 4.4. 

Section 4.4. 

Section 4.4. 

Procedure. 

See SCAN. 

See symbol table -- SYT FLAGS. 

See GRAMMAR FLAGS. 

Section 4.4. 

Procedure. 

Procedure. 

Procedure. 

Procedure. 

4-203 

IW"ERMETRICSINCORPORATED·701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840 

, I 
-i ~ 

;l 
j 

j 
l 
j 
] 
I . 
1 
~ 
I 
1 
1 • 

j 

1 , 

I 
~ 

t 
I 
i 
"I 

J 
~'i ,z 

t I 'i 

;l- 1 s 



r r' -. '"' -~ .. r"·--··-:-·' -.:~,-"-~~'-~~'-~-'-~ ~ .. ~"-.--:-------.~.--~ ""J!'"- .-~ _. .-"'---...... ---:';~-.~~--. -~"Q"'"~""'~;>"....,......~~-"'--.--~ , , 

I 

GI'.AMMAR FLAGS The statement stack is used to .store up 
a source statement before Printing. The 
stack is built of three'parallel arrays 
as indicated in the diagram. STMT PTR 
points to the top-most entry in the stack. 
Notice that t'he actual character strings 
are stored in SAVE BCD. TOKEN FLAGS simply 
contains an index into SAVE BCD. BCD PTR 
points to the last entry in-SAVE BCD.- In the 
general case, some of the mat:erial in the 
stack has been printed and LAST WRITE points 
to the first unprinted item. -

A Statement Stack Item: 

token code 

;:.;l6::.-__ -v-___ ~1; J.~6~ ___ ...,\? 6 1.J.~6:._ ___ __.r __ ----l:....J. 

In order to associate items in the parser's 
stack with their entries in the statement 
stack, the parser maintains STACK PTR entires. 
STACK PTR (parser stack pointer) points to 
the element's entry in the statement stack. 

GRAMt1AR_FLAGS values, 

0042 ATTR BEGIN FLAG 

0428 FUNC FLAG 

0577 INLINE FLAG 

0671 LABEL FLAG 

0687 LEFT BRACE FLAG 

0688 LEFT BRACKET FLAG 

0786 MACRO ARG FLAG 

0976 PRINT FLAG 

0978 PRINT FLAG OFF -
1047 RIGHT BRACE FLAG 

1048 RIGHT BRACKET FLAG 

1160 STMT END FLAG 
4-204 

Token is a function call~ 

Token is an iriline function. 

Token is a label. 

Preceed token by , { , on output. 

Preceed token by t [ , on output. 

Token is an'argument to a macro. 

Token should be printed. 

., PRINT FLAG -- Used to turn off 
, PRINT FLAG. 

Append "}" after token on output. 

Ap'pend "]" after token on output. 

Final token in statement. 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBHluGE, MASSACHUSETIS 02138' (617) 661-1840 

,.[ .. 1111 "iT ,", "" t .l~.,,""' ."1.e: . ~:::w&IIIII£!~~~) "·~~'~~::,::::~=r~':'~;~T~~:·~=g;p:;z.r.;-"'·~IWl~~;;a-:;';;··;::;:::l::i::::-_:~::::;:"'~ ,_" .... ~:~_ ........ _ .. """1li!:_' ....... """-

I 

I 
I 
1 
1 
1 
i 

, 
... ,r; 



"~ ... 

GRAMMAR FLAGS UNFLO 

GROUP NEEDED 

HALMAT 

HALMAT BACKUP 

HALMAT BLAB 

HALMAT BLOCK 

HALMAT CRAP 

HALMAT FILE 

HALMAT FIX'PIP# - -
HALMAT FIX PIPTAGS 

HALMAT FIX POPTAG 

HAL~1AT INIT CONST 

HALMAT OK 

HALMAT OUT 

HALMAT PIP 

HALMAT POP 

HALMAT RELOCATE 
HALMAT RELOCATE FLAG 

HALMAT TUPLE 

HALMAT XNOP 

HASH 

HEX 

HOW TO INIT ARGS 

I 

I FORMAT 

Not used. 

See STREAM. 

Procedure. 

Procedure 

Procedure. 

Section 4.4. 

The HALMAT file is bad. 

Section 4.4. 

Procedure. 

Procedure. 

Procedure. 

Procedure. 

The HALMAT file is good. 

Procedure. 

Procedure. 

Procedure. 

PROCEDURE 

The HALMAT is not positioned at the bottom 
of the buffer and should be moved down. 

Procedure. . 
Procedure. 

Procedure. 

Procedure. 

Procedure. 

Temporary~ 

Procedure. 

4-205 

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 

" ·:~"~.E~.tO\iiE'-''':''':''':'"":::.:i,:..":......:..:.:z;;p;:::.::~~="=~"",~ .... _ .... ,,,,,"" . , ....... .ir.,~_~,.~ ... "".,_~._c._ .• ~,._"=" .... ~".:._._ 



'I 

i 

IC FILE 

IC FND 

IC FORM 

IC FOUND 

IC LEN 

IC LIM 

IC LINE ,-

IC LOC 

IC MAX 

IC ORG 

IC PTR 

IC PTRI 

IC PTR2 

IC TYPE 

IC VAL 

ICO 

:J:CO_ARRAY#· 

ICO_ARRAYNESS_OUTPUT 

ICO_CHECK_TYPE 

ICO_OUTPUT 

ICO_TERM# 

ID LOC 

ID TOKEN 

IDENT COUNT 

IDENTIFY 

Section 4.4. 

Procedure,. 

Section 4.4. 

See TOKEN. 

See SCAN. 

Procedure. 

4,..206 

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 



'f' r .. -
i 

[

" " 

, . 

ILL ATTR 

ILL CLASS ATTR 

ILL_EQUATE_ATTR 

ILL INIT ATTR 

ILL LATCHED ATTR 

ILL MINOR STRUC 

ILL NAME ATTR 

ILL TEMPL ATTR -. 
ILL TEMPORARY ATTR 

ILL TERM ATTR 

IMP DECL 

IMPL T FLAG 

IMPLICIT T 

IMPLIED TYPE 

IMPLIED UPDATE_LABEL 

INACTIVE FLAG 

INCLUDE CHAR 

INCLUDE COMPRESSED 

INCLUDE END 

INCLUDE LIST 

INCLUDE LIST2 

INCLUDE MSG 

INCLUDE OFFSET 

INCLUDE OPENED 

INCLUDING 

Section 4.4. 

1 
See symbol table -- SYT FLAGS. 

See symbol table --. SYT FLAGS. 

See SCAN. 

See SCAN. 

Section 4.4. 

See symbol table SYT FLAGS. 

See o-w. 

See STREAM. 

4 ... 207 

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 

\J' , 

.f 



I-

I: 

IND CI,LL LAB 

IND_ERR_# 

IND LINK 

IND STMT LAB 

INDENT INCR 

INDENT LEVEL 

INDEXl 

INDEX2 

INFORMATION 

INIT CONST 

INIT EMISSION 

INIT FLAG 

INITCONST OFF 

INITIAL INCLUDE RECORD 

INITIALIZATION 

INLINE FLAG 

INLINE INDENT 

INLINE INDENT RESET 

INLINE LABEL 

INLINE LEVEL 

INLINE MODE 

INLINE NAME 

INLINE STMT RESET 

INP OR CONST 

See symbol table -- SYT TYPE. 

Temporary. 

Section 4.4. 

See symbol table 

Section 4.4. 

See O-W. 

See Parser. 

See Parser. 

See O-W. 

See symbol table 

Section 4.4. 

See symbol table 

See symbol table 

See STREAM. 

Procedure. 

See GRAMMAR FLAGS. 

See O-W. 

See O-W. 

Section 4. 4. 

Section 4. 4. 

See BLOCK MODE. 

Section 4.4. 

SYT TYPE. 

SYT FLAGS. 

SYT FLAGS. 

SYT FLAGS. 

Used in inline processing to allow 
temporary resetting of STMT NUM. 

See symbol table -- SYT FLAGS. 

4-208 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617)661-1840 



r 

l: 

. ! 

INPUT DEV 

INPUT PARM 

INPUT REC 

INT TYPE 

INTERPRET ACCESS FILE 

INX 

IODEV 

IORS 

IORS TYPE 

J 

K 

KILL NAME 

KIN 

L 

LAB TOKEN 

LABEL CLASS 

LABEL COUNT 

LABEL DEFINITION 

LABEL FLAG 

LABEL IMPLIED 

LABEL MATCH 

LAST 

LAST POP# 

LAST SPACE 

LAST WRITE 

LATCHED FLAG 

LEFT BRACE FLAG 

See STREAM. 

See symbol ~able 

See STREAM. 

See symbol table 

Procedure. 

Section 4.4. 

See SYNTHESIZE. 

Procedure. 

SYT FLAGS. 

SYT TYPE. 

See symbol table -- SYT TYPE. 

Temporary. 

Temporary. 

Procedure. 

See SCAN. 

Temporary. 

See TOKEN. 

Class for label symbols. 

Number of labels on current statement. 

See TOKEN. 

See GRAMMAR FLAGS. 
. 

See SCAN -- CONTEXT. 

Procedure. 

See O-W. 

Section 4.4. 

See O-W. 

See GRAMMAR FLAGS. 

See symbol table -- SYT FLAGS. 

See GRAMMAR FLAGS. 

LEFT BRACKET FLAG See GRAMMAR FLAGS. 
4-209 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETIS 02138 • (617) 661-1840 

- . 
lli.;..-.~~'_~~"O __ '_" __ ' •. _d....,'.:.:~="'"-'..o~.,,,,., ! .·-'u-J~~~_<~"",~--::.J..:.._l_ __; _ ".=",' .~"._= ·_~=-_v, .. ,,,~~~,,,,·.Ct.:",,,~":..=~·.:.J!i."~·,,,,,~:"'- ._~ "- "-~"_'f. ,L r t.l.-"""_-",_,_~,,,,-,~ "'-':~_1.':;~·_t..!':"'>:i._ ._ 

i 
j 
~ 



-r ~---- "-0-- - •• -~-- -."--~--

,. l 

·~~~=~-~~"~·X'''·''··=~="'''''''··'"~'·>4_W-@~,%,""'_~""'G"""'''''''''',,,,, .. ,,,, --_t±t±.,.,.. . ........... .".._.;-.""' ..... , .... OS'~ ••. 'l'!l'I" ....... '" .... J ..... " ... '''''43 .... _-...-1"--1 

LEFT PAD 

LEFT PAREN 

LETTER OR DIGIT 

LEVEL 

LINE LIM 

LINE MAX 

LISTING2 

LISTING2 COUNT 

LIT CHAR 

LIT CHAR AD 

LIT CHAR FREE 

LIT CHAR SIZE 

LIT DUMP 

LIT PTR 

LIT RESULT TYPE 

LIT TOP 

LITLIM 

LITMAX 

LITORG 

LIT~ 

LIT2 

LIT3 

LOC P 

LOCK FLAG 

LOCK LIM 

LOCK# 

The, number of lines aiready used on the 
current LISTING2 page. 

See literal table. 

See literal table.' 

See literal table. 

See literal table. 

Procedure. 

Procedure. 

See literal table~ 

Section 4.4. 

See symbol table 

The maximum LOCK#. 

Section 4.4. 

4 ... 210 

SYT FLAGS. 

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 !) 

, 



r 

" 

LOOK 

LOOK STACK 

LOOKUP ONLY 

LOOK1 

LOOK2 

LRECL 

M BLANK COUNT 

M CENT 

M P 

M PRINT 

M TOKENS 

MAC NUM 
MACRO ADDR 

MACRO ARG COUNT 

MACRO ARG FLAG 

MACRO CALL PARM TABLE 

MACRO EXPAN LEVEL 

MACRO EX PAN STACK 

MACRO FOUND 

MACRO INDEX 

MACRO NAME 

MACRO POINT 

MACRO TEXT 

MACRO TEXT DUMP 

See Parser. 

See Parser. 

See SCAN. 

See Parser. 

See Parser. 

See STREAM. 

See SCAN. 

See STREAM. 

See SCAN. 

See SCAN. 

See SCAN. 

See O-W. 

A word containing a dummy character string 
descriptor of the REPLACE text area. 

See SCAN. 

See GRAMMAR FLAGS. 

See SCAN. 

See STREAM. 

See SCAN. 

See STREAM. 

See O-W •. 

See SCAN. 

See SCAN. 

See SCAN. 

Procedure. 

4 ... 211 

fNTERMETRICS INCORPORATED· 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 

1 
~ 
'~, 

~ 
~ 

i 
f 
:.:: 
'" 
'~ 

t 
" l d 

1 
l , 

, 

... ~ 



-----.-~--.-·~~~~-K~ __ .. -~~~~_, __ --_~--r-__ --~-'~"-l .. ~u.--~q.-~ .... -,-,-[-... -.c .. -.--,....·" .... 'J"---':-:~.<...-""-.:. ... ~~··.f"~---""r"O . _ "0 ._._. 

.:_ /~':""'.,:": •. ~:"::-=;::.':: ·f:>::.~~~~~·.~~Fr;'?~~·;~~d ~~ ~~ 

MACRO TEXT LIM 

MAIN SCOPE 

MAJ STRUC 

MAKE FIXED LIT 

MAT DIM LIM 

MAT LENGTH 

MAT TYPE 

MATCH ARITH 

MATCH ARRAYNESS 

MATCH SIMPLES 

MATRIX COMPARE 
MATRIX COUNT 

MATRIX PASSED 

MATRIXP 

MAX 

MAX PTR TOP 

MAX SCOPE# 

MAX SEVERITY 

MAXNEST 

MAXSP 

MAX 

MIN 

I 

J 

MISC NAME FLAG 

Number of characters of storage allocated 
for REPLACE <text>. 
The SYT SCOPE value of the compilation 
unit. 

See symbol table -- SYT TYPE. 

Procedure. 

Largest legal matrix dimension. 

Section 4.4. 

See symbol table SYT TYPE. 

Procedure. 

Procedure. 

Procedure. 

Procedure. 
The number of matrices in a product. 

The number of matrices to multiply by 
a vector. 

Pointer to the stack entry for the current 
product of matrices. 
Procedure. 

Section 4.4. 

Section 4.4. 

Maximum error severity encountered. 

Section 4 .• 4. 

The maximum stack size achieved. 

Procedure. 

Procedure. 

Temporaries. 

Temporaries. 

See symbol table SYT FLAGS. 

4-212 

1 

.~ 
, I 

1 
~ 
~ 
] , 

j 
1 
1 
l 

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 'f 

~ ~J 

.' >, ,_"~. '0 ~ .. l=~:=:...&.;:iJi.IIr;"~:- ···~·:::..,:-~'.2,=--~:~""~:~---:_::~·::::"---:-~~·:i.1:k,,,-,.fj;;i.irt&tci --Uffl"· .. ,ji.U~~~~~-;~~~~· .::1",,=.~.l:::"'--~"~·_ ::0"" ..... , ... _.ts::zI_ ..... -.... r,... .. k_=_;....~ 



MP 

MPP1 

MULTIPLY SYNTHESIZE 

N DIM 

NAME ARRAYNESS 

NAME BIT 

NAME COMPARE 

NAME FLAG 

NAME HASH 

NAME IMPLIED 

NAME PSEUDOS 

NA.MING 

NDECSY 

NEST 

NEW LEVEL 

NEW MEL 

NEXT 

NEXT ATOM# 

NEXT CHAR 

NEXT RECORD 

NEXT SUB 

NEXTIME LOC 

See Parser. 

See Parser'. 

Procedure. 

Section 4.4. 

Procedure. 

Item is NAME (something). 

Procedqre. 

See symbol table SYT FLAGS. 

See STREAM. 

Processing a declaration for a NAME 
variable. 

I 

Proc~ssing a NAME variable. 

Have seen a NAME pseudo-funct'ion and 
have not yet encountered the closing 
paren. 

See symbol table. 

Section 4.4. 

See STREAM. 

See SCAN. 

See STREAM. 

section" 4.4. 

See STREAM. 

Procedure. 

Section 4.4. 

50. 

4 ... 213 

INTERMETRICS 1NCORPORATED " 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (6H).661~1840 

l' 
" . ;:: 



I' 

NO ARG ARITH FUNC 

NO ARG BIT FUNC 

NO ARG CHAR FUNC 

NO ARG STRUCT FUNC 

NO LOOK AHEAD DONE 

NONBLANK FOUND 

NONCOMMON_SYTSIZES(i) 

NON HAL 

NON HAL FLAG 

NOT ASSIGNED FLAG 

NT PLUS 1 

NUM ELEMENTS 

NUM FL NO 

NUM OF PARM 

NUM STACKS 

NUMBER 

OLD LEVEL 

OLD MEL 

OLD MP 

OLD PEL 

OLD TOPS 

ON ERROR PTR 

ONE BYTE 

See TOKEN. 

See Parser. 

See STREAM. 

The number 'of bytes in an entry in the ith 
non-common symbol table array. 

Section 4.4. 

See symbol table SYT FLAGS. 

A local variable of SYT DUMP. 

Not used. 

Section 4.4. 

Section 4.4. 

See STREAM. 

Sectibn 4.4. 

See TOKEN. 

See STREAM. 

See SCAN. 

See SCAN. 

See SCAN. 

See SCAN. 

See symbol table 

Temporary. 

-- EXT ARRAY. 

REPRODUCIBILITY OF TRw 
ORIGINAL PAGE IS POOR 

'" 

'j 



OPTIONS CODE 

ORDER OK 

OUT PREV ERROR 

OUTER REF 

OUTER REF INDEX 

OUTER REF PTR 

OUTPUT GROUP 

OUTPUT WRITER 

OUTPUT WRITER DISASTER 

OVER PUNCH 

OVER PUNCH TYPE 

P CENT 

PAD 

PAD! 

PAD 2 

PAGE 

PAGE THROWN 

PARM CONTEXT 

PARa."'1 COUNT 

PARM EXPAN LEVEL 

PARM FLAGS 

PAFM REPLACE PTR 

PAEH STACK PTR 

See· COMM (7) • 

Procedure. 

See O-W. 

See OUTER REF in SCAN. 

See OUTER REF in SCAN. 

See OUTER REF in SCAN. 

Procedure. 

Procedure. 

Label in main program. OUTPUT WRITER 
jumps here when all is lost. 

See STREAM. 

See O-W and SCAN. 

See STREAM. 

Procedure. 

See O-W. 

See O-W. 

See O-W. 

See O-W. 

See CONTEXT in SCAN. 

See SCAN. 
. 

See STREAM. 

See symbol table SYT FLAGS. 

See STREAM. 

See STREAM. 

4-215 

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 

", ,·-t I 'i 
'If, 

l : ~ 
~ 
;,;;. 

~ 
:;: 



1--- -

PARMS PRESENT 

PARMS WATCH 

PARSE STACK 

PARTIAL PARSE 

PASS 

PC LIMIT 

PCARG# 

PCARGBITS 

PCARGOFF 

PCARGTYPE 

PCNAME 

PERCENT MACRO 

PERIOD 

PHASE1 FREESIZE 

PHASE2 STUFF 

PLUS 

PP 

PPTEMP 

PREP LITERAL 

PREVIOUS ERROR 

PRINT DATE AND TIME 

PRINT FLAG 

PRINT FLAG OFF 

Section 4. 4 ., 

Section 4.4. 

See Parser. 

ON if PARSE request in JCL option. 

See SCAN. 

See SCAN. 

Section 4.4. 

Section 4.4. 

Section 4.4. 

Section 4."4. 

See SCAN. 

See TOKEN. 

A " " . . 
Storage avove this point is for Phase 1 
only and can be returned at the end. 

Not used. 

See O-W. 

Temporary. 

Temporary. 

Procedure'. 

See o-w. 

Procedure. 

See GRAMMAR FLAGS. 

See GRAMMAR FLAGS. 

4-216 

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138· (617) 661-1840 

l , 

1 



~.~ 

PRINT SUMMARY Procedure. ,.,. 
PRINT TIME Procedure. 

PRINTING ENABLED See SCAN. 

PRINT2 Procedure. 

PROC LABEL See symbol table SYT TYPE. 
I PROC MODE Section 4.4. 'I , 
.~ PROCESS CHECK Procedure. "if 

,~ 
r.~ 
:.\~ PROCMARK Section 4.4. ~ 
.Y! 
~4 

PROCMARK STACK Section 4.4. 
:~ 

PROG LABEL See symbol table SYT TYPE. 

PROG MODE Section 4.4. 

PROGRAM ID See ISTREAM. 

PROGRAH LAYOUT 

PROGRAM LAYOUT INDEX 1 
PSEUDO FORM ~ 

,) 
PSEUDO LENGTH Section 4.4. J 

·1 

PSEUDO TYPE 1 

1 
j PTR .; 

'.,] 

PTR TOP ~ 
~ 

PUSH FCN STACK Procedure. .~ 
] 
~ PUSH INDIRECT Procedure. I QUALIFICATION See SCAN. 

.. ~ 

READ ACCESS FLAG See symbol 
~ 

table -- SYT FLAGS. 1 
READ ALL TYPE Procedure. 

4-217 

iNTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 



r i 

: .-

READ TYPE 

READ 1 

READ 2 

RECOVER 

RECOVERING 

REDUCE SUBSCRIPT 

REDUCTIONS 

REENTRANT FLAG 

REF ID LOC 

REFER LOC 

REGULAR PROCMARK 

REL OP 

REMOTE FLAG 

REPL ARG CLASS 

REPL CLASS 

REPL CONTEXT 

REPI~CE PARM CONTEXT 

REPLACE TEXT 

REPLACE TOKEN 

RESERVED LIMIT 

RESERVED WORD 

RESET ARRAYNESS 

RESTORE 

See Parser. 

See Parser. 

See Parser. 

Procedure. 

See O-W. 

Procedure. 

See Parser. 

See symbol table SYT ~'LAGS. 

Section 4. 4. 

Section 4. 4. 

A pointer to the first symbol table entry 
for the current procedure. 

Section 4. 4 • 

See symbol table SYT FLAG. 

See symbol table SYT CLASS. 

See symbol table SYT CLASS. 

See SCAN CONTEXT. 

See SCAN CONTEXT. 

See TOKEN. 

See TOKBN. 

See SCAN. 

See SCAN. 

Procedure. 

See SCAN. 

4-218 

INTERMETRICS INCORPORATED· 701 GONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 

" '"" 
[~,f;/ 

f 
I 
1 
1 

1 
l 
l 

] 



. , 

RIGHT BRACE l<"LAG 

RIGHT BRACKET FLAG 

RIGID FLAG 

RT PAREN 

s 

S ARRAY 

SAVE ARRAYNESS 

SAVE ARRAYNESS FLAG 

SAVE BCD 

SAVE BLANK COUNT 

SAVE CARD 

SAVE COMMENT 

SAVE DUMP 

SAVE ERROR MESSAGE 

SAVE GROUP 

SAVE INDENrr' LEVEL 

SAVE INPUT 

,SAVE LITERAL 

SAVE NEXT CHAR 

SAVE OVER PUNCH 

SAVE PE 

SAVE SCOPE 

SAVE SEVERITY 

SAVE 

SAVE TOKEN 

; , .... '<I «UHk« ''''-'I' 
" ~.'1~, 

----~-

See GRAMMAR FLAG. 
-' 

See GRAMMAR FLAG. 

See symbol table -- SYT FLAGS. 

See TOKEN. 

Temporary character string. 

section 4.4. 

Procedure. 

ARRAYNESS FLAG saved here while proces
sing subscripts. 

See GRAMMAR FLAGS. 

See SCAN. 

See STREAM. 

See O-W. 

Procedure. 

See O-W. 

See STREAM. 

Section 4.4. 

Procedure. 

Array of line numbers on which error 
occurred. 

Procedure. 

See STREAM. 

See STREAM. 

See SCAN. 

See O-W. 

See O-W. 

See O-W. 

Procedure. 

4-219 

1~ITERMETRrCS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 

~ 
, <,~ 

1 

~., 

1 

1 
~ ~ 

~ 
~ , . 

<! , 

I 
1 
I 

< < 

J , 

f: i 
1 , 



l , . 

.. 
l. 

:. ···1-·· 

SCALAR COUNT 

SCALAR TYPE 

SCALARP 

SCAN 

SCAN COUNT 

SCOPE# 

SCOPE# _STACK 

SO FLAGS 

SOL OPTION 

SEMI COLON 

SET BI XREF 

SET CONTEXT 

SET LABEL TYPE 

SET OUTER REF 

SET SYT ENTRIES 

SET XREF 

SET XREF RORS 

SETUP CALL ARG 

SETUP NO ARG FCN 

SETUP VAl:. 

SIGNAL STMT 

SIMULATING 

SINGLE FLAG 

SLIP SUBSCRIPT 

Number of scalars invovled in a 
product. 

See symbol table -- SYT TYPE. 

Stack pointer for product of scalar~. 

Procedure. 

See SCAN. 

Section 4.4. 

Section 4.4. 

See symbol table 

See O-W. 

See TOKEN. 

Procedure. 

See SCAN -- CONTEXT. 

.,.. Procedure. 
I 

SYT FLAGS. 

On if TABLES option was requested. 

See symbol table -- SYT FLAGS. 

Procedure. 

4-220 
INTERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 

r .. ~,. ~,_!:-~jlf _::~::.~~_;_~ __ ~0-~~'~_7=.~~~~:~':' ~;;"~ ~~.~~',~q-'¥W·:\"~_-=_~_.~. ~".~~ .... :t" "';_~.~~~."_~~,.~_ ~~._~':r~ .. t_._ ,.-,:~;J&;+;'M''':''~=..-a:;t:.:::. ~:::~.:.",,~. ,~.~~ ___ ....... _________ _ 

: ~, 

! . 

I; 



. - I" .. " ..... -'.,_ .. __ . ------,,-... - ... -''-... -- -_ .. - "-.~~-~.-~--"-"'~~'." 

- ~""'" '''c-- " 

SM FLAGS 

SMRK LOC 

SOME BCD 

SP 

SPACE FLAGS 

SQUEEZING 

SREF OPTION 

SRN 

SRN COUNT 

SRN COUNT MARK 

SRN FLAG 

SRN MARK 

SRN PRESENT 

SRN UPDATE 

STAB 

STAB BLK 

STAB CLOSE 

STAB ENTER 

STAB HDR 

STAB INX 

STAB LAB 

STAB MARK 

STAB SKIP 

STAB STACK 

STAB STACKER 

SffAB STACKTOP 

-.. - - ~.~-- '" 

See symbol table SYT FLAGS. 

N(jt used. 

See SCAN. 
, 

See Parser. 

See O-w. 

See O-W. 

On if SREF selected on JCL. 

See O-W. 

See o-w. 
Section 4.4. 

On if something hanging for an 
SRN UPDATE. 

Section 4.4. 

ON if SRN option requested on JCL. 

Procedure .• 

A buffer used for accumulating informa
tion to be written on the statement 
file. 

The number of STAB blocks written. 

Procedure. 

Procedure. 

Procedure. 

Pointer to the next available word in 
the STA&buffer. 

Procedure. 

Section 4.4. 

The number of extra words in a STAB 
entry required by subsequent phases. 

Section 4.4. 

Procedure. 

Section 4.4. 

4-221 

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138· (617) 661-1840 

.~ 
,-
'Ie 
,~ 

~t 
.;: 
'-:.: , 
~, 

,'-

:£, . 
j 

I 
'::-~ 

.~ 
J 
:; 

~ 
i 



STAB VAR 

STACK DUMP 

STACK DUMP PTR 

STACK DUMPED 

STACK PTR 

STACKING COUNT 

STARRED DIMS 

STARS 

START NORMAL FCN 

START POINT 

STATE 

STATE NAME 

STATE STACK 

STA.TEMENT SEVERITY 

STATIC FLAG 

STMT END FLAG 

STMT LABEL 

STMT NUM 

STMT PTR 

STMT STACK 

STMT TYPE 

STORAGE FLAGS 

STREAM 

STRING 

STRING GT 

STRING OVERFLOW 

Procedure. 

Procedure. 

See O-W. 

See O-W. 

See GRAMMAR FLAGS. 

Section 4.4. 

Section 4.4. 

n*****n 

Procedure. 

See MACRO TEXT in SCAN. 

See Parser. 

See Parser. 

See Parser. 

Maximum error severity in current 
statement. 

See symbol table -- SYT FLAGS. 

See GRAMMAR FLAGS. 

See symbol table -- SYT TYPE. 

Statement number. 

See GRAMMAR FLAGS. 

See GRAMMAR FLAGS. 

The type of the statement 
writing on statement file. 

Not used. 

Procedure. 

Procedure. 

Procedure. 

See SCAN. 

4-222 

used for 

INT~RMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02'138 • (617) 661-1840 

t .L£ 

, 1 

J 

1 
1 , 
l 

1 
·1 

. ~ 
I 
J 
j 
J 
.~ 

.' .~ j 
I 
1 
.. ~ 

I • 

:1: j 

I 
1 



·a 

I 
:' :t' 

~-~.-.-.~,-... ~.- .. -~~--.,-~ ... ~. "--""~'"""'"'~"""'" ,. .. ,.,,- .*-".'"',,'.< .... ':~" .... _._= .. :::+"" . '" ..... ",wer- .. _ .. _[""""'1' ........ , 

..••••• _ •... _CO_.'CC·.·'=-.c""'.CC·.:C::C-". ... _ ---•. -.'. .- .•.• ' •. : .::. '.:..'.. ,,'''' • '1\;1 

STRUC DIM 

STRUC PTR 

STRUC SIZE 

STRUC TOKEN 

STRUCT FUNC TOKEN 

STRUC TEMPLATE 

STRUCTURE COMPARE 

STRUCTURE FCN 

STRUCTURE SUB COUNT 

STRUCTURE WORD 

SUB COUNT 

SUB SEEN 

SUBHEADING 

SUBSCRIPT LEVEL 

SUPPRESS THIS TOKEN ONLY 

SYNTHESIZE 

SYSIN COMPRESSED 

SYT ADDR 

SYT ARRAY 

SYT CLASS 

SYT DUMP 

SYT FLAGS 

SYT HASHLINK 

SY'l' HASHSTART 

SYT INDEX 

SYT LINKl 

Section 4.4. 

fjection 4.4. 

The size of the structure whose template 
is being declared. 
See TOKEN. 

See TOKEN. 

See TOKEN. 

Procedure. 

Procedure. 

Section 4.4. 

See TOKEN. 

Section 4.4. 

Section 4.4. 

A constant character string. 

See Parser. 

See PRINTING ENABLED in SCAN. 

Procedure. 

On if input is in compressed format. 

See symbol table. 

See symbol table. 

See symbol table. 

Procedure. 

See .symbol table. 

See symbol table. 

See symbol table. 

See SCAN. 

See symbol table. 

4-223 

, 'j 

( 
~ INTERMETRICS INCORPORATED' 701 CONCORD AVENUE· CAMBRIDGE. MASSACHUSETTS 02138 • (617) 661-1840 

J 

1,11;11 t. 
./. 

~~···m¥·' "hIl rat 



) 

( 
r~ 

SYT LINK2 

SYT_LOCK# 

SYT NAME 

SYT NEST 

SYT PTR 

SYT SCOPE 

SYT SORT 

SYT TYPE 

SYT XREF· 

SYTSIZE 

T INDEX 

TASK LABEL 

TASK MODE 

TEMP 

TEMP INDEX 

TEMP STRING 

TEMP SYN 

TEMPL NAME 

TEMPLATE CLASS 

TEMPLATE IMPLIED 

TEMPORARY 

TEMPORARY FLAG 

TEMPORARY IMPLIED 

TEMPI 

TEMP2 

TEMP 3 

TERMP 

See symbol table. 

See MACRO TEXT in SCAN. 

See symbol table SYT TYPE. 

Section 4.4. 

Temporary. 

Local variable of PARM FOUND. 

S,ge SCAN. 

Temporary. 

See symbol table SYT 'l'YPE. 

See symbol table SYT CLASS. 

See SCAN -- CONTEXT. 

See TOKEN. 

See symbol table -- SYT FLAG. 

See SCAN. 

Temporary. 

Temporary. 

Temporary. 

Temporary. 

4-224 
INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 

1 
i 

1 



_. __ :;-'_"~_~--'---_"._4_ '-'7--"-

..•. ,-- '--'---'~-'-'~~.- .. ----~"- ----~---~------.,"-~.---

TEXT LIMIT 

THE BEGINNING 

TIE XREF 

TOGGLE 

TOKEN 

ARITH FUNC TOKEN 

ARITH TOKEN 

BIT FUNC TOKEN 

BIT TOKEN 

CHAR FUNC TOKEN 

CHAR TOKEN 

CHARACTER STRING 

COMMA 

CONCATENATE 

CPD NUMBER 

CROSS TOKEN 

DECLARE TOKEN 

DO TOKEN 

DOLLAR 

DOT TOKEN 

EOFILE 

EVENT TOKEN 

EXPONENT 

EXPONENTIATE 

FACTOR 

See STREAM. 

Procedure. 

Procedure. 

Literally COMM (6) • 

Type of current token. 
Value of -1 indicates REPLACE name; 
otherwise: 

Functioning returning an arithmetic 
value. 

Arithmetic value such as matrix, vector, 
scalar, integer. 

FUnctioning returning a bit string value. 

Bit string value. 

Function returning a character string 
value. 

Character string value. 

Character literal. 

" " , . 
Concatenation operator "I I". 
Invalid numeric token. 

Cross product operator (*). 

Keyword DECLARE. 

Keyword DO. 

U$U. 

Dot product operator (.). 

End"of file marker (X"FB"). 

Keyword EVENT. 

"**" 

4-225 
INTERMETRICS INOORPORATED· 701 CONOORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 ' (617) 661-1840 



ID TOK'RN 

LAB TOKEN 

LABEL DEFINITION 

LEFT PAREN 

LEVEL 

NO ARG ARITH FUNC 

NO ARG BIT FUNe 

NO ARG C}L~R FUNC 

NO ARG STRUGT FUNC 

NUMBER 

PERCENT MACRO 

REPLACE TEXT 

REPLACE TOKEN 

RT PAREN 

SEMI COLON 

STRUC TOKEN 

STRUCT FUNC TOKEN 

STRUCT TEMPLATE 

ST:t=tUCTURE WORD 

TEMPORARY 

TOKEN FLAGS 

TOKEN FLAGS UNFLO 

TOKEN WAS COMMA 

TOO MANY ERRORS 

TOO MANY LINES 

TOP OF PARM STACK 

Identifier (parameter and replace 
macro names) - also used for undefined 
names in error. 

Label value. 

n(". 

Structure declaration level number. 

Function with no arguments following. 

Function with no arguments following. 

Function with no arguments following. 

Function with no arguments following. 

Numeric literal. 

%macro name. 

The <text> part of a REPLACE statement. 

Keyword REPLACE. 

" ) 11 • 

II • " , 

Structure value. 

Function returning a structure value. 

Not used. 

Not used. 

Keyword TEMPORARY. 

See GRAMMAR FLAGS. 

ON if error stack overflowed. 

See STREAM. 

See SCAN. 

4-226 
INTERMETRICS INCORPORATED' 7Q1 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 

• 

\ 

"9' .. 
~ 



."-~ 

-.... ~ 

TPL FLAG 

TPL PUNC CLASS 

TPL LAB CLASS 

TPL LRECL 

TPL NAME 

TPL VERSION 

TRANS IN 

TRANS OUT 

TX 

TYPE 

UNARRAYED INTEGER 

UNARRAYED SCALAR 

UNARRAYED SIMPLE 

UNBRANCHABLE 

UNSPEC 

UNSPEC LABEL 

UPDATE BLOCK CHECK 

UPDATE BLOCK LEVEL 

UPDATE MODE 

V INDEX 

VAL P 

VALID 00 CHAR 

VALID 00 OP 

VALUE 

VAR 

VAR ARRAYNESS 

VAR CLASS 

On if XO option request in JCL. 

See symbol table 

See symbol table 

SYT CLASS. 

SYT CLASS. 

Line length for template = LRECL+l. 

The name of the current template being 
processed. I 

. I 

The template version number. 

See SCAN. 

See O-W. 

See SCAN. 

Section 4.4. 

Procedure. 

Procedure. 

Procedure. 

Procedure 

Procedure. 

See symbol table -- SYT TYPE. 

Procedure. 

Section 4.4. 

Section 4.4. 

See procedure SCAN ._- identifier. 

Section 4.4. 

See SCAN. 

See SCAN. 

See SCAN. 

Section 4.4. 

Section 4.4. 

See symbol table SYT CLASS. 

4-227 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 

-~ •• 



VAR LENGTH 

VBAR 

VEC LENGTH 

VEC LENGTH LIM 

VEC TYPE 

VECTOR COMPARE 
VECTOR COUNT 

VECTORP 

VERSION 

VERSION LEVEL 

VOCAB 

VOCAB INDEX 

WAIT 

WAS HERE 

XADLP 

HAFOR 

XAST 

XASZ 

XBAND 

HBCAT 

HBEQU 

XBFNC 

XBINT 

XBNOT 

XBOR 

XBRA 

XBTOB 

« <_0<.<- .-•• _ ....... < ... <._<._....,.<--< _ • ....,..--..,..-....-.• _-.,.--,,'"". <""',.,..,..,.... ',..,....:...-. ..... < """':.:::"""""" -.< ... · ...... ,,.. ..... """· .. ·,,...,..·""·r"""" 4 ... ·,"-----'< .... "---·1 ... ' :.-;;;9-"<·...,, _ ..... """' .• _,-' 

1 

See symbol table -- identical to SYT DIMS. 

See O-W. 

Section 4.4. 

Section 4.4. 

See symbol table SYT TYPE. 

Procedure. 

The number of vectors involved in a 
product. 

Stack pointer for current product of 
vectors. 

Version of the compiler. 

Fractional version of the compiler. 

See SCAN. 

See procedure SCAN -- identifiers. 

See SCAN. 

See O-W. 

HALMAT Codes. 

HALMAT Codes. 

Form. 

Form. 

'- HALMAT Codes. 

4 .... 228 

I 

I 

L 

\. 

" 

1 

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE· CAMBRlDGE, MASSACHUSETIS 02138· (617) 661·1840 



f' 
\; 

1: , , . 
I 

, I 

·f 
; 

i , .". 

XBTOC 1 
XBTOI 

XBTOQ 

XBTOS 

XBTRU 

XCANC 

XC AND 

XCCAT HALMAT codes. 

XCDEF 

XCEQU 

XCFOR 

XCLBL 

XCLOS 

XCNOT J 
xeo D Code Optimizer Bits. 

XCO N Code Optimizer Bits. 

XCOR HALMAT Codes. 

XCSZ Form. 

XCTST 

XDCAS 

XDFOR 

XDLPE 

r XDSMP 

HALMAT Codes. 

XDSMP 

XDSUB 

XDTST 
4 ... 229 

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 

. i 

1 

1 
i 
i 
1 
1 
.'1 

.) 

' .... , •• 



XECAS 1 
XEDCL 

XEFOR 

XEINT 

XELRI 

XERON 

XERSE 
, > 

, j 
,j 

l 
XESMP 

XETRI HALMAT Codes. 

XETST 

XFXTN 

HFASN 

XFBRA 

XFCAL 

XFDEF 

XFILE 

XICLS 

XIDEF 

XIDLP 

XIEQU 

XIFDH 

XIMD Form. 

c, 

4-230 ! 

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE· CAMBRIDGE:, MASSACHUSETTS 02138 • (617) 661-1840 



I'" --[ 

I 

I 

.. -.., 
XIMRK HALMAT Code. 

XINL Form. 

XITOS HALMAT Code. 

XLBL HALMAT Codes. 

XLFNC HALMAT Codes. 

XLIT Form. 

XMADD 

XMDEF I 
XMEQU 

XMINV 

XMMPR 

XMNEG I 

XMSDV I 
XMSHP 

I." HALMAT Codes. 

I: 
XMSPR 

XMSUB 

XMTOM 

XMTRA 

XMVPR 

XNASN 

XNEQU 

XNINT 

XNOP 

XOFF Form. 

#' 

.... Ji' 

4 ... 231 

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 



, '1---'''- ~~-~~ -- -'~'~-~-" 
, 

j ~-.:; ~~"~~~!;+"~~'li~t<4.~}". "- , ~~- '. ,";o,l,. 

,-- '" -'--~'-'-,'~~-~- '-'--:---- .---~-- .~:c~~-~" ~ ·~~r~~~· --~r . 'l 
,] 

XPCAL 

XPDEF 

XPMAR 

XPMHD ,.. HALMAT Codes. 

XPMIN 

XPRIO 

XREAD 

XREF 

XREF ASSIGN 

XREF FULL 

XREF INDEX { See symbol table -- SYT XREF. 

XREF LIM 

XREF MASK 

XREF REF 

XREF SUBseR 

XRTRN 

HSADD 

HSCHD 

XSEQU 

XSEXP 

XSFA,R Codes. 

XSFNO 

XSFST 

XSGNL 

XSIEX 

XSLRI 

4 ... 232 

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE' OAMBRIDGE, MASSACHUSETTS 02138 • (617) 661~1840 



... ~.~-.-~ .. ~~ .... ~.~.~.-.-~~. '---~~.~-'~" '-"-'-'~~:.::::::::::-=-"~" ~I.' ~-",~.,~rv:"·~.'·· .. l. 
~::.: .. __ ::':'::':::: .... ::'::::;:-_'~ ::~.. L __ . _____ _ 

L' " 

. f· 

"4.J!" XSMRK 

XSPEX 

XSSPR : ~ 

XSSUB . HALMAT Codes. 

XSTOI 

XSTRI 

XSYT Form. 

XTASN 

XTDCL 

HTDEF 

XTEQU HALMAT Codes. 

XTERM 

XTINT 

XTSUB 

XUDEF 

XVAC Form. 

XVCRS 

XVDOT 

XVEQU 

XVMPR r HALMAT Codes. 

XVSPR 

XWPR 

XWAIT 

XXASN 

XXPT Form. 

r (" XXREC HALMAT Codes. 

XXXAR HALMA T Codes. 
4-233 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGErMASSACHUSETTS 02138 • (617) 661-1840 



!' 

XXXND HALMAT Codes. 

XXXST HALMAT Codes. 

Xl 

X2 

X32 n blanks. T 

X4 

X70 

X8 1 

4-234 
INTERMETRICS INCORPORATED' 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617)661-1840 



p- .. ,. ~'-·""~~--·-~-,r:--;-~.'_'~. ~-T""~ ••• ~,-"3-~'~'''~~~~.li'.,Jij'*"?'l'' A,'* '"', .'" wet, * .• ',0;::: '"T"';'",,' ;:"~":"''''''~>;'''_1i!.h''''''' -f'4,... •• ""","""""""'''''''"!:: ... / ... ~:.".Z ""':::::_---_.-j .. ;;;;: ..... ~ .. ,... • .,..' ."!".::;:.,....Q .... A ... ' ""'""!""' ___ " -]._!O!E1"!" ....... _ 

... " ... =..~ •. ·..C=.C ....=. , •....... ","'~4'~~'~~' ~".'".. , 

4.5.2 Index to Procedure Descriptions 

851000 

843600 

920000 

869700 

1095700 

940400 

949300 

942800 

953100 

955700 

845100 

266100 

535500 

967400 

289600 

846200 

819800 

824900 

1029100 

1Q23800 

1040900 

823300 

1080500 

882300 

1036400 

922700 

1529700 

1022700 

1542300 

53300 

879300 

ADD AND SUBTRACT 

ARITH LITERAL 

ARITH SHAPER SUB 

ARITH TO CHAR 

ASSOCIATE 

AST STACKER 

ATTACH SUB ARRAY 

ATTACH SUB COMPONENT 

ATTACH SUB STRUCTURE 

ATTACH SUBSCRIPT 

BIT LITERAL 

BLANK 

BLOCK SUMMARY 

CALL SCAN 

CHAR INDEX 

CHAR LITERAL 

CHECK ARRAYNESS 

CHECK ASSIGN CONTEXT 

CHECK CONFLICTS 

CHECK CONSISTENCY 

CHECK EVENT CONFLICTS 

CHECK EVENT EXP 

CHECK IMPLICIT T 

CHECK NAMING 

CHECK STRUC CONFLICTS 

CHECK SUBSCRIPT 

CHECK TOKEN 

COMPARE 

COMPILATION LOOP 

COMPRESS OUTER REF 

COPINESS 

4-235 

4;4.4 

4.4.4 

Sec. 4.4.5 Production 22 

Sec. 4.4.5 Production 133 

4.4.4 

Sec. 4.4.4 Production 219 

Sec. 4.4.4 Production 219 

Sec. 4.4.4 Production 219 

Sec. 4.4.4 Production 219 

Sec. 4.4.4 Production 219 

Sec. 4.4.5 Production 98 

X 

Sec. 4.4.7 Production 289 

4.2.1 

X 

X 

X 

Sec. 4.4.4 Production 193 

Sec. 4.4.3 Production 357 

Sec. 4.4.3 Production 357 

Sec. 4.4.3 Production 357 

Sec. 4.4.6 Proudction 448 

X 

Sec. 4.4.4 Production 199 

Sec. ~.4.4 Production 357 

Sec. 4.4.4 Production 219 

4.1. 2 

X 

4.1. 2 

4.2.1 

Sec. 4.4.5 Production 113 ~. 

INE:RMETRICS I\lCORPORATED ·701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840 

~ , 



427200 DECOMPRESS X 

270400 DESCORE X 

1093300 DISCONNECT X 

1083200 DUMPIT X 

863300 EMIT ARRAYNESS X 

764600 EMIT EXTERNAL 4.1.2 

812100 EMIT PUSH DO Seo. 4.4.6 Production 159 

809600 EMIT SMRK X 

926300 EMIT SUBSCRIPT Sec. 4.4.4 Production 219 

964900 END ANY FCN Sec. 4.4.5 

993300 END SUBBIT FCN Similar to END ANY FCN 

556200 ENTER 4.2.1 

1043400 ENTER DIMS See SET SYT ENTRIES 

549400 ENTER XREF 4.2.1 

281800 ERROR X 

827200 ERROR SUB Sec. 4.4.6 Production 72 

1554300 ERROR SUMMARY X 

287000 FLOATING X . , . 
871100 GET ARRAYNESS Sec. 4.4.4 Production 219 

901900 GET FCN PARM Sec. 4.4.5 Production 178 

997400 GET_ICQ See data description IC LINE 

175900 GET LITERAL ,4.2.1 

801100 HALMAT 4.4.8 

803400 HALMAT BACKUP 4.4.8 

790000 HALMAT BLAB 4.4.8 

807200 HALMAT_FIX_PIP# 4.4.8 

808800 HALMAT FIX PIPTAGS .1.4.8 

80800 HALMAT FIX POPTAG 4~4.8 

1015200 HALMAT INIT CONST 4.4.3 

798700 HALMAT OUT Sec. 4.4.7 Production 1 

80500 HALMAT PIP 4.4 .• 8 

4-236 
INTERMETRICS INCORPORATED' 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 

--:------;---'------
'-_",,","~., _ • ..J'. _ "'-.~ 

? 

" ~,--,c-:C:=-, -. C~~':-::·~-· ---~--" "_~ 



80400 

794100 

805900 

802800 

288200 

272400 
1013200 

273900 

1000800 

1002000 

1003900 

1007200 

999100 

557900 

1.055200 

316800 

861700 

878100 

815100 

269600 

663800 

849500 

662300 

284400 
847500 

887800 

834100 

819200 

262300 

261700 

853500 

881300 

873400 

434500 

436200 

278900 

291000 

HALMAT POP 

HALMAT RELOCATE 

HALMAT TUPLE 

HALMAT XNOP 

HASH 

HEX 

HOW TO INIT ARGS 

I FORMAT 

ICQ_ARRAY# 

ICQ_ARRAYNESS_OUTPUT 

ICQ_CHECK_TYPE 

ICQ_OUTPUT 

ICQ_TERM# 

IDENTIFY 

INITIALIZATION 

INTERPRET ACROSS FILE 

IORS 

KILL NAME 

LABEL MATCH 

LEFT PAD 

LIT DUMP 

LIT RESULT TYPE 

MACRO TEXT DUMP 

MAKE FIXED LIT 

MATCH ARITH 

MATCH ARRAYNESS 

MATCH SIMPLES 

MATRIX COMPARE 

MAX 

MIN 

MULTIPLY SYNTHESIZE 

NAME ARRAYNESS 

NAME COMPARE 

NEXT RECORD 

ORDER OK 

OUTPUT'GROUP 

OUTPUT WRITER 

4p"237 

4.4.8 

4.4.8 

4.4.8 

x. 
X 

X 

4.4.3 

X 

X 

4.4.3 

4.4.3 

4.4.3 

X 

4.2.1 

4.4.8 

4.2.2 

"'''--'.'.-.... 

Sec. 4.4.4 Production 229 
Sec. 4.4.6 Production 53 

Sec. 4.4.6'P~oduction 42 

X 

X 

4.4.4 

X 

X 

4.4.4 

Sec. 4.4.4 Production 219 

4.4.4 

4.4 

X 

X 

Sec. 4.4.5 Production 11 

Sec. 4.4.5 Production 113 

Sec. 4.4.5 Production 113 

4.2.2 

4.2.2 

4.2.2 

4.3.3 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 

i' , 

Cc' , 

" I', 



~ ,'.. r .... '!'"- ~ .---, ..... .,,, __ .u_, . .,..., , __ .. ~- .. -~ -~.~ .. ,~,<,.--

~ .", .. ',- -'-'-~-'----r-----I'--Tl ....--.-~- .. 

t~::. ~.~ _'~.,,-.,... '"""'-',"" 

1 
268700 PAD X 

574100 PREP LITERAL 4.2.1 

781700 PRINT DATE AND TIME X 

1555900 PRINT SUMr>1ARY Close files J, 
781000 PRINT TIME X 

277200 PRINT2 X 

824100 PROCESS CHECK Sec. 4.4.6 Production 432 

841500 PUSH FCN STACK 4.4.5 

814100 PUSH INDIRECT X 

835400 READ ALL TYPE Sec. 4.4.6 Production 278 

1534500 RECOVER 4~1.2 J 
932600 REDUCE SUBSCRIPT Sec. 4.4.4 Production 219 i 

I 866500 RESET ARRAYNESS 

865000 ' SAVE ARRAYNESS See data definition of VAR ARRAYNESS 
Sec. 4.4 

.; : 

1 

280600 SAVE DUMP 4.1. 2 

274900 SAVE INPUT 4.2.2 

569800 SAVE LITERAL 4.2.1 
, 

I' 
399700 SAVE TOKEN 4.2.1 

" 

572700 SCAN 4.2.1 
ci 551300 SET BI XREF 4.4.5 < I 

,<, • 
i! 1089200 SET LABEL TYPE 4.4.2 (Production 307) 

1 ~ : 

547800 SET OUTER REF 4.2.1 1 
, ~ , , 

104~500 SET SYT ENTRIES 4.4.3 
1 552300 SET XREF 4.2.1 

1 554400 SET XREF RORS X 
1 
I 

904100 SETUP CALL ARG Sec. 4.4.5 Production 178 1 
'~ 

, ' ~ '.~ 
891000 SETUP NO ARG FCN 4.4.5 r 
817500 SETUP VAC 

,:~ 

X 

941900 SLIP SUBSCRIPT Sec. 4.4.4 Production 219 

_ --- "17 7 :u 0 0 SRN UPDATE X 

786900 STAB CLOSE X 

782400 STAB ENTER X 

I 787600 STAB HDR X j 
'. 786200 STAB LAB 4.4.2 (Production 304) 

783700 STAB STACKER X 

, . 
" 

I \l 
,f 

4-238 

INTERMETRICS·INCORPORATED·701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138· (617) 661-1840 



784700 STAB VAR X 
4f" 1087300 STACK DUMP 4.1. 2 "", 896300 START NORMAL FCN 4.4.5 

440700 STREAM 4.2.2 
264700 STRING X 
617400 STRING GT X 
837500 STRUCTURE COMPARE 4.4.5 Production 112 
890200 STRUCTURE FCN 4.4.5 
1101600 SYNTHESIZE 4.4 . ~ j 618600 SYT DUMP Print a formatted dump of the 

J 
symbol table with all cross 
references 660300 TIE1 XREF Sec. 4.4.7 Production 289 

820600 m\iARRAYED INTEGER X 
822600 UNARRAYED SCALAR X 
821800 UNARRAYED SIMPLE Sec. 4.4.6 Production 163 
816300 UNBRANCHABLE Sec. 4.4.6 Production 33 
265400 UNSPEC X 
842800 UPDATE BLOCK CHECK 4.4.5 
818500 VECTOR COMPARE 4.4 

"-_ ~f 

1 i 

I 
i, 
I 

~ 
~ 
~ 

J 
j 
j 

1 
J 
~ 
1 
1 

I 
~ 
i 
1 
! 
j , 

I 
,of"" 

',~ .... 

4-239 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 

, 
':.' ,.,. ...... 1. 

I;" "'2M'''' . ; ;'iiil~ 



, ••••• 'm ••••• ,---- '-"-~~-~'~~'-----~--•• ~'-~-'~-~-, '~"'::':::::~'~''''''''''''''''r''' ,"""""""'<u.". ~"J~ 

J 

5.0 PHASE II 
." -~ 

5.1 Data Structures 

5.1.1 Block Definition Table 

A group of arrays of length PROC i. These arrays 
contain information about all CSECTs in a HALlS compilation. 
unit. There are CSECTs for programs, compools, tasks, pro
cedures, functions, update blocks, and external templates, 
as well as compiler created CSECTs. Each CSECT is given a 
number which also serves as its ESDID. For symbol table entries, ~ I I'· 

this number corresponds to the entry's SYT_SCOPE. , 

Not all the arrays are relevant to each type ofi 
CSECT. The possible information associated with each 1 
CSECT consists of: 

CALLi Value 

o 
1 
2 
4 

Block Type 

Procedure, function, task 
Program 
Compool 
Exclusive or update blocks 

ERRALL 

The number of error groups for which ON ERROR 'statements 
appear for all members. 

ERRALLGRP 

1 if ON ERROR control for all errors is on at some 
point during the,block, 0 otherwise. 

ERRPTR 

A pointer to the first ERR_STACK entry associated 
with the block. ERRPTR(O) is the total number of errors 
in the error stack. 

ERRSEG 

1) The displacement of the beginning of the error 
vector wi thin the block's run t:ime stack frame 
(i.e. the maximum temporary storage excluding the 
error vector). 

2) During object code generation, this array is 
used to store the beginning address of the last 
HALlS ,source statement processed within a block. 

5-1 

INTERMETRICS INCORPORATED· 701 GONGORD ".b,VENUE • CAMBRIDGE, MASSACHUSETIS 02138 • (617) 661-1840 



-"'~"'-"--

INDEXNEST 

The ESDID number of the block enclosing a. given 
block. INDEXNEST (0) is the currently active csect 
(either code or data); that is, it is the current scope 
of the location counter. Most of the time the rest of 
the arrays are accessed using INDEXNEST as the subscript. 

LASTBASE 

The last base register used for addresssing data 
declared in a block. 

LASTLABEL 

pointer to the statement number of the last label 
set within a block. This is the beginning of a linked 
list of all the labels set within a block and connected 
by LOCATION_LINK. 

LOCCTR 

The location counter of each CSECT. 

MAXERR 

The number of errors for which ON ERROR statements 

exist in a block. 

MAXTEMP 

The maximum temporary storage required by a CSECT 
in the runtime stack. 

NARGS 

The number of arguments of a procedure, function. 

ORIGIN 

A value used to provide an origin for addresses 

wi thin a CSECT. 

PROC LEVEL 

A pointer to a block's symbol table entry. 

5-2 

INTERMETRICS INCORPORATED ·701 CONCORD AVENUE' CAMBHIDGE. MASSACHUSETIS 02138 • (617) 661-1840 

'j 



I. 

"~' . . ,Ati 

PROC_LINK (scope #) 

Pointer to the symbol table entry for the last name 

declared in scope #. This variable is used to set up a list 

of all variables within the block (see SYT_LEVEL). 

PTRARG 

Is 1 if register 2 (FC only) has been reserved for 

something in the calling sequence. 

REMOTE LEVEL 

The ESDID of a CSECT used for storing REMOTE variables 

declared in the CSECT, if the CSECT is an EXTERNAL template. 

RIGID BLOCK 

Literally INDEXNEST. Is TRUE if EXTERNAL template or COMPOOL 

compilation unit is RIGID. 

STACKSPACE 

During object code generation, this is the ending 

address of the last HALls source statement passed within 

the block. 

WORKSEG 

The displacement of the beginning of the area used 

for storing intermediate results (i.e. the amount of 

temporary storage required for the block's register 

save area, error vector, parameters, temporary variables, 

and AUTOMATIC variables). 

While processing a block, additional information for 

ON ERROR statements is kept in two additional arrays of 

dimension ARG STACK#. ' 

ERR DISP 

ERR DISP(I} is the displacement (relative to beginning 

of error-vector) of the error described in ERR_STACK(I}. 

ERR STACK(I} 

Is an entry of the form: 

I errror number I error group 

9 6 

Notice that ERRAtL is the number of distinct error number = * 
entries alread~ appearing in ERRSTACK for the current bloCk. 

",; 

1'1 

" 

~ 
~ 

i 
.J 

j 

j 
1 
i 
1 

ti I 
1 
~ 

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUS=. (:7) 661-1840 J 

1 
·1 

.J 

1 

1 
I 

J 
j 



{ 
\ 
\ 
I' 

} 

5.1.2 CALL STACK 

A group of arrays of length CALL LEVEL# 
conta.ining information necessary for setting up calls to 
procedures, functions, I/O routines, and shaping functions. 

For every nest level of invocation at any time during 
compilation, the arrays specify the following information. 

ARG COUNTER 

Initially the number of argume~ts to a procedure, 
function, or I/O routine. Decremented after each HALMAT 
XXAR instruction. 

ARG POINTER 

1) Initially points to the symbol table entry of 
the first argument of a procedure, function, 
or I/O routine. Incremented after each HALMAT 
XXAR statement. 

2) For integer and scalar shaping functions, it is a pointer to the first free entry in SF RANGE. 

CALL CONTEXT 

The context of the call: 

1 I/O routine 

2 Shaping function, non-HAL function or 
procedure, other 

4 Function or procedure 

SAVE ARG STACK PTR 

The value of ARG STACK PTR at the beginning of 
the invoca·tion. 

SAVE CALL LEVEL 

The value of CALL LEVEL at the' beginning of the 
invocation. 

5-4 

INTERMETRICS INCORPORATED ~ 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 

1 
I, 'J 
I' 1 n 

J Il 
11 
L 
1·, 
1.1 ;.! 
;·1 , 
I, 

n 

,7: ~ 

y 
,- '---.. "--, •• _--'--;;;;;_.,;;;;;;-;;;;;;-'~T";;;;';" ;';';;;;;;--""':;';;' ,~~~ 



'. 

5.1.3 INDIRECT STACK 

The code generation phase of a compiler requires a place 
to keep descriptors for the items it is manipulating. One 
candidate is the symbol table. This choice has the disadvantage 
of being very space inefficient. Specifically, 

.... it requires a symbol table entry for every temporary, 
even though temporaries are of interest for a very 
short time 

.... it requires the addition of many more fields to every 
entry in the symbol tar.le even though these fields 
hr)ld information of a transient nature (e. g. the 
register containing the variable). 

Because of these considerations, a far better choice is to set 
up an auxiliary, transient, expanded symbol table. There is one 
descriptor in this table for each item currently of interest. 
Since the number of items is small, t~e amount of information 
per item can be large. 

Many compilers use a stack mechanism for allocating space 
for these descriptors (thus our name "INDIRECT STACK"). As 
the code generation process becomes more sophisticated, a 
stack mechanism becomes less and less appropriate. Thus, our 
"stack" is actually an array with a free list (STACK_PTR). Pointers ,i 
to this array are kept in immediately active locations (e.g. 
the operands of the current instruction) and in the HALMAT 1 
where they overwrite the instruction used to generate them. ~ 

The indirect stack is a group of parallel arrays of 1 
length STACK SIZE. {::';' 

5 .... 5 
INTE:RMETRICS INCORPORATED' 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617)661-1840 

-:,.l 

1 
~ 

" y: 
, ,~ 

~ 
.• F.' ~ 

.. _. __ ',", .~~ :" :~:,,:.-::":'.~~_$7,~~~:~·_~·:"~ "~ __ ' _____ d_:.:==~':-~~-=~_":::~~:,,:::~:::=-=.::::::::=:::=:,:"~::::::~~"~~~':~::"''''--·--'.'-:::;'--';:;;;~-;;'';-·;'';;'';';'';'''' __ ~=== ____ '''''''''''''' ____ ---'''T """,,,"_,'...:=--;1 



r- .. ~. T-·~--· ,. .. 
! 

\ -- . -,~"" 

BACKUP REG 

This is the same as the base register associated with 
an entry except in certain cases where it is used to save 
the base register. This is done because when a register is 
checkpointed, a pointer to its contents in temporary storage 
is kept, but the number of the register which held the 
contents is forgotten. BACKUP REG can be used to retain this 
number. This is necessary in code generation for DO FOR loops 
where a checkpointed loop index must be reloaded into the name 
register it originally occupied. 

BASE 

The base register associated with the entry. If BASE < 0, 
it is a virtual register which must be assigned to a hardware 
register and loaded before use. 

COLUMN 

CONST 

COPT 

The significant of COLUMN depends on the entry's TYPE. 

1) MATRIX: The number of columns. 

2) VECTOR: The number of components. 

3) BIT: A pointer to an indirect stack entry 
representing the position of the first bit of 
a bit string in a location in core. This is 
necessary because of dense storage and subscripting. 

4) CHARACTER: A pointer to an Indirect Stack entry 
representing the position of the first character 
in a string referenced by a subscript. 

1) A constant term that must be added to the value of 
an entry. This is used to keep track of constant 
terms in mixed mode express~ons, and allows stack 
entries for constants to be dropped while avoiding 
incorporating the constant into the expression until 
necessary, thus permitting further constant folding. 

2) For type RELATIONAL entries, a Phase 2 generated 
label for the location immediately after the test. 

3) Used to chain together entries of the same SELECTYPE 
in multiple assignment statements. 

Non-zero for a common sub-expression. 

1 
1 

-'1 

.. 
; j. , 

\1 
1 



'..r F "C, '.,-'--" ~--. ~'-, -~- ........ -"-.'r___~T"""~::~~;:<,.~'~.-f<~ 'lqiIO.N s:'.~.~~.iQ. dQ:::;.'('FW5Z(AZUtJ.1A'1'Ap.iJ;r~1l¢\:aQi(t!Zf)ME4'·.~~Jf $!iSp4441i"f'* 

"c ":';C c"-:-'C,C:",::c':"'T,c:;",;;:= •• '"""=.cc: •• ,-",.,, ",'c' .~.c'~~,,:c "'",="':=:,;"""""==----="'"'-"."'C-"'_-"",ci";'..,,.'.:::,,"""'~_ .. c,~ c"%L""'!!'!'!il'/!'!l!!"~jI>l':'i':""'''''''-

COpy 

The number of dimensions of arrayness of an entry, or 
the number of copies of a structure •. Notice that this may 
differ from DOCOPY because an arrayed expression can have 
simple variables in it (DOCOPY > COPY) or an ASSIGN parameter 
can be an array (COpy> DOCOPY). 

DEL 

DISP 

1) WORK: If the entry represents the contents of a 
register saved in temporary storage, DEL is the 
number of entries using the.register. 

2) STRUCTURE: A pointer to the symbol table entry 
for its template. 

3) 'CHAR: A pointer to an indirect stack entry for 
the position of the last character in a character 
string subscript reference. 

4) MATRIX: An indexing value used to locate the non
adjacent entries in a matrix' partition. The matrix 
elements are stored as a linear array, row by row. 
In a partition, certain elements are picked out 
of each row. Adding DEL to the last element picked 
out in a row will give the location of the first 
element to be picked ou~ in the next row. 

5) VECTOR = An indexing value to locate the non-adjacent 
entries in a column VECTOR. 

A displacement used together with BASE for addressing an 
indirect stack entry. 

FORM 

1) The form of the entry: 

o 
1 SYM 
2 AIDX - 1-dimensiona1 subscript 

index 
3 VAC 
5 LIT 
6 IMD 
7 CSYM 

10 OFFSET 

18 LBL 
19 FLNO 
20 STNO 
22 EXTSYM 
30 AIDX2 - 2-dimensiona1 

subscript index 
31 WORK - stored VAC 

This value helps determine the significance of the 
other fields. 

5-7 
INTERMETRICS INCORPORATED' 701 CONCORD AVENUE· CAMBRIDGE, ~ASSACHUSETTS 02138 • (617) 661 ~1840 

i ' 

, ," 
--~--===~.:==.·:-~--::~~~,'~..: .. o.._~.::.t __ ,~=,_."'_:O,.~.jJ~_" •• ."...:-~...:c.:.: .. ~£!.I.iU._:,"~·..:..;_ ,=:,_~,~.~ ,," ... L_~_'_? _". _ ,.~-=~~~_.,,-==-:;:=~~ 



: ~..- . ------ _. _ ... __ ..... __ . __ . -- -~~~-~ .. --.-.~., -. ~-~'--=-'~----:"~~-"~-'~~1'7-r'~--'~-~'-'-'1~--' 

1.1I!Ia4J_".M!kW. !1L§!t!i>Y.!l;czslll_ .... tI"""""'_""'_~"_,_~ .... " . " ... _ "._ ._. ___ .... ___ .... _ ... ____ ,,_' .. ~ __ -'-"'=="'~~~~~<::"'"_'" 

INX 

2} In some special case's immediately before calling 
code emitting routines, such as EMITOP, FORM is 
set to an intermediate output code qualifier. 
This is done in SAVE LITERAL ,and ARITH BY MODE. 

The index register associated with an indirect stack 
entry. If the register has been checkpointed, it is a 
negative pointer to an indirect stack entry pointing to the 
contents of the register in temporary storage. 

INX CON 

l} A constant indexing term associated with the 
entry. 

2} For formal parameters, this is the amount of 
storage necessary for passing * arrayness and 
character size information. 

3} For EXTSYM's that are tasks, programs, or 
compools, it is the offset in'PCEBASE of 
addressing information. 

INX MUL 

When dealing with multi-dimensioned arrays, an attempt is 
made to forstall generating the code to do the multiply so 
that a comparison with existing registers can be made. INX MUL 
is the accumulated constant multiplier. 

INX SHIFT 

When describing a variable used as a subscript, there are 
two interesting values: 

l} The value of the variable. 

2) The appropriate offset. 

Value 2 takes into account the width of the data item and 
is a multiple of value 1. Since this mUltiple is always a power 
of two, the multiplication can be done by shifting. INX SHIFT 
is the required shift. 

5-8 

REPRODUCIBTI.ITY OF rrw:El 
ORIGINAIJ PAGE IS FOOll 

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 

'l . , ~;, 



LOC 

The significance of LOC'depends on the indirect stack 
entry's form: 

.•. ..l. LOC2 

REG 

1) WORK: Pointer to a temporary storage entry. 

2) SYM or LBL: Pointer to the symbol table entry 
represented by the indirect stack entry except for 
structure nodes where it is a pointer to the symbol 
table entry for the structure. 

3) LIT: Pointer to associated Literal Table entry or 
-1 if literal is not in table. 

4) FLNO: Phase 2 generated label number. 

5) 0: The actual value of the entry. 

6) AIDX: Pointer to the indirect stack entry set 
up as an index variable for a do loop to process 
a subscript. 

7) AIDX2: Pointer to the indirect stack entry set up 
as an index variable for a do loop to process the second 
subscript in a two-dimensional reference. 

8) EXTSYM: For EXTERNAL templates and.procedures, 
the CSECT number. For tasks and programs, the PCEBASE. 

1) SYM: A pointer to the corresponding symbol table entry. 

2) AIDX: Pointer to the indirect stack entry set up as 
an index variable for the do loop to process the second 
subscript in a two-dimensional reference. 

If TYPE(entry) = RELATIONAL then REG (entry) = condition code; 
otherwise, REG (entry) is the register containing the value of the 
entry. 

ROW 

Meaning depends on the entry's type: 

1) Matrix: Size of the rows. 

2) Bit or Character: The length of the string. 

3) Integer or Scalar: 1. 

4) Structure: EXTENT of its symbol table entry. 

5) Vector: 1. 

5-9 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 

f~~ 
:t 

I 
.~ 
,~, 
< ~ ;i .. 
~ 

. ~! 

j I; 
~ 

l 
;1 

I :: 

'f 
.~ , 

J 
.:~ 

1 

" 
"~~-'-'-'_'-__ C'.·~ .•••... ,.~.-,,~_~ .. ~,.~.,-,-:c . ...c~~-c,,-._ .... -'-"~ 



~,~~ . .,..,..,.......-~~~~~~~,_~~.-.."...,.-.,,~.~.~~."~~w~~~~~~cn_". "'«"T' ", ... '.'.'.'.t .. ".-" -. ··'·····l~...-~":' 

~ ,_ .." ~"""" ... _" '.' ... "_"_~, . _. ~. '_,_"" ~.~ _"'£< -...c'< ,.,,_ '.',"';' ,-~:..<.r _, • .o.:;:;.,,-',..::~r:==.:.',"::: ~·rr.~.r.~·-::: 

SIZE 

LITERALI.Y 'ROW'. 

STACK MAX 

The maximum size of the indirect stack. 

STACK PTR 

Used for chaining together free indirect stack entries. 
Initially, each entry points to the next entry on the stack. 
As entries are allocated, their STACK PTR becomes -1. 
STACK PTR(O) points to the first free-entry, and for free entries, 
STACK-PTR points to the next free entry. 

STRUCT 

o - just an array 
1 - structure with copies 

If 1, the value is set to 0 after indexing is set up 
for the structure. 

5-10 

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661~1840 

i 
.t 

.=-~ 



I, ' 
I, 
I 

1.10. ... ~. 

.. , .... -, .. ··.·-.-.·-.-·---r·-.-----~~'··~,-~ __ --=-_,___~~,~,~~ .. -· .. --7~.~-: .. ' " ""·'-~~~"·-~I"""." , -~I-"'~',,, 

~~~. ",f5!!!".:::~:,~~·:,"~·:::;.r;"~_;·"-· . ·,·;,.!, .. '~_·,·.,4_"....~ .... .".~·.f~_:. ___ ...-,--.......... -,;t"'~'-"-';--7;'.r-"'-;---' -,~.":?_~,~.":,- . ....,.--K.Ir:,....,.-",,~;·Q_~,~-~ "," .. " ." • ..".,."f':;;~.,~.-~'q,.,.~_.,1._y~,J!~~1ii4tZB;_.hJ."'J.j(J:J1;~:]~~}~~.i~~ ••. , 

S'l'RUCT CON

A constant term used for addressing the terminal
nodes of a structure. This term is later incorporated
into INX CON.

STRUCT INX

A value used for determining how to compute index
values for subscripted arrayed variables.

TYPE

STRUCT INX

2

4

5

Description

Array reference unconnected with a
subscripted st~ucture.

Array reference for a node of an
arrayed structure with one copy
after subscripting.

Array reference for a node of an
arrayed structure or a subscripted
structure where the subscript picks
out several copies~ .

The operand type of an indirect stack entry. If
bit 3 is one, then double precision is specified: if zero,
single precision. The numerical values for TYPE can be found in
the table "operand types and properites" in the HALMAT section.

VAL

form.
The meaning of VAL depends on the indirect stack entry

l} LIT: The literal's value. For character literals
this is the LIT CHAR pointer copied out of the LIT2
table.

2} STNO,. LBL, FLNO: The statement number.

3} OFFSET: The value of the offset.

4} VAC: If the entry is used for emitting shaping
function repeats, this is a register used in the
process.

5} 0: The statement number of a label used for
generating a "failure" conditional branch.

5-11

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

i·
I

XVAL

6) WORK: If the entry represents temporary storage
for an integer or scalar shaping function, this
is a pointer to the first entry in SF RANGE con
taining arrayness information.

The meaning of XVAL depends on the indirect stack
entry's FORM:

1) LIT: For double precision literals VAL and XVAL
together contain the literal's value.

2) SYM: a) If the entry is used for referencing
arrayed structures, XVAL is AREASAVE.

b) If the entry represents a subscript
in a two-dimensional reference, XVAL
is a constant multiplier used for
creating the indexes.

3) VAC: If the entry is used for emitting shaping
function repeats, this is the index register
used.

4) 0: The statement number of a label used for
generating a successful conditional branch.

5) AIDX2: A constant multiplier used for generating
two-dimensional subscript references. This usage
is set in several places but used only in SEARCH INDEX2.

5 ... 12

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

'" ',~

5.1.4 REGISTER TABLE

One of the critical elements in 'optimization is eliminating
redundant operations (i.e. loading a variable which is already
in a register). The greater the optimization, the more record
keeping is necessary. The HAL compilers go to great lengths'
including recognition of the fact that a multiply subscripted
variable is already in a register. The appropriate informa
tion is kept in the register table.

A group of arrays of length REG NUM, which describe
the contents of the registers. Thes~ arrays are:

INDEXING: BIT(S)

This value indicates whether a register may be
used as an index register or not.

R BASE: FIXED

The contents of the register if it is used as a
base register.

R CON: FIXED

1) If the register contains a literal, this is the
literal's value. For double precision literals
R CON and R XCON together hold the literal's
value.

2) Any constant terms that are to be added to the
contents of a register are added to R_CON.

3) For registers of form SYM2, R CON is the indexing
constant associated with the first subscript.

R CONTENTS: BIT(8)

The form of the register's contents (LIT, SYM, VAC,
AIDX, XPT, POINTER, SYM2).

R INX: BIT (16)

The index register associated with the contents of
a register, or a negative pointer. to an indirect stack
entry representing the register if the register has been
checkpointed.

R INX CON: FIXEO

A constant indexing term associated with the
register contents.

5).3
INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661~1840

: -~

If R CONTENTS is AIDX, this is the number of bits the contents must be shifted before indexing. The register contents corresponds to the number of data items to be indexed. Shifting the contents is equivalent to multiplying by the byte width of the operand type in the register to obtain the number of halfwords to be indexed.
R MULT: BIT(16)

A constant multiplier used for two-dimensional arrayness references.

R SECTION: BIT(8)

For a virtual base register, this is the number of the csect containing the variable(s) which required this base.
R TYPE: BIT(8)

The'operand type of the register's contents.

R VAR: BIT (16)

Form of Contents

SYM

AIDX

AIDX2/SYM2

XPT

POINTER

R VAR2: BIT(16)

Significance of R VAR

Pointer to the symbol table entry.

Pointer to the indirect stack entry
for the array index variable.

Pointer to the indirect stack entry
set up as an index variable for the
do loop to process the second subscript in a two-dimensional reference.

Associated virtual base register number.

Pointer to the symbol table entry of
pointer type parameter or NAME variable.

If R CONTENTS is AIDX2 or SYM2, R_VAR2 is a pointer to the indirect stack entry set up as an index variable for the do loop to process the second subscript in a two-dimensional reference.

5-14
INTERMETRICS INCORPORATED- 701 CONCORD AVENUE -CAMBRIDGE, MASSACHUSETTS 02138· (617) 661-1840

'l ..• ,l
~t' '.,~.J'

.~.

R XCON: FIXED

1) Used together with R CON to h91d the value of
a double precision literal.

2) If R CONTENTS is SYM2, R XCON is the indexing
constant associated with-the second subscript
in a two-dimensional reference.

USAGE: BIT(16)

Reflects the claims on a register. The number of claims
on a register is the greatest integer of USAGE/2. An even value
indicates that the contents of the register is unknown~ an odd
value indicates that it is known. A value of 1 means that the
contents is known but not currently needed.

USAGE LINE: BIT(16)

A pointer to the HALMAT operator being decoded when the
register was last allocated. This value is used to decide which
register to store when no free register is available.

5-15

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETIS 02138 • (617) 661-1840

"

i,:

h
"

5.1.5 Storage Descriptor Stack

A set of arrays of size LASTEMP. These arrays contain
information about all the entries in temporary storage.

The arrays are:

ARRAYPOINT

Pointer chaining together all the temporary storage
entries for a given do block, or 0 for the last temporary
storage entry for that block. DOTEMP of each do level
points to the beginning of the chain •.

LOWER

Initial BIGNUMBER. The address of the beginning of a
temporary' storage entry; the lower bound of an entry in
storage.

POINT

Pointer to the temporary storage entry that occupies
the space following a given entry. POINT(O) always
points to the first entry in this linked list. POINT
of the last entry points to zero.

SAVEPOINT

An array of pointers to temporary storage entries that are
no longer necessary.
SAVEPTR

A pointer to the last entry in SAVEPOINT.

UPPER

Points to the upper bound of an entry in storage.
If less than or equal to 0, the temporary storage is not
in use.

WORK CTR

A pointer to the HALMAT operator word at the time
storage is required.

W~).h.i{ USAGE

The number of indirect stack entries using the value
in temporary storage when the value is the contents of a
register. This nUmber is necessary for determining which
temporary space can be dropped.

5 .. 16 .
INTERMETRICS INCORPORATE:D· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661·1840

'j ~;

-'.' -~

5.1.6 DO LOOP Descriptor Declarations

A group of arrays of length DOSIZE is used for
storing information necessary for generating code for DO loops.
The stack contains entries fer each nested DO loop that is
being processed.

DOBASE

Is an array of size 1 used for generating code
for DO FOR loops. DOBASE is the base register used for
addressing the inde}: variable of the I?O FOR loop. DOBASE (1)
is a negative pointer to the indirect stack entry representing
DOBASE if the index variable is a CSYM; otherwise, it is
DOBASE.

DOCASECTR

Is the number of cases associated with a DO CASE
statement.

DOFORCLBL

Is the LABEL ARRAY (entry = flow number) for the label
pointing to the value of a discrete DO FOR loop entry.

DOINX

Is the index register used for addressing the index
variable in a DO FOR loop. If the index variable is a CSYM,
DOINX(l) is a negative pointer to the indirect stack entry
set up for storing the contents of DOINX; otherwise it is DOINX.

5-17

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSI::TTS 02138 • (617) 661 ~1840

DOLEVEL

DOIJEVEL is a pointer to the stack entries for the
do loop for which code is currently being generated. The
zeroeth array entries are used as well as the entries with
index DOLEVEL to describe the current·DOLEVEL.

The array entries associated with each DO LOOP are:

DOFORF'INAL

A pointer to a temporary storage location containing
the final value of an iterative DO FOR loop.

DOFORINCR

A pointer to a temporary storage location containing
the increment for iterative DO FOR loops.

DOFOROP

A pointer to the indirect stack entry for the index
variable in a DO FOR loop~

DOFORREG

The register containing the value of the index variable
for a DO FOR loop.

DOLBL

Pointer to the label array entry for a label marking
the code following a DO loop. The label array entries
following DOLBL are also used for DO loop code generation.

DOTEMP

Pointer to a chain of temporary storage entries for
temporary variables in the DO loop. (See ARRAYPOINT.)

DOTYPE

The type of DO FOR loop: 0 if discrete loop

DOUNTIL

I implicit increment of I
2 explicit increment

A temporary storage location used to generate code so
that a DO FOR loop is executed at least once before a DO
UNTIL condition is tested. If no UNTIL clause, DOUNTIL = O.

5-18
INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMOF!lDGE, MASSACHUSEITS 02138 • (617) 661-1840

5.1.7 ARRAY-DO-LOOP Declara'tions

Two stacks are used to create the do loops implied by
HALlS arrayed statements. Arrayness is specified by a HALMAT
ADLP or IDLP operator; some of the information associated
with each stack entry is applicable to only one of these
operators. '

I. ARRAY REFERENCE STACK

A group of arrays of length DONEST used to keep track
of information about array references ~t specific call levels.
The stack entries are pointed to by CALL LEVEL.

DOCOPY

The number of dimensions of arrayness of the context
(cf. COpy).

DOCTR

Pointer to HALMAT ADLP operator •.

DOFORM

The form of the reference:

Value

o
I

2

DOPTR

Description

All cases except those below.

Static Initialization.

Simple array parameter reference not
followed by an expression and not
part of an I/O routine. This is an
interesting case because the parameter
can simply be passed by reference
with no iterative processing involved.

Pointer to the first entry in the Array DO LOOP Stack
associated with the reference.

DOPTR#

A pointer to the array-do-loop stack entry associa.ted
with a subscript referenced by a HALMAT TSUB or DSUB operator.

DOTOT

Pointer to the last entry in the Array-Do-Loop St.ack
r" associated with the reference. (Equivalent to DOPTR(CALL_
,11:', LEVEL) + DOCOPY (CALL LEVEL.)

5",·19
INTERMETRICS INCORPORATED • 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

I
- . . > .--- ~ ~'" ~ ~ ~~. • -., '~JI!" ,~___ _~ -~ .. __ __ ... _"' __ ~ ______ ._

0;;;;---- n_. ----" r-- --.. ~ , .. -~",.,.,.

-'2b.J-I!J!I'!!lIJ.PiMi!! __ JJ .• "", ,,"w ."",~.:_· __ ~~","",","r-",,,,,, ,,,,,,","-u,,,,,,.',,,,,,",,,""~--"" -_" __ ""'o.=_",!,_,!"",,,\,!,~ ..)ji!!!~ _""'~""<.\!: i.jIIIi! a:q:t s J!III\'I'~l!l:-~
SDOLEVEL

The CALL LEVEL at the beginning of the HALMAT
ADLP operator-processing.

SDOPTR

Pointer to the first entry in Array DO LOOP Stack
associated with the reference.

SDOTEMP

Pointer to the first entry in a chain of temporary
storage entries used in setting up the array do loops
for a reference. The other entries in the chain are
linked by ARRAYPOINT.

II. ARRAY DO LOOP STACK

A group of arrays of length DOLOOPS
containing information about the do loops that are necessary
for processing each dimension of arrayness. The entries
in the Array DO LOOP Stack are pointed to by ADOPTR.

ADOPTR

A pointer to table entries for the most current
DO LOOP that is being set up for array processing.

DOBLK

HALMAT block containing IDLP operator.

DO INDEX

For IDLP references, the actual value of an index
variable which is compared with DORANGE. Otherwise, it is
the pointer to an indirect stack entry for a register set
up to be used as an index variable for the loop to process
the dimension of arrayness.

DOLABEL

For IDLP references, it is a pointer to the current
HALMAT operand. Otherwise, a statement number pointing
to the code within the do loop.

DO RANGE

For IDLP references, the array dimension minus one.
Otherwise, a pointer to an indirect stack entry representing
the size of the dimension.

5-20
INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (61?) 661-1840

, '

DOSTEP

The increment used in the do loop.
to IDLP.)

STACK#

(Not applicable

A pointer into the SUBLIMIT array. It is 0 for an
ordinary array reference. For a subsc'ripted variable it is
the array dimension + 1. In this way, if the subscripts are
arrayed, STACK# points to the first SUBLIMIT entry containing
information about the subscript's arrayness.

SUBLIMIT

An array used to contain information about the arrayness
and size of a variable being subscripted and of the subscript.
If the variable has n dimensions, the 0 - n-lst entries are
the size of the 1st to nth d~mensions and the nth entry is
AREASAVE (=size of individual element). The n+lst to n+mth
ent~±es are the size of the m dimension of the subscript, if it
is arrayed, and the n+m+lst entry is the subscript's AREASAVE.

SUBRANGE

1) Used as an array of temporary variables to set up
SUBLIMI'!' •

2) The ith entry is used for the range of the ith
subscript in a subscript reference.

5-21
-

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

" ' ,,",j

1
1
i

1

r
! ,

5.1.8 HALMAT and Associated Material

This section describes the variables used in reading,
decoding, and interpreting the HALMAT created by Phase I.
HALMAT is described in the "HAL/S-360 Compiler System Speci-
fication", Appendix A.

5-22
INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE. MASSACHUSETTS 02.138 • (617) 661-1840

;

~

U ,;

~
F.
1

,!
i
f,'

i " " !
I
~
!
~
1:
~

i
i
!
i:

!
!
* ,
~
f
i
I
~

I I

I
i ~ ~ 1 , ~ 1

1 I ~

I

~

,~
j
-~
1

~
j

I ~ " 1
1

1 ,
j

.,
.~
~ ~

]
1
1
1
I
1
I
~
1
1
;~

"

1

Decoding HALMAT Instructions

General Declarations:

CODEFILE:

CURCBLK:

OPR:

CTR:

The file cr;:~.ated by phase 1 and massaged by phase 1.5
which contains the HALMAT 'instructions. The file is
broken into blocks. All the HALMAT for a single HAL/S
statement must fit in one block. Although the current
block may be examined several times, previous blocks are
never reread.

The next block of CODEFILE to be referenced.

An array used for storing the HALMAT .b1ock
currently being referenced.

A pointer to the HALMAT operator in OPR being
decoded.

READ CTR: . Pointer to a HALMAT READ or RDAL instruction.

SMRK CTR: Pointer to the'next HALMAT SMRK instruction.

RESET: Pointers to HALMAT operators.

PP: The number of HALMAT operators converted by
Phase 2.

Operator Word:

Phase 2

HAL/S-
360 Com
piler Spec.

TAG

T

8

NUMOP

N

8

CLASS \ OPCODE 0

OP P 0

4 + 8 3 1

The P field has no Phase 1.5 name, but two of its values have
Phase 1.5 mnemoni0s.'

P Value

1
2

Phase1.5

XN
xti

HAL/S-360 Compiler Spec.

N
D

The P field on exit from phase 1.5 is used to convey code
optimization information

P Value

4

Phase 2 Meaning

CSE (at least 2 references)

5-23

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE· CAMBRIDGE, MASS~CHUSEns 0213B • (617)66H840j· .

Eiiiiilli ... ;.;;..,....<_··· _~ :._' ... _ ~ _~ .'._<-..~ _', ... I\:;.,.~ __ ';';:""",,,, ___ '~':::--- ~.~_ ~.;:.:~ .o_,.. __ ",~ ~~ ~;;.~_~~"",,~;~~ ... : --... .. ",~_~.~;.::.~e:.:.~~?>-<- ~~ -"II>:17W'7 i,J;, ~

------~----~-~~-~~~.~--.-~-~~~,-.. ~.'~ .. ~'~~.~*F-.~-._~.~M~w~'~e~~~=.r-=~~~ .• _~-~-~.~.--~~

~ ~

CLASS:

The class of the current HALMAT operator.

o formatting, program organization, execution
control, linkage, system control, subscripting

1 bit operations

2 character operations

3 matrix arithmetic

4 vector arithmetic

5 scalar arithmetic

6 integer arithmetic

7 conditional arithmetic

8 initialization

If the CLASS~O, the eight bit OPCODE is broken down
further into a three bit SUBCODE and a five bit OPCODE.

SUBCODE I OPCODE

3 5

SUBCODE: A value generated by Phase 2 used to classify
opcodes within the same class.

Operand Word:

Phase 2

HAL/S-
360 Com
piler Spe

OPl 'l'AG3

D Tl
c • 16

TAG2 extracted by X BITS
TAGl extracted by TAG BITS
TAG3 extracted by TYPE BITS

8

TAGl TAG2

Q' T2

4 3

TAGS: Used to.extract information from the
tag field of a HALMAT SCHD operator.
the tag field specifies the presence
schedule statement.

5-24

1

1

1

general purpose
For this operator

of options in the

INTERME:TRICS INCORPORATED' 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840
,t"

,
" .. ,~ ~-"'''''-'' ,_ '"'.~_ ,_ .""_.~ ;..,-~ .~,~_.~~J_~ ••. ~ '?_~"

i

I
I
I
i
i
I

I
i

I 1

I, :

, I
'.I

" ~
t~, ." 0Eerand Qualifi~:

Value Phase 2 HAL/S-360 Compiler SEec.

0
1 SYM SYT or SYL
2 INL GLI or INL
3 VAC VAC
4 XPT XPT
5 LIT LIT
6 IMD IMD
7 no equivalent AST
8 CSIZ CSZ
9 ASIZ ASZ

10' OFFSET OFF

5-25

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

,~ -

~.i C::>-~--o;:;::?' _.. - ,. ... -=" --

~.

OPERATOR PROPERTIES

A collection of arrays of OPSIZE

Value Operator Unary Commutative Condition

I
~l
~(

~1
~
~
I!:

ij

i,
i.1
~

~.'

t

L,,,· . ""

Ln
1
tv
0)

A

B

C

D

E

F

1

11

12

13

14

15

16

JI , ,.,

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

Load 0 0 7

Store 0 0 0
AND 0 1 0

Or 0 1 0

Not/EXOR 1 0 0

Not Equal 0 0 4

Equal 0 0 3

Not Greater Than 0 0 1

Greater than 0 0 6

Not less than 0 0 2

Less than 0 0 5

SUM 0 1

MINUS 0 0

Multiplication 0 1

Division 0 0

Exponentiation 0 0

PREFIXMINUS 1 0

Integer Exponent 0 0
Positive Integer
Exponent 0 0

ABS 1 0

Test 1 0

Exclusive Or 0 1

Midval 0 0

Reverse Additive

0 0 -
0 0

0 0

0 0

0 0

:J 0

= 0

.< 0

< 0

-,> 0

> 0

1

1

0

0

0

0

0

0

0

0

0

0

.
I

Destructive

0

0

1

1

1

0

0

0

0

0

0

1
1 .

1

1

1

1

1

1

1

0

1

1

\,

Arith ~

"18"

"10"

';'14"

"16"

"17"

"19"

"19"

"19"

"19"

"19"

"19"

"lA"

"IB"

"IC"

"ID"

"IC"

"13"

"IC"

IIIC"

"13"

"18"

~
I

i
!

1
.I
J

~

~-.- - .- "~"~" , "- ------------------~ --~------~---------~----- --.---~---~- -----.-----~-----

4.·' ...

"' II'

l .. ··'f " •
~-,

,l

!

~: '

i

Ul
I
tv
.....:I

Phase 2 Names

BITS/BOOLEAN

CHAR

MATRIX

VECTOR

SCALAR

INTEGER

POINTER

FULLBIT

DINTEGER

EXTRABIT

OPERAND TYPES AND PROPERTIES

A collection of arrays of size TYP SIZE

D

Halfwor

Char act

Single

Single

Single

Single

Fullwor

Double

Double

Double

Double
Double
SUBBIT

escription

d bit

er

precision matrix

precision vector

precision scalar

precision integer

:i bit

precision matrix

precision vector

precision scalar

precision integer
word item used in
context

Value PACKTYPE

0 1

1 1

2 2

3 0

4 0

5 3

6 3

7 3

8 0

9 1

10 1

11 0

12 0

13 3

14 3

15 1

SELECTYPE CHARTYPE

5 5

0 4

4 4

5 5

5 5

2 2

a 0

a 0

5 5

4 4

4 4

5 5

5 5

3 3

1 1

5 4

DATATYPE

0

- 1

2

3

4

5

6

7

a
1

1

3

4

5

6

1

.)
;t,
;~

CVTTYPE BIGHTS OPMODE RCLASS SHIFT l ,
I

0 2 3 2 1 ~~

1 1 1 3 0
1

0 1 0 3 0 J
1 ,

0 2 3 1 1 J

a 2 3 1 1 ~
.:
.i

a 2 3 1 1

1 1 1 3 a
1 2 1 3 a
a 4 4 a 2

,
1
l
~
j

1 2 2 3 1 ~ .,
1 1 0 3 a
a 4 4 a 2

l
'1

i
H
t~

0 4 4 a 2 ~
H -

a 4 -4 a 2

1 2 2 3 1

W
'1
ii ,I
;~

1 2 2 3 1
li
!i
'I

STRUCTURE Structure 16 4 0 0 a a 4 5 a a 'j-'
EVENT Event 17 1 a 4 1 1 1 1 3 a '

t CHARSUBBIT Character subbi t 18 1 5 4 1 1 1 a 3 _!'

[!
t I ' IJ ,.
~ ,

t ' '

~-'" iEJ!!IIlllt III! g [1.qllmIULI_b.I!IPIIIIIJPU!!"".J!t!mU,Jip!n.H@nL!!!lIJL,~}L;,."JJJ1!IJ!I!IH!l!!!!!!JI!!I!MJlgl'.;~71~~-, ... _ , ___ ~ __ ~ __ .::.~. _. _' - ," "

XADD "OB"

XBNEQ "7250"

XC FOR "0120"

XCSIO "07"

XCSLD "09"

XCSST "OA"

XCTST "0160"

XDIV "OE"

XDLPE "0180"

XEXP "OF"

XEXTN "0010"

XFBRA "OOAO"

XFILE "0220"

XICLS "0520"

XIDEF "OSlO"

XILT "7CAO"

xn1RK "0030"

XMASN "IS"

XMDET "II"

XMEXP "19"

XMIDN "13"

HALMAT Opcodes .

integer and scalar addition

operator for Bit String Comparison for
Inequality

operator for a DO FOR Condition Delimiter

used for generating calls to character I/O
routines

used for generating calls to a character
library routine

used for generating calls to a character
library routine
operator for a DO WHILE/UNTIL delimiter

scalar division
operator for an end arrayness specifier

scalar exponentiation

operators which lists the multiple
symbol table references required for
referencinq a structure variable

operator for branch on false

operator for file I/O
operators used to close an inline function
block
operator for the opening of an inline
function block
operator for integer less than comparison

operator for an in line function statement
marker
used for generating calls to vector-matrix
assignment routines
used for matrix determinant routines

used for generating calls to matrix
exponentiation routines
used for generating calls to identify
matrix routines

5-28
INTERMETRICS INCORPORATED· 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETIS 02138 • (617) 661-1840

!
~

I
L
I

r
)

\

XMINV

XMTRA

XMVPR

XNOT

XOR

XPASN

XPEX

XRDAL

XREAD

XSASN

XSFAR

XSFND

XSFST

XSMRK

XVMIO

XWRIT

XXASN

XXREC

XXXAR

XXXND

XXXST

"OA"

"09"

"OC"

"04"

"03"

"18"

"12"

"0200"

"OIFO"

"14"

"0470"

"0460"

if 0450"

"0040"

"16"

"0210"

"01"

"0020"

used for generating calls to matrix inverse
routines '

for matrix transposes, also used for
generating calls to the routine that
performs this operation

for vector-matrix products, also used for
generatings calls to the appropriate library
routine

for logical not, also used as an index into
the operator table

for logical or, also used as an index into
the operator table to obtain information
about the operator

used for generating calls to matrix assignment
routines

for integer exponentiation

operator for Readall I/O

operator for Read I/O

used for generating calls to vector-matrix
assignment routines

operator for shaping function arguments'
reference

operator marking the end of a shaping
function reference definition

operator marking the start of a' shaping
function reference definition

operator for a Statement Marker

used for generating calls to vector-matrix
I/O routines

operator for write I/O

for assignment

operating indicating the end of a HALMAT
record

"0270" operator marking an argument reference

"0260" operator marking the end of a reference
definition

"0250" . operator marking the start of a reference
definition

5-29
INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

Other Associated Variables

INITBLK (neJ.,-t; .ieve.i)

The HALMAT block being reft:!renced at each neJ.,-t; .ieve.i of an initialization repetition specification. Used to backspace the HALMAT in order to perform a repetition.
INITCTR (neJ.,-t; .ieve.i)

Pointer to the beginning of a repeated block of HALMAT ini tialization. The HALMAT is backs,paced to this point once for each repetition (i. e. INITREPT (next leve.i) times).

LEFTOP

Pointer to indirect stack entry for operand of HALMAT instruction.

LHSPTR

1) An index variable used to address the HALMAT operand words for the receivers in multiple assignment statements.

2) Used to reference the HALMAT operand words for time and event expressions.

NEWPREC

Precision of result specified by HALMAT instruction.
0: arbitrary
1: single
2: double

OPTYPE

Type of result of current instruction.
RESULT

Pointer to indirect stack entry representing the result of ~ HALMAT instruction, (e.g. result of a function call).

RIGHTOP

A pointer to the indirect stack entry for an operand of a HALMAT instruction.

5-30
INT!:RMETRICS INCORPORATED' 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

I
~ <

J' ~.

',: ~.

SUBOP

The HALMAT operand word that is c.urrently being
decoded in a TSUB or DSUB.instruction.

XD

Initial 2. A HALMAT operator word pseudo-optimizer
tag field mnemonic for an arrayness specification.

XN

Initial 1. A HALMAT operator word pseudo-optimizer
tag field mnemonic for an arrayness upshift stopper.

XPT

Initial 4. The HALMAT operand qualifier for an extended
pointer. This pointer is used for referencing structure
variables; the operand field is a pointer to the HALMAT EXTN
operator listing the multiple symbol table references required
to specify the variable.

5-31

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

, i

5.1.9 Arguments of Procedures and Functions

ARG NAME

1 if argument is a name parameter,
o otherwise.

ARG STACK

Pointer to the indirect stack entry which corresponds
to each argument in the argument stack.

Si~e of argument stack.

ARG STACK PTR

Pointer to next free en.try in a~gument' stack.

ARG TYPE

For list. and shaping f.unctions specifies repeat
factor (cf. HAL/S-360 Compiler Spec., page A-60); otherwise,
true if assign parameter.

ARGNO

The actual number of an argument (1,2, .•.) rather than
its index in the argument stack.

ARGPOINT

A pointer to the symbol table entry for an argument.

ARGTYPE

The type of the entry pointed at by ARGPOINT.

FIXARG1

Initial 5, FC only. Register for use as an index
register, for passing integer and bit parameters, and for
returning integer and bit function values.

5-32
JNTERMETRICS.INGORPORATED· 70J CONCORD AVENUE • CAMBRIDGE, MASSACHUStTIS 02t38· (6:17) .661-1840

.- "-
, 'f
",,",i

~
!I!.
~:
~I
L:

" " ?:
LI
~
l
q I
F\
il .
" fi
~
.;
~
~
:~
;;
iI
111

" ~
l
"

I ~ ,
~!
t'*
t~

I
:2
:i
~
~
~
ili
j~

!~ 1
;/ ~

}~ • " ~
1 1

j
;.1

;~ j

;~
1

I
'i l
fA .'j

,~

" ') , ~
~,~ 1

1
j~

.. .
;! J
.if" j
I; ~
:~

:i
~-!
);

'. :~ "
':i l ~

'J 1
'iI

~ .J

:l -J
-:

,~, 4 : 11~

~l
1

,
~~ ,
j

J
.~

t
]
.j

. ~

'.~

?
)
\

FIXARG2

Initial 6, FC only. Register for use as an index
register and for passing integer and bit parameters.

FIXARG3

Initial 7, FC only. Register for use as an index
register and for passing integer and bit parameters.

5-33

INTFRMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661~1840

5.1.10 Runtime Stack Frame and Local Block Data Area

A runtime stack mechanism is 'used by the compiler
to provide subroutine linkage area, temporary work areas,
error vectors, and local storage for reentrant code blocks.
The precise format of the runtime stack frame can be found
in the compiler system specification.

5-34
INTERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETIS 02138· (617) 661~1840

c.\~ ; I

J .
.;...-'---..:.:.-~--'--~;...........~-:....;.~ ,~~-~:~"--","-"~::'~"--'-"jO ~

" I !"

Registers used for addressing the stack frame and
associated data:

Register
FC 360

o

1

2

3

4

13

10

14

Phase 2 Name

TEMP BASE

PROGBASE

PTRARG

PROCBASE

LINKREG

Contents

Points to the runtime stack fr.ame
of block in execution

Points to the program level data
base

Work addressing register used to
pass address parameters and de
reference name variables

Used to address data local to the
block in execution

Contains the return address for
intrinsic or leaf procedure linkages

NARGINDEX is tne scope number of the current block and its index
in the Block Definition Table.

TEMPBASE is a register which points to the beginning of the current
runtime stack frame. Certain offsets-from the beginning of the
frame have been given mnemonic names to reflect their contents:

Phase 2 Name

REGISTER SAVE AREA

STACK LINK

NEW LOCAL BASE

NEW GLOBAL BASE

NEW STACK LOC

STACK FREEPOINT

Contents

The caller's register save area is stored
beginning at this offset.

The contents is the pointer to the pre
ceding stack frame. This is the previous
value of TEMPBASE.

The contents is the pointer to the current
block's Local Data Area. This is equiva
lent to the current value contained in
PROCBASE.

The contents is the pointer to the current
block's Program Data Area. This is equiva
lent to the current value contained in
PROGBASE.

The next value of the stack pointer. This
value is set when a procedure is entered,
except when no new procedure is to be
called. (Used only when SeAL linkage is
not used.)

The first location following the register
save area. The contents of the caller's
floating point register are saved
starting at this offset.

5~35

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (1,17) 661-1840

,J.t ..

Phase 2 Name

ERRSEG(NARGINDEX)

Contents

The displacement in the
frame where the error
vector starts.

WORKSEG(NARGINDEX) The displacement in the
.frame where the work area
starts.

MAXTEMP'<NARGINDEX) The maximum space occupied
by a run-time stack frame.
The displacement of the
end of the frame.

The code for setting up a new run-time stack frame when a
block is entered is generated by BLOCK_OPEN.

The ERROR VECTOR in a runtime stack-frame contains an
entry of 2 halfwords for each ON ERROR statement in the
block. The information contained in the error vector is
contained in the Error Stack and augmented by the Block
Definition Table entry for the runtime stack frame.

The Block Definition Table provides the following
information:

ERRPTR: A pointer to the first error stack entry
associated with the block.

ERRSEG: The displacement of the beginning of the error
vector within the runtime stack frame.

ERRALLGRP: 1 if there is an ON ERROR*:* statement in the
block, 0 otherwise.

ERRALL: The number of error groups for which an ON ERRO~group:*
statement appears in the block.

MAXERR: The number of errors for which ON ERROR statements
exist in the block.

The information in the Block Definition Table is used
primarily for determining the displacement of each error
within the vector. This is done in the procedure SET ERRLOC.
The errors are arranged so that entries for single errors
in a group are at the beginning of the vectors. These are
followed by entries for error groups with all errors on. The
last entry indicates the action to be taken if all errors
are on at some point during the block's execution.

5-36

INTfRMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

I

I
I

I
I ,
~

[;

The Error Vector Entries have the format shown
below:

A (4) Error Number (6) I Error Group (6)

Address (16 bits)

The displacement of an Error Vector is in the Error Stack
ERR DISP field.

Error Group }
Error Number This information is in the Error Stack's

ERR STACK field.

A: 0000
XXOI
XXII
OOXX
OlXX
10XX
llXX

GO TO Address
SYSTEM
IGNORE
No event action
SET
RESET
SIGNAL

Determined in GENERATE from
the HALMAT ERON instruction.

Address: The address of an Event Variable or GO TO.

5-37

INT~RMETRICS INCORPORATED' 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661~1840

The Local Block Data Area

A Block Data Area may exist for any program, procedure,.
function, task, or update block. The Block Data Areas
are created by Phase 2 of the compiler and are part of
DATABASE, the program level data CSECT. Storage is
allocated for the Block Data Area by INITIALIZE, and the
address of the area is stored in the block's SYT ADDR
entry. Register 3, PROCBASE, is loaded with the-address
of the Block Data Area for the block being entered
by the compiler code emitted by BLOCK ENTRY. PROCBASE
points to the Local Block Data Area 'for the block in
execution. The previous values of PROCBASE are saved
in the runt'ime stack frames.

The Block Data Area consists of two or five consecutive
halfword locations. The values stored in the first two
locations are determined by the procedure BLOCK OPEN,
the remaining ones by BLOCK CLOSE. The format of a Block
Data Area is shown below, followed by an explanation of
each field and the Phase 2 variables-containing the
information.

Fields

PROCBASE -+ 1 Block ID

2 XU ONERRS ERRDISP

3 TYP UNUSED RESERVE SVC#
Only required
if XU = 1.

4 UNUSED RELEASE SVC#

5 LOCK ID

5-38

(;

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

.. , " .. "~ .. ,_ _._1Mi ,~".::::j<t-"'?I;.,"-:i ";i ... --<-=.6.,,;..i·"-..5:J.~: •. _:"'~;;::;:._~. ~_-'-> .. _"'-:...- ... ,.~~'>-O""--,.-"'-<-• . _'L·_'_-."."_:·.-'''£;--''·~_· .. _ - -- - -- ----- --- - -------= -~~

r"~'-'~"'l-"~~-~"-~~~'~ "~.~."~ .. ~ .. '-}.. · m" .. _'~",,,,,,,,,:,,_. '"""~_.MU ,.P'."- ·r .. -'"· .. ·"~" ._.,...mr ·"' ... ··

I .,~-if'Il;.,: ""II!l!!A' ~.:'Ci,Jt" .. ' .. ,~ :!>:,:";,, .. : ~, •• :' . '" "',~rr ",. ". ,: "C."".'7''''''''=''C;'''-''.~ '.eXCC:":".,:: c .. ,~'.0 "';C',.~ .'.:C; ... : -'., _. " c','' ",,'"." 'C':," :n,:", •. ·7 ~ ,,"',",," ::-"1"'" ".".f., ,' . ..,,~

Assume that BLOCK is a pointer to the block's symbol
table entry, and SCOPE is the block's SYT SCOPE.

Field

1. Block ID

2. XU

ONERRS

ERRDISP

3. TYP

Phase 2 Reference

CMPUNIT ID

CALL#(SCOPE)=4

MAXERR(SCOPE)

ERRSEG(SCOPE)

Determined from
SYT CONST(BLOCK)

Definition

A 16 bit field uniquely
identifying the block.
(9 bits). The first 9
bits are a user supplied
compilation unit number.
(7 bits). The last 7
bits are the compiler
generated number identi
fying each block. This
is to provide a pointer
to the information about
the block in the Block
Definition Table.

(1 bit) EXCLUSIVE UPDATE
flag. Set to 1 if the
block is either an EXCLUSIVE
or UPDATE block. This is
indicated by a CALL#(SCOPE)
of 4.

(6 bits). The number of
discrete errors for which
an ON ERROR statement exists
in the block.

(9 bits). The displacement
in halfwords from the begin
ning of the block's runtime
stack frame to the error
vector.

"

'J:'~ "

t,"

, .
;.~,'

J ,J
f'

.1:
.1

t·,.

(1 bit). Set to zero for
EXCLUSIVE functions or
procedures. For update blocks, ;
set to one if shared data
variables are read only, and

set to zero if shared data. I.:.'
variables are to be written. 1

5-39

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

l
l
~
~
~
,~

Field

RESERVE SVC#

4. RELEASE SVC#

5. LOCK ID

Phase 2 Reference Definition

(8 bits). svc number for
the reserve SVC:

15 for a code block
16 for a data area

(8 bits). svc number for
release SVC:

17 for a code block
18 for a data area

(15 bits). Indicates
which code blocks or data
areas are being used.

The contents of an For an EXCLUSIVE block, it
offset in EXCLBASE is the address of its

EXCLUSIVE data CSECT.

SYT CONST(BLOCK) For a data area, it is a
&

1r
7FFF" bit string specifying

which lock groups are
involved.

5-40

:l. '.' ..

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

! ,
I
"

5.1.11 Vector-Matrix Optimization

The temporary storing of the result of a HALMAT vector
matrix operation immediately before an assignment can be
eliminated if certain conditions hold. A detailed description
of these conditions may be found in the HAL/s-FC Compiler
Specification, Section 3.1.5.5.

The variables associated with vector-matrix optimization
can be grouped in the following way:

I. Global Flags:

NO VM OPT

ALL FAILS

OK TO ASSIGN

A compiler option specifying that
vector-matrix optimization is not
required. In this case, some
unnecessary temporary stores for
the results of vector-matrix opera
tions will be generated.

True if optimization probably not
possible.

True if optimization probably
possible.

II. Variables Associated with the HALMAT Operation:

STMTPREC

CLASS1 OP

CLASS3 OP

SRCE

ASNCTR

True if either operand is double
precision.

True if the operation is in Class 1.
This class only includes rai~ing a
matrix to the oth power.

A flag indicating that the opera
tion is in class 3. Class 3 opera
tions include matrix-scalar and
vector~sca1ar multiplication and
division, vector-matrix addition and
subtraction, vector and matrix nega
tion, and the built-in function UNIT.

A pointer to the value being assigned
ina vector or matrix assignment
statement ..

A pointer to the HALMAT assignment
operation following the V-M op0ration
to be optimized.

5-41

INTEf4METRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

Variables associated with either: operand while its
properties are being determined:

OPER SYMPTR

OPER PARM FLAG

START PART

SRCEPART SIZE

NAME OP FLAG

VAC FLAG

SUBSTRUCT FLAG

A pointer to the symbol table
entry of an operand.

A flag used to indicate whether
an operand of a vector or matrix
instruction is a parameter.

The offset used to find the beginning
of a matrix partition for an operand
in a matrix instruction that is
being considered for vector-matrix
optimization.

The extent of the partition of an
operand in a matrix instruction
being considered for vector-matrix
optimization.

A flag used to indicate whether the
last HALMAT operator is a name
variable. (Name variables that are
operands stored in the temporary work
area cause this flag to be false.)

A flag used to indicate whether
the last operand decoded is in the
temporary work area.

A flag used to indicate whether the
last operand examined is a terminal
of a subscripted structure.

The properties associated with the operands are:

LEFT NSEC or RIGHT NSEC

LNON IDENT or RNON IDENT

A flag used to indicate that the
left-hand (or right-hand) operand
of a vector-matrix operation is in
temporary storage.

A flag used to indicate that the left
(or right) operand of a vector-matrix
instruction and the receiver of an
immediately following assignment
statement with one receiver are not
identical.

5-42
INTrRMETRICS INCORPORATED' 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

I
, I

III.

LEFT DISJOINT or RIGHT DISJOINT

A flag used to indicate that the
left (or right) operand of a vector
matrix operation and a suitable.
receiver of an assignment statement
are disjoint.

Variables Associated with the Receiver:

RECVR

RECVR~SYMPTR

RECVR NEST LEVEL

RTYPE

START OFF

PART SIZE

A pointer to the indirect stack
entry for the receiver in an assign
ment statement with a single
receiver.

The pointer to the symbol table entry
for the receiver for an assignment
statement being considered for vector
matrix optimization.

The nest level of the receiver in
an assignment statement being considered
for vector-matrix optimization.

A flag used to indicate the precision
of the receiver in an assignment
statement with single receivers.

The offset used to find the beginning
of a matrix partition for the receiver
of a matrix assignment statement
being considered for vector-matrix
optimization.

The extent of the indexing term associated
with a partitioned matrix receiver in
an assignment statement used for
vector-matrix optimization.

Intermediate flags associated with the Receiver:

REMOTE RECVR A flag used to indicate that the
receiver in an assignment statement
with a single receiver has the REMOTE
attribute.

5-43
INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE. MASSACHUSETTS 02138 • Itj17) 661-1840

r

Flags associated with the Receiver:

INX OK

ASSIGN PARM FLAG

A flag used to indicate that a
receiver in an assignment statement
with a single receiver does not have
variable sUbscripting.

A flag used to indicate whether
the receiver in an assignment state
ment with a single receiver is non
partitioned.

A flag used to indicate whether the
receiver in an assignment statement
with a single receiver- is an
assign parameter.

A flag used to indicate that the
receiver in an assignment statement
with a single receiver is not a
REMOTE or NAME variable, and is not
a terminal of a subscripted structure. -~ ~

5-44

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

~ - < -

. ''-.i';' .• _·<·~~·_,o~ __ -""_'._"" .. ~"', Cl<_·_,;;,~'-.1 __ ,"'-.'""'_"'-..... -"',,-= j

1 ,1

1

~It 5.1.12 Other Useful Compendia

Register Names Used by Phase 2

Register

RO

R1

R2

R3

R4

RS

R6

R7

FO

F1

F2

F3

F4

FS

F6

F7

Phase 2
Reference Number

o
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Names

TEMP BASE

PROGBASE, SYSARGO

PTRARG, SYSARGI

PROCBASE, SYSARG2

LINKREG

FIXARG1

FIXARG2

FIXARG3

FRO

FR1, REMOTE BASE

FR2

FR4

FR6

FR7

5-45

INTE.RMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840 ,'"
.. __ ,. '':''':'~~~ . __ .:".-" ____ ~. _ ;:-'-___ ~_.:."'__ c._;:,,: .• _~'._'..LL:!". ,·~,;;-~...lt-~L.:lo:;ic_..''::~~~-...L._M.: .. ::11I;::..'":.i.·'.:.:i~·~~~:',:::':"j. =A~...i:r~_~:,.:~.:.:~~":~-,,-I,,<~'it~· .. ';!C1:·':;0.:f.=;~:::: . .'.,:·.o..-~,,,.~.3.ii .• ,,::~...;::::..i. .. /!. ... ,~.:w.;:;:'.r':_-:i::';;:il""_ td

,. ".

I r' -..
. 1

., ··_···· .. ··c· .. ·····-··- ~---~-... --... -.---~.--.--- .. ~-...,.~...,.....,........::;:;:;::::;~~. ~'1·'~··· ~-r~

Operand Qualifiers Declared.in Phase 2

Operand qualifiers are used in Phase 2 by HALMAT
operand words, Indirect Stack Entries, the Register Table,
and the Intermediate Code File to classify the operands
and give significance to the other operand fields. The
operand qualifiers used by each table do not form groups
with mutually exclusive names or values. The table below
lists the possible qualifiers values, their Phase 2 names
if they exist, and which tables use them.

USERS

Phase 2 HALMAT Indirect .stack Register Intermediate
Value Mnemonic Operands

0
1 SYM SYT/SYL

2 { 'INL GLI/INL
AIDX

3 VAC VAC
4 XPT XPT
5 LIT LIT
6 IMD IMD

7 { CSYM X (AST)
POINTER I

I

8 { CHARLIT
CSIZ CSZ

9 ASIZ ASZ

10 { EIXLIT
OF:B'SET OFF

11-13
14
15 CLBL
16 ADCON
17 LOCREL
18 LBL
19 FLNO
20 STNO
21 SYSINT
22 EXTSYM
23 SHCOUNT

24-28
29 SYM2
30 AIDX2
31 WORK

I Qualifier value is used.

Entries Table Output Code

,; ,;
,; ,; ,;

,; ,;
,; ,;

,; X
,; ,;
,;
,; ,;

,;
,;

X
,;

,;
,;

NOT USED
,;
,;
,;

,; ,;
,; ,;
,; ,;

,;
,; ,;

,;
NOT USED

,;
,;
,;

X Qualifier is used, but has no
Phase 2 mnemonic.

(For HALMAT operands, ,; and X have been replaced or supplemented
by the mnemonic' used in the HAL/S-360 Compiler Spec., Appendix A.)

5-46

!
I

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

I

t~ i .,

i

I .,
!

,
,!
!,
il
II
';

j I,

r I'
;
\

" . . ,
~ Intermediate Output Code Opcodes

32 RRTYPE 45 PDELTA
33 RXTYPE 46 C STRING
34 SSTYPE 47 CODE END
35 DELTA 48 PLBL
36 ULBL 49 DATA LIST
37 ILBL 50 SRSTYPE
38 CSECT 51 CNOP
39 DATABLK 52 NO
40 DADDR 53 NADDR
41 PADDR 54 PROLOG
42 LADDR 55 ZADDR
43' RLD 56 SMADDR
44 STM'rNO

5-47

IWERMETRICS !NCORPORATED ·701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (6"17) 661-1840

I '

I'" . "'~-..... ~",....... ,...,.......... -.--.. -,.....---3i.~,....,..7"-.-., . ~~:-'-, --==-'~-~--··-···---·-r--.. · .. ----~"-- •• l~-~'

~II. $"'i.,IlIIIU\lMtlI_ i~~''''''''''_'~' ~ i"~'."'!lI""""''''''-'''''·_·H'''''·"'''''''''''''''-''''"··C'''·'''··'·· C -'"""C-"",",,,,,,,,,,,- '''''.'-'''''''':'.-.''''.''_''''''''',-,:~"""",,::':'

Opcode Construction

Declarat.ions Involved:

ARJ.TH_OP, OPMODE, MODE_MOD, RR, RX, RI.

ARITH OP: An array giving the basic RR opcode for each
of the OPSIZE operators in the operator table.

OPMODE: An array giving the operation mode for each
operand type:

OPMODE

o
1
2
3
4
5

Operand Type

Character
Halfword bit, single precision integer
Fullword bit, double precision integer
Single precision scalar
Double precision scalar
Structure

There are four instruction types:

RR initial (0)
RX initial (5)
RI initial (10)
RS initial(15)

which can take on the above modes. The instruction type and the
mode are added together to get an index into the MODE MOD array.
This array provides a value used for modifying the basic
opcode.

The complete sequence of operations for generating an opcode
is:

ARITH_OP(operator+MODE_MOD(OPMODE(operand type)+instruction type)

This results in a two digit hex opcode whose first digit
indicates the instruction mode whose second digit indicates
the operator. (This method cannot be used for all opcode
generation.)

5-48

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

-(0 •

"',

MODE MOD lstHex Digit Description

0 0
1 0 1 RR
2 0 1 RR
3 "20" 3 Single precision RR
4 "10" 2 Double precl.sl.on RR
5 1 Illegal on FC
6 "30" 4 Halfword RX
7 "40" 5 Fullword RX ii r :
8 "60" 7 Single precision RX 1:

9 "50" 6 Double precision RX '" :1
10 0 'J i:

11 ' "90" A' Halfword RI
:l 12 0

13 0
14 0
15 0
16 0
17 "BO" C Fullword RX to storage

I

5-49

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138·(6Hr-661·~1840

f

r-'''-'-l' --......... -.-~ ·-·--··.r-·-. -
I

5.1.13 Alphabetical Listing of Global Phase 2 Data

A

ABS

ADCON

ADD

ADDITIVE

ADDR FIXED LIMIT

ADDR FIXER

ADDR ROUNDER

ADDRESS STRUCTURE

ADDRS ISSUED

ADJUST

ADOPTR

AH

AHI

AIDX

AIDX2

ALCOP

ALL FAILS

Initial ("5A") • Opcode used for code
generation.

label

Initial(16). An intermediate code
qualifier which indicates an address con
stant to be used as a displacement in RX
instructions.

Initial("OB"). An operator code for
addition used as an index into the tables
of properties of operators.

See HALMAT Operat,or properties.

Common value passed from Phase 1.

Common value passed from Phase 1.

Common value passed from Phase 1.

label

A flag indicating whether the source
statement number of the current statement
has been output to the intermediate output
code file.

label

See Array Do Loop declarations.

Initial("4A"). Opcode used in code
generation.

Initial ("AA"). Opcode used in code
generation.

Initial (2). Array index. One of the
possible forms of an indirect stack entry.

Initial (30). An indirect stack entry
form for a two-dimensional array
index.

literally RESULT

See Vector-Matrix.

ALLOCATE TEMPORARY label

5-50

"

INTERMETRlCS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

ALWAYS

AM

AND

ANY LABEL

APlOlINST

AR

AREA

AREASAVE

ARG ASSEMBLE

ARG COUNTER

ARG NAME

ARG POINTER

Initial (7). Used in generating branch
instructions to represent a test condi
tion of 7 (always branch).

Addressing mode field of an RS format
instruction.

See HALMAT operator properties.

Initial ("40"). ·One of the entry types
in the symbol table used to distinguish
label entries (type ~ "40") from other
entries.

Array of size OPMAX. Array of AP-lOl op
codes indexed by the corresponding 360
opcode.

Initial (llA"). Opcode used in code
generation.

Product of AREASAVE and the size of each
dimension arrayness of an operand.

A number used as a basis for computing the
area a terminal operand occupies since
the product of AREASAVE and the bytes the
operand's optype occupies gives the
value determined by the operand's packtype.

PACKTYPE AREA SAVE

0 Matrix/Vector ROW x COLUMN or Number of
components

1 Bit 1
2 1/2 (length+2) + (length+2)

& 1
3 Integer/Scalar 1
4 Structure

label

Array of size CALL LEVEL#. See
Call Stack.

Se,e Arguments.

Array of size CALL LEVEL# .
See Call Stack.

5~5l

INTEI1METRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661~18~0

1
t
1 ,
I •

I
~
j

'j "

j

I
" I "

" /~
',~
'J

l

1
~
~
~
l

1
1 ,

ARG STACK

ARG STACK PTR

ARG TYPE

ARG#

ARGFIX

ARGNO

ARGPOINT

ARGTYPE

ARITH BY MODE

ARITH OP

ARRAY FLAG

ARRAY INDEX MOD

ARRAYNESS

ARRAYPOINT

ARRAY2 INDEX MOD

ARRCONST

Array of size ARG STACK#.
See Arguments. ~

See Arguments.

See Arguments.

Dummy variable used as an index in do
loops that access all arguments of a pro
cedure, function I/O routine.

See Arguments.

See Arguments.

See Arguments.

See Arguments

label

See HALMAT operator properties.

A flag indicating that a conditional opera
tion is occurring during array processing.
This means that code for closing the loops
set up for array processing must precede
any code for conditional branches.

label

Number of array dimensions of an operand.

Array of size LASTEMP. See
Storage Descriptor Stack.

label

The product of AREASAVE and an offset
computed from the array dimensions of
an operand. The offset is computed as
follows: (Ni is the ith array dimension) •

Dimensions Offset

o
1
2
3

o
-1
(-lN2) - 1
((-1 N 2) - 1 N 3)1

JNTERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

:_ •. ,~~J
,.
,.
;;~

'11\:; I.· 1 ,

. r~

,~ ,

" :1
-' . . ,
't

1
·i
-~.

'.'

,I
',*, .,
.~

':.
'-:.<

:i:
'.~
J
;i
:"!
,Tt
'!
'I

)
.j
l ,

~
1
1
~
i
~

I
1

I
I
i
~
~

I

ASIZ

ASNCTR

ASSEMBLER CODE

ASSIGN FLAG

ASSIGN HEAD

ASSIGN OR NAME

ASSIGN PARM FLAG

ASSIGN START

ASSIGN TYPES

AUTO FLAG

See HALMAT decoding.

See Vector-Matrix.

1 if assembler code listing of program that
is being compiled has been requested, 0
otherwise.

See Symbol Table SYT_FLAGS.

Array of size 5. Used for scalar and
integer assignment. The entries are indexed
by selectype, and each entry points to
the first entry in a chain of operands
of the same selectype that are to be
assigned with the same value.

See Symbol Table SYT_FLAGS.

See Vector-Matrix.

Array of size 4; initial (0,6,12,18,24) ~
Used for integer and scalar assignment to de
terminate the order in which conversion should be
done. The entries are indexed by the SELECTYPE
of the right side of the assignment. They
provide an index into ASSIGN_TYPES.

Array of size 23; initialized. Used for
integer and scalar assignment. ASSIGN START
provides an index into this array which is
then used to determine in what order any
conversions necessary to carry out assign
ment should be made.

See Symbol Table SYT FLAGS.

AVAILABLE FROM STORAGE label

B

BACKUP REG

BAL

BALR

Current base register. (Used in generating
object code.)

Array of size STACK SIZE .
See Indirect Stack.

Initial ("45"). Opcode used for code
generation.

Initial ("OS"). Opcode used for code
generation.

5-53

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETIS 02138 • (617) 661-1840

. ,
~ i

BASE

BC

BCF

BCR

BCRE

BCT

BCTR

BD BASE REGS

BEGIN SF TABLE

BIFCLASS

BIFNAMES

Array of size STACK SIZE.
See Indirect Stack -

Initial ("47") • Opcode used
generation.

Initial ("87") • Opcode used
generation.

Initial ("07") • Opcode used
generation.

for code

for code

for code

Initial ("OF") . Opcode used for code
generation.

Initial ("46"). Opcode used for code
generation.

Initial ("06") • Opcode used for code
generation.

The location in DATABASE of the values
of the virtual base registers.

label

Array of size BIFNUM;initialized. An array
giving the class of each built-in function.
The classes are:

o Arithmetic Functions
1 Algebraic Functions
2 Vector-Matrix Function
3 Character Functions
4 Supervisor Built-in Functions

Character array; initialized. An array
used for generating the names of library
or external routines that perform built
in functions. The names in this array
are prefixed to specify precision, argument
type.

5-54

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETIS 02138 • (617) 661-18,tO

!
~-

~

II ,
~
I
!
i
1

I
~

I
~

I
~
li

~ .,.
~ J 14
~,

~ '1 n

~

1
~
ii
l~
~ ~
f~ 1 ., "'~
;~

" 'J !,
1 '~

"
~ f'
.'/

j ..
'1 tl
l
.~

.'; ..
:~
I';

1 1 j
J

j
~

1
1

1

r; rr, ,

BIFOPCODE

BIFREG

BIFTYPE

BIGHTS

BIT MASK

BIT SHIFT

BIT STORE

BIT SUBSCRIPT

BITESIZE

BITS

BLANK

BLOCK CLASS

BLOCK CLOSE

BLOCK OPEN

Array of size BIFNUM initialized. This array
gives the index of the built-in function
name in BIFNAMES.

Array of size 3; initial (8,10,5,6). Used
to determine what registers to use for
arguments of arithmetic built-in function.
Registers 8 and 10 are used for scalar
operands; registers 5 and 6 are used
otherwise.

Array of size BIFNUM; initialized. This array
gives the type of each built-in function.

Array of size TYP SIZE; ... ,
initialized. The number of halfwords
occupied by an item of each data type.

label

label

label

label

Initial (16). 16 bits. Used to compute
storage.

Initial (1) •. The halfword bit operand
type.

Ini tial (' ').

Array of size (11); initialized. Array with
an entry for each symbol table class with
value 1 if class is a label name, and 0
if it is a data name.

label

label

5 ... 55

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

,.~
1BIJi

r
~J
1

BOOLEAN

BOUNDARY ALIGN

BYTES REMAINING

CALL CONTEXT

CALL LEVEL

CALL#

CARD IMAGE

CASE2SET

CCREG

CH

CHAR

CHAR CALL

CHAR CONVERT

CHAR INDEX

CHAR SUBSCRIPT

Initial ·(1). The ha1fword bi~ operand type.

label

The number of character positions left in
the current card.

Array of size CALL LEVEL#.
See Call Stack. -

The current nest level; 0 for procedure
calls and > 1 for nested function invoca
tions.

Array of size PROC#.
See Block Definition Table.

See COLUMN.

Array of size VMOPSIZE used by VMCALL to
determine which operand's dimensions contain
all necessary information for the subroutine
call.

A number describing the side effects of
an instruction on the condition code:

I

CCREG<O indicates a logical condition code.
CCREG=O indicates the condition code is

no longer valid.
CCREG>O indica.tes the register affecting

the condition code.

Initial ("49"). Opcode used for code
generation.

Initial (2). The character operand
type.

label

label

label

label

CHARACTER TERMINAL label

CHARLIT Initial (18). An intermediate output
code qualifer referring to the character
literal pool.

5-56
'INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE; MASSACHUSETIS 02138 '(617) 661~1840

..r' ..

~.

'40,"~ ~

I>

r,
i
;

CHARSTRING Used to build up part of a line of
assembler code for output as the
assembler listing.

CHARSUBBIT Initial (18). The operand type for
character strings referenced as bit
strings.

CHARTYPE See HALMAT Operand types.

CHECK ADDR NEST label

CHECK AGGREGATE ASSIGN label

CHECK ASSIGN label

CHECK ASSIGN PARM label

CHECK CSYM INX label

CHECK LOCAL SYM label

CHECK LOCK# label

CHECK NAME ARG label

CHECK REMOTE label

CHECK SI label

CHECK SRCE label

CHECK SRS label~

CHECK STRUCTURE PARM label

CHECK VAC label

CHECK VHARG DIMS label

CHECKPOINT REG label

CHECKSIZE label

5 ... 57
INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

1
)

\

I

CHI

CLASS

CLASS B

CLASS BS

CLASS BX

CLASS D

CLASS DI

CLASS_DQ

CLASS DU

CLASS E

CLASS EA

CLASS F

CLASS FD

CLASS FN

CLASS FT

CLASS PE

Initial "A9". Opcode used for code
generation.

See HALMAT decoding.

Initial (110). Errors resulting in
compiler termination.

Initial (9). Error resulting in compiler
termination due to stack size limitations.

Initial (n). Compiler Error.

Initial (18). Declaration errors.

Initial (23). Declaration error:
initialization.

Initial (112). Declaration error:
structure template tree organization.

Initial (100). Declaration error:
undeclared data.

Initial (29). Expression errors.

Initial (30). Expression error:
arrayness.

Initial (115). Formal parameters and
arguments error.

Initial (37). Formal parameter and
arguments error due to dimension agree
ment.

Initial (38). Formal parameter and
argument.error: number of arguments.

Initial (40). Formal parameter and
argument error: type agreegment.

Initial (95). Program control and
internal consistance error: external
templates.

5-58

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

,

CLASS PF

CLASS_QD

CLASS RT

CLASS SR

CLASSl OP

CLASS3 OP

Initial (58). P~ogram control and internal
consisteance error: function return
expressions.

Initial (69). Shaping function dimension
information error.

Initial (97). Real time statement error
timing expression.

Initial (76). Subscript usage error: range
of subscript values.

A flag indicating that a vector-matrix
operation is a Class 1 operation. This
class only includes raising a matrix to
the oth power.

A flag indicating that a vector-matrix
operation is a Class 3 operation. Class 3
operations include matrix-scalar and vector
scalar multiplication and division, vector
matrix addit10n and subtraction, vector and
matrix negation, adn the built-in function
UNIT.

CLBL Initial (15). An intermediate code qualifier
indicating the address of the beginning of
a data area containing the address of the
beginning of the code for each case in a
DO CASE statement.

CLEAR CALL REGS label

CLEAR NAME SAFE label

CLEAR R label

CLEAR REGS label

CLEAR SCOPED REGS label

CLEAR STMT REGS label

5-59

INTf:RMETRICS INCORPORATED· 701 -CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

i'
, !

~.

, i

,1

CLOCK

CMPUNIT ID

CNOP

CODE

CODE BASE

CODE BLK

CODE END

CODE LIM

CODE LINE

Array of

CLOCK(O) :
CLOCK (1) :
CLOCK(2):

size 2 •.

time at beginning of phase 2.
time at end of phase 2 set up.
time at end of phase 2 generation.

A user supplied number used to identify
a compilation unit.

Initial (51). An intermediate code qualifier
indicating how to align data areas to
proper boundaries.

Array of size CODE SIZE.
Array containing the block of intermediate
code which is currently being referenced
or modified.

The lowest line from the intermediate code
file in CODE •.

The block of the intermediate output code
file which is currently in CODE.

Initial (47). An intermediate code qualifier
indicating the end of a compilation unit.

The highest line from the intermediate code
file in CODE.

The line of intermediate code that is
currently being referenced, added, or
modified. CODE LINE is an absolute value
relative to all-the lines of code generated,
it is not a pointer into CODE.

CODE LISTING_REQUESTED

CODE MAX

CODEFILE

COLON

A compiler option: 1 if code listing is
requested, 0 otherwise.

the maximum number of lines of code in the
intermediate output file.

See HALMAT decoding.

Initial (:).

5-60
~N1FRMETRICF, ;'-JCORPORATED • 701 CONCORD AVENUE· CAMBRIDGE, MASSAOHUSET1'S 02138 • (617)661-1840

I

j'
;l

~
;?,
11
'r
;~

."
~
'E r· ...
~~

if;

1
11
1
t;

,-~ ~ :x
;11

~~ 1 ,

1
,.

::~
,
j

J: j
.~

.~
.,

. ! J
1

.. j
:*~ .
i~ ~
.~

,I
,t:

.~
"~

j!

1 .. ~

I
~
1 ,

~LJu·" __ " L.:£ 2 •.. lJ .

COLUMN(OBJECT GENERATOR)

COLUMN (otherwise)

COMMA

COMMON SYTSIZES

COMMUTATIVE

COMMUTFM

COMPACT CODE

An array used to set up card images to be
output. CARD IMAGE (I) are the four bytes
of COLUMN starting at COLUMN(4*(I-l».
DUMMY CHAR is built to be a descriptor
pointing to column so that COLUMN can be
output as a normal character string.

See Indirect Stack.

Initial (,).

Array of size #COM SYTSIZES used by storage_mgt
for dynamic allocation.

See HALMAT operator properties.

label

A compiler option.

COMPARE Initial "05". An Operator Code for compari
son used as an index into the table of
properties of operators.

COMPARE STRUCTURE label

COMPILER A character string indicating the compiler
type.

COMPOOL LABEL See Symbol Table SYT TYPE.

CONDITION See HALMAT Operat:or Properties.

CONST See Indirect Stack.

CONSTANT CTR Pointer to the constant table entry for
the last literal put into the constant area.

CONSTANT FLAG See Symbol Table SYT FLAGS.

CONSTANT HEAD For each opmode, a pointer to the beginning
of the last of literal pool entries for that
opmode.

CONSTANT PTR Array of size CONST LIM.
In GENERATE, a pointer to the next constant
of the same opmode in the constant area.
GENERATE CONSTANTS overwrites the pointer
with the-actual address of the constant.

5-61

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETIS 02138 • (617) 661-1840

r
~
~
;.:,.

) ,

i
,

1
.' ,

,1
·f
~:

!
I

·1

1
,'~

1
~
l
~

~
1
1
j .

"' "."1

1 ,

I
j
~
1

1
i
)
j
~
;~
1

~ ,
'1
1
1
~

t
.j

CONSTANTS

COPT

COpy

COSTBASE

COUNT#GETL

CS

CSE FLAG

CSECT

CSIZ

CSTRING

CSYM

CTON

CTR

Array of size CONST LIr.1 .
The value of the Ii terah'i in the constant
area. For double precision literals,
the ith and i+lst entries together contain
the value.

See Indirect Stack.

See Indirect Stack.

label

A flag indicating whether or not a HALMAT
instruction is a common subexpression.

Initial (38). An intermediate code opcode
which switches processing from one control
section to another or switch origins within
control sections.

See HALMAT decoding.

Initial (46). An intermediate code opcode
indicating character data.

Initial (7). An indirect stack entry form
indicating a symbolic reference which is
referenced by its own base and displacement
rather than letting these values be computed
dynamically during object code generation.

label

See HALMAT decoding.

5-62

I
'"

'.' "(ftr

INTt'RMETRICS l~lCORPORATED ·701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 £ (617) 661-1840

I
~ ,
1

· - . jii.' .. ,.~ ... --~~~-~~
... ~j"{-.' ~"~~~ "t- _ ~t ... · ";'; .. -. _ ~ .~_:........:...::::.:.::~_~_r ____ +",.,":~ __ ',.:: __ ,,:;,' __ ~.:i':':~~.l:; .. :'_~ __ ._.:::..!)-,,:~' ~_, _, ____ . ___ .-,

CTRSET

CURCBLK

CURLBLK

CURRENT ESDID

CVFL

CVFX

CVTTYPE

D

DADDR

DATA LIST

DATA WIDTH

DATABASE

DATABLK

DATALIMIT

Array of size VMOPSIZE used by VMCALL to
break the possible opcodes into "four classes
for fu'rther processing.

See HALMAT decoding.

The literal file'block that is currently
being referenced.

The CSECT for which object code is
currently being generated.

Initial ("3F"). Opcode used for code
generation.

'£ni tial (" IF"). ,Opcode used for code
generation.
No code is required to convert between types
if their CVTTYPEs are the same. See HALMAT
"operand types and properties".

The displacement used in base-displacement
addressing during object code generation.

Initial (40). Data address; an intermediate
code opcode indicating an address constant
which refers to a specified absolute
position within a CSECT.

Initial (49). An intermediate code oDcode
indicating local code list control. ~

The data width of a vector or matrix
element in halfwords; 2 for single precision
operands, and 4 for double precision
operands.

Array of size 1. DATABASE{O) is the ESDID
number of the CSECT which contains static
data without the REMOTE attribute; DATABASE{l)
initially indicates the existence (1) of
remote data. If there is remote data, DATA
BASE{l) will be set to the ESDID of the CSECT
for remote data by SETUP_REMOTE_DATA.

Initial (39). An intermediate code opcode
used to indicate the definition of one or
more full words of data.

The last CSECT number assigned for REMOTE
data for EXTERNAL templates.

REPRODUCIBlLITY OF m~
5 63 ORIGINAL PAGE IS POOR

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

DATATYPE

DECK_REQUESTED

DECLMODE

DECODEPIP

DECODEPOP

DEFINE LABEL

DEFINED BLOCK

DEFINED LABEL

DEL

DELTA

DENSE FLAG

DENSEADDR

DENSESHIFT

DENSETYPE

DENSEVAL

Extracts essential information about a type
(e.g. double and single precision types have
same DATATYPE, EVENT and BOOLEAN have same
DATATYPE. See HALMAT operand types.

A compiler option: 1 if deck requested,
o otherwise.

A flag which is set at the beginning
of a block, and reset to zero at the
end of the declarations for the block.
This is to ensure that any code generated
during variable initialization is not
intermixed with the data.

label

label

label

See Symbol Table SYT FLAGS.

See Symbol Table SYT FLAGS.

Array of size STACK SIZE.
See Indirect Stack.-

Initial (35). An intermediate code opcode
indicating a value used to modify the
address of the following instruction.

See Symbol Table SYT FLAGS.

The address in the data CSECT of a data
item requiring dense initialization.

The number of bit positions an initial
value for a bit data item with dense
initialization must be shifted so that
it is at the proper bit position in its
location in core.

T~e data type of a data item requiring
dense initialization.

The initial values of the data items
requiring dense initialization that are
to be stored in the same word after the
initial values have been shifted appropriately
so that they are at the proper positions.

DESC

DESCENDENT

DESTRUCTIVE

DIAGNOSTICS

DIMFIX

DINTEGER

DISP

DO ASSIGNMENT

DOBASE

DOBLK

DOCASECTR

DOCLOSE

DOCOPY

DOCTR

DOFORCLBL

DOFORFINAL

DOFORINCR

Literally 'STRING'; magic XPL conversion
function for descriptors.

label

See HALMAT Operator properties.

1 if diagnostics are required, 0 other
wise.

label

Initial (14). Double precision integer
operand type.

Array of size STACK SIZE.
See Indirect Stack.

label

See D6 Lbop Descriptor Declarations.

Array of size DOLOOPS.
See array Do Loop Declarations.

See Do Loop Descriptor Declarations.

label

Array of size DONEST.
See Array Do Loop Declarations.

Array of size DONEST.
See Array Do Loop Declarations.

,
See Do Loop Descriptor Declarations.

Array of size DOSIZE.
See Do Loop Descriptor Declarations.

Array of size DOSIZE.
See Do Loop Descriptor Declarations.

5-65

INTEr1METRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

DOFORM

DOFOROP

DOFORREG

DOFORSETUP

DO INDEX

DOINX

DOLABEL

DOLBL

DELEVEL

DOMOVE

DOOPEN

DOPTR

DOPTR#

DORANGE

DOSTEP

DOTEMP

DOTOT

Array of size DONEST.
See Array Do Loop 'Declarations.

Array of size DOSIZE.
See Do Loop Descriptor Declarations.

Array of size DOSIZE.
See Do Loop Descriptor Declarations.

label

Array of size DOLOOPS.
Set Array Do Loop Declarations.

See Do Loop Descriptor Declarations.

Array of size DOLOOPS.
See Array Do Loop Declarations.

Array of size DOSIZE.
See Do Loop Descriptor Declarations.

The number of nested do loops at any
point during code generation. See
Do Loop Descriptor Declarations.

label

label

Array of size DONEST.
See Array Do Loop Declarations.

See Array Do Loop Declarations.

Array of size DOLOOPS.
See Array Do Loop Declaration.

Array of size DOLOOPS.
See Array Do Loop Declarations.

Array of size DOSIZE.
See Do Loop Descriptor Declarations.

Array of size DONEST.
See Array Do Loop Declarations.

5-66

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

t -_ .. --_ \.

: ,
i

'f-i

DOTOT#

DOTYPE

DOUBLE FLAG

DOUBLEFLAG

DOUNTIL

DROP INX

DROP VAR

DROPFREESPACE

DROPLIST

DROPOUT

DROPSAVE

DROP TEMP

DSCALAR

DUMMY

DUMMY CHAR

DW

EMIT ADDRESS

EMIT ARRAY DO

EMIT BY MODE

EMIT ENTRY

Array of size DOSIZE •.
See Do Loop Descriptor Declarations.

See Symbol Table SYT FLAGS

Array of size DOSIZE •
See Do Loop Descriptor Declarations.

label

label

label

label

label

label

label

Initial (13). The double precision
scalar operand type.

A dummy character string with several uses.

See COLUMN.

DOUBLEWORD aligned work area. Used for
In1ine Scalar Arithmetic.

label

label

label

label

5-67

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

-''<i
" ;!
<~
':,~ , i
,

',<; ,
"

1
"
'-;

-

"

.. , I" , ',"

!., " l'"~::::·:,.· ~'~~

EMIT EVENT EXPRESSION label

EMIT RETURN label

EMIT WHILE TEST label

EMIT Z)CON label

EMITADDR label

EMITBFW label

EMITC label

EMITDELTA label

EMITDENSE label

EMITEVENTADDR label

EMITLFW label

EMITOP label

EMITP label

EMITPCFADDR label

EMITPDELTA label

EMITPFW label

EMITRR label

EMITRZ label

EMITSI label

EMITS lOP label

EMITSP label

EMITSTRING label

EMITW label

EMITXOP label

5 68

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

,
i

, I

·":=:::~:~-=:=-~'=,:""o~::,·:,==~.:~:::!~:;"'::.~::I~' '.~ "

END SF REPEAT

ENDSCOPE FLAG

ENTER CALL

ENTER CHAR LIT

ENTER ESD

ENTRYPOINT

EQ

ERR DISP

ERR STACK

ERRALL

ERRALLGRP

ERRCALL

ERROR POINT

ERRORj#

ERRORS

ERRPTR

ERRSEG

ESD LINK

label

See Symbol Table SYT FLAGS.

label

label

label

See SYT_LINKl in, symbol table.

Initial (4). Condition code used as a
test for equality when generating condi
tional branch instructions.

See Block Definition Table.

See Block Definition Table.

Array of size PROC# •
See Block Definition Table.

Array of size PROC# •
See Block Definition Table.

label

Initial (1). Never referenced.

The number of errors detected in Phase 2
of compilation.

iabel

Array of size PROCt
See Block Definition Table.

Array of size PROC#.
See Block Definition Table. In OBJECT
GENERATOR ERRSEG(ESD) = first location
for that ESD.

Array of size ESD LIMI~.
Pointers chaining-together ESD table
entries whose names HASH to the same number.

5-69

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138.' (617) 661-1840

;7, "

l~ i
"

'1
'<f

"' 'I
:J
i'~

" :'S'
, '.~ , .. ,

'~ J ~:
r~*

i~:

!l
1 'i

i;f
'£':

'~

~J> 4

~~ 1 . ~,~ , , ,
;',$'

l ~
-f

'r. ,;$,

I \<
r -:~

".J ~
~

t.: ~
l
i
,1
1

~
~
] ,
I
j
1
l
]
j

~
~ '. " i

~
l
~

"

.~ .
l

~
i
:1
:j

I

r

1!

i
'I

ESD MAX

ESD NAME

ESD NAME LENGTH

ESD START

ESD TABLE

ESD TYP~

EV EXP

EV EXPTR

EV OP

Initial (1). The maximum number of
entries in the ESD table.

~rray of size ESD CHAR LIMIT.
Packed tables of ESD names. The
ESD number can be· decoded to give the

"array entry and index in that entry
where a name begins.

Array of size ESD LIMIT.
The length of each ESD name in the ESD
table.

Array of size HASHSIZE.
Each entry is a pointer to the beginning
of ESD names that hash to the same index.

Character Procedure. . .
Array of size ESD LIMIT. The type of each
entry in the ESD table, the types used by phase
2 are: 0 - csect

1 - entry
2 - external

Array of size EV EXPTR MAX.
Event Expression-Stack: value of each
entry is:

o for an operand
1 for OR operator
2 for NOT operator
3 for AND operator

Pointer to last entry in Event Expression
Stack (EV _EXP) .

Array of size EV PTR MAX.
Stack of pointers to-indirect stack
entries for operands of an event
expression.

5-70

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

I

')

(
I
)

"

EVENT OPERATOR

EVIL FLAGS

EXAMINING

EXCLBASE

EXCLUSIVE FLAG

EXCLUSIVE#

EXOR

EXPONENTIAL

EXPRESSION

EXT ARRAY

EXTENT

EXTE:RNAL FLAG

EXTOP

label

See Symbol Table SYT FLAGS

Initial (1). Initially 1, but set to
o if an error of" severity 1 is found be
fore the program has reached the
error unit. .

The CSECT used for storing exclusive
data.

See Symbol Table SYT FLAGS.

The number of exclusive procedures and
functions. By bumping the number by 1 each
time a new exclusive procedure is found, unique
numbers are generated for SYT_LINKl.

Initial ("04"). An operator code for
not used as an index into the operator
table. The not operation is performed
by finding the exclusive or of the
operand and a string of l's the length
of the operand.

label

label

Array of size EXT SIZE.
Passed from Phase-I. See Symbol Table.

Common Based array. See Symbol Table.

See Symbol Table SYT_FLAGS.

A pointer to an indirect stack entry with
one of the following uses:

1) to represent an unknown array size,
2) for additional information for TO and

AT partitions in subscripting,
3) to represent amount of input or output

data in file I/O,
4) a pointer to temporary storage needed

for real time operators, and
5) a pointer to temporary storage for

matrix inve.rsion.

5-71

INTERMETRJeS INCORPORATED· 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-'184Q

II

:i
.{

~

EXTRA LISTING

EXTRABIT

EXTSYM

EZ

F

FILECONTROL

FINDAC

FIRST INST

FIRSTLABEL

FIRSTREMOTE

FIRSTSTMT#

FIX INTLBL

FIX LABEL

FIX STRUCT INX

A compiler option.

See HALMAT operand types. A bit operand type
used when performing a SUBBIT operation on a
double word item.

Initial (22). External symbol: ~)
one of the possible forms of an Indirect
Stack entry, 2) used as flag to the
code emitting routines to ensure RLDs

. are generated if an external symbol is
referenced, 3) used as an intermediate
code qualifier to indicate an external
symbol.

Initial (4). Condition code. A test for
zero, used in generating branch instructions.

The I field of an RS format instruction
with the indexed addressing mode.

Names of FILE I/O library routines.

label

Set to 1 at the beginning of every statement,
and then back to zero after the first instruc
tion of the statement has been generated.

A statement number generated by Phase 2 to
use as a label for the destination of
branch instructions.

A pointer to the symbol table entry for the
first REMOTE variable declared. The
remote variables are chained together by
SYT LINK2.

The statement number generated in Phase 1
for the first HAL/S source statement not
contained in an EXTERNAL TEMPLATE block.

label

label

label

5-72

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

~'""!t!~ ---,..,...,:_·::::.4:....._.~:.......·,.:- ... ~~~,····= . .;;;.;.:;;~";;,..~,,~,,:;~""""~,,-""~"""-"""".""' .. -. -~-~~

'I' .' .

i
.~
t ..
1

,~
if , , .

. ~
~.

I-
I

----->-~.~>-----~-----.-~--~--~>.~, ~> .• ~.>"~ >~,,::_::,:~~_~L~~»~' ...,..,.,,'" '-"""""'r> >*""'"'""'>M' ___ .[WMf~:.:~ ,
~> ~

FIX TERM INX

FIXARGI

FIXARG2

FIXARG3

FIXLIT

label

See Arguments.

See Arguments.

See Arguments.

Initial (10). An intermediate code
qualifier referring to the fullword
literal pool.

FIXONE Never referenced.

FL NO MAX Value passed from Phase 1.

FLNO Initial (19). Internal flow of control
label. One of the forms of an indirect
stack entry and one of the qualifiers
used in the intermediate output code.

FORCE ACCUMULATOR label

FORCE ADDRESS label

FORCE ARRAY SIZE

FORCE BY MODE

FORM

FORM CHARNAME

FORM VMNAME

FORMAT

FORMAT OPERANDS

FREE ARRAYNESS

FREE TEMPORARY

FRO

label

label

Array of size STACK SIZE.
See Indirect Stack.

Character Procedure.

label

Character Procedure.

label

label

label

Initial (8). Floating pointer register O.
Used to pass scalar paraemters, 1 to
return scalar function results, and as a
floating point accumulator.

5-73
INTERMETRICS INCORPORATED' 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 '(617) 661~1840

! :d
1

~ 'l

1
i
l
'f .

-A~
~

'f,

i·

r
I
t

FRl

FR2

FR4

FR6

FR7

FSIMBASE

FULLBIT

FULLTEMP

FUNC CLASS

FUNC LEVEL

GEN ARRAY

GEN STORE

GENCALL

GENERATE

TEMP

Initial (9). Floating pointer register 1.
Used to pass scalar parameters, to return
scalar function results, and as a floating
point accumulator.

Initial (lO). Floating point register 2.
Used to pass scalar paraemters and as a
floating point a~cumulator.

Initial (12). Floating point register 4.
Used:±o pass scalar parameters and as a
floating point accumulator.

Initial (14). Floating point register 6.
Used as a floating point accumulator.

Initial (IS). Floating point register 7.
Used as a floating point accumulator.

Initial (9). The fullword bit operand type.

Maximum temporary storage stack size.

See Symbol Table SYT_CLASS.

The nest level of a function or of an
inline function invocation.

label

label

label

label

GENERATE CONSTANTS label

GENERATING

GENEVENTADDR

Initial (I). A flag used to indicate
that code generation is occurring.

label

5-74

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

~

nnn_. ___ ~-.1

GENLIBCALL

GENSI

GENSVC

GENSVCADDR

GET ARRAYSIZE

GET ASIZ

GET CHAR OPERANDS

GET CODE

GET CSIZ

GE~ EVENT OPERANDS

GET FUNC RESULT

GET INIT LIT

GET INST R X

GET INTEGER LITERAL

GET LIT ONE

GET LITERAL

GET OPERAND

GET OPERANDS

GET R

GET STACK ENTRY

GET STRUCTOP

GET SUBSCRIPT

GET VAC

GET VM TEMP

GETARRAY#

c; GETARRAYDIM

5-75

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

1

I
1
I
~
3
j

,
~

GETFREESPACE

GETINTLBL

GETINVTEMP

GETLABEL

GETSTATNO

GETSTMTLBL

GETSTRUCT#

GO

GT

label

label

label

label

label

label

label

Initial (5). Condition code. Used as
a test for greater than or equal to when
generating branch instructions.

Initial (1). Condition code. Used as
a test for greater than when generating
branch instructions.

GUARANTEE ADDRESSABLE label

HADDR

HALFMAX

HALFWORDSIZE

HALMAT_REQUESTED

HASH

HEX

HEX LOCCTR

HEXCODES

Initial (53). An intermediate code
qualifier which indicates a halfword
address constant.

Initial ("7FFF"). Literals whose
absolute value are greater than this
are double precision.

Initial (16). Th.e number of bi'ts in a
halfword.

A compiler option. 1 if a HALMAT listing
is requested, 0 otherwise.

label

Character procedure.

Character procedure.

Initial (' 0123456789ABCDEF"). A string
used to convert internal binary to
external hex notation.

5-76

J~

1 .'

INTERMETRICS INC9RPORATED ·701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

7,

J

. iii"" r
.. Ali

r . "---... . "-"-~~'; __ ~.'" --T -r"":~---"'.~"""'-:" .~:~"" -- ""':'.~ -':-~~~"",'"T"'T.-~-' '~--~-~""';""".~---"l"""~~".,-,.-r--(=~-.,...,.._-~ ._-~".-~-

IA

IAL

---_ .. -._.

Indirect Address field of RS format.
AP-101 instrction.with indexed addres
sing mode. This field specifies indirect
addressing when one.

Initial ("4F"). Opcode used for code
generation.

IDENT DISJOING CHECK label

IGNORE FLAG

ILBL

IMD·

INCORPORATE

IND CALL LAB

IND PTR

IND STMT LAB

INDEX

INDEXING

INDEXNEST

INDIRECT

INDIRECTION

See Symbol Table SYT FLAGS.

Initial (37). Internal label. An
intermediate code opcode indicating a
flow of control label.

Initial (6). A HALMAT operand qualifier
and indirect stack entry form specifying
an actual numerical value.

label

See Symbol Table SYT TYPE.

Initial (13F").

Initial ("41"). Indirect statement label.

1) An indirect stack entry used as an
index variable for setting up shaping
function repeats.

2) Pointer to a symbol table entry for a
block name.

3) Number of arguments in a percent
macro.

Array of size REG NUM •
Initial (0,1,1,1,1,1,1,1). See Register
Table.

Array of size PROC#. See
Block Definition Table.

label

Array of size (3). Initial (' I, '@',
'#', '@#'). Indirection characters
used in generating instruction mnemonics
for assembler code listing.

5-77

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

wrr L ua 1 ±. .1 S". : :II!I'.!I!I!J 1I1i].' £ J. LlhitZUtc .d. • .. .kdJt 1 d a II J .£1 •

i
I
I
I

,
I.!

I

~. .~~[~~~ ..•• ~~~._r •• ~,~:~~_~~~:~:~_~~~_~~'~~'_~_~ .~m "n .,._ - M 1M --" '''". '+_~'L'ilL .. ~~ 1M L .. Ii E&IAI

~---:-'::'::-:"':';:::".":"::::;.--:. ,-:---:;-':::;";':" '--'~-·~-'~""'-"'"'"---·-'-~-~·~T':_~~..l. ..• _
...... -... , ... ~ ... ~· .. c~ .. _ •.. ' •... ,, __ •••.. ,,,,,,~~,,=,,,~ .. ~_.,.~.

INFO

INITADDR

INITAGAIN

INITAu'ro

INITBASE

INITBLK

INITCTR

INITDECR

INITDENSE

INITIALIZE

A dummy character string .used while
generating a line of assembler code for
output.

The address relative to INITBASE of the data
structure to be initialized if it requires
static initialization; 0 if the data item re
quires automatic initialization. Notice
that an offset from INITADD~ must be added
to get the individual item to be initialized.

Initially o. The number of consecutive
data items of the same type starting at
a given offset that are to be initialized
from the same intial list. The initial
values of these items are stored in consecu
tive entries in the literal table.
INITAGAIN is decremented as each value is
assigned to a data item.

1 if variable requiring initialization is
automatic, 0 if it is static.

DATABASE (0) if variable requiring initial
ization does not have the remote attribute,
DATABASE(l) if it does.

See HALMAT.

See HALMAT.

The offset of the parent node of a
structure terminal item that is being
initialized. The offset is in terms of
the number of preceding elements in the
structure. INITDECR is necessary since
INITINCR gives an offset for the terminal
node relative to the structure's beginning,
but structure addressing is relative to the
parent node, INITINCR- INITDECR is the off
set relative to the parent node.

1 if variable requires dense initialization,
o otherwise.

label

5-78

INTERMETRICSINCORPORATED • 701 CONCORD AVENUE' cAtvfsRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

1
1 .,
I
1
1
~

INITINCR

INITINX

INITLITMOD

INITMOD

INITMULT

INITOP

INITREL

INITREPT

INITRESET

-.~~-.""''''-'\..........-;-_.,
1,' .. ,M,"' ~... ~:''''''''

When handling a list of initial values, INITINCR
counts the numbe:t;" of items in the "natural
sequence" (ref. language spec. 5.5). This
value can be used either directly or indirectly
(using STRUCTURE WALK) to compute the address
of the item to be initialized.

The index register associated with the
variable being initialized.

(Ref. 360 Compiler Spec. A.l.9.3). When "repeat"
is non-zero, the' initial values are in consecutive
locations in the LITeral table. INITLITMOD is
used to index the base address given in the HALMAT
operand word so that consecutive literals can
be extracted without requiring a separate
initialization instruction for each element.

The storage space occupied by a structure;
used as an offset when computing the
address of a data item in a structure
with several copies that is being initial
ized.

If INITTYPE is structure then 1. otherwise,
the data width of the operand type in half
words.

A pointer to the symbol table entry of the
data item being initialized.

Array of size INITMAX. This
array saves the value of INITINCR at the
beginning of each nest level of initializ
tion repetition specification.

Array of size INITMAX. The
number of repetitions of the initial list
for a given initialization nest level that
must still be made.

Saves the value of INITINCR due to initial~
izing lists with a repeat factor, so that
INITINCR can be used to index element by
element initializations of members of
the initial list.

5-79

INTEFlMETRICS INCORPORATED· 701 CONCORD AVENUE • CAMBRIDGE. MASSACHUSETTS 02138 • (617) 661-1840

1.

.~,,~"'~i.;·'·~·"·'.~~.-·:~::-= ;';~=':'!L,,':. ,*:~.~.~ . "~~~~!?:::'~'"""'k":~,~~":!I!iii:~~~·~~ .. ~~ .. ·~fi::g;~f~.:~_~ •. ~.Jlil&!_ .. "~

INITSTART

INITSTEP

INITSTRUCT

INITTYPE

IN I TWALK

INL

INLINE RESULT

INSMOD

INST

INSTRUCTION

INTEGER

INTEGER DIVIDE

INTEGER MULTIPLY

INTEGERIZABLE

INTRINSIC

""WI q ./

The address in INITBASE of a structure that
requires static initialization.

Array of size INITMAX.
The number of values on the repetition
list for a given initialization nest
level.

1 if the item being initialized is a
structure, 0 if it is not.

The type of the data item being initialized.

A counter used while walking through a
structure to find the terminal element that
is being initialized. The purpose of the
walk is to finu the offset of the terminal
element's parent node.

See HAL MAT decoding.

Pointer to an indirect stack entry
representing an inline function result.

Instruction modifier.

The opcode of an instruction. Used to
index the AP-10l instruction array to get
the corresponding AP-10l opcode.

Character procedure.

Initial (16). The single precision integer
operand type.

label

label

label

label

5-80

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

h

~,_~",,",:-,,-- . _ ",,",,---='~,:.ri;~-, ,- .. w_,.~" ___ o~~.c •• ~~~~~~;~~ia";"~~~~_,,-,,~~~ .. _~~=:=~~:::-"~"",=~=_ ... ". aft •• t.'·"

if'

INTSCA

INX

INX CON

INX MUL

INX OK

INX SHIFT

INXMOD

IOCONTROL

IODEV

Initial (3). The PACKTYPE of the integer
and scalar opera~d types.

A~'Cray of size STACK SIZE.
See Indirect Stack.-

Array of size STACK SIZE.
See Indirect Stack.-

Array of size STACK SIZE.
See Indirect Stack.-

See Vector-Matrix.

Array of size STACK SIZE.
See Indirect Stack.-

Used for array and structure sUbscripting.
A pointer to the indirect stack entry set
up for the index variable for the do loop
generated to process a subscript.

Array of size (5), initial (' " 'TAB',
'COLUMN',- 'SKIP', 'LINE', 'PAGE'). Used
to generate a library call to the routine
whose index in the array corresponds to
ARG TYPE of the arguments of an I/O
Reference.

Array of size (9), COMMON.

5 81

t INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

, .
, I

I

IOINIT

IOMODE

ITYPES

IX

IXI

IX2

KIN

KNOWN SYM

L

LA

label

The type of I/O in an I/O routine
invocation: 0 for read, 1 for write.

Array of size (4), initial ('B', 'H', 'I',
'E', '0'). Used for generating calls to
the library routine corresponding to the
OPMOOE of the arguments, by concatenating
the letter whose index corresponds to the
opmode with the library routine name.

1) The index field of RS format AP-lOl
instructions with indirect addressing
mode.

2) The second register operand of RR format
AP-lOl instructions.

1) Pointer used for searching temporary
storage stack.

2) Oummy variable used while generating
program names.

3) Oummy variable used while allocating
structure templates.

4) 00 loop index.

1) Pointer used for searching temporary
storage stack.

2) Dummy variable used while generating
program names.

3) Oummy variable used while allocating
structure templates.

Pointer to symbol table entries for
structure nodes used when walking through
a structure.

label

Initial ("58"). Opcode used in code
generation.

Initial ("61"). Opcode used in code
generation.

5-82

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

fl
.\
!-
" 51
fi

[,; ~
;,~

~1 ,

LABEL ARRAY

LABEL CLASS

LABELSIZE

LADDR

LASTBASE

LASTLABEL

LASTREMOTE

LASTRESULT

LASTSTMT#

LATCH FLAG

LBL

LCR

LEFT DISJOINT

LEFT NSEC

LEFTBRACKET

LEFTOP

LFLI

LFXI

BASED. The statement number generated
by Phase 2 that is associated with each
internal flow number.

See Symbol Table SYT_CLASS.

Number of internal flow labels.

Initial (42). The intermediate code op
code for an address constant which points
to a literal pool entry.

Array of size PROC#. See
Block Definition Table.

Array of size PROC#. See
Block Definition Table.

Pointer to the symbol table entry for the
last REMOTE variable declared.

A pointer to the indirect stack entry for
a library routine or built-in function
reuslt.

The last statement number generated in
Phase 1 for a HALlS source program.

See Symbol Table SYT FLAGS.

Initial (18). An indirect stack entry
form and intermediate code qualifier for a
user defined label.

Initial (13). An opcode used for code gen
eration.

See Vector-Matrix.

See Vector-Matrix.

Initial (' (,) •

See HALMAT.

Initial ("03"). Opcode used for code
generation.

Initial ("02"). Opcode used for code
generation.

5-83

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

.. "

i

LH

LHI

LHS

LHSPTR

LIBNAME

LINE#

LINKREG

LIT

LIT CHAR

LIT CHAR ADDR

LIT CHAR LEFT

LITERAL

LITLIM

LITORG

LITTYTPE

LITTYPSET

LITl

LIT2

Initial ("4S") •. An opcode used for
code generation.

Initial ("AS"). An opcode used for
code generation.

The opcode field of an intermediate
code output word.

See HALMAT

Character procedure.

A statement number for a line of HALlS
source code generated in Phase 1.

See Runtime Stack Frame.

Initial (5). A HALMAT operand qualifier
and indirect stack entry form for a
literal. (See Literal Table.}

COMMON BASED. See Literal Table.

Beginning of free area in the storage
for character string literals.

Area left in the storage for character
string literals.

label

The limit of the page of the literal
file that is currently being read.

The beginning of the page of the literal
file that is currently being read.

The type of literals used with a HALMAT
instruction.

Array of size (12), initial (6).

COMMON BASE. See Literal Table.

COMMON BASE. See Literal Table.

5-84

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138· (617)661-1840

:~:
i
i

, I

, I

MESSAGE

MH

MHI

MIH

MIN

MINUS

MIX ASSEMBLE

MOD GET OPERAND

MODE MOD

MOVE STRUTURE

MOVE REG

MR

MSTH

NAME FLAG

NAME OF FLAG

NAME SUB

NAME LOAD

A variable used for building a line of
assembler code for an assembler listing.

Initial (II 4C ") • An opcode used in code
generation.

Initial ("AC ") • An opcode used in code
generation.

Initial ("4E"). An opcode used in code
generation.

label

See HAL'MAT Operator properties.

label

label

Array. A number added to the basic opcode
for one of the operator codes' (given by
ARITH_OPS) to generate the appropriate
variable of an instruction.

label

label

Initial ("IC"). Opcode used for code
generation.

Initial ("BA"). An opcode used in code
generation.

See Symbol Table SYT FLAG.

See Vector-Matrix.

1 if a subscript is enclosed in a NAME
pseudo-function; 0 otherwise.

Initial ("48"). Opcode used for code
generation.

5-87

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

" -----.-- -~----- ,,- .. --~ '---:"'--~--'~-"--'---0'--"-"~--"-"-'----~::':~:"' __ .. ~~-~~-!--~~~I~-~;

NAMESIZE

NAME STORE

NARGINDEX

NARGS

NDECSY

NEGLIT

NEGMAX

NEQ

NESTFUNC

NEW GLOBAL BASE

NEW HALMAT BLOCK

NEW LOCAL BASE

NEW REG

NEW STACK LOC

NEW USAGE

NEWPREC

NEXT REC

NEXTCODE

NEXTDEC!JREG

NEXTPOPCODE

Initial (1). The number of half words
required for storing a NAME variable.

Initial ("40"). Opcode used for code
generation.

The ESDID (scope) number of the block
for which code is being generated.

Array of size PROC#.
See Block Definition Table.

Number of declared symbols.

1 if a literal in the literal table
is negative, 0 otherwise.

Initial ("80000000"). Maximum negative
value.

Initial (3). Condition code. Used as a
test for not equal to in branch instruction
generation.

The nest level of a function or of an in
line function invocation.

See Runtime Stack Frame.

label

See Runtime Stack Frame.

label

See Runtime Stack Frame.

label

See HALMAT.

label

label

label

5-88

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

,i

~
il

~ ,! :,
~
~
i

I I

i
ill!
~1
'1 ..
~
~¥

!I 1 "'~

~ 1 Ii
'!

1 l' i~
ff

~

i :p

" " :1 :~
il
j.~

1
j~

ij
;!
~~ ~
t"~ 1 ~ l
{q

I ;~
:i

~
~ ! :1

~ t~

~
~

'J ~
if
;1 ~

I j j
;~

]

1
j ,
i

," ~ :1

... ,;," ~ ,
.. : __ ''!k __

". '"."''''''- .. " "--'"-"~"""'--"'"'-7'T'-----"'----~--"'-~' .'£.'", 'L~ .m '" ", """"1"" ... m G'"' o,,,*,, "I' ' '4"''' .'"'

,"""., "'" -"-,,,--,. --C"=,C".u""",'" ,',",C-'-'~,'7CC,": u""'''''''''''''''~'''':'<>:'':~:''''¥'"'''*~'iI:'''I'$'''''''1~41J".,~~,:~

NHI

NIST

NO VM OPT

NON COMMON SYTSIZES

Initiail ("A4"). Opcode used for code
generation.

Initial ("B4").

See Vector-Matrix.

Array of size NC SYTSIZES#. Used by
storage mgt for dynamic allocation. - .

NON HAL FLAG See Symbol Table SYT FLAGS.

NONHAL PROC FUNC CALL label

NONHAL PROC FUNC SETUP label

NONPART

NOP

NOT MODIFIER

See Vector-Matrix.

Initial (52). An intermediate code opcode
for No Operation Used to eliminate a
previously generated RX or SI instruction.

Array of size (64). If NOT MODIFIER (type of
intermediate code) then increment the location
counter; otherwise, do not. Used when output
ting intermediate .code lines which will not
use words on the target machine. Values
assigned in INITIALISE.

5-89

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE MASSACHUSETTS 02138 • (617) 661-1840

1
i

~,
i'

NSEC CHECK

NTOC

NULL ADDR

NUMOP

OBJECT CONDENSER

OBJECT GENERATOR

OFF INX

OFF TARGET

OFFSET

OK TO ASSIGN

OPCC

OPCODE

OPCOUNT

OPER

label

label

Initial (0). An address or value of zero.

See HALHAT decoding.

label

label

label

label

Initial (10). A HALMAT operand qualifier
and indirect stack entry form for an offset
value.

See Vector-Matrix.

Array of size OPMAX,initialized. An array
indexing the offset of each AP-lOl instruc
tion on the condition code:

OPCC

o
1

2
3

SIGNIFICANCE

Condition Code Unaffected
Register affected by condition

code
Condition code no longer valid
Logical condition code

See HALMAT decoding

Array of size OPMAX. An array which records
the number of times each of the opcodes
used in code generation, occurs.

Array of size OPMAX, initialized. l'\n
array which gives the index in the appro
priate OPNAMES entry for the mnemonic corres
ponding to each opcode used in code genera
tion.

5 ... 90
INTERMETRICS INCORPORATED' 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

~ :

~,
\~

il:
1:;-

it

:1
" l

'£
'1
~ ~

'I · if
:f
:1
'"
'1

1
i

'I
t

'1 1 ~:.

]

i ~ • • i~
[

J
~
'i
i't

'.~

if
j
" 1
~

!
"

1
~

t
I

~1

OPER_PARM FLAG

OPER SYMPTR

OPERATOR

OPMOD:!l:

OPMODE

OPNAMES

OPR

OPSTAT

OPTIMIZE

OPTION BITS

OPTYPE

OPl

OP2

See Vector-Matrix.

See Vector-Matrix.

Array of size opMAx, initialized. Array
used to test whether a generated opcode
actually exists. The array entry
corresponding to the opcode is 1 if it exists,
and 0 if it does not.

Things have the same OPMODE if operations
between them require no conversions (e.g.
MATRIX, VECTOR and SCALAR have same OPMODE).
See HALMAT Operand types.

See HALMAT Operand types.

Array of size (3), initialized. This
array consists of three character strings
containing the mnemonics associated with
the opcodes use for code generation.
SHR(OPCODE,6) gives the string the
mnemonic is in, and OPER(OPCODE) gives
the index in the string where the mnemonic
occurs.

COMMON BASED. See HALMAT decoding.

label

label

COMMON bits indicating which of the
user defined compiler options have been
specified.

See HALMAT.

1) See HALMAT.
2) A pointer to a symbol table entry,

used in INITIALIZE.

1) Dummy variable used in INITIALIZE and
GENERATE.

2) Pointer to the symbol table entry for
a template associated with a structure,
and then to other symbol table entries
associated with the templat~ when walking
through the template.

5-91

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

r~ -~ r-'''~~~~~-' "~~~.~.,~-=-,,~~-~-~,~--~,
-~--,,

I
!

PACKFORM

PACKFONC CLASS

PACKTYPE

PAD

PADDR

PARM FLAGS

PART SIZE

PCEBASE

Array of size (31). Used for choosing the

form of 'the intermediate code. The values

are:

° for all operand field qualifiers
except as noted

1 for CSYM WORK
2 for LIT, VAC

Array of size (11), initial (0,0,0,1,

0,0,0,0,0,1,0,0).

Array of size TYP SIZE,
ini tia1iz,ed. Value associated with each

operand type to determine storage require

ments.

Value

o
1
2
3
4

Description

Vector ,Matrix
Bit
Character
Integer, Scalar
Structure

Character procedure.

Name

VECMAT
BITS
CHAR
INTSCA

Initial ('4'). An intermediate code opcode

indicating an address constant which points

to a literal pool entry.

See Symbol Table SYT_FLAGS.

See Vector-Matrix.

A CSECT used for Process Director Entries.

This CSECT provides information about task

addresses to the operating system.

5-92

INTERMETRICS INCORPORATED' 701 COt'JCORD AVENUE· CAMBRIDGE. MASSACHUSETTS 02138 • (617) 661-1840

,I

j
j

PDELTA

PLBL

PLUS

PM FLAGS

PMINDEX

POINT

POINTER

POINTER FLAG

POINTER OR NAME

POSITION HALMAT

POSMAX

Initial (45). An intermediate eode opcoae
indicating that the next instruction muse
be modified by the maximum temporary .
storage size of the CSECT specified by the
intermediate code instruction.

Initial (48). An intermediate code opcode
indicating a Phase 2 generated label.

Ini tial (' + ') .• _

See Symbol Table SYT FLAGS.

Th~ index number of a %K~CRO.

Array of size LASTEMP.
See Storage Descriptor Stack.

Initial (7). The pointer operand type.

See Symbol Table SYT FLAGS.

See Symbol Table SYT FLAGS.

label

Initial ("7FFFFFFF").

POWER OF TWO label

PP See HALMAT decoding.

PREFIXMINUS See HALMAT operator properties.

PRINT DATE AND TIME label

PRINT TIME label

PRINT SUMMARY label

PROC FUNC CALL label

PROC FUNC SETUP l.abel

5-93

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRlDGE, MASSACHUSETTS 02138 • (617) 661-1840

" ,~

jj;

1

1
1
j
,j

",-1

I ~ PROC LABEL

PROC LEVEL

PROC LINK

PROCBASE

PROCLIMIT

PROCPOINT

PROC#

PROG LABEL

PROGBASE

PROGCODE

PROGDATA

PROGNAME

PROGPOINT

PTRARGl

PUSH ADDLEVEL

PUSH ARRAYNESS

QUOTE

R

R BASE

Initi.al '("4+"). See Symbol Table SYT TYPE.

Array of size PROC#. See
Block Definition ·Table.

Array of size PROC#. See
Block Definition Table.

See Runtime Stack Frame.

The last CSECT number assigned to a program,
procedure, function, task, or Compool by
Phase 1.

The CSECT number = scope number of a
procedure, program, function, task or COMPOOL
whose symbol table entry is being processed
by INITIALIZE.

Literally '255'. The maximum number of csects
that are processable.

See Symbol Table SYT_TYPE.

See Runtime Stack Frame.

The number of halfwords of program generated
by Phase 2.

PROGDATA(O) is the number of halfwords of
local data generated by Phase 2. PROGDATA(l)
is the equivalent for REMOTE data.

Character procedure.

The CSECT number = scope number of the
outer block of a compilation unit.

See Runtime Stack Frame.

label

label

Ini tial ("").

The register field of an AP-IOl instruction.

See Register Table.

5-94

INTERMETRICS INCORPORATED' 701 CONCORD,AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

1

1
J
~

R CON

R CONTENTS

R INX

R INX CON

R INX SHIFT

R HULT

R SECTION

R TYPE

R VAR

R VAR2.

R XCON

R CLASS

>See Register Table.

Array of size TYP SIZE.
Array giving the type of register used
by each operand type for finding an
appropriate register for an operand.

RCLASS Register Type

o Double Floating Accumulator
1 Floating Accumulator
2 Double Accumulator
3 Fixed Accumulator
4 Index Register
5 Odd

5 95

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETIS 02138 • (617) 661':1840

·t ",

·IJ
J l.

:.·.~~.f.:l.··. ~ . ;;

~ ~ ,~,'

; ;,
" .

'I'" !-'" ','

-" ". ~." .-....,. .. ~,~ «.'~-"''"'.~--_-.,.' ~-... ------.,.-.-'""' .. ~ .. '''. ,,>"!,~ •• ~---___ ,":~--,.~_"'l"'Il""';

RCLASS START

READCTR

REAL LABEL

RECVR

RECVR NEST LEVEL

RECVR OK

RECVR SYMPTR

REENTRANT FLAG

REF STRUCTURE

REC
REG NUM

See Registers.

See HALMAT decoding

label

See Vector-Matrix.

See Vector-Matrix.

See Vector-Matrix.

See Vector-Matrix.

See Symbol Table SYT FLAGS.

label

See Indirect Stack.

-"",-

The maximum number of base registers (real &
virtual) •

REGISTER SAVE AREA See Runtime Stack Frame.

REGISTER STATUS

REGISTERS

RELATIONAL

RELEASETEMP

REMOTE ADDRS

label

This array is used in conjunction with RCLASS :[
START to obtain a list of all registers in any
class. RCLASS START gives the entry in REGISTERS
where the list-of registers of a certain class
starts (e.g. if begin=RCLASS START(DOUBLE AC)
and end=RCLASS START(DOUBLE AC+l)-l, then
REGISTERS.(pegin) " REGISTERS (begin+l) , .••
REGISTERS (end) are all the double accumulators.

Initial (21). An indire~t stack entry
type used for generation conditional
branches.

label

A flag indicating wheter any of the
operands of a HALMAT instruction is remote
data.

5-96

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661~1840

; '~

REMOTE BASE

REMOTE FLAG

REMOTE LEVEL

REMOTE RECVR

RESET

RESTART

RESULT

RESUME LOCCTR

Initial (9). Register 9, used ~or addressing
remote data.

See Symbol Table SYT FLAGS.

Array of size PROC#.
See Block Definition Table.

See Vector-Matrix.

See HALMAT decoding.

A location in MAIN PROGRAM where GENERATE
is called.

See HALMAT.

label

RETURN STACK ENTRIES label

RETURN STACK ENTRY label

REVERSE

RHS

RI

RIGHT DISJOINT

RIGHT NSEC

RIGHT BRACKET

RIGHTOP

RIGID FLAG

RLD

RM

RNON IDENT

ROW

See HALMAT operator properties. Used to change
operator when commuting an operation.

The operand field of an intermediate code
output word.

Initial (10). A value used to generate the
opcode for various RI instructions. Used
with MODE_MOD, OPMODE, and ARITH OPe

See Vector-Matrix.

See Vector-Matrix.

Initial (')').

See HALMAT.

See Symbol Table SYT FLAGS.

Initial (43). An intermediate output
code opcode used to specify "ati ESDID as
the reference entry for an RLD Specifi
c:'"!ation.

Initial ("7"). Register 7.

See Vector-Matrix.

Array of size STACK SIZE.
See Indirect Stack.-

5-97
INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

-----::---------------" -. -..

~ .

. '

1

",-
, '.

RR

RRTYPE

RTYPE

RX

RXTYPE

RO

Rl

SAFE INX

Initial (0). A value used to generate'
the opcode for various RR instructions.
Used with MODE_MOD, OPMODE, and ARITH_OP.

Initial (32). An intermediate code opcode
indicating an RR format instruction.

See Vector-Matrix.

Initial (5). A value used to generate the
opcode for various RX instructions. Used
with MODE_MOD, OPMODE, and ARITH_OP.

Initial (33). An intermediate code opcode
indicating an RX format instruction.

Initial (0). Register 0: the stack
register points to register save area.
Formal parameters, temporaries, and
AUTOMATIC variables in REENTRANT procedures
are based off of it.

Initial (1). Register 1. Used to address
all variables and values within a compila
tion unit.

label

SAVE ARG STACK PTR Array of size CALL LEVEL #.

SAVE CALL LEVEL

See Call Stack.

Array of size CALL ~EVEL #.
See Call Stack.

SAVE FLOATING REGS label

SAVE LITERAL

SAVE REGS

SAVEPOINT

SAVEPTR

SB

SCALAR

label

label

Array of size LASTEMP •
See Storage Descriptor Stack.

See Storage Descriptor Stack.

Initital ("B6"). Opcode used for code
generation.

Initital (5). The single precision
scalar operand type.

REPRODUCIBILITY OF THE
5-98 ORIGINAL PAGE !SPOOR

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE • CAM8RIDGE, MASSACHUSETTS 02138' (617) 661-1840

, .
, ,..:

j
l
i

1
i
]
j
1
"

'. ,,~

V 1
: 1 I .'

,- "

J
1

J
I
~I

J
I
~

I
1
i

: .~

,a
, '.~. ~
_A r ...

)
\

f.
L .:)'"

l" ". -"-- -.... ".--.. -.. ".~~~.~,..,...".~~.,..,..",....,.·r'~~~ ",.-.~- ... '.",.4 ... ,-_.",1" "OW"" .• ""'-C '''J
,..,..""""""'~"""., • .""".'c,,,., ... r-~~"'w.~~ ... _ .• " .• -.-.-.~.'"'.-.~,-=~,~~~¥"~.~---, .,- it I

SDL

SDOLEVEL

SDOPTR

SDOTEMP

SDR

SEARCH INDEX2

SEARCH REGS

SECOND LABEL

SELECTYPE

SELF ALIGNING

A compiler option informing the compiler
whether it is operating within the SDL.

Array of size DONEST.
See Array Do Loop Decla.rations.

Array of size DONEST.
See Array Do Loop Declarations.

Array of size DONEST.
See Array Do Loop Declarations.

Initial ("28"). An opcode used for
code generation.

label

label

A statement label generated by Phase 2 to
use as the destination of a branch instruction.

Array of size TYP SIZE.
initialized. A value associated with each
operand type used for generating appropriate
library calls and for determining the sequence
of conversions in assignment statements.

A compiler option.

5 ... 99

INTERMETRICS INCORPORATED" 701 CONCORD AVENUE • CAMBRIDGE. MASSACHUSETTS 02138 • (617) 661,::-1J~AO

1

i: ,
,
I
;.

! ,:
11
!

1.1

.,. 1...._··
f

I

SELFNAMELOC

SER

SET AREA

SET ARRAY SIZE

SET AUTO IMPLIED

S'ET AUTO INIT

SET BINDEX

SET CHAR DESC

SET CHAR'· INX

SET CINDEX

SET"ERRLOC

SET EVENT OPERAND

SET INIT SYM

SET 10 LIST

SET LABEL

SET LOCCTR

SET OPERAND

SET RESULT REG

SETUP ADCON

SETUP BOOLEAN

SETUP CANC OR TERM

SETUP EVENT

A pointer to the ,symbol table entry for
the outer block of the compilation unit,
(set by CHECK~OMPILABLE) •

Initial ("3B"). An opcode used for
code generation.

(label

5-100

,

~l

;,L

1 0

1
"

; \

~
1 i;

1

I

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE "CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

........ -.-.=====================~,..",..,.-....... """""'"....::;;=~ ..• ~ ... ~ "----"-" -.·_ i •. ~"._~,~~ .~, = J~ ~

SETUP INX

SETUP NON HAL ARG

SETUP PRIORITY

SETUP RELATIONAL label

SETUP STACK

SETUP STRUCTURE

SETUP TIME OR :EVENT

SF DISP

SF RANGE

SF RANGE PTR

SGNLNAME

SHAPING CALL

The byte width of the operand type.

Array of size CALL LEVEL#.
The range of each dimension of arrayness
of a shaping function.

A pointer to the first free entry in
SF RANGE.

Array of size (2), initial (12,13, 14).
An array giving the SVC number corresponding
to each kind of event signalling.

Value

o
1
2

label

Description

SIGNAL
SET
RESET

SVC #

12
13
14

SHAPING FUNCTIONS label

SHCOUNT

SHIFT

SHOULD. COMMUTE

SHW

Initial (23). An intermediate code
qualifier idnicating a shift count.

See HALMAT operand types.

label

An opcode used for code generation.

SIMPLE ARRAY PARAMETER label

SIZEFIX label

5-101
INTERMETRICS INCORPORATED 0 701 CONCORD AVENUE 0 CAMBRIDGE, MASSACHUSETTS 02138 0(617) 661-1840

._---------_._--_.-

: .

I

r--rH ';::;4, ,.f4.,@ P.HQU! J . • Q;:

, "-:' -:, ' h~"" __ : ___ , _~~~~~·_'~~"~:'~L-:~:'~:~·.:.~::'.~ __ ·l-----~--"'--·- :--- -~'.--

SIZE3

SLOL

SLL

SM FLAGS

SMAODR

SMRK CTR

SORO

SPM

SR

SRA

SRCE

SRCEPART SIZE
. I

SRCERR

SROA

,. !

SRL

~'i.J!:;Z " .;; ; 4 SA .x" !L; t " J;; 4' -& PPM AQUA' ,G.£ . ; --.. -

. ..
-"-~.--- ~'--'~ -~- .----~---

Array of size VMOPSIZE literally '25',
initialized. Array specifying whether
each vector-matrix operation has special
routines for 3x3 matrices and vectors with
3 components.

Initial ("80"). Opcode used for code
generation.

Initial ("89"). Opcode used for code
generation.

Initial ("00C2008C"). Used for matching
structure terminal SYT FLAGS.
Initial (56). An intermediate code opcode
indicating a HALlS source line member.

See HALMAT decoding.

Array of size (1), initial (' " '0').
Prefixes for built-in function names
indicating whether to use the function
that gives a single or double precision
result.

Initial ("04"). Opcode used for code
generation.

Initial ("lB"). Opcode used for code
generation.

Initial ("8A"). Opcode used for code
. generation.

See Vector-Matrix.

See Vector-Matrix.

The location in MAIN PROGRAM where control
goes after an error In HALlS source
has been found.

Initial ("SE"). Opcode used for code
generation.

Initial ("88"). Opcode used for code
generation.

5-102

.1.4 .JiUI~ .. (. '... .. .~1
, I

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETIS 02138 • (617) 661-1840

SRSTYPE

SSTYPE

ST

STACK EVENT

STACK FREEPOINT

STACK LINK

STACK MAX

STACK P~R

STACK#

STACKPOINT

STACKS PACE

STACKSPACE

START OFF

START PART

STATIC BLOCK

STATNO

STEP LINE#

STH

STM

.. --_-~ __ ~'.--_._-_~~. -, ... --~ ~'"~~~=-=-·-"--~_-·T-··~--r""~~~J~,~;r .

Initial (50). An intermediate output
code opcode indicating an SRS format
instruction.

Initial (34). An intermediate output
code opcode indicating an SS format
instruction.

Initial (50). Opcode used for code
generation.

label

See Runtime Stack Frame.

See Runtime Stack' Frame.

See Indirect Stack.

Array of size STACK SIZE.
See Indirect Stack.-

See Array Do Loop Declarations.

The first of a sequence of ESDID numbers
assigned to the unresolved external control
sections for the stack for each program
or task.

Array of size PROC#. See .
Block Definition Table. In OBJECT GENERATOR
STACKS PACE (end) = last location used for that
end.

Array of size PROC#.
See Block Definition Table.

See Vector-Matrix.

See Vector-Matrix.

label

The number of statement labels generated
by Phase 2.

label

Initial ("40"). Opcode used for code
generation.

Initial ("90"). Opcode used for code
generation.

5-l03

1
;~

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 0213.8 • (617) 661-184Q

STMT LABEL

STMT NUM

STMT PREC

STMTNO

STNO

STOPPERFLAG

STORE

STRACE

STRI ACTIVE

STRUCT

STRUCT CON

STRUCT INX

STRUCT LINK

STRUCT MOD

See Symbol Table SYT TYPE.

~o if dealing with double prec~s~on matrix

result. See Vector-Matrix.

Initial (44). An intermediate output code

opcode marking HAL source statement boundaries.

I

Initial (20). An indirect stack entry

form and interme~iate code qualifier

indicating a Phase 2 generated label.

A flag used to prevent the emitting of

code for branching around ELSE clauses

for IF statements whose THEN clause ends

in an unconditional branch. (For example,

GO TOs, RETURN.)

Initial ("01"). An operator code for storing

used as an index into the table containing

information about the different operators.

Never referenced.

1 if initialization of data items is

occurring, 0 otherwise.

Array of size STACK SIZE.
See Indirect Stack.-

Array of size STACK SIZE.
See Indfrect Stack.-

Array of size STACK SIZE.
See Indirect Stack.-

A pointer to a structure template's symbol

table entry used for chaining through a

linked list of structure templates.

Array of size (1). A modifier used for

computing the address of a terminal element

of a structure. STRUCT MOD gives the off

set of a mode from the beginning of a

structure copy plus the displacement of the

structure copy the address is in from the

beginning of the structure. The array has

two entries so that it can keep inforrna.tion

about two structures at once.

5-104

•

"-

,~ '::I.

"'t:.' ;:r.r

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE: • OAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

{
\.

1
1
j

l
j ,
f
j ,
J
~

1

I
J
1

I
J

j
l

1
J ,
~
~

!
r
)

" i'
J
I .~
~.

r- _.- .!-' ._.'_ ... '- .'-' .. ----.. -~.--,.-.

L

STRUCT REF

STRUCT START

STRUCT TEMPL

STRUCTFIX

STRUCTURE

Array of size (1),. A pointer to the symbol
table entry for a structure's template used
when walking through structures. The array
has two entries so that it can keep pointers
to two structures for processing structure
conditions.

A pointer to the symbol table entry for the
first structure template in a linked list
of structure templates. The SYT LEVEL entry
of each temp1ate'points to the next member
of the list.

Array of size (1). A pointer to the symbol
table entry for a structur- template which
is currently being referenced. The array
has two entries so that it can have pointers
to two structures for structure conditionals.

label

Initial (16). The structure operand type.

STRUCTURE ADVANCE label

STRUCTURE COMPARE label

STRUCTURE DECODE label

STRUCTURE WALK

SUB#

SUBCODE

SUBLIMIT

SUBMONITOR

SUBOP

SUBRANGE

SUBSCRIPT MULT

SUBSCRIPT2 MULT

label

Subscript number.

See HALMAT decode.

See Array Do Loop declarations.

The location in MAIN PROGRAM where control
goes if compilation Is abandoned or at the
end of compilation.

See HALMAT.

See Array Do Loop declarations.

label

label

label

5-105

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

i. ,

SUBSTRUCT FLAG

SUCCESSOR

SUM

SVC

SYM

SYMBREAK

SYMFORM

SYM2

SYSARGO

SYSARGI

SYSARG2

SYSINT

SYT ADDR

SYT ARRAY

See Vector-Matrix.

label

See HALMAT operator properties.

Initial ("9A"). Opcode used for
code generation.

Initial (1). A HALMAT operand qualifier,
indirect stack entry form, and intermediate
code qualifier indicating a symbol table
entry.

The ESD number of the last function or
procedure that has a symbol table entry.
The last number assigned by Phase 1.·

Array of size (31). 1 for SYM, CSYM, IMD,
and INL; 0 for other intermediate code
qualifiers. Initialized by INITIALISE.

Initial (29). An operand qualifier used
for indicating that a register is
bieng used for tWv-dimensional subscripting.

Initial (1). Register 1. This name refers
to its use for vector-matrix routine input
and output.

Initial (2). Register 2. This name refers
to its use for vector and matrix routine
input and output.

Initial (3). Register 3. This name refers
to its use for vector and matrix routine
input and output.

Initial (21). An intermediate code qualifier
indicating a System Intrinsic Library member.

Common Based. See Symbol Table.

Common Based. See Symbol Table.

5-106

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

c:

.~ ,.,.. .. .~ ~="::.==:::-=~ ___ . ___ ~._,.~ ".: ... _ .. _ ... ,~~ . ..c .. _.~c ... ~ •.. _~,..._,~ ... c==::::2L~~:.--::=~ ~-::-=~::~::-.::BiiliI

~II . !:i~--:.~~~~~~~"'" .. ~~""' .. ~--.-~ ~='-==r',",.~'"~
. til 1 MI."..... _~:I'••• ££II£9E .• ~~c""""'~,.... ... _., __ ''''''~... 1ii.;&!i!I.,!I)L_... .•. ~'<!IW . .9IqllllJlii'

1

SYT BASE Based. See Symbol Table.

SYT CLASS Common Based. See Symbol Table. ,

SYT CONST Based. See Symbol Table.

SYT COPIES label I
SYT DIMS Common Based. See Symbol Table.

i
I

1

SYT DISP Based. See Symbol Table. I
I

SYT FLAGS Common Based. See Symbol Table. I
I

SYT LEVEL Based. See Symbol Table. I
1

SYT LINK1 Common Based. See Symbol Table. I
SYT r ... INK2 Common Based. See , Symbol Table.

SYT LOCK# Common Based. See Symbol Table.
1

SYT NAME Common Based. See Symbol Table. J
1

SYT NEST Common Based. See Symbol Table.
.J
']

j I" --". SYT PARM Based. See Symbol Table. j
I

SYT PTR Common Based. See Symbol Table. j
1

SYT SCOPE Common Based. See Symbol Table.
1

l
SYT SIZE The. size of the symbol table. See Symbol

1
Table.

I SYT SORT Based. See Symbol Table.

SYT TYPE Common Based. See Symbol Table. I
1 ,

SYT XREF Common Based. See Symbol Table. J

1
1

TABLE ADDR Common. Never referenced. 1

TAG See HALMAT decoding.
j

1 TAG BITS label I
1

I
1

5 ... 107

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

i
'I

I

:1
I' J

,i
,I
;1

• I

TAGS

TAGI

TAG2

TAG 3

TARGET R

TARGET REGISTER

TASK LABEL

TASK#

TAS KPO'I N'r

TB

TD

TEMP

TEMP BASE

TEMPL NAME

TEMPORARY FLAG

TEMPSPACE

See HALMAT decodi~g •.

See HALMAT decoding.

See HALMAT decoding.

See HALMP.T decoding.

Initial (-1). If TARGET R is positive,
routines that search for-a free register
will checkpoint it and return it.

Initial (-1). If TARGET REGISTER > 0,
routines that force values into registers
will force them into this reg~ster.

See Symbol Table SYT TYPE.

The number of tasks in the compilation unit.

A pointer to the symbol table entry for
the first task in a linked list of all the
tasks in a program. The tasks are linked
through SYT_LINKI.

Initial ("BI"). Opcode used for code
generation.

Initial ("9B"). Opcode used for code'
generation.

A temporary variable with a variety of
uses used in object code generation.

See Runtime Stack Frame.

See Symbol Table SYT TYPE.

See Symbol Table SYT FLAG.

1) Used to compute the EXTENT of a symbol
table entry for variables that are not
formal parameters.

2) The number of elements in a matrix,
vector, or array.

5-108

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

",'

'm' •. _ •• _ ..• c..O.:...~.c n'. '---c ... _ _.c.• _.~_ .. _.,_ .. ~

AI.'"

TERMFLAG

TERMINATE

TEST

TH

TMP

Used to distinguish matrix subscripting
from subscripting of other data types.
Value is 0 for non-matrix data types.
For matrices value is 1 while subscripting
the rows, and then set tQ 0 for subscripting
the columns.

label

See HALMAT Operator properties.

Initial ("91"). An ope ode used for
code generation.

A temporary variable with a variety
of localized uses.

TO BE INCORPORATED Initial (1). A flag indicating the
presence of integer constants that are
to be incorporated into terms.

TO BE MODIFIED

TOGGLE

TRACING

TRUE INX

TS

TYPE

TYPE BITS

TYPES

Initial (1). A flag indicating whether
the contents of a register will be modified
or not.

Common.

A flag indicating if the TRACE compiler
option is in effect.

label

Initial ("93"). Opcode used for code
generation.

See Indirect Stack.

label

Array of size (8), initial ('H','I','E',
'0', 'B' , 'B' , 'K' , '0' , 'X'). Entr,ies from
this array are chosen according to the
SELECTYPE of an operand and used to
generate calls to appropriate library
routines by prefixing or suffixing
the letter to the name of the routine.

5-109

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

~ -.

I ,
,'1 ,

....... u,_,., .. "'.~,~~=~~ _____ ~--'--_--'-___ -.-...., __ ~_A

'"

ULBL Initial (36). An intermediate code
opcode for a user defined label.

UNARY See HALMAT Operator properties.

UNARYOP label

UNIMPLEMENTED Location to which control is transferred
if an unimplemented feature is encountered.

UNRECOGNIZABLE label

UPDATE ASSIGN CHECK label

UPDATE CHECK

UPDATE INX USAGE

UPDATING

UPPER

USAGE

USAGE LINE

VAC

VAC COPIES

label

label

If greater than 0, this is the block
number of an update block for which code
is being generated.

Array of size LASTEMP'.
See Storage Descriptor Stack.

Array of size REG NUM.
See Register Table.

Array of size REG NUM.·
See Register Table.

Initial (3).
1) A HALMAT operand qualifier for a virtual

accumulator, a block pointer to the
results of a previous HALMAT instruction.

2) An indirect stack entry form for a
register being used as a temporary
variable.

label

5-110

"'~'

"",, ...

:;1

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661~1840

i
i
I
i
I
1
i
1

I
I
I

:

I
I

1
j
I
J

I
1

J

1
1
I

I
J

1

I
1

VAC FLAG

VAL

VAL MOD

VALMUL

VALS

VAR CLASS

VECMAT

VECMAT ASSIGN

VECMAT CONVERT

See Vector-Matri~.

Array of size STACK SIZE literally '100'.
See Indirect Stack.-

Used to modify the offset calculated for
TO or AT partiion subscripts to take into
account the indexing method used.

The size of a subscript used in an array,
component, or structure subscripting opera
tion.

Based.

See Symbol Table SYT CLASS.

Initial (0). The PACKTYPE of vector and
matrix operands.

label

label

VECTOR Initial (4). The single precision vector
operand type.

VERIFY INX USAGE label

VERSION Initial (8). The compiler version number.

VERSION LEVEL Initial (5). The compiler version level.

VMCALL label

VMREMOTEOP Array of size VMOPSIZE .
initialized. An array used to generate the
opcode used for calling the versions of
vector-matrix routines for remote data.

WAITNAME Array of size (3), initial (9,6,7,8).
This array gives the SVC number associated
with each kind of WAIT.

HAL MAT WAIT
operator tag Kind of WAIT SVC #

o WAIT FOR DEPENDENT 9
1 WAIT (timing expression) 6
2 WAIT UNTIL (timing expres- 7

sions)
3 WAIT FOR (event expresion) 8

5-111

INTFRMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

i . ~ i

.J

........... " -...... _.:.d

WORDSIZE

WORK

WORK CTR

WORK USAGE

WORKSEG

WORK 1

WORK2

WORK3

X BITS

XADD

XBNEQ

XCFOR

XCSIO

XCSLD

XCSST

XCTST

Initial (32).
word.

The number of bits in a

Initial (31). An indirect stack entry f6rm
for a location in the temporary storage
area of a CSECT.

Array of size LASTEMP.
See Storage Descriptor Stack.

Array of size LASTEMP.
See Storage Descriptor Stack.

Array of size PROC#.
See Block Definition Table.

A temporary variable with a variety of
uses including:
1) Setting up labels for DO CASE st:~tements.
2) Pointer to symbol table entries for

struture terminals.

A temporary variable with a variety of uses
including:
1) Setting up labels for DO CASE statements.
2) Pointer to symbol table entries for

structure terminals.

Records value of FREELIMIT after dynamic
allocation of COMMON tables to be passed to
Phase 3.

label

See HALMAT opcodes.

5-112

... .-

~"j

"',.,

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE} MASSACHUSETTS 02138 • (617) 661-1840

, '

,
,~
j

1

1
"

1
j
~

·1
" 1

;:;j ,
j
'1

i 1 .
'J
~
~
1
1
,j

~1
1 , ,
..

"

.4 ,
'~

.'

&
XD

XDIV

XDLPE

XEXP

XEXTN

XFBRA

XFILE

XICLS

XI DEl<"

XILT

XIMRK

XIST

XITAB

XMASN

Xr.!DET

XMEXP

XHIDN

XMINV

XMTRA

XMVPR

XN

See HALMAT opcodes

/

Initial (~B7~). Opcode used for
code generation.

Array of size (32), initialized.
Character strings used for masking bit
operands according to size.

>- See HALMAT opcodes

5-113

INTERMETRICS INCORPORATED-· 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

r:

XNOT

XOR

x'PASN

XPEX

XPROGLINK

XPT

XR

XRDAL

XREAD

XREF

XSASN

XSFAR

XSFNO

XSFST

XSMRK

XVAL

See HALMAT Opcodes.

A pointer to the beginning of a chian of
external non-HAL procedures or function.
XPROGLINK points to the symbol table entry
of the fjrst such procedure or function.
SYT LINKl is used by each member of the
chain to pointto the next member.

See HALMA'J:'.

Initial ("17"). An opcode use for code
generation.

See HALMAT opcodes.

See HALMAT opcodes.

See Symbol Table SYT XREF.

See HALMAT opcodes

Array of size STACK SIZE.
See Indirect Stack.-

5-114

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

.,. '- _:_. : __ .~,_ .~ ____ .: _.~._ .. =J

& XVMIO

XWRIT

XXASN

XXREC

XXXAR

XXXNO

XXST

X2

X3

X4

X72

Z LINKAGE

ZADDR

ZB

ZH

"".,

See HALMAT opcodes.

Initial (' '). A string of two blanks.

Initial (' '). A string of three blanks.

Initial (' '). A string of four blanks.

Initialized. A string of seventy-two
blanks.

A compiler option indicating that external
linkage conventions are to be used.

Initial (55). An intermediate code
opcode indicating a Z-type address constant.

Initial ("BE"). Opcode used for code
generation.

Initial ("99"). Opcode used for code
generation.

5 ... 115

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

I
f ,

5.2 Procedure Descriptions

Name

ABS

ADDRESS STRUCTURE

ADDRESSABLE

ADJUST

ALLOCATE TEMPLATE

ALLOCATE TEMPORARY

ARG ASSEMBLE

ARITH BY MODE

ARRAY INDEX MOD

ARRAY2 INDEX MOD

ASSIGN CLEAR

AVAILABLE FROM STORAGE

BEGIN SF REPEAT

BESTAC

BIT MASK

BIT SHIFT

BIT STORE

BIT SUBSCRIPT

BLOCK CLOSE

BLOCK OPEN

BOUNDARY ALIGN

CHAR CALL

CHAR CONVERT

CHAR INDEX

CHAR SUBSCRIPT

CHARACTER TERMINAL

CHECK ADDR NEST

CHECK AGGREGATE ASSIGN

CHECK AND DROP VAC

CHECK ASSIGN

CHECK ASSIGN PARM

CHECK COMPILABLE

I
I
I

X

I

I
I
I
I

X

X

X

X

I
I
I
X

I
I
X

I
X

I

X

X

I
X

X

X

X

Similar to ARRAY INDEX MOD
for two dimensional arrays.-

See GENERATE MTRA

5-116

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

f
Ll
~~-=---~"'-"-"--' -.--

~ r
! ~~,"_~.c'.;!_,." " __ ~~j. f{'_..,~ -';;'-'-." ,"V ; .--,"':""';:>-:-c • ~-.; .• CJ';.;;J'''''':%·.: ,:'

I -,.

~.r.

CHECK CSYM INX .;

I CHECK LINKREG X

CHECK LOCAL SYM X

CHECK _ LOCK# X

CHECK NAME PARM X

CHECK REMOTE .;
CHECK SI X

CHECK SRCE See GENERATE MTRA

CHECK SRS X

CHECK STRUCTURE PARM X

CHECK VAC .;
CHECK VM ARG DIMS X

CHECKPOINT REG .;
CHECKSIZE .;
CLEAR CALL REGS X

CLEAR NAME SAFE X

CLEAR R .;
CLEAR REGS X

'I; CLEAR SCOPED REGS X
."l. '

STMT REGS X <0 CLEAR
,

I COMMUTEM X .'

COMPARE STRUCTURE X ;./- l '.t

CONS TERM X t j
I COpy STACK ENTRY X ,
1

CS X 1
"

CTON X 1
'i .

DECODEPIP .; 1
1
1

DECODEPOP I 1
1

DEFINE LABEL .; l

DESC .;
,
1 DESCENDENT See STRUCTURE WALK .,

.; 1
DIMFIX '~

DO ASSIGNMENT .; 1
1
g

I DO EXPRESSION X 1

I j ,
1 -r'" ~

I ". '.~

~. I 5-117
1

\ 1
INTERMETRIGS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

ii

",~ -a; . _.
--~- '~-,.-- .. -'--'" ~

r

,
: I

I !,:

I
t

DOCLOSE

DOFORSETUP

DOMOVE

DOOPEN

DROP INX

DROP PARM STACK

DROP REG

DROP VAC

DROPFREESPACE

DROPLIST

DROPOUT

DROPSAVE

DROPTEMP

EMIT ADDRS

EMIT ARRAY DO

EMIT BY MODE

EMIT CALL

EMIT CARD

EMIT ENTRY

EMIT ESD CARDS

EMIT SYM CARDS - -
EMIT EVENT EXPRESSION

EMIT RETURN

EMIT WHILE TEST

EMIT Z CON

EMITADDR

EMITBFW

EMITC

EMITDELTA

EMITDENSE

EMITEVENTADDR

EMITLFW

EMITOP

EMITP

.;
X

X
.;
.;
X

X
.;
.;
.;
.;
.;
.;

.;

X

X
.;

X
.;
.;
.;
X
.;
X

X

X

X

X

X

X

X

X

X

5~118

•... -.......::;" a ..••.

See OBJECT GENERATOR (56)

REPROD UCmTLITY OF iliE
ORIGINAL PAGE IS POOR

rNTEAMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

J .

oJ

t 1

I
I
i

!

'A-I>.

I' ,'

EMITPCEADDR X

EMITPDELTA X

EMITPFW X

EMITRR X

EMITRX X

EMITSI X

EMITSIOP X

EMITSP X

EMITSTRING
.;

EMITW X

EMITXOP X

END SF REPEAT X

ENTER X

ENTER CALL X

ENTER CHAR LIT
.;

ENTER ESD X

ERRCALL X

ERRORS X

ESD TABLE X

EVALUATE X

EVENT OPERATOR X

EXPONENTI~.L
.;

EXPRESSION X

FETCH VAC X

FINDAC X

FIX INTLBL
.;

FIX LABEL
.;

FIX STRUCT INX .;

FIX TERM INX X

FORCE ACCUMULATOR
.;

FORCE ADDR LIT X

FORCE ADDRESS
.;

FORCE ARRAY SIZE X

FORCE BY MODE
.;

5-119

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETIS 02138' (617) 661-1840

,...
r

FORCE NUM

FORM BD

FORM CHARNAME

FORM VMNAME

FORMAT

FORMAT OPERANDS

FREE ARRAYNESS

FREE TEMPORARY

GEN ARRAY TEMP

GEN STORE

GENCALL

GENERATE

GENERATE CONSTANTS

GENEVENTADDR

GENLIBCALL

GENSI

GENSVC

GENSVCADDR

GET ARRAYSIZE

GET ASIZ

GET CHAR OPERANDS

GET CODE

GET CSIZ

GET EVENT OPERANDS

GET FUNC RESULT

GET INIT LIT

GET INST R X

GET INTEGER LITERAL

GET LIT ONE

GET LITERAL

GET OPERAND

GET OPERANDS

GET R

GET STACK ENTRY

GET STRUCTOP

x
.;
X

X

.;

X

.;
X

.;

.;

X

.;

.;

X

X

X

X

X

X

.;
X

X

X

X

.;

X

X

.;

X

.;

.;

X

.;

.;
X

5-120

INTERMETRICS INCORPORATED· 701 OONCORD AVENUE· CAMBRIDGE, MASSACHUSETIS02138· (617) 661-1840

<i

~
I~

~ .,
!(
~ 'I
f\! .,
:11
~I

~
ft
cj

t~
5
" ;~
" !
"

'~.
!£
,~
\{
r?4
;,
~
,ti

'~,

t .,
~
~) !
"

I
:;;;

;i
"
11
'" ~~ ..

~
:1

~ ~
~
S

l~

;j

~
~
~

, ! -,. " , "~"",,,,~ ' -,.'"""'-... ''',.."'''-::-~.~~,~-'"Y.'--.. ~,,.,.....,....~-.' .• "'_: .. ,._ ,. :U' ". ' "'_.0,,,. -"f.".~.- .. ' .•. ''"'-u'4''"''I::::: .. ·J
~,IlJIJ!';::;tt:;JJ'ii!Lil!l"'!t'~~"."~ ... _~.~._.".""'="""'~""""'-e.;"'"'~,.,,,.,~'''''.,!,::~._,_rp!",',;"',;,.¥ .. :h • ..,_"""""L"':-''''-''''.-"".· __ ~_'' •. :'''','."."""",..-.;"LOL •. & j .. ' ~.Lt!ltfltll~, "

1

GET SUBSCRIPT X

GET VAC .;

GET VM TEMP X

GETARRAY# .;

GETARRAYDIM .;

GETFREESPACE .;

GETINTLBL .;

GETINVTEMP X

GETLABEL X

GETSTATNO .;

GETSTMTLBL .;

GETSTRUCT#' X

GUARANTEE 'ADDRESSABLE .;

HASH X

HEX .;

HEX LOCCTR .; 1
IDENTI DISJOINT CHECK See Section on V-M Optimiza-

~

1
tion and FC Spec • 3.1.5.5.

INCORPORATE .;
.~ INCR USAGE X 1

INDIRECT X

INITIALISE .; 1 ,
1

INSTRUCTION X 1
1

INTEGER DIVIDE X :1
i

INTEGER MULTIPLY .; 1
.,

INTEGER VALUE X "~

INTEGERIZABLE .; - ~~
, ,

INTRINSIC X

IOINIT X

KNOWN SYM X

LIB LOOK X

LIBNAME X

LITERAL .;

LOAD NUM .;

5 ... 121

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138· (617) 661-1840

~ ,

" ';.

,:.
,

.
~;

r "

r
f
I
I;

I,

I
I, ,-
I

I
t

t
t
t
!
I

·1
I

I
i

"1
:i ,

LOAD TEMP

LUMP ARRAYSIZE

LUMP TERMINALSIZE

MAIN PROGRAM

MAJOR STRUCTURE

MAKE INST

MARKER

MASK BIT LIST

MAX

MIN

MIX ASSEMBLE

MOD GET OPERAND

MOVE STRUCTURE

MOVEREG

NEED STACK

NEW HALMAT BLOCK

NEW REG

NEW USAGE

NEXT REC

NEXT STACK

NEXTCODE

NEXTPOPCODE

NON HAL PROC FUNC CALL

NON HAL PROC FUNC SETUP

NSEC CHECK

NTOC

OBJECT CONDENSER

OBJECT GENERATOR

OFF INX

OFF TARGET

OPDECODE

OPSTAT

OPTIMISE

PAD

PARAMETER ALLOCATE

X

X

X

X

.;
X

X

X

.;

.;

x
.;
X
.;
.;
.;

X

X

.;
X

X

X

X

X
.;
.;
.;
X-

X

X

.;

.;

.;

Similar to ARG ASSEMBLE with
second operand scalar

A restricted version of
GET OPERAND

5-122
INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617)661-1840

,.

r,

~
f.

i: I it
~,
!';

r
i

r

..:
:,
1:
I,
I,

'" '" ~ i
~,
ii

" ,:

t:
t
~ I

fi
I,!

f
fi
!' ~
f;
r' i

I
~ :

I'j
:,

PARMTEMP

POSITION HALMAT

POWER OF TWO

PRINT DATE AND TIME

PHINT TIME

PRINT SUMMARY

PROC FUNC CALL

PROC FUNC SETUP

PROCENTRY

'PROGNAME

PUSH ADOL~VEL

PUSH ARRAYNESS

REAL LABEL

REF STRUCTURE

REGISTER STATUS

RELEASETEMP

RESUME LOCCTR

RETURN EXP OR FH

RETURN STACK ENTRIES

RETURN STACK ENTRY

SAFE INX

SAVE FLOATING REGS

SAVE LITERAL

SAVE REGS

SEARCH INDEX2

SEARCH REGS

SET AREA

SET ARRAY SIZE

SET AUTO IMPLIED

SET AUTO INIT

SET BINDEX

SET BIT TYPE

SET CHAR DESC

SET CHAR INX

SET CINDEX

x
1
1
X

X

X

X

1
1
X

x
'I
X

X

1

1
1
X

X

1
X

1
1
1
X

1
.;

1

X

X

X

X

X

X

5-123

See Section 6.2 of User's
Manual

See BLOCK OPEN

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

i,""-.r"~'l=~""--, "'~'~,~,"'r __ ',~"~~.....,,.-.. ~,~'='~'_~_'_ .~=--.,~~~,-~ --.... ".. .~-' . : '~'r...,,~""-"~--l-~."'- -"·"i.~-"~~"''''''·-··~l~'''''"'·~'-

.... I. U .I111tr Ilk .£5.." J"II!!!.l' ~ .. i1! L & ~~,I_' ,,-1 '"Ii,!!'>"' ' .. 1' !'!'iI!"!!!l!!!M;'!!"!~'!'''''''''_'''''''''''''',c:""">~=~"",, •• z,~''c-,,.c"",~." .. "c",-<~,"'~-"",,, "_"_~'~"""'CO",~,_

SET ERRLOC I
SET EVENT OPERAND X - -
SET INIT SYM X

SET IO LIST X

SET LABEL I
SET LOCCTR I
SET NEST AND LOCKS X

SET OPERAND X

SET PROCESS SIZE X

SET RESULT REG X ..
SETUP ADCON I
SETUP BOOLEAN I
SETUP CANC OR TERM X

SETUP DATA X

SETUP EVENT X

SETUP INX X

SETUP NONHAL ARG X

SETUP PRIORITY I
SETUP RELATIONAL X

SETUP REMOTE DATA X

SETUP STACK I
SETUP STACKS X

SETUP STRUCTURE X

SETUP TIME OR EVENT X

SETUP TOTAL SIZE X

SETUP VAC X

SETUP XPROG X

SHAPING CALL X
", : SHAPING FUNCTIONS X

SHORTCUT BIT LIT X

SHOULD COMMUTE X

SIMPLE ARRAY PARAMETER X

SIZEFIX I
SKIP X

SKIP ADDR X

5-124

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

. ___ .. _H -- ... - ~- ... -'iT.~.--.---.- .. m. __ ~_._ _.~~~ •••• ' •••••• , •• "".r '."'" •.. "'~\"'"_" '~

~~~''''., ,:",." .... ". ·,·C!,.=·=::··,,··.·,,_ .• c..=:.c· • .,;. ",''r .• L',~ ..•.. · ~"'=.="' .•......•.. , ."'=·<C.>.L., ".·"'''=''''''';Vi'·' •. <"","."..''''-rL'''':'''r-~·'''''.",,,,.~::~, .. ~,,,,,,,...,.,.~~ ":""~"":""!'E:.""!'JIIIIII!I 

SKIP NOP 

STACK EVENT 

STACK PARM 

STACK REG PARM - -
STACK TARGET 

STATIC BLOCK 

STEP_LINE# 

STORAGE ASSIGNMENT 

STORAGE MGT 

STRUCTFIX 

STRUCTURE ADVANCE 

STRUCTURE COMPARE 

STRUCTURE DECODE 

STRUCTURE WALK 

SUBSCRIP'r MULT 

SUBSCRIPT RANGE CHECK 

SUBSCRIPT2 MULT 

SUCCESSOR 

SYT COPIES 

TAG BITS 

TERMINATE 

TRUE INX 

TYPE BITS 

UNARYOP 

UNRECOGNIZABLE 

UNSPEC 

UPDATE ASSIGN CHECK 

UPDATE CHECK 

UPDATE INX USAGE 

VAC COPIES 

VARIABLES 

VECMAT ASSIGN 

VECMAT CONVERT 

VERIFY INX USAGE 

VMCALL 

X BITS 

X 

X 

X 

X 

X 

X 

.; 

.; 

X 

.; 

X 

.; 
.; 
.; 
.; 
.; 

.; 

.; 

X 

X 

.; 

X 

X 

.; 

.; 

.; 

.; 

X 

X 

.; 

.; 

5-125 

See STRUCTURE WALK 

See STRUCTURE WALK 

See HALMAT decoding Section 3.3.8 

See HALMAT decoding Section 3.3.8 

See HALMAT decoding Section 3.3.8 

INTERMETRICS JNCORPORATED • 701 CONCORD AVENUE· CAMBRfDGE, MASSACHUSETTS 02138 • (617) 661-1840 



ABS 

Purpose: 

Absolute value function. 

Parameters Passed: 

VALUE: A \ralue. 

Local Variables: 

None. 

Value Returned: 

The-absolute value of VALUE. 

.~ 
g 

" .j 
F , ~ . -~ 1 
~ 1 

l 
.\ 

~ 
I 
~ 
'~ 

'j , , 

i 
J 

1 
.J 
j 
d 
1 

:r 1 

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE· CAMBRIDG,E., MASSACHUSETTS 02138. (617) 661-1840 

I , 
~ ", .. 
1 

t 5-126 i!: 
:t 

.~. ~ -.. ~. - '.-.'~-'~~, 

_ ~'-"':l .~_:_. __ •.• ~-lI:':-":.~~_-'::""""":."_'_""' __ " "" .... ;.;,~t ~~~.:.:.-::i~_.n._~~ __ ~.:e:i. .. ,~.h= .. ~~~..:.:..>zlJ".P¥ & n-"'b,.'wrn *'*W~"'!'·-·-;"'·-' .... ::::~~~:""';': .. _________ ~ 



I 

I 1 

~ 
fi 
i 
! 

i! 
I 
! 

• 

ADDRESS STRUCTURE 
Procedure 

Purpose: 

To establish addressing for a structure terminal. If 
BACKUP REG> 0 then REG is a base register~ otherwise, 
BACKUP-REG points to a checkpointed base regist,er. To take 
care of large displacements, everything is incorporated into 
the base if necessary. 

Parameters: 

PTR: stack entry for structure 

OP: symbol table entry for terminal 

REF: 0 or 1 for first or second structure in comparison 

TBASE: if ~O, then desired base register. 

5-127 

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 

, 
r 



;~~'"'--~l~~--~--'~ 
... -~~'~~~'~~,-~~~'~------,-~~~~~.~='> ':'.' ,"" , 

1.< 

ADDRESSABLE 

Procedure 

purpo~ 

Given a symbol table entry and the run-time location 
for it, assign it a specific base register and a specific 
displacement taking into account all addressing modes of 
the hardware. Notice that if the location cannot be 
reached from an existing base register, one must be 
created. Since the hardware has a limited number of 
registers, virtual registers are created (SYT BASE<O) 
and subsequently code will be generated to load virtual 
base registers into hardware registers. 

5 .... 128 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 

j 
~ 
Xi 



/' 

ALLOCATE TEMPLATE 

Procedure 

Purpose: . 
To lay out storag~ for a structure template. When 

INITIALISE has completed processing a minor node of a 
structure template, the symbol table pointers for all of 
the nodes are at the end of SYT SORT.' A minor node must 
have contiguous storage to allow passing such structures 
as procedure parameters~ thus, layout is done for each 
minor node, rather than once for the entire structure. 
Storage i$ layed out using the same algorithms as for 
regular s't-orage allocation (i.e. packing, minimizing 
offsets, minimizing boundary alignments). Addresses 
relative to the minor node point are filled into SYT ADDR. 
These will be amended to be relative to the major structure 
node when INITIALISE completes the structure. Notice that 
storage is only layed out here, storage will be allocated 
if a variable of this type is declared. 

Parameters: 

PTR: Symbol table entry for minor node point. 

5-129 

INTERMETRICS INCORPORATED' 701 CONCORD AVE:NUE • CAMBRIDGE, MASSACHUSETTS 021.'38 • (617) 661-1840 



) , 

ALLOCATE TEMPORARY 

Purpose: 

Set up storage for temporaries of DO group. 

Local Variables: 

TEMP pointer to indirect stack. 

TYP - type of variable. 

Parameters Passed: 

ptr - symbol table pointer to first temporary. 

Communicates via: 

symbol table. 

Description: 

If it has already been done, return~ otherwise, 
follow list in SYT LINK1, allocate space; copy informa
tion from indirect-stack to symbol tab1e~ setup implied 
initia1ization~ return stack entry. 

5-130 

INTERMETRIOS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • !617) 661-1840 



il 

ARG ASSEMBLE 

Procedure 

Purpose: 

To set up arguments for vector-matrix operations. 
This includes GET OPERAND, conversion if the precisions 
do H9t agree, conversion of either operand if it is 
remote or is a partition. 

5-131 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661~1840 

, i 

I 
I 
1 

l 



r 

r r 
't 

I~' -«, ...... . 

, 

ARITH BY MODE 

Procedure 

Purpose: 

To emit code for RX and RR arithmetic by mode. 

Parameters Passed: 

OP: The operator code. 

OP1: A pointer to the Indirect Stack entry for the 
first operand. 

OP2: A pointer to the Indirect Stack entry for the 
second operator. 

OPTYPE: The operand type. 

BIAS: The bias for the instruction: RR or RX. 

Local Variables: 

INST: The opcode for the instruction. 

Communicates via: 

Calling the code emitting routines. 

Description: 

The register type of the first operand's register, 
R TYPE(REG(OP1)), is set to OPTYPE. If the operand type 
is double precision scalar and one of several certain operators 
is being used, the operator type can be considered to be single 
precision scalar. If the second Indirect Stack entry's form 
is VAC, it is a register temporary. This means that an RR type 
instruction can be used, BIAS=RR; otherwise, an RX instruction 
must be used. 

5-132 
·INTERMETRICS INCORPORATED· 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 



I 

ARITH BY MODE (Con't.) 

The instruction's opcode INST is computed using the 
following equation: 

ARITH_OP(OP) + MODE_MOD(OPMODE(OPTYPE) + BIAS) 

where ARITH OP primarily provies the second hex digit of 
the opcode,-and MODE MOD modifies the fist hex digit 
according to the instruction mode. 

For an RR instruction, EMITRR is called to emit the code. 
If the operator is binary, the usage of the second operand~s 
register is decremented since its contents have one less 
claim on them. 

For an RX instruction, if the form of the second 
operand is a literal and the operand mode is halfword integer, 
a check is 'made to see if there is an RI form of the instruction. 
The instruction has an RI form if the APIOIINST entry for 
INST+"60" is non-zero. Halfword integer opcodes have a 
first digit of 3~ adding "60", gives a first digit of 9, 
which characterizes RI instruction. If the instruction has 
an RI form, the FORM and LOC fields of OP2's stack entry 
are changed to a form appropriate for generating intermediate 
code. If the second operand is a literal and no RI instruction 
form exists. SAVE LITERAL is called to save the literal in 
the appropriate literal pool. 

For all RX instructions, GUARANTEE ADDRESSABLE is called 
to amke sure that OP2 can be addressed usin.g the instruction, 
INST. EMITOP is called to emit the instruction. DROP INX(OP2) 
is called to drop OP2's index register. DROPSAVE(OP2)-is called 
to indicate, that if OP2's form is WORK, the temporary storage 
used by it has one less claim. 

References: 

The Operand and Operator Tables, Opcode Construction. 

5-133 

1 

I 

, 
1 

1 
1 
~ 

1 
i 
1 

J 
, 1 

; 

INTER~IIETRICS INCORPORATED' 701 CONCORD AVENUE! CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661·1840 

C<._"~ ___ ".~~::::.:::.:::::=:::.:::=:::.::.:~-:==~:"~.:::~.:? ~ "~<~ •• c: ". '::"~~ ." ... " ........ ~ J 



ARRAY INDEX MOD 

Function 

Purpose: 

To generate code to load or modify current index by array . 
loop index. If OP (see below) is 0 then just generate code to 
load the index. Notice that if SHIFTCT ~ 0, an attempt is made 
to find the index in a register both with the given value and 
with 0 before the load code is emitted. If OP ~ 0, generate 
code to add increment to index. Notice that an attempt is 
first made to find the increment in a register and use RR 
code; if impossible, then do AH. 

Returns: 

Stack'pointer fo~ index. 

Parameters: 

OP: Stack pointer for index 0+,-0 

INDEX: Initial value or increment 

SHIFTCT: Required shift to convert array subscript to index 
(depends on width of data) 

5-134 

INTERMETRICS INCORPORATED~ 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 

1 
,~ 

II 
'.'.'If .. ' .'.1 f 

.. ·iIIi 



~ ~ 

i 

'I , , :j 
I' 

" . , 

fi ~a 
~ ! ., 
'.' r' 
1 : 

~, i 
, 1 
[I 
r! 
" 

f: 
t 

t' 
~ j 
tf 
'I 
il 
~i 
r"' 
~- ! 
~ I 

[! 

r! 
t \ 
I: 
I, 
:'1 

r; , ' 

f.--

! 
" 1 ' 
~ 
r /1 , 

"1 
r, 

~ ~ 
l 

BIT MASK 

Procedure 

Purpose: 

To mask bit operands according to size. 

Parameters Passed: 

OPCODE: The operator used. 

OP: A 'pointer to the Indirect Stack entry for 
the bit operand. 

SIZE: The bit length of the operand. 

S.HCOUNT: A pointer to the Indirect Stack entry indicating 
the bit position within a location the bit 
operand starts at. 

Local Variables: 

MASK: The mask used. 

PTR: A pointer to the Indirect Stack entry for the mask. 

RM: A pointer t;o an Indirect Stack entry of form VAC 
used for shifting the mask if SHCOUNT is not a 
literal. 

Communicates via: 

Calling routines to emit code. 

Description: 

If there is shift and the FORM of the shift's stack ·entry 
is LITERAL, then the amount of shift is known. MASK is then 
XITAB(SIZE), a string of lis of length SIZE, shifted by 
VAL (SHIFT) , the shift. Since the shift is incorporated into 
the mask, SHIFT can be set to zero. Otherwise, MASK, the 
mask, is XITAB(SIZE). GET INTEGER LITERAL is called 
to set up a stack entry for the mask, and to get a pointer 
to it, PTR. The type of this entry will be fullword or 
halfword integer according to whether OP is full or halfword. 

5-135 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 



T' 
.1. 

BIT MASK (Con't.) 

If SHIFT is still non-z~ro, it represents the result 
of bit subscripting and has form VAC or WORK. GET VAC is 
called to get a pointer to a VAC Q:ndirect Stack ~ntry, RM. 
The register for this VAC entry is loaded with the mask by 
calling LOAD NUM, and BIT SHIFT is called to shift the 
mask by the amount represented by SHIFT. CHECK VAC is 
called in case OP was ch~ckpointed by getting a-register 
for the mask. Then ARITH BY MODE is called to perform 
the masking. DROP VAC is-called to drop the entry for the 
mask which is no longer needed.: 

If the shift is zero, ARITH BY MODE is still called 
to do the masking, but the pqinter to the Indirect Stack 
entry for'the mask is used'as a parameter instead of the 
pointer to the VAC for the mask used in the previous case. 

The stack entry for the mask is returned. 

5-136 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 

" 

t, ......... ,,_ ... ,. 

¥ 
fJ 
~ j 

i 
~ 
~ ,I 
fJ 
" ~ 
" " I 
:1 
" ~ • " 
" 

ei 
M 
~ 

'" ~ 
~ 

~ :, 
~ 
~ 

~ 
i{ 
;l 
11 
;1 
!~ 

( 
1 I, 
'I 
t1 
t~ 
"I :, 
t~ 

"1 
ij 
t{ 

~ 
!1 

~ 

j 
J 

I 
I 
I 

a~ 
"" ~' '.I-' 

j 

I 



BIT SHIFT 

Procedure 

Purpose: 

To shift bit operands according to stack shift 
description. '. 

Parameters Passed: 

OPCODE: The opcode for the shift'type. 

R: A pointer to an Iddirect Stack entry indicating 
the shift of form: 

LITERAL: if no subscripting has taken place, 
the entry's VAL 'is the shift. 

VAC/WORK: if bit subscripting has taken place, 
the entry's REG contains the shift. 

-"\---
US) •• }""' ~ 

FLAG: A flag indicating that if the shift is in a register, 
the register's usage should not be decremented 
after the shift instruction. 

Local Variables: 

None. 

Communicates via: 

Emitting code. 

Description: 

BIT SHIFT generates shift instructions according to the form 
of OP since the shift information is stored in different fields 
of the stack entry according to the form of the operand. Also, 
if the operand is not a literal, CHECK VAC must be called before 
emitting code in case the VAC has been-checkpointed. After 
generating the code, if the flag is not true, the usage of the 
register containing the shift must be decremented. 

5-137 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 



"<"<~'-'"'''''~'_·'''~''''-~--:'~~_'''''-'':''~ __ F_T'~'"~.,..'''·,_~'''-'''''".-..... ,-~~."" •.• -.!-~"--...... -, ,.-,. ~~. '~_~= .. , ~"'~"""''''-~i~ db,", "':Ll(Cii"l!".!'!~~[~_ .... "r..,.. 

- - .... ".~----- .". -, -- . -., ' .nH''''_·-_~''F.'··_"""""""",)o-.,...~'{',,,,,~,,~.n;.t~~1!'".e~~.~~,~~ I. 'J!lI!IIEll"l!" ._,·~_.!iili!M!i"ltIi!rtllSiJi1lCjIllU. Ie i 1"jJ!il! •.. !L"~ "_,-",_._,- __ 

BIT STORE 

Procedurf~ 

Purpose: 

To generate code to store a bit variable. If the 
store is into a character SUBBIT or double word scalar 
SUBBIT, out of line code is generated using GENLIBCALL('DSST') 
or CHAR CALL (XCSST) . In all other cases, in-line code 
is generated which may include: 

FORCE_ACCUMULATOR (value to be stored) 

GUARANTEE_ADDRESSABLE (place to store) 

loading of contents of place to store, and shift, masking, 
and ORing operations. 

Parameters: 

ROP: indirect stack entry for value to store 

OP: indirect stack entry for place to store into 

CONFLICT: true if ROP will be used again (CSE or multiple assign
ment) 

Local Variables: 

BOP: temporary 

IMPMASK: true if contents of register containing ROP 
is scrambled. 

SHORTLIT: true if ROP is literal consisting of all zeros 
or all ones of the length of OPe 

5-138 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 

l . 
j -



I 
BLOCK CLOSE 

Procedure 

Purpose: 

To clean up at the end of a block. If this is a function 
and close is reachable, insert run time error message. Generate 
SVC if not just a procedure/function. Restore previous location 
counter and set that register contents are unknown. 

5 .... 139 

INTERMETRICS INCORPORATED· 701 CONCORQ AVENUE· CAMBRIDGE, MASSACHUSETIS 02138 • (617) 661-1840 

, 
- , 

--, 



~ i 
·i 

BLOCK OPEN 

Procedure 

Purpose: 

To initialize at HALMAT block open. Emit identifier 
for scope number in compilation unit. Emit MAXERR and ERRSEG. 
Emi t Z-cons for all remotes,. For each variable in the block 

if NAME, initialize to null, 

if BIT, set to zeroes, 
if character string, emit maximum size, 

if struoture, walk structure performing above operations 
o'n the nodes. 

Emit standard header code. 

Handle parameters in Registers. 

For each temporary, generate automatic initialization code 
via SET AUTO IMPLIED. 

5-140 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE. CAMBRIDGE, MASSACHUSETTS 02138' (.617) 661-1840 

;1 ... 

n 
il 

~ 
~ 
i' 
,1 
it 
~ i 
1f 
l: 

L )~ ., 
n 

d 

,. 
Ii 
'i 
,f 



CHAR CALL 

Procedure 

Purpose: 

To generate calls to character manipulation library 
routines. The routine generates load of all necessary 
registers with some help from SET CHAR DESC if there is 
components subscripting. GENLIBCALL then actually issues 
the call. 

Parameters: 

OPCODE: the operation to be performed 

Opo; if ~o then result goes to address of OPO 

OPl: operand 

OP2: optional second operand 

OP3: optional third operand (bit string for SUBBIT) 

5-141 

INTERMETRICS INOORPORATED • 701 OONOORD AVENUE' CAMBRIDGE, MASSAOHUSETTS 02138 • (617) 661 ~1840 



CHAR INDEX 

Function 

Purpose: 

To initiali:ze at HALMAT block open. Emit identifier for 
scope number in compilation unit. Emit MAXERR and ERRSE~. Emit 
Z-cons for all remotes. For edch variable in the block 

if NAME, initialize to null, 

if character string, emit maximum size, 

if structure, walk structure performing above operations 
, on the nodes. 

Emit standard header code. 

Handle parameters. 

For each temporary, generate automatic initialization 
code via SET AUTO IMPLIED. 

• 

5-142 

INiERMETRICS INCORPORATED' 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02128 • (617) 661-1840 

il 
~ 
1 
j 
1 
l 
l . -, 
1 
~ 
~ , 

1 
1 

t' 1 
r t 

1 
"oj 



I 

J , ••• ,. 

CHAR INDEX 

Function 

Purpose: 

To find an occurrence of one character string in 
another. 

Parameters Passed: 

STRINGl: The character string being searched. 

STRING2: The character string being searched for. 

Local Variables: 

L1: Length of STRINGI. 

L2: Length of STRING2. 

I: Temporary Do Loop variable. 

Value Returned: 

The index of the beginning of STRING2 in STRING1 or -1 
if it is not there. 

5-143 

INTf:RMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 



CHECK ADDR NEST 

Procedure 

Purpose: 

To generate code to perform a stack walk and set up pointer 
addresses for addressing of scoped variables allocated on the stack. 

Parameters Passed: 

R: The register used in addressing; a negative value 
means no register specified. 

OP: A pointer to the Indirect Stack entry whose 
'address is b(,ing determined. 

Local Variables: 

ALOC: The Symbol Table entry associated with the 
Indirect Stack entry. 

SCOPE: SYT SCOPE (ALOC), the CSECT the variable is 
defined in. 

IX: An index register used for addressing. 

Communicates via: 

Indirect Stack. 

References: 

The Block Definition Table, The Local Block Data area, 
addressing the Runtime Stack Frame, Section 3.1.1.3, 
Scoped Formal Parameter Addressing Forms, HAL/S-FC Compiler 
Spec. 

5-144 

[NTERMETRICS INCORPORATED' 701 CONCORD AVENUE: • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661~1840 

'. 

·1.' ... . ~ 



I 
CHECK ADDR NEST (Con't.) 

Description: 

If the Stack entry is a pointer to a task, program, 
or compool, SETUP ADCON is called to set up addressing 
and the procedure-returns. If the scope of the entry is 
INDEXNEST, the CSECT for which code is being generated, 
the procedure returns. 

If no register number has been specified, GET R is 
called to get a register to use, R. FINDAC is called to 
find an index register, IX. Then the appropriate code 
emitters are called to generate a loop, which goes back 
through the runtime stack frames until it finds a frame 
whose nes~ level equals that of the parameter. The code 
generated is: 

LHI IX, <Block ID> 
LR R, TEMP BASE 

L R,STACK_LINK(R) 

CH@ IX,NEW LOCAL BASE(R) 

Block ID is SHL(COMPUNIT ID,7)+SCOPE 
Load R with the address of the run

time stack frame 
Load R with the address of the 

preceding frame 

- - Compare the variable's scope with 

BNE -3 

the scope number of the frame. 
NEW LOCAL BASE(R} is the address 
of the Local Block Data Area. 

The USAGE of R is 2 since there is one claim on the 
register. The USAGE of IX is set to 0 to show it is no 
longer being used. opts stack entry is changed to have 
form CSYM. This indicates that it has its own base and 
displacement for addressing. The following fields of 
the entry are modified: 

FORM (OP) = CSYM 

BASE (OP) ,BACKUP~EG(OP)=R 

DISP(OP) = SYT DISP(ALOC) 

the register now contains a 
base address for OP 

5-145 

INTEHMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 



r 

CHECK CSYM INX 

Procedure 

Purpose: 

To combine the contents of an Indirect Stack entry's 
index register with the contents of a register containing 
a value used for subscript or array subscripting. 

Parameters Passed: 

OP: An Indirect Stack entry. 

R: A register containing a term that is used 
for array and subscript indexing for OPe 

Local Variables: 

None. 

Communications via: 

Indirect Stack. 

Description: 

If the register has more than one user, the 
OP's index register cannot be combined with it. 
a shift associated with its operand type and the 
option is in effect, the contents of INX(OP) and 
directly combined. 

contents of 
If OP has 
self-aligning 
R cannot be 

If it is possible to combine the register contents and OP's 
index register has been checkpointed, the contents of Op's index 
register are added to R. DROP INX is called to drop OF's 
index register since it is no longer needed. R is marked 
unrecognizable since it has been modified. 

5-146 

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETIS 02138 • (617) 661-1840 



" 

" 

* ,', ", '~r"""""'" ~.".-

_ ". _____ >-_."''-;;,;...;".,,:./-:.'-'f $,!:,!('"#<;"""~;":' -'"' - '-3'~·;-C--' •. ~.,~- ;~~-: :.-:, ~- __ I Y?, ... ~~f·, " ''": 

CHECK REMOTE 

Function 

Purpose: 

To check if an Indirect Stack entry refers to remote 
data. 

Parameters Passed: 

OP: A pointer to an Indirect Stack entry. 

Local Variables: 

None. 

Value Returned: 

True if entry refers to remote data, false otherwise. 

Description: 

The entry's form is checked to see if it has a 
corresponding Symbol Table entry using the SYMFORM array. 
If it does, the entry's flags are checked for the REMOTE 
attribute. 

5-147 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661·184tt 



r 
I 

CHECK VAC 

Procedure 

Purpose: 

To check an Indirect Stack entry for a supposed VAC, 
to see if it has been checkpointed. 

Parameters Passed: 

OP: A pointer to an Indirect Stack entry. 

R: An optional parameter to specify a register for 
the VAC. 

Local Variables: 

None. 

Communicates via: 

Indirect Stack. 

References: 

The procedures CHECKPOINT_REG, GET VAC. 

Description: 

If the form of the stack entry is WQRK, then the VAC 
has been checkpointed. If R is not specified, FINDAC is 
called to find a new indexing register, REG (OP) , for the VAC. 
EMIT BY MODE is called to load the register with the contents 
of the VAC. The usage of REG(OP) is set to 2 to show there is 
a claim on the register; the DEL Add of OP is decremented by 
2 to show there is one less claim on the WORD entry's Storage 
Descriptor Stack entry. DROPSAVE is called to see if the 
S~orage Descriptor Stack entry is still necessary. The form 
oi OF is changed back to VAC. 

5-148 

REPRODUCIBlLITY OF THE 
()RIGL>\fAL PAGE IS POOR 

'l'. ' .. , , 
7' 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTSD2138 • _C617) 661-1840 



) 
f 
r 
~ , 

I~ 
i 
: 

CHECKPOINT_REG 

Procedure 

Purpose: 

To save the contents of a register in a temporary 
location, and to modify Indirect Stack Entries refering 
to it. 

Parameters Passed: 

R: The register to be saved. 

Local Variables: 

RTYPE: The operand type contained in the register. 

PTR: A pointer to an Indirect Stack Entry set up 
to point to the Storage Desdriptor Stack entry 
for the register contents. 

I: A do loop temporary. 

Communicates via: 

Changes the Indirect Stack. 

Message Condition: 

DIAGNOSTICS. 

Description: 

The procedure checks USAGE(R) to see if it is worth 
saving the contents of the register. If it is, it calls 
GETFREESPACE to get storage for the register in the Runtime 
Stack. PTR is set to the Indirect Stack Entry returned 
by GETFREESPACE. A line of code to store the contents 
of the register in Temporary Storage is provided by calling 
EMIT BY MODE. 

5-149 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617)661-1840 



:C-·~-I~~~~~--· . 
L 

CHECKPOINT REG (Con't.) 

The WORK USAGE of the Storage Descriptor Stack entry 

describing the temporary storage is set to zero. CHECKPOINT 

REG is going to check all allocated Indirect Stack entries. -For 

those whose STACK PTR is negative, (if they use the register) 

the entries will be modified to reflect the storing of the 

register, and WORK USAGE(LOC(PTR) and DEL(PTR) are used 

to keep track of the use of the stored entry. There 

are three ways that an Indirect Stac~ entry, I, may use 

the register. 

1. FORM (I) = VAC and REG (I) = R 

In this case, the form of the entry is changed to 

WORK, and the r~maining fields of I are modified 

to agree with PTR's fields. WORK_USAGE(LOC(PTR» 

is incremented. 

2. INX (I) = R 

In this case INX(I) is set to -PTR to indicate the 

register's contents are stored. If this is the 

first use of the register as an index, indicated by 

DEL (PTR) = 0, WORK USAGE(LOC(PTR» is incremented 

to show another usage for the Temporary Storage. 

DEL (PTR) is incremented by two to show another 

use of the register, it corresponds to USAGE(R). 

3. FORM (I) = CSYM and BACKUP_REG(I) = R 

In this case, BASE(I) and BACKUP REG (I) are set to 

-PTR to indicate the register's contents are stored. 

Since the CSYM is the only user of the register, 

DEL (PTR) is set to two. WORK USAGE(LOC(PTR» is 

incremented to show another usage of Temporary 

Storage. 

After modifying the relevant Indirect Stack entries, 

DEL (PTR) is checked. If DEL(PTR)=O, the stack entry, PTR, 

is not being used, and is returned. Finally, the register 

is cleared, and if the contents of the register were DSCALAR, 

R+l is cleared as well. 

5--150 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 

1 



CHECKSIZE 

Procedure 

Errors Detected: 

BS 105: Data storage capacity exceeded (Severity 1). 

BS 120: Data storage capacity exceeded (Severity 2). 
Purpose: 

To check for too much storage allocation in a runtime stack frame. 

Parameters Passed: 

NUMBER: The size of the storage allocated. 

SEVERITY: A number used to determine which error 
to report. 

Local Variables: 

None. 

Communicates via: 

Calling the appropriate error routine if necessary. 

Description: 

If NUMBER> 200,000, the maximum bytes of storage, 
the error is reported to ERRORS. 

5-151 

,j 
~ 
1 

j 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 66H84(J 

"",t~ 



CLEAR R 

Procedure 

Purpose: 

To clear the Register Table entri~s associated 
with a given register. 

Parameters Passed: 

R: A register number. 

Local Variables: 

None. 

Communicates via: 

The Register Table. 

Description: 

This procedure sets all Register Table fields with 
index R to zero. 

5-152 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 

~_1!J!!&JiS& L L 11 1 ·'W ? ?' srs 



f 

! "'l'~" ~·'~·-··7--~-·~~·.·-~·,·~C'~~.~~~,. "~-~'~'~~"~'~' .... "-~~""C ""'"_"_~~"""""'k=. "U'"'Z~r""' .n .•• - ..... ".n.. "'1···· .. 
:~'~~@:'~'''''''''''~''~:''''"":'E''"'.''':'''''::''.''''':C;£''':'''-': ..•. ~ 'cO' ·=c· .... ",,""',c:c;=· .. c::.·.'C ... ·,,=:OO·:"'=.c:="-c •.. ,":Y.: •. :.'·=c .. ::.:C',,,,:'" C"::":""-"':"',': ..•. ' •. " •. ,.:" •.• ,,, .... '.c .. nr::-:"'.''i.:··.·.~'",'.~ "c"~ 

CLEAR REGS 

Procedure 

Purpose: 

To clear the Register Table entries for all registers. 

Parameters Passed: 

None. 

Local Variables: 

I:' Do Loop temporary. 

Communicates via: 

Register Table. 

Description: 

CLEAR REGS calls CLEAR REG for each register 
to clear its Register Table-entries. 

5-153 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840 

1 
1 

1 



I, 

C" 

CS 

Function 

purpose: 

To determine the core requirements of a character 
string. 

Parameters Passed: 

LEN: The size of the string. 

Local Variables: 

None. 

Value Returned: 

SHR(LEN,l)+LEN & 1). 

Description: 

If LEN is even, the value returned is 1/2 LEN. 

If LEN is odd, the value returned is 1/2(LEN+l). 

5-154 

", ~ l' J...~), 

},; 

INTERMETRiCS INOORPORATED • 701 CONOORD AVENUE' OAMBRIDGE, MASSAOHUSETTS 02138 • (617) 661-1840 

I 

I 
'" I " 

;1 
ti 
'~ 

ti 
!"jIi ,iI 

I 
~ ,,' 
~ 
'~ 
i~ 
~ 

:1 
,~ '. :1: 
{~ 
it . ... 
~~ 

:y 
i;; 

~ ;~ 
t~ 
~'i :5 , 
r~ 

~it 
J 

;~ 



t 

DECODEPIP 

Procedure 

Purpose: 

To decode a HALMAT operand. 

Parameters Passed: 

OP: The number of the operand word in the HALMAT 
instruction which is to be decoded. 

N: The entry in the TAG2 and T,AG3 arrays that 
is to be used. 

Communicates via: 

Global variables for the HALMAT operand word fields. 

References: 

Appendix AI, HAL/S-360 Compiler Spec. 

Description: 

DECODEPIP takes the opth operand word following the 
current HALMAT operator (pointed to by CTR) and decodes 
it as follows: 

OPI 

16 

where: 

OPl: operand field 

TAGl: qualifier field 
TAG2,TAG3: tag fields 

TAG3 I TAGI frAG2 11 I 
843 1 

TAG2 and TAG3 are arrayed variables so that informa
tion about several HALMAT operand words may be retained. 
DECODEPIP uses the array entry specified by N. 

If the HALMAT compiler option is in effect, DECODEPIP 
outputs the operand word in the following format: 

OPl(TAGl) TAG3, TAG2: BLOCK#, (CTR + OP) 

5-155 

\ INTEFlMETRICS INCORPORATED' 7Q1 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138' ,'17) 661-1840 
\ 

1 



I ' 
I 

I 

DECODEPOP 

Procedure 

Purpose: 

To decode a HALMAT operator word. 

Parameters Passed: 

CTR: A pointer to the HAL MAT operator to be decoded. 

Communicates via: 

Global variables for the HALMAT operator word fields. 

References: 

Appendix A.l, HAL/S-360 Compiler Spec. 

Description: 

DECODEPOP takes the HALMAT operator pointed to by 
CTR and decodes it as follows: 

TAG NUMOP 

8 7 4 8 3 1 

CLASS: The operator class 

NUMOP: Number of operands 
TAG: Tag field 

COP~: pseudo-optimizer tag field 

IF CLASS=O, SUBCODE=O 
OPCODE is all 8 bits of its field. 

otherwise, SUBCODE: 
OPCODE: 

first 3 bits 
last 5 bits 

SUBCODE and OPCODE are used for classifying the 
operators. 

If the HALMAT compiler option is in effect, DECODEPOP 
outputs the operator word in the following format: 

SUBCODE/OPCODE(NUMOP) TAG, COPT: BLOCK#, CTR 

5-156 

l~ 
!iI 

% 
" 
~ 
fi j. 
~ 
" .~ 

~~ 
~ 
~ 
'l: 
:k 
t 
~ 
'A 
,~ 
!,~1 

~~i 
, , 
;~ 
,~ 

'\ ;! 
:~ 

1 
'! 

" 

• 
j 

INTERMETRfCS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661~i840 '" 

-
i , 



I 
! 
do 

DEFINE LABEL 

Procedure 

Purpose: 

To define the value of a generated statement label. 

Parameters Passed: 

PTR: A pointer to an Indirect Stack entry of form 
LBL, FLNO. 

FLAG: Indicates user defined statement labels unreachable 
by GO TO statements, and not marking update blocks, 
or otherwise unreachable label. 

Local Variables: 

CODE: The intermediate code opcode for the label. 

Communicates via: 

Calling SET LABEL. 

Message Conditions: 

ASSEMBLER CODE. 

References: 

Appendix C, Section on Label Definition in HAL/S-360 
Compiler Spec. SYT DIMS field of the Symbol Table. 

Description: 

If the stack entry represents a user defined statement 
label, its type is checked by examining SYT DIMS. FLAG is 
set if the label is unreachable by GO TO , and does not define 
an Update Block to indicate to SET LABEL that the registers 
do not have to be cleared. SET LABEL is called with the 
following parameters: 

VAL (PTR) The phase 2 generated statement number associated 
wi th the label. 

FLAG described above. 
1 indicating that the label is not a phase 2 

generated label. 

CODE is the intermediate code opcode for the label. It 
will be ULBL if FORM(PTR) is LBL, and 'LBL if FORM(PTR) is 
FLNO. EMITC emits the output code indicating the definition 
of the label. The stack entry is returned since it is no 
longer necessary. 

5-157 
INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 

- '. ~ , -._._, .... --"- --- -. , -,~~ 

, .. .y~~~~~:~~·~::~~~~._c~,_~.~ :.~~:":,~~.~~, ___ :.~~::=;;S:--=~:pe~'\:~:1··~·:·::':.;:~~. r'x .~~~~., ~,- .~L~.: . . . PC .< '. ~~. 



DESC 

Function 

Purpose: 

To create a descriptor out of a pointer. The argument 
passed to DESC is in the XPL descriptor format; however, in 
the calling routine it is not of type CHARACTER. DESC is of 
type CHARACTER so DESC (ptr) returns exactly what it was passed 
but the XPL compiler now understands that it is a string. 

Parameters Passed: 

D: A character string descriptor which is not of 
type CHARACTER. 

Local Variables: 

None. 

Value Returned: 

The same character string descriptor. 

5-158 

,I; 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 



DIMFIX 

Procedure 

Purpose: 

To determine the size of Indirect Stack entries 
and whether they are arrayed. 

Parameters Passed: 

PTR: A pointer to an Indirect Stack entry. 

OPl: A pointer to the Symbol Table entry 
associated with PTR. 

Local Variables: 

None. 

Communicates via: 

The global variables AREASAVE, ARRAYNESS and the 
COpy Indirect Stack field. 

Description: 

This routine sets ARRAYNESS to the result of 
GETARRAY#(OPl), a procedure which returns information 
about the number of dimensions of a Symbol Table entry, 
and calls SET_AREA (PTR) to determine the size of the 
entry. 

In addition, it sets cOPY(PTR) to the number of 
array dimensions of a stack entry. For most Indirect 
Stack Entries, this is ARRAYNESS. For terminal nodes 
of arrayed structures that also possess arrayness, 
ARRAYNESS only indicates the arrayness of the terminal 
node. COpy (PTR) must be set to ARRAYNESS+l to reflect 
the extra dimension of arrayness induced by the structure 
itself. 

5-159 

~ 'INTERMETRICS INCORPORATED· 701 CONCORD AVENUE: • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 
, 

l 
\ 

. , 
, I 



····I~-~~'--~~··~· ~--~~-~.~~-., .. 
, 

DO:....ASSIGNMENT 

Procedure 

purpose: 

Generate code to store HALMAT operand 1 into operands 2 
through NUMOP. The left hand sides are first sorted by type 
and then assignment code is generated for each type in turn. 
The order in which types are chosen is determined by ASSIGN 

TYPES. 

In the special case that there is only one left hand 
side, that the left hand sjde is a halfword, and the right 
hand side is a literal, an attempt is made to optimize by 
generating special purpose code. 

Local variables: 

ASSIGNC: number of types of left sides 

ASSIGNS: number of assignments processed 

ASSIGNT: temporary 

PROTECT RIGHTOP: true unless this is the last 
assignment to be generated. This is used 
to prevent routines from destroying the 
value before all assignments have been 
made. 

5-160 

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETrS 02138 • (617) 661-1840 



DOC LOSE 

Procedure 

Purpose: 

To close outstanding array do loops. 

Parameters Passed: 

None. 

Local Variables: 

PTR: Pointer to Indirect Stack entries. 

LITOP: Never referenced. 

Communicates via: 

Array Do Loop Stack, code emitting, ADOPTR. 

References: 

The HALMAT ADLP, ALPE, IDLP operators, the Array 
DO Loop and Array Reference Stack, the procedures 
CHECKPOINT REG, DOOPEN, GENERATE (ADLP, IDLP, DLPE cases), 
SEction 3.1.7 HALlS FC Compiler Spec. 

Description: 

If there are any outstanding array do loops, 
DOCOPY(CALL LEVEL) > 0, DOC LOSE closes them according 
to DOFORM(CALL_LEVEL). 

I. DOFORM (CALL_LEVEL) =0: Was set up for HALMAT ADLP para
meters, except for simply array 
parameters. 

Each do loop outstanding at the call level is closed 
in t;he following manner. PTR is set to DOINDEX (ADOPTR) . 
ADOPTR is the index of the Array Do Loop Stack entries for 
the loop to be closed; DOINDEX(ADOPTR) is the pointer to 
the Indirect Stack entry for the register, TMP, used as 
the Do loop index. TMP is BACKUP REG (PTR) rather than 
REG (PTR) because if the register nad been checkpointed, 
the value of REG wouid be set to -1 but BACKUP REG 
remains unchanged. I~ the stack entry's form 1s WORK, 
the register has been checkpointed. The procedure 
CHECKPOINT REG(TMP) is called to clear the register and 
code is emrtted to load it with its former value. 
DROPTEMP(LOC(TMP» is called to drop the Temporary 
storage used for the register's contents, if necessary. 

5-161 

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840 

j 

j 

1 
1 , 
1 

1 
1 



DOCLOSE (Con't.) 

Code is emitted to add DO STEP (ADOPTR) , the increment, 
to the index register. The zeroeth Indirect Stack entry is 
given FORM=AIDX and LOC=PTR so that NEW USAGE (0) can be called 
to mark all users of the index register-unrecognizable. If 
DOSTEP=l, the special case BIX instruction is generated, which 
combines the increment and test functions. 

PTR is now set to the stack entry for the final value, 
DORANGE(ADOPTR). Code is emitted for comparing the contents 
of TMP or PTR according to whether the final value is or known 
array size or an unknown array size. If the size is unknwon 
CHECK ADDRS NEST must be called to ch~ck the scoping of the 
variable before emitting the code. TMP is no longer needed 
so its usage is set to zero. The stack entry for the final 
value is no longer needed so it is returned. EMITBFW is 
called to emit a conditional branch to the label set up in 
DOOPEN marking the beginning of the code within the loop. 

ADOPTR is decremented and the next array do loop is closed. 
This process continues until ADOPTR equals SDOPTR(CALL LEVEL) , 
the value ~f ADOPTR at the beginning of the reference.- The number 
of Do Loops closed may be greater than the number opened at a call 
level if arrayness is pushed from an outer to inner level. 

II. DOFORM (CALL_LEVEL) =l: IDLP processing - Static 
Initialization. 

In the static initialization case, no code is actually 
generated for array do loops, rather DOCLOSE runs through 
all the possible values of the array indices. For each set 
of values, the DOBLK and DOCTR values are used to position 
the HALMAT to the IDLP operator. NEXTCODE is called to 
decode the following HALMAT instruction and control goes 
to RESTART, the part of the main program that calls 
GENERATE. The HALMAT following the IDLP operator is decoded 
with the new index values; when the DLPE operator is reached. 
DOCLOSE is called again. This continues until all the array 
indices have been gone through. 

III. DOFORM(CALL_LEVEL)=2: Simply array parameters. 

No do loops are necessary so DOCLOSE does nothing. 
In the case of-simple structure array parameters 
with arrayness, STRUCTFIX calls DOOPEN and DOOPEN 
changes DOFORM to o. 

After all the do loops are closed, DOCOPY is set 
to zero to reflect the end of the array reference. 

5-162 

REPRODUCIBiLITY O~-\ TIll!! 
ORIGINAL PAGE IS POOR 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 



C'-.. ,----.~-.~ •• --.,..... ,.~.,....-__c<~-._ """--C--~-_...,_~··~~"_,..,_ _______ ·~:·=.i*"'"_, ~~ 

DOOPEN 

Procedure 

Errors Detected: 

BS 119: Exceeded arrayness stack size. 

purpose: 

To set up a do loop to process a dimension of 

arrayness. 

Parameters Passed: 

START: The starting value of the do loop index. 

STEP: The step by which the index is incremented. 

STOP: The final value of the Do LooP index if 
array size is known, a negative pointer to 
a Symbol Table entry if the array size is 

unknown. 

~-, Local Variables: 
PTR: A pointer to an Indirect Stack entry used for a .~ 

register as an index variable for the looP that 

is set up. 

communicates via: 

The Array Do Loop Stack. 

References! 
The HAL~~T ADLP operator, the Array Do Loop Stack, the 

procedure DOCLOSE, Section 3.1.7 HAL/S-FC Compiler Spec. 

JNTERMETRICS 1NCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSEITS 02138 • (617) 661-1840 .' 
,,'.','. ,~'-- .. '",-. "'.......,' ' " , . 1 -= $ :# if g,u:;;:eU:i, '!':f.!£:;~~~_,~~~.=,:!~!"*~:!!~1.n~,!.!*'-""j;.w1 

5-163 



DOOPEN (Con't.) 

Description: 

ADOPTR, the pointer to the last allocated Array Do 
Loop stack entry is incremented. Several fields associated 
with the new entry are assigned. DOSTEP is set to step. 
GETSTATNO is called to get a statement number to assign 
to DOLABEL. This statement number will be used to label 
the beginning of the code within the Loop. GET VAC(-l) 
is called to get a register that can be used as-an index, 
DOINDEX and PTR are assigned to this value. BACKUP REG(PTR) 
is set to REG (PTR) to ensure that the value of the -
number of the register used as an index is saved if the 
register is checkpointed, so that the correct code may be 
generated~ 

DORANGE(ADOPTR) is set toa pointer for an Indirect 
Stack entry for the final loop value determined by 
SET ARRAY SIZE if the array size is unknown, and GET INTEGER 
LITERAL if it is known. 

The procedure DOCLOSE takes care of the remaining 
code generation for the loop including incrementing the 
index and checking to see if it has attained its final 
value. 

Before calling GET VAC, RESUME LOCCTR(NARGINDEX) is 
called. This is to ensure that the-proper location counter 
is in use; this call is needed because if initialization 
is in progress, the location counter will be using the 
data CSECT, DATABASE. Once an index register, TMP, has 
been obtained, LOAD NUM is called to load it with a 
starting value. SET LABEL(DOLABEL(ADOPTR) ,1) is called 
to set the label marking the beginning of the code within 
the loop. The flag of 1 indicates that the registers do 
not have to be cle~red since there arena external GO TOs 
to the label. 

TMP's Register Table entry is updated as follows: 

R CONTENTS = AIDX an array index 

USAGE = 3 usage is known 

R VAR = PTR the stack entry descri.bing it 

R TYPE = INTEGER 

5-164 1 
. INTERMETRICS INCORPORATED • 701CONC~RD~VENUE • CAMBRIDGE, MASS~CH~~ :.~6::,,~~~-1:40~ 



1" 

DROP INX 

Procedure 

Purpose: 

To drop the index register used by an Indirect Stack 
entry. 

Parameters passed:: 

OP: A pointer, to an Indirect Stack entry. 

Local Variables: 

None. 

Communicates via: 

Indirect Stack. 

Description: 

OFF INX(INX(OP» is called to decrement the usage of 
INX (OP) • - INX (OP) is set to zero to show ther,e is no 
index register. 

5 .... 165 

)1 

INTERMETRICSINCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETIS 02138 • (617) 661-1840 

._ .. _ Iin,':iIi 



'. 

, ..... ~ ~,~_, ___ -.-' ~_> "_k"""~~"'~' ._, -:-- ~,~ . 

. [,':- _, ___ ~,~~~~-.::~~.:;:~ ... ~~~~_,~~:~~.~~',', •.....• '"'~ ~.'""--.=O:.2 •• =_.~.:_ 

DROP VAC 

Procedure 

Purpose: 

To drop an Indirect Stack entry set up as a register temporary. 

Parameters Passed:' 

PTR: A pointer to the Indirect Stack entry. 
Local Variables: 

None. 

Communicates via: 

Indirect Stack, Register Table. 

Descrip'tion: 

If the form of the entry is VAC, the usage of its register is decremented, and RETURN STACK ENTRY is called to return the entry. . - -

5-166 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETIS 02138 • (617) 661-1840 

'1 
,\ 

" 
1 

I 

1 
1 
1 
i 
'1 



!~~ .. .. 

DROPFREESPACE 

Procedure 

Purpose: 

To drop temporary storage space saved in the 
SAVEPOINT array. 

Parameters Passed: 

None. 

Local Variables: 

I: A Do Loop temporary. 

Communicates via: 

SAVEPTR, calling DROPTEMP to modify the Storage 
Descriptor Stack. 

References: 

The procedure DROPSAVE. 

Description: 

DROPFREESPACE calls DROPTEMP to drop all undropped 
Storage Descriptor Stack entries saved in the SAVEPOINT 
array. If SAVEPOINT is zero, the entry has been dropped 
by DROPOUT. SAVEPTR is set to zero to indicate there 
are no saved entries to be dropped. 

5-167 

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETIS 02138 • (617) 661-1840 

" 

, , 
i 

: ~~ 



1--

~'F --:" 

DROPLIST 

Procedure 

Purpose: 

To drop temporary space saved due to arrayness. 

Parameters Passed: 

LEVEL: The level of array reference. 

Local Variables: 

PTR: A pointer used for chaining through the 
ARRAYPOINT entries pointed to by SDOTEMP(LEVEL). 

Communicates via: 

Calling DROPTEMP to change the Storage Descriptor 
Stack. 

References: 

The procedures DROPSAVE, FREE TEMPORARY, The 
Storage Descriptor and Array Reference Stacks. 

Description: 

SDOTEMP(LEVEL) points to the beginning of a linked 
list of Storage Descriptor Stack entries used for processing 
array references that are no longer needed. ARRAYPOINT of 
each list member points to the next member; ARRAYPOINT of 
the last entry is zero. DROPLIST goes down the linked list 
calling DROPTEMP for each list member. It leaves SDOTEMP(LEVEL) 
equal to zero indicating that there are no unneeded temporary 
storage entries left at that call level. 

5-168 

1 
:1 
'j 
1 
.~ 

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 

W5i.IU _...J 



DROPOUT 

Procedure 

Purpose: 

To force the immediate release of a dropped 
temporary storage entry. 

Parameters Passed: 

ENTRY: A pointer to an Indirec't Stack Entry. 

Local Variables: 

I: . A do loop temporary. 

Communicates via: 

Calling DROPTEMP to change the Storage Descriptor 
Stack. 

References: 

SAVEPOINT, the procedure DROPSAVE. 

Description: 

ENTRY is checked to see that its form is WORK; if 
it is not, it does not represent a Storage Descriptor 
Stack Entry. If its form is WORK, then ENTRY is set 
to LOC(ENTRY) , the pointer to the Storage Descriptor 
Stack entry. SAVEPOINT, the array of entries to be 
dropped is searched to see whether it has been dropped 
already. If it has not been dropped, DROPTEMP is called 
to drop the entry. The SAVEPOINT entry that pointed to 
ENTRY is set to zero to show that SAVEPOINT entry has been 
dropped when DROPFREESPACE is called. 

5-169 

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 6614840 



I. 

·1 
; 

rr I 

DROP SAVE 

Procedure 

Purpose: 

To determine if a Storage Descriptor Stack entry 

is no longer needed, and if so, to save details of the 

entry. 

Parameters Passed: 

ENTRY: A pointer to an Indirect Stack entry. 

Local Variables: 

I, J: Temporary variables. 

Communicates via: 

The arrays SAVEPOINT, ARRAYPOINT, SDOTEMP. 

Description: 

The Indirect Stack entry's form is checked since 

only WORK entries represent Storage Descriptor Stack 

entries. If the entry's form is WORK, a pointer to the 

Storage Descriptor Stack entry is obtained from the 

Indirect Stack entry's LOC field. The usage of the 

Storage Descriptor stack entry, WORK USAGE is decremented. 

If the entry is no longer needed, WORK USAGE=O, details 

identifying the entry are saved in one-of two places: 

1) A linked list pointed to by SDOTEMP of any currently 

nested call level. 

If an array reference is being processed at any of the 

current levels of nesting and it is a simple ar.rayed 

parameter reference, or the reference occurred after 

the storage was allocated, the SDOTEHP linked list is 

used. This ensures the storage will not be freed until 

the reference is completed. The linked list pointed 

to by SDOTEMP and linked by the member's ARRAYPOINT 

fields is searched for the entry since FREE TEMPORARY 

may have added i't to the list. If the entry is not 

5 ... 170 

-; 
1; 

t 
:.':l····~·~ ..• ···1'·.',·· 

,l 

.:.: 

. ~tl . . 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAM8RIDGE, MASSACHUSETrS 02138 • (.617) 661-1840 

·~-.:..--......,=-==-.,o.","",""""';n" ,..:rp;;;;:;;;'a!:,'!ii;,;;;;;;;;;;r;;·,moF"VW ';~T;'""" ...... : .. ;'~~,~.,;,..~...,~~~., .. "".,.! ~:~~~ 



. , 

I· 

"~ .... 
·t .. 

DROPSAVE (Con't.) 

on the list, it is added to the beginning of the list, 
and SDOTEMP will point to it. 

2) The SAVEPOINT array 

The SAVEPOINT array is searched for the entry. If the 
entry is not there, SAVEPTR is incremented to the first 
free SAVEPOINT entry. The SAVEPOINT entry will contain 
a pointer to the Storage Descriptor Stack entry. The 
SAVEPOINT entries are allocated consecutively and dropped 
after each HALlS source statement. 

This'approach enables the compiler to indicate that a 
temporary will not be needed after the current operation and 
to actually deallocate the space after code has been generated 
to perform the operation. 

5-171 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1,840 



DROPTEMP 

Procedure 

Purpose: 

To release a Storage Descriptor Stack entry. 

Pa+ameters Passed: 

ENTRY: A pointer to a Storage Descriptor Stack 
entry. 

Local Variables: 

None. 

Communicates via: 

Storage Descriptor Stack. 

References: 

Storage Descriptor Stack, the procedure GETFREESPACE. 

Description: 

The procedure searches the linked list of allocated 
Storage Descriptor Stack entries formed by the entry's 
POINT field until it finds the entry whose POINT field is 
ENTRY. To do this, the procedure uses two temporary 
variables, IX1 and IX2, providing pointers to a member 
of the list and to the member it is linked to. Two pointers 
are necessary since a link may be removed from the middle of 
the chain. Chaining continues until the second pointer points 
to ENTRY. Then UPPER(ENTRY) is set to -1 to show the entry 
has been deallocated. The POINT field of the first pointer 
is set to POINT(ENTRY) so that ENTRY is removed from the 
linked list without breaking the chain. 

5-172 

INTr RMEH11CS lC:)RPORATED' 701 Ct)N(':ORD AVEr--JU!:: . CAMBRIDGE, MASSACHUSETTS 02138 ')1') 661·18,1 . 

j 
1 
l 

j 
~ 

l 
I 
'I 



-r 
I···",·t 

Procedure 

Purpose: 

'1'0 prepare for setting up array do loops from 
HALMAT, and to call DOOPEN to set them up. 

Parameters Passed: 

LEVEL: The Array Reference Level. 

Local Variables: 

SAVCTR: A variable used to temporarily save the 
pointer to the current HALMAT operator. 

Communicates via: 

Array Reference Stacks, Calling DOOPEN to set up 
array do loops. 

References: 

Array Do Loop Declarations, the HALMAT ADLP operator. 

Description: 

SAVCTR saves the value of CTR, the current HALMAT 
operator, so that CTR can take on the value of DOCTR(LEVEL) , 
the pointer to the HALMAT ADLP operator for the array 
reference. Saving CTR is unnecessary when the procedure 
is called from GENERATE, but is necessary when it is called 
from STRUCTFIX xince their CTR is not the same as DOCTR(DEVEL). 

5-173 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETIS 02138 • (617) 661-1840 

I 



EMIT ARRAY DO (Con't.) 

After calling SAVE REGS to save the necessary registers, 
a do loop is opened for-each dimension of arrayn~ss. 
There are DOCOPY(CALL LEVEL) dimensions. Before opening 
the do loop, all registers in use much be checkpointed and the 
HALMAT operand word for the arr.ay dimension decoded by 
ca.lling CHECKPOINT_REG and DECODEPIP. A HALMAT ADLP 
operand word has the form shown below: 

OP1 1%/1 /%-:J TAGI ~111 
16 8 4 3 1 

TAG1 i:=; IMD when array size is known: OP1 gives value. 

ASIZ when array size is unknown: OP1 gives a 
symbol table reference. 

EMIT ARRAY DO calls DOOPEN with parameters indicating 
an index starting at 1, with a step of 1. The third 
parameter indicates the end condition which is OP1 if 
TAG1=IMD, and -OP1 if TAG1=ASIZ. 

EMIT ARRAY DO sets DOFORM (LEVEL) to ze:r.o to inc.icate 
that array do loops have been set up. It restores the 
value of CTR before returning. 

5-174 

If\JTFRMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-18-10 



",.., .. 

F ...... 
:-"':7 

Te." . '~~'~~I"""""'~'~'~" 
.. ~; .,,~ . -:,;.:.....,., 

EMIT CARD 
. -

Procedure 

Purpose: 

To actually emit a card for the linkage editor. 

Notice that CARD IMAGE and COLUMN are really the same 
array. On initial entry, a descriptor is built in DUMMY CHAR 
so that COLUMN can be manipulated as a character string.- All, 
other times, the current contents of COLUMN are output unless 
either no data is on the card or the type of card has not 
been set (i.e. CARDI~~GE=O). After outputting the card, the 
array is overwritten with blanks, the identification field 
(CARDIMAGE (19» is set to "1**2", the card count is bumped and 
inserted after the 1**2. 

5-175 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETIS 02138 • (617) 661-1840 



r ' 

f~ 

EMIT ESD CARDS 

Purpose: 

To produce SYM and ESD cards. The SYM cards are 
produced using EMIT SYM CARDS. The ESD cards are then 
emitted three ESDs to a card (DO I = 1 TO (ESD MAX+2)/3) 
in CARD IMAGE columns 5, 9, and 13 (DO J = 5 TO-13 BY 4). 
Since .the actual character string (not a pointer) must 
be inserted, INLINE code is used to copy the string. 

Reference: 

AP-IOI Support Software/SDL lCD, Chapter 2. 

5-176 

INTERMETRICS INCORPORATED,' 701 COI ... CORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 

" 

1 
1 
J 

1 
I 
'1 
! 
~ 
i 

1 
1 
j 
1 
j 

-J 
1 
'l 
1 

1 
l 
j 

J 
] 



I, 

EMIT EVENT EXPRESSION 

Procedure 

Purpose: 

Build the SVC argument list describing an event 
expression. All necessary information has already been 
inserted in EV EXP (by STACK EVENT) and in EV OP (by 
SET_EVENT_OPERAND) • -

5-177 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661~1840 

i~ 

. , 



Procedure 

Purpose: 

To emit SYM cards. 

Example:! 

Assume: 

A. Compilation Unit Name is CO~P_UNIT, a COMSUB 
B. Versio~ humber is 20 
C. Stack size is 100 
D. Refer~nces are made to COMSUBS EXTI o.f Version 10, 

and EXT2 of Version 100 
E. Local vari~bles are A and B 

, 

The FC compiler will produce SYM car<;1s for: 

NAIlE TYPE 

1. #CCOMPUN CSECT 

2. STACK DSECT 

3. STACKEND VAR 

4. HALS/FC DSECT 

ADDRESS 

o 

o 

100 

20 

COMMENT 

De.f ine s CSECT 

Address of ~OO is stack 
size 

Invalid label, HALS/FC 
or HALS/360 used to 
indicate beginning of 
version data. Address 
of HALS/FC is the version 
of COMP UNIT 

5. EXTI PSECT 10 Version of EXTl 

6. EXT2 DSECT 100 Version of EXT2 

7. HALS/END DSECT 

'~'-l/ J 

INERMETRIC~ i\j(;')RPO"~ATLD'7:)i .m •. :OF{i),VfNUf· c::,~t';H"'i.JE, ~'/V<;ACHUSFTTS (l~L1i ,,'il lio;·1h' I 

-' _< J. £\is .t a_h-



r! . I 
\ 

-
EMIT SYM CARDS (Con It.) 

NAME TYPE ADDRESS COMMENT 

8. # DCOMPUN CSECT 2010 

9. SPOFF turn off storage protect 
10. A VAR 2010 

II. B VAR 2012 

If the compilation unit contains nested scopes, a triplet of cards (similar to cards 1-3) will be produced after card 7 for each such CSECT. If the compilation unit is a COMPOOL, a copy of card 1 is inserted immediately before card 8. Notice that all non-stack allocated data is described in one long list after card 9. 

The 360 compiler does not produce cards 2 and 3. Tne name on card 4 is changed to HALS/360. Cards 8-11 are not proquGed. 

The information between HALS/FC (or HALS/360) DSECTS and the HALS/END can be generated only by the compiler; therefore, no template checking of assembly routines can be accomplished. 
Local Procedures: 

EMIT SYM CARD 

EMIT SYM 

EMIT SYM DATA 

Local Variables: 

I: ESD counter 

outputs the current card and initializes the 
for next one 
inserts symbolic information into the current SYM card 
inserts numeric data into the current SYM card 

J: current column on card 
B: procedure number counter 
P: pointer to symbol table entry for variable 
T: type of variable. 

Reference: 

HAL/S-SDL ICD, Chapter 2. 

5-179 
INTl?RMETRICS INCORPORATED· 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 

:f 
•. 
" 1:: 

1 



, . 

EMIT WHILE TEST 

Procedure 

Purpose: 

To emit the necessary branch instruction or rnod~fy 
the branch address of an existing instruction so as 
to perform a WHILE/UNTIL test. 

Parameters Passed: 

OP: An indirect stack entry for the "condition" to 
be tested. 

LBL:.·Branch address 

Communicates via: 

Generating code and LOCATION array. 

Description: 

If this is UNTIL, true and false conditions are inverted. 
If OP is a RELATIONAL then generate branch instruction using 
condition in REG (OP) • If OP is not a relationa~ then the necessary 
branch instructions have already been generated in evaluating 
an expression FIX INTLBL is used to set the true branch 
to jump to LBL and SET LABEL is used to define the label 
point for the false branch to be the current location yielding 
the effect of falling through. 

In all cases, return the stack entry for OP. 

5-:80 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840" 

.4t 
_idi!IR,~ .. 'tl!9#',~\idIiMV_-.,... --:---::7:".,.':'"": .. . ':::_·.:-....':'"":.-::; .• ,;:-::;=..~~~~,;:···,-y-~·-;:.::::=~::;;;'"=:;~,.:;:-~~~ .. £i~ .•• ~.rrdw-" m';'wr·'·~u.~:·~· ~>T :~ ••• ~."!I_~$I!II!'.!t-I!!!II::"" ... !IIilt JRZ _11IIIIIIII11IIIIIIII_.' .'w.c.' 1ll1ii11! _'iII!I"I3Il11i __ ""rlll!!ll, f<!III •• ' II' 



EMITSTRING 

It Procedure 

Purpose: 

To emit a string into the intermediate code file. 
The routine is complicated because a normal string assig
ment only copies a pointer, not the actual string; there
fore, INLINE code must be used to actually copy the string. 
In the FC compiler, a translation is made from EBCDIC to 
DED code. 

Parameters: 

STRING: The literal to be emitted. 

ILEN: The maximum length that the string can attain. 
This is necessary when EMITSTR~NG is used to 
perform static initialization. 

5-181 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661~1840 



ENTER CHAR LIT 
I _ -

Function 

Purpose: 

To enter a literal string into LIT CHAR. This routine 
is necessary because a normalXPL character string assignment 
moves descriptors, not strings. LIT CHAR must actually 
contain'the string~ If not, when string storage is compacti .... 
fied, strings pointed to from LIT pages not in core would be 
garbage collected. 

Parameters: 

STR: a character string to be moved to LIT CHAR. 

Returns: a pointer in.to LIT CHAR. 

. 5--182 

", a 
:J: 

1· 

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661~1840 



EXPONENTIAL 

~ Proced~re 

r' 

Purpose: 

To generate code for AB. If B is a positive integer 
constant and DATATYPE(A) is scalar then special purpose 
code is emitted to do successive multiplies; otherwise, 
the operands are forced into accumulators and a library 
call is generated. 

Parameters: 

OPCODE: opcode part of HALMAT instruction. 

Local Variables: 

? 
R: register containing A' where? is a power of 2 

WRK: register containing partial result 

I: what remains of B after some multiplications 
have been generated 

EXP RCLASS: A mapping from TYPE to the register 
type required for exponentiating TYPE. 

5-183 

f INTERMETRICS INCORPORATED- 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETIS 02138 - (617) 661-1840 
~. 

i 
t 

1 
t 
f 
et 

~ 
~~ j 

" 

I 

1 

j 
i 
~ 

1 
~ 

1 
I 
1 
! 
j 
l 



FIX INTLBL 

Procedure 

Purpose: 

To generate effect of identifying an internal 
flow label with a phase 2 statement number. 

Parameters Passed: 

LBL: internal flow number 

STATNO: phase 2 statement number 

Communioates via: 

LABEL_ARRAY, LOCATION, and code generation. 

Description: 

If LBL is already defined, define STATNO to be the 
current location and generate an unconditional jump to 
LBL; otherwise, define LBL to have the same LOCATION as 
STATNO. 

5-184 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETIS 02188· (617) 661-1840 

f 

i 

I 
I 



t-I 
~\ t 

. ' 
FIX LABEL 

Procedure 

Purpose: 

To redefine the destination of a statement number. 

Parameters Passed: 

LABl: The statement number whose location is to 
be redefined. 

LAB2: The new destination of the statement. 

Local Var,iables: 

None. 

Message Condition: 

ASSEMBLER CODE. 

Description: 

LOCATION (LABl) is set to -LAB2 to indicate its 
destination is the same as LAB2. A positive LOCATION 
value is the actual destination of the label, a negative 
value indicates the 'index in LOCATION to try to find the 
destination. 

5-185 

i' INiERMEiRICS INCORPORATED' 701 CONCORD AVENUE· CAMBRIDGE. MASSACHUSETTS 02138 • (617) 661-1840 

L_ ....................... _, ....... _"--.o.-.;....;...-.,; _____ .........,;.:.......;.,~~~<~~'""~'""~"_'..::,~c,_, ______ , ___ -__ _ 



! 

l __ 
c 

r 

FIX STRUCT INX 

Procedure 

Purpose: 

To combine the contents of a register used for computing 
an array or subscript indexing term for an Indirect Stack 
entry with the entry's index register, and aligning absolute 
index values if self alignment is present. 

Parameters Passed: 

IX: A register used to compute an array of subscript 
indexing term. 

OP: A pointer to the Indirect Stack entry that the indexing 
term will be used to address. 

Local Variables: 

SHFT: The shift associated with opts operand type. 

R: An index register. 

TEMP: A temporary pointer to an I.ndirect Stack entry. 

Communications via: 

Indirect Stack, Emitting code. 

Description: 

If IX is not zero, CHECK CSYM INDEX is called to see 
whether opts index should be combined with the contents of 
IX. If it is combined, INX(OP) will be set to zero by CHECK 
CSYM_INX, and FIX STRUCT INX will set it to IX and r€tnrn. -

5-186 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661~1840 

''\,.:,t'' 



r 

FIX STRUCT INX (Con't.) 

If INX(OP) is not zero, OP has an index register. If 
the register has been. checkpointed, FINDAC is called to fiind 
an index register that can be loaded with the stored index value. 
If the SELF ALIGNING option is in effer;t VERIFY INX USAGE is 
called to protect any other users of the index register before 
it is modified. Then the absolute contents of the index 
register are re-aligned by shifting them right. This is 
necessary because at this point the index register is used 
only for addressing structures and since structure nodes 
do not all have the same halfword width so the index is 
absolute and must be shifted to take into account the automatic 
alignment'. 

VERIFY INX USAGE is called to protect any users of opts 
index register in case the procedure was not called 
previously since the self-aligning option was not in effect. 
The contents of IX are added to the contents of INX(OP). 

5-187 

tNTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 



FORCE ACCUMULATOR 

Function 

Purpose: 

To generate code to force a value into an accumulator. 
If the value is not a VAC, qn attempt is made to find it in 
a register both shifted and not shifted. If necessary, an 
existing register copy is copied. If all else fails, code to 
load the register is issued. 

Returns: 

Register containing the value. 

Parameters: 

OP: indirect stack entry for value to be loaded 

OPTYPE: desired type in register 

ACCLASS: type of register desired 

SHIFTCT: shift to be applied to value (useful if value will 
be used as an index) 

5-188 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 

. . : __ ' ' ___ '---...:. ____ ~~ ________ ._..L.~L ___ ._~__: ______ ._'._. __ ._._~ __ _ 



1 
I~ , 

FORCE ADDRESS 

Procedure 

Purpose: 

To generate code to force an address pointer of the 
right type into a register, including storing the current 
contents if necessary. 

Parameters: 

TR: 

OP: 

FLAG: 

the register number, if TR < 0 then routine 
will GET R 

indirect stack entry for item whose address 
is interesting 

{l reserve register (i.e. USAGE=2) 
o otherwise 

FOR NAME: pointer should be of type suitable for a 
name assignment 

BY NAME: poinb:r should be of type suitable for ASSIGN 
parameter. This may be a pointer to a pointer. 

5-189 

lNTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETIS 02138 • (6"17) 661-1840 



FORCE BY MODE 

Procedure 

Purpose: 

To generate code to force an element into an accumulator 
(FORCE_ACCUMULATOR) and do all necessary type conversions. 

Parameters: 

OP: indirect stack entry for item desired 

MODE: type item should be forced to 

RTYPE.: type of accumulator desired, if 0 then FORCE 
ACCUMULATOR will make an automatic choice 

5-190 

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE-CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840 

'~'->·<~;~-E~'*"",..m-:-'.--'"-"::-':"~."-:'''7';'-'-~t:;n • .::::,~:,.;:!::-;:::,:,,:-::..::~.1·:"~;2::'.":::::;:;':'r:"'~~~~-.. ~.,""", __ ,,~ 
-'~'u_,~_~~~ .• ~<,;,...;;.:;:-~~~~:-:;;--~"_O~_~ .~, ~~,.-_."~,,~ ,"'- ....... ,.,; _.~l 



· ' 

'''. '--""""")-'~.!""-_''f''f'''"~"",, __ ''__ .... -'.---")"""~ 
- ........ h __ 

FORM BD 

Procedure 

Purpose: 

To form a base (B) displacement (D) pair for an address. 
Most cases are simple, the bulk of the code simply formats 
listing. For re1ocateab1e entries, an attempt is made to base 
them off PROGBASE instead. Re1ocateab1e entries with negative 
displacements become positive displacements with a flag in 
RLD REF. Branch displacements are in turn hand1e,d by an internal 
routine FORM BADDR. 

In FORM BADDR 

SRSTYPE will only occur for a specific pair of branch forward 
branch backward instructions. Otherwise, negative displacements 
are handled by the bit immediately before the displacement. If 
the displacement is too large, switch to extended addressing. 
Notice that extended addresses must be relocated. 

Parameters: 

I: The LHS-RHS subscript for addressing the argument. 

5-191 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138'0 (617) 661-1840-

J 

._4:", 
,-~ 



t 
I , , 

FORMAT 

Function 

Purpose: 

To format fixed numbers to strings of a specific 
length. 

Parameters Passed: 

IVAL: A fixed number. 

N: The minimum length of the resulting string. 

Local Variables: 

STRING: A temporary character string. 

Value Returned: 

A character string of the number padded with blanks on . 
the left, if necessary. 

5-192 

INTERMETRICS INCORPORATED '701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138' (617) 661-1840 



FREE ARRAYNESS 

Procedure 

Purpose: 

To generate implicit subscripting for arrays and structures 
with copies which do not have explicit subscripts.· There is 
something to be done only if the context has arrayness (DOCOPY > 0) 
and the variable has arrayness (COpy> 0). 

If this is not static initializaiion then try to optimize 
by searching register tables for a register already containing the 
index required. If optimization cannot be done because there are 
too many dimensions or the size of the variable is too hard to 
handle, then generate code •. For static initialization, the 
addressing computation is done right here. 

5-193 

INrERMETRICS INCORPORATED' 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 

·i 

J 



GEN ARRAY TEMP 

Function 

Purpose: 

To generate a temporary copy of an array or multiple copy 
structure. The size of the required AREA is computed and allocated 
using GETFREESPACE. Then the array is copied to the temporary. 

Parameters: 

OP: indirect stack entry for array 

LTYPE: type of entry in array 

CONTEXT: . if > 0 then take LTYPE from OP 

Returns: 

Stack entry for copy. 

5-194 

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 

._. _.\ 

'I 

1 
1 

i. 

1 

1 
,~ 
j 

) 
_ c it 



I' 

( 
, 

GEN STORE 

Procedure 

Purpose: 

To generate code to store a value. This includes a 
FORCE ACCUMULATOR to load the value if necessary, GUARANTEE 
ADDRESSABLE followed by EMIT BY MODE (store), updating the -
register stack if this is a KNOWN SYM. 

Parameters: 

ROP: stack entry for value to store 

OP: stack entry for place to store into 

FLAG: if false, decrement usage of REG(OP) 

BY NAME: if true, value is a pointer which should not 
be dereferenced 

Local variables: 

R: the register containing the value 

5-195 

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE;CAMBRIDGE, MASSACHUSEfTS 02138 • (617) 661-1840 

, , , , 

i .~ 



? 

i " '. ,-"" "-,~"-".,-,,,,, '-'. '---",--'''»,'' ,.~.,__._,_r~',"'-.~-C"''''';;'''JPI'''---'.-,"".~n-.J"'''''''·~-~''''-'''!''!'"~-~'''''--'---or~." ~" =~".-""'..........".."""....,.,.~.-".,.-~~ __ , ~ ;; .;;::.++=:~Q;; 

--_ .. ,... t 

,l __ 

GENERATE 

Procedure 

Reference: 

HALMAT is defined in Appendix A of the HAL/S-360 
Compiler System Specification. 

Purpose: 

Translate HALMAT to intermediate code. 

GENERATE makes a pass over the current HALMAT block. 
It processes one source statement at a time, calling OPTIMISE 
to set up the next statement. Notice that since OPTIMISE 
prescans all the B~LMAT for an entire source statement, 
GENERATE has advance warning about interesting subjects. 
The procedure is a do while "there's some HALMAT left in the 
block", which is immediately broken into several disjoint 
subparts by a do case on the CLASS of the HALMAT operator. 
After processing each HALMAT instruction, DROPFREESPACE returns 
no longer needed runtime temporaries and NEXTCODE advances 
to the next HALMAT instruction. 

CLASS=O 

NOP (A-6) 

Do nothing. 

EXTN (A-87) 

Do nothing now. 

XREC (A-6) 

Return to main program indicating end of HALMAT if 
appropriate. 

IMRK & SMRK (A-6, 7) 

Clean up after statement and prepare next statement. 

IFHD (A-49) 

Mark beginning of IF stateMent. 

UCIBILl'TY OF TIll'; 
REPROD I IS POO'S 
ORIGINAL PAGE 

5-196 

~INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 , 

j , 
j 

1 
.~ 
1 
! 



r 
I 

I 

GENERATE (Con't.) 

LBL (A-49) 

Define the label unless it is an unused exit label of 
an IF statement. 

BRA (A-50) 

If branch not redundant, emit unconditional branch. 

FBRA (A-50) 

Emit code or fill in addresses in existing instructions 
to perform branch on false. 

DCAS (A-51) 

Ini~ialize for DO CASE and generate standard code 
to perform case selection. 

ECAS (A-52) 

Set up table of indirect jumps to actually get to 
individual cases, define a label for the location after 
all cases. 

CLBL (A-51) 

Generate jump to the location after the DO CASE statement; 
if this is not the last case, define the flow number of this 
one and link it int.o the list built in LABEL ARRAY. 

DTST (A-52) 

If this is DO UNTIL, generate jump around test; define 
beginning of loop. 

ETST (A-53) 

Generate jump back to the beginning of the loop; define 
a label for the location after the loop; free temporary storage. 

DFOR (A-54, 55) 

Set OOTYPE equal to tag field (n.b. the description 
of the tag field is given in the compiler spec. is wrong. 
The flag for WHILE/TJNTIL is actually only for UNTIL). DOFOROP 
becomes index variable; if this is DO FOR UNTIL, get a location 
for a boolean and generate code to initialize it to zero; allo
cate space for temporaries if this is DO FOR TEMPORARY; 

5-197 

INTERMETRICS INCORPORATED· 701 CONCORD AV6NUE • CAMBRIDGE, MASSACHUSETTS 02138. (617)661-1840 

i 
1 

f 
1 
1 
j 



--r 
I 

L 

GENERATE 

Iterative Case 

Set up final value; set up increment; generate code 

to convert initial value to type of index variable7 set up 

addressing information for location of do index and 

register for do initial value, set up indirect stack entry 

for do index; if this is DO UNTIL generate code to test 

boolean flag for first-time through. 

Discrete Case 

This is simple because code for inserting new values 

is generated by AFOR instructions; get space for value 

and do check points if necessary. 

EFOR (A-57) 

Define label which is end of loop; in normal-situation 

OOTYPE -=I "FF". 

discrete case 

Generate subroutine return style code. 

iterative case 

Generate code to increment do index, compare with final 

value, and branch back. 

Define label for code after loop; drop temporary 

storage and descriptions for loop parameters. 

In abnormal situation, OOTYPE = "FF"; 

define label for location after loop 

lower do level 
issue error message 

~ (A-56) 

At this point loop header code and code to evaluate 

condition have been issued. Emit code to perform WHILE/ 

UNTIL test. Define label of beginning of actual code 

to allow skipping around UNTIL code on firs·t iteration. 

DSMP (A-57) 

Bump DO LEVEL. 

5-198 

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1640 

"--.-'.--' ---, 

<1 

I 
i 

:'j 

) 



GENERATE 

ESMP (A-57) 

If anybody needed the address of the end of the loop, 
define it; free temporaries used in loop. 

AFOR (A-56) 

Increment flow number counter DOF'ORCLBL (n.b. these 
flow numbers are never used); generate code to put next 
value of index in proper place; If this is not last value 
(i.e. TAG=O) then: 

Generate subroutine call style code 
Define DOFORCLBL flow label as current location 

If this is the last value (i.e. TAG=I): 

Generate code to load the address of the instruction after the 
loop into LINKREG so that loop will exit instead of looping. 

The code will fall into the loop so no branch is 
necessary. 

Define laLel for beginning of loop code. Notice 
that WHILE/UNTIL code is part of loop. 

Generate code to save linkage register so that 
code can get next index value • 

Set up descriptor of register containing DO index. 

Generate code to store DO index. 

Generate code to skip UNTIL. 

Check on first index value if appropriate. 

CTST (A-53) 

Generate code to perform WHILE/UNTIL test and 
label for skipping UNTIL test. 

ADLP (A-85) 

Initialize tables for constructing do loop for arrayed 
expression and generate initial code in complicated cases. 

~ (A-86) 

Generate end of loop code and clean up. 

5-199 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 



'----' ,-.-~-- -.-, -.,.-. -~--- '--.---.---- --.----- ~------------~-_~~~~'~'~~_~.O~·I' ~~." ~. -- .~-.,-, '[~~~T ---_. -

--;~--:-"- .~'--:-::-;;:'= -: -. -::::~- :--=--:. ~:-:.:--:-~-- --- .-.~-::.::..---.- ':.-.=,":-::";- -- _ .. ~- _.-. - - ---' 

GENERATE 

DSUB (A-89, 95) 

Generate all necessary code to evaluate subscript 
expression and put value of expression in an index register. 

NAME SUB = I if in name pseudo 

LITTYPE = real tag 

TAG = real tag 

TMP = I if in name pseudo and assignment context 

ALCOP = stack entry for item to be subscripted 

TERMFLAG = boolean I - matrix subscript 
o - no 

SUB# = # of the current subscript. Notice that 
many kinds of subscripts have more than one 
operand associated with them (see SUBOP). 

LEFTOP = Stack entry for accumulated subscript. 

SUBOP = The number of the current operand. Notice that 
sometimes several operands make up one subscript. 
This value is changed by subroutines called by GENERATE.",» 

RIGHTOP = stack entry for subscript. 

EXTOP = stack entry for second part of subscript in 
TO and AT subscripts. 

Notice that the code at DO DSUB is referenced also 
from many class 1 operations. 

IDLP (A-86) 

Set up array do loop parameters to describe the 
arrayness as copied from the IDLP operands. 

TSUB (Pi-88, 94) 

Similar to a very stripped down DSUB. There is only one 
level of subscripting and that applies across the entire structure. 

5-200 

INTF.RMfTRICS INCORPORATED· 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 

J 

I 
1 
1 
1 
i 

1 
I 

- ~ 
1 
~ , ~ 

.. 1 

l 
1 



i: 
I 

t At. 4£4iP ;a. "'j --- ¥ ~.,.. .... ~[~. ~ 

-~ ,-. _. '. . ,. ~ - ~~ ~ ~ ~. 
'll: 

\ 

: " 

GENERATE 

PCAL (A-GI) 

Check that we are not in a nested function call (n.b. 
TAG will be 0); make stack entry for procedure name; 

If normal HAL procedure 

Generate set-up code using PROC FUNC SETUP 

Generate subroutine branch 00de using PROC FUNC CALL. 

Otherwise, 

DO equivalent for non-HAL 

This will actuall generate a "NOT IMPLEMENTED" 
error on the FC compiler. 

FCAL (A-GI) 

Check that we are nested to the proper depth in function 
calls; make stack entry for function name; 

If normal HAL function: 

Generate set-up code using PROC FUNC SETUP 

Set up indirect stack entry and needed run-time 
temporaries using GET .. _FUNC_RESULT 

Generate subroutine branch code using PROC FUNC CALL 

If result will be returned in a register, set up 
register stack description of it. 

If non-HAL function, similar to PCAL 
(not implemented on FC) 

Replace the HALMAT FCAL instruction with indirect stack 
pointer for RESULT. 

FILE (A-G3) 

Generate code to do library call. Notice that. the argu
ment is passed according to non-HAL conventions. 

5-201 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 

i 
11 

i ., 

I 
I 
1 

! 
1 



· '-'--"'I~'"-- .-....... " ............ .-." 
'I 

GENERATE 

XXST (A-58) 

Save existing status so it can be restored: Set 
CALL LEVEL to that indicated in instruction. Note that 
since this could be a call moved out of a nest, TAG may 
not be CALL LEVEL+I. 

If this is I/O then temporarily set HALMAT instruction 
counter to point to the I/O instruction involved and call 
IOINIT for appropriate initialization for specific type of 
I/O. READCTR was set in OPTIMISE. 

If this is not I/O then set up stack entry for routine; 
set that this is HAL-type; check that routine is already 
defined; extract information from symbol table and block 
definition table and insert it in the call stack. 

Return stack entry. Copy array-do-Ioop entry from 
enclosing level to this level using PUSH ARRAYNESS. 

XXND (A-59) 

Restore CALL LEVEL and ARG STACK PTR to their values 
in outer level. 

XXAR (A-58, 94) 

Check that nest level is consistent. 
ment stack has not overflowed. If normal 
call get argument type from symbol table; 
instruction. 

Check that argu
procedure/function 
otherwise, from 

ARG NAME indicates if argument is of name type. 
TMP indicates assign if argument is of name type. 

Get indirect stack en~ry for argument. 

If this is I/O then process using SET_IO_LIST. 

If not I/O, then update information if assign argument, 
and update ARG_STACK, ARG_STACK_PTR, ARG_COUNTER, and ARG_POINTER. 

Also, if not I/O and this is the call level of a previous 
ADLP operator, then generate necessary temporaries depending 
on form. 

5-202 

I 

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 

1 

j 

1 
1 

I 

\ 
.1 

.j 

J 
j 
j 
l 
l 
1 
i 

1 
1 
I 
1 
i 

1 
i , 

1 
1 
; 



;'.J' - ,·,·c· "··---...,........·v·"·~'--·-.,..-'''''""..,.,',.,,··,.,.·-.,.,., ,!""'",."..,,..,, """"'-"""'~""""~~'.!"'I"!'! __ I!!I"'!'II'''''''''''l_''''''-'''''''''''''''''-II!IIIIIII''f''''''''''! __ ,. '.JIl_::u.:a:* .. !i(.I.if.£;..,; ... ~. J.5.J\iQ4SJi¥S.i."'; .l1i.: 'f4 ;:u:;;:;;Z¥dAW4#t· ... ·~""I··" 

.. ~::7.:::-~:...:.:F::_7J!=::;-.;;t:::.~t:::;"~~:·:,·t,,;~'le~.~:~!:~!~~!'-.'!!::::::,=-::,'-,"" ..... :~:,~ ~.:,-~ 

TDEF, MDEF, FDEF, PDEF, UDEF, CDEF (A-8,9) 

Call BLOCK OPEN to set up block definitions. 

CLOS (A-9) 

GENERATE 

Check that close is at correct level and call BLOCK_CLOSE. 

EDCL (A-9) 

RESUME LOCCTR to Code Csect and.set that declarations 
are finished. 

RTRN (A-lO) 

For functions, generate code to return result. 
Generate jump to return. 

~ (A-77) 

Allocate run time space and generate code to perform 
WAIT SVC. 

SGNL (A-77) 

Allocate run time space and generate code to perform 
SIGNAL, SET, or RESET SVC. 

CANC or TERM (A-78) 

CALL SETUP CANC OR TERM. 

PRIO (A-79) 

Allocate run time space and generate code to perform 
an UPDATE PRIORITY SVC. 

SCHD (A-79) 

Allocate run time space and generate code to perform 
a SCHEDULE SVC. 

~ (A-76) 

Generate code to manipulate runtime error ~;tack 
for ON ERROR and OFF ERROR statements. 

ERSE (A-76) 

Generate SVC instruction to perfornl SEND ERROR. 

5-203 

. ~.; I ., 
I 

, ,. 

;. .. , 

] 

I 
; 

1 
1 
1 

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE. MASSACHUSETTS 02138 • {6171 661-1840 ] 

, ____ ~ _ _."_ •• _,.~~",, t T;' ........ _il:· !. T 1L1' Li."P.kl.LL"it:!!!lAlIl!lIiI1I!!!!!UIJJIIl!li!llili8!1!iilEjl" ·iC·"·"iiii'iiif.iir··'''· .1' j 59if'iiil5"5fE~ 



GENERATE 

MSHP (A-73) 

Allocate runtime temporary and then generate code to 
perform shaping using SHAPING FUNCTIONS. 

VSHP (A-73) 

Identical to MSHP with ROW=I. 

SSHP (A-71) 

Essentially the same as MSHP. 

ISHP (A-72) 

Identical to ISHP with OPTYPE=INTEGER. 

SFST (A-59) 

Set up call stack for shaping function call. 

SFND (A-60) 

Pop up call stack. 

SFAR 

Stack argument for later processing by SHAPING 
FUNCTIONS. 

BFNC (A-64) 

Generate code to call (or perform in-line) built-in 
function. 

LFNC (A-75) 

Get runtime temporary and generate code to perform 
library call for list-type built-in functions. 

5-204 

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 , 

,~<=-,,--, -~~--~ 



GENERATE 

TNEQ,TEQU 

Set up stack entri~s for the structures to be tompared. Set up branch points one way or the other depending on·whether this is TNEQ or TEQU. Generate code to compave ithe entirety of the two structures. Notice that if the structures contain character strings, the filler between current length and max length does not have to match, consequently, structures containing character strings must be compared node by node. 

TASN 

Generate code to copy the strutcure. 

IDEF- (A-IO) 

Generate code to save registers, call BLOCK OPEN and set aside space to receive inline function result. 

ICLS (A-IO) 

Call BLOCK CLOSE to finish off inline function. 
NNEQ (A-92) 

Generate code to compare the two NAME operands and jump accordingly. 

NEQV (A-92) 

Identical to NNEQ. 

NASN (A-91) 

Generate code to put into arguments 2, 3, ••• , a pointer to argument 1. 

PMHD (A-96) 

Initialize for %MACRO. 

PNAR (A-96) 

Put %MACRO argument into ARG STACK. 

PMIN (A-96) 

Generate in-line code to perform a %MACRO. 

5~20S 

INTEQ\1ETRICSINCORPORATED - 701 CONCORD AVENUE - CAMBRJDGE, MASSACHUSETTS 02138 -617) 661-1840 



~- - I 

i 

CLASS 1 OPCODES 

SUBCODE = 0 

TAG~O implies event operation 

GET EVENT OPERANDS 
EVENT OPERATOR 

GENERATE 

EMIT EVENT EXPRESSION when expression is compl~t~. 

This HALMAT is generated only for real time stateme~ts. 

Notice that code is not built to evaluate the expression. 
Rather, the events and operators are put together into an 
agrument for an SVC call. The supervisor will actually 
evaluate the expression. 

BASN (A-29) 

DO ASSIGNMENT. 

BAND (A-3l) 

EVALUATE (BAND) • 

BOR (A-3l) 

EVALUATE (BOR) • 

BNOT 

If next operation is "convert to relation" then 
just set some flags; otherwise, EVALUATE (BNOT) • 

BeAT (A-30) 

Emit code to shift and OR operands. 

Do not forget the code at the very end of the case 
statement for class 1. This code processes all the sub
scripts operands, regardless of opcode. 

5-206 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 

_I 

oj 

j .. 

I 
j 
-, 
'j . 

j 
.~ 

.l 
.4'1\. ~ 

! 

... ~ 

1 
J 



GENERATE 

SUBCODE=1 

BTOB (A-36) 

Just process subscripts. 

BTOQ (A-38) 

Just process subscripts. 

SUBCODE=2 

CTOB (A-36) 

Generate code to transform from character to bit 
string and then process subscripts. 

SUBCODE=5 

STOB (A-35) 

Generate code to force into accumulator as integer 
and then process subscripts. 

STOQ (A-37) 

If operand is single preC1S1on, just process subscript 
normally~ otherwise, generate appropriate code for all 
possible component subscripting of bit string. 

SUBCODE=6 

ITOB (A-35) 

Just handle subscripts. 

ITOQ (A-37) 

Just handle subscripts. 

5-207 

INTERMETRICS INCORPORATED' 701 CONCORD AVENU~ • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 

J. 

:-''liflllmff "p - 'j :w 7 ~' .~ 



GENERATE 

CLASS 2 OPCODES 

SUBCODE=O 

CASN (A-29) 

Create temporary copy if necessary. Call CHAR CALL 
for each left hand side. 

CCAT (A-30) 

Get temporary space for result. Call CHAR CALL. 

SUBCODE=l 

BTOC (A-34) 

NTOC (operand) and then handle subscript. 

SUBCODE=2 

CTOC (A-34) 

Just handle subscript. 

SUBCODE=5 

STOC (A-33) 

See BTOC. 

SUBCODE=6 

ITOC (A-33) 

See BTOC. 

5-208 

REPROnUCm1Ltl¥ OF :r!IE . 
ORIG'fNAL'P AGE IS P{){1'P 

INTERMETRICSINCORPORATED 0701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 0 (617)661-1840 

.~Jj 

i I 



, 
\-

GENERATE 

CLASS 3 OPCODES 

SUBCODE=O 

MASN (A-21) 

VECMAT ASSIGN (each left side, right side). 

SUBCODE=1 

MTRA (A-23) 

The code from MAT TEMP up to MAT CALL is entered 
from several places to-check for Vector-Matrix Optimiza
tion possibilities. This code then enters MAT CALL 
which uses VMCALL to generate the appropriate library 
call. 

CHECK ASSIGN (which calls CHECK SRCE) checks the 
overall conditions specified in the HAL/S-FC Compiler 
System Specification, Section 3.1.5.5 and sets OK TO ASSIGN 
true if the current operation is a good candidate~ The code 
at MAT TEMP checks the four alternate conditions specified and 
branches to: 

"STACK ENTRY ASN if the optimization is to be performed. 
Here,-the HALMAT location counter is advanced to the 
assignment operator and RESULT -is set to the result 
operand of the assignment. 

"TEMP ASN if optimization is impossible. RESULT is 
set to a temporary. 

For MTRA instruction 

ARGASSEMBLE 
goto MAT TEMP 

SUBCODE=2 

MNEG (A-22) 

OPCODE~XXASN, ARG ASSEMBLE 
goto MAT TEMP 

MTOM (A-20) 

OPCODE = XXASN 

VECMAT CONVERT (operand) if necessary. 

5-209 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE • CAMBRIDGE, MASSAOHUSETTS 02138 • (617) 661-1840 



SUBCODE=3 

MADD (A-2l); MSUB, MMPR (A-22) 

ARG ASSEMBLE 
goto HAT TEMP 

SUBCODE=4 

VVPR (A-24) 

ARG ASSEMBLE 
goto MAT TEMP 

SUBCODE=? 

MSPR, MSDV (A-24) 

MIX ASSEMBLE 
goto MAT TEMP 

SUBCODE=6 

MEXP (A-23) 

GENERATE 

If exponent <-1, generate inverse and fall into 
code for positive exponent. 

If exponent >1, set OPCODE to exponentiate. 

Allocate temporary space for computing inverse or 
successive mUltiplications. 

goto MAT TEMP. 

5-210 

INTERMETRJCS INCORPORATED' 70-iCONCORD AVENUE' CAMBRIDGE. MASSACHUSETTS 02138' (617) 661-1840 

~~ " 
U!!!!;;:l~"""'''''~~W,&"WT' iIi l!ft &L,~_~~.""'::< ==::::::'=-.--;..~"",:,,_-:-~-- " ~',._ .~=_,-::::.,,_:::C-, ::;::~,,~-::C-,~_c:C:~_:C::,.=_=_==."c=.~ __ :-::;_=< ====.,.....,.. ...... _; ."" ............... ''''''''"' __ '''''.'~ ...... "",.:::t:i::<lW""._'_""',",=~'~_ , __ ~,"-A"",,' "'" 



I ~ 

CLASS 4 OPERATIONS 

SUBCODE=O 

VASN (A-25) 

See Class 3. 

SUBCODE=2 

VNEG (A-27), VTOV (A-25) 

See Class 3. 

SUBCODE=3 

VMP~ (A-26), ~ (A-27) 

ARG ASSEMBLE 
goto MAT TEMP 

SUBCODE=4 

VADD, VSUB (A-26): VCRS (A-27) 

ARG ASSEMBLE 
gote MAT TEMP 

SUBCODE=5 

VSPR, VSDV (A-28) 

MIX ASSEMBLE 
gote MAT TEMP 

5-211 

GENERATE 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUt: • CAMBRIDGE, MASSACHUSETTS 02138· (617) 661~1840 

"' 
_II/i;-;;c..:" ";.;;,."! Jk~.,,?~"c:--'''';,'.' 



CLASS 5 OPERATIONS 

SUBCODE=O 

SASN (A-13) 

DO ASSIGNMENT 

SUBCODE=l 

BTOS (A-12) 

FORCE BY MODE (operand) 

SUBCODE=2 

CTOS (A-12) 

CTON (operand) 

SUBCODE=3 

SIEX (A-IS), SPEX (A-16) 

EXPONENTIAL (opcode) 

SUBCODE=4 

VDOT (A-16) 

ARG ASSEMBLE 
VMCALL (vdot, 

SUBCODE=5 

GENERATE 

STOS (A-13); SADD, SSUB, SSDV (A-14); SSPR, SEXP (A-IS) 

For STOS -- GET OPERANDS (operand, DSCAL) and 
F'O?::(..~_ACCm1ULATOR (operand, DSCALAR) if necessary. 

For non-exponentials EVALUATE (opcode) 
for SEXP -- EXPONENTIAL (opcode) 

5-212 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 66t-1840 

c: 

•. 

1 
·1 
.!il 

1 
I 
i 

." 
c: -...... _ .-_~".~--'-._~ >._-_._ ...... -'-,.d._<-_., ... ~-.--'~:... ...... ""'.-"' ...................... ~. ~" ~ .~-, :::=::::~:::~~~".n-~'!fttti~ ..... d_=<5iili5iil:ll""¥5:lillHil:ll!+ teee='5"5355"_~~~. ';;;;~"··~""i f~~ 



" 
1 

SUBCODE=6 

ITOS (A-13) 

FORCE BY MODE or LITERAL. 

CLASS 6 OPERATIONS 

IASN (A-IS) 

DO ASSIGNMENT 

BTOI (A-17) 

GENERATE 

If ope£anu is not literal FORCE ACCUMULATOR. 

CTOI (A-17) 

CTON (operand) 

STOI (A-17) 

FORCE BY MODE or LITERAL. 

SUBCODE=6 

I'l'OI (A-17) 

FORCE ACCUMULATOR if different type and not literal. 

IADD (A-IS) 

If operands are not CSE's, try folding constant 
parts. If not completely successful, call EXPRESSION 
for what is left over. 

ISUB (A-19) 

See IADD. 

IIPR (A-19) 

INTEGER MULTIPLY (opcode) 

IIDV (non-existent) 

Generate code for an integer divide if one is added 
to the language. 

5-213 
IN1ERMETRICS INCORPORATED' 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-184') 



!~ " 
" _'·-'dl"""-""c.~. 

~7" -T'~~'-~'~_-~"'"-T",~~'~-"-"""~' ,--,"-",~-~,~~~~,- '''1'·'''· u._. _ ...... l~r,.,'"F~ 
~~·-.rc- --- - --.---r:-.,.--'- -...,..,." ---~-,- ..... 

~"~, ~~ """.,. ''"'-''''~'''' '''''-' ", .,,"-.~-" , " u , .... _-"'~" i' 

~ (A-20) 

EVALUATE (opcode). 

~ (A-19) 

EXPONENTIAL (opcode). 

CLASS 7 OPERATIONS 

SUBCODE=1 

BTRU (A-45) 

GENERATE 

Generate code to transform bit string to a relation. 
If string is a literal, .; ust change some pointers. If 
string is in storag;;:, attempt to use test storage instruc
tions. If all else fails, generate code to load and 
test. 

BEQU, BNEQ (A-45) 

See subcode 5. 

SUBCODE=2 

CEQU, CNEQ (A-46) 

CHAR CALL 
goto-SETAG CONDITIONAL 

SUBCODE=3 

MEQU, MNEQ (A-47) 

ARG ASSEMBLE 
VMCALL 
goto SETAG_CONDITIONAL 

The code at SETAG CONDITIONAL calls SETUP RELATIONAL 
if simple case, SETUP BOOLEAN if not simple and intermediate 
boolean is required. -

VEQU, VNEQ (A-48) 

See subcode = 3. 

5;...214 

1 

.~ 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETIS 02138 • (617) 661-1840 



, , ' 

r 

GENERATE 

SUBCODE=5 

SEQU, SNEQ, SGT (A-4l)1 SNGT, SLT, SNLT (A-42) 

Generate code to perform comparison with special 
case code for the situation where one of the operands 
is literal O. 

SUBCODE=6 

IEQU, INEQ, IGT (A-43), ~, ILT, INLT (A-44) 

Attempt folding constants and then go to 
subcode 5. 

SUBCODE=7 

CNOT (2\-40) 

Invert the labels for the true and false conditions 
on the conditional operand. 

CAND (A-39) 

Make failure labels identical. Make success of 
first test fall through to second test. 

COR (A-40) 

Make failure label of first test fall through to second 
test. Make success labels identical. 

5-215 

t INTERMETRICS INCORPORATED' 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138· (617) 661-1840 

I 



GENERATE 

CLASS 8 OPERATIONS 

Notice that class 8 is a loop which counts down INITAGAIN (the repeat factor when an OFF qualifier appears) and does not move the HALMAT. The loop structure is the 
reaso~ that INITLITMOD and INITINCR are necessary. The simpler approach of having a separate HALMAT for every initialization was rejected because it would generate arbitrarily large HALMAT sequences for one HAL source statement thereby violating the requirement of each HAL statement being completely enclosed in one HALMAT block. 

SUBCODE=O 

STRI (A-81) --, 
Set up addressing information using SET INIT SYM. Initialize for generating initialization. If item is STRUCTURE, set up pointers, etc. for STRUCTURE_WALK, STRUCUTRE_ADVANCE, •••• 
SLRI (A-82) 

Initialize repetition count and length of initial value list. 

ELRI (A-82) 

If not all repetitions are done, update counters and reposition HALMAT file at beginning of repeated initial value list. 

ETRI (A-al) 

Cle~n up after handling initialization. 

SUBCODE=l 

BINT (A-a3) 

See lINT - subcode 3. 

SUBCODE=2 

CIN'r (A-a3) 

If variable is automatic set up a.ddressing information and generate code to s'core value; otherwise j insert value in proper place. 

5-216 

.... " '1()r 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 

1 , 
.~ 
., , 
." 

" 

1 j 
1 



.-? 

I. 

i 
1-

GENERATE 

SUBCODE=3 or 4 

VINT, MINT (A-B3) 

If variable is automatic, generate VMCAL~ to assian 
the value: otherwise. insert the value in the entire 
matrix using a do 1000. 

SUBCODE=l or 5 or 6 

B·INT., SINT, lINT (A-B3) 

Very similar to CINT. 

SUBCODE=7 

N:tNT (A-92) 

Same story. 

TINT (A-B3) 

Set up addressing using STRUCTURE WALK (see STRI) , check for 
type compatibility, then simulate simple initialization 
by setting OPCODE, SUBCODE, and going to beginning of 
initialization again. 

EINT 

Set up address of operand to be used as external 
entry point. 

5-217 

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 



I 
I 
I 
I 

GENERATE CONSTANTS 

Procedure 

Purpose: 

To emit all necessary constants into the database. 
First the values of the virtual base registers are emitted, 
then the lists of constants are traversed, the constant is 
emitted and the CONSTANT PTR is overwritten with the address 
of the constant. 

5 .. 218 

fNTERMETRfCS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETIS 02138 • (617) 661-1840 



i' 

.! 

i , 
i 

GET ASIZ 

Function 

Purpose: 

To set up indirect stack for ASZ style HALMAT 
subscript operand. This includes reading next operand 
when necessary and generating arithmetic code to 
load array size into a register to evaluate subscript 
expression at runtime. 

Returns: 

Indirect stack pointer. 

Parameters: 

MARK: tag field ofASZ operand. 

Local variables: 

PTR: pointer to be returned 

OP: pointer to indirect stack e~try for optional 
expression operand 

5-219 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 



. 
r 

GET FUNC RESULT 

Function 

Purpose: 

Built an indirect stack entry for a function result. 

Parameters Passed: 

OP: an indirect stack entry for the function. 

Returns: 

The stack entry built. 

Communicates via: 

Symbol table and indirect stack. 

Description: 

Build a stack entry with the information about 
the function rGsult obtained frQm entry for function. 
If necessary, allocate a runtime temporary for the 
result. If the function has a register, give it to the 
result. 

5-220 

" 
, 

.- .. 
I " ,.. 

\ INTERMETRICS INOORPORATED ·701 CONOORD AVENUE • OAMBRIDGE, MASSAOHUSETTS 02138 • (617) 661-1840 
I 
.. 1 ~"'---··_··_· __________ 9kw_ •• __ ~& __ -.~~ ________________ ~ ________________________________ ___ 

f~~~~_ ... 

4 

~ 

1 , 
i , 

.. ~ 
1 
.l 

1 
~ 

,1 
r 

i 

,,:j 

~ 
~ 

1 
:~, 

,~ 
.i , 
1 , 
l 

" 

~ .. ~ 
.~ 

,. 
~ 



GET INTEGER LITERAL 

Function 

Purpose: 

To create an Indirect Stack entry for an integer 
literal. 

Parameters Passed: 

VALUE: The value of the literal. 

Local Variables: 

PTR: Pointer to the Indirect Stack entry for the 
literal. 

Value Returned: 

PTR: Pointer to the Indirect Stack entry for the 
literal. 

Description: 

The procedure calls GET STACK ENTRY to get an Indirect 
Stack entry and then sets up-the relevant fields associated. 
with the entry as follows: 

FORM: 
TYPE: 

VAL: 
LOC: 

LIT 
INTEGER or DINTEGER 
The value passed to the procedure 
-1 to show the literal is not in the Literal 
Table 

It returns the pointer to the entry it set up. 

5-221 

INTERMETRICS INCORPORATED' 701 CONGORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 



GET LITERAL 

Function 

Purpose: 

To locate the ac·tual literal in LITERAL file 
3.1.1}. It returns the offset into the LIT arra~ 
literal. Notice that this may require reading in 
correct page of the table. 

(cf. 
of the 
the 

Parameters: 

PTR: 

FLAG: 

Comments: 

absolute (unpaged) pointer into the literal 
table 

if true, then when changing pages, write 
out current page and if PT,R points to a page 
not yet generated, increment counter rather than 
reading in page. 

Object generator routine(s) call this routine GET RLD, 
and re-uses-the literal file for accumulating RLD information. 

5-222 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE • CAMBRIDGE. MASSACHUSETTS 02138 • (617) 661-1840 

1 
! 
l 
1 
1 

1 
1 

-( 11 , . 

1 

1 l 
1 1 

i I 
" 1 



GET OPERAND 

Function 

Purpose: 

To set up an Indirect Stack entry for a HALMAT operator 
word. 

Parameters Passed: 

OP : The operand word number .• 

FLAG: 3 for a SIZE shaping function argument, 
1 for a variable that is to be subscripted. 

BY NAME: The operand is part of a NAME pseudo-function. 

N: The entry in the TAG2 and TAG3 arrays that should 
be used. 

Local Variables: 

SAVCTR: A temporary variable used to save the current 
value of CTR. 

PTR: A pointer to the operand's Indirect Stack entry. 

Value Returned: 

A Pointer to the operand's Indirect Stack entry. 

Description: 

DECODEPIP is called to decode the HALMAT operand word. 
An Indirect Stack entry is set up according to the operand's 
Qualifier: TAG1. 

1) Symbol Table Variable (TAG1=1) 

GET_STACK_ENTRY is called to get an Indirect Stack entry. 
The entry's FORM is SYM to show it is a Symbol Table 
entry, and LOC and LOC2 point to the Symbol Table entry. 
UPDATE CHECK is called to update the CSECT's lock group 
references. The stack entry's TYPE is determined from 
the Symbol Table entry. SIZEFIX is called to set the 
stack entry's size parameters. DIMFIX and SYT COPIES 
are called to set up arrayness information. !I the 
operand is not being subscripted, FREE ARRAYNESS is 
called to set up indexing of the variable if it is an 
unsubscripted array reference. 

5-223 

INTF-RMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (61.7) 661-1840 

-·'.,....~·'"' ..... · . .....,.--;-'''''-'.-'7''''..,.. ... - .... _--N~-;-. __ '':.-:" .. 7". __ :::-_~;;-.. ,::. •• 

--~."~"-"~ ... ~. '--~'--~--_"""'"-~-,--.;..--c~~........:.. ____ . ··.~~~" ... ~~··:~;_·.~·~E~"':.··:::-·izf&r-=?ir..--



GET OPERAND (Con't.) 

2) Virtual Accumulator (TAGI=3) 

A virtual accumulator is a pointer to the result of a 
previous HALMAT instruction. The OPR entry for the 
previous instruction was set to the stack entry containing 
the result of the entry. The VAC's OPI field is a pointer 
to the OPR entry, and OPR(OPI) is the pointer to the stack 
entry. VAC COPIES is called to set up arrayness informa
tion about the VAC in the SUBLIMIT stack. VAC COPIES 
calls FREE_ARRAYNESS to set up indexing for the VAC if it 
is an unsubscripted array reference. VAC COPIES parallels 
the function of SYT COPIES. 

3) Pointer (TAGI=4) 

The EX TN opcode and subsequent operands are traversed to 
establish an indirect stack entry describing a reference 
to a structure node or structure terminal. STRUCTFIX is 
called to set up the major structure, and STRUCTURE_DECODE 
is called for each EXT.N node to establish addressing and 
perform any implicit NAME de-referencing. Then control is 
passed 'co the symbol table variable process to complete 
the task. 

4) Literal (TAGI=5) 

For a literal, an Indirect Stack entry of the form LITERAL 
is set up whose LOC field points to the literal's Literal 
Table entry. The procedure LITERAL is called to put 
information about the literal in the appropriate fields 
of the Indirect Stack entry. 

5) Immediate (TAGI=6) 

For an immediate value, the OPI field of the operand word 
is the value. GET INTEGER LITERAL is called to set up a 
stack entry for it~ 

6) Offset (TAGI=IO) 

A stack entry with FORM of OFFSET and whose VAL field is 
the offset is set up. 

GET OPERAND does not set up stack entries for other 
qualifier values. 

5-224 

REPRODUCIBILITY OF T~ll1 
ORIGlliAL PAGE IS POOR 

-..: i" 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETIS 02138' (617) 661~184r) 

, 

t .~ 
,1;" 

.~ 
~~ 

i 
:'J 

i 
~ 

1 

,{' , 
:-i 

I 

~' 

~ 

j ., 
~ 
1 , 
l 

t 

i 
i 
1 ., 

:~ ! 
'i 1 1 , 

1 



I _ 

GET R 

Function 

Purpose: 

To get an addressing register. 

Parameters Passed: 

None. 

Local Variables: 

R: The register chosen. 

TR: Never references. 

Value Returned: 

R: The chosen register. 

~ription: 

If TARGET R is greater than or equal to zero, then 
it is the register chosen, Otherwise, register 2 is chosen. 
The register that has been chosen is checkpointed by 
calling CHECKPOINT_REG. Then the appropriate Register 
Table fields are assigned. 

5-225 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 

4 

1 

I 



r""""'p;"'T"""""'-"'~ ... '''M''_'"=;,_,,,· ., .. '"' ~~c.~r~;~~~~" ..• ",;n .... -~.-.'---;~--~~.~~.-'~.~~~!=~ 

~, >1.<;'.': 

GET STACK ENTRY 

Function 

Errors Detected: 

Indirect Stack Overflow. 

Purpose: 

Gets a free Indirect Stack Entry. 

Parameters Passed: 

Non~. 

Value Returned: 

Pointer to the Indirect Stack Frame. 

Local Variables: 

PTR: A pointer to the first free Indirect Stack 
entry. 

l1>escription: 

PTR takes on the value of STACK PTR, the point8r to the 
first free stack entry. STACK PTR takes on the value 
of STACK PTR(PTR). The stack 1s checked for overflow: 
STACK PTR(PTR)=O. If there is none, STACK PTR(PTR) is 
set to -1 to show the entry has been allocated. All 
the fields associated with the stack entry are initialized: 

REG, BACKUP_REG, STACK PTR = -1. 

INX MUL = 1 

INX, BASE, INX _SHIFT, COLm-iN, DEL, CONST, INX _CON, 
STRUCT _CON, COPY, STRUCT, STRUCT INX = O. 

5-226 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETIS 02138 • (617) 661-1840 

I 
i 

J 



t 

·-·--·'-~"""1"""""~-~-T~." ~'~'''''''''''£\._'!''_''''''''''.~Qi=.","'' ,_ .... ''''''-..... = ...... """"""'l!t!':!~~=""'.,.., ... """""-"'"'l"' ....... .....,.. __ .... -IIO!I!II'I'!"-""""'!II. ' '-==::::;:'- .• - •.. -~.. . • '''7"" ....... , __ AI' . 

. e;ce·. ~'''''''''C'C''i;'''''''---''C'''''''?.e''',;/''''''}1G ~ 

GET STACK ENTRY (Con't.) 

Indirect Stack before a call to 

GET STACK ENTRY After 

i 

n e---4- n ..----., 
.. ...... -1 m, m 

- .... -o o 

STACK PTR STACK PTR 

If compiler diagnostics have been requested, then 
a message is pointed naming ~he allocated stack entry. 

References: 

SETUP STACK, RETURN' STACK ENTRY together with GET STACK 
ENTRY provTde a complete-picture of allocation and dealloca-
tion of Indirect Stack Frames. 

5-227 

INTFIlMETRICS INCORPORATED· 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 , . 

.. h .. h"' -. ..··.·,_L .. = h ..... ,'.~. ~""" __ ""·""'·h~:c:::. .• ~~~_.c:...~~~=,-~;*'.;;,,;, ncr':. _"",;_.~_._, ......... " ... 1M.". .... " .................. . 

1 
:] 



j , 

,-[~" 7-·······- . , .. --,.~ ·,··C·· T "~"'_"C ·C'-·~ .• -~. _~,-··-._-~-·.~~~-~ ____ ----T~·~,7~-·-~~_-~_.. ''"'. ' 
-1--, . 

GET VAC 

Function 

Purpose: 

To set up an Indirect Stack entry for a register 
temporary. 

Parameters Passed: 

R: The register number, or a negative value if no 
particular register specified. 

TYP: The type of the register contents. The default 
of 0 is taken to indicate type INTEGER. 

Local Variables: 

PTR: A pointer to an Indirect Stack entry. 

Value Returned: 

PTR: A pointer to an Indirect Stack entry. 

Description: 

If R is negative, FINDAC is called to find an index 
register to use as a temporary. GET STACK ENTRY is 
called to get a new IndirectiStack Entry to represent 
the temporary. PTR points to it. The relevant fields 
are set: FORM to VAC, REG to R, and TYPE to TYP. The 
Register Table field R TYPE for R is set to TYP. The 
pointer to the entry is returned. 

5-228 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETIS 02138 • (617) 661-1840 

t} 
,·f 

' , l -

.~ft;. 
1it~' 

~ 

J 
I 
i 
I 
~ 

I 
~ 

I 
i 

I 
I 
~ ,. 

I 
~ 
~ 

I 
I 
'.' 
~ 



r 

...... 

GETARRAYDIM 

Function 

Purpose: 

To pick up an array dimension from the Symbol Table. 

Parameters Passed: 

IX: The array dimension. 

OPl: Pointer to the array's Symbol Table entry. 

Local Variables: 

None. 

Value Returned: 

The IXth array dimension of OPl. 

References: 

See SYT ARRAY field of the Symbol Table. 

Description: 

This function returns the number of copies of a 
structure determined by SYT ARRAY(OPl) or the IXth 
dimension of an array determined by EXT_ARRAY (SYT_ARRAY(OPi+lX) . 

5-229 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 



I 
r 
) 

\ 

------!--~-~~~---'~ .s"' , ,> _" ~", .W",_' _" "~~"!:1! .. _~n -~"~~~"~~;,;;;;~~ .. _"""""",",~_'!",,~~'--'--
'!,J1']lI'IJ.~lSg;J;;:A;;:Vt:;;(",;ti_"' __ ""¥~~"'A"""""_'7'~' ,::..,;-, 

GETARRAY# 

Function 

Purpose: 

To determine the number of array dimensions of a 
Symbol Table entry. 

Parameters Passed: 

OP: Pointer to a Symbol Table entry. 

Local Variables: 

None. 

Value Returned: 

Arrayness information. 

References: 

The SYT ARRAY field of a Symbol Table Entry. 

Description: 

GETARRAY# returns 0 if the Symbol Table entr.y is 
unarrayed, or if it has * size arrayness indicated by 
SYT ARRAY(OP) < O. Otherwise, it returns the number of 
array dimensions. This information is found in EXT_ARRAY(SYT_ 
ARRAY (OP) ) • 



GETFREESPACE 

Function 

Errors Detected: 

BSll2: Storage Descriptor Stack overflow. 

BSl13: Exceeded temporary storage. 

Purpose: 

To find temporary storage in the runtime stack 
frame of the block for which code generation is occuring, 
and to set up the Storage Descriptor and Indirect Stack 
entries to represent it. 

Parameters Passed: 

OPTYPE: The operand type to be stored. 

TEMPSPACE: The amount of temporary storage needed in terms 
of the product of any dimensions of arrayness 
and the halfwords occupied by a structure, the 
length of a character string, or the number of 
data items in the other data types. 

Local Variables: 

TYPESIZE: The number of halfwords occupied by one data 
item'. 

SIZE: The number of halfwords of storage necessary. 

TEMP: A temporary value used while searching for 
sufficient storage. 

Value Returned: 

A pointer to the Indirect Stack entry representing 
the storage. 

! 5-231 

I 

t 

I , 
.j 

1 
,,' 

, 
~ I:.< 

" INTERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 " 

U~-'"·*:::~:-:;-::::::=:lt;:;;:;:::':' •. ~ .. -' ...• ~:7='::::::::;;;:::'::':::::~""':'"~"::::"":=-'J~Jlliiiil_'"J 



GETFREESPACE (Con't.) 

Communicates via: 

Creates a new Storage Descriptor Stack and a new 

Indirect Stack entry. 

Description: 
WORKSEG(INDEXNEST) 

(-

LOWER: 200,000 

o UPPER: 
POINT: 1 

LOWER: 
1 UPPER: 

POINT: 4 

LOWER: 
2 UPPER: -1 

POINT: I 
.. ' 

3 
LOWER: I 
UPPER: ! 
POINT: 0 

- --.. ~~-
Storage 'for 
entry 3 

4 

5 

! 

LOWER: I 
UPPER: 
POINT:· 3 

LOWER: I 200,000 
UPPER: 0 
POINT:l 0 

STORAGE DESCRIPTOR 
STACK 

///~/~/ /;/ " 

,,' ,,/' -,/ , / /' / 
"./ / / .. / 
,/ :/:j-// 

. ~,:;~:/ /' ", '~<'~ 
TEMPORARY STORAGE 
For Runtime Stack 
Frame INDEXNEST 

---7---' 7 ' -
" / // /Unallocated temporary 

-~--- storage. 

Above is a diagram of a possible configuration of 

the Storage Descriptor Stack and Temporary Storage at 

some time during code generation. Only the fields 

of the Storage Descriptor entries relating to storage 

allocation have been shown; ARRAYPOINT, WORK OR, WORK USAGE 

have been omitted. 
-

5-232 

INTf!:lMETRICS INCORPORATED· 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-184tl 



• 'i 

I 
'I 

GETFREESPACE (Con't.) 

GETFREESPACE searches the Storage Descriptor Stack for the first entry whose UPPER field is not greater than zero since this indicates the entry is not being used. If UPPER is zero, then the entry has never been allocated previously, and FULLTEMP, the maximum S'torage Descr iptor Stack size, is incremented. An UPPER of -1 indicates that the entry was previously allocated but is no longer needed. 

The procedure computes SIZE, the number of halfwords of storage necessary. The allocated temporary storage is searched to see if there is room for the new entry between two existing entries. The space between entries is due to alignment requirements and storage entries that have been released. Searching for space involves using the linked list formed by the POINT fields of the entries. POINT(O) points to the first allocated storage in the work area of the runtime stack frame. POINT of each subsequent Storage Descriptor Stack entry points to the entry occupying the next allocated storage. The last member of the list points to O. LOWER of each entry points to the beginning of the area in Temporary Storage occupied by the entry, UPPER points to the end. 

To begin the search, TEMP, a temporary variable, is set to WORKSEG(INDEXNEST) and then normalized to meet alignment requirements. IX2 is used for chaining through the linked list and is initially O. IXI is the entry in the Storage Descriptor Stack to be allocated. Now a loop begins to see if TEHP + SIZE < LOWER (POINT (IX2) ). If it is the loop is exited. Otherwise, IX2 is set to POINT (IX2) , and TEMP is set to a normalized version of UPPER (IX2) and the loop is repeated. 

When space has been found, the new storage Descriptor Stack entry is allocated, and the POINT fields are changed to insert the new entry at the appropriate point in the linked list. If UPPER (IXl) is greater than MAX·:rEHP (INDEXNEST) , the maximum storage needed by the Runtime Stack Frame, this . number is changed. WORK CTR(IXl) is set to the current HALMAT line and WORK USAGE(IXl) is set to 1 to indicate one user of the Storage Descriptor Stack entry. 

A new Indirect Stack entry is setup to represent the Storage Descriptor Stack entry. Its form is WORK to indicate this. The LOC field is set to the Storage Descriptor Stack entry. The BASE of the entry is TEMPBASE since anything in the Runtime Stack is addressed from this register. The DISP field is LOWER (IXl) except for vectors and matrices. For them, DISP is LOWER(IXl) - TYPESIZE because of the addressing conventions used. 
5-233 

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE. MASSACHUSETTS 02138 • (617) 661-1840 

1 
1 



--'--~-'~~~~~~'~~=·~~~_::~_:z:_~~=~:!:.:~=::~:1~: ''''i'~' 

GETFREESPACE (Con't.) 

GETFREESPACE returns a pointer to the Indirect Stack 
entry as set up. 

Poss\ble configuration of Storage Descriptor Stack 
and Temporary Storage as shown in the previous diagram 
after a call to GETFREESPACE:, 

o 

1 

2 

3 

4 

5 

WORKSEG(IN~EXNEST) 

LOW:KR: 200,000 
UPPER: 
POIN'r: 1 

LOWER: 
UPPER: 
POINT: 

/ 

,-1----/ LOvJER: 
Storage for 
entry 4 

UPPER: 
POINT: 4 

L9{·vER: I 
UPPER: 
POINT: 0 

LOWER: 
UPPER: 
POINT: 

LOWER: 
UPPER: 
POINT: 

3 

200,000 
o 
o 

STORAGE DESCRIPTOR 
STACK 

TEMPORARY STORAGE 
For Runtime Stack 
Frame INDEXNEST 

~~/Unallocated temporary 
storage. 

Entry 2 was the first entry with UPPER -,> 0, so it was 
allocated. 

5-234 

INTERMETRICS INCORPORATED· 701 C'JNCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138. (617) 661-184(1 

\,,-
i 

. "'I" • ij, 

" " 



I- II~~~-C _,_ •• ,_, __ ", ' '~-""'''."'''",r'''''''~'''. ,r",:_ 

, 1~ ~~.~~, ,--,.,-. "'-',' ~ .. .".-~---~,".~ - .----.~~'?""'"~- ,.,- ... -.... ~~ .... -------.." -"-"'---"-""}":!~ ~- ............. -."".,..~ ... '-.-.. ~-- ~~-=~.-~ -·-··-··~l~~~··· "" 
~~~~~ ~ ..... ~--~--"'- . r -;.-", '''., __ ' _';:: -,,", ~':-'.,-'-!>.'~_':-_':_. ;':-,!!-:~_:,-~:.,--': ,~':'-:,:-:- ':;_'-.--,,'-:-;;:;.-:'-:;:::-;;'--:-":"'::J":-"': •. --Z' _,-TI_'''~: -V;::' "·>V'''~_,:.-.'. -">--';1' ~, •. ". "_,', ,._ ~. ',;;;..,.:::,;,~'~.0'-::- -'';' '. . ..• :t,,~.:-: ....... ~, . , 

GETINTLBL

Function

Purpose:

Create stack entry and statement number for flow
number.

Parameters Passed:

LABEL#: a flow number.

Communicates via:

LABEL ARRAY and indirect stack.

Returns:

Pointer to generated stack entry.

5-235

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

r
r
1

GETSTATNO

Function

/
Errors Detected:

BS 114: statement labels all in use.

purpose:
To get a free statement number to use as a label.

Parameters Passed:

None.

Local Var iables :

None.

Value Returned:

A statement numbeF·

Description:
STATNO, the number of statement numbers generated,

is incremented and if the result does not exceed STATNOLIMIT,
it is returned. otherwise, ERRORS is called.

..~. I

5-236

IN1~RMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661~18df)
t 7~

.--'-""~ .---.::;;..-.---~,------~

i ;;

.!
i

, I
~ ,
.,
~\ i
, I

.-rr"
"'~

GE'rSTMTLBL

Function

Purpose:

To set up an Indirect Stack entry for a generated
statement label.

Parameters Passed:

STATNO: A statement number-label.

Local Variables:

PTR: A pointer to an Indirect Stack entry for the
statement label.

Value Returned:

PTR: A pointer to an Indirect Stack entry for the
statement label.

Description:

PTR is set to the result of calling GET STACK ENTRY.
The form of the entry is set to STATNO, to show the entry
represents a statement number. LOC and VAL of the entry
are set to STATNO. PTR is returned.

5-2-;7

INTERMETRICS INCORPORATED· 701 :..;Qt\jCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

.l

Procedure

Purpose:

To set up addressing for a symbolic variable.
This includes stack walks, dereferencing, external
referencing, base register loads, etc.

Parameters:

OP: indirect stack entry for variable to
be referenced.

IN$T: instruction to do the referencing

BY NAME: if false, dereference pointer variable

NEED SRS:

Local variables:

R: register to use

PLOC: symbol table pointer for item to be addressed

5-238

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

.L

............. '.".-. " .. ' --.•.. -.~.~.-•• ~'--~ .. '~~-~~~~~~.. ,..".,.,'M'" .. · '''''~''''<~~~~~~r'''''''''''''''~'-

'. - -~'.-" ~--'---.'.~ •••••••.••• _...... -". ---->-,< -'''-- ,- • ~~.-':C~.,~_,~::.:.~.~.~:;~:::.:~~.':;.~:jI~ _ . ~~~ .. "-:~ , -. ·!'''1:.·..::,:-.::I!~:;-":.:::~_.:t-..;::...., ____ •.. -~_,- .. _ _ ___ . ___ "

r

HEX

Function

Purpose:

To convert an integer to external HEX notation.

Parameters Passed:

HVAL: The value to be converted.

N: The length of the hex string to be returned.

Local Variables:

K:. Temporary variables.

B: Temporary variables.

Value Returned:

The external Hex representation of the number.

5.,.,239

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

i .,

HEX LOCCTR

Function

Purpose:

To generate a readable current location counter.

Parameters Passed:

None.

Local Variables:

None.

Value Returned:

A formatted external hex representation of
LOCCTR(INDEXNEST).

5-240

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138· (617) 661-1840

r:

. ,
i
!

INCORPORATE

Procedure

Purpose:.

To incorporate integer constants associated with an
Indirect Stack entry into the register containing the entry.

Parameters Passed:

OP: A pointer to an Indirect Stack entry.

Local Variables:

LITOP: A pointer to an Indirect Stack entry for
the constants.'

OPER: An opcode used for incorporating the constants
into the term.

Communicates via:

The Indirect Stack and the Register Table.

pescription:

If COLUMN (OP) >0, then OP is an Indirect Stack entry
for a bit string that starts at the bit position indicated
by the stack entry represented by COLUMN (OP) . BIT SHIFT
is called to shift the operand contained in REG(OP) left by
the amount represented by COLUMN(OP). Then the register
contents are masked according to the length of the bit
string, SIZE(OP), by calling BIT MASK. RETURN STACK ENTRY
is called to return the entry pointed to by COLUMN(OP).
COLUMN (OP) is set to 0 to show that the shift has been
incorporated .

5-241

INTF.RMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

r~"? ~,~

I
r'C--- c- -~ ~~.-~ - .. - -. - .. -- .'--~-----

I

INCORPORATE (Con't.)

If CONST(OP),=O, there is a constant term that should
be incorporated into the register that will contain OP.
GET INTEGER LITERAL is called to get an Indirect Stack entry
for-the constant, and a pointer to it, LITOP. If REG(OP)
is negative, then the entry is not contained in a register.
FINDAC is called to find a register for OP, and OPER is set
to LOAD since the register will be loaded with the term. If
OP has a register, OPER will be SUM since the constant will
have to be added to the register contents.

ARITH BY MODE is called to add or load the constant
into the register. R CON(REG(OP»), the total of all
constant terms in the-register, is incremented by CONST(OP).
CONST(OP) is set to zero since it is incorporated into the
register •. The Indirect Stack entry for the constant is
returned since it is no longer needed.

5-242

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

i

INITIALISE

Procedure

Purpose:

Initialize phase 2 of compiler, allocate compile time
storage, reorganize selected parts of the symbol table,
allocate storage for all declared variables.

A collection of flags are set up based on the contents
of TOGGLE, PARM_FIELD and OPTION BITS.

Compile time, storage has already been allocated for
the tables inherited from phase 1. Storage is now allocated
for the'EXTENT array which will be passed to phase 3. After
that, storage is allocated for the other six columns of the
symbol table which are local to phase 2, for the LABEL ARRAY,
for the LOCATION array, and for the LOCATION LINK array. This
storage will be returned at the end of phase-2. For each
non-IGNOREab1e name in the symbol table perform appropriate
initialization actions.

SYT CLASS=O

This is an impossible value and consequently indicates
that all the entries have been processed.

First, ESDs are defined using the appropriate setup
routines depending on the type of the program unit. Then
the locations (in the stack frame) for the error vector,
temporaries, and work areas are laid out for each procedure
iI1 the compilation unit.

5-243

\ INTERMETRICS H·jCORPORATED • 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138· (17) 661 18.FI

"

INITIALISE

STORAGE ASSIGN.MENT assigns a location to every variable.

The REGISTERS array is set up to indicate the possible
uses of each register; the NOT MODIFIER, PACKFORM, and
SYMFORM array~, are initialized-here rather than at their
declarations tor convenience; the indirect stack is built
and finally the procedure returns.

SYT CLASS=1

The unusual placement of the declaration of procedure
VARIABLES here is for historical reasons:

For non-parameters, simple process using VARIABLES.

For parameters, determine type of parameter passed (nb.
for arrays, ••• parameter is pointer) and size and addressing
information on actual parameter.

SYT CLASS=2 labels

If not NAME or EXTERNAL

statement label -- assign it a statement number

procedure -- PROCENTRY, CHECK_COMPILABLE

task -- PROCENTRY, assign unique task number,
ENTER_ESD, link into list of tasks

program -- PROCENTRY, CHECK_COMPILABLE

compool -- similar to program

external label -- link into list of external labels

if parameter

count argument, PARAMETER~LLOCATE, SET PROCESS SIZE

if E~{TERNAL

if non-HAL

link into list of non-HALs

otherwise,

PROCENTRY, ENTER ESD.

5-244

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

1
j

. '~ " I
]

r r
i

--'-"-::-.-'--~ __ O'~ ... ~-7fr""7~''''''_''''=.=_~~"''"-~_~_'''''_!+'''~'''''.''''._;W;!'@'''''._""'q""" .. --....."....".'W!"_4 lii.E -..,....'lI!U 9"""'£""'_"'" ... 9 ""Ii"""',.,§IJ&2!!Z~!!!' l£""i,'.,.,S_'l"I J&""'lCfO .. ''''Ia.,I'''I'i11!!!'.:m!!!llltZ''''=_4''!'1!'S ... ' S,","'_;W!lII!!_""" __ _

, _, _-:::_....: ... ~.~~ _~, ",..,.~~~ ... ~~~~it"~"a~.

INITIALISE

SYT CLASS=3 functions

For regular HAL functions, fill in information about
the type of the function in a format similar to a variable
of that type after first doing a PROCENTRY and a CHECK
COMPILABLE.

If NAME FLAG is on, this is. a NAME variable which can
point to a function (currently illegal).

For non-HALs, link into list of non-HALs and then
process like a variable.

SYT CLASS=7 templates

Guarantee that only the full template is processed
by checking for SYT TYPE=TEMPJ ... NANE. Perform a complete
template walk. For-each node or leaf

node -- ENTER, set type to STRUCTURE, remember location
in SYT SORT for ALLOCATE TEMPLATE

leaf is a structure -- ENTER, set type to STRUCTURE, copy
information from template of the leaf.

leaf is name of program or task -- ENTER, SET_PROCESS_SIZE

leaf has a simple type -- VARIABLE, if NAME handle as functions;

When finished with a minor node, ALLOCATE_TEMPLATE·l

When finished with whole template, remove it from SYT SORT,
then traverse entire template, relocating sub-trees so that
SYT ADDR of each node be.comes the total offset from the beginning
of the template. Link template into list of templates.

5-245

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETIS 02138 • (617) 661-1840

3

INTEGER MULTIPLY

Procedure

Purpose:

To generate code to perform integer multiply. If
both operands are in registers, an attempt is made to perform
the multiply without making a copy but this may be impossible
if the register pairs are not available. If one operand is
a power of two, the multiply is done by shifting. In all other
cases, EXPRESSION is called to generate general purpose code.
Notice that if EXPRESSION gets an XEXP opcode it performs a
non-commutative multiply.

Parameters:

OPCODE: the opcode part of a HALMAT instruction.

5-246

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

1

INTEGERIZABL1,t

Function

Purpose:

To convert a scalar to an integer. The scalar is
in DW(O) and DW(l). Since XPL has no scalar. data type,
the code is written in machine language. The code checks
that the scalar is small enough to be represented as an
integer •.

Parameters:

None.

Returns:

False if the scalar is malformatted or is too large;
true otherwise.

If true, DW(3) contains the integer equivalent.

5 ... 247

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

''''., _._'- .-".-,.--...... -~ ... -~'.~~.-.. --.-.-.. - .. ".,.'.."..". .. - -=..,.,..,.~~~!-. " , .. ,.""'-.,\--

", .. .::.l.., •.. ;~.::::=.-_.::::.,-.-. ..:.--..' -;,,, ."'~. '-::.,.-,- .~,,~~"~-i::.\;:::~:-_f.;. "'.' "'--,' 1< ,j~ ~_ .. L.

INTEGER VALUE

Function Fixed

Arguments Passed:

PTR, a pointer to an indirect stack entry.

Returns:

A fixed point value or NEGMAX.

Procedures Called:

INTEGERIZABLE, INTEGER VALUED

This routine analyzes an indirect stack to determine,
if it is a numeric literal. If so, it checks for INTEGER
data type, and returns the corresponding VAL if true. Other
wise, it checks if the SCALAR number is both representable
as an integer and is a whole number (no fractional digits).
If so, the intergerized value is returned. A return of NEGMAX
indic~tes that the stack does not represent an integer valued
numeric literal.

5-248

INTERMETRICS IN(~ORPORATED' 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

,

!
"

I:

LITERAL

Procedure

Purpose:

To set up a stack entry for a literal. This includes
any necessary type conversions.

Parameters:

PTR: literal table pointer

\LTYPE: type of desired literal

STACK: an indirect stack entry to be filled in.

5-249

LOAD NUM

Procedure

Purpose:

To force a number into a specified register.

Parameters Passed:

R: The register to be loaded.

NUM: The number to be loaded.
,

FLAG: ·If bit 1 is non-zero, then R's Register Table
entries are unchanged; if bit 3 is one, then
the double precision is used; if zero, then
single precision.

Local Variables:

LITOP: Pointer to an Indirect Stack entry for NUM.

RT: If the number is in a register, this is the
register it is in.

Communicates via:

Register Table.

Description:

GET_INTEGER_LITERAL is called to get: an Indirect Stack
entry for the number, and a pointer to it, LITOP. The
TYPE (LITOP) is modified to indicate the precision specified by FLAG;
bit 3 of the type specifies precision (double pr~cision if one;
single precision if z,ero), SEARCH REGS is called to search
the registers for the number. If-it is in a register
already, it can be loaded into R using an RR instruction.
Otherwise, various tests are carried out to determine how
to load the number into the register, and the proper code
emitting routine is called.

5-250

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

(-3: :;
' ,./

l"-··~~r.~ "0 .~.~"T .

. __ : .. :.:": _ . .It. ~

LOAD NUM (Con't.)

If bit 1 of FLAG is ZERO, the Register Table entry
for R is changed as follows:

USAGE (R) = USAGE(R) /1: the usage is known.

R_CONTENTS(R) = LIT: the contents are a literal.

R_CON(R) = NUM The register contents.

R_XCON(R} = 0 The register contents.

The stack entry for the number is returned once it is no
longer necessary.

INTERMETRICS INf;ORPORATED· 701 CONCORD AVENU:~2:A~BRIDGE. MASSACHUSETTS 02138' :.~'::~~.~.~~~O]
"c_ '-.::b:"'_7;-_' _____ ,._.~ ~,-"",~::_""---,-.,,.~. -<"""""" ___ .'-'.'_'''-''' ·-,"._.,;",~·~;";....u.··"'.z·"'''''£'~-'~=;:::'.'O!i.n:.-. ____ _ ,~ . .:~~.'='t:""~..:=.= O..2o·;a;f:;."",z..""""""-,.<l;..1!:-="""'.~--=""' .. ""'~'Ji.·...c'_'"<;~.-"".I".<":"",".,."",,r :

MAJOR STRUCTURE

Function

Purpose:

To determine if a STRUCTURE Indirect Stack entry is a major structure.

Parameters Passed:

OP: A pointer to an Indirect Stack entry.

Local Var'iables:

None.

Value Returned:

TRUE if OP is a major structure, FALSE otherwise.

References:

The procedures STRUCTFIX and STRUCTURE DECODE.

Description:

If the operand type is STRUCTURE and LOC2(OP)=SYT DIMS(LOC(OP) I the struture is a major structure. This is because of-the way STRUCTFIX and STRUCTURE DECODE ~et up the Indirect Stack entry. LOC(OP) will always point to the Symbol Table entry for the structure reference's major structure. LOC2(OP) points to the Symbol Table entry for a structure node, and the structure template's Symbol Table entry for a major structure.

5-252

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

I

Ml>.X

Function

Purpose:

To find the maximum of two values.

Parameters Passed:

VALl, VAL2: Two values.

Local Variables:

None.

Value Returned:

The maximum of VALl and VAL2.
i
1
i
1

j
, ~

't
" I

,-~

~ :l
i

',>~,

!

1

5-253

INTFRMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138' bi,j 661·1840

MIN

Function

g
~
l
[i
~

Purpose:

To find the minimum of two values.
y ,
I,
~

H
Parameters Passed:

1':

~
I', VALl, VAL2: Two values.
~
~
" "

Local Variables:
" ~
~
;~

~ None.
~
('j

q Value Returned:
;1

The minimum of VALl, VAL2. ~1
~
F.
lj

rt
~
;~

.1 t~
;~

~
t-; ,
"

5-254

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

f
! '

····.·.--·--.~~T~ ... ~ •. ~~~~.~, *~ •• ~,,~,~, ,~. ~~---.~-~- .~~........:..:-~~~~ •.. ~. '''T'"'r~'~~'I~'-- -y .

i[l!llJl""' __ -._ •• ,,.,..t.""':.l'."_') .. ,.- .. .,_'"r"-~ ~._ __~_-..::::_.»"..::::~~.;-_"_ _ _ __ ,' r l{ " .' >;.

MOVEREG

Procedure

Purpose:

To move register attributes from one register to
another.

Parameters Passed:

RF: The register the attributes are being moved

RT: The register the attributes are being moved

RTYPE: Tye operand type of the register contents.

USED: A flag indicating whether the USAGE of RF
should be decremented.

Local Variables:

None.

Communicates via:

The Register Table.

Description:

from.

to.

If RTYPE is DSCALAR, RT+l is loaded with RF+l, and
RTYPE is changed to SCALAR. EMITRR is called to load RT from
RF. If the contents of RF are known, (its USAGE is odd),
the fields in the register table for RT are equated to the
corresponding fields of RF. The USAGE of RT is set to 3 to
indicate it has one known use. If the contents of RF
are unknown, the USAGE of RT is set to 2 to indicate one
unknown use. If the USED flag is one, the USAGE of RF is
decremented by 2.

Reference:

Opcode construction.

1
, j ,

I ~
: 1

'f.

NEW HALMAT BLOCK

Procedure

Purpose:

To get a new block of HALMAT.

Parameters Passed:

None.

Local Variables:

None.

Communicates via:

The global variables, OPR, CTR, CURCBLK.

Description:

The next block of HALMAT is retrieved from CODEFILE
and stored in the OPR array. CURBLK, the current HAL MAT
block, is incremented. CTR, the pointer into the OPR
array, is set to O. NUMOP is set to the number of operands
in the first HALMAT instruction.

I.

.,. __ rrill

/+.
I

'~fJ-

NEW REG

Procedure

Purpose:

To move VAC to a new register.

Parameters Passed:

PTR: A pointer to an Indirect Stack entry.
USED: A flag indicating whether the usage of opts

current register should be decremented.

Local Variables:

RTEMP: The new register.

Communicates via:

Indirect Stack.

Description:

FINDAC is called to :find a new index register, RTEMP,
for the Indirect Stack entry to use. MOVEREG is called
to move the attributes and contents from the stack entry's
old register to the new one. The entry's REG field is
changed to RTEMP.

5-257

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

ttm . w.,.."..w

NEW USAGE

Procedure

Purpose:

To clear outdated variable usages from the registe17s.

Parameters Passed:

OP: A pointer to the Indirect Stack entry for thel
outdated variable.

FLAG: A flag indicating that UNRECOGNIZABLE should
be called in spite of differences between the
register and stack entry's indexing constants.

BY NAME: Variable has NAME attribute.

Local Variables:

I: A do loop temporary.

Communicates via:

Calling UNRECOGNIZABLE.

Description:

The procedure checks each register whose usage is
known to see if the register's properties and the stack
entry's properties match within a certain tolerance. If
they do, UNRECOGNIZABLE is called to indicate that the
register's contents are no longer known. The BY NAME
flag is used to help determine which properties to match.

5-258

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

1

In j ±!

NEXTCODE

Procedure

Purpose:

To position to the next HALMAT operator and decode it.

Parameters Passed:

None.

Local Variables:

None.

Communicates via:

The global variables, CTR, PP.

Q,escription:

PP, the number of HALMAT operators decoded is incremented. CTR, the current HALMAT operator pointer, is incremented to point to what should be the next HALMAT operator. The last bit of this word is tested: a value of 1 indicates that it is an operand word; a 0, an operator word. As long as the test. indicates the word is an operand, CTR is incremented •. When the next operator is found, DECODEPOP is called to decode i+:.

5-259

EPRODUCIBILITY OF THB
~RIGWAL pA.GE IS POOR

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUS.ETTS 02138· (617) 661-1840

,
'1
..........

;-:

. ·, ... -A
-.. -" -·'··".,,··-~,~~-'-~,·," ... c.."'''-''''''·7''''iliii!ii''''''''~11~tlliil~~~I.~-·~"'~,JIIJ,I .• nJlI· •• 'lIld •• 11i!!.iIiI.dilM.· -_->IlC_d~~..I!o'.1.k~,~~-,--..;.<.~"-,--.;..:;,,._.>t1,'-""':~1S~':;;""";' •• ";',4'~'X.:km""" ;;,..*j;i;;~·_""""'=iim· r".ciA'.Z;~1 ,.-....:...:.~- __ .::.<.:.l;.~~ -'.:¥ ·'':'~L_

.----.-----.-"'.-.. -~-.--~-.-".-~-~-------------------~'-~,~-c~",......----~--·· --~~~--~"""'""'.,.~~.-~~~--~-~~. T'" - n, ... "'-""[~~

, :;"'f~"""f';;' ~ " ' "._ ~ ,~. __ . ~ ___ ~. _ .. :...:.::::.. ... _ . .-:.._ ~".'!::. ::::_._~"'i-".::::3~~.7.-:.'''"' -~.--.-"":~_.,~ ' - .' -::E~.-::.:.::.:<::~.~-:::.,;_·::.::~~~:~·:'~7::~_.:.-:::.~·L _'~~~ .. :.::~_::E-,:.,.~~~f·':'1-i."':~~-k1·';l-~~.~~:~ ',:",:" ;' <' :-:..:. -::.- ". 1

OBJECT Cu~DENSER

Pro(::edure

Purpose:

To condense the intermediate code. The entire intermediate
code file is read. All labels are checked for consistency
(this is a check on compiler consistency, not source program
consistency). .

In the FC compiler, an attempt is made to use short
form addressing in SRS instructions.

J

5-260 ,

INTERMETRICS INCORPORA TEO • 701 CONCORD AVENUE_:CA_M~B~R~I~[)_G_EI_M_A_S_S,-A_C_H_U_S,-E_TT_S_02_1~3_b . (617) 661 -18-0__. J

r I ' ... ' '''''.''~",-''.'' '"···,...··-··-"··--···~··"···"-..,..~'-,r"··'"-"" .-'- ... -,-"'.-~"" .. ~-",~---~--..---.. ·· .. ·......,1."."......, .. " ~ ... "-'~ ' !~.' "-..... 'e

~l~'e&V!t~!:~""".!.: :~~'2'i"':~_'f.".""""' "._·"~T~""~' ",~'''';·!'~ __ '';·'C"''''''''·;''''''''-'''"'·,'''-=.:o'''''_=''''''_,,',,"''.'C7:';:'·-·"",',',':C:"" " ".,~~~!"',''''~..,..,

OBJECT GEN~RATOR

References:

The intermediate code is described in the 360 Compiler '
Spec, Appendix C.

Purpose: :

To translate the intermediate code file to an object
module acceptable to the FC or 360 li~kage editor respectively.

OBJECT_GENERATQR must output cardimages containing
alphabetic and Qon-alphabetic data. Since XPL I/O is all
alphabetic some magic rnust be performed. Specif'ically, the
cardimage is built in an array (not a character string) and
a character string descriptor DUMMY CHAR is built to allow
this cardimage to impersonate a character string. Since it
is sometimes convenient to move words and other times conven
ient to move bytes, the

DECLARE CARD IMAGE FIXED, COLUMN (79) BIT(8);

_~9ua_tes C~~plMAGE (i) with COLUMNs (4i-4, 4i-3, 4i-2, 4i-l).

NEXT REC reads the next intermediate language instruction
and breaks it down into:

TEMP = l LHS RHS

16 16

GET INST R X breaks down RHS and returns a properly
shifted instruction code:

=..<

I FI IIAI \
INST R IX

8 1 3 1 3
... ,,_ .. -... _---', .-_._---

l

RHS

Notice that the INST (in ~oth compilers) is usually a
360 opcode and consequently must be tr~nslated by AP-10lINST
for the FC compiler.

After emitting the SYM and ESD cards, the routine reads
the entire intermediate code file.

5-261

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

...... ='~,:,,:;f. ""-..,,c;;L,~,," :.', i" .~~~,,",,",=,;<.idlli. ,"',~ .. ~.

OBJECT_GENERATOR (Con't.)

RR Type:

If INST < "04" instruction is AP-IOI load fixed immediate. OR together the instruction code and two registers and emit it.

RX, RS, RI, SS Types:

Build addressing with FORM_BD, put it all together and emit it.

DELTA:

Add it into ADDRESS MOD.

Labels & Statement Numbers:

Print the right name.

CSECT:

If this is a different ESD, print it.

Set CURRENT ESD from instruction and if address specified, set CURRENT ADDRESS too.

RLDs:

Use EMIT RLD to make table entry. The actual RLD cards will be issued later by EMIT RLD CARDS.

SRS Instructions:

Form base displacement with FORM_BD, put it all together and emit it.

56 = Address Check:

This instruction causes generation of SDF information via EMIT ADDRS. Specifically, the HALlS statement number (RHS) , first location of the sta~ement (ERRSEG(CURRENT ESD», and last location of the statement (STACKSPACE(CURRENT ESD» are output. ERRSEG and STACKSPACE are maintained by INST ADDRS. EMIT ADDRS is called from INITIALISE to initialize itself and from-TERMINATE to clean up.

After handling all instructions on the intermediate code file, RLD cards are issued, and an END card is issued. If this is the main program, a compilation of a program called START is simulated. START simply calls the main program.

5-262

INTEFlMETRICS INCORPORATED· 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840
~

"' I

% -.11

'I

I~·:-
--.,-.--.,.----~~--~-~~ ~.._.r_~:lI(""z:~ _ .,i:E ~- -~=-- ~""'---l:;::'!,"- W>t:e;;a""'.;.:;;;;_::;::o=m"-:::, ... :w ~;"""&i --'!f*1~~~-' -~~-

." .. .~C'~"~ , '.' L.,.C· "" .• "'.- •. ~L .,,...-'_,;." ''''..:l'-'7r.,. >>-,~ " _

-- --~ .- ---" -.--- .. -- - -.-~- -.-~--

OFF INX

Procedure

purpose:

To decrement :the usage of an index register.

Parameters Passed:

R: The register or a negative pointer to an Indirect
Stack entry for the regist.er if it has been
checkpointed.

Local Variables:

None.

Communicates via:

The Indirect Stack and the Register Table.

Description:

If R is positive, it is the actual register number.
The only thing that needs to be done is to decrement
USAGE(R) by 2 to show there is one less claim on the
register.

If R is negative, then R = -R to get a pointer to the
Indirect stac::k entry for a checkpointed register. DEL(R),
which corresponds to USAGE of a register, is decremented by
2. If DEL(R) is zero, the value of the checkpointed
register is no longer needed. DROPSAVE is called to add
the Storage Descriptor Stack entry for the register to
the list of no longer needed entries. RETURN STACK ENTRY
is called to return the stack entry.

5-263

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

.

"

~'~ -

i
'~ j
iJ
~J
''i
'~ if
,]

'~
;~
I ~

r- ---
f --

1--- --- -- -. ------~~-----------~--~----.-1~-~1
i

OPTIMISE

Procedure

Purpose:

This: routine originally did some machine independent
optimization on the HALMAT before code generation, hence
its name. The optimization function is now performed in
phase 1.5. Currently, the routine scans the HALMAT
for one source statement doing some bookkeeping.

Parameters Passed:

BLOCK FLAG: {o start scan at next HALMAT instruction

1 - start scan at current HALMAT instructior'

Communicates via:

Code emission and assorted global variables.

Description:

Find SMRK and emit intermediate code for it; update
first and last statement numbers; if any errors from phase 1/
call ERRORS; set flags for I/O statement or in-line function
definition. Check for DEBUG directive and take appropriate
action.

5-264

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

r' "'l-~-" ~'r-"_"_" .•• --........ _."- ~~,-..'~.:---~ •• ~.~",......~.-

:"';"f' ::";""'C"' ,'" ': "'''PC"

PARAMETER_ALLOCATE

Procedure

Purpose:

Determine storage locations for formal parameters.

Parameters passed:

OP: symbol table pointer of formal parameter

PTYPE: type of parameter passed'

LEN: number of items passed

Communicates via:

symbol table, FIXARG, PTRARG.

Description:

If the parameter can be passed by register it is
set up for that; otherwise, it is passed in the area after
the REGISTER SAVE AREA. FIXARG or PTRARG is updated
appropriately.

5-265

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840


~~~.-- --.-~-----.----. --~-~ .. -.-, .. --'--~~-~~'~--:". :-::':"'~.--- . -~~ .. -~l' 'r~·~~ .. _ ·~I·~"'··---r~. ,·~-~-l~~·-·· ~.-~--.~- -. ~--"' .. -.'.' _.- .--.-~---.------- .~. ---. . 1 

POSITION HALMAT 

Procedure 

Purpose: 

To position a HALMAT block if necessary. 

Parameters Passed: 

BLK: The HALMAT block to be positioned. 

Local Variables: 

None. 

Communicates via: 

Calling NEW HALMAT BLOCK if necessary. 

Description: 

If BLK is not CURCBLK, CURCBLK is set to BLK-l. 
Then, NEW HALMAT BLOCK is called to position the block. 
CURCBLK is always one greater than the block in OPR. 

5-266 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE. MASSACHUSETTS 02138 . (617) 661-1840 

1 



!. 

~I 

r 
I 

POWER OF TWO 

Function 

Purpose: 

To determine if an Indirect Stack entry is a 
constant integer power of two. 

Parameters Passed: 

OP: A pointer to an Indirect Stack entry. 

Local Variables: 

TEST: A temporary variable. 

Value Returned: 

TRUE if entry is a power of two, FALSE otherwise. 

Description: 

If the form of the entry is not LITERAL, and the 
operand type is not INTEGER, the entry cannot be a power 
of two. If the entry is a positive integer literal, it 
is tested to see if it is a power of two. If it isa 
power of two, INX_SHIFT(OP) records the power. 

5-267 

INTERMETRIC;) iNCORP01ATED • 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSEDS 02138 .. (617) ,661-1840 



f' ---- --·----·-----=:c----~~-_~~I~----T-1 

PROC FUNC SETUP 

Procedure 

Purpose; 

To generate argument passing code. The arguments have 
already been accumulated in ARG STACK. Consistency is checked 
for number of arguments, INPUT/ASSIGN type, type. For INPUT 
arguments, copies are generated where necessary. Code is generated 
to pass the arguments. If there are not enough registers, the 
parameter is passed in the stack. 

Local Variables: 

ARGSTART: point in ARG STACK of first argument 

ARGSTOP: point in ARG STACK of last argument 

ASSIGN PARM: true if current argument is ASSIGN 

NAME PARM: true if current argument is NAME variable 

CONFLICT: true if type conflict between formal and actual 
parameter 

5-268 

INTERMETRICS INCORPORATED -701 CONCORD AVENUE -.CAMBRIDGE_ MASSACHUSETTS 02138 - (617) 661-1840_~J 

1 

,i 



it 

I 

----- ---, --------------~~- ,-~~~--~--- ~--=--~-~ -- .~-. '_'M>, .-------..--~--,,~. --.-~.~., _ • ."..... ........ "!'!!""'-..i'!"'''"''''''''', ... -,,::''''' .......... - """"""~ ....... -""''''''''1''''-- ----~,--...,.-......... ......." .. "["""-~,.,...,.--

'. ,,,,,,'''''~_''''-'+"-O ~ -~~. 

PROCENTRY 

Procedure 

Purp~: 

To do the bookkeeping for initializing tables describin I 
a procedure, task, compool, unlabelled update block, progr<:tin" 

or external label. Set up block definition table entry, 
set: up stack frame r. arameters. 

5-269 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRtDGE, MASSACHUSETTS 02138 • • f.l 1) 6f)1 ~8.1 



PUSH ARRAYNESS 

Procedure 

Purpose: 

To copy array-do-1oop entry from outer level to 
inner 1eve 1. 

Parameters passed: 

LEVEL = call stack pointer. 

Communicates via: 

Array-do-1oop stack. 

Description: 

If this is not outermost level and it is a normal 
procedure/function call, do the copy; ot~erwise, initialize 
to o. 

5-270 

., , 

'" " 

INTERMETRICSINCORPORATED' 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETIS 02138 • (017) 661-1840 

" i 
t ;j 
~{ 

1 
~~ 

~ 
~ 

" ; ~, 

"i ! ; 
~ 
J 

j 
,j 
1 
1 
l 
I 
1 

,~ ., 

t 

1 
1 
I 

~ 
.~ 

~ 
~~ 

i 
J 
~ 

" J 
; j 

11 I 3 
~ 
i 



" 

r- ~-~- r--~~~--~-- --~.---~.~--~ .. ~, ,--"',-~'-,--~~~" ~'~, ... -
i 1-

REGISTER_STATUS 

Procedure 

Purpose: 

Prints out register status if HALMAT_REQUESTED. In 
production runs, it is a no op. 

5-271 

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETIS 02138 • (617) 661-1840 

iiiata\1ll!i __ 2. .1 Ell! 

, 
1 
j 

, 1 

1j I! 
':~ 

~ 



-T~~----
t'·,,· 

.. 

RELEASE TEMP 

Procedure 

Purpose: 

Called when an error is encountered to clean up 
various stacks, and reset various stack pointers. 

Parameters Passed: 

None. 

Local Variables: 

None. 

Communicates via: 

Globally declared stack pointers, the Indirect Stack 
and Storage Descriptor Stack. 

Description: 

This procedure sets various flags and stack pointers 
to zero. It also reinitializes the Indirect Stack, clears 
the Register Table, and frees the Storage Descriptor Stack 
en'tries • 

5-272 

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 

1 

1 
~ 

, .·.1, 'j. : 
~ 



. , 
! 

I 

RESUME LOCCTR 

Procedure 

Purpose: 

To resume a given location counter at its last 
value. 

Parameters Passed: 

NEST: The number of the CSECT whose location cou,nter 
is to be resumed • 

Local Variables: 

None. 

Communicates via: 

The global variable INDEXNEST. 

Description: 

The value of INDEXNEST, the CSECT for which code is 
currently being generated, is checked. If its value is 
NEST, the procedure returns. Otherwise, INDEXNEST is set 
to NEST, which automatically ensures the proper location 
counter is resumed since the location counters are an 
array indexed by CSECT number. EMITC and EMITW are called 
to omit intermediate code indicating the CSECT change. 

Two variables must be reset as a result of the CSECT 
change. CCREG must be set to 0 to indicate the condition 
code is no longer valid. STOPPERFLAG is set to false. 

Reference: 

Appendix C, Section on CSECT Definition in HAL/S-360 
Compiler Spec. 

5-273 
INTERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE. MASSACHUSETTS 02138 • (617) 661-1840 

II 

1 



RETURN STACK ENTRY 

Procedure 

Errors Detected: 

None. 

Purpose: 

To release an Indirect Stack entry. 

Parameters Passed: 
, ' 

PTR: A pointer to the Indirect Stack entry to be 
released. 

Local Variables: 

None. 

Communicates via: 

Changes linked list of free stack entries. 

Description: 

This procedure adds the stack entry pointed to by 
PTR to the,linked list of free Indirect Stack entries. 
This is done by setting STACK PTR(PTR) to STACK PTR 
and STACK PTRto PTR. -,. 

Indirect Stack: 

before RETURN STACK_ENTRY(m) After 

n • .. -- n 

.. 

m I -1 m 

o I e-ts TACK PTR o 

Refer.ences: 

SETUP STACK, RETURN STACK ENTRY, GET STACK ENTRY 
together describe the allocation and deal location of 
Indirect Stack Entries. 

5-274 

• ""'"- . 

• 1 

I 
I 

l .- .. -

INTERMETRICS INCORPORATED· 701. CONCORD AVENUE' CAMBRIDGE,MASSACHUSETTS 02138 • (617) 661-1840 

t 

i ' 

1 ;~ 

! 
i < 
I '. i' 



,. 
I 

-'"~ .. -::::.:::--=--=- '--'"' ~--~- - -r-"l 

SAVE FLOATING REGS 

Procedure 

Purpose: 

Routine to save contents of all floating point 
registers. 

Parameters Passed: 

None. 

Local Variables: 

I:' Do Loop temporary. 

Communicates via: 

Does not affect any variables directly, but it 
calls CHECKPOINT REG which does. 

Description: 

This procedure saves the contents of each of the 
floating point registers, by calling CHECKPOINT REG 
for each register in'turn. CHECKPOINT REG does the 
actual. work involved in saving the regTster contents. 

5-275 

" 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138· (617) 661--,840 

~ 



t 
I 
~ , 

f 

., [. 

SAVE LITERAL 

Function 

Errors Detected: 

BS 109: Constant table overflow. 

Purpose: 

To add a literal to the Constant Table and the 
appropriate literal pool. 

Parameter's Passed: 

OP: A pointer to a literal's Indirect Stack entry. 

OPTYPE: The literal's type. 

Local Variables: 

PTR: A ,po~nter to the literal's Constant T,able entry. 

Value Returned: 

PTR: A po'inter to the literal's Constant Table entry. 

Message Condition: 

DIAGNOSTICS 

Description: 

OPTYPE is set to OPMODE(OPTYPE), the mode associated 
with the operand type which will be used to determine the 
literal pool the operand belongs in. FORM (OP) is, used to 
specify the intermediate code qualifier for the literal 
pool which is determined by adding OPTYPE to CHARLIT. The 
literal pool qualifiers are consecutive numbers starting 
at CHARLIT(INITIAL 8), and can be determined in this way. 

5-276 

REPRODUCIDILrry Oli' llL,/ 

ORIGINAL PAGE IS POOR 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 



r 

, i 

SAVE LITERAL (Con't.) 

The procedure then searches the Constant Table to 
see if OP is in it. Otherwise, it adds it to the table. 
When the constant has b'een found, the pointer to its entry 
is returned and LOC(OP} is set to this pointer. 

The Constant Table can be considered to be five linked 
lists: one for each Literal Pool. The OPMODE of the literal 
determines the Literal Pool. CONSTANT HEAD of the OPMODE 
points to the beginning of a linked list of all iterals in 
the same pc;>ol. Each member of the linked list is a Constant 
Table entry with the following fields: 

CONSTANT PTR:Pointer to the next Constant Table entry 
for a literal in the same pool. CONSTANT 
HEAD points to the newest entry in the 
pool. CONSTANT PTR points to the entry 
preceding a given entry. 

CONSTANTS: The value of the constant. For double 
precision constants, the entry and 
subsequent entry together hold the value. 

The entries in the Constant Table are allocated consecutively 
and are not deallocated. CONSTANT CTR points to the last 
allocated entry in the Table. 

. , 
k ., 



~, 

SAVE REGS -
Procedure 

Purpose: 

To save the contents of specified fixed registers 

starting with R4, and the contents of all the floating 

registers or of R2 if desired. 

Parameters Passed:. 

Nl: The riumber of the last fixec;1 register; to be 
saved. 

FLT:, A flag: 

Local 'Variables: 

Value 

o 
1 

10 
11 

I: Do~ocp temporary. 

Communicates 'ria: 

. Meaning 

O~ly fixed register to be saved 
Floating registers to be saved 
R2 to be saved 
R2 and floating register to be 

saved. 

Does not affect any variables directly, but it calls 

CHECKPOINT REG and SAVE FLOATING REGS which do. 

Description: 

The routine calls CHECKPOINT REG to save the contents 

of the fixed registers from R4 to-Nl and of any registers 

indicated by FLT. 

5-278 

INTERMETRIGS INCORPORATED· 7'01 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 

" 

, ' 
.~ i 

, , 



~'. 

., 

) 

r 
'~ , 

SEARCH REGS 

Function 

Purpose: 

To check if a register contains a specified Indirect 
Stack entry. 

Parameters Passed: 

OP: A pointer to an Indirect Stack entry. 

Local Variables: 

RC: The register class that could hold OP. 

I,J: Temporary variables. 

Value Returned: 

The number of the register containing the desired 
information, or -1 if none do. 

Description: 

To narrow the search, RC, the register class associated 
with OP, is determined by evaluating RCLASS(TYPE(OP}). Once 
the register class is determined, RCLASS START (RC) and 
RCLASS START (RC+l) give the range of index in REGISTERS, 
that contain the register numbers within that class. Every 
register in the appropriate class is searched until one 
containing the information is found, or until the registers 
in the class are exhausted. For each register, the Register 
Table fields and the Indirect Stack entry's fields are compared 
in a manner determined by the Stack entry's form. If all the 
relevant fields match, the register number is returned, 
otherwise, the search continues. 

5-279 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 ] 



SET AREA 

Procedure 

Purpose: 

To establish the area of an Indirect Stack Entry. 

Parameters Passed: 

PTR: A pointer to an Indirect Stack Entry. 

Local Variables: 

None. 

Communicates via: 

The global variable AREASAVE. 

Description: 

The procedure first ehecks that the Indirect Stack 

entry is not a label, and then computes AREASAVE according 

to the"'PACKTYPE of the Indirect Stack entry's TYPE. 

Value 

o 
I 

2 

3 

4 

PACKTYPE 

Description 

, Vector/Matrix 

Bit 

Character 

Integer/Scalar 

Structure 

AREASAVE 

Number of items in the vector or matrix. 

1 

CSE(SIZE(PTR)+2 
unless it is an arrayed character 
formal parameter where it it SYTYIMO. 

I 

The size of the template plus the 
displacement of the template. 

5-280 

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE· CAMBRIDGE, MASSt,0HUSETTS 02138 • (617) 661-1840 " 

i 'I 

i 
!! j 

I 

1 
r 1 

I I 
.:',1 

; , 

1 

I 
1 
\ 

:~ 

... ' .......... ~.--. ~~~J 



!' " 

SET ARRAY SIZE 

Function 

Purpose: 

To set up an Indirect Stack entry for an unknown 
array size reference. 

Parameters Passed: 

OP: A pointer to the Symbol Table entry for the 
reference. . 

CON: The extra storage necessary to pass the 
information. 

Local Variables: 

PTR: The pointer to the Indirect Stack entry set 
up for the reference. 

Value Returned! 

PTR: The pointer to the Indirect Stack entry 
set up for the reference. 

Description: 

PTR is set to the result of calling GET STACK ENTRY 
to get an Indirect Stack entry for the reference. -The 
relevant fields of the entry are set: FORM to SYM, LOC 
to OP, and TYPE to DINTEGER. Since * size arrayness or 
character strings Occur for formal parameters, additional 
storage is necessary to store this information when para
meters are passed. The amount of storage is determined 
by the parameters CON if it is non-zero. Otherwise, 
SYT LEVEL (OP) specifies the amount in fullwords and 
shirting it by 1, specifies the number of halfwords. 
This number is stored in INX CON. The value of PTR is 
returned. 

References: 

SYT LEVEL field of Symbol Table, Section 3.1.1.8 of 
HAL/S-FC-Compi.ler Spec. 

5-281 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 



.-.-.~.----"". --'_-'-"'-'-'-"::=':':--=~-----'-'--'~--~T-'~-----'----T~ ... ~~ 

SET ERRLOC 

Procedure 

purpose: 

Assign stack displacement for error number and fill 
in information in indirect stack entry. The displacements 
are assigned w:i, t.h the more s?ec.ific coming first like this: 

10c 
-} 

Parameters: 

1 

h 

* 

+ ERRSEG 

m 

* 

* + MAXERR + ERRSEG 

OP: indirect stack entry for error group number 

ERRNUM: integer value of error number 

5-2£2 

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-184r) 

1 

J 

,-



SET LABEL 

Procedure 

Purpose: 

To set the location of a specified statement number. 

Parameters Passed: 

STt-1TNO: The sta'Cement number whose location is to be 
set. 

FLAGl: If 0 indicates that the label may be the 
destination of a block. 

FLAG2: The statement number is for a Phase 2 generated label. 

Local Variables: 

PAGE: Never referenced. 

Communicates via: 

LOCATION, LOCATION_LINK, LAST LABEL. 

Message Conditions: 

ASSEMBLER CODE 

References: 

Appendix C, Section on Label Definition, HAL/S-360 Compiler Spec. 

Description: 

If FLAGl=O, CLEAR REGS is called to clear the reaisters, * CCREG and-STOPPERFLAG are reset to O. The statement number's location, LOCATION (STMTNO) , is set to LOCCTR(INDEXNEST), the current location counter. The statement number is added to the linked list of labels within the current CSECT by assigning LASTLABEL(INDEXNEST) to LOCATION LINK (STMTNO) , and by assigning STMTNO to LASTLABEL(INDEXNEST). If the statement number belongs to a phase 2 generated label, the appropriate intermediate code is emitted by calling EMITC. 

* This i~ because the label may be branched to, and by clearing all the registers, the code generation process does not have to worry about different values in the registers depend;ng on the statement branching to the label. 
5~283 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE' CAMBRIDGE. MASSACHUSETTS 02138 • (617) 661~1840 



1···-.. ·· r- "-.-
I 

SET LOCCTR 

Procedure 

Purpose: 

To force the location counter to the desired 

CSECT and value. 

Parameter Passed: 

VALUE: The value of the location counter is to be . 
set to. 

NEST: The number of the CSECT whose location counter 

is to be set. 

Local Variables: 

None. 

Communicates via: 

The global variables INDEXNEST,LOCCTR(INDEXNEST). 

References: 

Appendix C) Section on CSECT Definitions, HAL/S-360 

Compiler Spec. 

Description: 

If ~NDEXNESTj the CSECT for which code is currently 

being generated, is NEST and LOCCTR(INDEXNEST), its 

location counter is VALUE, the procedure returns. Other

wise, INDEXNEST is set to NEST, and its location counter 

is set to VALUE. EMITC and EMITW output intermediate 

code indicating the changes. 

5-284 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 

'" H j. ? el 

. ; 

... ... 

= • . ...i 



I' '~-'---.;;:.....=' ,~,.~" ~~, ~~M~"~' '-.-""""M .... T~Q ~"~L~~_"<.~.~~_,~L~""~:[,~~:." ., 
~.-,- .~, >, :-~""p~ ....... ~., ._." _ ' ~-.- -, ',. - ~ "'" 1 

~ 

SETUP ADCON 

Procedure 

Purpose: 

To modify an Indirect Stack entry for a label so that 
its form is EXTSYM, and the entry represents an address 
constant for the label. 

Parameter Passed: 

OP: A pointer to an Indirect-Stack entry. 

Local Variables: 

SY: The Symbol Table entry associated with OPe 

IX: The CSECT number used for addressing the label. 

Communicates via: 

Indirect Stack. 

References: 

Indirect Stack and Symbol Table. 

Description: 

If the operand's FORM is neither LBL or SYM, the procedure 
resturns since only these two forms may need label address 
constants. If OP's Symbol Table entry has the NAME attribute, 
its SYT TYPE is set to SYM, and the procedure returns. Label 
address-constants are not used for variables with the NAME 
attribute. 

The procedure determines how the address constant 
should be set up. For procedures, variables, and EXTERNAL 
templates, IX is set to the SYT SCOPE of SY, the CSECT 
associated with SY. For programs, tasks, and compools, 
addressing is carried out using address constants in PCEBASE 
so IX is set to PCEBASE. INX CON(OP) will give the offset 
in PCEBASE where the constant-is. The constant is 
SYT PARM(SY) *6, where SYT PARM is a number generated by 
INITIALIZE uniquely identTfying each program, task, or 
compool. 

The form of the stack entry is changed to EXTSYM to 
show it represents a label address constant. The LOC 
field of the entry is set to IX, the CSECT used for 
addressing. 

5-285 
INTERMETRICS INCORPORATED' 701 CONCORD AVENUE· CAMBRIDGE; MASSACHUSETTS 02138 • (617) 661-1840 

3 



SETUP BOOLEAN 

Procedure 

Purpose: 

To generate code to jump on success or failure of 
relational expression. 

Parameters Passed: 

COND: condition code to branch on 

FLAG: {O if condition fails, -jump to VAL (LEFTOP) 

1 - if condition fails, jump to XVAL(LEFTOP) 

5-286 
TNTERMETRICS INCORPORATED· 701 CONCORD AVtNUE • CAMBRIDGE, MASSACHUSETIS 02138 . (617) 661-1840 

em·tm 

I 

j 
, 



~, ... ~~·12."'~~-~·-~C~~~~~:'~~~~~~~'~'''::~'-·~~'C~:.~~,=~~~~'-~~~. ~'. ~-._~.: ........ ~._= ..• y ...... • '!..::.:=~ •.. ~ ·c' - r --·~-··l-· ..... T._.': 
." . .. .. ...... ' . "" ......~ .... _, .. _.'" · •.• c'ec.:.::."c= .• .:: . .:... ...... -' :. 

1'0' 
~ .. 

SETUP PRIORITY 

Procedure 

Purpose: 

Construct SVC argument list for update priority. 

Parameters passed: 

N: pointer to HALMAT operand specifying priority. 

Communciates via: 

WORK1, WORK2, emitting code. 

5-287 

INTERMETRICS INCORPORATED" 701 CONCORD AVENUE. CAMBRIDG~,MASSACHUSETTS 02138 • (617)661-1840 



'[ 

[ 

) 
I 
! 
) 
\ 

"'r~--"" 
[ .,,'."" "'~' 

.''-'" ".--.. " ..... ~ ... ~ ... ~-~-... --~~~~.~'~------~~."~'.,:~~ .. ~~=.~~ .~~~=~~"-~:v:~.~_~. ,.~",......"" """"'r --,.",.",,...,.......,~J I 

SETUP STACK 

Procedure 

purpose: 

To set up the Indirect Stack. 

Communicates via: 

Sets up linked list of Indirect Stack entries. 

Description: 

This procedure forms a linked list of all the Indirect 
Stack entries, assuming them all to be free. As a result 
of the procedure the Indirect Stack looks as shown below: 

100 
99 

5 
4 

3 
2 

1 
a 

f-----

a 
100 

· · · · 
6 
5 
4 

3 

2 

1 

5-288 

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 0213t1 • (61?) 661-1840 

-------~~ 

""--,,rr 

_ .. ____ '"" __ .~ .. _M._> _~_,~ ...... ~,..:_.;;,:.....<:..._~~:.. .. ,:::-:,. 

i ' 

". 

1 

1 
1 

j 

j 

I 
'J 



SIZEFIX . 
Procedure 

Purpose: 

To set up Indirect Stack size parameter for symbols. 

Parameters Passed: 

PTR:. A pointer to an Indirect Stack entry. 

OPI: A pointer to the Symbol Table entry associated with it. 

Local Variables: 

LITOP: A temporary variable. 

Communicates via: 

The Indirect Stack fields related to the entry's size. 

References: 

See Symbol Table for a description of SYT DIMS~. 

Description: 

The procedure sets up the size parameters for a symbol's Indirect Stack entry according to the PACKTYPE of the entry. The information necessary to set up the parameters is in OPI's SYT_DIMs field. 

Results of SIZEFIX according to PACKTYPE(TYPE(PTR»: 

0: Vector-Matrix: Row: The number of rows in a matrix, 
or I for a vector. 
Column: The number of columsn in a matrix 
or components in a vector. 
DEL = 0 to indicate no partition. 

5-289 
INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-18·to 

<,~ 

1 ., ., 
J 
1 
1 
~. 

I 
1 

J 

1 
J 
t 
i 
1 

I 
1 
1 

\ 



!', 

~"',"T" '~~,~',,~~-:~I~T'-F"l' 
, >_. ". , 'e, X _.. " 

1: Bit 

2: Character 

3: Integer/Scalar 

4: Structure 

SIZEFIX (Con't,) 

ROW: The length of the bit string~ 
COLUMN: Pointer to an Indirect Stack entry 
representing the position of the first 
bit in a bit string in a location in 
core. 

ROW: The length of the character string. 

DEL: Pointer to the symbol table entry 
of the structure's template. 

ROW: The size of the template. 

(In some cases, ROW is referred to by SIZE which is declared 
to be. "LITERALLY 'ROW'''). 

5-290 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETIS 02138 • (617) 661-1840 

'" " 

j 

,.::C-:.-;-:-:-::-,~'---" f.' ,,' .. ,,' ,.~"':----'---:--." - -'-- ".j 



f , , 
. ~{ .. '""j 

STACK PARM 

Procedure 

Parameters Passed: 

OP, a pointer to an indirect stack entry. 

This procedure is called to record in the R PARM'stack 
formal parameters which have been set up to be passed via 
registers, whether for HAL or library calls. BACKUP REG 
is set to reflect the corresponding REG entry in the-event 
that the register is subsequently checkpointed before the 
actual cal~ is issued. . 

5-291 

INTERMETRICS INCORPORATED -701 CONCORD AVENUE· CAMi3'RIDGE, MASSACHUSETTS 02138 • (617) 661-1840 

~.1"::::.. """~~_" __ ",,_W1I'~_""'IMi!ii!illil!i!-" _______ "" ___ "'~~ --->=""~"-""-, .• ,,",~=,,,,,~,,,,,,,,,~~_,~~--,:,===-

, . 

~ 



,-"-' u_u".u __ ,_-~ - ----'--~"~-'.'~~.'-~---~I'l 

STACK TARGET 

Procedure 

Parameters Passed: 

OP, a poin1:er to an indi;rect stack entrr 0 

This. procedure 'is functionallyrequivalent to STACK PARM 
except that .the TARGET REGISTER specified is re,set.o 

5-292 

.1 

INTERMETRICS INCORPQRATED ']01 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138' (617) 661~18An 

, 

.1 

Ii 
iI 
h 
!i 

~i 1 
lJ 

J u 
I, 1 i' 1 il 
OJ 

1 H 
11 

l " i! 
H ,i 

!~ 

1 
d 
'I 

" :1 
f~ 1 II 
U 1 
i 
.~ 

I , 
i 
l 
j 



r; r=~-~-~~"T''''''''''''-~T 

,.~~.,,::~-.':;:;._7_.-=_":::- _-:::::'--~::--=.::::'" _-:_~,:.:_. :.~:.::::.:~ ... ~,_ .. .:.:::-:-___ ;_"_ '-'~" j ~ 

STACK REG PARM 

Procedure 

Parameters Passed: 

R, - a register number.; 

TYP, a 'corresponding data type (optional'). 

If TYP is not specified, it is set to the R TYPE of R. 
Then a VAC stack entry is created via GET VAC, specifying register 
Rand data type TYP. -

This sta.ck entry is then passed to STACK PARM. This 
routine is used when a register parameter is created for which 
no exist'in9 VAC type stack exists, such as character or vector 
size parameters. 

5-293 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGI::, MASSACHUSETTS 02138. (617) 661-1840 J 

l 

'} I . I 
• •• 

1 
1 

1 

f .' 



[ 
j 

r 
I 

1 

DROP PARM STACK 

procedure 
This routine is called prior to issuing the actual 

call to any HAL block or library routine. It passes through 
the R PARM stack, reloading any checkpointed values via 
CHECK-VAC, and then returning the indirect 'stack entries. 

, . 

5-294 
INTERMETRICS INCORPORATED' 701 CONCCRDA'lfENUE • CAMBRIDGE, MASSACHUSETTS'02138 • (617) 661-1840 

{' 



; 

I 
" , ! 

'" 

STEP LINE# 

Procedure 

Purpose: 

To scan ahead in the HALMAT and get line number for 
next statement . 

. -,. 
" 

. , 

5-295 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETIS 02138 • (617) 661-1840 

1 " I , 
I 
i 

L I 
1 
1 



; 
• 
\ 
" f 

[. .. r-- .-. 
L 

STORAGE~SSIGNMENT 

Procedure 

purpose: 
To'determine location for all allocated storage. 

The symbol table poiuters for all variables to be allocated 
reside in SYT SORT. This is sorted to allow packing, 
minimize offsets, and minimizJe wasted storage for boundary 
alignments. The values for the base register (SYT BASE) 
and displacement from that base (SYT' DISP) are then
computed for each variable. Each time a new scope number 
is encountered, SET BLOCK ADDRS allocates space for the 
proper block header:- -

5-296 

.. .' _ ,J' • (617) 661-1840 INTERMETRICS INCORPORATED· 701 CONCORD,AVENUE· CAMBRIDGE MASSACHUSETTS O' 2138 

't:' 

, 
'J 

~ t; 

jl 

Ii 
, 

, 
I ~ 
J" 

f 
J 

I ,!'\ 
1\, 



. " -

STRUCTFIX 

Function 

Purpose: 

To prepare an Indirect Stack entry containing informa~ 
tion about a major structure. This entry is set up to do 
preprocessing associatedwiththe major structure before 
modifying the entry to represent a structure node reference. 
If the major structure has no subsc.ripting, STRUCTFIX is 
called by GET OPERAND directly before resolving the node 
reference. If there is structure subscripting, STRUCTFIX 
.is called by GET ST.RUCTOP while the subscript reference is 
being resolved, and GET OPERAND does not set up the stack 
entry again, but obtains a pointer to it, and then resolves 
node references. 

Parameters Passed: 

OP: ·A pointer to a structure's Symbol Table entry. 

FLAG: 1 if OP is a SIZE function argument, or a 
struture that is to be subscripted, 
o otherwise . 

Local Variables: 

PTR: A pointer to an Indirect Stack entry set up to 
represent the structure. 

Value Returned: 

PTR: A pointer to an Indirect Stack entry set up to 
represent the structure. 

References: 

< ' 

Array Reference Stack, the HALMAT EXTN and TSUB operators. 

5-297 

INTERMETRICS INCORPORATED ·701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138· (617) 661-1840 



STRUCTFIX (Con't.) 

Description: 

STRUCTFIX calls GET STACK ENTRY to get a pointer, PTR, 

to an Indirect Stack Entry. The entry's FORM is SYM, and 

a great deal of STRUCTFIX parallels the case of GET OPERAND 

devoted to Symbol Table Entries. STRUCTFIX first sets up 

the 'basic informa.tion needed by the stack entry: 

FORM (PTR) = SYM 

TYPE (P,TR). = SYT TYPE (OP) - , 

. 

LOC(PTR) = OP, a pointer to the 
Symbol Table entry. 

LOC2(PTR) = SYT DIMS(OP), a 
pointer to the template. 

UPDATE CHECK is called to update any lock group references. 

SI ZEFIX.· is? called .to set up the stack entry's size fields. 

The second part of STRUCTFIX takes care of preparing for 

array or subscript processing if the Symbol Table entry has 

copies. SET AREA is called XVAL(PTR) and SUBLIMIT(STACK#) 

are set to AREASAVE. For structures AREASAVE is the size 

plus the displacement 'of the template, and its number is 

used for indexing from one copy of the structure to the next. 

COpy (PTR) is set to 1, since having copiness is equivalent 

to one dimension of arrayness. STRUCT(PTR) is set to one 

to indicate that the major structure has copies since further 

processing of a structure node will add any arrayness associated 

with the node to COPY(PTR). (This happens in DIMFIX.) DOPTR 

and DOTOT of the present call level are reset in case arrayness 

has beEm pushed because of a call. 

The preparation so far is relevant to array processing 

and subscripting. I.f FLAG=l, no more preparation is needed; 

any indexing necessary for subscripting is taken care of when 

the subscript reference is resolved. If the structure is an 

argument of the SIZE function; no indexing is needed. If 

FLAG=O, STRUCTFIX must check to see if a DO LOOP is necessary 

to process the structure copies; this is indicated by 

COCOPY(CALL LEVEL) >0 which shows there is an array reference. 

If DOE'ORM(CALL LEVEL) is 2, no loop has been set up, so 

EMIT ARRAY DO is called 'to set up the loop. Ordinarily, if 

DOFORM is '2, no do loop is necessary since the ar;ay ref.erence 

is for a simple arrayed parameter. These would oecur in 

consecutive storage except for arrayed structure terminals! 

Since the terminals are not in consecu~ive locations, EMIT ARRAY DO 

sets up a do loop to do the necessary indexing. If FLAG=O; -

FREE ARRAYNESS is called, to emit code for the structure 

arrayness. 

STRUCTFIX returns PTR, the pointer to the Indirect Stack 

entry. 

5- 298 REPRODUCIB~ITY OF Tln~ 

. ., " . . ORIGINAL PAGE IS POOR. 
INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBHIOm;,lVfAS'SACHUSETTS02138 • (617) 661-1840 

, ,~ 



l' 
STRUCTURE DECODE 

Procedure 

Purpose: 

Part of the process of setting up an Indirect Stack 
entry for a structure node, the procedure is called for 
each Symbol Table entry that is resolved except the major 
structure reference and the last reference if the reference 
is BY NAME. 

Parameters Passed: 

PTR: A pointer to an Indirect Stack entry set up for 
the structure node by STRUCTFIX and modified by 
calls to STRUCTURE DECODE. 

OP: A HALMAT EXTN operator operand number. 

BY NAME: The operand is part of a NAME pseudo-function. 

Local Variables: 

R: A register used for setting up Indirect Stack entry 
for a structure node. 

Communicates via: 

Indirect Stack. 

References: 

The HALMAT EX TN operator, the procedure STRUCTFIX. 

5-299 

--'~-'---~~~I~.~. --, ~_l 
-'--"'~::..~:":\"-.: , .. ,,-:!<~ 

."- ..... -.~ .. 
"';-

I 

j 

1 

1 
I 

i 
j 

1 
1 

I 
j 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 



r 

,e 
I 

r . ~ .. 

STRUCTURE DECODE (Con't.) 

Description: 

DECODEPIP is called to decode the operand word for the 
next Symbol Table reference, and LOC2(PTR) is set to a 
pointer to the reference's Symbol Table entry. STRUCT CON (OPI) , 
the constant associated with structure addressing, is -
incremented by SYT ADDR of the Symbol Table entry, the displace
ment of the node wTthin the structure. 

If the BY NAME flag is false or the node is the last 
operand and it does not have the name' attribute, the way 
the node's stack entry is addressed must be updated. 
RESUME LOCCTR(NARGINDEX) is called if a declaration is in 
effect-so that code will not be emitted in the data CSECT. 
INX CON(PTR) is set to STRUCT CON(PTR) so that SUBSCRIPT 
RANGE CHECK can be called to modify the index register if 
the adjusted displacement is not addressable. 

Register 2 is used for addressing, but if the form 
of the entry is not CSYM or the register is being used, 
GET R must be called to get a register. The register is 
loaded with the address, and DROP INX is called to drop 
the index register. Various fields must be modified: 

FORM-CSYM 

DISP=O 

BASE, BACKUP REG=R 

Since the constants have been 
incorpo:;,tted. 

Since the entry has its own base 
and displacement. 

The address is all in the base 
register. 

The register containing the address. 

5-300 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 



r 

" 1 

! 
~I .I 

STRUCTURE WALK 

Procedure 

Purpose: 

To walk a structure template in order to compute the location (INITADDR) of the node. The routine gets to the next terminal node by STRUCTURE ADVANCE. STRUCTURE ADVANCE moves down the tree to the terminals using DESCENDENT and to the parent and brothernodes using SUCCESSOR. Once at a terminal node it counts through the items (for vectors, matrices and arrays) in the terminal node (N ~ 1) before proceeding to the next terminal node. The process continues until the desired element is found. 

Parameters: 

WALK#: The number of the item desired. Notice that a terminal node may contain many items. 

Other Variables: 

INITWALK: The number of items already passed. Initially 
we are not even at an item so INITWALK starts at -1. 

INITDECR: INITWALK 

N: Number of items left in terminal node 

INITOP: Symbol table pointer for node 

INITADDR: Total offset of INITOP 

INITTYPE: Type of INITOP 

5-301 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (61?) 661-1840 

." '="'* .. ~ 



SUBSCRIPT MULT 

Procedure 

Purpose: 

To multiply an Indirect Stack entry for a subscripting 
index of a subscript. 

Parameters Passed: 

OP: A pointer to an Indirect Stack entry for a subscript. 

VALUE: If positive, the value the subscript is to be 
multiplied by; if negative, a negative pointer 
to the Symbol Table reference for the subscript. 

Local Variables: 

LITOP: A pointer to the Indirect Stack entry set up 
for VALUE. 

Communicates via: 

Calling code emitters. 

Description: 

INX MULT, the constant multiplier associated with 
two dimensional subscript references, is set to one since 
SUBSCRIPT MULT will take care of the multiplying if called 
from SUBSCRIPT2 MULT. 

If VALUE is negative, SET ARRAY SIZE is called to create 
a stack entry for the multiplier, and CHECK ADDR NEST is called 
to set up proper addressing. Code is emitted to-perform the 
multiplication, according to whether the AP-lOl index register 
self-alignment feature is in effect. 

If VALUE is a literal, GET INTEGER LITERAL is called 
to get a stack entry for the literal. Code is emitted 
to perform the multiplication according to whether the 
multiplier is a power of two and whether the compiler 
SELF_ALIGNING option is in effect. 

opts register is marked unrecognizable since its 
contents have been modified. 

5-302 

INTERMETRICS INCORPORATED, 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 



: 
i
t 

,~", 

't!.lv 

SUBSCRIPT RANGE CHECK 
Procedure 

Purpose: 

To verify if an adjusted displacement is addressable, 
and to incorporate the adjustment into the index register 
if it is not. 

Parameters Passed: 

OP: A pointer to an Indirect Stack entry. 

Local Variables: 

INCOP: A pointer to an Indirect Stack entry used 
for modifying OP's index register. 

CON: The indexing constant used for addressing OPe 

RANGE: A temporary variable. 

REMOTE: A flag indicating whether or not OP has the 
REMOTE attribute. 

Communicates via: 

The Indirect Stack. 

Description: 

If the indexing constant is zero or the Indirect Stack 
entry does not have the REMOTE attribute or an index register, 
there is no addressing problem so the procedure returns. 

CON, the indexing constant, INX CON (OP) , will be incorp
orated into OP'sdisplacement for addressing purposes if the 
resulting displacement is between 0 and 2047. The temporary 
variable RANGE together with CON are used to test this. If 
the resulting displacement would be outside of this range 
or OP has the REMOTE attribute, the indexing constant will 
have to be incorporated into OP's index register. 

5-303 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-18,1:) 



r 

SUBSCRIPT RANGE CHECK (Con't.) 

If the SELF-ALIGNING compiler option is in effect, that 
is, the context of the AP-lOl index registers will be aligned 
automatically, the index constant must be modified. It must 
be divided by the number of halfwords occupied by one item of 
opts operand type, BIGHTS(TYPE(OP». The automatic alignment 
will multiply the index by that amount during address computa
tion. 

GET STACK ENTRY- is used to get INCOP, a pointer to a free 
indirect~stack-entry which will be used for incorporating the 
constant into the index register's constant. Before doing 
this, OP'iS stack entry must be checked to see if it has an 
index register. I~ it does not have one, or if it has 
several users, FINDACis called to find an index register. 
In .the second caSe, MOVEREG is called to move the register 
contents and attributes to the new index. REG (INCOP) is 
se~ to the index register, CON (INCOP) to the indexing constant. 
INCORPORATE is called to add the constant to the register. 
INX REG(OP) is set to REG(OP), and INX CON(OP) is set to 0 
since the constant has been incorporated. INCOP's stack entry 
may be returned. 

5-304 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETIS 02138 • (617) 661-1840 

(, , 

" 
'"~"._. '01: ._, _~'''_=;;;:. .• _,_ ... ,_.","":--m-~"H2t""-,:;\=,_>_"",.~_.,,,, ....... :tifil;!_l1i_',",-________ ~ .~- - -- ." -':A.""-o •• • ~ 



;: = 

SUBSCRIPT2 MULT 

Procedure 

Purpose: 

To generate code of form 

LEFTOP MULT RIGHTOP 

old index = old-index * dimension + next_subscript 

The bulk of the routine attempts to find the value 
already in a register; otherwise, it would be much shorter. 

Parameters: 

mult = dimension multiplier 

Local variables: 

I: just a dummy 

R: register used for calculation 

5-305 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 



SYT COPIES 

Procedure 

Purpose: 

To find the arrayness of Symbol Table variables and 

record the information in the Array Reference and Array 

Do Loop Stacks. 

Parameters Passed: 

OP: A pointer to a Symbol Table entry. 

Local Variables: 

I,J: Temporary variables. 

Communicates via: 

Array Reference Stack and SUBLIMIT. 

Description: 

SYT COPIES resets the values of DOPTR(CALL LEVEL) 

and DOTOT(CALL LEVEL to their base values which-are 

respectively SDOPTR(CALL LEVEL) and SDOPTR(CALL LEVEL)+ 

DOCOPY(CALL LEVEL). This is necessary because arrayness 

is pushed from an outer to an inner level when dealing 

with invocation references. 

If the Symbol Table entry is arrayed, SYT COPIES also 

sets 'up the entries in SUBLIMIT that will contain arrayness 

information. SUBRANGE is used as a temporary variable in 

the process. STACK# will be 0 unless OP is a subscript 

in a subscript reference for a variable with m dimensions 

of arrayness. In this case, STACK# is m+l. At the end 

of SYT COPIES, SUBLIMIT contains the following new informa

tion: -(Assume OP has n dimensions): 

SUBLIMIT(STACK#) 

. 
SUBLIMIT(STACK#+n-l) 
SUBLIMIT(STACK#+n) 

The size of the 1st dimension 

The size of the nth dimension 
AREASAVE 

5-306 

REPRODUCIBILITY OF THI' 
ORIOU-lAL PAGE IS POOR 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 

::~ 
/' r, 

II 
i 
W 

" n 
~ 

tl 
~ 
~'. Ii 
~ 

1 
:1 , 
W 

, 
I 

~ 
I 
~ 

* M 

" " ~ 
11 

;; 
u 

t: 
t1 
'1 

H 
t4 
'1 
1': 

] 
,i~ 



II' 

TERMINATE 

Procedure 

Purpose: 

To handle logical control after GENERATE. 

GENERATE_CONSTANTS 

emit code end intermediate instruction 

OBJECT_CONDENSER 

Create ESD entries for external labels 

Initialize for OBJECT_GENERATOR 

OBJECT GENERATOR 

5-307 
INTERMETRICS INCORPORATED· 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138· (617) 661-1840 



1------" -' .... ---' _e' -.--' ._ .•... -.-.. ---,- .. 'T"' ___ '_ .-•.•• --- -.---~- _. -.,-=---·r--",,---•. -.------. "---~.- ---"C'';:C''-- -- """'" ''"-:-~~~I-·~''·~--··--·.,r '"-" "-l 
I ~*_.t.1U ,&2±.3~::lK~lt!l~Ml 'rflilill~~~·'~~i~;;,~~,~I,i.,; .... ,...,~,.."'lt¥~~~~ !:i1ft!!ritG ·MJ!M!lJ!tr!~~.d6ft.tll!.IJdNII:fJUt TlX.. J .1$ ... '0% ·$J.,"Jfi&::~t tr.tf-~~_ 
[I 

I; 

·t UNSPEC 
. ~ 
J Function Fixed 

Parameters Passed: 

F, a fixed point va1ue'or descriptor. 

Values Returned: 

F, a fixed point value. 

This function is the opposite of the DESC function. 
The argument passed is a character string descriptor 
word which is interpreted as a fixed point integer upon 
return, .al1owing assignment into a fixed variable. This 
routine is used during initialization to build an array which 
can later be referenced using the DESC function, by-passing 
the 1024 descriptor limitation of XPL. 

5-308 

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETIS 02138 • (617) 661-1840 

I . 

... "' 

i: 'f 

1 

~; 



r 

I z UNRECOGNIZABLE 

Procedure 

Purpose: 

To mark the contents of a register unknown without 
decrementing the number of claims on its contents. 

Parameters Passed: 

R: The register. 

Local Variables: 

None. 

Communicates via: 

The global variable USAGE(R). 

Description: 

The rightmost bit of the register's USAGE is set to 0 
to indicate its contents are unknown. This is done because 
the procedures which search the Register Table for registers 
with certain properties, only look at the entries for registers 
whose USAGE is odd. Sometimes, a code emitter will be called 
to generate code that modifies the register's contents 
without modifying any of the register's attributes in the 
Register Table. By marking the register unrecognizable, the 
register's entry will not be considered when the table is 
searched. 

5-309 

INT[:RMETRICS JCuRPOflATFD' 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 . r1)17\ 661-18<'! 

',,' 

~ ~ 

, 

; 1 ! 
~ , 

1 

I 
" 'i 
1 

j 

1 
1 
] 

,i 
i 

<-
---- -~-'~~"'-':~~-:~-"":: __ "-......~':"::"":""...l..o.u.::;;.<li"""",.:";;,U;i"""'~".~"""'~"",,,,,_ :--"----t .. -.- .. .-· ... 'Wtic .... :iit '-11--" --- -vu.tO 'f~_J~W_~ 



f 
i , ,. 

UPDATE CHECK 

Procedure 

Purpose: 

To keep track of all lock groups used within an 
update block. 

Parameters Passed: 

OP: A pointer to a symbol table entry. 

Local Variables: 

None. 

Communicates via: 

UPDATE FLAGS LITERALL SYT_CONST(UPDATING). 

References: 

Description of the Symbol Table, Description .of 
Local Block Data Area, LOCK ID Field. 

Description: 

The procedure first checks to see if code for an 
UPDATE block is being generated. This is indicated by 
UPDATING> 0; UPDATING is the pointer to the symbol 
table entry of the UPDATE block. If this is the case, 
SYT CONST(UPDATING) is modified to reflect opts lock 
group. The purpose of this procedure is to determine 
the lock groups in the UPDATE block so that BLOCK CLOSE 
may set up the block's Local Block Data Area. 

~ ~ 5-310 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • t617) 661-1840 



!~ 
I 
! 

I 
:1 

if 

II 
f! n 
II 
ii 
[\ 
!i 
" ri 

i. 
f . 

~ 

I 
I , . 

UPDATE INX USAGE 

Procedure 

Purpose: 

To verify an Array Index Indirect Stack entry's 
register is safe. 

Parameter Passed: 

OP: A pointer to an Indirect Stack entry. 

Local Variables: 

RM: Never referenced. 

Communications via: 

Register Table. 

Description: 

If opts register has a claim on it and its contents 
will be modified, NEW REG is called to get OP another 
register. Otherwise, -the. register's USAGE is incremented 
by 2 to show it has another claim on it: the register's 
USAGE LINE is set to the current line of HALMAT. 

5-311 

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 

.~ 

I .. 1 
, 1 

~ it J '~ ~, , :J 
:~ , 
~t J , 

I 
;~, 

~ 

I ., 
1 .. 



... " _ ~ ,"' '""- -_ - .-"''''''''-'''''''''' ~"."",-,--"'''~~~---:-$~~--''-""''''''''-''''''''''''''--''''''''''''''-'''~'''''''''''''''''''--'''-''1'''''-'''''''''''''"'-'''III!-'''''':-'' 

.1 •• 1M,.js •• ;s.1ItJ"""'.lijijjW,;:;,: .i. "'.iikl!:'M"" '_L"""2";Ci, .•• """",,,,,,,,,,,,,,,~,,,,.~~..,..,,,,,,,,,,,,,,,,,,,,,,,_.,,, ________ "_@III,,"itfT;l.!II'f!I. 

VAC COPIES 

Procedure 

Purpose: 

To set up indexing into shaping function results. 

Parameters Passed: 

OP: A pointer to an Indirect Stack Entry. 

Local Variables: 

I: A Do Loop temporary. 

Communicates via: , 

Array Reference stack and SUBLIMIT. 

Description: 

This procedure parallels the function of SYT COPIES 
but instead of working on a stack entry that has Just been 
set up for Symbol Table entry, it uses a stack entry that has 
previously been set up to represent the results of a 
shaping function. The first thing the procedure does is 
to check that the entry has arrayness1 if it does not, 
this procedure is unnecessary. 

VAC COPies starts by resetting DOPTR(CALL LEVEL) and 
DOTOT(CALL LEVEL) to their former values. This is necessary 
because arrayness is pushed from an outer to an inner level 
when dealing with invocation references. 

Then, the entries in SUBLIMIT that will contain opts 
arrayness information are assigned starting at entry 
S'fACK#. STACK# will be 0, unless the Indirect Stack entry 
is a subscript of a variable with m dimensions of arrayness. 
In this case, STACK# is m+l. VAL (OP) is a pointer to the 
first entry in SF RANGE containing information about 
Op1s arrayness. -

5-312 

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (6171 .'t'1-18:1Q 



The results of the assignments are: 

SUBLIMIT(STACK#) 

SUBLIMIT(STACK#+l) 

Assigned to 

SF_RANGE(VAL(OP» 

SF_RANGE(VAL(OP)+l» 

VAC COPIES (Con't.) 

Description 

The size of the 1st 

dimension 
2nd 

The size of the 
dimension 

SUBLIMIT(STACK#+COPY(OP)-li SF_RANGE (VAL(OP)+COPY(OP)-l) The size of the last 
dimension 

SUBLIMIT(STACK#+COPY(OP) AREASAVE This is computed by 
calling SET AREA 

FREE ARRAYNESS is called to set up indexing for 
unsubscripted variables. 

5-313 

INTERMETRIC: ~~CORPOHATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (61"1) 661-1810 



·~.t 

.l-.-..... ·.-.... ----.·.-.·-.-.. ~ .. n"~.~-~.' ., '~-';-"""""-" .. 0. .• • >M ••••• '-. .... ,.,u' .... , ' -•. ~"''' .... -.' .. ''''''"-kr' .. ·''''''' .. • .. P"'··-'''''''''l , .... ' 

:~~~l!-!?t . ,,.~~~,~~~.'I"';.M~' .. <.,..;;~,..:.;.;·:...:.-"!'-.....,~ ... ~~ >"!.~~~t"';{~.':r,,~ _,",:,:'f;' .:.-:t,~:":,,~t';.~'\,.""'":"i".,.~':\'t:~~~~~~"'.!..r;;;..t-.::~~E~E::::.:-_~!~:!'2:'~'¥::~~~:,.:~~~~.MI1-~~J~~~:~ 

VARIABLES 

Function 

Purpose: 

To compute space required for a variable and enter 
it in the symbol table. 

Parameters Passed: 

OPl = symbol table pointer. 

Value returned: 

Size of variable or single element of array. 

5-314 

ODUClBlLlTY OF T~ 
R"ElPRn. f, AlP A (Hi) IS POO~ 
ortl{}:u\J:'u.I ,1;l..M 

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1 R40 



'I "",. ,.' -'_.""-"".,. ... ' '''''' .- , .. --.-~., ." ~~-W-"""""''''''''-W~I'---'-''''-'~''''~l~-'-

!~~'~~i}.''t,¥~!:~~._r''"i?:t~_'':.{:~:.!!-,~:".:~ :._~~::"'~,~~-~-C::':::±'~"""::.'::"-:"';;:;"';':'.; .. h:~;':,.>. :;J~"'''''' .. ' *',. > .~--, P T~ • ~ "--,>"V -'--~..J:.=-'!. .... :.~~~ _-'_"': __ __ L'!."!!..'!..~ _"!" ~~~~'t"~:!T:t~~"'~ ",,"'-';~ ""1~ 

VERIFY INX USAGE 

Procedure 

Purpose: 

To protect an index register prior to adjusting its 
contents. 

Parameter Passed: 

OP: A pointer to an Indirect Stack entry. 

Local Variables: 

R: An index register. 

Communications via: 

Register Table and Indirect Stack. 

Description: 

If OP's index register has only one or no claims on 
it, it is marked unrecognizable to prevent other users from 
mistaking the register's contents. If the index register 
has several users, FINDAC is called to find it another 
register to use an an index. The new index register is 
loaded with the contents of the old register, and the USAGE 
of the old index register is decremented by 2 to show there 
is one less claim on it. 

5-315 



' .... ,." '''',' ''''-T .... -·'·' -""'''-'''~",".,.''-''~'-''''''''''-~-,,, ~..,......, ........ """"'~--...........--.,- ,,~- '-~ 

VMCALL 

Procedure 

Purpose: 

To generate calls to library rou~ines for performing 
vector-matrix operations. The routine generates code to 
load all and only those parameters required by the library 
routine (as determined by array CTRSET) and then calls 
GENCALL to generate the actual call. 

Parameters: 

OPCODE: HALMAT style opcode 

OPTYPE: true if double precision 

OPO: indirect stack entry for result 

OPI: indirect stack entry for first operand 

OP2: indirect stack entry for second operand 

PART: paritition information 

v 

5-316 

~ 
i 



Ii 
I 

1" 
.",)- 6.0 PHASE 1.5 - THE OPTIMIZER 

6.1 Introduction 

6.1.1 General Description 

The HALlS Optimizer takes HALMAT produced by Phase I 
and performs the following functions:· 

Common subexpressions (CSE's) are recognized. 

Additional constant folding is carried out. 

Unneeded divisions are replaced by multiplications. 

Superfluous matrix transpose operations are 
eliminated. 

Altered HALMAT is then passed to Phase II for object code 
generation. 

6.1.2 Design Comments 

The most important design consideration is that the 
Optimizer does nothing to most HALlS statements! Thus, the 
sooner this is recognized, the less time wasted on a statement 
and the more efficient is the Optimizer. More concretely, the 
following features are of note: 

1. The CSE TAB doubly linked list drastically reduces 
the number of Nodes searched for CSE's. This might 
be compared with FORTRAN H where the previous ten 
statements are searched for CSE's, even though they 
mav contain no common variable with the present state
me:nt. 

2. If a Node does not have enough eligible operands 
for a CSE, no search is made (SEARCHABLE = FALSE). 

3. The Optimizer is quite conservative. For example, 
all user procedure and function calls cause ZAP TABLES 
to be invoked. 

6-1 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MAS~A~HUSETTS 02138 ~(911) .~~1~1~40_,.",~ 
'..;,..d.~_,!:fU',;""C:'"~¥ __ ,_. _ .f __ .".'. ",,_~.~.;~_.iO:--;~..J......~' ", .. '." .,'. e~" _" ,.!,_- " ,-.~ __ .-O>..;tl:~"'.·-~·,,-,-,,-,,,_·;,, ,~-=:.i!>'~"""",u~..,.",.._ .. ",,""".""~-~:;-..o..-."'~'~,L.-: =d'~~_",,~l:o:>U>'._~~~.~ .. -, 



6.1.3 Optimizations Attempted 

This section describes those optimizations presently 
implemented in tne HAL/S OPTIMIZER and corresponding Phase II, 
and gives appropriate user information. 

Optimizations' Performed 

1. COMMON SUBEXPRESSION ELIMINATIONS 

a. "Cummutative" Operations 

For bits: &, 

For scalars: +, - <>, . 

For int~gers: +, <> 

For vectors and matrices: +,-

Example 1: 

F = A .- D + B - C! 

G = D - C - B + A: 

becomes*: 

CSBl = A - C: 

CSE2 = B - D: 

FI= CSEl + CSE2i 

G = CSE! - CSE2 : 

Example 2: 

F = (A/B) (C/D) : 

G = C(B/D) Ai 

becomes: 

eSE! = C/D; 

CSE2 = A/B; 

F - CSEl CSE2 ; 

G = CSEl/CSE2; 

* Often the CSE's are merely retained in registers with no 

temporaries created. 

6 ... 2 
INTERMETRICS INCORPORATED· 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 

'0 

4 

!i :.; 

~ 
i~ 
'W 

<'I 
;,~ 

i 
t ] 
.1 t 
~ 

i 

J 



r, 

I ' 
I 

,.a.; \' 

''''/J£ 

* i = 
..:;: 't;.. 

x = , '>!.l!" 

m = 
v = 

Example 3: 

F = A + B + (C D) + E + (B C A); 

G = D + (D C) + E + A + (A B) ; 
becomes: 

CSEI = A + E + (C D) ; 
CSE2 = (A B)i 

F = CSEI + B + (CSE2 C); 
G = CSEI + D + CSE2i 

b. Noncommutative Operations 

1. For bits: II ,-, 
Built-in functions: XOR. 

2. For scalars and imtegers: **, negation, 

conversion to integer or scalar from 
integer or scalar. 

Built-in functions: ABS, CEILING, FLOOR, ODD~ 
ROUND, SIGN, SIGNUM, TRUNCATE, ARCCOS, ARCCOSH; 

ARCSIN, ARCSINH, ARCTAN, ARCTANH, COS, 'COSH, 

EXP, LOG, SIN, SINH, SQRT,TAN, TANH, DIV, MOD, 

SHL, SHR, INDEX, LENGTH, MIDVAL, ARCTAN2, 
REMAINDER. 

3. For vectors and matrices*: negation, m v, 
v m, v*v, v x, x v, vlx, m m, v v, m x, x m, 
mix, m**i. 

Built-in functions: ABVAL, DET, INVERSE, TRACE, 
TRANSPOSE, UNIT. 

-.-
non-negative integer literal, 
Scalar or integer, 
matrix, and 

vector. 

6 .... 3 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE. MASS~.CHUSETIS02t~R ,d,a7.L~1t_ ... D'''A., 



I······ 

Example 4: 

X NEW = X COS (THETA) + Y SIN (THETA) ; 

Y NEW = Y COS (THETA) X SIN(THETA); 

becomes: 

CSEl = COS (THETA) i 

CSE2 = SIN (THETA) i 

X NEW = X CSE!l + Y CSE2; 

Y NEW = Y CSEl - X CSE2; 

Example 5 : 

Rl = (-B + SORT (B**2 4 A C) ) 12A: 

R2 = (-B SQRT(B**2 4 A C) ) /2A; 
r 

becomes: 

CSEl = -B; 

CSE2 = SQRT(B**2 - 4 A C) ; 

CSE3 = 2 Ai 

Rl = (CSEl + CSE2)/CSE3 i 

R2 = (CSEl CSE2)/CSE3; 

6-4 

~~ .. _.~~_TERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 
; •• - _. " "" '" .................. _,' >.' • ~~.~ ... -.~~ .......... -' .. - .. "'.===--....,~"'.-.".-'-. 



~; 
I 

2. MATRIX TRANSPOSE ELIMINATIONS 

MT V is changed to V M and V M T is changed to M V, 
saving a transpose operation. 

Example 6: 

M = M T( (Ml + M2) T V) i 

becomes: 

M = {V (Ml + M2» Mi 

3. CONSTANT FOLDING 

Some constant folding not done by Phase I involving 

integer and scalar +, -, <>, and 7 is performed. 

Example 7: 

F = (2A)/(4 B C); (all scalars) 
becomes 

F = (. SA) / (B C) i 

CSE's involving folded constants are found. 

4. DIVISION ELIMINATIONS 

Terms are rearranged to eliminate unneeded divisions. 

Example 8: 

F = (A/B) (C/O) (E/F); 

becomes: 

F = (A C E)/(B 0 F); 

6-5 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETIS 02138 • (§17L6_61-18A.O. 

J 

I 
j 
1 

1 

1 
• , 
'1 

J 
~ :1 
l 

~ 
~ 

F 
;; 

1 
" J 
,~ 

~ 
f i 

,.f;; ~ 
.:;. i 
" ~~ 

, , 
,~ 

~~ 
.< " 

,1 

'j 
1 
1 
l 
i 
i 

j .. 
~ 

1t. 

c_~ 



!- ~.' ~ 

",~' -',~"'~'-~-'-~'~'-~~."""'-"-~'--:":"'" .• --~"'-:-:7, '·~~S~¥I""""""tiJ!C= •• "~~~. ¥~";'~'"=~'~~~"-"'--'""!!.:<:""'::X="'~a:~,.-:-,JJJL.,.,.",...", ..... ==""' ......... --.... '*'f!'!'l". J ...... ,4?fi4''''" .. __ '-''''' •• ''''l'Inl~ 1i@)§Lq._ .? Uk_" ah %t~ 

• 'C' .~~.r'".,;""",'W£.""""""",_,,,,,,,,_,,,,,,,~=~~,,,,,,,,_""""=.,,,,,,,,,,,,,,~~,,,,,,~,,,",,,,,,"C,.. .c.d .. "'""., ''"'''l:}"'L'''''.!!I!!. !Ol' •• U' ... ~ .... ". , .......... ,L .. _." 

6.1.4 Scope of optimization 

Common sUbexpressions are recognized over approximately 
basic blocks of code. No CSE's are recognized across: 

labels 

user procedure or function calls 

assignments into name variables 

HALMAT blocks 

inline functions 

GO TO's 

DO CASE's 

DO FOR's 

DO UNTIL's 

END's for above 3 

END's for simple DO END if there is a corresponding EXIT 

beginnings of each case in DO CASE 

Major or Minor Structure Assignments 

READ, READALL, AND FILE I/O instructions 

program organization operators (e.g. PROCEDURE, CLOSE) 

WAIT statements 

ERROR statements 

IF statement conditionals containing more than one 
boolean comparison 

ends of the true parts in IF THEN's or IF THEN ELSE's 

ends of IF THEN ELSE's. 

The presence of any of the following causes the entire 
statement to be skipped. 

user procedure or function calls 

inlinefunctions 

statements causing array loop generation 

I/O instructions 

shaping functions 

character operations 

bit or character conversion to integer or scalar 

real time statements 

6-6 

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETIS 02138 • (617) 661-1840 

~ "-
* y.j.. 



r! 

0,' ... , 

Name variables, bit conversions, and SUBBIT's are not 
presently included in CSE's. 

In IF statements, no CSE's may occur in a part of the 
relational expression which is not always executed, (e.g. the * statement in example 9). 

Optimizing stops when a statement containing, a Phase 1 
error is detected. 

Example 9: 

oecomes: 

B = SIN(A); 
C = SIN(A); 
D = SIN (A) + USER_FUNCT (A) ; 
E = SIN(A); 

F = SIN(A); 

IF SIN (A) = SIN (A) AND B = SIN(A) THEN DO; 
G = SIN (A) ; 

END; 

ELSE H = SIN(A); 

I = SIN(A); 

CSEI = SIN CA) ; 
B = CSEl; 
C = CSEl; 
D = SIN'(A) + USER FUNCT (A) ; 

CSE2 = SINCA); 
E = CSE2i 

F = CSE2; 

* -----IF CSE2 = CSE2 AND B = SIN (A) THEN DO; 
G = SIN CA) ; 

END: 

EI.SE II = SIN CA) i 

I = SIN (A) ; 

,-



1 
) 
\ 

6.1.5 Programming Considerations 

eSE's and division elimination may alter the order of 

computation of statements, including parenthesized statements 
(see Examples 2, 7, 8). If it is 'necessary to prevent this, 

the programmer must break up the statements in question into 

the desired computation using temporaries. Thus, example 8 

could be programmed: 

tempI = AlB: 
temp2 = C/O: 

temp3 = ElF: 
. F = tempI temp2 temp3: 

to insure the computation of the three terms. If the order 

of mUltiplication is also important, the last statement could 
be replaced by: 

F = tempi temp:l: 

F = F temp3: 

Another trick is insertion of DO: EXIT: END;. This 
prevents CSE's from being recognized across the insertion. 

When a CSE is recognized by the compiler the resulting 

code is usually better than if the programmer had created. a 

temporary, since the CSE is often retained in a register until 
use. 

Thus: 

I? = A + C 0; 

G = B C 0: 

is both more readable and produces better code than: 

TEMP = C Di 

F = A + TEMP; 

G = B - TEMP: 

6-8 
INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETIS 02138 • (617) 661-1840 



Compiler Options 

By specifying: 
OPTION='X6' 

in the EXEC statement, optimization statistics and timing 

information will be given. 

Related Memos 

1. 

2. 

. t . " IR #127-1, "Common Subexpression Recognl. l.on • 

Shuttle Memo #110-74, "HAL Optimizations". 

6-9 

INTERMETRICS INCORPORATED· 701 CONCORD AVENuE· CAMBRIDGE, MASSACHUSETIS 02138·(617) 661-1840 
_. ~ __ " •• _ ,." '._ ,_",~~._._ ... ~"_,_";;' .. _,~.",_""';_d, ... ~H.~~~~,,~...t._....,_;'.<t.,"'~'~:"".~"~_."';:"·_~ __ ""_.~".·~'~~ __ .' ___ ~ M .. ,~. _0' _, __ ~.~ 



i ' 

r' .. , -~··-·l~.· ... -~. ~-.~. 
t~ -- ~ --~- ~, .. - ~ 

" 

6.2 Functional Description 

HALlS SOURCE 

Phase 1 

-----~-~--------------------
SYMBOL TABLE HALMAT LITERAL TABLE MONITOR 

~ / 
[ Optimizer I 

/1\ 
SYMBOL TABLE* HALMAT* LITERAL TABLE* 

I 
I 
I 
I 
I 
I 
I 

~___ I -------------------- -~--- ----------------------------------

Phase 2 

Object Code 

6-10 \ -, 

I ~f INTERMETRIC~ IN:ORPORATE~ • 701 CONCORD ~VENU~ .• C~~~RI~~~~_~_~~~.~~~~~~_~~~~~~~,1;:;:~-~"~:,:):~~1.-184:~ 
t'L~_' oJ.i:~~zt-ztjt**{~· <~ ': • ,_ -,---' _ - • - .....,. ........... _.;,."'--.~.-._"'.~_~ .. __ '__'_, •• __ '"_~ •• _._"- _" ,~"""-,="""""""",,,_~_.~. '.~- ~. ,, __ .-. ". '.' - . . 



I' 

I -... -... "-- ...... ..,...-... ~- '-':"--'<~ . ""!""'"_f-' .......... --: __ .,h'-'~~~''''' ~"""""'-"~"--~"!,":i">""J!Jo~·'!!"'("'!!!I!'iW-"'·"-"""'''--''~-"''~'--'·~··''''''''' "' .... '"""·T"~< .. - .".'- "--1.'"='-><---'''' ~ 

.,."I~~~'i-~-""""~""~'~ 'C,~~" """"C'c'"L,";C',,";o','" ' ',' .. ",.C.'"'C'~, .. ,."., ,', ',' , ",''"''- .... ", .',~_,oo""" --~; .. 

The HALMAT received by Phase 2 differs from that 
produced by Phase 1 in the followin9 respects (see 
HAL/S-360 Compiler System Spec., p. A-2): 

1. 

fZZZ/r///v//z/j T 11 J 
8 8 12 3 1 

Operator Word 

16 8 4 2 11 

Operand Word 

Except for XXAR operators and as noted below, all operators 
and VAC operands have tag T = O. 

2. Operators referenced more than once (CSE's) have T = "4". 
TSUB's ~ay have this bit set, even though referenced once. 

3. VAC operands referring to operators which are 
referenced by later VAC operands have T = "2". 

4. The functions previously performed by Phase 2 
routine OPTIMISE are now performed by Optimizer 
routine PREPARE HALMAT. 

The literal table may receive additional entries corresponding 
to folded constants. 

The bit in SYT FLAGS corresponding to STUB FLAG (or 
ARRAY FLAG) is set-in procedures, functions and inline 
functIons which cannot possibly be leaf procedures as an aid 
to Phase 2. 

6-11 

'" 
" 

J ' 

1 

), INTERMETRICS INCORPORATED· 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840,,~ 
L ~~ft2T'''''£ ,. !:","-'-':77iE-"ii2F¥i#-:-, _.~~;. ltl_.!1!~ .. ~",~":~,'~,:"~-IJ;r-<»;:'.,-?,'-;~:...,,z:-:~~--,--:~~,,::~::~~~-;~::.-_ ~~~~=::'~~::~~~:<··=:·:"'1·}~-":':~f5.::.:rr 7-.11-- ~.-."". ~" .. ·---"~·1¥f:::gi4fi!ir-'== -~ 



i' I 

". 

6.3 Global Flow 

General Description 

HALMAT statements are processed sequentially. First, PREPARE HALMAT is called. If optimization has not been disabled and CHICKEN OUT determines that optimization is allowed, then GROW TREE builds the NODE list. GET NODE produces a node, and if it can possibly contain a CSE it is checked with CSE MATCH FOUND. Finding a CSE causes REARRANGE HALMAT to make necessary changes to the HALMAT, and STRIP-NODES to modify the NODE list. 

Each node is rescanned until no more CSE's are found, at which time it is entered into the CSE TAB by TABLE_NODE, thus allowing it to match later CSE's. 

Upon completion, statistics are printed if requested by PRINTSUMMARY. 

Global Flow Procedures and Data Base 

6.3.1 

Number Variable 

MAIN PROGRAM: 

3.1. 2 

3.1.3 

3.1. 4 

3.1. 5 

3.1. 6 

CLOCK 

STATISTICS 

OPTIMIZING 

OPTIMIZER 
OFF 

LITCHANGE 

WORK 3 

Use 

Array of times for PRINTSUMMARY. 

Set by option 'X6'. Prints 
final statistics. 

True unt.il HALMAT finished. 

Disables optimization. Set 
by option 'Xl' or Phase I bug. 

True if change to literal file. 

Saved FREELIMIT. 

MAIN PROGRAM optimizes the HALMAT, block by block. 

6-12 

CIBILyry OF THE REPRO~UL PAGE IS POOR 
ORIGlNA 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE. MASSACHUSETTS 02138 • (617) 661-1840 

I 
j 
j 

1 
.j 
1 



'" ~ 6.3.2 INITIALIZE: 

Number 

3.2.1 

3.2.2 

3.2.3 

3.2.4 

3.2.S 

3.2.6 

3.2.7 

3.2.8 

3.2.9 

Variable 

TRACE 

WATCH 

Use 

option 'XS' or DEBUG H(S) 
gives dynamic printout of 
program flow and databases. 

option 'XS' or 'X3' or 
DEBUG H(S) or DEBUG H(3) 
lists HALMAT changes. 

HALMAT_REQUESTED (Option 'XS' and ¢S) or 
DEBUG H(6) lists HALMAT 
as it is processed. 

SYT SIZE 

LITMAX 

LITSIZE 

LITl 

SYT USED 

SYT WORDS 

Symbol table size. 

Number of literal blocks. 

Literals in a block. 

First words array of literal 
block in core. 

Last possible valid symbol. 

Index of last word in 
VALIDITY ARRAY containing 
valid bit. 

INITIALIZE sets toggles, reads in a literal block, 
handles based storage, etc. 

6.3.3 STORAGE MGT: 

STORAGE MGT allocates based data. 

6.3.4 PR+NT DATE AND TIME: 

PRINT DATE AND TIME computes date and-prints message 
followed by date. 

6. 3 • SPRINT 'l'IME: 

PRINT TIME computes time and prints message followed 
by time. 

6-13 

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 

1; 



,JiFf4Pf5&;;:2""rb,¥$ $ .,£14,$(&,,*,,#[, 

_~ « ~" ,~:._.:,,":,,,,:,"~,,:~,,-__ ,.~-t';"J.!If>.:;.,,,r·,-;;;:'I'~,,,,::. > ~, .... ~-'l~0£,,*, 

Number Variable Use 

6.3.6 NEW·HALr.1AT BLOCK: 

3.6.1 OPR The HALMAT block in core. 

3.6.? CURCBLK Current HALMAT code block. 

3.6.3 CTR Points to current HALMAT 
word. 

NEW HALMAT BLOCK reads in a new HALMAT block and 
initializes. 

6.3.7 PREPARE HALMAT: 

3.7.1. SMRK CTR Index of next SMRK. 

3.7.2 LAST SMRK Index of last SMRK. 

PREPARE HALMAT extracts in line functions, transports in
variant function calls and shaping functions out of arrayed text, 
and moves array markers (ADLP) to their proper places. 

6.3.8 MOVECODE: 

+ t 

I I BIG I 
3.8.1 LOW Start of HALMAT to be 

moved up. 

3.8.2 HIGH Start of HALMAT to be 
moved back. 

3.8.3 BIG Number of words moved. 

3.8.4 ENTER TAG TRUE if references to CSE' s 
may be among words moved. 

MOVECODE moves from HIGH to HIGH + BIG - 1 before 
LOW. 

6-14 

" 
! , .~ 
~ 



• i 

.--+_. 

1"'--' ......... 

t·~·.; .. ,,,,:.,~ 

Number 

6.3.9 OPTIMISE: 

3.9.1 

3.9.2 

3.9.3 

Variable 

STT# 

STILL NODES 

SgARCHABLE 

-------------------

Use 

HALls statement number. 

True until no more eSE's 
can 'be found with the 
statement being checked 
and earlier statements. 

False if the node under 
examination cannot possibly 
match previously examined 
nodes. 

OPTIMISE governs the flow within a HALMAT block, 
building tables, checking for CSE's, and changing HALMAT 
and tables accordingly. 

6.3.10 DECODEPOP: 

Class 0: TAG 

8 

Class >0: TAG 

8 

6-15 

NUMOP 

8 

NUMOP 

8 

ClASS I OPCODE ~ o . SUBCODE 

4 8 3 1 

3 5 3 1 

t-- .f 
SUBCODE2 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 



Number 

3.10.1 

3.10.2 

3.10.3 

3.10.4 

3.10.5 

Variable 

TAG 

NUMOP 

CLASS 

OPCODE 

SUBCODE 

Use 

See:Compiler System Spec., 
Appendix A, and above. 

DECODEPOP decodes HALMAT operators. (See Compiler 
System Spec., Appendix A.) 

6.3.11 NEXTCODE: 

NEXTCODE positions CTR to the next HALMAT operator. 

6.3.12 PUT HALMAT BLOCK: 

PUT HALMAT BLOCK writes the changed HALMAT block 
for Phase II. 

6.3.13 PRINTSUMMARY: 

3.13.1 

3.13.2 

3.13.3 

3.13.4 

3.13.5 

3.13.6 

CSE# 

COMPLEX MATCHES -

TRANSPOSE 
ELIMINATIONS 

LITERAL FOLDS 

COMPARE CALLS 

SCANS 

6-16 

Number of CSE's processed. 

Number of CSE's which 
contain qther CSE's. 

Number of Matrix Trans
poses eliminated. 

Number of literals folded. 

Number of calls to COMPARE 
procedure in CSE FOUND. 

Number of times the SCAN 
routine is used in COMPARE. 

l .... 

.1f"11!. 
j,; 

... ,.. 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 



Number Variable Use 

3.13.7 MAXNODE Largest size of NODE list 
encountered. 

3.13.8 MAX CSE TAB Largest size of CSE TAB 
list encountered. 

3.13.9 DIVISION Number of Nodes where divides 
ELIMINATIONS were replaced by multiples. 

3.13.10 EXTN CSES Number of CSE's which are 
structure nodes. 

3.13.11 TSUB CSES Number of CSE'swhich are 
structure subscripts. 

PRINTSUMMARY prints times and above results. 

6.3.14 X BITS: 

X BITS returns "code optimizer bits" used in PREPARE 
HALMAT. 

6.3.15 ERRORS: 

ERRORS prints error message when error detected in literal 
collapsing, obtaining storage for phase 1.5, or table overflows. 

6.3.16 RELOCATE: 

RELOCATE relocates HALMAT after MOVECODE. 

6.3.17 DECODEPIP: 

DECODEPIP decodes HALMAT operands and prints them if 
requested. 

6.3.18 OPOP: 

OPOP returns the operator part of a HALMAT operator. 

6.3.19 VAC OR XPT: 

VAC OR XPT returns true if HALMAT operand is a VAC or 
XPT. 

6-17 

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE • CAMBRIDGE. MASSACHUSETT$ .021 sa • (617)6§1::.184.Q_ 
:..- ___ ...... :.:.....:.:~, ~ _ ... _", 'C,.~. -__ ~._~ .. ~_~ __ ...... _ ... " ~. _ _ ,~:. -,", _ .. ::......... :.._, .• _.: .. ",,_ ...• _:_,_ .. ~ ... ,~._. ___ t.~,:....... ........ ~ _~-.• -~"_._ -'_.~,~ __ ,.¥_,.: __ .~ __ ... . ~" .. !........_A..';~,., ..... "" ....... ~ _~_~,.~ ..... _~,~"""'. __ ~ ,_, ~. _". ____ .••• ~. _" ""~_v_.""_ .......,"~ "~ ••.• __ ~.---..... __ , .... 



, , ., 
c' 

) 

. -r' -- .. -.. ' ........... . --· ... ~- .. w---·'·-~···-~ .. ···--~·'·~7~ .. ~~ , •. ~ . -~ .-~,.-~-=.~-~,.~ •. ·~~~~".'.~~:·~.· .. ·,~~~~~VA:=~~~?.~L 

1 , _:. __ . __ .. ~ __ .~_ .. _"'_. ___ --'-

6.4 Stalking The Wild CSE: Table Building 

General Description 

Each HALMAT statement is checked by CHICKEN OUT 
and eitlier allowed, skipped, or both skipped and-
t~hles are deleted by ZAP TABLES. If the statement is 
alL:,wed, GROW TREE builds-the. NODE list. In the 
procc~s, useless matrix transpose operations are 
elimin~~ed, additional literals are folded, and unneeded 
divides ~~e replaced by multiplies. 

Stalking Proc0iures and Data Base 

Number Variable 

6.4.1 CHICKEN OUT 

4.1.1 i''''CRST 

4.1.2 LAS']; 

4.1.3 CLASSO 

4.1.4 IF CTR 

4.1.5 ASSIGN CTR 

4.1.6 DO LIST 

4.1. 7 DO INX 

4.1.8 DO SIZE 

6-18 

Use 

First HALMAT operator to 
be checked. 

Last HALMAT operator to be 
checked. 

For class 0 operators: 

"0" - Statement skipped and 
ZAP TABLES called. 

"1" - Statement skipped • 

. 1" - Statement processed. 

Il'i'l'X of first CLASS 7 
(c(.;~'itional) operator in 
sente.ce or O. 

Index o~· first assignment or 
retul.~n oterator in sentence 
O. 

stack for si~ple DO's. 
Negative if ~XIT references 
corresponding ~ND. 

Index for DO LI~~. 

Maximum simple DO ~esting 
permitted. 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • '617) 661-1840 

\ \. 

! : 

' .. 



I' ·1 
I"l 

.. . I'" ............... ,.... ~ .. ~ .. ~-.. -... -..... ~-.~ ... ~ ..... -,--.-.-' .... ~-.~-.... ~ .,.,-_ ......... _- ~ .... ~~~~ ·':=~~~~:l:~~~;'=~.~~I~~:::-'·.-.' 
~~,...,.. ... ~,." •. ,..~ ...... ', .• ~" ".::::., ..• ·: .• -.. i·.:.".'i,'"" .. ···O''''''''''','=,..; . .." . .:..c·, •. :;.:c:......... 1l 

Number 

4.1.9 

4.1.10 

4.1.11 

6.4.2 ZAP TABLES 

Variable 

DEBUG 

HAU1AT BLAB 

STUB FLAG 

Use 

Debug toggle set by 
·DEBUG cards. 

Prints HALMAT block after 
optimization. 

Set in SYT FLAGS to indicate 
impossibilTty of leaf 
procedure. 

ZAP TABLES deletes all tables and calls 

RELOCATE HALMAT if CSE has been found. 

6.4.3 RELOCATE HALMAT: 

4.3.1 CSE L INX 

4.3.2 CSE LIST 

Number of VAC pointers 
to be relocated. Number 
of entries in CSE LIST. 

Pointers to VAC's that 
may need relocating. 
On second pass contains 
index into NODE list to 
entry with last reference 
to CSE so tag can be re
moved. 

RELOCATE HALMAT relocates certain VAC's. 

CSE-LIST HALMAT 

~ PTR TO NODE LIS 

PTR'/ 
16 

NODE 

LASTI PTR I 

16 16 

The NODE pointer replaces the HALMAT pointer. LAST 
keeps track of last VAC referencing-the CSE in question. 
#REFS is the number of times referenced. 

6-19 

NODE2 

I # REFS 

16 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE' CAMBRIDGE, MASSA .. CHUS,ETfS021~8 •. El17 661-.1840 .. , 

:4 

-.-----
• 



I 
~ 
i 

]' 

r 
I 

6.4.4 DETAG: 

DETAG removes TAG from HALHAT word. 

6.4.5 CSE TAB DUMP: 

CSE TAB DUMP prints CSE_TAB, NODE list, and CATALOG PTR's 
(parallel to symbol table). 

6.4.6 FORMAT: 

FORMAT places numbers into N-strings. 

6.4.7 CSE WORD FORMAT: 

CSE WORD FORMAT makes NODE list words somewhat 
readable. 

6.4.8 HEX: 

HEX converts integer to Hex characters. 

6.4.9 EXIT CHECK: 

EXIT CHECK negates the entry in DO LIST corresponding 
to an EXIT. Used to prevent CSE's across-simple END's 
referenced by an EXIT. 

6.4.10 ASSIGNMENT: 

Number 

4.10.1 

Variable 

PM FLAGS 

6-20 

Use 

Mask to determine if variables 
can be equated for CSE purposes 
when they appear in simple 
assignments. 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE' CAMBRIDGE. MASSACHUSETTS 02138 • (617) 661-1840 



~ 

, 
! : 

~ 
I 

. ~ 

I 
I 
I 

1 
i 

j 

I 

• -".,- ".--~ •• _". 'W .'----, -,~. ,.......... ... "'~'~'"{i~'" . ~~-.-- .'~~_~ ___ , . ,~ .. "~, __ . . '1---'"-·_-- -. --, -- -- - -- ."'-." -

~;f.,.~~1~!~!r!it:,~~~,~.~~e:~'!."5_.z~·'~"""""'i!~~~·-:~:""<'".~··"~,.,"·F~~~r.!".::',~ ':.:?i~"':'"::":-~~,,:,£,,~ 

4, .• 

ASSIGNMENT checks for assignment into a name variable. 
If present, ZAP TABLES is called. Otherwise, if a simple 
assignment (A =-B) , the variables are marked as identical 
using CATALOG PTR and VALIDITY. If not a simple assignment 
(A = B + ••• )- then receivers have VALIDITY set to 0, preventing 
participation in further CSE's. 

6.4.11 ST CHECK: 

ST CHECK verifies that a structure receiver of an 
assignment-contains no name variables. 

6.4.12 NAME CHECK: 

NAME CHECK verifies that a variable is not a name 
variable. 

6.4.13 SYTP: 

SYTP is true if the HAL MAT operand in question is a 
symbol table pointer. 

6.4.14 GROW TRUE: 

Number 

4.14.1 

4.14.2 

4.14.3 

Variable 

MAX NODE SIZE 

STILL NODES 

GET INX 

Use 

Size of NODE list. 

True until all nodes 
processed in statement 
in question. 

Points to operator word 
in NODE list of next NODE 
to be checked for CSE's. 

GROW TREE checks that enough space is available for 
the Nodes-of the statement in question. An END OF LIST 
is placed on the NODE list and BUILD_NODE_LIST is called. 

6-21 

j 

J 

I 
J 
,~ 
1 

I , 
• j 

~ 
j 
l 
~ 

"·1 
! 

l 
1 

, ~ 
t. , 
j.: 

J 
a 

l . 

INTERMETRICS INCORPORATED· 701 CONCORD AVEt'~UE • CAMBRIDGE. MASSACHUSETTS 02138 • (617) 661~1840· 
...... - !,,"'I'$= #il:!1$!!l!~&! b!;:!:!"1'7:*:l,:!!:!~~!,:~=,==~t:W:,:"~ 



1 
'~ ___ ._~!l~ 

6.4.15 BUILD NODE LIST: 

NODE 

I~CONTRO~ TYPE I 
8 4 4 

or: 

OPTYPE 

16 16 

4.15.1 NODE 

4.15.2 NODE2 

FORMATS 

PTR 

16 

NODE 2 

16 

16 

Array of words'in CSE 
word format. 

I 

Array of halfwords pointers 
para11e~ to NODE. 

.Jr Pf;_~.A$K ....... . •.••.• J..U<.E.Q ._tNJJ J.!b..L"jL F Co!!.:o!:!.:O!!L.: .. ..!:)..!.'--_________ _ 

CnI\TF9L_,..,ASK F I )( F- n I NIT r A L,..< "F C Co 0 Q.(\ '~ ) • 

6-22 

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETIS 02138 • (617) 661-1840 

i~ 

;, 

. .: 
',.l 

ill" n :_LI&m,,,r T lJIiLII 



I, ' 

Number 

4.15.3 

4.15.4 

4.15.5 

4.15.6 

4.15.7 

4.15.8 

4.15.9 

4.15.10 

4.15.11 

Variable 

LITERAL 

IMMEDIATE 

TERMINAL VAC 

OUTER TERMINAL 
VAC 

VALUE NO 

DUMMY NODE 

SYT 

END OF NODE 

VAC PTR 

6-23 

Use 

Literal operand. PTR = O. 
NODE2 is a pointer to the 
literal table. CONTROL = 
3 if odd parity. 

Immediate operand. PTR = 
value. NODE2 = O. 
CONTROL = 1 if odd parity. 

VAC or XPT operand which points 
to different node. PTR 
is a pointer to the VAC PTR 
word in the NODE list or 
that node. NODE2 is a 
pointer to the END OF NODE 
word of the NODE containing 
the TERMINAL VAC. CONTROL = 
1 if odd parity. 

VAC or XPT operand which points 
to a CSE. PTR is same 
as for TERMINAL VAC. 
NODE2 is a pointer into 
CSE TAB for the CSE 
pointed to. CONTROL = 1 
if odd parity. 

Value number. PTR is 
a pointer into CSE TAB. 
NODE2 is the WIPEOUT#. 
CONTROL = 1 if odd parity. 

You guessed it. CONTROL = 
1 if odd parity. 

Symbol table pointer. 
Only present between 
GROW TREE and GET NODE. 
PTR Is symbol table pointer. 
CONTROL = 1 if odd parity. 

No more operands for this 
node. NODE2 points to 
optype of Node in NODE 
list. 

PTR is index of HALMAT 
operator of Node in question. 
NODE2, if non-zero, is a 
pointer into the CSE TAB 
(in this case, the Node is 
a CSE) . 

"I 

I 
i 
;'t 
li 

; ~~ 

J 
J 
:~ 
" . 
"!lo, 

:~ 
',~ 

~ 1 :j 
, ;~ 

: t 

I 

1 
; 

j 
.i 

i 
,1 
~ 

1 
~ 

'.;l', 
ij 
i , 
t 
j 
oil 

:~ ~ " 
,-; 

j , 
.~ 
.~ 

",I ~ 
,j 

j 

I 
1 
1 

,~ 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE • CA~B,RJRG{;LMASSACHUSEITS.02l3B,~1Bj:t;U~S;1 .... 1iJLt'iL".,:,Jt1II 



Number Variable 

4.15.12 END OF HALMAT BLOCK 

4.15.13 END OF LIST 

4.15.14 OPTYPE 

4.15.15 N INX 

OPTYPE Formats 

p HALMAT OP 

4 12 

"F" m 

4 4 8 

6-24 

Use 

Unused. 

Last entry in NODE 
list for the state
ment in question. 

Internal operator 
(set by CLASSIFY) 
derived from HALMAT 
operator. 

Indexes NODE and NODE2. 

Normal format. Commuta
tive operators always 
become the even paritied 
operator, e.g. SSUB be
comes SADD with PARITY = 
1. P is the precision 
for conversion operators and 
zero otherwise'. 

Built-in functions. m 
is the index of the 
function. 

l~ 

I 

I, 



r: , 

~j 
[ 

J 

STRUCTURE OF NODE LIST: 

NODE 

END OF LIST 

Increasing 
VAC PTR 
END-OF NODE 

,If". 
~ .... 

N_INX r 
NODE: 

NODE: [ 

OPERANDS: 
VALUE NO: 

(PTR TO CSE TAB) 
OUTER TERMINAL VAC 

(PTR TO "VAC-PTR" OE' 
NODE) -

LITERAL 
TERMINAL VAC 

(PTR TO "VAC PTR" OF 
NODE) -

SYT(PTR TO SYMBOL TABLE) 
OPTYPE 

END OF LIST 

MORE NODES: 

Example: 

F = A - B C: 

produces HALMAT: 

o. SSPR 

B(SYT) 
C (SYT) 

3. SSUB 

A(SYT) 
o (VAC) 

4. SASN 

3 (VAG) 
F(SYT) 

o 

NODE2 

o 

o OR CSE TAB PTR 
PTR TO OPTYPE 

WIPEOUT# 

CSE TAB PTR 

PTR TO LIT TABLE 
PTR TO END OF NODE 

o 
o OR PTR TO "END OF NODE "I OF NODE 

CONTAINING TERMINAL VAC 
REFERENCING NODE. IF TOPTAG 
THEN UNRELIABLE. 

6-25 

INTERMETRICS INCORPORATED ·701 CONC~RD AVE~~~ ... :~~~MBRIDGE, MAS.Sjl.9JjLLSgII.§ •• Qf.L38 • (617) 661-18 

1 

I 
1 



I 

After BUILD NODE LIST: 

NODE NODE2 

control ~ Ptr. 

1. END OF LI ST o o 
---------=--=---------------~---------------------------------------

2. VAC PTR 

3. END OF NODE 

3 

o 

4. 

5. 

1 TERMINAL VAC B 

o SYT A 

6. o o SADD 

o 

6 

3 

o 

o 

Node 

-------------------------------------------------.. ~------------------
7. VAC PTR 0 0 

B. END OF NODE 0 11 

9. 0 SYT B 0 Node 

10. 0 SYT C 0 

11. 0 0 SSPR 3 

6-26 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 

I , ' 

" 

1 
-1 

l I 

~ 
,.1 

":~ , -~ 
··t -l 

"',1<'1 
, ~ 

-.C'J 

." . 



·.- .... ,,---, -, r~"-.--'''-·~~·.~~·~, _ .. < ."., .... £0."",,"00 __ "" , . ............-... •• ~ .. ""J!i':f p~, 4i.' 'i..i.-!"" ',"""""'. .. .;~. ;. .,---..,uw r-· hI. ; ~ .• Ilq . 'T~. ." '. . " '. , 
"-:"'0-"" -~". ""_'P">~"'W_~"'''''',e,~~ '" .,.; 7""-~~ 

. ~~-~<. -" - , 

Number Variable 

4.15.16 ADD 

4.15.17 A PARITY 

4.15.18 A INX 

4.15.19 DIFF NODE 

4.15.20 DIFF PTR 

4.15.21 D N INX 

4.15.22 TRANSPARENT 

4.15.23 BFNC OK 

4.15.24 EON PTR 

4.15.25 REF PTR 

4.15.26 TYPE 

6-27 

Use 

Stack of operators to be 
added to the present Node. 
Indexed by A_INX. 

Stack of parities for 
corresponding operator. 
Odd parities for subtracts 
and divides. Indexed by 
A INX. 

Index for ADD and A PARITY. 

Stack of Nodes in the same 
statement but different 
than the one currently being 
processed. Indexed by D_N_INX. 

Used to get TERMINAL VAC's 
pointing to VAC PTR of appro
priate Node. Indexed by 
D N INX. 

Index for DIFF_NODE and 
DIFF PTR. 

HALMAT operator which produces 
no Node but whose operands 
may produce Nodes cause 
TRANSPARENT = TRUE. 

False for Built-in functions 
which produce no Nodes and 
thus partiticpate in no 
CSE's. 

Points to END OF NODE of 
present NODE. 

Pointer to TERMINAL VAC 
referring to the present 
NODE. 

HALMAT operand type. 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE,'MASSACHUSETTS 021~R .1.1=:17\ ~~LfQAi'\, 
----'----.:.-~,-~~>-. .,."-.~ .. -.. ~... , 

., 



Number Variable Use 

4.15.27 PRTYEXPN Parity of the operand in 
question. 

'4.15.28 OP HALMAT operator (of even 
parity) for present Node. 

4.15.29 DIVIDE# Number of divides in this 
Node. 

BUILT NODE LIST adds the Nodes from a statement to the 
NODE list. Constants are folded and unneeded divisions 
eliminated. 

6.4.16 LIT CONVERSION: 

LIT CONVERSION replaces a VAC referencing a harmless 
literal conversion by the literal itself. 

6.4.17 CONVERSION TYPE: 

CONVERSION TYPE checks a literal conversion to see 
if it is harmless. 

6.4.18 CLASSIFY: 

Number 

4.18.1 

4.18.2 

4.18.3 

Variable Use 

SET P True if PARITY is to be 
set. 

FIX SPECIALS True if unneeded matrix 
transposes are to be 
eliminated. 

PARITY Odd if subtraction or 
division. 

CLASSIY creates the OPTYPE from a HALMAT operator, sets 
PARITY, and eliminates unneeded matrix transposes. 

6~28 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 

11' 
l 

I 

:t
r ., . 

~~: . 



, 
) 

1 
~ 

6.4.19 CHECK TRANSPOSE: 

M V. 
CHECK TRANSPOSE changes MT V to V M and V MT to 

6.4.20 PRINT SENTENCE(PTR): 

PRINT SENTENCE formats and prints HALMAT from PTR 
to the next SMRK. 

6.4.21 SET NONCOMMUTATIVE: 

Number Variable Use 

4.21.1 BIT TYPE True if bit type. 

4.21.2 NONCOMMUTATIVE True if "Noncommutative". 

4.21.3 REVERSE OP Odd pari tied operator 
corresponding to OPe 

SET NONCOMMUTATIVE returns NONCOMMUTATIVE and sets 
BIT_TYPE,-TRANSPARENT, and REVERSE OPe 

6.4.22 NO OPERANDS: 

NO OPERANDS returns the number of HALMAT operands 
following an operator. 

6.4.23 PTR TO VAC: 

PTR TO VAC formats a PTR TO VAC word for the NODE 
list. 

6.4.24 FORM VAC: 

FORM VAC formats a TERMINAL VAC word for the NODE 
list. 

6-29 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE; l,,'ASSACHUSETTS 021~A • 1~17\ ~~1_1aAl'i 

,~ 
'I 
'j 

J 
'~ 

't 
j 
;~ 

f .. 
"11 

:1 
~ 

',S 
,1 
~ ~ 
'1 
~ 

:t 
~ 
l~ 
.~ 

:~: , 
~ 't 

; ~ 
,~ 

t 
f 
] 
:~ 

:.'ic. 

1 .) 

~~ 1 
:~ 

'; 
L1: 
.'<C 

i 
I 

'1 

'~. 



I" 
i 

I 
I 
I 

6.4.25 FORM TERM: 

FORM TERM formats terminal word for NODE list. 

6.4.26 TERMINAL: 

Number 

4.26.1 

Variable 

TAG 

Use 

If TRUE, considers a VAC or XPT 
pointing to a different 
operator as terminal. 

TERMINAL returns true if the operand in question is 
an outer node for the tree decomposition of the statement 
in question. 

6.4.27 BUMP CSE: 

BUMP CSE puts a literal on the CSE list for 
literal folding. 

6.4.28 ELIMINATE DIVIDES: 

ELIMINATE DIVIDES eliminates all but one divide 
from a Node. 

6.4.29 COLLAPSE LITERALS: 

COLLAPSE LITERALS folds literals and modifies 
HALMAT and NODE list accordingly. 

6.4.30 COMBINED LITERALS: 

Number variable 

4.30.1 DW 

Use 

Common data word for 
communication with XPL 
monitor. 

COMBINED LITERALS does lit arithmetic by monitor 
calls. 

6-30 

INTERMETRICSINCORPORATED.701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138' (617) 661-1840. 



\ 
!' 

.' 

.. · .... ·1 

6.4.31 FILL DW: 

FILL OW fills DW with literal. 

6.4.32 LIT ARITHMETIC: 

LI'J~ ARITHMETIC performs monitor call to do literal 
ar i thmetTc • 

6.4.33 SAVE LITERAL: 

SAVE LITERAL creates a new literal table entry 
and returns pointer to it. 

6.4.34 GET LITERAL 

Number Variable Use 

4.35.1 LITORG Smallest index 
in core. 

4.35.2 LITLIM Largest index 
in core. 

4.35.3 CURLBLK Literal block 

GET LITERAL guarantees a literal in core. 

6.4.35 MESSAGE FORHAT: 

MESSAGE FORMAT formats a NODE LITERAL word for 
diagnostics. 

6.4.36 VALIDITY: 

of 

of 

in 

literal 

literal 

core. 

VALIDITY returns the validity bit of the symbol in 
question. 

6.4.37 SET VALIDITY: 

SET VALIDITY sets the validity bit of the symbol in 
question. 

4.38.1 VALIDITY ARRAY 

6-31 

Index i = 1 if symbol 
is eligible for a CSE. 

.~ •.. ,; INTERMETRICS INCORPORATE.D o 701 C()~CORD A~ENUE 0 CAMBRIDGE, MASSACHUSETT§.'p2138,. (617) 661-18;40 
~1iMi£"" $ei;:r aU 1 JdJIHPjg _L JI1L1t,!!II."'!I!'J; LHz .. ~p .. " ~_J. ij L_, _IL.~.d .. ~s. C.~K_ .J 



6.4.38 ASSIGN TYPE: 

ASSIGN TYPE returns true if operator is regular or 
structure assignment. 

6.4.39 TERM CHECK: 

TERM CHECK either calls ZAP TABLES for assignment 
to major or minor structure or else sets validity false 
for a structure node receiver. 

6-32 

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 

'. 

(. 



·-<""- ~-. .,.,.;-,,;- -7~~"--"'~-":""<~-:--'~ "~~~~' -'~''''''''''''''''-'-''"":''""...,-,~. __ ''''':'':"""":'~'~'\:;'''';J":W ".i\I'~ZC,~._l .. t ">;"(';:<il!WJ;::;;::"J"'irU":;'f'''_I.f'!!t''lt.~~[~~ 

").,.-.:~ .•.•. ,. ~ _ •. -;:--_" __ •. __ ~_ ,_~e , ___ • _ ,. :._~ ;~-.::;,~~ •. , •• ,;r<~.~~_~~~=":,-,:<,,~_',"r'-~~~.t;,:;::~':;1' 

6.5 Recognition 

General Description 

• GET NODE gets a node and, if a CSE can possibly 
exist with a previously processed Node, CSE FOUND 
searches for CSE's. GROW TREE has produced-Nodes such 
that a backward scan of the NODE list by GET NODE examines 
Nodes in the proper orde~ 

Recognition Procedures and Data Base 

Number 

6.5.1 GET NODE: 

5.1.1 

5.1.2 

5.1.3 

5.1.4 

5.1.5 

5.1.6 

5.1.7 

Example: 

Variable 

SEARCH 

SEARCH2 

SEARCH INX 

GET INX 

Use 

Stack of NODE list operands 
which might be part of a 
CSE. Indexed by SEARCH_INX. 

Same as search, except 
NODE2 entries go here. 

Index for SEARCH and 
SEARCH2. 

Pointer to NODE list 
rised by GET_NODE. 

NODE BEGINNING Points to OPTYPE of Node 
in NODE list. 

SYT POINT 

CATALOG PTR 

F = A + B; 

6-33 

Symbol table pointer. 

Array parallel to symbol 
table of VALUE NO's with 
pointers to CSE TAB. 

,,~,1t., JNTERMETRICS INCORPORATED· 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617\ 661-1840 



Symbol Table 

A 

B 

F 

CATALOG PTR 

~ Ptr 

B 

B 

6 

11 

VALIDITY 

1 

o 

From the above values, we may deduce: 

1. The VALUE NO for A is 6. 

2. The VALUE NO for B is 11. 

3. B no longer has a valid VALUE NO since it must 
have recently been the receiver in an assignment. 

4. No further searching for CSE's need be made 
since we are left with only one valid operand. 

Number 

5.1. 9 

5.1.10 

Variable Use 

NODE SIZE Number of oprands in 
SEARCH list for a Node. 

PRESENT NODE PTR Points to VAC PTR word of 
Node presently being 
examined by GET_NODE. 

GET NODE takes a Node and places all operands which 
have been encountered before this Node and after the last 
assignment or ZAP TABLES into the SEARCH list. SYT words 
are replaced by VALUE NO's in the process. The Node is 
sorted if not NONCOMMUTATIVE. If appropriate, the SEARCH 
list is sorted. 

6.5.2 TYPE: 

TYPE returns type of a word in NODE list format. 

6-34 

4_ 
~J 

INTERMETRJCS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 



-=----~" "" ., ; . ~~~[~~l 

6.5.3 CATALOG: 

Number 

5.3.1 

5.3.2 

CATALOG ENTRY: 

Variable 

NEW OP 

CSE TAB 

Use 

True if CSE TAB entries 
already exist for the VALUE 
NO in question, but not one
for the present OPTYPE. 
False if no CSE TAB entry 
at all. 

Doubly linked array of 
pointers into NODE list. 

CSE TAB PORMATS 

#1 --PTR TO FIRST NODE ENTRY IN CSE TAB FOR THIS OPCODE 
#2 --OPTYPE 
#3 --PTR TO NEXT CATALOG ENTRY FOR DIFFERENT OPTYPE 

BUT SAME VALUE NO, ETC. 0 FOR LAST CATALOG 
ENTRY FOR THIS-VALUE_NO, ETC. 

NODE ENTRY: 

#1 --PTR TO OPTYPE OF A NODE 
#2 --PTR TO NEXT NODE ENTRY IN CSE TAB FOR THIS 

OPTYPE AND VALUE_NO, ETC. 0 FOR LAST ENTRY. 

CATALOG sets up a catalog entry and the first node 
entry for a particular VALUE NO and a particular OPTYPE 
in the CSE TAB. 

6-35 

~ 

INTERMETRICS INCORPORATED· 701 CONCORD_AV~NUE ·CAMBRIDGE. MASSACHUSETTS 021:3'§._~ ••• J617) 661.:JfullL~_,:. . &~ 



6.5.4 CATALOG ENTRY: 

CATALOG ENTRY adds a node entry to CSE TAB. 

6.5.5 GET FREE SPACE: 

Number Variable Use 

5.5.1 FREE BLOCK BEGIN Beginning of unused 
block. 

5.5.2 FREE SPACE Amount of space 
block. 

GET FREE SPACE gets an unused block in CSE TAB. 

6.5.6 CATALOG SRCH: 

Number Variable Use 

5.6.1 CSE INX See below. 

CATALOG SRCH checks catalog entries in the CSE TAB 
for a particular VALUE_NO or OUTER_TERMINAL_VAC. 

in 

If a matching OPTYPE is found, CSE INX is set to the 
first mode entry in eSE TAB for that OPTYPE. A pointer 
to the appropriate catalog entry in CSE_TAB is returned. 

Otherwise, CSE INX is set to the last catalog entry 
present for the given VALUE_NO, etc., and 0 is returned. 

6 . 5 . 7 SORTER: 

SORTER sorts the NODE list. 

6.5.8 SEARCH SORTER: 

SEARCH SORTER sorts the SEARCH list. 

6-36 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 



r 

6.5.9 CSE MATCH FOUND: 

Number Variable 

5.9.1 REVERSE 

Use 

True if reverse eSE, e.g. 
F = (A - B) (B - A); 

CSE MATCH F'OUND calls COMPARE and, if appropriate, does a reverse compare. 

6.5.10 SETUP REVERSE COMPARE: 

Number Variable 

5.10.1 SEARCH REV 

5.10.2 SEARCH2 REV 

Use 

Same as SEARCH but with 
parities changed. 

Same as SEARCH2. 

SETUP REVERSE COMPARE copies SEARCH and SEARCH2 into 
SEARCH REV and SEARCH2 REV changing parities and sorting. 

6.5.11 CONTROL: 

CONTROL returns control field of a word in Node list format. 

6.5.12 COMPARE: 

Number 

5.12.1 

5.12.2 

5.12.3 

Variable Use 

PREVIOUS NODE Points to first operand 
OPERAND of previous Node. 

CSE List of matched operands from 
SEARCH list. Indexed by CSE 
FOUND INX. 

CSE2 List of matched operands 
from SEARCH2 list. Indexed 
by CSE FOUND INX. 

6-37 

I 
~ 

1 
1 
l 

1 
1 
1 



--, '1- .-'-' .. -.--.---.---'--'-~.---".---~-----. pt.} 
<. UL.J4ZL t ££2. -.---..,.. 

j 

Node. 

Number 

5.12.4 

5.12.5 

5.12.6 

5.12.7 

5.12.8 

Variable Use 

CSE FOUND INX Indexes CSE, CSE2. 

PREVIOUS NODE Pointer to OPTYPE of 
previous Node. 

PRESENT HALMAT Points t~ HALMAT for 
present Node. 

PREVIOUS NODE Points to VAC PTR word 
PTR of previous match's Node. 

PREVIOUS HALMAT Points to HALMAT for 
prev~ous match. 

COMPARE checks if a Node has a CSE with a previous 

6.5.13 COMPARE LITERALS: 

COMPARE LITERALS compares 2 literals, returning 
true if equal. 

6-38 

. \.a$,$1 ,*W 4[ 

I 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661~1840 

1 
I 



6.6 Bringing Home the Bacon: HALMAT Rearranging 

General Description 

After a eSE is found, the HALMAT is rearranged so 
that the eSE is in fact computed in both the previoui:; 
and present Node. The previous Node is tagged. All 
references are tagged and their HALMAT VAe pointers 
replaced by pointers into the NODE list, to the appropriate 
VAe PTR. Such relocation is necessary since the eSE may 
be moved due to a later eSE. 

The second (or present) computation of the eSE is now re
placed by NOP's (except for the case of TSUBS where its eSE 
TAG is set). In some cases, the negative or reciprocal of the 
eSE is called for, and the HALMAT for the present node is accordingly 
modified. 

Bacon Procedures and Data Base 

Number Variable 

6.6.1 SETUP REARRANGE: 

6.1.1 PNPARITYO# 

6.1. 2 PNPARITYl# 

6.1.3 FNPARITYO# 

6.1.4 FNPARITYl# 

6.1. 5 M PARITYO# 

6.1. 6 M PARITYl# 

6.1. 7 NEW MODE PTR 

6.1. 8 TOTAL ~mTeH PRES 

6-39 

Use 

Number of parity 0 operands 
in previous Node. 

Number of parity 1 operands 
in previous Node. 

Number of parity 0 operands 
in forward Node. 

Number of parity 1 operands 
in forward Node. 

Number of parity 0 operands 
in match (eSE). 

Number of parity 1 operands 
in match (eSE). 

Points to VAe PTR word in 
NODE list for-the new eSE. 

TRUE if eSE = present Node. 

INTERMETRICSINCOR~ORAT~D • 701H~_~NCOR.q~~,~N~E • CAMBRIO'!S .MASSACHUSETTS 92138 ;. (617U61-1840 



SETUP REARRANGE sets the above variables needed by 
REARRANGE HALMAT. 

Number Variable 

6.6.2 REARRANGE HALMAT: 

6.2.1 

6.2.2 

6.2.3 

6.2.4 

6.2.5 

6.2.6 

6.2.7 

6.2.8 

6.2.9 

6.2.10 

FORWARD UNMATCHED 
PLUS 

FORWARD MATCHED 
MINUS 

FORWARD MATCHED 
PLUS 

FORWARD 

TOPTAG 

TOTAL MATCH PREV 

MULTIPLE MATCH 

HALMAT PTR 

HALMAT NODE START 

ALTER HALMAT 

Use 

TRUE if there is a 
parity 0 operand in the 
present (or forward) 
Node which is not in 
-the eSE. 

TRUE if forward Node has 
parity 1 operand in the 
CSE. 

TRUE if forward Node has 
parity 0 operand in the 
eSE. 

TRUE if forward (= present) 
Node being processed. 

TRUE if previous Node was 
already a CSE. 

TRUE if previous Node = eSE. 

TOPTAG & TOTAL MATCH PREVo 

Last HALMAT operator in 
eSE. 

First HALMAT operator in 
.the Node. 

True unless TSUB CSE where 
HALMAT is not NOP'ed. 

REARRANGE HALMAT rearranges, flags, NOP's, etc., HALMAT 
to create a CSE with its references. 

6-40 

REPRODUCIBILITY OF'lEIt 
ORIGlliAL PAGE IS poon 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE' CAMBRIDGE, MASSAOHUSETTS 02138 ~ (617) 661-1840 

.j \ , 

..~ 



6.6.3 SET HALMAT FLAG: 

SET HALMAT FLAG sets CSE TAG in HALMAT. 

Number Variable Use 

6.6.4 COLLECT MATCHES: 

6.4.1 ELIMINATE DIVIDES 

6.4.2 LAST INX 

6.4.3 H INX 

6.4.4 INVERSE 

6.4.5 PO 

6.4.6 PI 

6.4.7 POINTI 

= 1 unless COLLECT MATCHES 
called to eliminate unneeded 
divisions. 

Pointer to the last HALMAT 
operator written during 
processing of this Node. 

Pointer to HALMAT to keep 
track of scan of Node. 

TRUE if generated HALMAT 
operators are to be of 
odd parity. 

Number of even parity 
operands not in CSE. 

Number of odd parity 
operands not in CSE. 

Pointer to a partial 
computation of a Node. 

COLLECT MATCHES groups HALMAT for the CSE computation 
at the beginning of the Node in question. 

6.6.5 FLAG NODE: 

6.5.1 FL .. G Array of flags parallel 
to the HALMAT. 

I '~ljlILB"t 2 

P7/////2 Ijj ~:t~ ~ 
5 1 1 1 

6-41 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 
"' ,'_. . . 

" 



Bit 0 is TRUE if corresponding HALMAT is an operator in the Node in question. 

Bit 1 is TRUE if corresponding HALMAT is an operand in the CSE in question. 

Bit 2 is the parity of the corresponding HALMAT operator or operand in the Node. 

FLAG NODE sets bits 0 and 2 in the FLAG array for the 
Node in question. 

6.6.6 HALMAT FLAG: 

HALMAT FLAG returns the CSE tag for the HALMAT 
operator or-operand in question. 

6 . 6. 7 SET FL.?\G: 

SET FLAG sets a bit in a given FLAG word. 

6.6.8 FLAG MATCHES: 

FLAG MATCHES sets bit 1 in the FLAG array for a 
Node. 

6.6.9 FLAG V N: 

FLAG V N flags bit 1 in the FLAG array of a Node 
corresponding to a given VALUE NO. 

6.6.10 FLAG VAC OR LIT: 

FLAG VAC OR LIT flags bit 1 in the FLAG array of 
a Node corresponding to a given OUTER TERMINAL VAC or 
LITERAL. 

6-42 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE • CAMBRIDGE. MASSACHUSETTS 02138 • (617) 661-1840 

.j 
>.:i 

, 

I. 



.... ~ ... , ,.,-~~~ ... , .. -.-.-"~-~.-~ .. ",-,,.~-. "~-,, -'..."··...,.,,........~·~~--'-· .. -·---.... ~'I.,-·'~·· ~ 

... l~;.~:::.,~,~, ';' ! :'1;t'".,,-:"' ..... ,'~""M' .. .:"':':":" '''Y':''''''''-'. '.-' ''''''~~!·!,=:'.'_'~".C~·C'''C' .. '", '-:'0;,,:, ,':'''',- ',. ,~;, '-' •• ,., .. " ........ , ..... " ' ."., ..• """''''''''.'T''b''·''''''':·'''~''~:'''''''~L- .• ~ ! 1 'I 

Number Variable 

6.6.11 SET WORDS: 

6.11.1 OPPARITY 

6.11.2 MATCHED OPS 

6.11.3 TERMINAL#: 

6.11.4 TAG 

6.11. 5 SPECIAL 

Use -

Parity of HALMAT operators 
generated. 

TRUE if non VAC operands 
are to be in the CSE. 

Number of non VAC operands. 

True if CSE tag to be set 
on operator. 

Special case. 

SET WORDS creates a HALMAT operator with two operands 
of desired characteristics. 

6.6.12 NEXT FLAG: 

NEXT FLAG finds the next HALMAT word with the 
specified-FLAG bit set. 

6.6.13 FOP~ OPERATOR: 

FORM OPERATOR forms a HALMAT operator word. 

6.6.14 FORCE MATCH: 

FORCE MATCH forces a CSE operand into the operand 
in question. What was there already is switched with 
the new operand. 

6.6.15 SWITCH: 

SWITCH interchanges two HALMAT operands and their 
FLAGS. If either was tagged, it is entered into the CSE 
list for later relocation. If a VAC reference is moved 
below its pointer, HALMAT is shifted by MOVE LIMB. 

6-43 

, 

~~~I!'lI1NTi!lE~Rf,i!MI!II!E.T.R.IC_S_I.NI\IIII1C.0II!!!!~~~"'O_",II1'!lI~~A.T!!i!. ~~"~~-1!!' .e'!l7~O~~~~~ C'i!!!, O~'v~~~C~,,~~._R~~D~_ ,~"~"!!~~:~~U!",,! .. E,,,,, '0lIIII!·'!!I!I~.AII!!!l~M!B!I!!!~!Il!IDIl!!G_E_'!!!!IM!I!I!AIlI!IS_S_A_C ... H ... U ... S_E_TT ... S ........ 02 .... 1 ... 3 .... 8_ ................ -=-=~.1~.~_~.i1iii1 


J
I

\

6.6.16 ENTER:

ENTER puts a pointer into the CSE LIST for possible
relocation later.

6.6.17 MOVE LIMB:

MOVE LIMB moves and relocates HALMAT and relocates
the NODE Tist correspondingly.

6.6.18 FORCE TERMINAL:

FORCE TERMINAL forces a terminal HALMAT operand
of correct-parity to the given spot.

6.6.19 PUSH OPERAND:

PUSH OPERAND forces a terminal operand forward
into a harmless slot.

6.6.20 SET VAC REF:

SET VAC REF creates a HALMAT VAC or XPT operand.

6.6.21 PUT NOP:

PUT NOP replaces the CSE computation with NOP's.

6.6.22 REFERENCE:

REFERENCE finds the VAC referencing a given HALMAT
operator.

6.6.23 BOTTOM:

BOTTOM finds where a limb joins the tree so the
limb can be moved.

6-44

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

-~

~-*"

, I!r

Number Variable

6.6.24 GET LIT ONE:

6.24.1 PREVIOUS CALL

Use

TRUE if literal 1 already
generated.

GET LIT ONE generates a literal 1 and returns its
pointer.

6-45

I:,
i.:~ • - -~ ~

1
1

;:;

1
r t
_,1'

1
)J

_'1
J
.~

j
1
-"
J .,
j
; ,
1
''1 ,
,i

~
l ,
i
j

J
i

....... '..,. r"' 4

6.7 Table Updating

General Description

After finding a CSE and rearranging HALMAT, the
NODE list and CSE TAB are modified. A new Node for
the CSE is created if needed. CSE operands are re
moved from the previous and present Node if needed.
Resorting is sometimes required.

When·no CSE is found, TABLE NODE modifies CSE TAB
so that later Nodes can match with the present Node.

Updating Procedures and Data Base

Number Variable Use

6.7.1 STRIP NODES:

7.1.1

7.1.2

7.1.3

7.1.4

7.1. 5

7.1.6

NEW NODE OP Pointer to NODE list
operator word of CSE.

PREV'
U

TREE TO~p.r..e...viou-s-N-eEl~CSE
- - and it has no predecessor

Node.

PREV REF

PREV REF OF VAC

PRES REF OF VAC

COMPLEX MATCH

Pointer to NODE operator
which has operand referencing
CSE, if CSE = previous
Node.

Pointer to Node operand
referencing CSE, if CSE =
previous Node.

Pointer to NODE operand
referencing CSE if CSE =
present Node.

TRUE if CSE contains
OUTER TERMINAL VAC.

STRIP NODES removes CSE operands from Nodes and
creates a Node for the CSE if necessary. Sorting,
parity changing, and CSE TAB modification are done
where appropriate.

6-46

:'IP:~ >~:,

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138. (617) 661-1840

.,

I

- " """5",,""'~' _, ,... ,""".£&""'.,._,)'""".,""l!!=:!;;!!!'e_!".iiC&O~""'!!l!'!."'""",.UII!'l" .• u""',iJ t"'!'111!U1t;&$""""!!!!'I!q.w ..
4I1J111

PjJ""uP ~£ q;a.I~". ..'" .• ' '. ~= .. """'= .. =.' ,"'.'"* ... '" ".,"",\' ""~',',"
"':'_':_ .. "·,'c'· .. ' .,' .. :·".,.re:: '.' ., •• , .. -."''''-, .•• ,'''' ~''''.".,~,''''..,..~;!'r'.'"'¥ ,., "

':' ,

i
J .

6.7.2 SET 0 T V:

SET 0 T V finds the TERMINAL VAC referencing a
Node and-returns its index in the-NODE list. Where
appropriate, it is set to an OUTER TERMINAL.VAC.

6.7.3 TABLE NODE:

TABLE NODE puts references into the CSE TAB for
NODE operands not in a CSE.

6.7.4 CATALOG VAC:

CATALOG VAC sets up initial entries for OUTER TERMINAL
VAC's in CSE TAB.

6.7.5 REVERSE PARITY

REVERSE PARITY switches parity of a NODE list operand.

6-47

1
J

i"

I
I

~'O~.""" -l.~.,· .. ····~-··~-.. ~.~'.. ' ... , =.~ -··~·-'r-~~-~_~~=~.,.,..,~;:=.z-~~.---.~. ···--·-c-~==·"""·~~~:-':"~-'~~~T··¢<A., - - b"'-=I-~":'-'-~-'7'''''''''1' .
" '''':~/,(.'''''''-;'''''''"~

-

6.8 HALlS Option Specifications and Compiler Directives

Following are toggles recognized by the OPTIMIZER.

HALlS Option Specifications

Xl

X3

X5

X6

Compiler Directives

Optimizer off.

WATCH. HALMAT changes are printed.

TRACE. Prints program flow and data
bases.

STATISTICS. Prints timing and other
statistics.

By inserting a statement:

DEBUG H(#)

starting in column 1, the following actions occur for
different values of #:

DEBUG H(l)

DEBUG H(2)

DEBUG H(3)

DEBUG H(5)

DEBUG H (6)

DEBUG H(7)

DEBUG H (64)

Optimizer off until next such state
ment encountered. No CSE IS recogni.zed
across the pair of DEBUG's.

Same as above, but CSE's may be recognized
across the pair.

WATCH status changed.

TRACE status changed.

HALMAT REQUESTED status changed.

HALMAT BLAB status changed.

Set VALIDITY TRAC.E status changed.

6-48

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 " (617) 661~1840 ,I

....:i
" .•. J-~.,~.:'.' .. ""_w.~~~-;,;;, •. (.·~.J:.~~=:=,::,;:=~...;.."",,,".m.b~""...;i,;"''''w'';''i,:;-···==, .. ~::~'=:::=:=::= .. ,s~_~'1Wn'TI&\\\~~

c:

6.9 Alphabetical Index of Names Used in Phase 1.5

Example:

IV 15.7

\
A-PARITY

\
Data or Procedure

Name

Where description of this Procedure/DATUM and associated Procedures/Data can be found.

By grouping like data and procedures in the previous sections, it is hoped that the time needed to understand procedures in the Optimizer will be greatly reduced.

The algorithm used for CSE recognition is contained in "Cornmon Subexpression Recognition", IR #127-2.

6-49

-,
_li

:;,"
:,./'

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE ·<?~~J!~JQ§J;.,+_M.~$.§AQhtu.s_eITS.;02 __ 1aa"E't~;t"7"\d~lt"""'DA~'""'~.,-"".

• I

! 'r

4.15.18

4.15.17

4.15.16

6.2.10

4.1. 5

4.39

4.10

4.15.23

4.21.1

4.23

4.27

5.3

5.3.1

5.4

5.6

7.4

4.1

9.1.1
9.1.2-----

2.10.3

4.18

4.18.1

4.18.2

3.1.1

4.29

6.4

6.4.1

4.30

3.13.5

5.13

7.1.6

3.13.2

5.11

4.17

A INX

A PARITY

ADD

ALTER HALMAT

ASSIGN CTR

ASSIGN TYPE

ASSIGNMENT

BFNC OK

BIT TYPE

BOTTOM.

BUMP CSE

CATALOG

NEW OP

CATALOG ENTRY

CATALOG SRCH

CATALOG VAC

CHICKEN OUT

FIRST

LAST

CLASS

label

label

label

label

label

label

label

label

label

CLASSIFY label

SET P

FIX SPECIALS

CLOCK

COLLAPSE LITERALS label

COLLECT MATCHES label

ELIMINATE DIVIDES

COMBINED LIThRALS label

COMPARE CALLS

COMPARE LITERALS label

COMPLEX MATCH

COMPLEX MATCHES

CONTROL label

CONVERSION TYPE label

6-50

REPRODUCillILI1Y OF 'PHi'
DRIGli~LJJ],,"', '" ,." .. IT>

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

,~
j

I

"

· .;u:;:z:.;::;::: .. "" \.,,«0 l·tt .. ·-" ' .. cu r~:' ' ' "
: _ ... ~ ", ~. ~-:;,: ':;-":~~"~"'~ ... ~ t" :"": ~~

".
p "

5.12.2 CSE
4:' 5.12.4 CSE FOUND INX . ..,.

5.6.1 CSE INX

4.3.1 CSE L INX

4.3.2 CSE LIST

5.9 CSE MATCH FOUND label
5.3.2 CSE TAB

4.5 CSE TAB DUMP label
4.7 CSE WORD FORMAT

3.13.1 CSE#

5.12.3 CSE2

3.6.3 CTR

3.6.2 CURCBLK

4.35.3 CURLBLK

i
I
]
1

4.15.21 D N INX

4.1.9 DEBUG

l

~
3.10 DECODE POP label

l
J

3.17 DECODEPIP label
4.4 DE TAG 1

1

4.15.19 DIFF NODE .~

1
4.15.20 DIFF PTR

3.13.9 DIVISION ELIMINATIONS

!

i
.~

4.1.7 DO INX
;j

i
4.1.6 DO LIST j

~

4.1.8 DOSIZE

4.15.8 DUMMY NODE

1
J
1

1
4.30.1 DW

4.28 ELIMINATE'DIVIDES label - 1
4.15.12 END OF HALMAT BLOCK

4.15.13 END OF LIST

4.15.10 END OF NODE

6.16 ENTER label

4.15.24 EON PTR

1< i
l ~,

~
.,

1 .,
~i
,it:

+} '~
.~

1
1

:~ t ~

6-51

INTERMEIRICS INCORPORATED -·701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 IIIIifi

3.15

4.9

3.13.10

4.32

6.5.1

6.8

6.5

6.9

6.10

6.1. 3

6.1.4

6.14

6.18

6.13

6.25

6.24

3.6

6.2.4

5.5.1

5.5.2

5.5

4.14.3

6.24

4.35

5.1

4.14

6.4.3

4.1.10

6.6

6.2.9

6.2.8

3.2.3

4.8

I ,

ERRORS

EXIT CHECK

EXTN CSES

FILL DW

FLAG

FLAG MATCHES

FLAG NODE

FLAG V N

FLAG VAC OR LIT - -
FNPARITYO#

~NPARITY1#

FORCE MATCH

FORCE TERMINAL

FORM OPERATOR

FORM TERM

FORM VAC

FORMAT

FORWARD

FREE BLOCK BEGIN

FREE SPACE

GET FREE SPACE

GET INX

GET LIT ONE

GET LITERAL

GET NODE

GROW TREE

H INX

HALMAT BLAB

HALMAT FLAG

HALMAT NODE START

HALMAT PTR

HALMAT_REQUESTED

HEX

label

label

label

label

label

label

label

label

label

label

label

label

label

label

label

label

label

label

\ 6-52 .,
I' . INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETIS 02138 • (617) 661-1840

I
'j

i
.~

1
1
1

1
~
1

~;j

j
1
~ ..

;;.< 1
j

l
J
;

. ,
,~

I
J
1

~;: ~
I
j
~

r

"I' '411' 4.15.4 IMMEDIATE

3.2 INITIALISE label
1
! 6.4.4 INVERSE
l
1 6.4.2 LAST INX

I 3.7.2 LAST SMRK

4.33 LIT ARITHMETIC label

I 3.1. 5 LITCHANGE

4.15.3 LITERAL

1 3.13.4 LITERAL FOLDS

4.35.2 LITLIM

3.2.5 LITMAX

4.35.5 LITORG

3.2.6 LITSIZ

I 3.2.7 LIT1

PROGRAM label j 3.1 MAIN

I
3.13.8 MAX CSE TAB
4.14.1 MAX NODE SIZE

). 3.13.7 MAXNODE
f

4.36 MESSAGE FORMAT
,,1 ~ 6.17 MOVE LIMB label
'j 3.8 MOVECODE label

I 3.8.1 LOW

3.8.2 HIGH
l
1
'j 3.8.3 BIG 1

3.8.4 ENTER TAG J
J 6.1.5 MPARITYO# j
i 6.1.6 MPARITY1#

6.2.7 HULTIPLE WATCH J
j
l 4.15.15 N INX - 'l

1
j 4.12 NAME CHECK label
1
] 3.6 NEW HALMAT BLOCK label 1

I 7.1.2 NEW NODE OP

j
:I
1

,Jft. ':.10,.]

I
'.:t 1---

- -. ?
t
t, 6-53

DiI INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840
" """'~~-'.=. •o..._~~ _~,~""'-"'- ." " """'---~~- ,,< ._". ',"" t.:,~ <_"-

~.
i.
I ..

,
\

I.

, ~,

6.1. 7

6.12

3.11

4.22

4.15.1

5.1.5

5.1.9

4.15.2

4.21.2

3.10.2

6.12.1

4.15.28

3.10.4

3.18

3.6.1

3.9

3.1. 3

3.1. 4

4.15.14

4.15.6

4.18.3

4.10.3

6.1.1

6.1. 2

6.4.7

3.7

5.12.6

5.1.10

6.24.1

5.12.8

5.12.5

5.12.1

5.12.7

3.4

NEW NODE PTR

NEX'r FLAG

NEXTCODE

NO OPERANDS

NODE

NODE BEGINNING

NODE SIZE

NODE2

NONCOMMUTATIVE

NUMOP

NUMOP FOR REARRANGE

OP

OPCODE

label

label

label

OPOP label
OPR

OPTIMISE label

OPTIMISING

OPTIMIZER OFF

OPTYPE

OUTER TERMINAL VAC

PARITY

PM FLAGS

PNPARITYO#

PNPARITY1#

POIN'l'l

label PREPARE HALMAT

PRESBNT HALMAT

PRESENT NODE PTR

PREVIOUS CALL

PREVIOUS HALMAT

PREVIOUS NODE

PREVIOUS NODE OPERAND

PREVIOUS NODE PTR

PRINT DATE AND TIME label

6-54

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138. (617) 661-1840
L~'!L""""L ______ ~ ___ ~--';"' ____ _

, ,
i

"

r" ~- ~'''-''~'~-<''" '~""'~"'~'P-''''''-~''.'~_'_"r"'r"''''---'''''_~ __ '''_~'''''''7~'C"'':"''''''''--'~~"'':~_""""~.~~"'-~ __ -_:'!T::--;""~~'~ __ ':':::::::::': .. =~-:_-"'"C

~·1~~~;:;:·~:--·'t·1;.1" ~") :";:-'~,":;- __

4.20

3.5

3.14

4.23

6.19

3.12

6.21

6.2

6.22

3.16

4.3

5.9.1

4.21. 3

7.5

4.34

3.13.6

5.1.1

5.1. 3

5.10.1

5.8

3.9.3

5.1. 2

5.10.2

6.7

6.3

4.21

7.2

6.20

4.38

6.11

6.11.1

6.11.2

6.11. 3

6.11.4

6.11.5

6.1

PRINT SENTENCE

PRINT TIME

PRINTSUMMARY

PTR TO VAC

PUSH OPERAND

PUT HALMAT BLOCK

PUT NOP

REARRANGE HALMAT

REFERENCE

RELOCATE

RELOCATE HALMAT

REVERSE

REVERSE OP

REVERSE PARITY

SAVE LITERAL

SCANS

SEARCH

SEARCH INX

SEARCH REV

SEARCH SORTER

SEARCHABLE

SEARCH2

SEARCH2 REV

SET FLAG

SET HALMAT FLAG

SET NONCOMMUTATIVE

SET 0 T V

SET VAC REF

SET VALIDITY

SET WORDS

OPPARITY

MATCHED OPS

TERMINAL#

TAG

SPECIAL

SETUP REARRANGE

label

label

label

label

label

label

label

label

label

label

label

label

label

label

label

label

label

label

label

label

label

label

6-55

INTERMETRIGSINGOHPORATED • 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840
": '~~'~*~f. iiMln * _ _ .L= L.:.l!IK:L- ~_ ~ ---""'- "--'..:...:.r...:""."~.~.~'::""""'~~. __ .-'~~_:':":":::':'J;.:i.;;;::~"y".!i~~"':""":_-;:'~-:;;""~--':"; __ ' ____ :~ ••• _. __ ~ __ .. ~~ ~"_ •.• ". __

"

1

1
~
"
1

"" .. 5.10 SETUP REVERSE COMPARE label
"jI-

2.7.1 SMRK CTR

5.7 SORTER label
4.11 ST CHECK label
3.1. 2 STATISTICS

3.9.2 STILL NODES

7.1 STRIP NODES label
3.9.1 STT#

4.1.11 STUB FLAG

3.10.5 SUBCODE

6.15 SWITCH label
4.15.9 SYT

5.1. 6 STY POINT

3.2.4 SYT SIZE

4.13 SYTP label

3.2.8 SYT USED

3.2.9 SYT WORDS

3.10.1 TAG

4.39 TERM CHECK label
If ", 4.26 TERMINAL label

4.26.1 TAG

4.15.5 TERMINAL VAC
6.2.5 TOPTAG

6.1. 8 TOTAL MATCH PRESS
6.2.6 TOTAL MATCH PREV

3.2.1 TRACE

4.15.22 TRANSPARENT

3.13.3 TRANSPOSE ELIMINATIONS
3.13.11 TSUB CSES

5.2 TYPE label
3.19 VAC OR XPT label
4.15.11 VAC PTR

4.37 VALIDITY label
.~

~- " 4.38.1 VALIDITY ARRAY ...
3.15.7 VALUE NO

3.2.2 WATCH

6-56
INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

3.1. 6

3.14

4.2

WORK3

X BITS

ZAP TABLES
label

label

6-57

INTERMETRICS INCORPORl\TED • 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138. (611) 661-1840
.---- . ..'if .-~, .-. __ ~~~ _". _, __ ~ . __ H..J'.2i....:~_S3tL±_. __ .5_:. _II

t
c~

i
f ' ,

" .
~.
{

1

1

i -

•• <" '~-'-'~~'~~'~'~~--'.--.-.--.----"',",-'~."",,,---;-'--."'-~,~~-.-.,-, ,-,~-'"~ ",. <c, "_:" ::::: ' . .0,," - •• &i ,,--]"" "'. N, J~

" "",' ",:C,'.~,=-==,,,,c.",; "," .,' ... ;,':c;,'::::";'::':-:. 0' . -::::'....,;. i " i

7.0 RUNTIME LIBRARIES

The HAL/S compilers generate calls to an extensive
runtime library. The library routines: implement all of
the functions described in Appendix C of the HAL/S Language
Specification; implement the HAL/S input/output facilities;
implement most of the matrix/vector operations; augment
the in-line code generation of the compiler in several other
special cases. HAL/S-360 does not provide genuine real time
facilities but does simulate them via a collection of T.untime
routines collectively called the Real Time Executive.

The runtime library for HAL/S-FC is described in great
detail in Chapter 5 of the HAL/S-FC Compiler System Specifica
tion. The FC descriptions, augmented by Chapter 5 of the
HAL/S-360 Compiler System Specification, serve to define that
part of the library which is common to both HAL/S-360 and
HAL/S-FC. In addition to this common library, HAL/S-360
requires:

- the real time executive described in Chapter 10
of this document,

SDL interfaces described in the HAL/SDL ICD.

7-1

'" s
1

I
1
1

~,.j~IN.~E~~ETRIOS INOORPORATED • 701 CONOORD A~EN~E'.~A~E~~IDGE:.,MA~~~~HU~ET~S 02138 • (617) 661-1840

r-' -
~,
I

8.0 HALLINK

8.1 General Comments

HALLINK is the generic name for two programs, HALLINK
and HALLKED, which together link edit object decks produced
by the HAL compiler. The HALLINK program invokes the IBM OS
linkage editor, checks the condition codes returned by the OS
linkage editor, and invokes the HALLKED program. HALLKED
examines the load modules produced by OS to supply additional
information to the OS link editor for a second invocatiop.

8.2 Description of the HALLINK Program

HALLINK first determines whether a PARM field is present.
If a PARM field exists, HALLINK scans the field, looking for
the character "slash" U). That portion of the PARM field which
precedes the slash is passed to the second link edit, with
NeAL appended to it. The characters following the slash are
interpreted as PARMs to HALLINK and HALLKED, and are decoded
and stored in a table as information to be passed to HALLKED.
The available PARMS and the action taken for each are described
in the HAI,/SDL leD.

The program then determines whether it is being passed an
alternate ,)D list. If so, HALLINK modifies its own internal
alternate DD lists, which it then passes to the link phases and
HALLKED to reflect the user's wishes.

If the option 'PRIVLIB' is specified, HALLINK attempts
to invoke the link editors and HALLKED from a library pointed to
by a DD card with a DD name of 'LINKLIB'. If PRIVLIB is not
specified or if LINKLIB cannot be opened, the invoked programs
are sought in the STEPLIB, JOBLIB, or system libraries, as defined
in the OS JCL manual'.

After the first invocation of the link editor, HALL INK
checks the link editor's resultant condition code. If this code
is greater than 8, the step is aborted immediately, and the
system condition code is set equal to the link editor's condition
code. If the code is less than 8, HALLKED is invoked. If, upon
return from HALLKED, the condition code is greater than 4, the
step is aborted; otherwise the second link edit step is invoked.
On return from the second link edit, the system return code is
set equal to the second link editor's return code, unless HALLKED
has returned a condition code of 4, in which case the system
code is set to one greater than the second link editor's code.

8-1
INTERMETRICS INCORPORATED· 701 C~_~~~RD AVENUE • CAMBRIDGE, M~S"~~?t;,~~:!..:.~_02138 • (617)661-18~~~

?
t
} ,

-"" -"-,,-,-.-.".~-----.,," ,.-.. ---.. ~ ... -~-,.-.. -~~-:::....-"~=,:-,.,.,.,...,.,.,-",..,,,,,,,,,,-,-... =%3,'''"''"r ' _.,--.•. ---~-::["-'"" ...,..,...,~-

-- . ~- -.:!~-'':~;-''''':~

Lines

From

279

296

Variable

Variable

RCODE

MVCPl

MVCP3

CLC

PNOGO

PARMFLDI

TESTP

PARMFLD3

NCAL

SAVE

To

294

312

Usage.

Description

Invoke the link editor a second time.

Return to calling program.

Usage

Store return code from HALLKED (right shifted
2 bits).

Move instruction executed to move PARM field
to first link edit.

Move instruction executed to move PARM field
to second link edit.

Compare instruction executed in parsing PARM
field for HALLKED PARMS.

PARM field passed to link edit if 'OSLOAD' or
'NOGO' parms.

PARM field for first link step.

PARM field optionally passed to first link edit.

PARM field for second link edit.

PARM field passed to second link edit.

Save area for OS calls.

DDLISTI (and variables until LISTIEND)

Alternate DD list for first link edit.

ZERO (and variables until LIST2END)

Alternate DD list for HALLKED.

DDLIST3 (and variables until LIST3END)

Alternate DD list for second link edit.

NAME 1 Name of first link editor to be invoked.

NAME 2 Name of HALL KED to be invoked.

8-2

: ~

~\lIJ~~.r:Il(j~IiI'~lil11:.1EII!IIIT .. RIiIIIICIIIiIS~IN_C~.~~~:=~=~~""~::z,:A;::b~:!:;="~~, .. =~~=~O=1::;~~:::;;:;~::::.,~:;;;;,:;;:;:.,:::' .. ~:=~::;~;;.:;;o;;~;;;;;~,D~#Giii;i;;;;iii/;~;;;;;,;;;;&~::;:;~;;::=~;=A;::::::~=H::U::~=ET:::T=!S:l!i!!!!::!!!~!!!!.;!IIIII!8.'!II.(6.1.7)11!11111166111:.;I1:,8.4."'~iIII7.L. __ .J.'.""'

?
i
t ,

8.2.1 Detailed Description of the Functioning of HALLINK

Lines

From To

2 19

21 32

34 101

103 210

212 224

225 228

229 250

252 277

Description

Macro used to generate table with HALLINK
options.

Set up as calling sequences.

Check for parmfield, and if present scan for
slash. Lines 50 through III parse the HALLINK PARMS. The algorithm used is a linear search through the valid options, and all character
strings not found are ignored. If a match is detected, a byte is set in the table named
options (on line 70), corresponding to the
option used. Starting on line 75, the program
determines whether or not to pass the PARM field to both link edits, depending on the
'BOTH' HALLINK parm, and also whether to pass the option 'TEST' to the first, which is
triggered by the absence of the 'SOL'
HALL INK PARM.

Check for presence of alternate DO list, and if there, pass any overrides on to the routines who are to receive them. The DO list format is described in the HAL/SOL ICD.

Check if 'PRIVLIB' specified. If so, then try to open. In unable to open, then ignore the option.

Check if a load library was being constructed. If ~o, then skip the first invocation of the, link editor and also of HALLKED.

Invoke the link editor for the first time, then check return code. If greater than 8, skip to end of program.

Invoke HALLKED.
than 4, skip to
member name had
edit step, then
second.

Check return code. If greater
end of program. If load module
been supplied to the first link
also pass the same name to the

8-3
INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE';, MASSACHUSETTS 02138 • (617) 1361-1840

~._., "_""_'-''j8!:;_,_' __ ,"",~"", :-:_r ... '_'"''''~''··-'W.-:'--:---''--_~~~'-''r~~'-''--:~-;-~~~

~,l •• -,¥~ $~~~~.~'~~~~;~=~-~:_~',~~.~,~~~~u:.·~:.~~~.~·· ~.., H'. __ ~,
............. '"'r·~---,l~

_____ _ ._,,_., '--';''"'.,-d.! :.'

Variable

NAME 3

OPTABL

Usage

Name of second link editor to be invoked.

List of options recognized, preceded by the
byte count minus 1 of the number of characters
in the name of the option.

LINKLIB DCB opened when private library to be used for
primary source of loaded code.

8.3 General Comments and Warnings Regarding HALLKED

HALLKED is the 'real' HALLINK, in the sense that it does
all the actual processing of the load modules produced by the
os linkage editor and constructs the necessary object decks
needed to complete the load module.

There are five functional portions to the program:

1) Initialization of DD names from the alternate
DD list, the opening of the files and the acquisi
tion of core for tables.

2) The cross checking of the version numbers of the
routines in the load module.

3) The reading of the load module and the construction
of the tables for use by part 4).

4) Computation of stack sizes, output of necessary object
decks and link editor directive cards, possibly merging
user-supplied directives.

5) Closing of files and of freeing all space used for
tables and I/O buffers.

The five portions of the program are highly independent of
each other and are treated separately.

Warning: There is some rather obscure coding here. For
example, instead of finding code such as:

ALPHA BAL 15,BETA

B ALPHA

8-4

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE' CAMBRIDGE. MASSACHUSETTS 02138 • (617) 661-1840

, I

;

__ 1 .~~

you will find:

ALPHA BAL 15, BETA

B BETA

if register 15 still contains the return address of ALPHA+4.

8.4 Description of the Initialization Phase

Lines 1 through 527 constitute the initialization phase
of the program. In it, the alternate DD lists are moved in
if available, the PARM field is examined to determine what
options to perform, the files are opened, and core is GETMAINed.

Lines

9 - 24

25 - 50

51 - 88

90 - 92

94 - 133

134 - 171

173 457

459 - 4'13

Function

Set up save areas and base registers. Registers
11 and 12 are the base registers throughout the
program, and R13 points to the as save area for
I/O calls.

Check for PARM field and modify some instructions,
depending on the desired options.

Check for alternate DD list, modify DD names
accordingly.

Check if PDS member niilme supplied by user. If
so, skip code that opens PDS as sequential data
set.

Open PDS directory, and pick off the first name
in it. Use that name as input member name.

Open the other files. Check for successful
open. If any unsuccessful, return to caller,
passing back condition code HEX'6C' indicating
reason for abort.

Save areas, DCBs and some small: data areas.

Try to obtain space for tables. First try to get
32-64K, but if unable, halve the request. If at
the end of the fourth try (4-8K), give up and
return to caller.

!
"
4
j

8-5 ~

--INTERMETRICS INCORP~~~~~~""~.=~~ C~NCORD ~~':~"'~":"~~~~~~~~ifc~UMy~;~T~m~2]: :':617) 661 ~ ~ ~~iI~.J

~
I

- n- --~'''-'~~''='::::;:-':--''~'--_O~--~-'-~~l-'''"-'~

- '.' ~ -.... ---.. .- .. _ - !

Lines

476 - 514

515 - 527

Function

Attempt to open a DCB with DD name of LINKIN.
If able to, copy all the records on it to the
DCB with DD name of STACKOBJ. Afterwards, close
LINKIN DCB and free up buffer space.

Compute the maximum length of each of the tables
to be built by the other phases of the program.

8.5 Table of CSECT Version Numbers

The code between lines 529 and 719 is designed to make
sure that the version numbers of the various compilation units in
the load module are the same as the numbers were when the units
were compiled. The version numbers are passed to the link editor
on SYM cards, and are retained in the load module because the 'TEST'
option is automatically passed to the first link step by HALLINK
(except when the SDL option is used).

The HAL compiler provided SYM cards are coded in a special
way to prevent other language translator's SYM information from
interfering with the checking process by providing extraneous
information which other translators will not use.

The HAL compiler emits version information by specifying
the CSECT names of the compilation units on the SYM cards with
addresses corresponding to the version numbers. This
information is sandw'iched between two invalid control section
names (HALS/S at the front, HALS/E at the end of the version
information). The program waits for the HALS/s CSECT appearing
on a SYM card before it attempts to process the information
contained on the card. The HALS/s must appear as the first
byte of information in the SYM card. The version'~;ntormation is
then extracted until the HALS/E delimiter is detect~d.

The first CSECT name encountered after the HALS/S defines
the version of the compilation unit, whereas all those following
it (if any) until the HALS/E are the versions of the compilation
units it references.

The program builds a table (described by the DSECT SYMCELL
on lines 1691 - 1695) and processes the data after the end of
the SYM cards. (All symbol information appears before the CESD
records in a load module.) The table resides in GETMAINed
core. As entries are added to it, a check is made to ensure that
the size of the table does not exceed the storage available.

8-6

REPRODUGIBILI'rY OF THE
OIU'iJt~11II FkGE IS POOR

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

L I
j

.1

, ,

\

f

t
f
I'

f

8.5.1 Usage of Variables in the Table

SN Control Section name.

FP

BP

(Father Pointer.)
Byte 0: Indicates whether the entry defines a
version number (def node), 9. reference to a version (ref nod@)~ or is a dummy entry placed there because a ref was made to a CSECT which did not yet have a def entry (undef node).
Bytes 1-3: If byte 0 is ref, bytes 1-3
contain the address of the entry which referred to it. If byte 0 is not a ref, bytes 1-3
are nUll.

(Brother Pointer.)
Byte 0: contains the version number if ref or def node. Null if undef.
Bytes 1-3: Contains the address of the next
entry which is a ref to the CSECT contained in SN in this entry. Null if last or only entry containing this CSECT.

The program will create in this table a def node for each CSECT name at the first entry in which it appears in the table. The BP of this entry will point to the next entry containing a ref node of the same CSECT name. That entry's BP will, in turn, point to the next entry with the same CSECT name, and so on until all entries containing the same CSECT name are linked together. The last entry in the table containing a given name will have a null in BP.

The FP of a ref entry points to the entry containing the CSECT which made the reference to that compilation unit. In the event of a version mis-match, an error message is issued.

8.5.2 An Example of the Construction of the CSECT Version Number Table

Assume that the user linked together four compilation units: A, B, C, D. The version of A was 10, B was 20, C was 30, and D was 40. Assume compilation unit A referenced Band C, compilation unit C referenced B and Dr while Band D did not refer to any other compilation units.

A

<~ B C

D/
Figure 8-1

Assume these units appeared in the order A, C, D, B.

8-7
INTERMETRICS INCORPORATED,· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 II Rlrnrtlfl'UlIII1 'tlil : tJtt.-: 1$ illl J$UJtu\. ... ~ "lWN' 1 'f 1'. J

\
HALLKED considers each CSECT in the order of its appearance,
and will perform as follows in constructing and modifying
the entries in the table.

The first CSECT to appear is A. Since it is not refer
enced by another program, it is labelled DEF in the first byte
of FP. The version number, 10, is stored in the first byte of
BP. The rest of BP is null because there are no ref nodes
rE~ferring to A.

The next two entries are for CSECT B. The first of
these two is a dummy entry into which a DEF entry will eventually
be placed. In byte 0 of FP it has undef, and in bytes 1-3 of
BP it has the address of entry three in the table, where B also
occurs as a ref. Entry three has the address of the referring
program, in this case A, the version number in byte 0 of BP,
and nothing in bytes 1-3 of BP. This space will be filled when
further ref entries for B are added to the table.

Entries 4 and 5 are similarly constructed. At the end
of the first five entries the table will contain these values:

Entry # SN FB
0

1 A DEF
2 B UNDEF
3 B REF
4 C UNDEF
5 C REF

Figure 8-2

bytes
1-3

1

1

BP
0

10

20

30

bytes
1-3

3

5

The program next considers compilation unit C. FP byte
o of entry four is changed to a Def. (Having the dummy in this
byte has insured that the first occurrence of C in the table will
be the father pointed to by those units referenced by C.) Entry
six contains data pertaining to B as referenced by C. Byte 0
of FP is Ref., bytes 1 through 3 point to entry four, byte 0 of
BP is the version number, in this case, twenty, and bytes 1 through
3 of BP contain a null. At the same time, bytes 1 through 3 of
BP of entry three are changed to contain the address of the next
reference to B, or six. Entries seven and eight are constructed
in a manner similar to the construction of entries two and three.

As the program finally reaches D and B, it changes the
dummy first occurrences of those units in the table to definitions.
The final appearance of the table is as follows:

8-8

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE, CAMBRIDGE. MASSACHUSETTS 02138 • (617) 661-1840

IIi d

..
"'JY

,"",'05"'" '" ".'1""'" = ,a,I" $,; "\"!IftOf.'=-]
'1 <'" . '

:~1

FP BP
Entry # SN Byte Byte

0 1-3 0 1-3

1 A Def 10 0
2 B Def 20 3
3 B Ref 1 20 6
4 C Def 30 5
5 C Ref 1 30 0
6 B Ref 4 20 0
7 D Def 40 8
8 D Ref 4 40 0

Figure 8-3

The search of the table for discrepancies is straightforward. The program looks for each def node, and follows the pointers contained in column BP to find all ref nodes to the same CSECT. The version numbers of def and ref nodes are compared. When the BP of a ref node is null, the program seeks the next def node. The occurrence of a node which has been referenced but not defined causes an error.

8.5.3 Version Number Cross Referencing

Lines

530 - 535

537 - 581

537 544

545 550

551 569

570 - 576

577 581

583 - 590

592 - 593

594 -- 599

Function

Read next loa.d module record, che,ck if SYM
record. If CESD, save address pointer and drop through.
NOTE Watch for line 534, I warned you about it before.

Last stage of version processing, verify that all defs and refs are the same"

Look for def nodes.

Check all ref nodes for same version number.

Print error message for version mis-match.

Print error for undef node.

Get address of next entry, skip to CESD if no more.

Check for SYM'card image on record, ignore if not SYM. If no more images on this record, read next.

Determine whether the node will be d~f or ref. Search flag on in variable S~lS if looking for def.

See if HALS/S on card. If not, ignore it.

8-9

i 1
;, .

1 ' .,
'i

,1

, INTERMETRICS INCORPORATED· 701 CONCORD AVENUE ~ CAMBRIDGE, MASSACHUSETTS 02138' (617) 661~1~,(L_
, .~"""'<'" ="'--~"---- .=,.:.. <

,.,., •. 4il
iii '

Lines

604 - 617

618 - 621

623 - 626

627 - 630

631 - 634

635 - 648

650 - 653

654 - 656

657 658

659 - 674

676 - 693

694 - 697

698 - 709

711 - 719

Function

Move data from card to internal storage.
Check if HALS/S on card, and if so, reset to
def mode.

Check for more information on card.

Check if def/ref expected.

Turn off search def flag to indicate ref mode.

Look for entry with same CSECT name.

No such entry, create def node.

Ascertain whether def/ref/undef entry found.

Undef node changed to def.

Def node encountered. Check if two 'versions are
same. (This should not happen, since there
should not be two defs for the same CSECT name.
Indicates that the compilation units' names not
unique in the first 6 characters.)

Print error message about conflicting def
versions for the same CSECT name.

Create ref entry.

Search for an entry with same CSECT name.

None found. Create undef entry.

Link entry into chain of refs.

8-10

; ... ~ ,

\

./-

1

I

•
INTEIIMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSE!I~~2138 • (?_1Dj3§8B~9_______.

" i

I

i

~~-~~"--~" -,~"-----"~" "-"- "-"-~--~~-----~~~--'~"-~----"~~-~-~-"-~~"~-~~ .• ·····1·· .. ···I~

,l

8.5.4 Composite External Symbol Dictionary and Relocation
Dictionary

The Composite External Symbol Directory and the Reloca
tion Dictionary are constructed by HALLKED for the purpose of
determining the maximum size of stack which will be necessary
at anyone time in the running of the program being link
edited. To .do this, it is first necessary to compute the
maximum stack size required by each CSECT, and, in a series
of passes, to add to each CSECT stack size the maximum stack
size which can be required at anyone time by all the CSECTS
which it calls. Using the example before, where A calls B
and C, and C calls Band D, the stack size required by C will
be the sum of its own stack size and the maximum of the stack
sizes required by Band D. The stack size required by A will
be the S.llm of its own stack size and the maximum of the stack
sizes required by Band C.

HALLKED must construct a dictionary to tell who calls
whom. This is the RLD. Each CSECT has one entry in the CESD.
If that CSECT calls any other CSECTs, there will be a pointer
in its CESD entry to an RLD entry. At that RLD entry, there
will be two pointers, one pointing to the CESD ~ntry for the
routine which has been called by the original CSECT, and one
pointer pointing to the RLD entry which points to the next
subroutine called by the original CSECT.

The tables, constructed for the case in Figure 8-1,
appear as follows:

Entry CSEC'1' Address of Pointer into Length of
No. Name First Byte RLD Table Unused CSECT Indicators --

!3ytes 8/ 12/ 14/ 16/ 18/ 20/

1 A 1

2 C 3

3 D

4 B

RLD Table

Pointer Back to Poin-Ler to Next
CESD Table I Entry in RLD Table

1 4 2

2 2

3 4 4

4 3

• r

.'
i.

The partial stack size of each routine -- that is to
say, the stack size required by each routine alone, and not
including the stack size required by any routine it may call
is supplied by the compiler or assembler. On subsequent passes
by HALLKED, the partial stack sizes of the innermost routines
(innermost in terms of level of nesting) are added to the
partial stack sizes of those CSECTS Which reference them to
obtain a new partial stack size for the next outer layer
of subroutines. This process continues until all stack sizes
are either "complete" or until recursion is found.

Description of the individual lines of program follows.

.Lines

720-729

731-739

741-752

754-766

768-770

772-775

Function

Set up registers.

Determine if ESDID number is out of range
indicating lack of core. If so, ABEND.
Get address of core buffer for control section
information.

Construct entry in CESD. Determine if it is
null, SD (Segment Definition), or LD (entry
point other than beginning of routine). If
LD, then move the ESDID number of the SD
containing it to the length field.

Move name to table. If CSECT name is HALSTART,
ignore NOHALSTART option. Determine if CSECT
is HAL program, task, or stack.

Process all the CESD entries on the record.

Read the next record. If it is a CESD record,
repeat process in lines 731-770, otherwise,
continue processing the remaining types of
records.

8-12
INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

8.5.5 External Reference Table

This section sets up external reference tables and
HAL procedure NAME tables (if XREF has been specified by the
user) •

Lines

777-792

794-795

797-815

835-860

861-862

863-875

877-880

881-887

890

892-895

Function

compute addresses of the other tables; RLD
table, and (optionally) the control section's
HAL-name.

ABEND if there is insufficient space ~or auxiliary
tables.

If a stack control section has been read in,
or if the first byte of the control section was
not on record, do not examine contents of the
text record.

Check the first few bytes of the text of the
control sections to see if each was produced
by HAL compiler, or is a library member.

Round stack size to next higher double word
(making sure stack size is multiple of eight
bytes) •

If control section is a HAL program's internal
procedure, indicate this in its CESD table entry.

If XREF was specified as a HALLINK parameter,
move the actual user name for the procedure to
a table.

Indicates in CESD table if this is HAL program,
comsub, or task. If entry is a library member,
it indicates this.

If control section is not a HAL-type section,
exit.

Repeat lines 731-890 for next CESD item on text
record.

8~13

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 1361-1840
~-~.--~~--....o± __ oIio_l~~t't,.' FffEyssg W ¥¥$$$# .. --~-~ ~-... <-•• ~. _ •• '. ~-"---:-I->'~~~-~ ,

Lines

897-898

899-917

919-930

932-938

940-945

947-948

949-950

951-958

': .
959-967

968-975

975-978

989-997

998-1012

1013-1012

Function

If End of Module switch is set, skip to the
next phase of processing (line 1022).

Read the next record from the load module,
determine its type, and branch to appropriate
processing routine.

If Control Relocation Dictionary has been read
in, move control informa,'cion to control buffer,
and move relocation information to relocation
buffer.

If Control record has been read in, set
up control buffer.

If RLD record has been read in, set up RLD buffer.

Set up registers for RLD processing.

If pas and REF flags were omitted from this entry,
use previous entry's pas and REF values.

Pick up previous pas and REF if they were omitted
from this item.

Pick pas and REF flags from record.

If the entry is not of consequence, like a null
CSECT, ignore it.

If the current entry has already been linked
to its calling entry, do not link it again~

If a new RLD entry has to be added, the last
entry in the table with the sam~ name has a
pointer at the current entry appended to it.

If the current entry has pas and REF, save pas
and REF flag fields.

Resolve entry points into the middle of CSECTS
into references ~o those entries themselves.

8-14

1 ,
B

1 ,
~
i
:1
I
~
1

::1
i
l
~
'1

J
1

,. i !
'I
l
l

~

Lines

1022-1070

1022-1024

1026-1027

1028-1031

1032-1034

1036-1040

1042-1048

1050-1051

1052-1054

1057-1059

1061-1062

1064-1067

Function

In this section, the stack size required by
the program is computed (see description in
Section 8.5.4). For the purposes of this
description, A is a CSECT which calls B.
We start out processing A.

Set up a switch which will indicate that no
changes have occurred in the table since the
last pass.

If either the complete stack size has already
been computed, or should not be computed,
to to 1069.

If the CSECT being examined calls another
routine (B), go to 1036.

If not, set a bit saying his stack size is
valid ("complete").

Find the entry in the RLD table to which
the CSECT entry currently under consideration
points.

If the called routine is entered from a point
other than the beginning of the called routine,
reset the register to point to the encompassing
SD.

If the routine "B" called by A is a stack or
non-HAL, go to 1061 to see if A refers to any
body else.

If stack size of B has not been computed, set
indicator for "uncompleted".

If stack size computation has been completed,
test it against the current max of routines
referenced by A. If it is greater than the
current max, replace that number with Bis
completed stack size.

Determine what other entries are referenced
by A.

If A calls nobody else, add current move to
CESD value for entry now bei.ng processed.
Drop through to 1069.

8-15

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE • CAMBRIDG~, MAS~ACHUSET!,S 02138 • (617) 66LJ840
-- ------~-----~-~-_=_=_-_.,~-,~ .. -. __ . __ _:_-__ ,~_-._ ... ~.~~HO --,,", '11.*,V",t,F!.i!e.-M !!lrifhn'eiM' - ~'&:&isil:ii::iIi:t .n war

"

(
~
\

--,~ -"'F-- "" ~---"-''"-'~-~''~-'' _U-'"""'''~-~~~-~''::::::~-''"''-''~-~"=-r~~~r-Y~T-Y~

cl
i

Lines

1069-1070

1072-1074

1075-1078

1078-1125

1078-1079

1081-1082

1083-1084

1086-1090

1092-1104

1106-1114

1116-1118

1124-1125

1125-1158

1160-1179

1181-1194

Function

Points to next entry in CESD table.

If there are no uncomputed stack sizes, go to
1128.

If there are uncomputed stack sizes, and there
has been a change in the table on the last pass,
make another pass.

If there are unresolved references and no
change in the table on the most recen.t pass,
there is recursion. These lines determine
where the recursion has occurred and send a
message to the user.

Sets up registers.

If stack size is computed, go t.O 1124.

If this is not a main program go to 1124.

Print message, and this main
program has some recursion.

At first node which has no stack size computed
for it, start looking for recursion.

Find which of routines which A calls is the
one whose stack size is uncomputed. Continue
following the pointer.

If the flag which indicates this spot has been
visited before it is set, go to 1094 to print
out a message which CSECTs are recursing.

Go to next entry in CESD, in case there is
more than one recursion.

If TREE has been specified, print out which
routines call which other ones.

Compute max stack size for PROGINT and TIMEINT.

Unless NOHALSTART was specified, punch out:
INCLUDE SYSLIB(HALSTART).

8-16

REPRODUCIBILITY OF THl!l
ORIGINAL PAGE IS POOR

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

1

i

L i

~
j
I
~
i
j
j

1
j

.]
1

. ~
!
j
ij

~ ., 1
.~
1
"!
1

i
I
~ ,
1

~.~'.
1 .,..

,

1 ~

1:

I ---

-,
I

",:-)A¥'

-r-- -c -- -- ------ -- ----.- -

I

Lines

1195-1275

1195-1201

1202-1207

1208-1221

1222-1230

1231-1241

1242-1254

1255-1256

1257-1268

1277-1281

= -~""""""""""""'''''''''''''''_'"'''"''''''_>-'''~--,...~~--''''''''-~~- ." _M_£ -'" - --- - ... -- n "1-· l --.. -
"-~-"-"'~-'- ~-- -- .. ~ -- : .- . --:.- 1

Function

Unless NOHALMAP was specified, this section
produces a control section called HALMAP
which points to every program, task, and
Simulator Data File member name.

Produce card to LKED which provides HALMAP
CSECT name.

Set up registers.

Determine whether entry in CESD is program,
task, compoo1, or comsub.

Create card pointing at it and identifying
it as one of the above.

Output text card of form;

1

identifier

t
compoo1, comsub,
program, task

3

A
d
d
r
e
s
s

8

6 char-
acters

\
SDF membername.

The second thru fourth bytes is a V-type
address constant.

Go' through each entry in CESO table to see if it
is a program, task, or compoo1. (Go to 1208).

Place in the first four locations of the control
section of HALMAP, a count of how many entries
in the table there will be. CSECTs for the
stack puts out control sections which will be
stack for each program and task.

Set up registers.

~ 8~l7
t

" INTERMETRICS INCORPORATED' 701 CONCORD AVENUE· CAMBRIDGE, MASSACHI.LS_EJ_tS_02138~(6J.I):-66.1=1840 ___ ._ _~~
--' :----~::-----::----:-:--:----~- . ,- J .- __ " .- . . '._ _ ___ ". __ •. __

J
I] ,
{
J

:l
!
i

Lines

1283-1285

1286-1301

1303-1304

1308-1313

1315-~1354

1356-1364

1366-1.389

1391-1406

1408-1470

1471-1476

Function

Determine if entry has stack associated
with it (i.e. it is a PROGRAM or TASK). If
there is no stack, go to 1303.

Put out card specifying to the link editor
how big the stack is after adding in PROGINT
and TIMEINT stack sizes.

Repeat 1283-1301, looking for valid stack
candidates.

Put out card saying END.

INCLUDE TEMPLOAD(TEMPNAME). If membername of
load module is TEMPNAME, put out no card,
if hame is not TEMPNN1E, put out a ca·rd which
has NAME user-specified-name(R) on it.

If TREE is in effect, print out max of stack
size of PROGINT and TIMEINT.

If XREF has been specified, print out user
supplied HAL names and corresponding CSECT
name.

Determine return code to pass back to HALLINK.
O-OK 4-programmer allowed recursion. >100 is
fatal error.

Gives OS back all its space. Close off files.

Return to calling program.

Internal Subroutines

1478-14.88

14'90-1507

1509-1534

1535-1559

Print out name and length of stack in hex
on left side of pag~, return.

Print out up to nine subroutines on the right
hand side of the page.

Subroutine from OS for 90ing to next line on
printer or skipping to top of next page.

Reads in load module.

8·-18

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138- (617) 661-1840

1

\

J

1
1
1
1

j

1

I
i

I
1

< 1

~

!
!

BASES

OS SAVE

FINDNAME

SYSLINBL

SYSLINBA

DOUBLE

SYMNA

SYMCA

RCODE

PADOR

ARLO

ABUFF

ACHARS

OLDRP

SIZES

CCW

PAGECT

LINECT

MAXESD

SYMCOUNT

SYMMAX

#CTL

#RLD

2A

l8A

D

A

A

7D

A

A

F

A

A

2A

A

A

2A

A

A

A

H

H

H

H

H

---~-r ... --'~l

Base addresses.

Register Save Area.

PDS member name.

Length of PDS directory buffer.

Address.

Register Save Area.

Address of next SYM record.

Address of current SYM record.

Return code.

Address of print buffer.

Ad~ress of RLD table.

Address and size of GETMAINed core.

Address of buffer containing the
programmer supplied procedure names.

Provides REF/POS flags.

Size of region to be requested.

Address of portion of CCW.

Number of pages printed.

Number of lines printed on current page.

Largest ESDIO encountered.

Number of SYM table entries.

Number of SYM table entries which can fit
in core.

Number of bytes of CESD information.

Number of bytes of RLD information.

.~

\:

,.-.~' ~

;'Ii

8-19 .;;

...... ~->1ItI~~., ' .1.:.,.. .. :, ".."': 1-~~~~O~O.A:1:J::n. ••. .:7n:f."DC\l\.Icr.cn::;k.\J'"IIJI-I"--:o-:~A RRlh~~-fu4A~~Ae.}.jI-I~I=.:r-T~-fl~1-!:j.A-.-{A1.:;·\-A&t .. 1·AdO-~. -.. -~

I;

I

'J
r
} ,
")

I
!

NEXTRLD H

ADDED H

#TIME H

#PROGINT H

MAXESDID H

MAXRLD H

S x

FLAGS x

BLANKS 8C

CTLTABLE 236X

RLDTABLE 236X

TRCHAR l6C

SYSLIB 8C

ESDCARD 80C

INCLUDE 80C

MEMBER 8C

HEADER 3lC

HALESD l3C

HALTXT l7C

HALRLD 2lC

REGCMSG C

-'----' ., ,'-' ---' --'-'-""-~'-- .. -~·-·~--·-·~-~'I-..",.,-~--..r-·'~--,. ----- 1

Index of next available entry in RLD
table.

Stack size for recursive programs.

Index into CESD table of TIMEINT.

Ditto for PROGINT.

Largest ESDID which can be placed in
CESD table.

Largest RLD which can be placed in RLD
table.

Some general switches.

Flag field of RLD item.

Character string blanks.

Control data from control or control/RLD
record.

RLD data from RLD or control/RLD record.

Translates unpacked decimal number to
PRINTABLE character.

Name of library.

ESD card to link editor.

INCLUDE card to link editor.

PDS member name.

ESD card defining HALMAP.

ESD card.

TXT card.

RLD card.

Error message.

8-20
INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 ~ .,..'

,.,~.~

',I

" ,
, I

i

i
I
i

,
: ~

''\< •• ,it"

HEADING

XREFH

VALIDCHR

02SYM

SYMSTART

SYMS

SYMBUFFV

SYMBUFFN

SYMEI

SYME2

SYMVI

SYMV2

SYMDUP

SYMDUPVl

SYMDUPV2

PATCH

C

C

256C

4C

C

x

x

8C

100

Heading when "TREE" was specified.

Heading when "XREF" specified.

Valid HAL names for procedures.

Start of SYM card.

Indicator that SYM record produced by
HAL compiler.

General switches.

Version Number.

Control section name.

Error Messages.

Error Messages.

Error Messages.

Error Messages.

Error Messages.

Error Messages.

Error Messages.

Area in which to patch code.

8-21

, j

1
]

:.~,~ ,
.i ',' ij

1
"~

~

':1
•

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 . "~
~~;".,,,=---------...:..--------...:..--

9.0 THE HALjS SUBMONITOR

'l'he I-L\LjS submoni tor is an augmented version of the
standard XPL submonitor. Its primary function is to act as
an interface between the compiler and 05/360. The
regui relnen ts of the BALIS compiler for interacting wi th
OS/360 take several forms:

1) Loading the various phases of the com?iler
into core and placing them into execution.

2) Sequential string input and output

3) Direct access input and output

4) O~taining external information(e.g., DATE)

5) Obtaininq information common to the
phases.

6) Performing compile-time com~utations
(e.g., SINE)

In addition to this compiler support function,
capabilities are built into the submonitor to provide such
interface support for the HALSTAT program ~nd dynamic
invocation of the compiler.

This section describes how these requirements are met
by the HALlS sUbmonitor. Familiarity with IBM 08/360, job
control language, and 05/360 assembler language is assumed
in this discussion.

9.1 Compiler Execution

The HALlS submonitor is the progra~ which is initially
loaded into core or called and given control. The submonitor
t~en proceeds to:

1) process any dynalnic invocation parameters.

2) process any user specified options for the
HALlS submonitor.

3) setun for oarallel file accessing.

4) sctu~ for interrupt ~Dndling.

5) setu9 for cOIOl?iler timing.

1
1
j

1

9-1 -1
INTERMETRICS INCORPORATED' 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 ')f!

-~1~

\
\

\

6) open initially needed files.

7) obtain space in memory for Phase I.

8) load Phase I into core.

9) give Phase I control.

Steps 7, 8, and 9 are repeated for each succeeding phase of
the compiler with the exception that 'an additional linking
process occurs between each phase. When all phases are
complete, control returns to the submonitor where cleanup is
performed and control given back to OS/360.

During the execution of any phase of the compiler, the
submonitor may be called upon to provide one of the services
described in Section 9.0; thus, the submonitor serves in two
distinct modes:

-as a caller (overseer) to the HAL/S compiler

-as a co-routine to the compiler

A map of the
with flow of
Each of the
separately.

submonitor as it might reside in core along
program control is provided in Figure 9.1.1.

modes of the submonitor will be discussed

9.2 As an Overseer

The basic functions of the submonitor as an overseer
were listed in Section 9.1. Each of these functions will be
discussed in turn.

9.2.1 proc~ssing Dynamic Invocation Parameters

05/360 provides a facility through which ODNAME
overrides may be passed to a program to be run. When
dynamically invoked, the submonitor may in fact be provided
with such an override list. (See the HAL/SOL lCD, Section
2.2.1.1.1 for a description of the override conventions). In
addition, a field may be provided in which the name of the
control section generated by the compiler may be returned.
The submonitor searches through the alternate DDNAME list
and moves the override DDNAME for any file into its
corresponding area in the sUbmonitor's DCB data area. The
CSECT name option, if it exists, is saved for later use by
the compiler when returning the desired CSECT name.

9-2

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

I
l
l
1

r

1
I

~ ,

f

o
8

I
3

6

o

compiler ..
1nvocat10n

--1>,8 8erV1ce
Requests ..

'", .' .-"l""~~' ~~~~, ~~~·~._~w~.~a ... "..._= .. I~,9n=J>:£It=N.~_.!1~ .. _ ". __ ,=' """'._ .. ~M"""~("'_" ".,.a'l~ ""'* I~~·.,....,.-

I •.. . •.• ""

HALls 8ubmonitor HALlS Compiler Phase

XPL8M:
initial setup

and loading

routines

clean up and

exit routines

_) CALLXPL ..
-1- J ~-----I I RETURN

!
compiler

~ermination ."
I

abend
request

08 8ervic~
Requests

submonitor local I

data area I

miscellaneous
I

support routines
I

error handling

routines

ENTRY: l._~ _linlS, __

service request

dispatcher

Service
Routines

DCB's

miscellaneous
MONITOR service
routines

Figure 9.1.1

Compiler Execution

request

..... service
request
servica.
reques~

complete~----------~

REPRODUCIBllJTY OF THE
ORIGll'l"AL PAGE IS POOR

1
l
]

1
. ~ ~

1
j ,
!

9.2.2 Processing of User Specified O?tions

Upon completing processing of any dynamic invocation
parameters, the submonitor proceeds to load the 'MONOPT'
options processor and call it.

When a HALlS system options processor is called, the
result is a pointer (OPTADDR) to an option table which
describes the values of all Type 1 and Type 2 options. An
example of the option table and its associated data is
illustrated in Figure 9.2.1. The options processor returns a
pointer to a six word list. The first word in the list
(options) is the flag field correspinding to the values
(default or specified) of the Type 1 options. The fullwords
from OPTIONS+4 to OPTIONS+20 contain pointers to further
lists. These lists are described below.

CON (referenced via OPTIONS+4) - A series
of XPL descriptors which point to
character data. The character data
show the value of an option as it is
currently in effect. Thus, if NOOUMP
had been specified or defaulted, a
descriptor pointing to the characters
'NOOUMP' would exist. If DUMP had becn
ON, then a descriptor pointing to the
characters 'DUMP' would exist. A zero
descriptor indicates the end of the
list.

PRO (referenced via OPTIONS+8) - A series
of XPL descriptors which point to
character data. The character data

OESC

VALS

,
correspond to the order of the options
described by the CON descriptors. The
characters show the state of the option
NOT in effect. Thus, if DUMP had been
ON, a descriptor in CON would point
to 'DUMP' and a descriptor at the
corresponding point in PRO would point
to 'NODUMP'. A zero descriptor
indicates the end of the list.

(referenced via OPTIONS+l2) - A series
of XPL descriptors which point to
character forms of the Type 2 options.
The list is terminated by a zero
descriptor.

(referenceJ via OPTIONS+16) - A series
of fullwords which contain the value
of the corresponding Type 2 option in
the DEBe table. Thus, if PAGES=IOOO
had been coded, a descriptor in OESC

9-4

'" ,r

, ,
, ~

)

,

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 ~
d

-::::=,\~,%Vtt"P"iP ~

r'
~L ' •. l',·~~,·

~~-.- ·"·~·~~-'~"':.~""-~""'·l:.""'·-'-""'-~·-"""!"~~':"""_··""""·~.,$'''Ney."", 1IIOM.:::.:! » ~;; r""-'~I~~-·~[ijOl,~ji. "'"' ".

". , ,.. ..•• :h·"' .. ·.T •. :' ,·,e;' .~~

1
1

OPTADDR OPTIONS CON

I I " f
Type 1 Bits i-I, address , ...

J - ,. NODUMP'

i-I' address ,,. LISTING2'
I

...
(i ...

0 I .• i ,;

PRO
,

... ... i-I I address
I

,. 'DUMP'

I
address -i-II,. 'NOLISTING2'

< ?

I 0 I
. DESC

I address _ ,. .e.-l I ,. 'PAGES'

I
i-I address,..

I
'FREE'

...

J 1 a

VALS
....... ,.

1000

,/ <
1 I a

MONVALS

(
I

}

~(-

I Figure 9.2.1
4""-~"

Option Tables "It-Q-1
,

r
I

~

I
I

would point to 'PAGES' and the
corresponding entry in VALS would
contain the value 1000. Some entries
in VALS may be descriptors if the
value of the corresponding option is
character data (e.g., TITLE).

MONVALS (referenced via OPTIONS+20) - A series
of fullwords containing values of
options in the same way as VALSe
These values correspond to options
which are internal to the compiler
system ·and therefore do not have a
descriptor allocated in DESC.

Upon return from the call to the MONOPT options
processor, the submonitor transfers the information
tabu1arized by the options processor to its local data area.

9.2.3 Parallel File Accessing

The HALlS compiler requires the capability to
simultaneously access the template library in two different
manners. The first is as an INCLUDEd input, the second is
for template checking purposes. In addition, the compiler
requires the capability to reference both the INCLUDE and
OUTPUT6 DDNAMEs to find a member. Therefore, the submonitor
moves the INCLUDE DDNAME to both INPUT4 and INPUT1 DCB's and
copies the DDNAME for the INCLUDE file into INCLNAME and the
DDNAME for OUTPUT6 into OUT6NAME for future reference.

9.2.4 Interrupt Handling

The submonitor traps floating point overflow and
underflow which might occur during floating point compile
time computations. It returns the maximum positive floating
point number for an overflow and floating zero for an
underflow. These interrupts are trapped by issuing a SPIE
macro for interrupts 12 and 13.

9.2.5 Compiler Timing

The submonitor issues a task STIMER macro with an
interval of one hour. The resultant timer may be accessed by
a subsequent MONITOR call.

9-6
INTERMETRICS INCORPORATED' 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

J

~7 t 7\i ~j_j!LIgitit.ll

9.2.6 Opening Initially Needed Files

The suomonitor initially opens the files INPUTO(SYSIN),
OUTPUTO(SYSPRINT) , PROGRAM (compiler object code), and
INPUT5(ERROR). If the LISTING2 option has been requested
(known via the options processor call), the LISTING2 file
(OUTPUT2) is opened. If any of the OPENs on OUTPUT2,
PROGRAM, or OUTPUTO fails, a 100 abend is forced.

9.2.7 Initial Compiler Phase Execution

'Elle loading of Phase I of the compiler is perfor:ned in
much the sa~e manner that is explained by McKeeman et. ale
for the standard XPL submonitor; however, the HALls compiler
requires that certain common information be retained in core
for passing of data between phases. The resulting layout of
a phase of the compiler in core memory is shown in Figure
9.2.2. It differs from the standard XPL layouts in that a
COMMON area exists which remains in core between phases (as
does the submonitor). This COMMON area must be the same for
each phase which references it. The len~th of the COMMON
area may be zero. It also differs from standard XPL layout
in that the local descriptor area appears before the code
area instead of following it.

The submonitor has been modified to obtain and
initialize this COMMON area from the XPL object code for the
compiler. From the co:npiler's object code, the submonitor
obtains information about the size of COMMON and entities
called common array initialization pairs. These pairs are
two fullwords, the first of which is an offset, the second
of which is a pointer value. For Phase I, COMMON is
initially zeroed, then for each initialization ?air, the
pointer value is stored at the relative offset from the
5 tar t of COM[\]Ol~.

9.2.8 The Linking Process

In addition to this COMMON area, a phase of the
compiler may generate certain strings which should be passed
to the next phase. These strings reside in the free string
area and their descriptors in a GETMAINed area of core.
These strings must be retained during the process of loading
the next phase. This is impossible to do with the standard
XPL sublnoni tor ana toe BALIS submoni tor has been upgraded to
provide this service, henceforward referred to as linking.

An area in COM~ON known as descrintor-descriptor
(DESCDESC) contains the information necessary for passing of
the COMMON strings. A layout of DESCDESC and its associated

9-7

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 ~

·',·' ·I~.··.·.
~- .--,-... .. I

. "

Lower core

COMMON

DESCRIPTORS

Higher core

CODE

DATA

CONSTANT STRINGS

I
.~

I
FREE STRING 1

i ,
AREA ~ ,

i

1
,1
I
1

.,
I
l ,
l
1
I
J
.~

~

Figure 9.2.2
I
.~
.1

HALlS Compiler Phase in Core

1
~
.~

1
l

1 " 1
... !ifJ'. ~

-' ~
, ~:5- 1

9-8

.i ~ p-...1

~~~~------~------~--~--~--~------~~~--~~~~--~. 



! 
',>: J 

data is shown in Figure 9.2.3. 

When a phase is done processing, it sets the second 
element of DESCDESC to zero, indicating that no local 
str ings exist and calls the XPL CQ(1PACTIFY routine (provided 
by the XPL compiler with each Dhase). The result of this 
call is a compressed set of string data in the free string 
area. Asubmonitor service request to link is then issued. 
This request has as its parameters 

-the address of DESCDESC 

-the start of the COMMON strings 

-tile top of cor e 

(top 
as a 
etc.) • 

of core is passed as a parameter since this may change 
result of compiler dynamic allocation of buffers, 

The submonitor then proceeds to move the COMMON strings 
to the top of core. Loading of the next phase is done as 
wi th Phase I and the COi'1HON s tr ing s are moved back to the 
start of the free string area. This three step process is 
illustrated in Figure 9.2.4. The offset between the previous 
location of the COMMON strings and their new location is 
computeu and this offset added to each of the descriptors. 
The result is that through DESCDESC the newly loaded phase 
may access the COMMON strings produced by the previous phase 
in its own free string area. 

9.2.9 Returning to OS 

When control is finally returned to the submonitor 
after completion of all the phases, the submonitor saves the 
return code of the XPL program, gives memory back to OS, 
deletes the current options processor, closes all files, 
restores the old interrupt exit routine and returns to OS. 

~.3 As a Co-routine 

There is an ENTRY entry in the submonitor which is 
called for various services requested by the HALlS compiler 
during the execution of a particular phase. Various XPL 
constructs are recognized as being calls to this entry with 
a specified service code dependent upon the XPL construct. 
Table 9.3.1 gives a list of the service codes, their 
interpretation, and an example of the XPL construct which 
invokes the service routine. On the basis of the request 
coJe, the submonitor branches to a sUbroutine which oerforms 

9-9 

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 
~.",-- - .. -~-.--: ........ ~,==<.............. ~zd·""" .. ~~~·'"'~~_:E1ET"~4~:·~~"i.7~\~~3~~:"'~~~,:~'";-'''--,.-~"::~'~.:~'~._ .. _":~~._.-,...-"~. 

Tl 
, 

..~ 



r 
\ 
j 
£~ 

DESCDESC 

# of bytes 

# of bytes 

x* 

x 

x 

x 

T 

Common Strings 
, 

1------.. .. ,£ -1 I 
~--~--------~ 
i.-l' 

t 

Figure 9.2.3 

Descriptor-Descriptor Layout 

Free String Area 

I 
1-. 

* For purposes of the HALls compiler, the last 4 entries of 
DESCDESC are unused. 

9,...10 

to. r 



PHASE n 

Common-strings 

Stepl 

COMPACTIFY 

Phase n+l 

Common-strings 

Step 3 

Move in new phase 

Figure 9.2.4 

Steps in Interphase Linking 

PHASE n 

- --
Common-strings 

Step 2 

Move strings to top 
of core 

Phase n+l 

Common-strings 

--~-----

Step 4 

Move strings to end of 
phase 



'T"" o· 

I 

Service Code 

4 

8 

12 

16 

20 

24 

28 

32 

36 

40 

44 

48 

52 

56 

60 

64 

68 

72 

76 

80 

84 

86 

92 

96 

Interpretation 

Sequential string input 

Sequential string output 

Return line count 

XPL Construct 

<string>=INPUT(I) : 

OUTPUT (I)=<string>: 

<variab1e>=LINECOUNT: 

Set line count limit CALL SET_LINE_LIM«va1ue»: 

Force immediate exit 

Return time & date 

Unused 

Link to next phase 

Return parameter field 

MONITOR 

Unused 

Unused 

Read from FILE1 

write to FILE1 

Read from FILE2 

write to FILE2 

Read from FILE3 

CALL EXIT: 
<variq.b1e>= TIME: 
<variab1e>= DATE: 

CALL LINK: 

<string>=PARM_FIELD: 

CALL MONITOR«parm» ; 

<variab1e>=FILE(1,I) : 

FILE (1,I)=<variab1e>: 

<variable>=FILE(2,I) ; 

FILE(2,I)=<variab1e>: 

<variab1e>=FILE(3,I) : 

write to FILE3 FILE(3,I)=<variab1e>; 

Read from FILE4 .<variab1e>=FILE(4,I) ; 

Write to FILE4 FILE(4,I)=<variab1e>; 

Read from FILES <variab1e>=FILE(S,I) : 

write to FILES FILE(S,I)=<variab1e>; 

Read from FILE6 <variable>=FILE(6,I) : 

Write to FILE6 FILE (6,I)=<variab1e>; 

Table 9.3.1 

ENTRY Serv.ice Dispatch 

9-12 

t 

: i 

~ J 

j 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE • CAMBRIDGE. MASSACHUSETTS 02138 • (617) 661-1840 

Dt. ~I" ......... ~ ... o.c •.•.... i. c ..... ~ .• ~~.".L~.~~.~~.~"' ... c.~ ..• _.cc .~ •• ~ •. .:...c.~ •.• ~~._ • ••. , .•. = .•• <-L.L. =~.. .~~~~ .• ~.==~.'~'J'.LL~'"C.~' .~. ~ .•• ".;,,==.= .•. .,.;. ~""';';"""""'; __ "";';"' ______ ....-.l. 1.'.' 



LU :a;,,,J 44,. LUEtH <.!£L;S .$ .t ,..za£i·I' [. ~~\~~'_~~::'~:~9~~~:~='~="~'"'.'<~"~"'::'"·~~::'~'."U"~~:~,.~~.'~~~=~:r .. ~_._~~.~v,~~~~t.!"'~ .... ~~_~.~%@I5~_t~.~l~~ 

.• ('it.' 

I ~ .. 

the necessary steps to satisfy the request and returns control to the compiler. 

E~ch of these services is now discussed. 

9.3.1 sequential String Input (GET) 

The INPUT pseudovariable is used for sequential string input by the HALlS compiler. It has as its value the string represented by the next record on the input file selected by the subscript of the pseudovariable (INPUT(I) , 1=1,2,3,4,5,6,7,8). Arguments supplied by the HALlS compiler to the submonitor for this service are the pointer to the next available byte in the free string area (FREEPOINT) and the index indicating which input file is to be accessed (1 in INPUT(I». 

When the submonitor is entered with an INPUT service request, it first decermines whether the file number supplied is a valid one. If not, the submonitor forces a 1400 abend. Next the submonitor checks whether the dataset currently associated with the specified file is a ?artitioned or sequential one. 

If the dataset is sequentially organized, the submonitor checks to see if the file has been permanently closed. This condition would occur if the compiler opened the file and subseguently closed the file, e.~. after receiving an end of file indication from the suhmonitor. If the file is found to be permanently closed, the submonitor forces a 1200 abend. The submonitor then checks to see that the file is in fact open. If not, it attempts to open the file. If the attempt to open the file fails, the submonitor immediately returns an end of file indication to the compiler. Having determined that the file is open, the submonitor issues a locate mode GET macro. This macro returns the address of the next input record. This record is moved to the free string area as indicated by the FREEPOINT pointer passed along with the service call. A string descriptor of the new record along with an updated FREEPOINT is then returned to the HALls compiler. 

If the dataset organization is a partitioned one, the submonitor first checks to see that the file is in fact ooen. If not, the submonitor forces a 2100 abend since p~rtitioned input may only be performed after a FIND service request has been issued. FIND le~ves the DCB in an o~en state. The submonitor then checks to see whether the input buffer associated with that file contains any records which have not been processed. If not, the submonitor issues a HEAD macro and a CHECK macro on th·e tile specified. The next record is then moved to the free string area as indicated by 

~4 
.r 
'~ '. ;, 
!5 
;;,; 
i)l ;, 
ill 

~ 
, 

j' 

1 
rl 

1 
I 

i) 9-13 ' 
;. INTERMETRICS INCORPORATED· 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSET.r,S 02~3S.,,· ~~1,n.?,6]~18~g,j L-.~ 



[ 

r 
! 
L. 

•• ".- _ •• - - •••• ...,.....-""--,-."'~.-......,..~----...,... <-. """ .• - ........ ~ •• .,.,.........",.~= .. " ""'" -...,..,..,.,.. ,..,..,..[* ........... , ............ >.:-.. '. M. " ..... 1' 

~ .. ,. :~::'""1t~L 

FREEPOINT and the buffer pointer is updated to indicate that 
one more record has been processed. A string descriptor to 
the new record along with an updated FREEPOINT is then 
returned to the compiler. 

9.3.2 Sequential String Output (PUT) 

The OUTPUT pseudovariable is used for string output by 
the HALlS compiler. A descriptor of the string to be output 
and an index specifying the output file selected (I in 
OUTPUT(I» are passed to the submonitor as arguments. 

In order to simplify printed processing, the submonitor 
adopts some arbitrary conventions. If the file specified is 
OUTPUTO, the submonitor automatically appends a carriage 
control character of blank (E8CDIC HEX'40') to the beginning 
of the string to be output. 

If OUTPUTI is specified, the submonitor assumes that 
the compiler has supplied a carriage control character as 
the first character of the string to be output. In addition 
to the standard FBA type control characters, the characters 
'H' and '2' have special meaning to the submonitor. These 
characters indicate a heading line and a subheading line 
respectively. 

Both OUTPUTO and OUTPUTI have associated with them page 
processing. (They actually refer to the same output file 
(SYSPRINT) but imply different carriage control processing). 
This processing includes keeping track of the number of 
pages which have been output and forcing a 600 abend if the 
page count limit is exceeded. It also includes keeping track 
of the number of lines printed so far for a page and issuing 
a page eject with appropriate heading and subheading lines 
if any are specified. 

On output files two ~hrough eight (OUTPUT2, OUTPUT3, • 
• OUTPUT8), the submonitor assumes that no carriage 
control and no page processing is required. 

In all cases, the submonitor assumes that any strings 
less than the record length of the dataset associated with 
the file are to be padded with blanks to the record length 
and that any strings of length greater than that record 
length are to be truncated to that record length and only 
that remaining part output. 

When the submonitor is entered with a sequential string 
output request, it first checks to see that the file is a 
valid one. If not, the submonitor forces a 900 abend. If the 

9-14 

INTERMETRIGS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 

.,.;""'~ 

,.' 
r 

~ 

1 
j 

~ 
J 
j 
1 

1 
j , 
) 

1 
I 

j 
! , 

.J 
.01 

1 



f 

'" 
c 

j 

r-
! 

f 
I 

~.*' 

file is Vell iel, the SUbll",';)ni tor then checks to $ee whether the 
aataset associated with the file has a partitioned type of 
organization. 

If the dataset orqanization is partitioned, the 
submontior checks to see that the file is open. If not, it 
issues an OPB~ ~acro on the file. If the OPE~ macro returns 
a failure indication, the submonitor forces an 1800 abend. 
Having determined that the file is open, the submonitor 
issues a G~TBUF macro which returns a buffer address. The 
buffer is used to accumulate individual lines (logical 
records) into one physical record (BLKSIZE). Loqical records 
are moved into the buffer for each OUTPUT request, padded or 
truncated to LRECL as necessary. If the buffer is full, 
h'IU1'E and CHECK macros are issued and the buffer pointer is 
set back to the start of the buffer in preparation for 
re-filling. 

I( the dataset is sequentially organized, the 
subillonitor first cnecks that ths file has been opened. If 
not, the submonitor attempts to open the file. If the OPE~ 
attem~t fails, the submonitor forces an 800 abend. Having 
determined tnat the file is open, the submonitor issues a 
PUT macro in locate mode. The PUT macro returns the address 
of the next output buffer. The submonitor moves the string 
to tl1is output buffer area, oerforming any necessary 
manipulations on the string as described by the 
aforementioned conventions. 

9.3.3 Current Line Count 

1'he 
for the 
subtnonitor 
local data 

HAL/S compiler may re<juest the current line count 
page on SiSPRINT (OUTPUTO and OUTPUTl). The 

merely returns the value it currently has in its 
area. 

9.3.4 Settin, SYSPRINT Lines per Page 

When a SET LINE LIM call is issued by the comoiler, the 
inoni tor service rou'fine called stores the value passed into 
its LINELI~ location in its local data area. 

Y.3.5 Forcinq an Immedinte Exit 

If nt a~y 0oint, the compiler has enough information 
(or lack thereof) to J0.termine that there is no hope in 
continuin'::i 9tocessin'·1, it tllay Cl\LL EXI'r, which forces a 4000 
abend and a dump if the DUMP o?tion was specified and a 

9-15 

r 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE. MASSACHUSETTS 02138 • (617) 661-1840 

1 
1 

l 
1 
i 
I 

1 
I 
~ 
j 
1 

1 



SYSUDU~P DD card had been provided. 

9.3.6 Obtaining TIME and DATE Information 

When a 'rUtE or DNfE request is issue'd by the com(?iler, 
the submonitor invokes a binary TIME macro. The time is 
returned as is. The date, returned by the TIME macto in 
packed decimal form is converted to binary and returned. The 
com(?iler itself saves whichever of the results is desired. 

9.3.7 Linking 

This service request is described in Section 9.2.8. 

9.3.8 PARM Field Accessing 

The HALls compiler may request fro~ the submonitor the 
string which is the PARM field received from as. The 
submonitor moves the string into the free string area, 
builds a descriptor to that string and updates FREEPOINT. 
The new descriptor and new FREEPOINT are returned to the 
compiler. If no PARM field exists, a null descriptor is 
returned. 

9.3.9 The ~onitor C311 

The monitor call provjded by the XPL language is a 
~eans through which the capabilities of the XPL system may 
be extended without requiring changes to the XPL compiler. 

'fhe HAL/S sui 'on i tor, u,?on rece i v ing a mon i tor se rv ice 
request, essentially invokes a monitor within a monitor. At 
least one para~eter is provided and it is interpreted as the 
MONITOR service request. The current service codes and their 
interpretation by the MONITOR call are described in Section 
13.3. 

9.3.10 Direct Access Input and Output (READ and WRITE) 

Direct access input and output is performed by the 
compiler for work areas used for temporary and intra-phase 
communication. 

When the compiler issuen an input request on such a 

9 .... 16 

I 

('" 
\-,t> 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 



direct access file, the a~propriate service request is 
issued, passing the record nu~ber and the address of the 
jnemory location into which the record is to be placed. The 
submonitor first checks to see that the specified file is 
open. If it is not, the su~monitor issues an OPEN macro. If 
the OPEN is not successful, the submonitor forces a 2000 
.1bend. lJ.1vinq determined that an of?en file does exist for 
access, the submonitor checks to see whether the file is on 
~agnetic tape. If not, it forms the TTR address of the 
record desired. The submonitor then issues a POINT macro, a 
READ macro, and a CHECK macro on the file. It then returns 
to the co.:n/?iler. 

When the compiler issues an output request for a direct 
file, the appropriate service request is issued with the 
record number and the address of the variable to be output 
as parameters. '1lhe submonitor processin':J for clirect access 
outout is similar to the processing for the direct access 
input request except that the READ !nacro is replaced by a 
hiRI'rE macro. 

9.4 OS Accessible Code 

There exist pieces of code in the submonitor which are 
invoked by neithe~ the compiler nor the submonitor but by as 
directly. 

One of these is an interrupt exit routine for floating 
point overflow and underflow. These interruots may occur 
during the process of com~ile time computations. (See 
Section 9.2.4) 

08 provides for an exit routine to be Used in the event 
of an OPEl] on a Dee. The HALls submoni tor takes care of 
supplying default values for 

1) Block Size 

2) l{ecord Len·;} th 

3) Number of buffers 

4) Hecord Format 

when these attributes remain unspecified after the OPEN. 
There are six types of defaults provided. These are listed 
in '!'able 9.4.1. 

9.5 Error Handling 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE 



I. 

f 

, . , 

0 .:.-, , 

. '. , , 

--, ---.'.,---"-'-""~-." -,~,--,--~--,-,~-, ~, --'. eo."", ,~ .. ", "d--"""""'l"'A''''c"""o,,,,,[~~,!, 
" , 

c.' '.',"'".'cc",'.', ~="':=CC"'_":,~,,:-~,"':: ':'""''''':'', ::".'..', ,,""": _"" ~-'''',':'i-~''''''-''''·''!''''''-~!:'·~I~'''''~~~ ~ c',, ~"" v_, 
I 

:'1t .,. 

" DEFAULT BLKSIZE LRECL BUFNO RECFM 

1 1680 80 1 FB 

? 3458 133 2 FB}\ 

3 400 80 1 FB 

4 1680 1680 0 FB 

5 3458 133 1 FBM 

6 256 256 1 U 

Table 9.4.1 

Compiler DCB Defaults 

9-18 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 , 

""".-1 



! 

t 

In general, any error condition detected by the 
submonitor results in abnormal termination of the program 
through execution of an ABEND macro. A list of abend codes 
and their interpretation ;nay be found in the HAL/S-350 Users 
Manual, Appendix F. The abend processing routine saves 
relevant general reqisters and attempts to close files 
before executing the ABEND macro. A dump is performed under 
the sa~e conditions as described in Section 9.3.5. 

9.6 Flowcharts 

Tne remainder of this section contains program flow 
charts describing the operation of the sUbmonitor. 

In the flowcharts, a large rectangle represents a 
processing step and a dia~ond represents conditional control 
transfer. A small rectangle represents a location in the 
code of the submonitor. An arrow into such a rectan3le 
implies transfer of control to that location. An arrow out 
of such a rectangle denotes the point of definition of that 
location. 

9-19 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (6171.2.61 -1840 
.. -"." .. " ,,-~ ." .-.- . 
:.'_'!.::--",=,'""~_C--'::'.-'-""'-'··,,"..=Jt"-'L 



NO 

I' 

XPLSM 

Save registers 
and establish 
addressability 

Move any 
overrides 
to DDLIST 

NO 

J~OAD and call 
OPTIONS 
!1roct?ssor 

YES 

YES 

9-20 

Save it for 
later 
HONITOR cal 

,.,~ 

, 
, , 

"fI(r/f 1 

1 

I , 



1-

i 
t 

r --. -.---.-------.--,--~.---~-----. -~~~_r_~~~_~~-~=~~~_~ .. ~. ~~-.-.. ~=.w~' ~'"-"""~'!"'. -""""""'-"""""'-.... 1'1'" . ......... k. 

I 

Set DUMP and 
LISTING2 
flags if 
necessary 

Set LINECT, 
PAGES, !-lIN, 
MAX, FREE 

Copy INCLUDE 
& OUTPUT6 
DD's for 
parallel 
access 

Issue SPIE 
for floa Ling 
point over/ 
under flows 

Issue S'l'IMER 
TASK for 
one hour 

Issue OPEN on 
PROGRAM, SYSIN, 
SYSPRINT, ERROR 

NO 

OPENOK 

YES 

YES 

NO 

NO 

9-21 

Issue OPEN 
on LISTING2 

NO 

Load abend 
code 100 

ABEND 

"I:.'&;'""'~ 
ir 

p .- ,f 



r; *1 

OPENOK 
\ 

Issue GETMAIN 
Min = COREMIN 
Max = COREt-1AX 
ACORE+address 
CORESIZE~'size 

CORE'!'OP = 
ACORE + 
CORESIZE -
FREE UP 

CORESIZE = 
CORESIZE -
FREEUP 

Issue 
FREEMAIN 

Size = FREEUf 

Call READPGM 
for first 
record of 
XPL program 

Record pro-
gram id in 
PGMID 

./ 

" NODLINK 

S('t number 
of cornmon 
st.rin9s = 0 

8 9-22 



r< -'"- ,- '~~,"-' ---- "' .--.-. .... _" 

NO 

Space required = 
COMMON SIZE + 
DESCRIPTOR SIZE 
+ PROGRAM SIZE 

NO 

YES 

YES 

NO 

'<:< F 
~I~· 

YES 

<.<---<.<.-<----. «.----<,,-<---<---~<.< ~~.",...."..::::.:~_-.. ~<M<'~' <~-<M"..".,.,.I' ru~_**,.,.,.",..'" "'~'l~ 

LINKING 

Call R1:.ADPGM 
for file 
control 
block 

Load abend 
code 700 

ABEND 

Load abGnd 
code 400 

ABEND 

ZI':HODNfl\ 

Load abend 
code 1100 

ABEND 

9-23 

YES 

1 

NOCOMMON 

NOCOMMON 

.. .....-; 



j 

l& 

r- .----.. 
i 
I 

ZERO DATA 

compute end 
of CmlMON 
address 

NO 

Zero COMMON 

NO 

YES 

Move COMMON 
array initiali
zation pairs 
past end of 
COMMON +512 

REPRODUClBlLl1'Y OF THE 
OR1GINAL PAGE IS POOR 

Initialize 
rcq . uJ.rcd emU-ION 
areas with 
emlMON array 
offsets 

I 
.... Ji' 

I, 

I 
I 
1 



I 

1-

Read in XPL 
descriptions, 
code and data 

Compute 
FREEPOJNT 

Move COMMON 
strings to end 
of XPL programs 
data 

Adj us t COf'.L.'10N 
string descrip
tions to point 
to relocated 
strings 

La,Hi up 

)',lrduh'tC'rs 
for Xl'L 
f ' I t1q I ,ttl! 

NOCOMr.l0N 

NO 

NO 

9-25 

Call the XPL 
program 

XPLH'l'N 

J 
1 

I 
I 



XPLRTN 

I READGPM 

Save the XPL 
pro9ram's 
return codn 

·1 
Merge return 

Issue READ 
on PROGRAM 
DD 

code with 
high order 
bits for SOl 
use 

I Issue CHECK 
on the READ 

Issue 
FREEr-'.AIN on 
all memory 

I Return to 
calling 
point 

Issue DELETE 
on OPTIONS 
processor 

I I 
Issue CLOSE 
and FREE POOL 
on all files 

I 
Issue SPIE to 
restore pre-
vious inter-
'rupt status 

I 
Issue RETURN 
to OS 

9-26 

" 
.. _~ ____ ~~~~~~:.=:.,,::,:;~:':;:=::~'_-_'-~-:::=:=':~~-:.-.. -'~-:_l'W:;"''-;::''=";;;:;¢ n;::' '::" :;::., :;t'~;;:;:r;::;qm;';;;''w;:'=' :::,-. =======_ _.. .~_,,_:'-". _5.,'":,"':. ~~, .. ~_ i.li~.rr!!<JI~Jfiljllllliiii' .... --iii-'Ciili7WET_l\lciii-.. '-iioo' ___ . _, 



• \.' 

I 

I 

. 
GROUPl 

1 
Move 

DEFAULTl to 
DEFAULTS 

l 
GROUP2 

J 
Move 

DEFAULT2 to 
DEFAULTS 

l 

GROUP3 

I 
Move 

DEFAULT3 to 
DEFAULTS 

l 
. 

GHOUP4 

I 
Nove 

DEFAUL'l'4 to 
DEFAULTS 

l 

~l·_a··~l-~ 
., ~-';;;;;. 

I 

'.' 
f 

.. 

A 9-27 • 
INTE~METRICS INCOR::~AT~D"':~~ ~~~~~.,::u.~,~~:~.::::~::~~~~;.~s.~~~~~_:,,~~17l_6~1~~ 



! 
r 
~, 

" ) 

r -- --- ----
I 

GROUP5 

Move 
DEFAULT5 to 
DEFAULTS 

GROUP6 

Move 
DEFAULT6 to 
DEFAULTS 

NO 

YES 

NO 

YES 

9-28 

Move in 
BLKSIZE 
from 
DEFAULTS 

Move in 
LRECL from 
DEFAULTS j 

-~ 
-j 

j 
1 



I-
I 

NO 

YES 

NO 

YES 

Return to OS 

9-29 

-....----

Move in 
BUFNO from 
DEFAULTS 

Move in 
RECFM from 
DEFAULTS 

--r 'l 

1 
1 
l 

.<1' 

·1lL.>ii!ii:·,.",~.~~"",~E~:-~~_~~~': ___ ~"""<t,,a=cm.,, "'_"~i","~ 



f 
I 

POSEOO 

Zero INBUFSIZ to 
indicate no 
data in buffer 

INEOO 

Issue CLOSE on 
file with EOO 
indication 

PCLOSE 

Mark file as 
pormancntly 
closed 

HETNI":OP 

EOOPGM 

Save registers 
0+2 .and load 
abend code 200 

ERRPGM 

Save registers 
0+2 and load 
abend code 300 

IPOSYNAO 

Save registers 
0+2 and load 
abend code 2400 

ABEND 

, ., 
I ' 



'~I"" 
... 

" ". 

f 
\ 
r 

~--------~----~----~~~~~-=,-----, "-'-"'-'~-------~--*-~~~=~.~---,~-~ .. ~.~2~·-r'~*~'E~'---Y~·~'~!-'~1-'l-_-P------~ 
_ __' ... =,.,,,. , ~-~''- .'." ':::-'::'11~, . 

_.. '.',- ; j 

S3ver regis-
ters 0-+2 & 

:!.o~'.d aLe:ld 
(;')de 800 

r.r".d. filo 
number to 
o'.)end code 

\ 

INEHR 

" ~ 

I 

Compute file 
number and add 
to abend code 

J 
r 

"' _____ "~~._,"", -..... ____ ......... _ ... ,,,"" ......... ""_ ... ___ ,,,,e ..... E'l!!l!!I!!!iJIIIl!!l!!!!lIIII!!!>'!!!"":...;!lI!oIl!II;!lI!iI.!!~'I!',!!!!!!l!'. ~!lllll!!J!!,,~~,~_~.::!ili;;;:~·E'!]~·.;~~L~jlc~.i!!!O!J!g;]!j!!!I$i!!'!1.!I!III_!II'lIl!!lm __ .!Il!MJ£I!II!!II!!ll!!l/oIli_ fIIIIII!~\ •• t\1I.l!i1II' I' 1Il--'.h IlmJ;ai· ' 

9-31 



OpnSYNAD 

Save registers 
0+2 and load 
abend code 1800 

9-32 

[ MEND 

Issue ABEND 
with DUMP 

YES 

Issue --CLOSE 
on SYSPRIN'l' 

NO 

Issue ABEND 
without 
DUMP 

'l·'· ~I :\01 

I, 
. ~ 
/.; 

I 

; ; 



. ~,~.~_".~ :;.,..,.10 Fe. ;t.;q4C2 at, ~#'7'+¥;P::* 1l".:dU;"JI;; &:;~:.: '~,:=.~,:"'~, '0. '::, ·[C'''HC.'~'C'~ • '~.~ ." 

ENTRY 

GET 

Save registers 
and set up 
addrcssability 

PUT 

GETCNT 
alid I NO 

service 
code? 

YES SETCNT 

Save registers Branch to 
and load abend routine based USEREXIT code 500 on service 

" L 
code 

GETlME 

! . 
ABEND 

LINKPGMS 

. 
GETPARM 

,jONITOR . 

READ 

l','lUTE 

9-33 
\ INTERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 

. Q' t lliilJ 



EXIT 

Restore all 
regist-.ers and 
return to the 
XPL program 

RETNEOF 

Return old 
FREE POINT and 
null string 

9-34 

I 

c: 

i 
I 

.1 L, 
I; 
I 
I 



GET 

YES 

Issue GE'I' in 
locate mode 

NO 

YES 

YES 

NO 

YES 

PDSREAD 

INEOD2 

Issue OPEN 
on speci
fied file 

PCLOSE 

9-35 

Save registers 
0"+2 and load 
abend code 1400 

INERR 

Move characters 
to free string 
area as indi
cated by 
FREEPOINT 

Build new 
descriptor 

Compute new 
FREEPOINT 

Return new 
FREEPOINT and. 
built doscrip
tor 

EXIT 



,. 
i 

PDSREAD 

NO 

YES 

NO 

YES 

Movo rocord to 
free string area 

:as indic0ted by 
FRERPOINT 

,-" ,-,,, ,_,m - "-'~"-"'-'~'~'-'~-'-~ ';,~~ '=~J.~~:I:~:::-!~ 

Save registers 
{}+2 and load 
abend code 2100 

INERR 

Issue REl\D 
on speci
fied file 

Issue a 
CHECK on 
the READ 

Compute nutn
ber of 
bytes read 

Build new 
descripto~. 

Compute new 
FREEPOINT 

Update buf
fer pointer 

Return I.ew 
descriptor and 
new FREEPOINT 

EXIT 

i1j 

'~ 
i 

l 
,i: ~ 
t , 
j i 
'~ ~ 
.', ·1 

• 1, 
~ .. 
i ' 1 i .r~ 

Ii 

___ ;~ __ ._ .... ~ .. _"~.~._~ .. ________ .... ' ........ ' ... n ............... L_ .... ,_ ...... __ • ..., __ '''''_mT.'gl!!"''!''!!'I\''!.»il'l'i,,~:~~~~3~'"'~6!'!l8ill:' :iilIl'=m~-~!l!!,;.'f'I1!i"!.!!'~,'!,'~~LiI\!!4Z!!!I';;;.JI!I!!I,!I!!II~)7!1!i"IIIII!I!II; ___________ .JIJIlN~._."';"'id.,,;;jll~· . 



PUT 

Save the 
string 
descriptor 

NO 

YES 

Issue PUT 
in locate 
mode 

Set Oll,[,~RrT fl<1g. 
and C,lrriaqa 
Control (CC) 

Bytl' (Cl'B) '" C 

NO 

YES 

NO 

PDSWRITE 

Save registers 
o ~ 72 and 
load abend 
code 900 

INERR 

Issue OPEN 
on specified 
file 

OUTSYNAD 

9-37 
·,.t' 

.' __ <:"' __ ~1:I.~._.:t':~':l:l!i"':;;~e·:¥"",,';"';"·"'-'·-~«-- "'._:~"~"''''''''''''''''''''IIi. .... ___ .... ...;,.-.;"""...: . .;,· .... ·;,;,;.,...;,:i,;f,?~,,;i;,t';..;fmj,;;-k-;;.. .. .:.::.;:;:::=::_::_:::. ... ::<m.:: .. tt::""'t=:;:;::~i:.:!·:·~··vz.:..~·:~&:'!l!·!.'itr!!!iUiil!iiI!l!i!l!i!liIIi·.-__ ... ____ -IiI_.·df~iiIIis 



I: 

i ~ 

~ 
( 
, 

Obtain 
string's 
CC 

YES 

YES 

YES 

YES 

~{ES 

YES 

YES 

, L, ..... , ....... 1""""""" .... " ..... " 
'~-.::-,::-..O!\~~~.!"_~_j_ ':;."':':':: _,~.::';_::r: "~--'~.~;Y""'::':!:::'~"'": ~'::C:::':~~""'"'!'_~"~_,$:~r...:' '. Y!?;-_\ ,_ ". ~ •. 

NULLPUT 

PUTO 

PUTGTI 

MAYEJECT 

SP2 

SF3 

spa 

.. 

i 
1 

.\ 
j 
j 
~ 
1 
! 

J 
~ 
i 
~ 

i 
'1 
'j 

1 
j 

~ 
l 

l 
1 

- ~ , 
.~ 

1 
l 
] 
1 

:1 ., 
, ] 

j 
i 

1 
'1 
j 

.. 



r 
t. 

J 

··~-~~.~~-~7'~~.,. ~'''~~' ,,~, ~~--= .. ~'''''''=''='''".,"",''''''' -... -..... ',..-~._-: ... ...;..,.. ... ~--""J.il,..." -.. T'T..,........,,,..'.--, ............ - ...... "[-".-&Ji(""'c=".~-,.. .. -.,.. ... 

_ .... --'.~_~::.~ ... ~~ ,l ,F-,_.,~.::,~~!. -t;'""'r~'i''I!f"' 1 

NO 

CHKHDG2 

YES 

Set HEADING 
to all 
blanks 

1>10'10 strin~ 

into HEADING 

Sl~t up [or 
hl.-mK lille:> 
f()L1 0winq 

F,)I:C"j' 

YES 
SPI 

NO 

EJECT 

YES 
EJECT 

9-39 

J 



F_' .LJ kHalilli 

NO 

Set HI~1\DING2 
to all 
blank!> 

Move string 
into 
HE1\DING2 

Set 
H2i'1.CTIVE 
flag 

EJLNC}{4 

NULCCB+C' , 

NO'l'NLCCB+ 
C'Q' 

FIRS'l'NUMo(-5 

YES. 

-.,~ ••. ,,-.... --~-~~. ~_. m::W~13,? 

,L_SL.L_.A. IJ ,A _,W£ !dk~ J~~.¥:_t:w ___ .J> 

9-40 

Clear 
H2ACTIVE 
f'lag 

EJLNO<-3 

NULCCBo(-C ' 0 ' 
NO'l'NLCCBo(-
C'-' . 

FIRSTNUW-

Set up 
blank line 
following 

CCB-<-C'+' 

SPO 

'1·' 

.1 

l' r 
! 
! 



+ .. 

CCB-+·C' 

SPl 

SP3 

LINECT = 
LINECT + 3 

Pl)I,LCK 

SF2 

ygS 
>-------------4 TESTZL 

NO 

LINECT = 
LINECT + 2 

FULLCK 

9-41 

NO 

I 

r 
I' 
p 
I 
I. 
I· 
I 

I 

j 
J 
j 
~ 



j 

~~~,~ 

I-

I
'-~-.-" --~------~"~~ ~--:.~ ~:--.------~'

9-42

MAYEJEC'l'

TESTZLI

EJECT

~lc:ge PAGENO
~nto

HEADING

~ __ •• : •• :~. "illL,," 1""" 'I' fi • - .• - GO • . l-=l
I

.
r
I;

1
1

r ~
1 ,

1
.~

It]1\'ltODUC1BTI tl"l 01" 'lSE
plllQll<i'" 1'! ' . ,.~

; ;

"'! ,

,
f'

}

---~---~~----~~~~=. ___ d_' __ ~~~.~"~"~~_--.-.----.~--_--~-~-.. -~--~'~.-*~I~~-_-______ a_~-~ .. ~~~
)1',

Issue PUT
in locate
mode

PAGECT +

PAGECT-I

CKPAGE

YES

NO

NO

YES

9-43

Move page
abend mes
sage to out
put buffer

Load abend
code 600

ABEND

Hove
HEADING2 Lo
output buf
fer

I ,
I

J
;

J
1
I , 1
1
-~ , , 1 i

I
1
~
'j

1

.~
·1

-I --- - -----

I

CCB+
NULCCB

LINECT-<
EJLNO

NO

9-44

Issue PUT
in locate
mode

PUTO

String length
+- string

length+l

LINEC~

LINECT+I

CCB+
NOTNLceR

LINEC'I'+
FIRSTNUM:

S?l

r

.~--------~ FULLCK

YES

r-l~ve CCB to
output
buffer

TESTZLl

Hove 132
blanks to
output
buffer

EXIT

9-45

Ai!!.US

YES
EJECT

TESTZL

NO
PUT2

. J!ll!l.fIif'flJIIIU!!I, I . .2£LkllllJ!I!U £ II!I!II.

,,44.,._ ., 1-::1
. ~",., _.4('~~::::.:. .

"-.

$1

. p rr n

PUTGTl

Clear
OUTZBIT
flag

PAD=record
length -
string
length

NO

Set SFILL
and LFILL
flags

PAD ~- PAD-l

YES

YES

PU'l'2

Truncate string
length to
record length

Clear SFILL
and LFILL
flags

9-46

d .M n r

r,

i
" L
L

.J

-- l~~~--"----~r.c_~~.~~~--~~u~ ... -"p¥ •. '_.,."'!.". .. ,w,_,..... __ .. """"'. __ ~".

~ ~~ "'" .;:-:<>r. ~!i .ti~M:.~'f-">~.,.J)!I:' """:i"". _. ~ ._ • ~ ._ .. ~~,: _~::~. . :;.:,," "~

NO

Clear LFILL
flag

FILLENG +

PAD

YES

Move CCB to out
put buffer and
increment buf
fer pointer

MOVEIT2

t-love string
to buffer
area

NO

9-47

"

MOVEIT2
i 'Jl,' :!
?
~: ~

r--
1",

YES

Move in one
blank to
buffer

YES

Propagate
blank
FILLENG

EXIT

NO

NO

EXIT

EXIT

9-48

Move LRECL
blanks to
output
buffer

EXIT

NO

NULLPUT

Set up for
blank line

SPl

j

._oiI!!!!i ~ _____ ... m __ ~,_~, ~"h~=,,~~tr. ,~d::;-;::':::_J~==::..::,~ ,_~JJ~.l!i;,rn , .. ,;£.>~~;'fjiiF":%:;;"'"~:' .J"",""",,,,,,,,,,,,,::;:,,::;;,:;,,,,::, :;.,::;" w:,;::",: ... ::. ,,;:. ,-:,~~_ ~~I,!!il iIIiJ"U.IIU •• I •• 5&'''iiliEIIii'''!l4!1

PDSWRI'm

YES

NO

;('1
~,~.

NO

I:lsue
GETBUF on
file

A-lEADl\TA -<

huffer
il.ddress

YES

9-49
H'r 1 -

YES

I .
Issue OPEN
on speci
fied file

OPDE'YN'IJ:;

Issue a PD!)
write

Hcsct reco'::"!l
length

r

Pl\D:::rccord
length -
string
length

set SFILL
ahd LFILI.
flags

YES

YES

PAD PAD - 1

Issue a
CHECK on
file

NULL\41RT

\\JTOOLONG

WMATCH

9-50

Clear
LFILL flag

FILLENG +
PAD

l-IOVEREC

YES
I

4J .

. _ .• , "'M_gj:,~""'"

1-· .~j~KJLtg .•. 11._

WTOOLONG

Truncate
string to
record
length

Clear LFILL
and SE'Il"L
flags

Move string
to output
buffer

SFILL NO
flag set?

YES

Move one
btank .into
buffer

;"~ ILL
flag set? >-_N_O __ -t

YES

Propagate
blank
FILLENG
timGs

l

9-51

WMATCH

MOVEllliC

NULLWRT

Move record
length # of
blanks to out
put buffer

Update out
put buffer
pointer

EXIT

'tnt

•

l
~

1 ! ·l, -,
;j .~ ."
~l ,
:'~

READ

YES

YES

Issue POINT
to the
desired
record

Issue READ
on desired
record

Issue a
CHECK on
the READ

9-52

NO

YES

NO

Issue OPEN
on file

FlLESYND

Form TTR
address

""1*" Pi , k "'''''-[~'' "",'

T,~.lt"~m.!t_·._!~.~~~V1f<.~ "'" '_", ___ ._.' :,' '"

~
J '

"

1
~
~1
;i
'~
'f
J
¥
;{
1':

~
~
.~

< I
!
j

~

j
'~
.~
.]
.~

j

j
':1
1

"

'* 1
'~

,
';

,~
'1
9 ,

.S

~ 1
, .' : f 1

~

, -rn---------'-'----'~--~.~~---~-'---------~~--'--~~~~~ ~"'''" '-~'''"-'- -" .. 0""='1 d"'_*_O,'G" -1'-"" '
~~t;f~~~~~;">~~~~~~·"-~Iili~~~ -":"1:~O: ~~~.".,_,,~':~~~~- _ ~.':!:.::!_t.._~>-~ ~~~_,,~. ~ __ :~:~: - ::~!~~?I,,~~~~!lrt4aX;1; ~1'"i~

..

WRITE

YES

YES

Issue POINT
to the
desired

ISSUe \,lRITE
to desired
record

Issue a
CHECK on
the NRITE

9-53

NO

YES

NO

Issue OPEN
on file

FILESYND

Form TTR
address

.'~

J ,
;i
il
'~ .
. ~
j
~~

:;,.
"

;1
.j
<i[

·i'l
,M
f. '. -,

:;;;

~~
:~
-- ~

:-~

1 , ,
,~

1
~
1
~
~

.~~

l
-1
~
~

< .. '

,
';' .1
), ~
, f' i , , j

-r 1
! i :;
:~

,:j

1
') ..
,j ,~

,~

'V

~
l .,

" 11 1 -Ii

,
j
j
i
I,
l

11
) "

~
"

~
~;~

I
I

NO

. , ._¥ . =;J2.

LINKPGMS

Set LINK
flag

Save
DESCDESC

compute new
CORESIZE

Get length
of a
descriptor
block

Set no com
mon strings
flag

NODLINK

9-54

NO

i;:::::a:a «JJttC::tt: '

compute it of
256 byte moves

Move strings to
savearea by 256
byte blocks

LINKING

compute
length of
common
strings

Compute start
nddress of
:,avearca from
common strings

j .M. .•

Load abend
code 1300

ABEND

~
~ ,

~
l~
~
1~
~%

;f:
~

~
:¥
l~ I,
,\
t~
;~

;;
,~
;i
;'.r
"

riO
JJ;
;t .,
;:;

;~
;~.

'~

,
]

I
1 ,
1
j

I
t
I
)

\

f

I··

GETIHE

,
Issue 'I'IHE
in binary

I
Return time
in RO

,
convert date to

binary from
packed decimal
& return in Rl

I
EXIT

GETCNT

I
Load line
count

1
Return in

RO

,
EXIT

SETCNT

I
set linelim
to argument

I
EXIT

1
.1

9-55 1
I

I~··"- ~-".-"-~""""-~"-"-~-"- ~-~~ .. ".-""
t

1

GETPARM

Obtain
FREEPOINT

Length YES
parm field ~~~------------------'l

= O?

NO

Move parm
field to
free string
area

Build new
descriptor

Calculate
new
FREEPOINT

Return new
descriptor and
new FREE POINT

EXIT

9-56

Return "old
FREEPOINT and
null string

I
EXIT

iZt UPi_ Ie.., (I,
'L *'l i!4i44 t 'i'

I:

I
l' ,

,

r

A B

MONI'l'OI{

XPLFREEM COMPNAf.lE

Valid NO
onitor

equest? 1
Save regis-
ters 0 2 &

AB3000

.

L_TTIME]

Branch to ser- load abcnd

vice routine on code 1500

basis of request r code MON#9 XPLVGETN

l\BF.ND .
r--

MONUO XPLVFREE
CLOSBO

. ,

EXIT CORELEF'l'
STOW

FIND MON#I2 CALLSDF

,

MONI3 GETPGt-1ID
CLOSE!

MON14

SETF'ILE

MON#5 ~:J
.

RETCC'lDE
XPLGETM

1\

B

9-57

r
I
I

YES

YES

CLOSEO

Issue CLCSE
on speci
fied file

Issue
FREEPOOL
for file

EXIT

NO

NO
EXIT

Issue CLdsE
on speci
fied file

9-58

-,-, ., .• '-... M ... w,.' o::.:::~~::""' ... _ .. we;o_i __ '-1£9 -""!. 9'-"' __ ' -Li$ll~..~ . _. _'_
.'t -.

I --.
I "

Save registers
0~2 and load
abend code 1600

ABEND

FREE POOL

REPRODUCIBILITY vi" ~ 'I,

ORIGINAL P AG;ill IS POOR

.L

I,
I:
i'
i
, i

I
I

~

I
.~ ,

!

STOW

YES

YES

NO

, , .. ~~.~.-.""~ •. ~"~--r-'-''''''''''''-''-''-~ .. -'~~-:~: -r'l':"'~~~-'~~=""", ~.~. _''''''''~,~.l:'''',ii!i!'''''''._',"".!i=. ·...,.I",.~··~· .,." ,_ •. ..,., -"i\ HJA:i I~~~

-:./L ':"':~"'.:'":"::""':":"'~MO''1flt'· ,."-"",,,"''''. .,

I .
I ,

NO

NO
EXIT

NO

9-59

Save registers
0+-2 and load

·abend code 1600

ABEND

Issue WRITE
on PDS

Issue CHECK
on PDS

~~ • ., ... t ... ' ... ' _______ _______ "" """',. ,

A

tring
length=8?

YES

Issue STON

Select returr
based on
STOW return
code

Code 0:
Return 1
Member
replaced

Code 4:
Return 0
not appli
cable

Code 8:
Return 0
Member addec

Codel2 :
Directory full

Save registers
0+2 and· load
abend code 1700

I
Code 16:

I/O error

I
OPDSYNAD

- .

NO

9-60

J\drl in f;i In
numbeL' to
abend code

AB~~ND

I
Save registers

0+;' and load
abend code 1900

J
Add file number
to abend code

I
ABEND

J,sZtl8 CLor'~

I
r·'REEPOOL

'~~!ZitZ",~~~-'"',~~~=...:.::.=-~~~ Emil '~~t;"'~ __ J(';;'-";:":=~~~~:~;';;7-;;;:"j!iI!'¥iIiIfl1""_:l. "';;;;' .. oill;,*""""=:;;;;,.;;,,,,~_ __ _____:._

:1

I ..

~ 1 ,1.

,~ .~
J

.~> .~
. t

1
·f
~o

·r
f 1
, J

:i
1

\

I
J ..

t
f
I
:'i£
05:

~l 1 .,
~

1: ". ,j I ..,. ~

t

FIND

Clear all
flags

Flags-+
I7FLAGS

NO

NO

NO

VEl'>

Flags-+
I4FLAGS

INOPEN

Save registers
0+-2 and load
abend code 1600

ABEND

~""""I~:-:1· -.<~'.~~.~~~:. ~~~,~.~, ..
\., .

~:

YES
ALTCLOSE

I NOPEN

9-62

r;;:---, RESTDDN

Move INCLUDE
DDNAME to
DCB

Turn off
alternate
DD flag

OPENIT

ISsue OPEN

INOPEN

NO

OPENFAIL

(

.--'7'

I -
I

l

OPENFAIL

Set INCLUDE
DD missing
flag

Hove OUTPUT6
DDNAME into
DCB

Set alter
nate DD
flag

OPENIT

INOPEN

NO
RETURN 1

ALTERDDN

NO

9-63

Issue BLDL

Continue on basi
of BLDL return
code

c·

Code 0:
Member
found

Code 4:
,..._._--.., . Member not

found

Code 8:
I/O ERROR

IPDSYNAD

t-----1 NOTFOUN

9-64

:;;, ;0.,.""" "

Save registers
()-+o2 and load
aLend code 2300

Add file
number to
abend code

EXIT

Set return
code to 0

Issue FIND
using BLDL
results

, . in _, 3p5,

>-Y_E S----t RETtJ RNO

Issue GET.BUF
INAREA~

buffer

RETURNO

"r~

:~:

82LHJit

I
,
i
'I

"~-----~-~-=-~"~-----~~~~~---.~.-----~~ .. -""~~~~~-.~~~~~"~W--~---H~.~,~"~~~"~;~a~-~~-.~--.~~l~*~b .. m"~~-~.~"~~
-_"---"---'-"0--." __ ~ __ ____ ____ "____ ,,- -" ,_~~,,~""5H-_~'l:~'!~r,!4! ~~ ~-" .,

NOTFOUND

NO

~---fALTCLOSE

Issue CLOSE

Issue
FREEPOOL

INAREA+O

ALTERDDN

YES
RESTPDN

9-65

RETURNl

Set return
code to 1

NO

14FLAGS+
flags

EXIT

NO

YES

RETURNO

EXIT

I7FLAGS+
flags

;,

__ ~ _________ M_~ __ ~~

Issue CLOSE

INBUFSIZE,
INAREA~-O

FREEPOOL

NO
EXIT

CLOSEI

YES

NO

Issue CLOSE

FREEPOOL

9"'66

NO

, ,

NO

Save registers
()-+2 and load
abenq code 1600

ABEND

EXIT

J
r
t
) ,
t'

) j'

1

_-- -~-~--

- -

" > • , •• "''''', 4."'" .. ' ,J .",_,,_ •• 0:, , ,"kW'*._:;z:;;: .• ;

SETFILE

Valid
file num

ber?-

YES

Obtain new
block size

Set blocksize anc
record length
for file's
input DCB

Set blocksize anc
record length
for file's
output DCB

EXIT

9-67

NO

Save registers
0-+2 and'load
abend code 1600

ABEND

&1 S&k,i 1 ""'\

;<;.-> :£ -=-"-

, .. _""lJ·~L;~~"

II

.--.-__ ' ___ .."...._T._~ __ -..,,-.<r""~"~".~" '" ~=" .. _" .

XPLGETtl

Zero pointer'
to getmained
area

Issue
GETMAIN

Save GETMAIN
return code

Call ZEROt-IEM
to zero the
buffer

EXIT

NO

XPLFREEM

Issue
FREEMAIN

EXIT

EXIT I

9-68

, f

'''''i)f

I
Ii

i'
!~

I

I~ :

NO

XPLVGETH

Obtain buf
fer size E.
buffer
pointer

Issue
GETMAIN

Save return
code from
GETMAIN

Call ZER0r.lEM
to zero the
buffer

EXIT

NO EXIT

9-69

am:: a £w,.£UZ41i';;;.4 ~("·IIflIIILI" 'hl/l\O._._

NO

XPLVFREE

Obtain buf
fer size &
buffer
pointer

Issue
FREEMAIN

EXIT

I
.~
l

1

j

j
;
j

NO

J

ZEROHml

compute #
doublewords
to clear

Obtain start
address to
zero and
constant 0

Store con
stant and
bump

d

YES

Return to
caller

NO

Return to
caller

9-70

CORELEFT

Issue GETHAIN
~Hn = 8 bytes
~1ax = 5 Hegabytes
COREGOT<-addre s s
CORELEN+-length

Save CORELEN
for return

Issue
FREE MAIN on
cORELEN
bytes at
CORE GOT

EXIT

CALLS OF

NO

Load up para
meters for
SOFPKG

Call the SOF
package

Save the
return code

YES

9-71

, ... -----~, l~-------·----l~ ---'--,
J

Issue LOAD
for SDFP,KG

Save the
address of
the load

Place alter
nate DD in
area speci
fied

NO

YES

Isuuc DF.I,ETE

for SDFl'KG

EXI'!'

EXIT

1
1
I
1

I
~
j
j
'~

j
l
1
J

i
1
j
;

j
j
1
• i

'~

i
J
'j

i
1
J

1
l

1
1

jJ -

NoNl3

YES

Issue DELE'fE
on' old
options
processor

Obtajn new
options
processor
name

Issue LOAD
on the new
name

I..oad up parm
field address
and call loaded
options proces
sor

Save new op
tions par.m
and return
it to XPL

EXIT

NO

9-72

EXIT

Save registers
0+2 and load
Abend code 2600

ABEND

="-l~'" ;., ~'., .. " '.",~~~ .. "~"
" , <. -~. ---. - • ,

1

II
!
!:

A

.... -......_A~..".._~~.~ ~·~j""~~~~~U_,=:;; *'''""'_. ~""'-=-'-~-~'"'~:;:;;tI"" ..) .. -.". __ =""*¥_."'¥4"'l.1~=iill"~' :::,:'"~ --..... ,.'*"""' .. , _€, ""~ _, .. ,._._ ... ~~~="""l~!'I!.J£ ~!!!!'.~P"'~""::"ll~=I'I'.,~..,:"':~g ... !!!!L""ii_] I. ~~~
,.. -,,' '.-=- "".''Y--- -, - --.. --,---.... -·-'·.~A:----. __ .' '."r',·..,- "'l.::."':':}~""'.'.>-:"~:.:: ._ _

MON14

1
Load parms
for the SOP
output
routine

1
Call the SOF
output
routine

1
Select type of
return based on
SOF output rou
tine return
code

J

Code O~---------, EXIT

--
Code 4

Code 8:
Save registers
0->-2 and load
abend code 1700

1
Add in file

number to
abend code

r"""---..
ABEND

ABEND

9-73

A

Code 12 OPOSYNAD

.I
~-1 I

Code 16:
Load abend 1\DENO
code 100

1
Code 24:

Sa'le resul EX.IT
for return

-

:

RVL

1
Extract RVL
information
from BLDL
list

I
Extract
catenation
number from
BLDL list

I
EXIT

RETCODE

'YES

RETFLl\GS get
new RETFL1\G~

Exrrr

NO

tR previous
RETFLAGS &

new RETFL1\G

9-74

TTIME

Issue
TTIMER

NO

Convert
result to
units of
.01 seconds

Compute
elapsed
time and
return it

EXIT

YES

GETIME

"'

j

1
~
l

j
i
.1
1

1
)
"" ~

1
j
I

~
1

1
J
~
"' 1

'1
"1
j

j
1
~
i
<~

:1

)
.~ ,
j ., .,
1
~

J .
-1

t
r
I ,

1"
I

GETPGMID

I
Load and

return XPL
program' sI[
description

I
EXIT

. '~-'--'-~~~'~='~"~~~~~~~~~""""~"""=;';.~" .. "",,' ~ • .:.."' ,,,..'.~ .. ',=.~ ""'_"!"'._ ... 'I"'j',..,..,.. .. _ __ a ___ ' .r-...,....,,..,.......-
-;;~ _ ~"," __ '"""':j <r~·':..~ ~~

9-75

MON#5

Save address of
work area for
NONITOR/XPL
conununication

YES

Change MONITOR
branch tables
to allow MON#9
and MON#lO

EXIT

NO

Load abend
code 3000

ABEND

l

j "

,j
l
·l

l i~ I ,[

:l
!~ J l I

1 ,
1
~
] ,

MON#9

>-__ YE_S ____________ ~TURNOl

Cumpute
branch
table index

Load parm
for request

Save regis
ters in cas
of an inter
rupt

YES
~--------------~,ON#9CAL

NO

Select ser
vice based
on computed
index

EXPON

FDIVIDE

9-76

" .'

-4 ..
A

Multiply
floating
point doublE

subtract
I

floating
point
double

1

I
1

Add floa ting
point
double

RETURNOO

Save the
answer

\
Restore the
registers

,
Return wittt

code ::::; 0

,
EXI'r

9-77

EXPON

NO

CALLEXP

NO

YES

ACC+-l

YES

YES

RETURNOl

9-78

.~.Jgwilr.' 7

YE

Exponent =
cxponi.~nt/2

ACc+"ACC{*/}
base depending
on sign of
exponent

Base<-base
2

Return ACC

HF.TUHNOO

9-79

NO

YES

_e"~~';;'::~~l

i

(
I
) .,

f
li!...~
~

FDIVIDE

Divide by
floating
point doubl

RETURNOO

YES

9-80

RETURNOl

Restore
register 13

Return with
code = 1

EXIT

Z4 J4A,pt,

· .

CALLEXP

Save the
registers

Call the LOG
routine on
the base

Restore all
registers
except 15

Multiply
result of
LOG by
ex

NO RETURNOl

",

9-81

Save the
registers

Call the EXP
routine on
product

Restore all
registers
except 15

RETU RN 00

it ZD

NO RETURNOl

NO RETUl{NOl

"

r
I

MONH9CAL

Select
desired
routine

Save all the
registers

Call the
desired
routine

Restore all
the
registers
except 15

RETURNOl

NO

NO

RETURNOI

RETURNOI

RETURNOO

9-82

MONNlO

LOad up
parameters
for XTOD

r-"' .* .'F

I"'" "11-,
.~

~.I~
MON#12

D~ NO
inked in?

YES

I
.

!
l

Load up para-
meters for
call j ,

1
!

~
~

Save all the
registers

1
1 f ,

1
~
:i

t
.~
{
,

Call the
Return null DTOC routine

£
j string

]

1
1
1

Restore all
registers

j , except 15-
, . j
l

.~

j "-
1

Heturn

1

resultant

,.
,?

descriptor

.
... ~::. 'l
.~ t I.::::.

1
I'

EXIT 1
,',; l

,~

9-83

~ T
1\

1':- ' f
~

XXDTAN

Save all the
registers

Call the
cosine
routine

Restore all
registers
except 15

Save cosine
result

RETURNOI

y:s=l
~

9-84

Select call
to the sine
routine

Save all the
registers

Call the
sine
routine

Restore all
registers
except 15

FDIVIDE

NO
RETURNOI

J

YES
RETURNOI

,

SPIEADDR

Save type
of inter-
rupt

t-1odify exit
routine
address to
SPIEBXIT

Return to
OS

'I

Set returned
value to
zero

RETURNOl

NO

SPIEEXIT

Restore all
registers

Set returned
value to maxi
mum Positive
number

RETURNOl

"'-T r -- -.-- , ••• "---,.~"-~-"----".-.-"" .. "-,~~--
. t'l ~...... ~~ __ ~M""'''''''''''4''_1 ~_ •• _J ~_*._ ¢"""lI~._(jjJ.""", __ ""';,*,""'~FM"" __ ~ __ """ ":' : ' "I(.:'t"'lW'!' .4_ ~.i4iIlf*"l • hoe

')

1"/ , "';

10.0 REAL TIME EXECUTIVE

10.1 Design Overview

10.1.1 HAL/S-360 Real Time Implementation Summary

a) The HAL/S-360 real time package is implemented
as a "self contained" system which executes as
a single task/job step under 05-360. A load
module is created by a "HAL Link Step" using
the 360 linkage editor. The load module contains
all HAL/S compiled program/tasks, external
procedures, and compool blocks which are pertinent
to the run, together with a collection of run time
routines. This load module or HAL/S system is then
loaded and executed under OS as a single task.

b) All HAL/S process management functions, that is
control over the scheduling and dispatching of
HAL/S program and task blocks, are implemented
through HAL run time routines. The HAL/S real
time control statements (i.e. SCHEDULE, TERMINATE,
WAIT, CANCEL, SIGNAL) are interfaced from the
compiler directly to HAL/S run time routines and
not to OS-360. The HAL/S run time routines utilize
internally defined process queues. The process
states and state transitions are controlled by
HAL/S compiler run time routines. The compiler
generates "branch and link" commands to the
appropriate HAL/S routine to implement exec"ll,tion
of its real time statements. All HAL/S event
tables, event queues and the processing of event
expressions are performed by HALls run time
routines. There is no interaction with 05-360
for servicing event variables.

A timer queue and HAL/S process interaction with
timed events is controlled by HAL/S run time
routines. The logical implementation of these
routines is presented in later sections of this
chapter.

c) 05-360 control and OS task interaction is limited
to superv~s~on of the HAL/S system load module.
It is unaware of the existence of multiplicity
of HAL/S processes and queues.

In summary, HALlS interacts with 05-360 only at the
-"HALlS load module lev~l" or system level as a single
OS task and not at the statement level or HAL program/
task block level (i.e. a HAL process).

i'·/
\,_,,,p' 1 0 -1

INTE9METRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840
b)-')-~_-"-"---------- -----,,-- --"------ .-----------

,
"

I
i
j

l

-1
j
j

1

I

" ' ,

+-<, ... __ """"l'!"","""Uh ' . r"'· .. .,~ ... 'l't-' + Iii"

, " , " 1

d) The HAL/S-360 implementation does not execute in "real-time" on the 360. HAr .. /S pS(3udo time is maintained in "machine units" by HAL/f.1 run time routines. Internal pseudo clock registers are updated in machine units which are decremented by a "clock tick" HAL run time routine after the execution of each HALls statement. The effect is to model the estimated execution time of each HAL statement for a specific Shuttle flight computer on the 360, and to maintain simulated flight computer time as HAL statements are executed on the 360. This allows the testing of flight software by direct execution on the 360 without requiring simulation. The HAL/S-360 system does not utilize the real time OS-360 clocks.

e) In HAL/S-360, the compiler inserts "hooks" between the code generated for each HAL/S sta,tement to enable recording of variables, implementation of diagnostics, clock updating, process control, and other functions. These HAL/S-360 hooks may be used to interface to an external simulation facility to enable Shuttle avionics environment updates and diagnostics.

f) HAL error control statements ON & SEND are implemented by HAL run time routines. OS-360 is utilized only to trap some 360 error conditions. Process reactivation or termination is accomplished via HAL run time software.

10.1.2 HAL System Load Module

A general overview of the static organization of HAL/S on the 360 is illustrated in Figure 10-1. The HAL/S run time system for the IBM 360 is operated as a single task under OS-360 control. HAL/S source statements are compiled, the separately compilable units linked together into a single HALls system load module and executed as a single job step task.

The HAL system load module consists of the code and data blocks for each compilable unit as output by the HAL compiler, together with a collection of HAL run time routines automatically brought in by the linkage editor. These run time routines consist of math routines, I/O routines, conversion routines, built-in functions, and routines to implement the HAL real time statements. On the 360 this is termed the "HAL run time executive" or "process manager". The functions and logic of these HAL run time routines (i.e. process management) is described in this chapter.

10-2
fNTERMETRfCS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

j;

7

1 iJ

r=, '-~.'~ --,.,...,* -

z
-;
m

(::0
I~ ,m

I~ ,0

I~
()
o
::0
iJ

'0
i:lJ :»
l-l

'1m ·.0
I •
1"-1 ,0 , ,
10
10
12
t()

io
!:lJ o
!» '--' i< .m a
'z I
C w
m

,0
ril>
;i~
1m
~lD
t,"0

i~
;l
!.~
i»
i: CJ)
[C!/)
:» ien
;':1:
Ie::
lCJ)
I.m
,TI
kill
;:1

!;~
,~~

rciJ
:9>
.~ .
~ ,0>
i~

i.-..!J
~
I I

~
~

:;!!.
I o
~ , j
: i
.1

I. 'k

~ .<

I:
,~

..:l
::J
Cl o
=<:
o
a
...:l

is
8
U)
:>i
til

..:l

~
I:

Figure 10-1

HAL SYSTEM ORGANIZATION FOR THE IBM 360

IBH 360 HARDWARE

05-360

(SINGLE TASK INTERACTION)

"HAL SYSTF.I.'1LOAD MODULE"

I lli1L SYSTEM CO~~ROL

MATH
FUNCTIOi.-IS

COM?OOL{s)
H VECTOR

Hi\TRIX

r H CONVERSION

til
r:::I H CHARACTER z

HAL H
8

PROCE;)URES ::J
0
p:; REAL TI!-IE

(CC~,;SURS) r:::l STATEMENTS
::>::
H

ROUTINES
.8

Z YQUEUES &1
.::J EVENTS
~

! I/O ROUTINES

I

Hl\L HAL . HAL
PROGR.t~1 PROGRA!1 PROGRAM

*1 #2 • . . .

0.5. FUNCTIONS

o lii\L/S SYSl'z,,'1
LOA;:) NODULE

" ':

EXECUTION CO~~ROL
(NO HULTI-P.ROG)

o I/O SERVICES

o TRAP FIE:LDI1\G

HAL FUNCTIONS

o ALL IL'1.L PROCESS
r1l'~r;ll.GE:·IE:~T {i. e. ,
TASKn~G}

• HAL EVENTS/SERVICES

• HAL TD-IE/SERVICES

• HAL ERROR CONTROL

o HAL I/O

I

I
,

10.1. 3 HALlS Process Management & Control

Processing is controlled by th~' HALlS Process Manager.
It controls the execution of all processes in the process
queues by giving control to the processes which are ready
for execution on the basis of priority. The highest priority
ready process is given control.

Processes are scheduled for execution by other processes.
They are inserted into the process queues by the execution of
a HALlS SCHEDULE statement. Processes may be scheduled for
execution by several options:

a) Scheduled at a particular time.

b) Scheduled at a particular event or combination
of events.

c) Scheduled immediately.

The scheduler may also be requested through the options
of the HALlS SCHEDULE statement to continue execution of a
process on a time iterative or cyclic basis andlor until a
particular event or time condition is met.

A process is allocated the CPU on the basis of priority
and remains running until: a) it is completed: b) it voluntarily
releases the CPU by entering a wait state: or c) it reaches a
point where a higher priority process is ready to execute.

10.1.4 Process State Transition

A simplified version of the transition of process states
and their conditions is illustrated in Figure 10-2. Processes
are scheduled into either the wait or ready state depending
on the conditions supplied in the statement. A waiting process
is placed into the ready state only after the condition it was
waiting for occurs. Once a process is in the ready state it is
allocated the CPU on the b~sis of priority by a "process
selector" function. The selector is entered at the end of a
process, at a swap point (if a higher priority process exists)
or if a process voluntarily removes itself from the running
state via a WAIT statement. Only one process can be in the
running state, and it remains running until it ends, or issues
a WAIT, or a higher priority ready process exists.

A process may be completed and its PCB removed from
the queue from any of these states.

1,0-4

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661·1840

'\' , ,
.~ ,~

'-'~---,---~------,--- '------- ----'---_._-------------. -~. - ---. ---.-,.-.-- -.,.~
------~--~~~~~--~--~~~~-.~.~

EC:::"--'-~ -

Z
-f m
:JJ
~
m
-f
JJ
o

,m
,z
()
o
:JJ
"1J

,,0

I~
:I~ , .
:.j" iO

118
lz
t'()
i:o
tIl
;0
tl»
'~,<
11m
'Iz fc
11m
i'!.
I·

ib
'i»'
!~' f-'
ICD 0
[::0 1
10 U1
::(j)
~m
rT
I~

f~
"en :'en f»
rO
'lI rc
ten
l.~
t-I
'~
10 I,r:v
I,

I,~
IC»
i i w:
f~
['+J

i
i~

, ",

'!t' . .i'

CREATE PROCESS CONTROL
BLOCK (PCB) AT
SCHEDULE REQUEST

~

Figure 10-2

SIMPLIFIED PROCESS STATE TRANSITION

>, WAITING

I I~ i J

wait I ~
condition H

. 8 occurs y

,;
'\

REMOVE PCB
: FROM QUEUE

~ r ~·AT END OF
PROCESS

.. ,.
READY

- ::r: 0 to H
H rn :;0:;0 G)
rn ttl ,0 ttl ::r:
to t"I ():J:oI ttl
:J:oI ttl ttl 0 :;0
8 () rnl-<:
() 8 rn to ::: :;0
-\ H r 0

RUNNING

~

1

~'--,

,j
1

~

I

~
~
I
1 ~

~
i ~

~'>: . .~ .. '."-,,,",,,,,",,,,,,,,!.~~,;;,:~,,,,,",,"~"=",",,_.",,"',":_"'"k",''''_';~'::.,.,.,",~,,,"~,"'" "",.c,_ ',' .,~.,,,,~,",·~,,,._~_.,,.~,,,~, ,,."",,,,"..: c,......,,.,,,,,,,, ."".,., .. "",.w..~ ~_~,~""","~~~~ ... '. ~ "_ b ~,, __ .""~"

10.1.5 The Process Control Block (PCB)

A PCB is an element in the process priority queue. It
is associated with a single process. It is inserted into the
queue when a process enters an active state (i.e. when it is
scheduled) ana is removed from the queue when the process is
terminated.

Each PCB is fixed in size but the number of PCB I, S on
the queue varies. The method of PCB allocation is to create,
initialize, and place on a "free PCB" queue the maximum number
of PCB's ever required.

The information required in a PCB is illustrated in
Figure 10-3 and described functionally below.

a) Priority Queue Linkage

This field contains a pointer to the next PCB
in the priority queue.

b) Priority

Process priority assigned in SCHEDULE statement.

c) Process State Information

This field contains the following information:

• READY/WAIT - Is process ready for execution?

• WAIT ON DEPENDENT PROCESS - Is process waiting
for dependents?

• INTER-CYCLE WAIT - Is process cyclic and
between cycles?

• INITIATED - Has process begun execution (at
least once if cyclic)?

• CANCELLED - Is process to be terminated at the
end of its current cycle (if cyclic), i.e. has
a CANCEL statement been issued for this process?

d) Task/Program

Is process a task or program?

e) Entry Address

Pointer to the program entry for this process.

10-6

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETIS 02138 • (617) 661-1840

I

ii
J

r

·"'·~·I"·· .. :·:i
...• ,., T

Figure 10-3

PROCESS CONTROL BLOCK (PCB) INFORMATION

PRIOHI'J,'Y QUJ~UE LINK1\GE
--

PHIOIU'fY

- .-
PHOCESS S'l'ATl1: INFORMATION

.,.., ...

TASK/PROGIW1 FU\G

~~-.... .,..\~ , . .,

ENTRY ADDRESS
.

PROCESS DEPENDENCY LINKAGE
(FATHER, SON, BROTHER)

CYCLIC CONTROLS.

r.

SAVE ARE.h

LAST ERROR GROUP CODE

LAST ERROR NUMBER CODE

10-7

INTERMETRICS INCORPORATED' 701 CONCORD AVi:J:iUE.~.cAMB8ID.GE.-MASSAGHUSEFFS-:f}~1;aA-,-.-::ig;:n-~·~H''''''"
-----------~---. -----_._---- " - - ",,-

~~

" !'1
.~
'f .
;'1
i'~

;:

!:)
;1;

!~
:.:;
:1
i'l
':

~

~ '~
, ,

" I !
if
~1
it
;1
H
j ~

~ {
p

H
11
" i{
fi
"
!f
a
" it
iI

J

rl
;i
'~

I
~

i
l

'f'

I ,
, ~

I, i
~ ;
I '

I"

'" ""'" ----- .. ---''-" ~-'''-''''-... --"--.-.------~,~'--~,,~ ., . ~~.. ~~~....~"'---.-. ~'"''''''''+~'''''i' ',.~,r-,,' --"w"_'~":;::'::;";:::'-' -.~ , j' 1,
! ,.,,-,~~,-

f) Process Dependency Linkage

This field contains:

• Pointer to PCB of father process (a null
pointer indicates an independent program
process) •

• Pointer to PCB of one son process (a null
pointer indicates a process with no dependent
processes) •

• Pointer to next PCB in a chain of "brother"
PCB's.

g) Cyclic Controls

This field contains:

• CYCLIC - A flag indicating whether or not the
process is cyclic.

• TYPE - 'I11lis indicates whether the cyclic type
is REPEAT AFTER, REPEAT EVERY, or immediate
(from SCHEDULE statement).

• VALUE - A scalar indicating inter-cycle wait
time if TYPE is AFTER or complete cycle time
if EVERY.

h) Save Area

This field is for the process stack pointer which
is used to save and restore the machine environment
across process swaps.

i) Last Error Group Code

This field saves the information returned by the ERRGRP
built-in function.

j) Last Error Number Code

This field saves the information returned by the ERRNUM
built-in function.

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETIS 02138 • (617) 661-1840

,

\

1
1
~
!

1 ,
"j
1

(~
(11
)~
\

?i

j
~
-~
j ,
~

j
I
I
1

f.
f'

,
f ,
\,

I·
I

r
I

'j ". "'" "-'.-1
,:,' 'f.-""'.~-i "14' < __ ':-:.~ '.

10.2 Mechanization and Structure of HAL/S-360 Real Time

Th'~ purpose of this section is to describe the overall
structure and control of the HAL/s-360 run time system.
Figure 10-4 illustrates the organization of the system.
Th~re are basically four major sections:

1) A a~L/s Start Routine which gains control from
OS-360 and initializes the HALlS run.

2) A HALlS Process M~nager which performs the selec
tion (dispatching) and initiation of all HALlS
processes in the process queues. It is the central
control element.

3) A HALlS statement processor which is invoked after
execution of each HALlS statement. It performs a
series of functions at each statement such as: up
dating simulated clocks, checks for higher priority
processes, determines when a process swap is required
and performs tracing and diagnostics when required.

4) A set of HALlS process management service routines
which are called by the process on the execution
of a SET, RESET, SCHEDULE, CANCEL TERMINATE<ID>,
SIGNAL event statements.

As an overview, a process is given control by the process
manager when it is the highest priority ready process. During
execution it calls the HALlS statement processor after each
statement. It keeps track of time and diagnostic requests. A
process may schedule, cancel, or terminate other processes
during execution. This is done by the compiler inserting code
to call the appropriate HALlS process service routine.

Details of the interfaces between the compiler and the
process service routines are given in the HAL/S-360 Compiler
System Specification (IR #60-4).

When a process executes a wait or terminate (self) state
ment it results in a process swap and the appropriate action
is taken for updating the PCB entry.

A process continues to run until it either ends normally
or executes a CLOSE or RETURN statement. At this point, the
process manager selects the next ready process.

The process manager. COI"ll.·letes the run when, all queues
are empty. If an abnormal error condition occurs, it causes
the run to be aborted.

10-9
INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETIS 02138 • (617) 661-1840

~~~:51 .... ' .. ~"' .... !'rJtsl1t". u:: ..... :: n....... . ~ ..•.. . .: .. ~.::::~ --:::.,...-··~t· .. ..: .~;.llit'jlflrt"':'1"'·iW"··· ........ ", ... , ..... , '" .' •••.• ' ..• '.""'. ""':-"~."~"'" .:::.=.~". "'='1'" 



~' . 

! 
f 

r-

r'i 
ILl 
III 

:r: 
u 
f< 
H 
~ 
III 

f< 
Z 
H 
0 

~ 
~ 
In 

Z 
0 

~ .... 
III 

III 
III 
f:.l 
g 
C<l 
Po 

III 
0-:1 

~ 
U 
til 
III 
ILl 
g 
~ 
Po 

"'.,---._,-

Figure 10-4, 

OVERVIEW OF CONTROL AND DYNAMIC STRUCTURE 
HAL/S-360 Real TIME 

HAL STARTI 

ROU'l'lNB ~J 

INITI\L. END OF 

"C'l'I\+\TION _~'J'_N __ ......-, 

lIAL/S PRocr;ss 
;·Ji\N.'\GEP. 

(SBJ/ECTOH,INI'l'IA'l'OR) 

NO WOHK 

~ 
PROCESS ENTERS 

L-..-, ____ , __ ~.J.,oj~--.., WAIT 

AT r, '.PRY TO 
Nr~X'l' PROCESS 

l', '1' ~ LOSEI 
RJ.:'l'l RN OF A 
1'110< ESS 

HAI. pnOCESS 

TERHINNJ'r; 

SET 

EXECU'I'E WAIT OR 
TER~INATE 

J\C'I'lVl\TE ON EY.ECUTION OF 
Sl'l\TEHENT 

IIAr,/1l STATEMI>NT 
l'i~OCr.:::SOit 

llAL/ S lU:.:AL TIt-'.E 
SEIWICF.S 
SCIJE:;,ur,J':, CI\Nt;P.J" 
SI':;~;l\L, TEIUoII);ATlo!<IIJ> 
EVBNTS 

(EXr.CU7r.J ~Ch w~/~ 
E;'rAn;NEN'r) 

10-10 

I 

INTERMET.~ICS INCORPORATED' 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETIS 02138 • (617) 661 ~1840 

j ; 

, i 
'-'f, 

_t 
:~ , 
i~ , 
~ 
;j 
;, 

if 
• i c 
, , 

l 
t 
1 
~ 

"." 'th 

~ .. ., 



, ., 
I 

( 
" 

10.2.1 HALSTART Routine 

The HAL/S system load module is given control by the operating system with an ATTACH macro (it may be also CALLed). Once the "HAL load module" gets control from O!3, the HALSTART routine performs various initialization functions. It prints out a HAL/S header, and sets up run time parameters input through JCL PARM field such as lines/page, channel # for system messages, # of errors before abort, debugging options, etc. It also issues SPIE and STAE macros to trap program interrupts and abnormal abort (ABEND) conditions. 

The SPIE macro specifies an exit routine address which is used in the HAL system to signal the appropriate HAL error conditions for recoverable errors, performs fix up if required and continues execution. The STAE macro is used to specify an exit routine address which prints HAL unique diagnostic information before OS-360 terminates the run. 

HALSTART must initiate the run. It does this by scheduling the "initial HAL process" to establish the first entry in th~ queues. HALSTART then calls the Process Manaqer. 

10.2.2 HAL/S-360 Process Manager - DISPATCH 

The Process Manager is the function which controls the state of execution of all processes in the priority queue. It consists of a process selector which chooses a process ready for execution, and a process initiator which controls the starting, cycling, and normal end of process execution. The scheduler and terminator which create and remove processes from the system are part of the application process control services. 

10.2.2.1 The Process Selector (Dispatcher). The process selector chooses a process, then gives it control, so that it may proceed with execution. ~he choice is limited to those processes in the ready state. If there are no ready processes, the system would normally (in a flight computer environment) enter an idle state, and would remain idle until a process is brought to a ready state - normally through the occurrence of a time or event interrupt. In the HAL/S-360, however, the system is advanced through this time interval by decrementing the simulated clock to zero - forcing an interrupt. This should cause a process to enter a ready state and if not, the HAL/S-360 run is ended. 

10-11 



In general, there may be more than one ready process, 
so the choice is based on priority; i.e. the relative importance 
of the various ready processes, represented by the relative 
order of PCB's on the priority queue. 

After the selector picks a process, it eithertuses 
the resume information (save area) in the PCB to restart the 
process at its suspended or swapped point, or it initiates 
the process at its beginning if it has not yet executed. 

Figure 10-5 indicates that the selector starts at the 
top of the queue when looking for the first ready process. 
If the selector was entered because a process entered the wait 
state, search time is considerably reduced if the selector first 
checks the swap flag. If it is not set, the search may start 
with the next process on the queue instead of at the top. The 
swap flag is set whenever a process having a higher priority 
than the running process is readied. 

10.2.2.2 Process Initiator (Figure 10-6). The process initiator 
is a routine which gets control from the process selector the 
first time a process starts executing. The program or task which 
was scheduled as a process is called as a subroutine of the process 
initiator. When the program or task executes a RETURN or CLOSE 
at its highest level, control comes back to the process initiator, 
which performs the following functions: 

1) Causes the process to wait until all dependents 
have terminated. 

2) If the process is not cyclic or is a cancelled 
cyclic process, it is terminated by calling the 
terminate subroutine, and control is passed to the 
process selector. 

3) If another cycle of a cyclic process is indicated, 
the program or task is called again, after possibly 
placing the process into an inter-cycle wait state 
(EVERY or AFTER, options from SCHEDULE statement). 
If the cycle type is AFTER, the timer enqueue routine 
is called to start the AFTER interval. The EVERY 
interval is set up once when the process initiator 
is entered, and is automatically repeated by the 
timer interrupt routine. 

10-12 

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETIS 02138 • (617) 661-1840 

j 

j 

1 
j 
\ 
: 
j , 
1 

I 
1 
• 



J 
t 
~, 

f 
'I 

NO 

TO PROCESS 
INr'!'lA'rbR 

Figure 10-5 

PROCESS SELECTOR 

.~~( --
GE'l' Plt:X:CSS 
QUJ:Ul: At;CIIOR 

5£1' up, FOR 
SElIRCH OOl'iN 

PROCi':SS QueUE 

WOK liT 
NEX~' 

PHOCEJS 

YES 

fIT,S Pl;OCCSS 
flEr;N 

IIIIT J.hl'EO YET 
? 

PCB 
QUEUE 
EMPTY? 

!YES 

( RETURN TO) 
HALSTART 

YES 

~:::lIT:C;:IF. 

l-'OR IltOCJ,:SS 

ADVANCE 
CLOCK 

10-13 

1 
.1 

1 

j 

1 
1 

~ 
,1 

I 
1 
1 
l 
,I 

1 
j 

1 
J 

1 
1 



r 
I 

"---, 

1"---
;r~,~~.~.1 

"7--'-~-----U~~~""?_'h' __ "_"""'---''"':''tfi_4> "U"""" __ "'~'" --'.- i2iJ ' , 'd1'" ... '",- ;, 'I' 
,5,,! iC'''~,,!';~'' '!'::"."_- -.,~_- .-:_'_:C,"L"""~!,_,:,~~~;:'C~_""~,,,-,.,.d."""c':""""o,, -.;.c,_",";n._"·:",.;_"'n:~=_'=-""""'~~.£~·"i!'!_· ~''''' .. if., ].!II ""~~_!l,1.," ~.~. , 

Figure 10-6 

PROCESS INITIATOR 

I'HON N:<ICES~ 
~I:I.I:C,.on 1IT 
i': Il~" 
I:): 1·:CU,'1 OCI OF 
I'ROCI:SS SI;,!, ,'I,r-G: 

"ItllTJr-Tt:O" 

l'ROC!:SS SIHTClIlNG 
'1'0 '. FROM PROC!:SS SCl,ECTOR 

, ---

....... -----. 

NO 

YES 

I __ "-_~-"'-___ -l~ TO PItOCEOS SELECTOR WAIT 

PROCESS SWITCHING 

~ ]'''-- FROM PROCESS SEl.ECTOR RESUME 

TO I'ROCr.5S 
!;1:l.l'CJ.'::lR 

TO. SEU;Cr lI):CHEST 
PJUOR] n' l\EIiD'i 
PROCESS 

___ TO PROCI;SS SEU:cron 10.'1\1'1' 

l'IIOCrSS S'IiITCHING 

FROM I'ROCI:SS SELtC'l'OR RESUME 

10-14 

REPRODUCIBILITY OF THIC 
OHJGINAL PAGE IS POOR 

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 

\ 



r 

10.2.3 The Process Scheduler - SCHEDULE 

The Process Scheduler is the process service routine 
which gets control when a HAL SCHEDULE statement is executed. 
It creates a process by putting a new Process Control Block 
(PCB) containing the proper information on the priority 
queue. When the scheduler returns to its caller, the new 
process is either .in the ready state or in the wait. state 
(if the AT, IN, or ON option was specified). It is then 
the dispatcher's (i.e. process selector's) responsibility 
to give it control at a process swap point. 

The options to the S~HEDULE statement are handled by 
separately testing for the occurrence of each one. If an 
option is specified, the appropriate processing is performed. 
Sometimes this is accomplished by a call to a system routine 
such as the event enqueue routine to set up an event expres
sion, or to the timer enqueue routine to enter an interval 
in the timer queue. A parameter is passed to these routines 
specifying what action to perform (ready or cancel the process) 
when the requested condition (time interval expires or event 
expression becomes true) occurs. The Event Processor is called 
to process the event associated with the program or task. 

Other SCHEDULE option processing is done local to the 
scheduler. A specified priority is assigned by setting the 
priority field in the PCB (used to determine the position on 
the priority queue). If the option DEPENDENT was specified, 
the scheduler places the new PCB on the dependence queue of 
the running process. 

Parameters to the scheduler routine are listed below: 

A) OPTIONS: 

DEPENDENT 

initial conditions (none, IN, AT, ON) 
PRIORITY 

REPEAT options (none,EVERY, AFTER, REPEAT with 
no delay) 

cancel condition (none,UNTIL<event exp>, 
<UNTIL time>, WHILE<event exp» 

B) LABEL or RUN-TIME REFERENCE - program or task 
entry point address. 

C) TASK/PROGRAM -is process a task or a program? 

10-15 



I' 
I 

D) WAIT TIME - (optional) time specified in AT or IN 
phrase. 

E) CANCEIJ TIME - (optional) time specified in EVERY 
or AFTER phrase. 

F) PERIOD - (optional) time specified in EVERY or 
AFTER phrase. 

G) WAIT EVENT EXPRESSION - (optional) pointer to 
event expression structure used in ON phrase. 

H) CANCEL EVENT EXPRESSION - (optional) pointer to 
event expression structure used in UNTIL or WHILE 
phrase. 

Functional flow of the scheduler is illustrated in 
Figure 10-7. 

10.2.4 CANCEL Process Service Routine 

The CANCEL statement provides a safe wav to terminate 
a process, avoiding the danger 6f half-results. If the 
process has not yet begun execution or is in between cycles 
of execution, it can be safely terminated by immediately 
calling the terminate subroutine. In any other state, however, 
the pro.cess is allowed to run to the end of its current cycle. 
A non-cyclic process in this case would be, unaffected. The cancel 
flag in the PCB is set by the CANCEL routine, and tested by the 
process initiator before starting another cycle. If it is set, 
the processor initiator calls the terminate subroutine. See 
Figure 10-8 for a flowchart of the CANCEL Serivce Routine. 

10.2.5 TERMINATE 

The TERMINATE statement allows for immediate and 
unconditional termination of a process and all its dependents. 
Termination involves c.1eanup of pending conditions (time, 
event) and allocated resources, and removal of the PCB from 
the priority queue. Since these actions must be taken for 
all kinds of termination (TERMINATE, CANCEL, RETURN, CLOSE), 
a terminate subroutine is used to carry out the cleanup work. 
The TERMINATE statement service routine merely locates the 
PCB address, checks if the active process is allowed to 
terminate the specified process, then calls the terminate 
subroutine. A flowchart of the TERMINATE Service Routine 
appears in Figure 10-9. 

10-16 

1 

I 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 
._~ .. _,.~_,"~_, ... " ,," 0-"~ 



ACCESS 
PROCESS 
EVENT 

GET AN UNUSED 
PCB 

SET l'RcY.;t;SS
'l'YPE In PCB 
(PROG/,l'ASK, 

nI:l\OY /WII'l' , 
CYC'i:.TC 1.:']'('.) 

10-17 

Figure 10-7 

PROCESS SCHEDULER 

YES 

BE'l' l'[um: r'l'Y 
"0 nPF.:C!i-'IEi) 
VALUt: • 

SCHEDULE? 

NO 

NO 

Sr!T PRIOIUTY 
TO DE~'AUr:l' 
VALUE 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 
. '_=.,.~-_~_~.~".,'. _ .~.-. -~ __ .... ==:''''"-''"-'-'''-1_.-_.-." .~,"._."" _~'" 



, L 1- -- """ ---~,."~.--",--.--~,---~-~~--~"""",.=",-,,,!#,,, 

MllaM-m,., J" .. ~@ ,,i ..• btlJ\i-!!'.~i_,I""~i~"'~j~c . 

NO 

-<:----{ 

No 

PRocess 

@;'l' . 
\l'IU; so . 
(Pi((lCl';~S 5h',\P 
I'/II,T. OCCUR 

1'Ul' l'CB ON 
'Dl;I'BNI)EN~: Q 
OF FA'rfIER 

PCB 

1.'In: pell (IN 

E~~;ORI1'Y QUEUF; L{ SELECTon 

Yes 

J:o'A'l'IIER IS ' 
nUNtUNG 
PRocess 

> . .. iICt! 4 $ > iP4¥! ; &"'1* Wt • 9 .. :;as;;; ~ AM¥fI!I' 

I r Mi'ttiC\ ili,,"", ,,"4_£ tltU"""IlJiI1lli 4~M.l~--+~., ~ 

Figure 10-7 (Cont'd.) 

PROCESS SCHEDULER 

RETU~u-l UNUSED 
PCB 

j 

1 
:J 
j 



, 
( 
., 
.. 

) 0 

~!~ 

Figure 10-8 

CANCEL STATEMENT SERVICE ROUTINE 

C CANCEL ) 

--~-r--l-
LOCNl'E PCB 

OF HUNNIl'iG 
PROCESS 

SET PCB 
CANCELLED 
}:'LAG 

NO 

C RE'l'URN TO 

'0 C".LLE!1 

CI\NCl::L 

LOCATE PCB I 
• r THROUGH 

. SEARCH OF 
PCB 
QUEUE 

NO 
~~-----------~ 

CALL 
TERlHNA'l'E 
SUBROUTINE 

) 

ERROR: 
INVALID 
TASKID 

.,1 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661~1840 o.~ 
. ~ "'F¥ mY' - .... t:MC'#\?'it!t3hiil!? LIlt.. .i'-\¥4'if'"~>; ,:_~~~!I'''''':~;'''·'~~:'''~-:';"?::~'?~"'::'::::=:~''''"·''''''''''''-<'==:::''~~:::~.::::.::~~.~~ .. :~: .,. ':-7;~~~ 



'. 

~,.~,." .. "!"'::':,:,-=.=,"::'=----:=:~~~:'::=-,~ ... "::::::,::,,-::::;,,;,;:,,,,:r:.::: ..••.. "l 

TO P':,OCESS 
SELEC'l'OR 

Figure 10-9 

TERMINATE STATEMENT SERVICE ROUTINE 

'l'ERf.1 INA~'E 

LOC7\'rE PCB 

~ OF }~UN1UNG 

PROCESS" 

___ L~ 
CAIJI, 
TEl\HINA'l'E 
SUBROU'l'INE 

10-20 

ERROR: n·JVALI 
T.l\SKID 

NO 

NO 

'l'ERHINATE 

LOCATE PCB 
THROUGH SEARCH 
OF PCB QUEUE 

~ _____ RE __ T_U_R_N _____ :> 

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 

! 



10.2.5.1 Terminate Subroutine. It is called by the TERMINATE statement service routine, by the process initiator, and by the following routines when a cancel condition occurs and the process can be immediately terminated: CANCEL statement service routine, event processor, and timer interrupt routine. It performs the following functions on the process to be termina.ted. 

a) Cancels its active event expressions (found by searching the event queue). 

b) Cancels its active timer intervals (found by 
searching the timer queue) • 

c) Frees EXCLUSIVE code it may have entered. 

d) Frees any lock groups it may have acquired by 
entering an UPDATE block .. 

e) Turns its associated process event off. 

f) Removes and frees its PCB from the priority and dependency queues. 

g) Terminates all its dependents in an identical 
manner. 

h) Readies the father process if it is waiting for dependents and the terminating process is its last dependent. 

i) Calls the event processor to process event 
expressions involving the process events reset in e) • 

The terminate subroutine may cause other processes to become ready because: 1) termination may satisfy the father's dependency wait; 2) turning the process event off may satisfy a WAIT FOR or SCHEDULE ON event expression; and 3) freeing a shared resource (e.g. UPDATE lock) may wake up a process PCB~ and, if it has a higher priority than the running process, a process swap occurs when the service routine returns to th6 process or to the process selector. 

10-21 
INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE. MASSACHUSETTS 02138 • (617) 661-1840,' 

,-".,~;:<~_" .t"g.f!l,!! 



~ ; 
i 

In addition to causing a process to be made ready, the 
terminate subroutine, in turning off the process event, may 
cause another process to terminate if a cancelling event expres
sion is satisfied. The terminate subroutine and event processor 
are coded t,o avoid recursive calls in such a situation. 

10.2.6 Event Handling 

The event handling system of process management carries 
out the signalling of events are performs specific actions when 
logical combinations of events, called event expressions, become 
true. Events are declared HAL language variables which have a 
boolean true/false or on/off state. These software events may 
be signalled (caused to change state) by a program statement. 
If a real time statement with an event expression is executed, 
the expression is immediately evaluated. If its value is not 
true, it becomes an "activated" event expression. An "activated" 
event expression is monitored until it becomes true or until the 
associated process is terminated. When an event change state, 
"activated" event expressions are re-evaluated to determine if 
they have become true. If they have; the requested action is 
taken (ready or cancel a process). Thus, event expressions 
have a life time beyond the execution of the containing statement. 

The following statements can signal (change the state of) 
an event: 

SET, RESET, SIGNAL - explicitly sets or pulses 
the state of the event (see Figure 10-10). 

SCHEDULE - implicitly sets the process event state 
to true, if the program or task was declared 
with a process event. 

RETURN, CLOSE, (at program or task level), CANCEL, 
TERMINATE - implicitly sets the process event state 

to false, if the program or task was declared 
with a process event. 

The following statements may explicitly specify an 
event expression: 

WAIT FOR - causes the executing process to wa'it until 
the event expression is true (see Figure 10-11). 

SCHEDULE (with ON option) - causes the newly created 
process to wait until the event expression is true. 

10-22 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 



~". ,--•• -~ ~,"¢jP • -

l~ I -.- .. ~-. . 0-'-.-.. ~-~-~7-" 

Z 
;. i;, 

, !!' ." ~ 
-f m 
::u 
~ 
m 
-f 
:0 
o 
(f) 

z 
o 
o 
::u 
-U 
o 
::u » 
-l m o 
---I 
o 

o 
o z 
o 
o 
::u 
o 

~ m z 
c 
m 

o »1-' 
:;:0 
CDI 
::UN 
OW 
(j) 
[Tl 

:;: 
» 
(f) 
(f) 
» 
o 
:r: 
c 
(f) 

::!:J 
(ij 
o 
f\) 
->. 

W 
CD 

---0> 

-=::! 
0> 
0> 
-I. 

t ...... 
CD 

""" o 

~~ 

e' SIGNAL. ~) 
I 
f 

INVERT STATE
OF EVENT 

CA.;:':, 

EVEl'1~ 

PRGCESSOR 

INVERT STATE 
OF EVENT 

C P£YuRN ) 

SET TO O~ 
STATE 

ON 

Figure 10-10 

?-ZT"uP':~ 

'f c' RETURN.) 

SET, RESET, SIGNAL PROCESSING 

~ 

S'ST TO 071: 
STATE 

-, 

'" 

';, 
" ;·1 
'I 

,. 
~, 

'J ., 
j 

f! 
II 
1 

-j 

~ 

.;illY 111 •• nt· 'lIIrifllillt}' ·iiiltiw,. ".illIi~~i!.,ildiiii* ,.,i ...... i.;.. .... ;oiii; ""i~.".;.,;;~':" • .;1 ,;·I~~:;.".,iiPij,;'liiii-t,lIii .. iii,,· .'I:i,.;' loii.i·~.I .. iii .. ,i~thl ••• ijllli' .ttw'riiltiiiliIWiii.MiiinlunifiWitiiij ftllii_lit ;mi... ..1 
_., ,~_<_,-,a...", ..... ,,",,,, ... ~,-,J~_ ,,. __ ~ .. Jo....Jk,"",,L.", ........ a.-.t...u..;.t!.-""': ......... .,"'"" ·._ ... L>" • .....,"".~.,. ... >._ .• ,.: . .\ •. _.<,.u-,.,".,, __ ..... ___ .. · .. · •. , .. d><-"'-I.ow __ , • ..u..t~~ ,.,.· ................ ".i __ ._~_M..!.&..._.~ ..... ""£ ... ""'.~"'.J.~.~_-.:l.:~~"" .. ~~"""~.~ ... _'""ll<....::..Ici,,... ,~ ......... 



,
I 

HAlT FOR 

CALL EVl:~Wl' 

ENQUEUE 
ROU'J.'JNE 

Vli.LUE OF 
EVEN'r 
EXPRESSION? 

rrHUJ~ 

FALSE TO Wli.lT EN'rRY 
}-----~- OF PROCESS 

SELECTOR 

Figure 10-11 

WAIT FOR ROUTINE 

10-24 

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 

'1 



" 

I., 
" I ii 

'f "', 

SCHEDULE (with the WHILE option) - causes cancel
lation of the newly created process if the event expression is false (an implicit "NOT" is 
applied to the event expression). 

SCHEDULE (with the UNTIL option) - causes cancellation of the newly created process if the event expression is true, with the stipulation that at least one cycle will be allowed to execute. 

Note: In addition, event expressions may be used in any context where a boolean or bit expression is allowed. However, in these contexts, HALlS does not monitor the event expressions. They' are evaluated only once at the time the containing statement is executed, and unlatched events always appear in the false state. 

The routines associ~ted with these HAL statements are called by the HAL compiled code and in turn call system event and event expression handling routines. There are four types of event expressions; two specify wait conditions (WAIT FOR, SCHEDULE ON), and two specify cancel conditions (SCHEDULE UNTIL, SCHEDULE WHILE). Since the UNTIL and WHILE phrases are mutually exclusive, the SCHEDULE statement can potentially specify two event expressions. Since event expressions can remain "activated" asynchronously with respect to execution of compiled code, an event expression must therefore be communicat,ed to the routine through an event expression structure, created by the compiler and passed by a pointer in the parameter list of the WAIT or SCHEDULE routine. See Figure 10-12. The WAIT or SCHEDULE routine then calls the enqueue routine described below. 

10.2.6.1 Event Expression Enqueue Routine. This routine is called by the WAIT FOR routine and by the scheduler to: 

1) Test if the event expression is immediately true by calling the Event Expression Evaluator. 

2) If it is not, copy the event expression information to an event block and enqueue the block on the event block queue, thereby activating the event expression condition. (Event blocks are diagrammed in Figure 10- .) If the expression is the wait type, the appropriate wait state is set in the PCB. 

This routine has the following parameters: 

1) TYPE of event expression (SC'HEDULE ON, UNTIL, or WHILE, or WAIT FOR) • 

2) PCB POINTER. 

10-25 
INTERMETRICS INCORPORATED· 701 CONCORD AVENUE' ,..CAM8HlnGE~MASS.ll.C.ULlCt:=C',":nn"' ..... ~--·---··~-~-~-"~cc • "_~ ___ ..<'~ __ ~._~_ •• "".""'-=",",~, .. _,.,-. _.>G_ •• ", •• ___ •• ,-.~,-"./~ •• ~"",,,--'-.-- ........ -=~-"'- -"'='-'-__ -' ......... ·N...-....""O"><_--"-'-·_' ---'. Wl!!1lI!L..,~~-~ 

I 
I 
J 

l 
.) 
~ 

j , 
~ 
i 
1 
I 

\ 
i 

; 
j 

i 
~ 
j 
• 

I 
1 
'I 
1 
:~ 

~ 
" 1 , 

" 1 , 
1 ., 



I 
)1 
r , 
\ 
l' 

r···· .. - ... _-_ ..... _-
r·,·· .. ·." .,'-

.. ---.~.,. =-.... -'-"~'~'-.. '-. ~'--".~~~,~. ~. ~= .. ~. -" •• ~.-.. ~, .• = .. -~"-.-,""" ....... - ... , ... ~"""",!'.!!"!'. ,!", - ..... ~~ ...... -•• ~-:.--, .... ·\,..,.-... --'1:-~.,..,.-.~.,.:.""',-.~-+~ ... ":, .... c .... ~,, .... ~~ ..... ~ ... ]' ... :~.~-~ ... '~,.,.~=-""' .... ' .... )-,-. 

. . .. , ..... ' . -.""._cc . j 
Figure 10-12 

EVENT EXPRESSION STRUCTURE, EVENT BLOCK, EVENT BLOCK QUEUE 

hVENT EXPRESSION: A AND NOT (D OR C) 

EVENT EXPRESSION 
STHUC'l'URE : 

STRUCTURE BXPRESSION S'l'RING 

C ~. _ .. --------~~,K-Xpi\-F-,S-s-I-oI-~·.-.., ___ ~[i]2 /3/.0R I NOT I AND'~ 
S'l'RHZG C 
'POIN'l'e EOS=END OF S1'RING 

POINTEH TO IN ENT 
EXPRESSIO:l S'l'HUCTUlill 
(USED IN Pi\IUVJE'J.'ERS 
LIS'f OF \';}\I'l' FOR 

AND ~C.!.!EDlILE ROU'rHlES, 
AND PASSED. TO EVENT 
EXPRESSrQN l~Vl"'LUl\'l.'OR) 

UP TO 5 

EVEN'!' 
VARIABLE 
POINTERS 

1 

2 

3 

4 unused 

5 unused 

EVENT VARIABLES 
(true or false 
booleans) 

'I'he exp:r.ession std,ng is an . encoded xeverse Polish form of the 
event expression suitable for stack evaluation. Events A, B, and C 
are represented by 1, 2, and 3 respectively, indicating the relative 
positions in the event expression structure. The operators AND, OR, 
NOT, nnd EOS (End of string) nrc coded in a way \'lhich distinguishes 
them from·event·variable representations. 

l:.VEN'r BLOCK: 
NEXT 

PCB 

TYPE 

--IS' 

~ Co 

~ 
1\ 

pointer to next event block or null 

pointer to PCB of associated process 

- type of event expression (SCHEDULE ON, UN'l'IL, 

or WHILE, or WAIT FOR) 

event expression structure as above 

EVENT BLOCK QUEUE: representing 3 "nctivated" event expressions 

ANCHOR 1 
,... 0 t- NULL or-

EVENT BLOCKS I AS' 
ABOVE 

10-26 
INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE. MASSACHUSETIS 02138 • (617) 661-1840 J 



4' '" 

i".l!i 

-"~-'~-r~" . ,." 

3) EVENT EXPRESSION STRUCTURE POINTER. 

If the e.xpression is immediately true, an event block is not queued, and the routine returns with an indicator that the expression was not activated. In this case, the WAIT FOR routine does not pass control to the process selector, but returns control to the executing process. 

--. ,'.;'~ ,...~·~·l-

The event expression structure must be copied to the event block because it is created by the compiled code in temporary storage, and does not remain beyond the e.xecution of the statement. See Figure 10-13 for a flowchart of this routine. 

10.2.6.2 Event Expression Evaluator Routine. This routine is called by 1) the enqueue routine described above, and 2) by the event processor (described next) when an event has changed state. It takes a pointer to an event expression structure as input and returns a boolean result which is the value of the represented event expression. Using the polish string form of the expression and a simple push-down stack, it actually carries out the logical operations on the event variables. Since the condition is satisfied when the expression value is false for the SCHEDULE WHILE type and true for the other types, the routine inverts (applies the NOT operation to) the result of a WHILE expression. Thus, the Evaluator always returns true if an event expression condition is satisfied. See Figure 10-14 for a flowchart of the Event Expression Evaluator. 

This routine has the following parameters: 

1) TYPE 

2) POINTER to event expression structure 

10.2.6.3 Event Processor. This routine is called by the SET, RESET, and SIGNAL Service Routines for normal events and by the Scheduler and the Terminate Subroutine for process events. It re-evaluates activated event expressions by calling the Event Expression Evaluator for each event expression on the event block queue. If the Evaluator returns with a true expression, the Event Processor performs the appropriate action for that condition (readying or cancelling a process), and the event block is removed from the queue and freed. If an event block is encountered with the "terminated" flag set, it is removed and freed. The Terminate Subroutine need only set this flag to de-activate an event expression. See Figure 10-15 for a flowchart of the event processor. 

10-27 
" INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETIS 02138 • (617) 661-1840 ~1Iiii6il:iiiiiiiU.~ .'lo:.... 

*X'o/W ~ ... n,;."l,'WJ>~."""-I"=·"------·~-------- . 

i 
I 
I 
l 
1 
t 

I 
1 
1 
1 

j 
1 
1 ., 

j 
1 

,J 

" 

.....d 



Figure 10-13 

BVEm' 

TRUF] 

REPRODUCIBILITY OF THE 
ORlurNAL PAGE IS POOR 

Fl~LSE 

J------_ .. u 

--.. --~--~. 
GE'l' Nm'l EVENT 
BT..IOCK AND COpy 
EVENT EXPRESSION 
STRUCTUHE, PCB, 
!\ND TYPJ,:; '1'0 NEW 
B K 

I"--<-.l~l 
ENQUEUE NEW 

WAr'l' POR 

SCHEDULE 
ON 

STATE IN PCB 

EVENT BLOC:K. 0 N I 
QUEUE 

- ~~'T~-

--±---, 
TYPE. 

? 

r'~~E'J~ WAIT ·1 

·-L_'~)o-

IN PCB: INCRE 
NENT EVEN'l' 
QUEUE COUNT 

SCHEDULE -

UN'rIL/ 
WHILE 

10-28 
INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 



( 
I 

t 
j 

NO 

Figure 10-14 

EVENT EXP~ESSION EVALUATOR 

r,;:;:;r-;-i~ "No';;;-"l 
Om;W\TION TO 
RESULT IN 'rap 
OF S'I'/ICK 

@'STur~ with tor)\ 
of stRck ilS te-) 
,---~ 

OR 

INEN'l' 1::.:rlm5SIO" 
I::\'I\ I.U,'\ 1\1 I{ 

/
_=I-__ .. 
S'1'JIH1,' In'rI,' 
NULI, S'J'l\CK & 
BEGJNNItlG 01:' 
Bi:l' m:ss JO:i 
fi'l'nlNG 

~--,--,-.------ .-----.-.~ 

I 
LCX?l, lI'l' NEX'l' 
J:'l'I:H ] N 
EXPHESSION 

I SnnNG 

----~r 

r-----~--....... 
YES 

~'USIl ST.l\CK 
fp"u.,CI:i EVEN'l' 

-·----t) .... iVllLULi ON ;ml'l 
p.'OP Of' s'rACK 

r--- -.-
YES APPI,Y "NOT" 

OPERil'l'ION '1'0 
--'---""~~I VALUE IN 'l·0P. 

OF STACK 

l 
"OR" 'I'llE 'I'OJ? 
'j~\'10 V lILUCS 
IN S'J'ACK 

"AND" TlJl~ TOP 
TNO VALUES 
111 STACK 

.~--j-J-

C0-~ 

10-29 

-.. ~-----
Ot' A::D/OR IN 

'l'OP O!? STl\CK 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETT~.0213~ '(§1}L§§1:J8~W .. 

, i 
j 



I _~ 

l!."Vl~N1' 1'1\~CEsso0 

-["'---1 GE'l' 1I1\~: I IOi< '1'0 
EVEN'I' DLOCK 

Figure 10-15 

EVENT PROCESSOR 

QU~=-.~ 
--------·-------~\6 '. 

DEQUEU~-I 
REMOvr:: AND] 
FREE: EVEN'l' 
BLOCK 

I 

SCHED. 

~ _____ I 

10-30 

r----} 

NO 

5E'!, PCD 

CANCELLED 
l"LAG 

_Y._--. 
I Cl\I,L EVENT \ 

F.:XPRESSION 
E,VALUNl'OR 

NO 

NO 

CALL 
TER~lINr\'l'S ) q,.. 
SUBROOTIlH .... 

~' ---r-f 
INTERMETRICS INCORPORATED· 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 

,,

'-1, 

J 



~r.,$ _ Nf!4$, Af?@'7F··'~~)4.4 F e 11.<· .;b~y4iL It:cae::::: ,.J. :,&<:4\1 ag,¥e;u:etI441" ; .Y,,,L{k . SJ.!i(l ':-' . ~~t~~~~,=~~,= "~':"=:'~~~~~':"~~'"=~~"'~'~::'E=C'X'~,'~~·C·.'Lr,'· -·~~t,",~O""'. ·C_~.·"·,··,, ~, ... '~~".~~~"~'~_~!. H.AR.I,.Sew ._I.~~ 

f4 ,. 
~ .. 

10.2.7 Timer Management 

The following real time statements make use of timer man.agement routines: 

WAIT - causes the aqtive process to wait for a specified time interval or until a specified time. 

SCHEDULE (IN or AT option) - causes the newly created process to wait before initial execution. 

SCHEDULE (REPEAT EVERY or AFTER option) - causes the newly created process to execute cyclicly with a specified period between either the beginning (EVERY) or the end (AFTER) of one cycle to the beginning of the next. 

SCHEDULE (UNTIL option) - causes the newly created 
process to be cancelled at a specified time. 

These timing services are provided by two routines which control the use of the interval timer. The timer enqueue routine is called by any routine requesting a time interval. A type code indicates what action is to be performed when the specified time arrives. The timer interrupt routine is called by the statement processor when the software interval timer drops to zero. These two routines operate on a timer queue, each element of which represents a separate timer request. The queue is ordered by time of expiration, so that the first element on the queue is the next to expire. The value in the timer is such that it will cause an interrupt at the time specified in the top queue element. 

10.2.7~1 Timer Enqueue. The timer enqueue routine takes the following actions: 

l} If the time value (time of expiration) was supplied ·in relative form (as determined by the type), it is converted to absolute form. 

2) If the time of expiration is already past, the routine returns with a "not enqueued" indication~ 

3) Otherwise, a new queue element is acquired, the input parameters are copied to it, and the element is placed on the queue by order of time of expiration. 

4) If the .new element was placed on top of the queue in 3), the value in the hardware timer is altered to reflect the new top element. 

5) The routine returns with the Henqueued" indication. 
10-31 

'. INTERMETRICS INCORPORATED' 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • .. (.6.llt,66Jmj,B4Q,.",..~ \\i;w=:t~,_:.fi~::"BIJ:Jr~~~~:liJ,-WJ':"~ iUHNZ _ -- .. .... .. b'rl~' ' • - .• ' •• -----_. ~- .H' -- ." -~-.. ~- - _. 



I 

A flowchart appears in Figure 10-16. 

This routine has the following parameters: 

1) PCB pointer 

2) TIME VALUE (relative or absolute) 

3) INTERVAL TIME 

10.2.7.2 Timer Interrupt Routine. This routine gets control 
from the statement processor when the timer causes a pseudo 
interrupt. It takes the top element (the one representing 
the expired interval) off the queue, carries out the specified 
action, frees the old top queue elements, and loads the timer 
with the appropriate value for the new top element~ The 
actions for the expired elements are to ready or cancel a 
process. A special test is made for an interval representing 
a SCHEDULE statement REPEAT EVERY option, since there is the 
possibility that the last cycle ran longer than the 
specified period between beginnings of cycles. If the process 
is not in an inter-cycle wait state, an error is indicated, 
and the process is not made ready. This causes the cyclic 
process to skip a cycle. 

The're is also a special element on the queue (called 
the clock element) which is used to keep the timer running 
in the absence of any timer requests. Both the clock element 
and any REPEAT EVERY elements are re-enqueued instead of 
freed, since they represent self-perpetuating intervals. 
The most appropriate value for the clock interval is the 
maxim~m value that can be placed in the timer. A flowchart 
appears in.Figure 10-17. 

10-32 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 

.~ 

t 

1 
1 .. 
! 
~ 
1 
.1 

1 

, 

1 
j 
1 

1 
~ 
] 
~ 
I 
1 
; 

l , , 
1 

/1 

" ! 
~" 

~ 
1 



'(' 

I, 

- ] . 
. " 

Figure 10-16 

RELNl' I V g 

'l'IHE PASSED? YES 
i. C. I IS ADS. 'l'n1E)-_____ _ "NOT "\ 

<CURREN'r '1'I1·11.:; 
? 

NO 

----'.-._. __ ._-_._---

__ J ___ _ 
GEl' NEH '1'nlEH. 
QmWE m.lr:;,m~l'J' t: 
SE'I' PCB POJ.I:rl'l~R, 
'j'YPE, [.; l'.BSOJ,ur1'r:: 
'l'I!,m 01<' BXPIIU\
'J'ION 
__ 3_-__ _ 

PLll.Cg ON QUEUE BY 
OHDEl~ OF ABSOLU'rI' 
TIHE OJ? 
E>:PIMTION 

REPLACE TINER l 
\'1T'J~'l1 Nm'l VALUE 
(~J' HIE 'Qlr' EX]> IT{f"\ 

TION HINUS 
C:URREN'1' 'l'nm) 

ENQUEUED" J --...;:...,---_./ 

10-33 



called on "Pseudo
clock interrupt" 

NO 

-] EImOR: CYCLE 
IS LO~Wl;R 

TJl1\N PERIOD _ 

YES 

CALL 
ReADY 
ROUTINE 

~c 
CO:·II'U'lE N];\'l 
TII·IE OF I,;XPlRA-

'.I'Iu:l FOn. 
u I:VERY" l;!,E-

.--__ -.J. __ -, 
ru:-'J:t:QUEUE 
HLL.'·: r;N '1' '1'0 
NEI'1 QueUE 

l'OSl'l'IO!1 

'l'Jr·U:H IN'l'l:ItHlIl"l' 

Figure 10-17 

-(._---

--'-:J 'j'IIK8 '1'01' 

E r.EI·11::N1' 01'1.-' 

QUEUE 

--r,---

YES 

sellr:D. UN'rn, 

(CALL HEADY 
ROU'I'INC; 

COi·\PUTE !l1::1'1 
'rnm OF EXl'IRi,\ 
TION FOR 
CLOCK t;LEHENT 

-L_ 
ImEE Ol.b QUI;U!J 

? 
I::L1:'J·I1:N'l' FOR 

( _______ "HE-USE BY 

ENQUJ:U~, ROUTINJ· 

US:':::~ 'r:c~:-; 1L1 
lUll c.'o:::> ~0:':U':: 
I:r.t::·\:::.;'j', CO!'I
l!un: 1~1::\'1 

THIER V"-I.UE 

---t .... 

---)0. 

NO 

__ L_, 
CAT,L \ 

TERHINlI.TE 
SUBROU'l'INB 

1 

:;0 (HOPJ; TIl:,N O:~E }:Ll:'NENT \-lITH Sl>.HE TIHE)y 

)--'-------------.~
-. 

10-34 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 



I' , , 

! , 

'"\,. 
.. 10.3 Statement Processor 

Summary 

The statement processor is a multi-purpose routine that gets control at the execution of every HAL/S-360 statement unless the NOTRACE option was specified at compile time. It functions as a clock to simulate flight computer time, as a recorder of diagnostic information, and as an interface to an external monitor controlling the simulation on a statement level. Because it is executed so frequently and because all of its functions may not be needed all of the time, a variable statement processor has been implemented which can be tailored dynamically, providing only those functions which are needed and thereby reducing CPU time. This also makes possible faster stand-alone operation, since the interface function is unneeded and has been eliminated from the default statement processor. This section outlines the technical method used, describes the optional features, and details the new interfaces controlling the variable statement processor. 

Technical Method 

The following method of dynamically swapping statement processors results in zero time and near-zero space overhead if it is not used, and a minimum of overhead if it is. All possible versions (256, given all combinations of 8 binary options) of the statement processor exist as separate load modules in a special run-time library. Selected versions are loaded into main memory only if and when requested by a service routine call. Actual overlaying of code is performed only at the start of the next call to the statement processor, allowing the swap request to be made from a statement processor exit routine. If n versions are selected, only n+l OS LOADs are performed, no matter how many times the n versions are swapped. Each version is assembled with the minimum instructions needed to perform the selected options. 

A statement processor re-configuration service routine. may be called through the HALSIM simulation vector table. This routine is callable at any time after the HAL/S-360 load module is loaded. It performs the following actions: 

1) (First call only) LOAD the Version Vector Table (VVT) and save its address in HALSYS. 

2) (First call for given version only) LOAD the specified version and save its address in the VVT. 

3) Save the address of the specified version in HALSYS. 

10-35 
1 

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS 02138· (617) 66t~l840c, __ .~=.1 ~~ __ "'"'._, -=~ ___ ,_,''' __ ~''_'_''_'''''_ ,,,,.:,,_,,,_,,,,,,,,~_.::c,, _" ,,,,-,,,,,,",-,,,,,-,,,,,-,.,, ,,:.: .. ,,'.'L,_ .,,,--,~-~,-,,-,-' ~,-------'" "" -



t. 

4) Modify the first instruction of the statement processor to cause a branch to the swapper 
routine. 

5) Return to the caller. 

The next time the statement processor is called, the swapper routine gets control. Only four instructions long, it performs the following actions: 

1) Locates the version already in main memory using the address saved in HALSYS by 3) above. 

2) Overlays the existing statement processor using one MVC instruction. This also corrects the modification made in 4) above. 

3) Branches to the new statement processor. 

The details of the interfcrces for the statement processor and its reconfi'iguration service routine are given in the HAL/S-SDL Interface Control Document. 

10-36 
INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 

I, 

, ... ~ 



r-
\ -

I 

11.0 THE MACRO LIBRARIES 

The HALlS compilers are written in XPL and execute on compatible IBM 360 computers. HAL/S-360 generates 360 machine code and HAL/S-FC generates AP-IOI machine code. The object code produced by the compiler contains calls to library routines. The library routines have been written in the assembly language of the target computer. In order to facilitiate the writing of assembly language routines which interface with object code of a HALlS compiler, a collection of macros has been written for the 360 and a second collection for the AP-IOI. The AP-I01 macros are described in Section 5.2.7 of the HAL/S-FC Compiler System Specification. The 360 macros are described in Sections 3.7 and 5.1.4 of the HAL/S-360 Compiler System Specification. 

11-1 

.. ~ 



12.0 ACCESS ROUTINES FOR THE SOF TABLES 

SDFPKG is an IBM-3I;"O aSsembly language program comprised 
of five CSECTS: SDFPKG, LOCATE, PAGMOD, NDX2PTR, and SELECT. 
Its function is to provide a demand paging form of access to 
data contained within SDfs. SDFPKG can be separately link 
edited and employed as a loadable and deletable service 
module, or it may be linked directly with other software. 
The latter is the case with the HAL/s-360 stand-alone diagnostic 
system. It is important to realize that SDFPKG is not part of 
the HALls compiler but rather a collection of routines for acces
sing tables built by phase 3 of the compiler. The Use of these tables is up to the individual User. 

The HAL/s-360 Compiler System Specification (Section 5.9) 
describes the Use of the Access routines. This section augments 
the description in the Compiler System SpeCification, prOviding details inappropriate in that forum. 

12-1 

INTERMETRICS INCORPORATED. 701 CO~D~,.~,~~I\II.U;."'''''''''''A'''''''''''''''''-~'hb'''~~"" __ c''''''-'''''''''''''~_~'~'_''''''' __ --,-, , ::-"""'-=."''''.'''~~. 

" • . , 

•. _, .-
.... :.0 --- ~ 

... .....p. ......... "''''''":.:!'!t1 



! 
f 
r 
t 
f 

-.-

12.1 Paging Area 

Paging is done directly between core memory and the PDS 
(Partitioned Data Set) containing the Simulation Data Files 
generated by Phase 3. This is made possible by the list of 
TTRs contained within the last physical record of each SDF. 
ATTR is given for each record of the file. Reads can thus 
be accomplished via a FIND, POINT, READ sequence. Figure 
12-1 shows the physical layout of an SDF with the TTR record 
(or page) at the end of the file. The TTR record contains 
pointers to all other file records and is itself in turn 
pointed to by a TTR in the User Data area of the PDS directory 
entry. 

SDF records (or pages) are always 1680 bytes long. 
This is true even of the TTR page which may contain as little 
as 4 bytes of data. SDFPKG reads SDF pages from a PDS into 
a "paging area" which may consist of from 1 to 250 l680-byte 
areas. The upper limit can be increased by altering an 
assembly parameter in SDFPKG. This would, however, increase 
the size of SDFPKG by 16 bytes per added entry since the Paging 
Area Directory (PAD) would have to increase correspondingly. 
At the other extreme, SDFPKG will usually function properly 
with a 1 page paging area (if no Reserves are requested), but 
·2 pages is a recommended minimum. 

The PDS containing SDFs to be read is normally 
identified by a llALSDF DD card. At the time of the initial
ization call, however, an alternate DDNAME can be specified. 
The PDS may have catenation levels as long as the user intends 
only to read data. If it is desired to "modify" an SnF (by 
requesting SDFPKG to operate in UPDAT mode) none of the pertinent 
SDFs may reside within a catenated level. This is an OS restric
tion. 

At the time of the SDFPKG initialization (INITIALIZE) 
call the user program must specify the size of the "nucleus" 
paging area. This initially allocated area will then be 
available to, and exclusively controlled by SDFPKG until the 
time of the termin.:t,tion call (TERMINATE). SDFPKG makes provisions 
for dynmnic expansion .;-mcl contraction of the paging eJrea size 
(within the 250 page limit) via one or more AUGMENT (increase 
paging nrea) calls and RESCIND (remove all augments) calls. 
The RESCIND call always reduces the paging area size to the 
initial (nucleus) area. 

12-2 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE' CAMBRIDGE. MASSACHUSETTS 02138 • (617) 661-1840 

•• ••• . __ '~"~V"~ '-'F_."""" •. ~, ••. _~.,.-o_.".~.~.:." 

~--~. '~~~~"'~~'--"~';"" ~.~-.~-.- . 

t 

: I 
1 
:1 

1 

j 
1 

1 
. ! 
i ~l 

: j 
, 1 
. ! 

; 

! 
\ ~ 
, i 
i i 

~ r 
,-~ 



o 
o 
o 
c;~ 

..:'l ..... 

:..tj 

WI. . ~= ... §J' r L4, jj I. .or 

USER DATA 

3 1 
~t--

• TfR 0 

.~? TTR 0 

~ TTR 0 
---

~ G 
o· 

. 
r---- -0 I'fR 0 

1680 Bytes 

-

1 

1 
j 

1 

I 

. j 
~ ., 



r 

( 
t 

L#£Il1(. 

SOFPKG acquires the core memory necessary for the nucleus paging area either by executing a GETMAIN or by receiving it from the user program. The core memory necessary for AUGMENTs, however, must always be provided by the user. If SDFPKG is instructed to GETMAIN the nucleus paging area, it will free it via FREEMAIN at the TERMINATE call. This is true of any GETMAINs performed by SOFPKG. 

12.2 Virtual Memory Considerations 

SOFs are built by Phase 3 in a virtual memory environment and they are manipulated by SOFPKG in the same way. This implies that all SDF data items have "pointer" addresses (i.e. address in virtual memory space). In addition, if the item resides in core, it has a core memory address. As described in the HAL/SOL ICO, a pointer consists of a fullword whose high-order 16 bits contain an SOF page (record) number, and whose low order 16 bits.contain an offset relative to that page (i.e. a displacement of from zero to 1679 bytes). SOF pages are numbered from zero so the pointer consisting of a fullword of zeros identifies the first byte of data in an SDF. 

The fundamental form of data access provided by SOFPKG accepts a pointer as input and returns the core address of the corresponding data as output. The core address, of course, lies somewhere within the paging area. If the necessary SDF page was already in the paging area this is a fast operation. If not, paging is performed as necessary and is transparent to the user program. This process of "location" can be requested explicitly, by the user soft,,,are through a LOCATE call, but normally the user program will employ the higher-level SDFPKG mode calls which will then perform the necessary "locates" implici t'ly and totally internal to SOFPKG. 

Whether locates are explicit or inlplicit, the important point is that almost all SDFPKG mode calls result in returning to the user the core location (and corresponding virtual memory pointer for reference purposes) of some data item. This data item may be an SDP Directory Root Cell, Block Oata Cell, Symbol Data Cell, Stat.cment Da ta Cell, Block Node, Symbol Node, Stfltcment Node, or merely somc arbitrary SOF location if an explicit LOCA'J.'E call was made. The page containing the item of interest is in core memory at that point and the user program may extract data (or insert data) using the core address provided. 

12-4 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE. MASSACHUSETTS 02138 • (617) 661-1840 



) 
r 

It is normally the case, and especially true when a small paging area is used, that data "located" in this fashion may be overwritten as a result of a subsequent SDFPKG. If the user program wishes to guarantee the continued existence of the located data at the advertised core address, the RESV (Reserve) disposition parameter should be specified at the time of the initial mode call. SDFPKG then increments a reserve count maintained in the Paging Area Directory (PAD) for the page containing the located data and ensures that that page will not be overwritten until the reserve count has been decremented to zero. At some later time the user program can "free" the data by making any mode call that re-locates the data item and specifying RELS (Release). Since it is actually pages and not specific locations that are reserved it is only necessary to locate any part of the page in order to free it. 

Users should be careful to limit the use of RESERVES if small paging areas are employed since each reserve makes one more paging area slot unavailable for further reads. Also, all pages that are reserved should be ultimately released. A RESCIND call will result in an abort (Abend 4011) if reserved pages are detected in the augmented portion of the paging area. 

The third disposition parameter MODF (Modify) can only be used if UPDAT mode was specified at the time of the INITIALIZE call. MOOF informs SOFPKG that the located item will be altered by the user. As a result, SDPPKG will rewrite the affected Rage. back to the PDB (HALSOF or alternate DDNAME) prior to overlaying it with newly read pages. Again, SDPs to be altered cannot, lie in a catenation level. 

If the user program cannot determine until after the SDFPKG call that RESV, RELS, or MODF is desirable, then one or more of these disposition parameters can be specified by a DISP (mode 6) call which applies such parameters retroactively to the previously located item. 

12.3 SDF Selection 

SOFPKG allows simultaneous access to an unlimited number of SOPs. This means that the paging area can contain assorted pages from a number of different SDFs. In order for SOFPKG to know which SOP is to be referenced in support of the users call, it is necessary for the user to specify or "select" the proper SOF. This can be done in two different ways _ rl'he first method is to make an explicit SELECT call to SDFPKG with the 8 EBCOIC 6haracter SOP name (##CCCCCC) as input. Unless overriden all further SDFPKG data access requests will be directed to 

12-5 

INTERMETRICS INCORPORATED· 70+ CONCORD AVENUE • CAMBRIDGE, MASSACHUSETiS02138- (617) 661-1R40 

1 
, .1 

:! 
1 
l 



this SDP. The second method is called "Auto··Selection II • 

By specj.fying the AUTO SELECT disposition parameter and 
including the SDF name-as an auxiliary input, SDFPKG calls 
will reference the specified SDF. Auto-selection is slightly 
slower than explicit selection but is useful if SDFs are to 
be randomly referenced. 

When art SDF is selected for the first time following 
the INITIALIZE call, SDFPKG performs a BLDL for that PDS 
member, extracts the TTR list from the last SOF page, extracts 
certain data from the Directory Root Cell and incorporates 
all of this information into a File Control Block (FCB) for 
that SDF. The FCB is allocated from a block of memory called 
the FCB area which is discussed in the next section. The 
new FCB is then linked into a binary tree structure ordered 
by SDF name so that later selections can rapidly find the 
FCB needed to access data in the file. With one exception, 
once an FCB is created, it is maintained until a TERMINATE ~ 
call resets all SDFPKG variables and data areas. : This means 
that the FCB area may eventually become filled with FCBs 
and require extension. 

If the user program knows beforehand that SDFs will 
be accessed in a serial fashion, or if core space is at a 
premium, then SDFPKG can be instructed at the time of the 
INITIALIZE call to operate in the ONEFCB mode, i.e. only one 
FB is kept so that a new SELECT will cause the new FCB to 
be built over the old one. 

12.4 FCB Area 

The FCB Area is similar to the Paging Area in th~t an 
initial amount must be allocated at the time of the INITIALIZE 
call. The user can specify what the allocation is to be 
or accept the default of 1024 bytes. Additionally, the user 
has to decide whether to provide SDFPKG with an FCB Area or to 
let Sm"PKG obtain one via a GETMAIN. If the user supplies an 
FCB Area, then he must be prepared to supply additional 
areas (via the AUGMENT call) whenever the current FCB Area is 
exhausted. This condition is signalled by a return code of 
12 meaning that a select failed due to insufficient space to 
construct an Fcn. If the user does not wish this flexibility, 
then SDFPKG can be allmved to GETMAIN the initial FCB Area, 
or the MISC parameter can be set to 1 on the INITIALIZE call, which 
will allow automatic GETMAINs regardless of who allocated the 
initial area. In this mode of. operation, subsequent GETMAINS 
for 512 bytes eClch will be performed as needed and this activity 
will be totally transparent to the URer program. Again, all •• 
such GETHAIN' eel areas are freed when SDFPKG is called to 'l\ERr-lI~ATE. 
ONEF'C13 rnode is availabl e regardless of whether the user or 
SDFPKG is responsible for F2B Area allocation. It should also 
be noted thnt <1lthough the AUGMENT c<111 can extend either the 

. 12-6 
'" , I[-JTHlt'/lETRICS INCORPORATED' 70; CONCOrm AVENUE' CAMf3RIDGE, MASSACHUSETTS 02138 • (617) 661-1840 
~~,. :b~~,;;"'!:<~:,,.:· ::':0: ... -:-,,_ ._.~ :".~:~~.it..i>L.~~ ..... i6;,jli;..:..-tiO.~:e;_::. .. ~;';:;';:ii';;"~"~;:,,:-=,~:"::'~~":=~~::;;f;ts~·:'~_=~,,:";;,~:;;:;;,,;<~---~:'::~""~-'~~'~"''::~~"L:'7.':~,_::-:" •. ~""-. -_~,~_~~.~~.'--.-,~. _~L~_"'_"""'""'MIIi1JlMil!!'!lllI!iilfllil _____ ..d. 



;,: ~' 

St4.!iJ +"''"1'' p •• • 

Paging nrea or FCB Area (or both simultaneously), the RESCIND 
call only applies to the Paging Area, i.e. the FCB Area can 
only grow. 

Each FCB requires 60 byt8s plus 8 bytes for each page 

... IT-· 
~~,~ 

of the associated SDF. FCBs are thus highly variable in length. 

12.5 Paging S~!~tegy 

The Paging Area Directory (PAD) contains an entry for each 
core slot (up to 250) and each entry contains, among other data, 
a reserve count and a usage count for the page. As mentioned, 
the reserve count is used to lock the page in its core slot as 
long as the count is non-zero. The usage count, however, keeps 
track of how recently that page had been accessed relative to the 
other pages in core. A global count of "locates 9 is maintained 
within SDFPKG and is inserted into the usage couht field of the 
PAD entry when the page is accessed. The effect is one of 
a pseudo-clock. When an SDF page must be read into a core slot 
from the PDS, the core slot that is both unreserved and least 
recently accessed is overIayed by the new data. If, however, 
the modification flag for that PAD entry indicates that the 
old page is in a modified state (UPDAT mode only) then the page 
is written out prior to being overlain. At the TERMINATE or 
RESCIND call all modified pages are written out to the PDS. 

,) 

I 12-7 
i 
~ 
, IN1EflM[Tnl(~~; INCOHPOiV\/f-[) ·101 cOI-Jconn AVfl-JUI . CAMI3nIDC[, MASSACllUSlTrS 02138· (617) 661-1840 

F1WW¥fM 

I 
.~ 

1 
i 

~ 
J 
j 

j 

1 
i 
1

1 
•. ' 

.. ~ '. 

J .... 



'~-"'~~~'~~' ~",~c:,~~~~~,-,p"~-'W'~"~"""'~'~="~~~";:' Mti'~V ' .. ""., 'T~ '~=-~~I~' "~. 

~ ~ ~ .~"'l-':'- > 

.- _, ;..l::-'_ ":..,........··_:-'::7::-::_-:::-~::..::....-::-~:,-==-;.~:::::::_-"- ;,::::::::::-.:.:.:.-::..::..~:..:::~---~..:."'"::::....~~.:.:.::::..~.:,-~-:..- ... -:... ,. ----. ,- ----.--

13.0 XPL -- INTERMETRICS VERSION 

The standard XPL language provides insufficient 
support for a compiler as sophisticated as the HALlS 
compilers. Intermetrics has added facilities in three 
ways: 

1) Direct extensions to the language. 

2) Additional implicitly declared procedures 
and variables. 

3) An extensive set of MONITOR calls. 

These added facilities are described in Sections 13.1, 13.2, 
and 13.3. In addition to the extensions mentioned above, 
facilities have been developed for dealing with large XPL 
programs: 

4) Documentation aids and user options. 

5) Perform updating functions on XPL source 
programs. 

6) Make modifications in XPL load modules. 

13.1 Direct Extension of the XPL Language 

Declaration Statements 

In addition to the DECLARE statement, the following 
declaration statements are supported: 

a) ARRAY <var-name> «dimension» <data type>; 

This statement behaves exactly like the DECLARE 
statement with one exception; the data is not 
allocated in the standard XPL data area, thus 
preventing the waste of a significant amount of 
the XPL base register addressing space. Instead, 
a data-area relative pointer is generated which is 
used to address the data. The purpose of ARRAY 
data is simply to extend the severely restricted 
addressing range for DECLARE data at the expense 
of a code penalty for each reference. Large but 
infrequently used tables are prime candigates for 
ARRAy-type declarations. 

13-1 
__ "..",~,~,INIEi8MIZ:r8ICSJNCORP08ATED. ,70t CONCOQn,AV!;N11I':;.CAURQinai: ,UAQQAI'UI I,C-t::rrc.-, ,no", "'t>_ It:>,~.,\ ,"'A,,, " ... ,_ .• -



, 
\ 
\ 

_ 4».4 __ ... ,OW_ '" • F. ". "E. ~"h _'* .it i I . AI ;, , ; 0.&3;4<$ a 'J<iE#ljl~' 

_ _'" "" ,"-'", , _. -_~~_, ... ~ .. ~.=-.. J , 

, 

b) 

c) 

BASED <var-name> <data type>; 

This statement reserves a word to contain a pointer to a block of data which exhibit~ the properties of the specified data type. No dimension information is required, and will be ignored if specified. It is the user's responsibility to guarantee that the pointer word is properly set prior to any references to the variable. Unless over-ridden using a special case of the ADDR built-in function, pointer de-referencing will always occur on any reference to the variable. The pointer may be set using the assigment: 

COREWORD{ADDR«var name») :::: address; 

The dynamic address may either be the address of existing data (to allow equivalencing) or may be obtained from a MONITOR call (which performs an as GETMAIN call) for true dynamic allocation. 

COMMON <var name> [«dimension»] <data type>; 

This statement also behaves exactly like the DECLARE statement except that the data is allocat~d in an area which will remain in core between program phases. This allows XPL programs to be separated into 
individual phases with a common data base for tables, etc. 

d) COMMON ARRAY <var name> «dimension» <dat.a type>; 

This is the COMMON equivalent for ARRAY data, the purpose being to allow allocation of large arrays wi thout using up the base registel: resources. 

e) COMMON BASED <var name> <data type>, 

This statement behaves exactly like the BASED statement except that the pointer is allocated in the common data area for shared use by subsequent phases. 

The following restrictions apply to the above mentioned data types: 

1) ARRAY, COMMON, and COMMON ARRAY statements may 
not be used to allocate data of type CHARACTER, and 

2) BASED and COMMON data of any kind may not be 
initialize~ via the INITIAL feature. 

13-2 
INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 

~ 

I 
fJ 'I, i ' 

i 
'! 
~ 
~ 

L 
I'·, ',' , , 
! 

:1 
it -, 

.1 

\J 

1 

] 

1 
1 

';' ~ 
~ 



'~L 

It is also now possible to initialize variable with negative numbers using the form: 

<constant> 

thus eliminating the necessity of using twos-complement hexidecimal constants for initializing with negative'quantities. 

The LITERALI.Y attribute is also somewhat changed from the ori.ginal XPL. Originally, any variable declared LITBRALLY went into a global table and remained in effect for the balance of the compilation, regardless of the nesting depth at the, time of the declaration. Now, data declared LITERALLY is kept in the symbol table, and is removed from the table when the enclosing procedure is ended. As a side-effect, variables declared LITERALLY can now have cross-reference information collected on them. 

13.2 Additional Implicitly Declared Procedures and Variables 

A number of built-:-in functions have been added to the compi.ler to assist in program development or to allow for faster execution of frequently used functions. 

1) The following functions have changed in meaning from the original description: 

2) 

COREWORD(X) 

According to "A COMPILER GENERATOR", X is a word index, or word-aligned address. However, in the Intermetrics version, X must 'be a byte address, and the user must himself guarantee that the lower-most two bits are O's (fullword aligned). 

ADDR ( <var > ) 

This function is identical to the described specification except in the case where <var> is declared as BASED. In this case, ADDR(BASED VAR) yields the address of the pointer word for BASED_VAR. If the address of the beginning of the data pointed to by BASED VAR is desired j • use the form ADDR(BASED_VAR(O». -

The following built-in functions have been added to the XPL system: . 

LINE COUNT 

This function returns the number of lines which have been printed on the SYSPRINT file since the last page eject • 

.13-3 
INTERMETRICS INCORPORATED ·701 G"Q,tiQ"QRQ".A\{ENUK~!:1!AMQI:;}I[;\QI:.""H'A<~'''''k''''';:''''--';'=_,,,,"~,.,cA .. ~~~~~- .. ~ .. -'.~. -' . ..:,~~.-.~~ -""'-;"'''_. ::-----... ~.-.... :....-.-,~.-~~-".-.-



SET_I.INELIM «nwnber» 

This procedure establishes the number of lines which 
will be printed on the SYSPRINT file before an automatic 
page eject and header line will be printed. 

LINK 

This procedure performs the functions necessary to 
exit the current program phase and pass control to the 
next phase on the PROGRAM DD sequence, preserving COMMON 
data and any other 'dynamically allocated space which has 
not been deallocated. 

PARM :F'IELO 

This function returns a character string which 
contains the entire parameter specification coded on 
the PARM= option on the EXEC card. If no PARM is 
specified~ a null string will be returned. 

STRING (X) 

,This function transforms the variable X (which should 
be FIXED for proper usage) into a CHA~~CTER descriptor. 
X should have the form: 

Length-l Data Address 

8 bits 24 bits 

The data pointed to by the data addr,ess should be a series 
of EBCDIC bytes to be treated as a CHARACTER string. 

STRING_GT (Sl, S2) 

This function returns a TRUE value if the contents of 
string Sl is greater than the contents of string S2, based 
on the bollating sequence of the characters, irrespective 
of the lengths of Sl and S2. Otherwise, the value is 
FALSE. Thi.s is functiorlally equivalent to padding the 
shorter of Sl or S2 with blanks and then comparing the 
strings. 

ABS(X) 

This fupction returns the absolute, value of X (Note: 
"80000000", the maximum negative number has no representable 
absolute value, and returns "7FFFFFE'F", the maximwn positive 
number simply to guarantee that the result of ABS is always 
positive) .. 

13-4 

il 

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138' (617) 661-1840 

I 
j 

, , 

I 
LI 
;~ 
,! 
'f 
'~ 
iii 

" l~ 
lj 1 ,~ 
~ 

r~ 
3, 

'" 
',"i 
" 

c 
" 

.'3 

.~ 

1 
f: 

, 

i 
1 



r' , 

13.3 MONITOR Calls 

CALL MONITOR(O,n) ; 

F=MONITOR{l,n,name); 

F=MONITOR(2,n,name); 

CALL MONITOR(3,n); 

CALL MONITOR{4,n,b); 

CALL MONITOR(5,ADDR(DW» i 

Closed output file n and performs 
a FREEPOOL on the DCB. 

Writes any data remaining in the 
buffer for PDS output file n. 
Issues STOW macro using member 
name indicated by 'name' (must be 
8 characters padded with blanks). 
Then close and FREEPOOL's DCB. 
Returns 0 if member is new. 
Returns 1 if member was replaced. 

Performs FIND macro in PDS input 
file n using member name specified 
by 'name' (must be 8 characters). 
If n=4 or n=7, first FIND attempt 
uses DDN&~E INCLUDE and then tries 
DDNAME OUTPUT6. Returns 0 if member 
found. Returns 1 if member not 
found. 

Closes input file n and performs 
FREEPOOL on DCB. 

Changes LRECL and BLKSIZE of 
FILE(n) to "b" instead of default 
of 7200. Must preceed first use of 
FILE(n) . 

In forms monitor of location of 
double word aligned work area (DW) 
to be used as communication area 
for later use by monitor calls 9 and 
10. Monitor calls 9 and 10 will 
abend if MONITOR(5) is not performed 
first. 

F=MONITOR (6,ADDR (based_var) ,n) i 

Performs conditional GETMAIN of n 
bytes of storage (SOBPOOL=22) and 
places address of storage into based var pointer. Storage is set to zero~ -
Return code is 0 if storage was 
obtained and 1 if not enough storage 
was available. 

13-5 
I NTERMETRICS INCORPORATED' 701 CONCORD AVEN{ .. U:' _GAMBHlnQE",MASg..o;J';'J~L[QC;r,;ncLnn;;,,,,,,,,,-c-"'A~J_.~,"'C~'"0'~,;,~:",L~o' 

'~"'~' 
IiIIiII:IiIiiI 



F=MONITOR(7,ADDR(based_var),n); 

CALL MONITOR (8) ; 

F=MONITOR (9, op) ; 

F=MONITOR(lO,string) ; 

CALL MONITOR (11) i 

Performs FREEMAIN of n bytes of 
storage at address obtained from 
based var pointer. The based var 
pointer is not modified. 

Not in use. If called, produces 
ABEND 3000. 

Performs floating point evaluation 
as specified by value of 'op'. 
Operands are obtained from work 
area whose address was passed via 
a MONITOR(5) call. The first 
operand is taken from the first 
double word of the work area and 
the second operand from the second 
double word. The result is placed 
in the first double word of the work 
area. A SPIE exit is used to detect 
underflow and overflow conditions. 
Return code is 0 if the operation 
succeeds, 1 if the operation fails 
(under or overflow). 

The values of op are: 

OP 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

Function 

add 
subtract 
multiply 
divide 
exponential (argl**arg2) 
SIN (argl) 
COS (argl) 
TAN (argl) 
EXP (argl) 
LOG (argl) 
SQRT (argl) 

Performs character to floating point 
conversion upon characters in 'string'. 
Return code is 0 if result is valid, 
1 if conversion was not possible. 
The result is placed in the first 
double word of the work area 
provided by the MONITOR(5) call. 

Not used - a no~op. 

13-6 

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE. MASSACHUSETTS 02138 • (617) 661-1840 ' 

" ...... _"'.. .._. :H"_;'~,~", .. d'~. __ " 'A.·~'~.~ -4--"_=~ ....... ;;:;;;:::'i;;;:"·W;;;-r-"-";:";;;;'-:;;::· .. -.. :C;_ .. _~ ___ :.:;_. ~."~"':';-' . m''''',!:l''ilS -.tiiOliJIr . _ .. T -- . -., .. ~ 



string=MONITOR(12,p); 

point=MONITOR(13,name); 

F=MONITOR(14,n,a); 

, J 

I=MONITOR (15) ; 

CALL MONITOR(16,n)i 

Converts floating point number 
in first double word of work area 
to standard HAL character form. 
Value of 'p' indicates whether 
operand is single precision (p=O) 
or double precision (p=8). 

Performs DELETE of current option 
processor and then LOADs an option 
processor specified by 'name'. 
The option processor loaded is called 
and passed a pointer to the PARM 
field in effect at the time of compiler 
invocation. The option processor 
passes the PARM field and establishes 
an options table (see Chapter 9) whose 
address is passed back as a return 
value. If 'name' is a null string, 
the pointer to the existing options 
table is returned. 

Interface to routines which create 
Simulation Data Files. Value of 'n' 
selects a function; value of 'a' 
supplies supplementary data: 

n 

o 
1 
2 

Function 

Open 
Write 
Stow & Close 

a 

option flags 
area address 
member name 

Returns Revision Level and Catenation 
Number from last MONITOR(2) call. 
Caten2tion number is obtained from 
PDS directory data and Revision 
Level from user data field as 
specified in the HAL/SDL ICD. 
The values are returned in the left 
and right halfwords of the result. 

Sets flags in byte to be returned 
as high order byte of return code at 
end of compilation. Flags are passed 
as right most byte of fullword 'n'. 
If high order bit of 'n' is zero, 
flags are OR'ed into existing flags. 
If high order bit of 'n' is one, 
flags replace existing flags. 

13-7 

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 021 



r'''''-
1 "-- , 

CALL MONITOR(17,name)i 

T=MONITOR(18}i 

Causes 'name' to be copied to 
third parm field (if any) passed 
to MONITOR by the program that 
invoked the compiler. See 
HAL/SDL ICD. 

Returns elapsed CPU time since 
beginning of run in units of .01 
seconds. 

F=MONITOR(19,addr list,size_list); 

Performs a list form conditional 
GETMAIN. Returns 0 if GETMAIN 
succeeds, 1 if GETMAIN fails. 
Storage obtained is not cleared. 
Subpool 22 is used. 

CALL MONITOR(20,addr_list,size_list) i 

I=MONITOR (21) i 

F=MONITOR(22,n,a) ; 

string=MON1TOR(23) ; 

Performs a list form FREEMAIN using 
same type operands as MONITOR (19) . 

Performs a variable conditional 
GETMAIN which acquires the largest 
remaining contiguous area of main 
storage. The memory is immediately 
FREEMAINed and the amount obtained 
is returned as the value of the 
call. . 

Cause LOADing, calling and DELETEing 
of Simulation Data File Access 
Package (SDFPKG). Used only by 
HALSTAT. 

Returns the 10 character string ob
tained from the ID field of the File 
Control Block of the first phase of 
the compiler. The 1D field is 
maintained by the XPLZAP program 
and contains the identifying string 
printed on the header of each page 
of the HAL listing. 

13-8 
INTERMETRICS INCORPORATED' 701 CONCORD AVENUE· CAMBRIDGE. MASSACHUSETTS 02138 • (617) 661-1840 

,. 

:€ 

I 
.1 

l 
j 



I' 
r. 

13.4 Documentation Aids and User Options' 

The XPL compiler, unless specifica~ly requested otherwise, will give a complete source listing of the XPL program plus a symbol table listing including variable cross-reference information based on statement ntL.Wers (negative numbers indicating statements where assignments are performed). The 'compiler has the additional capability to provide, upon specific request, a summary at the end of each procedure, indicating which global variables have been referenced and/or assigned, and which global procedures have been called. In addition, the compiler has another option which expands the symbol cross-reference data to include the list of procedure names which either referenced a global data item or called a global procedure, thus providing a two-way cross-reference set. 

Control toggles can now be set in four ways inside of XPL cornmen ts : 

$<char>: invert the current sense of toggle <char> 

$<char>+: turn on toggle <char> 

$<char>-: turn off toggle <char> 

$<char>@: set toggle on or off depending upon the setting at the start of the compilation 

In addition, the appearance of '$<char>' in the PARM field will turn on the corresponding toggle for the entire compilation. The following toggles are useful: 

Toggle 

L 

D 

R 

Action 

List Program source, annotated with statement number, current relative program counter, 
and current procedure name. 
(Default = On). 

Dump symbol table and other useful statist.i cs at the end of the compilation. 
(Default = On). 

Collect cross-reference data for each symbol (based on statement numbers) and print with symbol table. 
(Default = On). 

13-9 
INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138· (~J?lJi6J-1B~4"O. ~:~~t' H.:~_.::::.::==~:-:::=-":;;~ ____ ::~~-'::":'~~~"~-..~!':~.A;;=::_7T'-' Yjj • _'5' -.~" .. --"---. 



~~,-,~., 

~"···~:=--~~~~~"-'"]""'""·l 
j 

s 

I 

v 

Z 

Dump symbol table at the end of each Procedure, 
if any local data is declared. 
(Default = Off). 

Print Impact summary, indicating variables 
outside the scope of any procedure which 
were referenced, plus procedures called. 
(Default = Off) • 

Expand variable cross reference to include 
names of procedures referencing data and 
names of procedures calling other procedures. 
(Default: = Off). 

Allow execution of XPL program even if 
severe errors were detected by compiler. 

The following PARM field options are recognized by the compiler: 

LISTING2 

- list only lines containing errors and associated errors 
messages on the LISTING2 dataset. 

SYTSIZE =,nnn 

- expand the default symbol table size from the default 
size (200) to nnn, which is the predicted high-water 
mark of the symbol table. 

REF SIZE = nnn 

- expand the default cross-reference table from the 
default size (500) to nnn, which is the predicted 
number of cross-·reference entries. 

MACROSIZE = nnn 

expand the number of LITERALLY declarations from the 
default size (100) to nnn. 

PROCSIZE = nnn (needed only in conjunction with $V toggle) 

expand the number of allowable procedure definitions from 
the default SIZE{SYTSIZE/4) to nnn. Note that. REFS.IZE 
must also be increased by about 30% when $V is On. 

NLIST 

change the default settings fOr toggles L, D, and R 
to Off. 

13-10 

INTERMETRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 

! 



, 
i' 

) 

---- .. 

Two additional output files can be generated upon request from the XPL compiler. The following description shows the form of the output, the file name, and the toggle switch which turns on the output. 

Output File 

OUTPUT8 

OUTPUT6 

Toggle 

U 

w 

Description 

For each XPL procedure, create a 
PDS member containing a template 
of the form: 

P: PROCEDURE(ARG)i 
DECLARE ARG BIT(16) i 
DECLARE LOCAL VAR BIT(16)i 

END Pi -
which describes the procedure 
definition and all of the locally 
declared variables. If the I toggle 
is on, a copy of the impact summary 
is also included in the PDS. 

For each XPL procedure which is called 
from other XPL procedures, create a 
PDS member which duplicates the listing 
generated via the V toggle. 

, ~ For both PDS files, the member name is derived from the procedure name by: 

1) eliminating all underline characters, 

2) truncating the name to 8 characters, if necessary, 

3) if duplicate of previously generated name, truncate name to 7 characters, if necessary, and catenate on uniqueness number. 

The members on OUPUT6 may be later merged with the corresponding members on OUTPUT8 to either create a new PDS or sequential file which is a complete data description for each procedure in an XPL compilation. 

13-11 

lNTERMETR1CS INCORPORATED' 701 CONCORD AVENUE' CAMBRIDGE. MASSACHUSETIS 02138 • (61]} 661-1A.4{'} ~~.-,-~. ----~----.-----~---------
-

l 
,1 

1 
1 



r 'M' f'..h .• " '" .. ·'·· .. ·-#>P ......... I~ ... .,...'l.. . 
*,.,":-,.~ <, """'~"-: 

> \" 

13 • 5 !:!,E.da ter 

UPDATER performs one (and only one) of three operations in 
each of its runs. Operation for a given job step is determined 
by the first card ~n the input stream, which is called the 
DIRECTOR card. This card and other control cards are character
ized by having '$$' in columsn 1-2. The first word on the 
directory card must be NEW, NUMBER, or UPDATE. Any of these 
may be followed by one of the words LIST or NOLIST; the default 
is LIST for NEW and NOLIST otherwise. When the LIST option is 
in effect, a complete listing of the output file is written into 
the data set named on the SYSPUNCH DD card; usually 'SYSOUT=A, 
DCB=(RECFM=FBA,LRECL=133,BLKSIZE=7182)' is used. The heading 
for this listing is taken from the DIRECTOR card if any non-blanks 
are found after the control information (non-blanks here and 
between control information means characters other than blanks, 
commas, or equal signs). 

NEW 

The NEW operation takes card-images from the SYSIN input 
stream, adds file numbers, and stores the numbered file (into 
the OUTPUT3 data set). 

NUMBER 

The NUMBER operation is similar, except that it takes 
records from the source specified on the INPUT3 DD card (80 
bytes or longer), truncates to 80 bytes if necessary, appends 
file numbers, and stores the modified file. 

UPDATE 

The UPDATE operation requires a NUMBERed file as input 
(INPUT DD card), and produces a modified file as output. 
The DIRECTOR card may additionally specify RENUMBER, in which 
case the output file is written with equally spaced numbers. 
(The order of RENUMBER and LIST/NOLIST, if both are specified, 
is not significant.) 

.After the word NUMBER on the NUMBER card, or after the 
word RENUMBER on the UPDATE card, the form INCR N, where N is 
a ~iUmber,. may be specified. This will cause the number N to 
override the default value of 100 for renumbering the file. 
The first record on the output file will have the value N, 
the second record will be 2*N, etc. 

Following the UPDATE DIRECTOR card, UPDATE control cards 
and detail cards are supplied. If none are present, the input 
file is simply copied to the output file. This form of the 
UPDATE operation may be used to duplicate a file with or without 
renumbering, or if LIST is specified and OUTPUT3 is CD DUMMY, 
a listing of the INPUT3 file is obtained. 

13-12 
INTERMETRICS INCORPORATED· 701 CONCORD AVENUE .• CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 

~~ t ,.~Jt? ~'-~',-"'-~-_~--' -~-" _ ~ -~=_,~,,;.~ ... ~r:;':~·':"~;';:I:::~;;:::~=::r-2~g.lj:;'== < ~1ttd? ~ •. ;"*o"i'·-?i·'rf'= .. ';;~1i@W;4;;;;;;" ';;1"-' ""';" " .. ::':::.~~~~-,~ ~t .i. 

I ., 



J 

,.\ 
' ' 

Detail cards may be specified in two ways. UPDATER was 
designed to handle card images which have no space allocated 
for card numbers. However, in many cases, the card image 
actually does have space for a number, and UPDATER makes use 
of this: the first form of detail card is simply a card with 
ordinary text in columns 1 through 72, and a card number some
where in 73-80. Any reasonable form for the number is valid, 
so long as it has no imbedded blanks and has a nonzero value. 
UPDATER replaces columns 73-80 with blanks when it moves the 
card to the output file. 

The second form of detail card is required when some of 
the columns 73-80 are needed for text. In this case, the 
detail card is mqde up by a control card containing the number, 
followed by the text-card. For example, 

$$ 34625 
.•. THIS CARD MAY CONTAIN TEXT BEYOND COLUMN 72. 

In both cases, the detail card is added to the file. If its 
number matches that of a record already present, that record 
is replaced: otherwise, the detail card is inserted. 

The DELETE control card is of the form '$$ DELETE M' or 
I $$, DELETE M THRU N', where M and N are numbers. In the second 
form, N must be >= M. The effect of this request is to cause 
any records in the range M through N, inclusive, to be deleted. 
M and N need not be numbers of actual records in the file, but a 
warning is issued if no records at all are found in the M-N range. 

The INSERT control card is of the form '$$ INSERT AFTER M' 
or '$$ INSERT AFTER M INCR N' , and causes all the following cards 
up to the next control card to be inserted after the last record 
whose number is not greater than M. If renumbering is in effect, 
the number-increment used is the standard renumbering increment: 
if not, either the specified increment N, or a default value if 
INCR N is not specified, will be used so long as the resulting 
number does not equal or exceed the number of the next sequential 
record. If it does, renumbering is automatically activated from 
that point on. 

The REPLACE control card is of the form '$$ REPLACE M', 
'$$ REPLACE M THRU N', '$$ REPLACE M INCR J ' , or '$$ REPLACE M 
THRU N INCR J ' , where M, N, and J are numbers. When the 
THRU form is used, N must be >= M. The effect of this command 
is to delete records in the range of M thru N inclusive, replacing 
them with all cards following up to the next control card, with 
numbering beginning at M. If INCR is not specified, the default 
increment of 10 is used. The same effect as in INSERT takes 
place if the numbering of the inserted cards exceeds that of 
the next sequential reocrd. It is not necessary that numbers M 
or N be in the input file, but a warning will be issued if there 
are no cards within the specified line number range. 

13-13 

a 

, INTERMETRICS INCORPORATED' 701 CONCORD AVENUE· CAMSRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 

., ..... """#~"ioLi, Jt.2~- ". . .~ .. ,.'".~,~_c "" ,. ... . ... • - .c~."_t .... ~ 



! 
i~i 

;,.{ 

The EXTRACT command. is used to remove a section of a 

program from a larger file. It may be used as often as 

necessary to isolate various segments from a program. The 

allowable forms are '$$ EXTRACT M'or '$$ EXTRACT M THRU N', 

where M and N are numbers. The effect of the command is to 

skip from the current input record to line M, and then to 

copy lines M thru N inclusive to the outpu~ file. 

The END command is used in conjunction with the EXTRACT 

command. The form is simply '$$ END'. If this card is at the 

end of a series of EXTRACT commands, the last specified record 

on the previous control card (or insertion if any were made) 

will b~ the last record on the output file. If the END card 

is not' present, the rest of the input file from the current 

record to the end of the file will be copied to the output 

file. 

Updater requires that detail-card numbers, the FROM values 

on DELETE cards, and AFTER numbers on INSERT cards form a strictly 

monotonic sequence. In the event that an invalid number sequence 

or other serious error is detected, updater causes the job-step 

to abend. This allows the use of 'DISP=(NEW,KEEP,DELETE)' on 

the OUTPUT3 DD card to avoid using up a data set name in case 

of a bad update. 

The value of the renumbering increment is 100, and of the 

default insert-increment is 10. 

When the listing option is in effect, it is necessary to 

specify "PARM='FREE=44000'" on the EXEC card of the job step; 

otherwise "PARM='ALTER'" may be used. It is suggested that a 

SYSPUNCH DD card always be used; if a listing is not wanted, 

use '/ /SYSPUNCH DD DUMMY'. 

13~14 

Il_-"."C_, .. _.I_~T:~METRICS INCORPORATED· 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 

I 
i 

I 



, .. 

\1 

'~~.:'=~.~:--[ 

~. 

13.6 XPL ZAP 

XPLZAP is a program designed to allow inspection 
and modification of XPL object files. It can be used 
on either single programs or concatenated compiler 
complexes. All modifications are logged in a free. 
area in the File Control Block, up to a limit of 440 
changes per module. 

Each XPL file consists of four sets of data, each 
wi th its own mode of addressing. 'l'he program area .. 
addresses correspond to the addresses which appear to 
the right of the statement in the compiler listing. 
Local branch addressing is computed relative to the first 
instruction in the procedure. The data area addresses 
correspond to the sum of the displacements shown in the symbol table dump and the contents of the corresponding base register, which appear in the summary 
information at the end of the listing. The descriptor 
area has only one dedicated base register, and thus the 
displacement as shown in the symbol table may be used 
directly. The file control block may also be examined,' 
but changes to this area are not recommended, as program 
failures may result. 

The program is designed to operate either interactively 
or in the batch mode. In the batch mode, the control 
card images are printed on the output listing. In either 
mode, control card errors will inhibit subsequent modifica
tions (until the next file command is given). 

All control cards consist of a command character 
followed by a set of operands. All addresses and replace
ment operands are hexadecimal digits. The end of a 
,control card or the character ';' stops the control card 
scan. In the followiijg description, the character a is 
used to indicate the addressing mode. The allow~ble 
forms are: 

13-15 

~. 

\ INTERMETRICS INCORPORATED· 701 CONCORD AVENUE' CAMBRIDGE, MASSACHUSETTS02138' 617 661-1840 

~ 

~ ........ ;--.&#f 



i 
i I 

• 

Character Addressing Mode 

Pro<j:cam. area 

D Data area 

C Descriptor area 

F File Control Block area 

I Compiler Identification area 

Any other characters for a will cause the program area 
to be used. 

All addresses are truncated to the nearest halfword 
address. All replacement or verification data must be 
specified in halfword multiples, separated by blanks or 
commas. For the conunands which accept string operands', do 
not attempt to specify the character quote (I) within the 
string. This must be done in hexadecimal. 

The compiler identification area is. a 10 character field 
which is used to descrihe the particular compilcr version. 
There is only one per XPI, program complex, and it must be 
modified in its entirety. The standard format is: 

IXXXX-RR.VL' 

where: 

XXXX indicates the compiler name, 

'RR indicates the release number, 

V indicates the version number, and 

L indicates a ZAP sub-level (blank or 0 being 
equivalent to unzapped complex) • 

The enclosed prototype JC~ illustrates all of the 
necessary DD statements to run XPLZAP. The sequence 
"YOUR XPL PILE" is to be replaced by the appropriate data 
set name and any other specifications required by the instal
lation to access the data set. A second example shows an 
actual XPLZAP run. 

13-16 

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE· CAMBRIDGE, MASSACHUSETIS 02138 • (617) 861-1840 

f 
i 
)! 

,!:" , 
:! 
;~ 

l 
' ~ 
·1 
:.~ 

't 
.f 
;~ ., 
;:: 

:~ 

ii ., , 
"~ 
\i ", 
~ ~ ~~ ;, 

1 ~ 

Ii t ;~ 
t;: 
~ 



I 

t,R ... ~~~~' ;~t_. ;~:~~~'~.~;~~;~:::..: _u":-::~·=~=~,:::_,::=:::,,;:~,:;-~·-~·:.;:'~l.'P .i_il" "f"lflIIIIJlr'~,"'" ,,"' !iV; ... 1.1.4 lIi~&~; 
~~. XPLZAP Command Summary 

Items enclosed in brackets ([ J) are optional operands. 

C OIarna nd 

La address* [length] 

Da address* [length] 

Ra address*rl,r2, ••• rn 

Va address*vl,v2, ••• vn 

x 

G 

H 

M n 

F n 

C x+y 
x-y 

Q.,escription 

List "length" bytes in hexadecimal 
beginning at the specified address. 
If lep.gth is omitted, it defaults 
to .32 ( 2 0 16) • 

Display "length" bytes in EBCDIC 
beginning at the specified address. 
If length is omitted, it defaults 
to 32 ( 2 016 ) • 

Replace n halfwords starting at the 
specified address by halfwords rl, 
r2, etc. Previous errors will 
inhibit changes. 

Verify n halfwords starting at the 
specified address comparing ~ith 
halfwords vI, v2, ••• , vn. 

Signify end of run. Any clean up 
will be performed at this time. 
An END-OF-FILE on SYSIN is equivalent. 

Print the date and time of generation 
of the XPL module. 

Print the log of previous replacements 
(includes addresses and date and 
time replacements were made). 

Specifies the maximum number of XPL 
object modules in a comp1ex. Thi9 
card must be the first card in an 
XPLZAP run if more than one XPL 
module is in a file, even if only 
one is being altered. 

Specifies that XPL module n is to be 
examined and/or altered. This 
command also allows replacements to 
take place if previous commands were 
in error. 

Calculate the result of the expression 
involving hexadecimal operands, and 
print result. The expression is 

. evaluated left to right with no 
precedence. Only + and - are 
supported. 

* If a = 'I', tho address field is omitted . 
. 13-17 Ii JTUlMETR1CS INCOFlPOf-lATED • 701 ,c:ONCOFlD AVENUE· CAMBRIDGE. MASSACHUSETTS 021313 • (617) 661-1840 

, ;._. ;"".' •• 'oW;W~;" "ie''''' ii,=-",-=_,~="",,".,oc~;",_,:~,~,~ .. , .. ,.-,~~~t i&.-~':":iiL.." . if3:,-,,'.,',*"'" '}' ."~"":""'" ~-'"'c~~."'.:.:.~ __ ,:~;'~~..i..:.:..f:T.l:".".. ... ,-,.&j;;':- 'W",;Vf!5l""l+" _·_·,c>-P .--
-.;!i ,~_~: ~',:.-_'rr.:..-1:._~~_':"'~~~~~.~-



1"1 

Command 

Ra address*'string' 

Va address*'string' 

Sa address* 81, s2 , " . .. ,sn 

Sa addrcss* 'string' 

anything 

Description 

Replace n/2 halfwords starting 
at the specified address by the 
n characters enclosed in quotes 
(n must be even) . 

Verify n/2 halfwords starting at 
the specified address with the n 
characters enclosed in quotes (n 
must be even) . 

Search for occurrences of the pattern 
sl,s2, ..• ,sn beginning at the specified 
address through the end of the area 
specified by a.. 

Search for occurrences of n/2 
halfwords containi~g the n characters 
enclosed in quotes beginning at the 
specified address through the end of 
the area specified by a. (n must 
be even.) 

No action (for commenting). 

,l 

Y If a = 'I', the address field is omitted. 

13-18 

It"T[[1METRICS INCOf\f'ORATCO . l01 CONCORD AVENUE· CAtvHHiIDGC, MASSACllUSCTl ~j 02138 • (G 17) 6G1-1BtlO 

< 3£ milia 

, , 
1;: , 
)~ . 
j , 
~ 
; i 

<, 

;-;, 

ii ,< 
1 



r ,\" __ ,,0,' ,~_ '0_0_' ______ ',- ________ ' __ ,_ ', .. ~_ - ... '-'-----".----.r".~ __ .,_ ., __ -.. --.-.-.,--.---,--, ..... ,'---.-.... ---

l""''c'o v:' " 

II IO !?""'''· t.. .. r ... F,I I~: 

In: PLZ,\P 
//STEPLIB 
IIPPoGr~l\I\ 
IIFILEI 
IISYSPRIIlT 
1/;:Y51IJ 

<XPL7.I\P 

dCH3 Ar~CT,PROGRMH'FR.If),p.EGIOr!=(iOK,TI!'!'"::l 
EXl:C PGti"'XPlSI''i, PI'IRr,j=' PoATCH' 
Of) DIS P= Sf! R, os I'~= Hf\ L S • r,IO~! lTor;· 
OD f)ISP:"Sl!R,OSI':!~IALs.xrl71~p 
PI) DISP=OLD,OSN="YOUH XPL FILF" 
nD SYSOUT=A,OC'[3",P,LKSIZE:::1330 
DI1 * 
COtJTROL CAHDS> 

f-I elm E 1. PROTOTYPE dCL 

I / dOl: ! ! M:!: d CJ ~3 /1 C c-r , r rw CifUI.I1 /1 FR. If), ru:: G I ():1::: 6 () K, T Ii 1 :">: 1 
/I:\I')LZAP EXEC rCt 1=XPLsr·1 , PMUl=' BrlTClI' 
I 1ST E r Lin n [l D I :, P"" S fI F{, D S l!·~ H II.. L S • riO III TOR 
/ I P!1 0 C r~ AI: 0 [) DIS p::: S ! IR ,OS ~! = HAL S • x P L Z f\ P 
/IFIU:l CD DISP=OLD,f1S!·l=llf'.I.S.cor'?ILf:r,· 
I I S Y r: r r~ I r IT n r) S Y SOU T '" /\, [) C R::: 8 L I~ S I Z E = 1 3 3 0 
/ISYSlrI [lD * 
H Lr; TI1IS EXIiI1PLE :U\PS P,OTII TilE FIRST Mlf' SEC():Jr~ FILr=S pi A 4 FILE GIJP:-L' 
F J. i 'T f'Fr-IIJES A .1 RELEASE LEVEl II! PH,\Sr: 1 
VI ' 360-13.0 ' 
RI ' 360-13.01' 
F ~; IlmJ tll\l:F. ACTUAL CH.f\!·IGr:S I r·J SFcm·![) FI LF 
V 51(1G ~17GO 

P 51 r fi '/·7 F 0 
V 5254 ~101 78Aq 47£0 F3RC 
R 5 2 51~ J P 11 Ij 9 10 'l fl r n LI 7 R 0 F 3 ? r: 117 F 0 1= 3 P, C 
V 5 1 C () F 3 H-:; F I X H [ cor. tIl Z I N G C S E 's A C P, n s s C () t t [) IT, (I!' 0\ I. ~ 
r. 51CO F:~2r: 

1* 

T i' PIC 1\ L X f' L? APR lH' 

13-19 

j'.J] rf{;,~1 linGS INCOfil'()I~/\ 1 U) . i'Ol CONCOf{l) AVfNlJ[ • GAt,1[Jf{l[)GC, MASSAC:! HJSCT1S 02138 • (G17) GG1-1e40 
_~__ _.... ' if ~'tWMti' m xw iJy~_-::::£tL~_:t:::fJt_ j-m"'~_&dJ_ Lk-i"£..hlb.LC-- - . M. AS iI. -71 

1 .. 
1 

I 
1 
\ 
1 
1 

-Ii 
\ 

~ 
• ,.1 1 

·· .. oit .. 



r 
I 

I 

13.7 JCL and DD Names 

Sample JCL for documenting XPL run: 

IIXPL EXEC PGM=MONITOR, 
II PARM='SYTSIZE=1800,REFSIZE=20000,LISTING2,$I,$V,$U,$W' 
IISTEPLIB DD DISP=SHR,DSN=HALS.MONITOR 
IIPROGRAM DD DISP=SHR,DSN=HALS.XCOMLINK 
I/INPUT2 DD DISP=SHR,DSN=HALS.LINKLI~ 
/ /SYSIN DD DISP=SHR,DSN=your XPL source program 
IISYSPRINT DD SYSOUT=A 
//LISTING2 DD DISP=MOD,DSN=your error log dataset 
//OUTPUT8 DD DISP=OLD,DSN~our procedure template PDS 
IIOUTPUT6 DD DISP=OLD,DSN=your procedure reference PDS 
/IFILEl DD DISP=OLD,DSN~our XPL object file 
IIFILE2 DD UNIT=SYSDA,SPACE=(CYL,3) 
IIFILE3 DD UNIT=SYSDA,SPACE=(CYL,3) 
IIFILE4 DD UNIT=SYSDA, SPACE= (CYL" 3) 

13-20 : 

~l; ~. INTERMETRICS INCO~~~~ATED . 701 C~CORD AVEN'~!.;;'~~:!~~~!~i~~5~~~~.~.~;~~~T~~;~~1~8:1~~~i1::tUIl.II~ 



'i 
tt'~ 

XPL Reference 

=INPUT(O} 
=INPUT(l} 
=INPUT(2} 
=INPUT(4} 
=INPUT(S} 
=INPUT (6) 
=INPUT(7} 
OUTPUT (0)= 
OUTPUT (l)= 
OUTPUT (2)= 
OUTPUT(3}
OUTPUT (4)= 
OUTPUT (S)= 
OUTPUT(6}= 
OUTPUT (7)= 
OUTPUT (S)= 

FILE(l,n} 
FILE(2,n} 
FILE(3,n} 
FILE(4,n} 
FILE(Sf n ) 
FILE(6,n} 

DO NAME 

SYSIN 
SYSIN 
INPUT2 
INCLUDE (PDS) 
ERROR (POS) 
ACCESS (POS) 
INCLUDE or OUTPUT6 
SYSPRINT 
SYSPRINT (including carriage control) 
LISTING2 
OUTPUT3 
OUTPUT4 
OUTPUTS (POS) 
OUTPUT6 (POS) 
OUTPUT7 
OUTPUT8 (POS) 

FILEI 
FILE2 
FILE3 
FILE4 
FILES 
FILE6 

13-21 

I 
J 
1 


	0046A02
	Untitled
	0046A03
	0046A04
	0046A05
	0046A06
	0046A07
	0046A08
	0046A09
	0046A10
	0046A11
	0046A12
	0046A13
	0046A14
	0046B01
	0046B02
	0046B03
	0046B04
	0046B05
	0046B06
	0046B07
	0046B08
	0046B09
	0046B10
	0046B11
	0046B12
	0046B13
	0046B14
	0046C01
	0046C02
	0046C03
	0046C04
	0046C05
	0046C06
	0046C07
	0046C08
	0046C09
	0046C10
	0046C11
	0046C12
	0046C13
	0046C14
	0046D01
	0046D02
	0046D03
	0046D04
	0046D05
	0046D06
	0046D07
	0046D08
	0046D09
	0046D10
	0046D11
	0046D12
	0046D13
	0046D14
	0046E01
	0046E02
	0046E03
	0046E04
	0046E05
	0046E06
	0046E07
	0046E08
	0046E09
	0046E10
	0046E11
	0046E12
	0046E13
	0046E14
	0046F01
	0046F02
	0046F03
	0046F04
	0046F05
	0046F06
	0046F07
	0046F08
	0046F09
	0046F10
	0046F11
	0046F12
	0046F13
	0046F14
	0046G01
	0046G02
	0046G03
	0046G04
	0046G05
	0046G06
	0046G07
	0046G08
	0046G09
	0046G10
	0046G11
	0046G12
	0046G13
	0046G14
	0047A02
	0047A03
	0047A04
	0047A05
	0047A06
	0047A07
	0047A08
	0047A09
	0047A10
	0047A11
	0047A12
	0047A13
	0047A14
	0047B01
	0047B02
	0047B03
	0047B04
	0047B05
	0047B06
	0047B07
	0047B08
	0047B09
	0047B10
	0047B11
	0047B12
	0047B13
	0047B14
	0047C01
	0047C02
	0047C03
	0047C04
	0047C05
	0047C06
	0047C07
	0047C08
	0047C09
	0047C10
	0047C11
	0047C12
	0047C13
	0047C14
	0047D01
	0047D02
	0047D03
	0047D04
	0047D05
	0047D06
	0047D07
	0047D08
	0047D09
	0047D10
	0047D11
	0047D12
	0047D13
	0047D14
	0047E01
	0047E02
	0047E03
	0047E04
	0047E05
	0047E06
	0047E07
	0047E08
	0047E09
	0047E10
	0047E11
	0047E12
	0047E13
	0047E14
	0047F01
	0047F02
	0047F03
	0047F04
	0047F05
	0047F06
	0047F07
	0047F08
	0047F09
	0047F10
	0047F11
	0047F12
	0047F13
	0047F14
	0047G01
	0047G02
	0047G03
	0047G04
	0047G05
	0047G06
	0047G07
	0047G08
	0047G09
	0047G10
	0047G11
	0047G12
	0047G13
	0047G14
	0048A01
	0048A02
	0048A03
	0048A04
	0048A05
	0048A06
	0048A07
	0048A08
	0048A09
	0048A10
	0048A11
	0048A12
	0048A13
	0048B01
	0048B02
	0048B03
	0048B04
	0048B05
	0048B06
	0048B07
	0048B08
	0048B09
	0048B10
	0048B11
	0048B12
	0048B13
	0048B14
	0048C01
	0048C02
	0048C03
	0048C04
	0048C05
	0048C06
	0048C07
	0048C08
	0048C09
	0048C10
	0048C11
	0048C12
	0048C13
	0048C14
	0048D01
	0048D02
	0048D03
	0048D04
	0048D05
	0048D06
	0048D07
	0048D08
	0048D09
	0048D10
	0048D11
	0048D12
	0048D13
	0048D14
	0048E01
	0048E02
	0048E03
	0048E04
	0048E05
	0048E06
	0048E07
	0048E08
	0048E09
	0048E10
	0048E11
	0048E12
	0048E13
	0048E14
	0048F01
	0048F02
	0048F03
	0048F04
	0048F05
	0048F06
	0048F07
	0048F08
	0048F09
	0048F10
	0048F11
	0048F12
	0048F13
	0048F14
	0048G01
	0048G02
	0048G03
	0048G04
	0048G05
	0048G06
	0048G07
	0048G08
	0048G09
	0048G10
	0048G11
	0048G12
	0048G13
	0048G14
	0049A02
	0049A03
	0049A04
	0049A05
	0049A06
	0049A07
	0049A08
	0049A09
	0049A10
	0049A11
	0049A12
	0049A13
	0049A14
	0049B01
	0049B02
	0049B03
	0049B04
	0049B05
	0049B06
	0049B07
	0049B08
	0049B09
	0049B10
	0049B11
	0049B12
	0049B13
	0049B14
	0049C01
	0049C02
	0049C03
	0049C04
	0049C05
	0049C06
	0049C07
	0049C08
	0049C09
	0049C10
	0049C11
	0049C12
	0049C13
	0049C14
	0049D01
	0049D02
	0049D03
	0049D04
	0049D05
	0049D06
	0049D07
	0049D08
	0049D09
	0049D10
	0049D11
	0049D12
	0049D13
	0049D14
	0049E01
	0049E02
	0049E03
	0049E04
	0049E05
	0049E06
	0049E07
	0049E08
	0049E09
	0049E10
	0049E11
	0049E12
	0049E13
	0049E14
	0049F01
	0049F02
	0049F03
	0049F04
	0049F05
	0049F06
	0049F07
	0049F08
	0049F09
	0049F10
	0049F11
	0049F12
	0049F13
	0049F14
	0049G01
	0049G02
	0049G03
	0049G04
	0049G05
	0049G06
	0049G07
	0049G08
	0049G09
	0049G10
	0049G11
	0049G12
	0049G13
	0049G14
	0050A01
	0050A02
	0050A03
	0050A04
	0050A05
	0050A06
	0050A07
	0050A08
	0050A09
	0050A10
	0050A11
	0050A12
	0050A13
	0050B01
	0050B02
	0050B03
	0050B04
	0050B05
	0050B06
	0050B07
	0050B08
	0050B09
	0050B10
	0050B11
	0050B12
	0050B13
	0050B14
	0050C01
	0050C02
	0050C03
	0050C04
	0050C05
	0050C06
	0050C07
	0050C08
	0050C09
	0050C10
	0050C11
	0050C12
	0050C13
	0050C14
	0050D01
	0050D02
	0050D03
	0050D04
	0050D05
	0050D06
	0050D07
	0050D08
	0050D09
	0050D10
	0050D11
	0050D12
	0050D13
	0050D14
	0050E01
	0050E02
	0050E03
	0050E04
	0050E05
	0050E06
	0050E07
	0050E08
	0050E09
	0050E10
	0050E11
	0050E12
	0050E13
	0050E14
	0050F01
	0050F02
	0050F03
	0050F04
	0050F05
	0050F06
	0050F07
	0050F08
	0050F09
	0050F10
	0050F11
	0050F12
	0050F13
	0050F14
	0050G01
	0050G02
	0050G03
	0050G04
	0050G05
	0050G06
	0050G07
	0050G08
	0050G09
	0050G10
	0050G11
	0050G12
	0050G13
	0050G14
	0051A01
	0051A02
	0051A03
	0051A04
	0051A05
	0051A06
	0051A07
	0051A08
	0051A09
	0051A10
	0051A11
	0051A12
	0051A13
	0051B01
	0051B02
	0051B03
	0051B04
	0051B05
	0051B06
	0051B07
	0051B08
	0051B09
	0051B10
	0051B11
	0051B12
	0051B13
	0051B14
	0051C01
	0051C02
	0051C03
	0051C04
	0051C05
	0051C06
	0051C07
	0051C08
	0051C09
	0051C10
	0051C11
	0051C12
	0051C13
	0051C14
	0051D01
	0051D02
	0051D03
	0051D04
	0051D05
	0051D06
	0051D07
	0051D08
	0051D09
	0051D10
	0051D11
	0051D12
	0051D13
	0051D14
	0051E01
	0051E02
	0051E03
	0051E04
	0051E05
	0051E06
	0051E07
	0051E08
	0051E09
	0051E10
	0051E11
	0051E12
	0051E13
	0051E14
	0051F01
	0051F02
	0051F03
	0051F04
	0051F05
	0051F06
	0051F07
	0051F08
	0051F09
	0051F10
	0051F11
	0051F12
	0051F13
	0051F14
	0051G01
	0051G02
	0051G03
	0051G04
	0051G05
	0051G06
	0051G07
	0051G08
	0051G09
	0051G10
	0051G11
	0051G12
	0051G13
	0051G14
	0052A01
	0052A02
	0052A03
	0052A04
	0052A05
	0052A06
	0052A07
	0052A08
	0052A09
	0052A10
	0052A11
	0052A12
	0052A13
	0052B01
	0052B02
	0052B03
	0052B04
	0052B05
	0052B06
	0052B07
	0052B08
	0052B09
	0052B10
	0052B11
	0052B12
	0052B13
	0052B14
	0052C01
	0052C02
	0052C03
	0052C04
	0052C05
	0052C06
	0052C07
	0052C08
	0052C09
	0052C10
	0052C11
	0052C12
	0052C13
	0052C14
	0052D01
	0052D02
	0052D03
	0052D04
	0052D05
	0052D06
	0052D07
	0052D08
	0052D09
	0052D10
	0052D11
	0052D12
	0052D13
	0052D14
	0052E01
	0052E02
	0052E03
	0052E04
	0052E05
	0052E06
	0052E07
	0052E08
	0052E09
	0052E10
	0052E11
	0052E12
	0052E13
	0052E14
	0052F01
	0052F02
	0052F03
	0052F04
	0052F05
	0052F06
	0052F07
	0052F08
	0052F09
	0052F10
	0052F11
	0052F12
	0052F13
	0052F14
	0052G01
	0052G02
	0052G03
	0052G04
	0052G05
	0052G06
	0052G07
	0052G08
	0052G09
	0052G10
	0052G11
	0052G12
	0052G13
	0052G14
	0053A01
	0053A02
	0053A03
	0053A04
	0053A05
	0053A06
	0053A07
	0053A08
	0053A09
	0053A10
	0053A11
	0053A12
	0053A13
	0053B01
	0053B02
	0053B03
	0053B04
	0053B05
	0053B06
	0053B07
	0053B08
	0053B09
	0053B10
	0053B11
	0053B12
	0053B13
	0053B14
	0053C01
	0053C02
	0053C03
	0053C04
	0053C05
	0053C06
	0053C07
	0053C08
	0053C09
	0053C10
	0053C11
	0053C12
	0053C13
	0053C14
	0053D01
	0053D02
	0053D03
	0053D04
	0053D05
	0053D06
	0053D07
	0053D08
	0053D09
	0053D10
	0053D11
	0053D12
	0053D13
	0053D14
	0053E01
	0053E02
	0053E03
	0053E04
	0053E05
	0053E06
	0053E07
	0053E08
	0053E09
	0053E10
	0053E11
	0053E12
	0053E13
	0053E14
	0053F01
	0053F02
	0053F03
	0053F04
	0053F05
	0053F06
	0053F07
	0053F08
	0053F09
	0053F10
	0053F11
	0053F12
	0053F13
	0053F14
	0053G01
	0053G02
	0053G03
	0053G04
	0053G05
	0053G06
	0053G07
	0053G08
	0053G09
	0053G10
	0053G11
	0053G12
	0053G13
	0053G14
	0054A01
	0054A02
	0054A03
	0054A04
	0054A05
	0054A06
	0054A07
	0054A08
	0054A09
	0054A10
	0054A11
	0054A12
	0054A13
	0054B01
	0054B02
	0054B03
	0054B04
	0054B05
	0054B06
	0054B07
	0054B08
	0054B09
	0054B10
	0054B11
	0054B12
	0054B13
	0054B14
	0054C01
	0054C02
	0054C03
	0054C04
	0054C05
	0054C06
	0054C07
	0054C08
	0054C09
	0054C10
	0054C11
	0054C12
	0054C13
	0054C14
	0054D01
	0054D02
	0054D03
	0054D04
	0054D05
	0054D06
	0054D07
	0054D08
	0054D09
	0054D10
	0054D11
	0054D12
	0054D13
	0054D14
	0054E01
	0054E02
	0054E03
	0054E04
	0054E05
	0054E06
	0054E07
	0054E08
	0054E09
	0054E10

