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ABSTRACT

A method was developed for the construction of:probabilfstic
state-space models for non-repairable systems. This method a11ow§
the construction of systém models with.coﬁéiderab]y fewér states
than the mode] resu]t1ng from more trad1t1ona] approaches. Models |
were developed for several systems wh1ch achieved re11ab111ty 1mprove;
ment by means of error-coding, modularized sparing, massive replication
- and other fault-tolerant techﬁiques.

From the models deveToped sets of re11ab|]1tj and coverage : ;
equations for the systems were developed. Comparat1ve ana1yses of the
- systems were performed using these equation sets.  In addition, the

" effects of varying subunit vreliabilities on system reliability and
covarage were descr1bed The resu]ts of these ana1yses 1nd1cated
that & significant gain in system re11ab111ty may be achieved by use of
~ -combinations of modularized sparing, error coding and software error
“control. For sufficiently reliable system subunits, thisfgain may faf
-exaeed-thé'rejiabi1ity‘gain"échieved by use of maSSTVéQPEpliCation*'V E

techniques, yet result in a considerable saving in system cost..
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1. . INTRODUCTION

; éi B As the f1e1d of computing system des1gn has deVe1oped the need

'}? for re11ab1e computers fas become crucial. Advances in the aerospace

© o area in part1cu1ar haVe necess1tated the des1gn of computing systems that
iwé : . are- highly re11ab1e and capable of operat1on in a nor repa1rab1e enV1ron~.'
ment In many other system app11cations while repa1r may be poss1b1e,

%; ' an 1nterrupt1on in system operation is unacceptab]e

... Due to the 1arge number of components which 1t cohteins, thelmain
e ‘, memory has typically been the most unre11ab1e subun1t of the computang |
;éi' - system [1].. Since this subunit contr1butes a h1gh,percentage of total
\ system size- and we1ght and many systems must operate within 11m1tat1ons o
:, %; in these areas, massive replication Lechniques for memory re11ab111ty .

~;' L 1mprovement are often. not applicable. . Thus, muah research kas been

;

j‘-”i performed to find methods of memory re11ab111ty improvement by other means.

. §? :?-' .! - ;'" SSVeraijethods-of“improvement have been utilized. -One:such'-

..... method is the development of'errorAGOntfo1‘codES'fof'use in the memory

:Lff": R 'arreye..Aﬁsb‘~ﬁddﬂ1arimemoryud?ganizatﬁons-have been.designed.in-an
attempt to 11n1t ‘the poss1b1e ways that stored-word errors can occur

B and t0 ease system reconf1gurat1on probiems The-exampIE»systemsvof R

%ﬁ'lv-f ﬁ;' Ehis paper utilize both coding and modular design for 1mproved system s

. re11ab111ty These systems are descr1bed in Chapter II B
:,f; _: o A me+hod 15 presented 1n th1s paper for ca1cu?at1ng the re11ab1l1ty.

e —



o and COVerage of these systems. 'This method a110ws the censtruction of'

system state d1agrams w1th fewer states than occur in many state- space

vapproaches The method used is descr1bed in Chapter 111 W1th example ,

results shown in Chaoter V

| . Baqﬁgrqund ’
Reh11catiuh cn the membry system 1eVe1 [2 3] has been used as a

so]ut1on for the u1tra—re11ab1e memory probTem Substant1a1 increase .

_in memany re11ab111ty has resu]ted in many cases System cost however,

has 1ncreased 11near1y with the number of due11cated systems Other

- 11m1t1na factors, such as systew W 1ght and s1ze, haVe prevented the use

of massive rep11cat10n techn1ques in many app11cat1ons

A number.of’proposed.amd actual_systems {1,”4, 5, 6, 7, 8] have

utitized a modular concept of memory arrangement, usually 1in conjunction

with error coding. In.addition, a number.[9, 10, 11, 12] of bursteerror

correcting'codes have been developed. These codes are'weli suited-fer use

-..-in word-slice oriented memories. 1n wh1ch a ma30r1ty of the word errors

"'may be EXPEutEd to occur wsth1n groups of werd b1ts.

- Several articles [13, 14, 15] have developed re11ab111ty caleu]a+1on

'procedures for the fault- to?erant memory problem. Many others_L16, 17, 18J
"7haVeishDWn'CHTGu1at1on proCedures for fault—te]erant-systems in generaT

‘When a state-space approach to system modeling has been taken, the tine.

aITOWed for: state trans1t1ons to occuy s genera11y Lim At Typ1ca1];,
At + 0 -

“only one system event is a11owed to occur in this transition interval.
'e”fMu1t1p1e states are then necessary to represent ail poss1b1e comb1natsons
of cond1t1ons ef sys%e. subunits resu1t1ng in 1arge numbers of states for

' '~h1gh1y uompiex systems. |

Py i

ot



 II. FAULT TOLERANT MEMORY DESCRIPTION -

i - In this chapter, severa1 fault- to?erant memory systems are -
-'descr1bed The f1rst section describes a system wh1ch is taken as -

a basis for the compar1son of re1ated systems. Several re1ated systems
§ o ~are describea in the second section. Rei1ab111ty and coverage o

computations for these systems will be examined in following chapters.

Basic System

§ ' - The basac computpw system to be analyzed has been des1gned for use
7' in extended aeresparn mirsions. It was-des1rabie £o implement the

| <=_ _ | _ computer memory 1n a manner so as to be within weight, size, and

51 | *.econom1c 11m1tat1ons, yet be h1gh1y fau1t~to1erant '

| A modu1ar des1gn approach has been undertaken in which the memory

?.31 a o array.1s made up of memory s?xces, each of wh1ch,conta1ns the-same=b1t

_ _ 1ocat1on of all memory words If n words are conta1ned in the memory

“l . and each word is k bits 1ong, then there must be k memory modules and

. ff’ » each modu]e must contain n bxts vThesevmodu}es wi11 be referred to as

on-l1ne b1t4p1anes.

In add1t1on to. the b1t p1anes already d1scussed the system conta1ns_

1denu1ca11y~s1ged_gpare b1t planes wh1ch may be sw1tched to replace any :

. :L S .fa}]gd-on—11ne5b1t plane. The arrangement of on~11ne and spare b1t

- is shown in Figure 2. -

~planes is sbuun in Figure 1. The Tunct10na1 0r1entat10n of memory WQrds ‘ -
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* A single-error-correcting/double-error-detecting (22, 16) eode REX
is used for memdry“data word encoding. This code has the prdperty that
any odd number of errors in a codeword will produce an odd-weighted
grror syndrome. _Double errars will produce a non-zerc. even-weighted error
syndrome and higher numbers of even errors will produce even-weighted
(1thudihg‘ai1 zero). error syndromes. These features of the code
WiTl be further discussed in a later section.

External to the: memory, data words are encoded using only 2 byte

parity bdts For this reason, circuitry which transilates between the two

" codes . s necessary for use in memory write and read cyc1es This
function is performed by the memory translator. 1In addition, the translator
- contaiﬁs cifeuitry for the'correctioe of single bit errors and detection

'of mu1t1p1e bit errors in memory words, and contro1 of the reconf]gura-

't1on sw1tch1ng c1rcu1try wh1ch d1rects each word b1t to the appropr1ate

',.blt p1ane ‘These . funct1ons W111 now be examined.

For memory write operatxon, the trans1ator accepts a byte par1ty

Tencoded word from the CPU ~memary bus The byte par1ty bits are saved
:and the. check b1ts Tor the SEC/DED code are generated A'va1ddity -
. ,_'check is uhen mede by a compar1son of the saved byte par1ty b1ts w1th _
tthe generated check b1ts Lf no errer is found, the data word w1th SEC/DED.
~.,check b1ts appended is stored in- the ‘memory. If an error is found, a -

‘ ‘program 1nterrupt 15 sent to" the CPU

~For a. memory read operat1on -the. requested encoded word is read

V.from the memory array and p1aced in the storaqe data register (SDR). The

:'ﬁf;error_syndrpme;For,uhe word is formed from the encoded word: and if a zero

j.‘ -y
A 3

o



- {na.error) syndrome is signaled, the byte parity bits for the data word

are formed and the word is transmitted on the data bus.

An odd-weight (odd error) syndrome signal causes a bit inversion to
be made by the single error correction circuitry. The error syndrome for
the corrected word is then generated. If no error is signalled, then .
it is assumed that there was a single error in the encoded word. The
byte ﬁarity bits are generated and the word is transmitfed on the data
bus. If an error is signaled, a program interrupt is generated.

When the translator receives the information that a cerfafﬁ"
designated spare bit plane is ﬁo replace an on-line bit plane, it must
reconfigure the memory array input and output switching o reflect this
change. Memory input switching is reconfigured ffrst; Each'memory'word
is then read from the on-Tine array, corrected if necessary, and
re?ﬁritten in the on-iiﬁe arfay with the-spafe bit plane reb1athg the

designated on-Tine bit plane. After all memory words have been read and

restored, the memory array outpuf switching is reconffgured appfopriate?y.

The decision to rép]ace an on-Tine bit plane may be arrived at by
USe.of.varioué switching strategies. It'fs.aSSUmed for'the baSic.sysfem
that thg_feconfiguration signal is issued by_the_QPU as a_resqlt of::._
erﬁor signals received fromvthe trans1aior. .It is also aséﬁmed théf the
switching strategy . is to_replace a_bit;p1an§_asfsopn.as:it is,detectgd

that the bit plane Contains an error. Another switching strategy will

- be discussed in. a following section.

~In the basic system, there is assumed to be no facility available

- for the correction of multiple errors. IF system failure is defined to.

Man e amm el 4 mem e Cma s e ae e s [P VOOV g Fevritone .ot L I SRR

e b s B e R ok



be the occurrence of a non-correctable error, then the occurrence of

more than one error in a'sin91e memory word will constitute failure for

this system. For purposes of system modeling, the occurrence of

simultaneous failures in multipie bit'piahés'is assumed to be
equiva1¢nt to the occurrence of multiple errors in a single memory word.
System failure, theh; will occur when mofexthaﬁ one on-Tine bit p]ane'
has failed. |

Spare bit planes are assumed to operate in a mode identical to the

~on-line bit planes prior to their insertion into the on-line array.

Spare bit p1anes, then, fail with the same characteristics as the
on-Tine units. It is also assumed that after a bit plane has been

removed from the on-line array, it is never re-inserted. A bit'p1ane

- which has been replaced is called an unavailable spare. A spare bit

plane which has not been inserted into the on-1ine array and which may

or may not be failed is an available spare.
The system, then, may be divided into subsystems by function. These

subsystems are:

1) The on-1ine memory array consisting of a number of bit
~ planes,

2) The sparé'bit plane array including both available and
unavailable spares;

3) The error detection circuitry of the translator,
4) The ervor correction circuitry of the translator,
7.5)' The reconfiguratibh switching array, and '
6) The encoding and decoding subsystems of the transiator.

References will bé-made to theSE“subsystémé’ih following sections.

=




Alternate Designs

Several fault-tolerant memory systems which are related to the

basic system have been studied. Four of these systems will be described

in this section.

The non-spared system is identical to the basic system except that

no spare bit pianes are provided. In addition, no reconfiguration switch-
ing circuitry is included, since such circuitry would have no use in this
system. Comparisons made between this system and the basic system will

show the relative improvement to be gained by the use of the spare bit

plane approach.

The TMR system consists of three éystems of the non-spared type

in a triple modular redundant configuration. The functional operation

of this system may be described as follows:

1} For a memory write operation, SEC/DED-encoded word is
stored in the same logical location in #11 three memories.

2) For a memory read operation, the requested memory location
is read in all three memories. Single error correction
is performed independently by the systems and byte parity
bits are generated in each case. The three byte-parity
encoded words are then voted on by majority logic in a
bit-by-bit fashion. The output word is constructed by
using the majority vote for each bit. If the constructed
word is still a codeword, it is transmitted on the data bus.
If it is not a codeword, an erroy program interrupt is
generated,

}This_system, then, will produce the correct output word as ‘long as
at least two of the three memories can construct the correct word. A
functional depiction of this system is shown in Figure 3.

The dupTicated system is composed of two identical non-spared

~subsystems. Data to be loaded is stored in the same logical Tocation in
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both subsystems. Data read from the system is read from only one memory.
If a non-correctable error is signalied by the on-line unit, output
bussing is switched to the other unit and the_data-is read from-thevsame
location. If both subsystems signal a non-correctable error in the

same memory word, an frror program interrupt is generated.

The double-errer-correcting system is a modified version of the

basic system which will correct double errors and detect a triple error
which produces a single error syndrome. The additional features are
achieved by the use of software routines [20] whi.h are CPU'impTemented.
Since double errors are correctable in this system, a reconfiguration
switching strategy is assumed in which an on-1ine hit plane is replaced
only if it contains an erroneous bit position of a word which has two

or more errors., This system will be more fully discussed in a later

chapter.
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III. RELIABILITY MODEL DEVELOPMENT

In this chapter, a generalized method for the computation of
reliability, the probability of satisfactory operation, and coverage,
the probability of recovery if a failure occurs, for a system is
described. This method is applied to form sets of reliability and
coverage equations for the basic system described in the preceeding
chapter. Computer implementation of these equations is examined in‘the

last section.

Generaj Techniques

Prior to the development, it is appropriate that certain notation
be defined. A listing of notation used is shown in Table 1. |
For the purpose of reliability computation, the performance of a
device may often be represented as a set of states and state transitions.
Suppose, for example, that a certain non-repairable device has three
possible modes of operation:
1) Satisfactory operation,

2) Degraded operation caused by event A which occurred while
the device was operating satisfactorily, and

3) Unsatisfactory operation causad by event B which occurred
while the device was operating satisfactorily or by event
C which occurred while the device was operating in its
degraded mode.

These three modes of operation form three natural states for the device.

12
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Notation

P(x)
P{x,r)

P(x or r)
P{x/r)
Px(t,At)

P, .(t.At/1)
or p ™ (4,At)

Pi(t)
%W+Ahﬂ
Pi(t + At/3)

rj(t)

r{t)

13

TABLE 1. Definition of Notation
'Meaning

ProbabiTlity of the occurrence of event x
Probability of the occurrence of .events x and v

Probability of the occurrence of event x or event v

-or hoth

Probability of the occurrence of avent x given that
evernt r has occurred

Probability of the occurvence of event X in the time
period from t to t + At :

Probability of the occurrence of a transition from state
i to state J in the time perjod from t to t + At given
that the state at time t is i

Probabitity that the system is in state 7 at time t

Probabiiity that the system is 1nlstate i at time t + At
and that it was in state j at t1me t

Probab111ty that the system 1is in state 1 at t1me t + At
given that it was in state J at time &

Probability that component j'is non-failed at time t -

Probability that a ganera11zed component is non-fa11ed
at time t - _ _ _
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If the assumption is made that the system is operating in state 1 -
(satisfactory Opefation} at tfmé t, then the probability that the system
wiT] be in state 2 (degraded Gperation) atstime7iv+ At, @ small interval
of time Tater, is the probab111ty that event A occurred in the time

| period: from t to t+ At In equation. form -
Py (T82/1) = P, (t,4t)

where P] 2 (t, At/]) is the probab111ty of a trans1t1on from state 1 to
state 2 in t1me ttot + At g1ven that the system was in state 1 at
time t and PA (t, At) 1is the probab111ty of the occurrence of event A
in - the same t1me period. "

| In a similar manner,,the tran51t1on probab111t1es 1nto state 3

(the Failed state) are
Py 3 (£:88/1) = Py (£, At), and

p t, At/2) t, At)

2,3 ( C (

This state model can be described graphically by'a state diagram as shown
in Figure 4. o | | R o |
An equ1va1ent form of dev1ce state representat1on 1s a matrix T

wh1ch has as its 1,3 entry P (t.At/1) for i # J and 1 - E {[1 kJ

k7,

for i= J where N is the number- of dEV1CE states.i The T matr1x ror the L -

| examp]e dEV1ce 15 g1ven beTow S o
1 2 3

1P (Eaat) | ,, ST
T=2p o0 T PC(t st) Peltaat)
3L 0 0 1

LTS
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Pjsz(t,At/1]=PA(t;At) '

Py 5(Esat/1)=P5(t,1)

Py 5{tsat/2)=Po(t,at)

. FIGURE 4. State Diagram and Transition
o ProbabiTities for Example Device




B e e R et T P

16

Deleting the (t,at) subscripts yields

3 ime ey
o . T "
R o R

T=2| 0 1P, 7
3 0 0 1
- g

‘The probability that the system is in any given state at time
t + At may be expressed in terms of the transition probabilities and

the distribution of state probabilities at time t. These equations may

be obtained by assuming that the system is operating in a state 1 at time t

and by'gomputing the probability of the occurrence of the transition
event to state j in the time period from t to At.
For ithe development, the fo11owing notational convention'wi11 be

used. ¢

P(system operating in state i at t + At given that the -
system was in state j at time t) = Pi(t + At/3).

' To obtain the equation for p,(t + At/1), it must be considered

that for the System to be in state 1 at time t + AL, no state transition

‘out of state 1 may occur between t and t + At. Then the complement of

the two state transitions out of state T must be combined as follows:

(1 - Py p (68711 - Py 5 (£,88/1))

n

P] (t + At/1)

1= P];Z (t,at/1) - P]’3 (t,at/1)

* Py o {,a8/1) Py g (t,48/1)
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If At is defined to be a period of time which is small enough to allow
only one state transition to take place, the 1ast term in this equation
becomes nealigible since it defines the probability of more than one state

transition oCcurring'in time t to t + at. Then,

Py (& +at/1) =1 - Py 5 (E.48/1) = Py 3 (£.0%/1)

1P, (t,at) - Py (t,at)

A

Recalling that

Pey) = R s,
then

Pi(t + At,1) .

P " 1-7

p (£s88) - Py (téAt)‘

Py {t + at,1) = P ()T - PA(tht) - PB(t?At)).

Since there are no transition paths into state 1, the event "the

 system is in state 1 at t + At" implies the event “the system is.in state

T at time t." Then,
P](t + At, 1) = P.(t + At)
So,
Pr(t + at) = Py(£)(1 - Py(t,at) - Pglt,at)).

There are two ways for the system to be in state 2 at time t + at.

Either the system was operating in state 1 at time t and ‘the transition
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from state 1 to state 2 occurred in the time period from t to t + At
or the Sjstem was operat1ng in state 2 at time t and no transition event
out of state 2 occurred in t to t+ At

The eqyat1on for Pz(t + At) may then be formed as fol]ows

P

2&+Au P(t + Aty T) + Py(t + at, m

2(t AL/T)P (t) + (1 - P2 3(t At/z)). (.)._

Pyt.at)Py(t) * {11- Pc(t,At))PZ(t).

By 'similar reasoning,

CP(t# at) = Pt + Ats1) + Pyt + 5ts2) # Pylt + At.3)

P

B(t,AtjP1(t) + Fc(t,af)Pé(t) +”P3(£ + AE.3).

Since there are no transition paths out of state 3, the probability that

the system is in state 3 at t + At and that it was in'state-s,at time t is

the probability of the latter.condition, or
Pylt + at,3) = Py(t).
By substitution, the equation for P4(t + At) becomes
Po(t + at) = Py(t,at)Pylt) + PolE.at)Py(E) + Po(E).

In general, the state prob&biiity:equation for state {1 is

' n
P (t +At) = Z P ,At/J}Pj(t)'+,(T ekZi:Pi}k(t,At[i))P{(t)f

J_ -
J# : : k#i

P1,3(t,At/1)P1(t)'+ P2,3(t,at/2)92(t) + P3(t'+ at,3)

Lo
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where n is fhe number of system states. The first summation in this
‘equation represents the sum of theuprobabi]itieslef all possible.

transitions into state i1 from another state. The coefficiént'of

(t) is the probab111ty “that no transition out~of state 1 W111 occur

int to t + At given that the system was in statn i at time t.

" S*nce for each term-of-the form. P' (t At/u). the u inside the
parentheses 1s redundant, this probab111ty may be repvesented as-
(t at) where the deleted u is understood

The general state probab111ty equation then becomes

T g TS I
P.(t + at) = j21 PJ,i(t’At)Pj(t) + (1 - RZT Pi,k(t’At))Pi(t)'

J# ok - (31

If vectors Ejt + At) and P(t) are defined byr7

P,(t + 4t) N L2169

1 Polt + at) RN LG
P(t+at)= | . . P(t) =

Pl t+ at) Pplt)}

“then équatfon<(3F1)"may_be represented in matrix form as. =

T

P(t tat) =T x P(t) L _  o (3—2)

where T is previously defined and Tr is the transpose of T.

" Ina complex system, the events7Whib* causé'éfatn transitions may be:

composed of many subevants which must geecur for the transition event to

":occur. It may be more des1rab1e to work W1th these subevent probab1]1t1es '
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than to attempt.to'determine the probability'of the overall event. For
this reasdn;~it is necessary to'ana1yze the’pOSSib]e'typeS'of subevents
and to be able to calculate the probab111ty of occurrence of each type
' For any trans1t1on event 1,3 w1th probab111ty of occurrence P ] {t,At)

it is possible to place any subevent in exact]y one of the fo11OW1ng six

*event c1asses

1. The 1a11ure event of a system component or component group
‘prior to time t +-At. : L .

2. The non-failure event of a system component or component
group pr1or to time t + At.

3. The failure event of a system component or component group
-~ in the time period from t to t + At,

4. The non-failure event of a system component or component : :
group in the time period from t to t + At. -

5. The. fa11ure event of a system component or component
group in the time period from to t + At given its non-
failure prior to t.
6. The non-failure event.of a system component or component
- group in the time pericd from-t to t + At given its non-
- failure prior te t.
-In order to compute. the probability of events in each.of these : S
classes, it is neCessary_to first examine the basis for the computation e
- of failure probabilities. -
Each system component or component group has associated with it a

- failure probability density function, f(t). In the general case,

£(t) =-'-_.d—gé-§l and j Fe)dt = 1. [23]

The apr1or¢ probab111ty of component (group) fa11ure 1n the time per1od

'from t1 to tz may be expressed as



)

e

. 2]
PF = f{t)dt, and
t _
'l .

the apriori relfability of the component (group) at time ty is

ot
rty) =1- [ fle)dt
| -,
- f foydt.
t

3
If the assumption is made that, at time ti # @, a particular
component (group) is non-failed then tha.prqbabiTity of fajlure prior

to this time is @ and the probability of failure after t1 is 1. Then,

8

f'(t)dt = 1.

1
From [26], for F(t) exponential, F'(t)=f(t—ti).' For this and following

developments, all failure density functions will be assumed to be of
the exponential type. | o L
If the failure probability of this component in the time period from

t] to t; + At is of Concern, fheh

£, + At to+at
[ emar=f setpa
Y A t;)d
st
= [ fltyat
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which is the probability that the component (group) will fail in the
interval from t to t + At given that it is non-failed prior to time t.

By use of these concepts, the subevent probabilities for each class

may now be computed as

Class 1. P

C]ass,?. P2

Class 3. P

Class 4. 'P

foT10w$:
t+ At

f Ft)dt

0

1}

-]

1 -f F(t)dt
t + At

I

T - r(t + AL). .
t 4 AL

1- f £(t)dt
0

1-P

n

1

r(t + At).
t + At

f F(t)dt

t

1}

)

[r:] e+ ]

[ et - f | %(t)dt.

t t + At

p(t) ~ r{t + AL).
t + At

1-f F(t)dt

t

=1~ P,

1 - r(t) + r(t + At).
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At
f f(t)dt
0
T - r{at)
At

1;f ft)dt

1

Class 5. P5

I

-

Class 6. P6

i

r(At).
To completely specify the state probabilities, it is necessary to

select a base time, t In general, may be any time at which

base” tbase
all state probabilities are known. The following discussion will

assume that t is 0. It is common to denote one system state, m, as

base
the starting state and assume that
Pm(t = tbase =0) =1, and
Pn(t = tbase = () = 0 for all n#m.

The state probabilities may be computed for any t > 0 if:

1. A11 state transition equations are known, and

2. A1l system component (group) reliability equations are

known.
To obtain 2 closed-form solution for each probability equation,

it is common to rearrandge each equation into its differentiallform and
solve the equation set simultaneously. By making simplifying assumptions,
the equation set may be approximated by a set of linear differential |
equations.. For systems with & large number of states, however, the

simultaneous solution problem may become quite involved. In additicn
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if the analysis of a related system is desired, only a slight difference
in architecture or operation may necessitate the re-derivation of all
state equations.

If computer eva]uatibh of state probabilities is possible, however,
the open form of the state probability equations may yield satisfactory
results at considerable savings in effort. In'addition, no simplifying
assumptions need be made to assure equation linearity. State probability

equations to be derived in this paper will remain in this open form.

Reliability Eguations

For the basic memory system, the insertion of each spare bit plane
on-1ine performs a natural partitioning of system states. By determining
the number of available spares it is possible to define the state of
the system. If the basic system has k bits per memory word ard s spare
bit planes initially available, the system state diagram may be constructed
as shown in Figure 5.

For each state 1 (1 < 1 < s+1) in this diagram, the system is

operatiﬁg with exactly s - i + 1 spare bit planes available, and ho
failed bits in any word (no failed bit planes on-Tine). In state st2,
the system has suffered a single bit plane failure but there are no
available spare bit planes to replace the failed on-Tine bit plane.
The system hust use the sing]e—érﬁor-corraction circuitry to correct
one error in each memory word in this state. The FAIL state is the
System state wﬁén an uncorvrectable errof has'occurred. -

‘The development of transition and state probability equations for

this system will now be shown.
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For the transition event to occur from state 1 to state i+l

{1 <1 <s) in the time period from t to t + At, exactly four subevents
must occur. These subevents are:

The failure of exactly one on-line bit plane in the

time period from t to t + At given the non-failure

of all on-line bit planes prior to t,

Eq: The non-failure of the system error detector (group)
prior te time t + At,

E.: The non-failure of the system reconfiguration switching
circuitry {(group) prior to time t + At, and

The non-failure of at Teast one available spare bit plane
prior to time t + At.

These subevents belong to classes 5, 2, 2, and 2, respectively.

The subevent probabiTities may be computed as:
Pg (1) - 5y (et %N (1-r(at))
= k (r(st)) KD (1p(at))

PEZ(t,At) =rglt + At)

PES(t,At} rs(t + At)

- 141

PE_-(t_,At) = 1-(1 - r(t + M‘.))(S

where all symbols are as defined in Tables 1 and 2.
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Definition of Reliahility Symbols
for Basic System

SymboT Meaning
r(t) Reliability of an on-Tine or available spare
bit plane at time t.

Fd(t) Reliability of the system error detector (group)

' at time t.
rc(t) Reliability of the system error corrector {group)

. at time t.

rs(t) Reliability of the system reconfiguration switching

circuitry (group) at time t.
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Assuming subevent independence, then
(t.at) = P {t,At)

k (r(at)) 1 (on(at))

‘Pi,i+1 PE (t;at)-PEB(t,At) PEd(t,At)

- rglt + at) rS(t + At)(1-(1-r(t + At))(s-i+l))‘

For T <1 5,5;
Denote rm(t) by vy and o (t + At) by o Then
P, i (tat) = K(r(at) E N (1-rat))

For 1 <1<S.

The state transition event from state i to state s+2 {1 < i <s + 1)
- represents a transition of the system from a condition in which no .

on-line bit planes are failed to a condition in which exactly one on-Tine

bit plane 1s failed and no non~faiied spare is available for replacement.

The subevents composing this transition event are:
El,,Ez,,E5rand [Eﬁ.or (E4 and E7)]

B where:ET, Ezgfahd;E4 are'as previously defined and.ES,_EG,iand-E7 dre_t

as described below.

ES:' The non-failure of the system error correction (group)
prior to time t + At. _
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E.: The failure of all s - i + 1 avai]abTe-spare,bit.planES
prior to time t + At.

E,: The failure of the system reconfiguration switching
circuitry (group) prior to time t + At.

The state t?ahsition probabiiity may now be formed as

'Pi,§+21(t;At) ='k(f(ﬁt))(k—])(14r(at})'rd’rc’ :

e ST s e ST (e 3,

which reduces to

Pi,s+2(t,at) =k (r(At))(k’])(1—r(AtJ) ry T
: h - ry (1107 (5540
ForT<i<s+1.
_Define for each state i in the_system state-diagram a_prqbabi]jty_
Pi

; (tfat)_

H

which is the probability that, if the system is in state 1 at time t,
no;transitibn_outaof-state'i.w111 oceur before time t + At. _Thgn, for

the basic system,
Pr,i’_ii(t,At) 4 P'I-_.'H'-i (‘t,At) + F’i,S'i‘z(t’ét) + Pi,FAIL(t’At) = 1] |
Cfor T<di<s,

Py, s {BAE) + Popy qup(a0t) + Poyy papg (toat) = 1,
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PS+2,S%2(t’At) + Ps+2,FAIL(t’At) =1, and

Peary, par (Bs0t) =1

The formulation of the equation for P, .(t,At), then, uniquely
specifies the equation for P, FAIL(t’At)' Since, for this system, the

non-transition event.1nv01VEs fewer subevents than the transition

‘event to the failed state, these non-transition equations will be developed.

~ For states 1 through s+1, the only event occurrence which is
necessary for the nonutransition event to occur in time t to t + At
is the non-failure of the k on-line bit planes in the same time interval

given that all were non-failed at time t. Then
P- s(t,at) = (r(At))k for T<i<s+1.

The operation of the system error detector and corrector is required

for the'sysfem to be 1in state s+2 at time t. The non-transition event

for this state, then contains the subevents

E : The non-failure of the system errer detector (group)
in the time period from t to t + At, given its non-
- failure prior to t, and .

E.: The non-failure of the system error corrector (group)

in the time period from t to t + At, g1ven its non-
_fa11ure prior. to t. -

In addition, none of the k=1 on-Tine 0perat1ng bit planes may faii from

't to t+ at. Then

Purn a9 = gt fae e
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For any state i, (1 < i < s), P. (t,At) may now be computad as
- = i,FAIL

p'.l,FAIL(t’At) = 1“P.i’.i(tsﬂt)." p'i,S'i'Z{t’At) - P'i,‘i'l"] (t,At)

1= (r(at))¥ - k(r(ae) T aor(ag)) yor -

C 1 - (-0 (571

- k(e(ae)) KD (or () g r g (1-(er) (577
= 1= (et < k(e K (1er(en))
Irgtr - vy (1= (e (71T

+ ryrrg (1-(1-r7) (77

=1~ (e(stn)¥ - k(e S oeat))ry

- - - . -~ -i+ ‘

 Drg g (e ) (1-(Ter )(S ! ”)] [

For 1 <1 < s, |

For states s + 1 and s + 2,
N

Ps+1,FAIL(t’At) =1 - Ps+1_,s+1_(t=’:‘t) - Ps+1,5+2(t,at) ;

=1 - (r(at)* - k(r(At))(k;])(14r(At))rd’rc’, o

- and’ E

Porz, FRIL{EAE) = 1 = Pgyp qup(tost)
o (k-T)

"
o~
.

ry(at) v (at)(r(at))
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The stataﬂprohabi1ity equation . for state .1 may be obtained by

_use of equat1on (3 1. the general probab111ty equat1on The resultant

aquat1on is

P (t + at) = (1- P1 2(t at) - Py S+2(t At) - P, FAIL(t at))Py (t)

P

Liltate ey (3-3)

il

(r(at))¥p; (t).

The state probability equation for states 2 through s may be obtainedvas

Pi(t + At) . (t,At) P 1(~t:‘ 4+ (1P, 1(t,m:) :

1 =T,1 i1+

Pi,sealBaAt) - Pi,FAIL(t=At));Pi(t)

Pi—],i(t’At) Pi_](t) + Pi,i(t’ﬁt} Pi(t)

|

(e (at) D o s) o010 ST, ()
+ (r(at))¥ P.(t)
For 2 < <s.
N For stﬁfe-s+1; tﬁe staté'proﬁéﬁiliéy:éq&ﬁtéon is

: [(P(At))( )(war(At)) g f(1-(1fr?))JPs(t)"

+ (r(at) Py (8)
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So for all states i where 2 <7 <s + 1,
Pyt + at) = k [r(at) S (e (st v (1-(1r) 7Ty
P, () + (r(at))* p.(t), S .(354)_-
for2<i<s+1

The state probability equation for state s+2 is

s+]

Poplt +at) = } P

3= p(E:08) P5lt) + Poip o1p(8:08) Poyp(t)

j.sta

s+1 - '
Z] k (F(At))(k“ )(1 -r{at)) rd‘r .

- (1 (1eeny (573 PL(t)

+ (rg (W) (r a8 (r(at) D _e).
Reduction of this equation yields

Pl + 86) - k (r(At))(k’J)(i—r(At)) ey T

o L |
sz:l (1-r ~(1-(1-r )(S"""”)) Pslt)

k(gD e e D). (308)

" The state probability equation for state FAIL is -
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&
PEAIL (t.+ At) = kzl Pk’FAIL(t,At) P (t) + PFAIL(t)

"

k§1[1-(r(At))k‘- k(r(At))(k"1)(1-r(At))rd*

Tre + (ler,7) gt (1-01-0) K17 p (4
4 (]-(r(At))k;‘k(r(At))(k"1)(T—r(&t})rd‘rc’Ps+1(t)

(= rglat)) (r (a2)) (e () b (1)

5

+1 .
- iz Cr(at))® + k(r(at)) E 1 (ar(at) ey

g+ (o) vy (-(1-e) 737 5 ()

- Irglot) v (at)(r(at)) K17 o (1)

+1
- ig1 [(r‘(At})k +k (r(At))(k"T)(1nr(At)) ry’

.[ré' + (-r7) r” (1-(1-#'}(5"k+]))]]Pk(t)
- Trg(at) v () (r(at)) T o (e). (3-6)

The system re]1ab111ty may now be computed as the summatqon of

'probab111t1es of be1ng in any state other than the failed state. Then:

: s+2
CR(t) = Z pi(t) = ]"PFAIL(t) - - (3-7)

. where the P.'s are obtained from equations (3-3) through (3-6).
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It is only necessary then, to compute the probability of the occurrence
of state FAIL at any time t to determine the syStem refiability at that

time.

Coverage Equations

System coverage (C) is defined to be the probability that the system
will recover given that a failure has occurred [21]. This probability
is useful in reliability calculations and provides an indication of the
effectiveness of a fault-tolerant system. Hence, a derivation of
coverage equations for the basic system will .now be shown.

If the system's states are examined, it is evident that a failure
in the time period from © to t + at w'y be grouped into 1 of 3 classes

dependent, upon the failure's effect on the system state at time £ + At.

. These classes are

1. The failure causes no change in system state,

2. The failure causes a transition to another system state
which is not the failed state, and

3. The failure causes a transition to the failed state.
The occurrence of class 1 and 2 failures ceontribute to system coverage
while the occurrence of class 3 failures does not. Denoting the

propabitity of the occurrence of class L - type Failures given that a

- failure has occurred in the time perfod from t to -t + At by P(L), then .

c(t) = P(1) + P(2)
But P(T) + P(2) + P(3) = 1
= 1-P(3)

so . C(t)

1-P(Class 3 failure/a failure has accurred in t to t+at).
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In general, however, the subevents which constitute the class 3

failure event are dependent on the current system configurétion {or state).

To overcome this difficuity. the state coverage, Ci(t) (system coverage

given that the system state at +ime t is 1) is introduced, where

Ci(t) =1 - P(state i, class 3 failure/a failure has occurred

in t to t + At where the system is in state 1 at
time t),

and a state 1, class 3 failure is a component failure which causes a

transition from state 1 to the failed state.

Now, by Bayes' Thecrem,

PIA;/B) = BTB7RYPUA,) ¥ -

where

P(Aj

and

P(A1

P(B/A;)P(A;)

+ P(B/A PR,

,%)=ﬂhr]ij,r3n

or A, or ... or An) = 1.

The following events are considered

AE:

AZ:

No failure has occurred in t to t + At;
Occurvence of a state i, class 1 failure in t to t + At;
Occurrence cf a state i, class 2 failure in t to © + at;

Occurrence of a state 1, class 3 failure in t to t +'At;

~ Occurrence of a failure in t to t + At where the system

state at time t is 1.
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Then

Ci(t) =1 - P(A4/B)
| P(B/A,)P(R)

= 1~ B(B/A,YP(A;) ¥ P(B/A,P(R,) * P(B/A;]P(A;) + P(B/A,IP(R,)

But P(B/A,) = P(B/A;) = P(B/AQ) =1, and P(B/A]) = 0, s0

P(A,)
C;(t) =1 - P(A,T ¥ P(A;) ¥ P(A,)

-1 - P(Occurrence of a state i, class 3 failure t to t+At)
P(Occurrence of a failure in t to t+At/state at t is 1)

Since each occurrence of a state i, class 3 failure results in a
transition from state i to the failed state and no other conditions
cause this transition, it follows that

P(Occurrence of a state i, class 3 failure in t to t + at)

P(transition from state 1 to the failed state in t to t + at)

= P35 parL(taat).

To compute the probability of a failure in the time period from
t to t + At, a hypothetical series system S, which contains all system
components for state i, may be coastructed.

If the reiiability, Rs(t), of this system is computed, then the

failure density function of the system may be obtained as

The probability of system S failure in the time period from t to t + At

+

15
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t+ At

[ i a
t

P(Failure of S in t to t +At)

Rs(t) - Rs(t'+ At)

as was shown in a previous section.
The reliability of a series system is the product ef all system

component reliabilities, so

N. n.
i i

P(failure of Sint to t+ at) =T r.(t) - I rﬁ(t + At),
j=] J J‘:']

where n, is the number of components in S and rj(t) is the reliability
of the jth system component at time t.

Since the failure event for a series system occurs when any system
component or combination of components fails and since S contains all

components of interest for state i of the original system, then

P(Failure of S in t to t + At)

= P(occurrence of a failure in t to t + at/state at t is i)
n. n;
i i
= I pt) - T rj(t + At),
5=1 9 j=1

where ny is the number of components in state i of the uriginal system.

As was shown previously,
. = At + =r,
ra(t) 1 and rJ(t At) rJ(At)

for a system component j which is required for operation in state i at

time £. If the number of these components is Mes then
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P(occurrence of a failure in t to t + At/state at t is i)

N.-m, . N.-m.
1 m1 m? 1 mT

r.(t) - T r {(at) §m r (t+ At).
j=1 g=1 ¢ k=1 K

i

For state i {1 < § < s+1) of the basic system, this probability is
r.ry r.(s—i'!‘l) - (Y"(ﬂt))k LT ;(Y,,)(S—'H‘])
dc's d ¢ 's

where all symbols have been previously defined.

Then
Cilt) =1 - Ts~i+1)Pi’FAILit,At) (s=7#T) (3-8)
Pyrere? -{r(at)) rd’rc*rs’(r')
for i<i<s+1.
For state s+2, Cs+z(t) may be obtained as
P (t)
Cs+2(t) =1 - s+2,FAIL (3_9)

- (k"‘l) -
Fg (r(at)) rd(At)rc(At)rs
Recalling that
Ci(t) = P(system will recover/a Tfailure occurs in t to t + At
where the system is in state 1 at time t),

then

P[(System will recover/a failure occurs in t to t + At} and
the system is non-failed at time t]

s+2
Ci(t) Pi(t)'

= 1
i=]

Since, for a non-repairable system, it is meaningless to compute
coverage for the system after it has failed, the total system coverage

may be considered to be
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C(t) = P[(System will recover/a failure occurs in t to t + At)/
the system is non-failed at time t].

This is of the form
PL A./B]

whereas the previously derived equation is of the form
P[ A and B].

Since

P[ A /8] = ZLAand B,

then
c(t)

n

Total system coverage

st+2 _
iZ1 C.(t) py(t)

st?2 )
L Py(t)
i="

s+2
i§1 Ci(t) Pi(t)

- R(t) ] (3"-10)

i

where the Cils are obtained from equations (3-8) and (3-9}, the Pi's

from equations (3-3) through (3-6) and R from equation (3-7).

Computer Evaluation

Three approaches to computer evaluation of equations of the type
presented will be described in this section. These wethods are:
1) Manual substitution of transition probability equations

into the general state probability equation and evaluation
of the state probability equations each At,

S S SRS SO AT SO SO I SRV WS S
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o 2) Evaluation of the transition probability equations and
Lo substitution of the results into the general state
f probability equation each at, and

. i . ) — —
i 3) Evaluation of a product of a T - type matrix and a T
' matrix which is updated each at.

T Methods T and 2 are straightforwér‘d. Method 3 will now be dis.éussed.

It was shown in a preceding section that

P(t + at) = T' x P(t) (3-2)
- where P(t + At) and P(t) are state probability vectors and T contains
J: P, ;(t:at) in fts 1,] Tocation
N Then _
I
L P(t + 2at) = T, x P(t + at)
EJ where ﬂ is T evaluated at time t + At. By substitution,
. P(t + 25t) =TT x [T x P(£)]
i = [T« T'1 x (%)
w In general,
1
= T.= T =T =
y P(t + nat) = [Ty % Tpop % «ee X Ty x T 1 p(t)
i =[Tx T, x XT. ,XT ]TP(t)
i T5 n-2 n-1- =
=T P(t)
~ where T, = [T x Ty x oo X T o x T 31 (3-11)
5 Thus, te evaluate P(t + nat) when P(t) is known, the following algorithm
- may be used.
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“ 1. Evaluate T at time t, set T}*; T, i=1.

2. Evaluate T at time,t + 1At to obtain‘?%.

4., If i <ntheni=1+7, go to 2. Otherwise, Ejt‘+ nat} =

) Thl x P(t), stop.

For a system with a small number of states and state transitions,
method 1 is managable. For systems with a'1arge number «f states, how-
ever, either method 2 or 3 is more expedient. Example flowcharts for
méthods 2 and 3 are presented in Appendix A. Program listings may he
found in [27].

The selection of a suitable At for use in the computer evaluation
of these equations is a difficult task. Tiuis problem will now be
discussed.

The time period At was originally defined to be a time period in
which no more than one state transition is Tikely to occur.. Since |
the probability of more than one state transition occurring may be
represented as a product of state transition probabilities, the
monitoring of these products during execution will give an indication

of the appropriateness of the selected at.

By specifying a maximum_a11owaﬁ1e probability, Prax® for the
occurfence of two state transitions in tine At, and reducing At when
this probability is exceeded, the computational error may be reduced.
The following algorithm will implement this self-monitoring coatrol
for a method 3-type evaluation.

1. Evaluate T at time t, set Ts= T, § = 1.

la. Specify initial at, p__
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2. Evaluate T at time t + 1At to obtain "7'1..

2a. For each non-diagonal entry Ti(j,k) compute T?(j,k)-(?}(k,m)
for each m. '

2b. If any of these products is greater than p___, reduce At
_ _ _ max
and go to 2. _ . _

3. Ti+1* = Tax X Ti'
b, Tfi<ntheni=i+1, goto 2. Otherwise P(t + nAt) =
T« X P(t), stop.

In general, the value selected for p is dependent on the

max
subsystem failure rates and the computational accuracy'of'the com-
puting system used. For the compﬁtations of this papef, satisfactory

max 1 thg range from .0001 to

results were obtained by'the use of p

.000001.

The magnitude of the computational ervor accumulated at time t may
be approximated by determining the magnitude of the difference of the

sum of all state probabilities and 1. In equational form,
N _
le(t)] = |1 - .X] Pi(t)]
1=

where N is the number of system states.

The percent error in system reliability may be approximated by

e(t)% = J-%%—L % 100%.




IV. RELIABILITY EQUATIONS FOR ALTERNATE SYSTEMS

This chapter will show equational developments for the reliability
of the non-spared, TMR, duplicated and double-error-correcting systems.
A method wiT1 also ba showﬁ which allows the computation of the
probability of various memory word fault patterns and the effects of

these patterns on system reliability.

Non-Spared System

The non-spared system is capablie of operation in only 3 states.
These states correspond to states 1, s+2, and FAIL in the basic system.
By substitution of O for s in the equations for the basic system, the
state probability equations for states 1, 2, and FAIL of the non-spared

system are obtained as follows:

Pys, (¢ * at) = (r(At))kPNs](t) . (4-1)
Pys, (& + 1) = k(e() TN (rat)) rgre Py (8)

+ (rd(nt))(rc(m)(r(f.\t))("“%ﬂsz(t) (4-2)

b (6 at) = 1-Lir(ae))E + k(r(ae)) KV (tor(at))rg e T

NSEaIL | | | |

. PN51(t) - [rd(ﬂt)rc(At)(r(At))(k"1)]PNSZ(t)
| | (4-3)

and
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Rﬂs(t) PNS‘(t) + PNS (t)=1-P (t) : (4-4).

Wear’
where the Prs s are obta1ned from equations (4 1) through (4 3) ‘

“TMR System. o
The reliability of the TMR system may be approximated;from the

reliability of the non-spared system by appiicatfoh_offthe:CTESSﬁéai:~T
THMR equation. From [24], this equation is
Ry (t) = [3(R(E)Z - 2(R(£))°T vy (£
TMR Yo

where R(t) is the unreplicated unit reliability, and rVT(t) is the
re11ab111ty of the voting and codeword testing circuitry.

fhen

where RNS{t) is obtained by use of equation (4-4)

Duplicated System .

The reliability of the duplicated system may be computed by
determining the probability of the various operational modes of the
system. These modés‘are:

1. Both ndh-sparéd units'operate corﬁéct1y,

2. the unit currently on-Tine fails, and the sense switching
circuitry switches the system output to the other unit
which is non-failed, and

3. the unit currently off-Tine fails.

The reliability of this systém, then, is:
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Ry(t) = [Ryg(817° + [1 - (8] (o) St

Rl [1 - Ryg (0]

T Ryg(t) + T = Ry (0 Ryglts) rgg(8), - (4-6)

where re (t) is the re11ab111ty of the sense- sw1tch1ng r1rcu1try and

Rys is obta1ned by use of equat1on (4-4).

_ -Double-ErrqrfCorrecting-(DEC) System _

Carter and McCarthy [20] have described a fau1t—£o1erant memory
system of the double-error-correcting type wh1ch ut1]1zes a. software
implementable doub?e-error—correctjon algor1thm. The a1gor1thm is based
on a concept of memory word error modeling which will now be described.

The non-operational modes of a memory word bit cell are assumed
to be: -

1) Stuck-at-one (s-a-1), and
2) Stuck-at-zero (S—a-ﬁ).' e
The occurrence of either of these modés:is termed a fault.
The class of all faults may be-partitioned into two_subC1asses. L

by the effect of each fault on the correct memory'wobd:bit. If the

fault is of the s-a-x type. aﬁd'tﬁe'bbfrect memdeIWOfd=bif3fb?_that- .

location is x, then no effﬂct on the memory bit occurs.  Faults of this

'subc1ass are termed fa11ures. If the fau]t is " g-a-x and the correct'”w

bit is X%, then the Tau1t causes an 1ncorrect response o a memory read
.operat1on Faults of th1s type are ca11ed ggrggg :

B The !Eiﬁﬂlﬁ of a binary word is def1ned to be the number of
| b1nary d1g1ts (b1ts) in the word wh1ch are 1091c 1. By analys15 Of
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the words of a particular code the sum of all codewerd weights, W, may
be obtainedﬁ_ An average codeword weight, w is computed by

W =

<|=

where V is the total number of codewords. If W is divided by N, the

length 1n bits.of each codeword an approximation to the statistical

*probab111ty of any gijven b:t of a word being a- Iog1c 1 s obtained.

~In-equationai. form,

i = = = .‘{
.P(NDFq bit f 1).~ EWT g and
P(Word bit = ) = P g 21 - Pq=1- ﬁ=

A statistical ana]yéis of faults. for a memory system should isolate

~ the following probabitities for the bit locations of a data word.

P(Bit location s-a-1/Tocation faulted) PS], and
.' P(Bit 1ocatibn s-a~0/10catibn'fau1ted) = PSE;

: it is now possible to obtain the probability of a failure when it

is known thaf a.single word'fauit'has pceurred.  This probability is

P(fa11ure/1 fau]t) = P[(BIT 10cat1on s-a~1/10cat1on fauited)

- and Word Bit = 1] + P[(Bit location
s a-E/Tocat1on fau]ted) and‘word bit

In a similak manner,



15 (n+m)( h-

48

(Error/] fault) ] P b + Png w1

 Singe P(failure/1 faU1t} + P(error/1 fault)

=P + P

51 Pt ¥ sw wﬂ Psg w'!

st Pwp | 3
.(Ps1+Pg)(Pwl+Pﬂ) | | o :

I

number of faults has occurred
Then '

- P(n failures and m ervors/n + m faults)

_ (Hm Cmi
= { )(PSI “wi ¥ pSﬂpwg) (PS1 wﬂ Sﬁpwl w4

If the binomial distribution is also used ,th compute the probability

\

of n+m faults, then

P(n failures and m errors, n + m faults in b bits)

) (n:m)(PS1PW1+PS¢Pwﬂ)n(PS]Pwﬂ P w1) n+m )b (n+m)(1 P)(n+m)

‘ ifufjWhQPEV#'is the reliability of a memory word bit Tocation.

51nfe ( } is the number of nim-fault words which may occur and

ntin

B (n:mlﬁis-the_number_qf ways. that exactly n failures may be ordered among

ntm faults, then the number of distinct mn-fault words with n failures

n+m) ‘The total number of distinct (thh reqard to number and -

}order of failures) nim-fault words is then
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[ z 0.

These numbers may now be used to obtain the percentage of f-fault
words which contain a given number of failures. For example, the

percentage of f-fault words of b bits which contain f failures is

fy,b |
f(fisf) x 100% = ——;rl;;—- x 100%,
b
L2 (IR [ (]

a useful figure, since an f-fault word with f failures is error-free.
The application of these concepts to the double-error-correcting
system will be shown following a discussion of correctable error types
for the system.

A fault pattern vector for a memory word is defined as
FPV = {(he jf, qe -nf}

where h and q are the numbers of errors in.the memory word data and
check bits, respectively, and j and n are the numbers of’failures
he doubie-error—correcn1on algor1thm discussed w1T1 a1ways

produce a va11d correction when presented w1th memory words w1th FPV's

~of certain forms. These forms, from [20], are as follows.

(2e F, e PF): (le BF, le PF); (Pe BF, 2e BF):
(2e'1f' e BF); (26 PF, e 16); (Pe @F, 2¢ 1€);
.(2£ 1, ge 19)5 (2e BF, ge 26); (e 9f, 20 26);
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For memory words with FPV's of the following forms correction may or

may not be attempted and results may be invalid [20]

(Te PF, le 16); (Be 1F, 2e pF):
(1e pf, le 2F); (Pe 1F, 2e 1f).

No error correction is attempted in the following cases [20]

(1e 1f, 1e pf);
(2e 2F, pe #f); (le 2f, e Pf): (le 1f, le 1f);
(4e pf, Pe Pf); (3e pf, le pf); (2e OF, 2e PF).

It should be noted that the preceding FPV's Tisted all contain an
even number of errors and will produce error syndrome vectors of even
weight. The computation of a syndrome of this type by the memory
translator causes the invocation of this algorithm.

A second algorithm has been designed to attempt data reconstruction
when an odd-weight error syndrome is computed. Since many triple-error
patterns produce‘a single-error syndrome and a high percentage of these
syndromes imply an efror in a valid bit, a ériticai function of this
algorithm is to distinguish between single and triple word errors.

This algorithm fs capable of reconstructing all memory words with
FPV's containing exactly one error and two or fewer fajlures. In
addition, all memory words wfth FPY¥'s containing one error and three

failures are corrected with the exception of the FPVY

(ge 3f, le §f)

for which no reconstruction is attempted [20].
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Valid results, [20], are also produced for
(Pe @f, 3e pf) and (Pe B, 3e 1f).

Correction results are variable [20] for memory words with the

following FPV's

(2e §F, e Bf); (e §Ff, 2e Bf);
(2e §f, Te 1f); (le Bf, 2e 1f}.

No correction is attempted, [20], for the case listed above and the
cases

(3e pf, Pe BF); (3e @Ff, Pe 1f).

The 1istings above show that any combination of two or fewer
faults in a memory word will be algorithmically corrected. For words
with three faults, the percentage of words which are corrected may be
computed as follows.

The number of ways in which three faults may appear in a word with
k bits is

(The number of ways 3 faults can appear) +

(The number of ways 2 faults and 1 error can appear) +
(The number of ways 1 fault and 2 errors can appear) +
(The number of ways 3 errors can appear)

=t sy esd et (K

The first term of this sum represents all 3-fault words with no errors.

No correction is required for these words. In addition, the triple
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error algorithm will correct all 3(5) three-fault words with only one

error.

A 3-fault word contdining 2 errors will not be corrected if the FPV

is of the form
{(le 1f, 1e Pf).

If the number of data bité in the word is D and the number of check hits

is C, then the number of 3-fault patterns of this form is

GO E =2 O

The number of 3~faﬁ1£ words with 2 errors for which correction is

uncertain is
AAE + A1y = 206) + () =3 063).

A 3-fault word with three errors will be corrected if the FPV is

of the form
(Pe pf, 3e BF).

The number of patterns of this form is
(5)-

The number of 3-fault words with three errors for which covrrection is

incertain is

[OE + O = te)) + (1.

T e T e e T
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The total number, T3, of 3-fault words which are correctable ié then

bounded as follows
[(g) + 3(%) + 3(%) - ZC(g) + (g)] <Ty <
[5) + 3¢5 + 3%y - 260) + §) + 30() + ¢B) + n(5)7

= 0705 - 2xQ) + (1< Ty < 765 - o) + () + R

Since there are 8(5) possible ways that 3 fau.ts can occur, the
percentage, Uqs of 3 faults words that can be corrected is
T3
u, = —— x 100%.
> s
3
For the {22, 16) code of the basic system, Uqy may be computed as:

75.96% < u, < 89.45%

3

K breakdown of double-error-correcting system correction percentages
by the number of memory word faults is shown in Table 3. In this
table, um,n denotes n errors which are system correctabie. U
denotes the total percentage of m-fault FPV's which are correctable.

The switching strategy assumed for the double-error correcting
system is as follows: |

1) If a memory word is detected to have a single ervror, the
single error correction procedure is performed.

2) If the word has two errors, one of the faulty on-Tine
bit planes is switched out and replaced with a spare.
Error correction is attempted by use of the double-error
correction procedure,
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TABLE 3. Percentage of Memory Word FPV's Correctable for
the Double-Error-Correcting System (22, 16) Code

Ur,e
F e (% correctable/100%)
# FAULTS  # ERRORS x(% of F-fault words with e errors/100%)

______ o« MY
______ o MR
1 0 ui,b R
______ L ) S
1 =
Oa.l U-I 1
2 0 uZ,O - o25
2 | “2,1 b
______ A X R
2 0,1,2 u2 =1
3 0 u3’0 = 125
3 1 u3:1 = _375
3 2 .258 <« u3,2 < 317
______ s s OEcuzgs.08
3 0,1,2,3 75896 < us < ,8945
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Table 3 (continued)
uF,e
F e (% correctable/100%)
# FAULTS # ERRORS x(% of F-fault words with e errors/100%)
4 0 u4,0 = 0625
4 1 u4s1 = ,25
4 2 .102 L) < .118
4 3 L0005 < uy 5 < 0395
4 4 u4’4 = 0001
4 0,1,2,3,4 4151 < u, < 4711
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3) If the word has either three or four errors, a correction
is attempted. IF the correction is successful, faulty
on-1ine-bif planes are replaced with spare bit planes until
either all available spares are exhausted ar only one
fauTty bit plane remains on-line.

A T matrix may be constructed as shown in Figure 6 with the svstem
configur «tion in each state as shown in Table 4.
Appendix B shows the derijvation of the state transition probability

equations for this system. If the notational simplifications

Oty korry) (O (r(88) 5 10y = ik,

kio (5—ﬁ+2) (1~r')(s;X+2"k)(r‘)k = E(x,y), and r(at) = r¥
are made and the reiiability of the algorithmic correction procedure
is denoted by rps then the transition equations appear as follows:
P]’z(t,At) = D(k,1) rd’rc’rAﬂ
P1,3(t,at) = D(k,2) rd'rc‘rA’rS‘(l—E(z,O)L
Pm(t,m) = D(k,3) ryr o ryret(1-E(2,1)).
P],5(t,At) = D(k,4) vy r rars” (1-E(2,2)).
P1’S+3(t,At) = p(k,2) rd‘rc’rA’(l-rs‘ + r.” E(2,0))
+ D{k,3) rd’rc’rA’rs’(E(Z,l)—E(Z,D))
+ D(k,4) rd’rc’rﬁ’rs'(E(2,2)-E(2,7))_
P1,5+4(t,At) = D{k,3) rd’rc'rﬂ'(1—rs’ o’ E(2,0)})
+ D(k,4)} rd’rc’rg'rs’(E(2,1)-E(Z,D)L

P1’S+5(ts[-\t) = D(k,4} T'd'f'c'r'A'(l-'Y’s' +r " E(2,0)).

s

uuuuu
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TABLE 4, State Configurations For Double-Error-Correcting System

State
1

2<i<s+?

s+ 3

s+ 5

FAIL

Configuration

K Good bit planes on-line, S available spares

K-1 Good bit planes on-iine s - i + 2 available
spares

K-2 Good bit planes on-Tine
K-3 Good bit planes on-line
K-4 Good bit planes on-1ine

An uncorrectable word error exists
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Py.3(ta8t) = D(k,0)-

P,

t,at) = D(k-1,1) ryr *rpée ” (1-E(i.0))
2<i<s+1.

2<1<s.

1 1+3(t At) = D(k-1,3} rd*r *rﬁ*r “ {(1-E(1,2))

2<i<s~-1.

3(t,at) = D(k-1,1) vry¥r Frp*(1-r =+ r.~ E(1,0))

Pi,s+
+ D(k-1,2) rgr *eg*r s (E(1,1)-E(1,0))
+ D(k-1,3) ry*rorpdr s (E(1,2)-E(4,1))

2 < <s.

P, c+4(t,At) = P(k-1,2) ra¥ror,* (]-rs’ vt E(1,0))

+ D(k=1,3) ry¥r *r * re” (E(1,1)-E(1,0))

2 <1< s+l

1 S+5(t At) = D(k-1,3) r d*rc*r (1-r 2 E(1,0))

2 <1< stl.

Py s(taat) = D(k-1,0) rgr *rp*

2 <1< st2.

PS+1,S+3(t’At) = D{k’Tgl) Pd*tc*rﬂ*-(1-rs‘ + rsd E(S+],0))'

+ D(k-1,2) rd*rc*rA*rs“ (E(s*1,1)-E(s+1,0))}
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. ) . o
Ps+2 5+J(t At) D(k ,J -2) r *r IA

for 3<J<5‘.-

Ps+3 S_7_‘](1: AL) = D(vk-'z,j—'3)v A

for 4<j<5

Poig,se5(ts8t) = D(k=3,1)rg*r *ry*.
Pors,sajltsat) = D(k-3+1,0). r*r *ry*

for 3<J<5

. - © o ) 4
P1earLtts At) = 1-D(k,0)~ rd'rc ry” z Dk,d). s
3
P rarL(ts At) 1-r ¥ ¥y 520 D( k-1,J)
for 2 <1 < s+2.
5-q .
Posq,FarL (EpAE) = T-ryr *rp JZO (k-g+1,3). |
for 3 <ac<5. | I

The state nrobablhty equatmns for this system are a]so derwed

in Appendix B. The resultant equafiions are

P-]_(.'t + A't) & D‘(k,OA)A P‘[ (t) . o . _ -_(4.“7)

Po{t + at) 3 D(k,1) e PA‘P (t) + D(k 1 0) ryr *rA*PZ(t)

(4- 8)
Po(t + at) ¥ D(k 2) T A*r (1~ E(2 0)) P, (t)
e *r *rA* [B(k 1,1)r (1 (2, u))pz(t)
+ D(k-1,0) P4(£)]- N Gl
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it + At) = D(k 3, Tgre v Ty (1-E(2,1)) Py )

el

'P5(_t + ;\t’)"

+ o+

I

P.(t + at)

6 <1< s+2.

rd*r *r * [D(k 1 2) r’ (1 E(2, 1)) Pz(t) | (4410)" |

D(k*1 1) r.” (1 E(B 0)) P (t) + D(k-1, 0) P4(t)]

D(k,4) rd re’ ry7T ”S' (1 E(2 2)) P1(t)

rd*r o [0(k-1,3) v (1 E(2 2)) Po(t)

D(k—1 2) v~ (1- E(3, 1)) Py(t) o (41D
Dk-1,1) rg* (1-E(4,0)) Pyle) + D(k-1,0) Pg(t)].
rA*r *rA*‘[D(k-1;Uj.P-(t) |

rs"Ji] D(k-1,3)(1- E(T-J:J 1P (8] (412)

Paaa(t + 88) = rgor rp D(k2) (v + vy~ E(2,0).

+ 23 D(k,3) ro~ (E(2,3-2)-E(2,3-3))] P (t)
j= :
_Y‘d"’?rc?"rA* kiz .[D(kj‘1 ,1)(]-.1"5__" + Y‘S" E(k,ﬂ)) N

Ok

+

D(k-1,2)r,” (E(k,1)-E(k,0))

-+

Dk-1,3) v, (Elk2)-E( 1] Pye)

o1, 10, * + v - E(s41,0)

+.

..+

o(k-1 2) ry” (E(sH, 1) E(s+1 0))] Ps+l(£)-ﬂ,

+ D(k-1,7) Ps+?(t) + D{k-2,0) Ps+3(t). (8-13)
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_Ps+4(t +_At) - rd’rc)rAf[p(k’B)(l"rs‘ trg” E(Z’O))

£ D(k,8) vy~ (E(2,1) - E(2,00)] Py(t)

: . sl
+ rd*r¢*rA* jzz [D(k-1,2)(T—rs"+ re” E(j,0))

o+ D(k-1,3) rg” (E(3,1)-E(3,0))] P,(t)

# D(k-1,2) Pyp(t) + D(k-2,1) Py q(t)

+

D(k-3,0) P_,,(t). R (4-14)

Pt + 4t) = D{k,4) rd’rc’rA’(l-rs’ tr’ E(2.0}) P](t)
s+l
I P jgz D(k-1,3)(1-r,~ + r .~ E(3,9))Ps{t)

+

+ D{k-1,3) P,,(t) + D(k-2,2) P y5(t)

+ D(k-3,1) Ps+4(t). (4-15)
PFAIL(t + At) =1 - D(kso) + ]"d"\"cll"A) jz'[ D\ksJ) P'i(t)
g TL (] Dlke1.g) Py())
+op e Fp ok ( D(k-1,3) P, (%)
de A N mdo k
+ 3 (1 0(kn+l,q) Py, (81 . (4-16)
n=3 ¢=0 ) ,

. It should be noted that these equations are developed for a

duubie-error-corvecting system with s+2 greater than § (equivalently,

- mobé*thah'B spare bit planes). If s+2 =i where 2 <4 <5, then the -

equations involving state j where i < J < 5 should be modified to delete

this state. This modification will involve only the deletion of the -

‘appropriate equations.

B

P,
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If the system i; defined to be operating satisfactd%i]y'in sfates 1
through s+5 and P (£=0) % 1; _ P1(t =0)=0, then the system re11ab111ty
may be compietely spec1f1ed as 171 '
s+b |

PDEC(t Z P, (t), | o | (»4-.17-)v

where the P;'s are obta1ned frow equat1ons (4- 7) through (4-16).



V. ANALYSIS RESULTS

In this chapter, typical results of analyses performed on the five
systems previously described will be discussed. Comparative reliabilities
of ea;h system are shown and the effect of varying several system
parameters is described.

The base variabie values assumed [22] for the system analyses are
shown in Table 5. For each analysis performed, the system variables
are fixed at the base value unless otherwise noted.

A comparative reliability analysis of the five subject systems was
performed by use of equations (3-7), (4-4), (4-5), (4-6), and (4-17).

The results of this analysis are displayed in Figure 7. This fioure

shows the reliability of the TMR, non-spared, duplicated, basic, and
double-arror-correcting systems for mission Tengths of four years or

less. Also shown is the reliabiiity of a simplex system with no error-
detecting or correcting capabilities. This system consists of 16 on-1ine
bit planes and has reliability (e—prt)16 where Ap, is obtained from
Table 5. It may be seen from this figure that, for missions of 1/2 year
or less, all of the systems except the non-spared and simplex systems
have reliability greater than .99. For greater mission lengths, however,
the reliability of the non-spared, duplicated, and TMR systems decrease

rapidly. For a 3-year mission, probably only the basic or double-eryror-

correcting systems would be acceptabie.

64
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TABLE 5. Base Values for System Variables

# On-1ine Bit Planes

# Spare Bit Planes

Bit Plane Failure Rate

Detector Failure Rate

Reconfiguration Switch
Failare Rate

Corrector Failure Rate

DEC Algorithm Failure Rate

Mission Length

Memory Size

Failure Jistribution

4K-Bit Subplane Fajlure Rate

Peripheral Bit Plane Circuitry

Failure Rate

22
4

2.6384/10° HR
.900/10° R

.583/10° HR
.027/10% r
0

3 Years

16k Words

Exponential

.5596/10° Hr

.3/10°% Hr
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Comparison of the curves for the double-error-correcting and Basic
Systems shows the reliability improvement to be expected from the use of
the software algorithms of the double-ervor-correcting system. For
1/2-year missiens, this improvement is negligible. For missions of
greater lengths, however, the reliabilify improvement gained by the use
of this system becomes important.

It is interesting to note that, while the duplicated and THR
systems represent a doubling and tripling of memory bit planes over the
non-spared system, the basic and double-error-correcting systems result
in much higher system reliabilities with an addition of only 4 hit planes

to the non-spared system.

Figure 8 shows the results of a reliability analysis performed on
the basic system for various numbers of spare bit planes. The
corresponding curves for the double-error-correcting system are shown
in Figure 9. Comparison of these two figures shows that the same degree
of reliability achieved by the basic system with 4 spare bit planes may
be reached by a double-error-correcting system with 3 spares and a
sufficiently reliable double-error-correction algorithm. The need for
one spare bit plane may thus be aleviated by the use of software
error correction.

The reliability of the software error correction algorithms used 1in
the double-error-correcting system is highly important to system success.
The effects on the double-error-correcting system religbility wade by
varying a hypothetical failure rate for the CPU hardware which implements

these algorithms is shown in Fiaure 10.
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Also essential to overall system reliability is the failure rate of
the detector. The effects of varying this failure rate are shown
in Figure 11.

The reliability of double-ervor-correcting systems with various
memovy capacities is shown in Figure 12. The major effect of memory size
on the reliability of a system of this type is in the bit plane
failure rate. Also affected are failure rates of memory size-related
components such as address decoder circuits, however, only the bit
plane failurs rates are considered in this figure. The failure
rates used were obtained by assuming that each bit p]ane is composed
of 4K-bit sub-planes and peripheral circuitry, each with a failure
rate as shown in Table 5.

The results of the memory capacity analysis show that for
missions of 1 year or less, double-error-correcting type memories
containing up to 64K words will achieve high reliability. Greater mission
lengths show a reliability decrease for the larger capacity memories with
a dramatic decrease for memories larger than 32K words and a three-year
mission length,

The coverage of the basic system for various numbers of spare bit
planes is shown in Figure 13. Coverage may be defined as the probability
that the system will continue to function given that a failure occurs.

As such, the coverage of a system is useful in analyzing the system's
behavior after component failures of a nature not predictable by system

failure rates.
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It may be seen from this figure that a basic system with no
spares is‘high1y vulnerable to system component failures. As the number
of spare bit planes increases, however, this vulﬁerabi]ity decreases
rapidiy until, in the system with 4 spaka bit planes, there is a
probability of .96 or greater of successful operation after a failure
for missions of 3 years or less. - |

Overall results of the analyses performed show that a high degree
of system reliability may be obtained by a judicious combinatibn qf'
coding, modular sparing, and software error correction. Substantial
reliability improvement over massive replication techhiques is achieved
with relatively Tow cost. While some sensitivity is Shown to the_
reliability of system control components, fault-telerant techniques

applied to these components shouid assure kigh system reliability.



VI. CONCLUSION

A technique for the development of reliability and coverage
equations for a class of non-repairable fault-tolerant memory systems
has been presented. The methods discussed have been applied to several
systéms‘aﬁd typical results have beer shown.

The basic and double-errovr-correcting fault-tolerant memory systems
have been shown to achieve high reliability at minimal cost. These
systems make efficient use of the spars bit-planes provided and the error-

correction capabilities of the code. By use of sofiware correction,

~ the double-error-correcting system adds an additional level of error

control and may reduce the need for one of the spare bit planes.

A major advantage of the calculation methods presented here over
more traditional relijability calculation methods is the allowance of a
finite At for state transition occurrence. The use of this finite time
increment allows multiple system events to occur during any state
transition. The need for separate states to represent these events is
then diminished. The result is a state diagram with a reduced nunber of
states with probability equations that are easily computer-implemented.

A disadvantage of this method is the lack of a closed forin solution
which is easily obtainable by use of other methods. Because of the
dependency of the state probabilities at time t + AL on the conditions
at time t, small errors in computation at one time may cause large
errors at succeeding times. A closed form solution should eliminate

this'prob1em.
76
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Further work in this area could include the following:

1.

Dévelopment of a closed-form solution from the equations
of this method,

Research into the effect of un-powered spares on system
modeling, and _

Application of these methods to the repa1rab1e system
problem.
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APPENDIX A

Fiowcharts for Computational Algorithms

Three methods for computer evaluation of the equations of this
paper were outlined in Chapter II1. Flowcharts for evaluation by use of
Methods 2 and 3 are shown here.

Figure 14 shows a typical impiementation of evaluation Method 2.
For this flowchart, tBASE is selected to be 0 and the system starting
state is state 1. TMAX is the mission length of interest.

After initialization, all transition probabilities are calculated
for the current time (T) and at. Where a two-state transition is
possible, the product of the two single-state transitions involved is
formed. If this product is greater than PMAX, the mafjmum allowable
two-state transition probability, the At is reduced. ‘-

The amount of this reduction is arbitrary. If At and T have units
of hours, then a convenient method of reduction is to multiply at by
.9 and set the new At equal to the greatest integral number of hours
less than this number. When this method is used, however, a test must
be performed to assure that At is not0 since this condition would
prevent any further processing.

If 2811 the two-state transition probabilities are less than PMAX,
the state probabilities for time T + At are computed by substitution
of the transition probabilities and state probabilities for time T inte
equation (3-1}, the general state probability equation. If T is less

81
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Figure 14. Flowchart for Reliability Computations
by Method 2.
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Figure 14. Continued
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than TMAX, T is 1hcremented by At and processing continues. Otherwise,
the system reliability is formed as a suitable sum of state probabi]ities;
results ar. output, and processing terminates.

Figure 15 shoﬁs an impﬁementation of a Method 3 eva1uatidn. This
flowchart follows the steps outlined in the second computational
algorithm of Chapter ITI.

It should be noted from equation (3-11) that if the base computation
time is P and the system starting state is state i so that Pi(m) = ]
then Th* contains the state probabilities for state J in its (i,])
location. For this case, then, the multiplication by P(t) to obtain
P(t + nat) is unnecessary since the state probabilities may.be

determined directly.
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APPENDIX B

Development of Equations for the Double-Error-Correcting System

. A Tisting of transition events and subevents causing the transitions
]1 is shown in Table 6? in this tabie, the success of the detector,
corrector, correction algorithm and switch prior to time t + At are
represented by D-, C-, A-, and W-, respectively. Success in the time
intervai from t to t + At is denoted hy a "** superstript. The non-

- success event is denoted by a subtraction of the appropriate symbol
- from 1. | |
For the derivation of the transition and state probability eguations,
the following notation will be used.
D(x,y) = B{y correctable on-line bit plane errors out of x

-3 possibie on-line bit planes given all were good
at time t) _

i
1l

(;)(Y’(At) ) (x-y) (1-r{at) )y |

- E(x,y} = P(¥ or Fewer good spare bit planes out of s - x + 2
g available) ’ '
Yy
e = z (Sf‘»X‘l‘Z)(-]_r,)(_S-X'*'Z—k)(r,)k
3 P = Tp(At)

The double-error-correcting system transition probability equations
may now be specified as | o -
l’ ' 87
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TABLE 6. Events and Subevents for
Doubte-Error-Correcting System

TRANS- | '
ITION | ' SUBEVENTS CAUSING TRANSITION
' # on-line |
correctable {. L
1 B-P Errors’ : Other - Subevents
# possible ‘
bits
1,2 1/K D°CA”
1,3 2/Kk | D-C-A“W-(at 1eastb1 good spare)
1.4 3/K ‘_D'C'A*wj(at Ieast 2 good Spares)
1,5 4K D-C-A-W-(at ]éast 3 good spares)
1,5+3 : 2/ -t D-C A~ ({1-W-) or W'(No good spares))
3/K D-C-A-W-(exactly 1 good spare) -
or | ’
sk | Dt -A-W-lexactly 2 good spares) =
1,5+4 3/K D-C-A-({1-W-) or W-(no good spares))
4/K D-C-A“W~(exactly 1 good spare)
CLss | ek “D-C-A-((1-W*) or W-(no good ‘spares))
5;f+] . 171 - D*c*A*w;(at'TEast'1"gdod"spﬁref}‘*'
2¢icstl | | )
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' THEBLE 6. continded

'D*C*A*W’(at least 2 good spares)

DEC*A*W - (at Teast 3 good Sparés) '

D*C*A* ((1-W~) or W*(no good spares}

or |
D*C*A*W - (exactly 1 good spare)
or

D*C*A*W~ (exactly 2 good spares)

D*C*A*((1-Y~) or W’ (no good spares))

or |
* D*C*A*4~ (exactly 1 good spare)
_D*C*A*((T-w’) or W (no good.spares))

D*C*A*

D¥C*A*((1-U~) or W-(no good. spares))
or o
D*C*A*W~ (exactly 1 good spafe)

-



j~3/K-2

1/K-3
0/K-3+1
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The double-error-correcting system transition_probabi]ity equations

may now be specified as:

P152(t,At) =

91

D{k,1) LS PR A

Py altaat) = B(k.2) ryororyrgm(1-E(2,0)).

Py g{tsat) =
PT,S(t’At) =D

P1,s+3(t’At) )

+

1 s+4(t At)

e

P, se5lthat) =
Pl 1(t,At) =

1 1+1(t At)

for 2<i<s+l, _
1 1+2(t at) =
 for 2<ics.
1 1--3(t At) =

for 2<1<5 ]

D(k,3) rd'rc’rﬂ’rs’(l-E(Z,l));

(ko) ry7r,ra P (1-E(2,2)).
B(k,2) ryororp(1-rg” + r.” E(2,0))
D(k.3) vyr vy v (E(2,1)-E(2,0))

D(k,4) ryr, “ryre” (E(2,2)-E(2,1)).

- D(k,s)'r"f oy (1org vy E(z;u))

d ¢
D(KsA) ryr Ty ,(E(Z 1)-£(2,0)..

D{k.4) rd‘rc*rAf(l-rs’ +rs’,E(2,0)),

D(k,ﬂ)-

D(k-1,1) rg¥r *rpér ~(1-E(1,0)).
D(k-T,2) ry*r Fry*r ~ (1-E(1,1))

D(k-1,3) rg*r *rp*r.” (1-E(1,2))
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B(k=1,1) rg*rcrra® {(1-rg” +rg” E{i.0))

il

Py ga3ltot)
+ D{k=1,2} rgérHrgire” (E{3,1)-E(19))
+ D(k~1,3) rd*rc*rnfrs’ (e (4,2)-E(1,1))
for 2<i<s,

1 S+4(t,ﬁt) = D{k"'l ;2) T‘d*r‘c*t‘ﬁ* (1"?’5) + Y’s" E(i,U})

L

D{k-1,3) rd*rc*rk*rs‘ (£(3,11-E(1,0))
for 2<i<s+l.

1 S+5(t st} = D(k-1,3) ra*re *rp* (1- A E(i,0))

for Zi‘is_s-!-'i .
Pi,i(t°At) = D(k-1.0) rd*rc*rA*
for 25_‘?__<_S+2 .

P sraltsdt) = DLK-1.T) rgirgiegk (1-rg” + g7 E(s+1,9))

+ D(k-1,2) rd*rc*rA*rs‘ (E(s+1,1)-E(s+1,9))-

Poso s+3(t at) = D(k=1,3-2) ry*r Fry®
for 3<j<5.
for Q.iJiS.

PS+4:5+5(t,At) = D(k"3,1) Y‘d*Y‘C*Y'A*.

u

Ps-&-;],s-l-,](t At)

D(k-3+1,0) rd*rc*rﬂ*
for 3<j<b.
Since

Py pap (tadt) =1 - { Py j{t:8E)s

(]

(e
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the following equations may be developed:

P1,FarL (6:48)

for Tl<i<s-1-

=1

- P1_S+3(t,bt} P1 +4(t At) - P] 'l(t At)

D(k,0) - D(k,1) vy r."rp”

D(k,2)rér£rﬂ[r;(1-£(2,0)+ﬂ-rs‘+ rgE(Z,U)]

D(k,B)rarErﬁ[r;(1—E(2,1))+r;(E(2,])—E(2,0))
+ 1-rg” + rg” E(2,00] - DlkA) ryrery”
+ [rg” (1-E(2,2)) + rg” (E(2,2)-E(2.,1))

re ~(E(2,1)-E(2,0)) + T-rg” F 1g” E(2,0}]
- D(k,0) - Blk,T) 1y Ty - D(k,2) rd*rc*éA*
- D(k,3) rqr vy - D(k,4) rd;rc’rAf.

4
- D(k 0) - ry7r.rp” 21 D{k,J).

B 1 (s 8t) - P, 1+2(t at) - 1+3(t‘At)

B i,s+3(t’At) . i,s+4(t’At) - s+5(lc At)

- P1 r (t,at)




50

But E(s,2) =

94

- [r.7 (1-E{1,0)) + 1-r " + r . E(1,0)]

D{k-1,2) rgFrefre® [rs’ (1-E(7,1))

-+

re” (E(1,71) - E{i,0)) +1 - Pt re” E(1,0)]

D(k-1,3) rd*rc*rA*[rs‘ (1—E(i,2))

g

re’ (E(1,2) - E(i,1}) + 1 - R E(1,0)

o+

Y‘SJ (E(is]) - E(i,O))]

1]
—
1

rd*rc*rA*[D(k-1,U)+D(k-1,1)+D(k-1,2}

+ D{k-1,3)1.

PSBFAIL(t,At) = 1—PS,S+](t,At)-PS=s+2(t,At)-PS,S+3(t,At)

~Pg gea(tsnt)-P 5(t,At)—PS:S(t,At)

S,st

1}

] - Pd*rc*?ﬂ* D{k“}\O) + D(k‘15])

. [rs‘ (1-E{s.0)) + ?-rs‘ g E(s,0)]
+ D(k-1,2)[r " (1-E(s,1}) + v~ (E(s,1)-E(s,0))
+ 1-r rs‘E(s,O)]+D(k—1,3)[rs’ E(s,2)-E(s,1)
+ rs‘(E(s,1}-E(s,0)) + 1-rs' o’ E(s,9)]

=1 - rd*rc*ra* D(k-1,0)+D(k-1,1)+D(k-1,2)

+ D(k-1,3){rs‘ E(s.2) + 1 - rs‘]

(By(1-r) (8 (8 = 1.
a=n 9

O 2

v~

——
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(t,at) =1 - rd*rc*rA*[D(k~1,0) + D(k-1,1) + D(k-1,2)

Ps,FAIL
+ D{k-1,3)]1.
Post FAILCEE) = 1Peyy (pp(Baht)Pyy ol Ea08)Poyy cug(Eant)
"Ps+1,sf1(t’6t)
=1 = rg¥rkrg* D(k-1,004D(k-1,1)[r " (1-E(s+1,0))
+ler s F vt E(s+1,0)14D(k~1,2)
. [T—rs'+ r “E(s+1,0) + rs’(E(s+1,1)—E(s+1,0))]
+ D(k-],B)[rS'(E(s+1,1)-E(s+1,0))
+ 1 - v oF T E{1,0)]
Post, FArL{Esat) = 1 = rFrorpe D(k-1,0)4D(k-1,1)+D(k-1,2)

. [T-FS’ T E(s+1,1)7 + D(k-1,3)

[rs’ E(i,1) + 1 - rs']
L (1-g)
But E(s+1,1) = § { J{1-r3t " (r)9 =1
=0 °
So

+ D(k-1,3)1.

Psap, FAILIEAE) = 1-Poip qip(ta88)-Pyp cugltabt}-Poip qigltant)

“Psan,s45(Es0t)

Torg*r ¥r *D(k=1,04D(k-1,1)+D(k-1,2)

+ D(k-1,3)].
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Ps+3’FAIL(t,At) = 1-PS+3’S+4(t,At)-PS+3’545(t,At)-PS+3,S+3(t,At)_

T-rd*rc*rA*[D(k—2,0)+D(k-2,1)+D(k~2,2)].

Porg, FAILIEAEY = 1-Pgpp cug{Eabt)Poyy oip(taat)

= T-ry¥rbry[D(k-3,0)4D(k-3,1)].

PS+5,FAIL(t’At) = -i_PS'!'S,S'*'S(t,At) = ]-Y‘d*t"c*l"A* D(k—410)-

So .
Py par{ts8t) = 1-D{k.0)-rq"r "rp” jZ] D(k,J). .
. 3 !
i par (Baat) = Trgirgiy 3 DUL3)
for 2<i<st2.
5-3 | | o1
PS+j,FAIL(t’At) = -!'-'\"d*'('c*r'A* q;o D(k‘.]+1:q) |

for 3<j<b .

By substitution of the transition probability equations into the - .
general state probability equation, the state probability equations

for the double-error-correcting system are obtained as follows:

P1(t + At) = P1=](t,At)F1(t)
= D(k,0)P; (t).
Po(t + At) = P1=2(t,At)P2(t) + Pa,z(t=ﬂt)P2(t)

I}

D(k,1)} rd'rc'rA*P1(t)

# D(k-1,0) ryr rp* Py(t). i




Bl e foeg L)

P4(t + 5+)

Pt + at)

Pi(t + At)

1)
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D(K,2) ry=rg rp-res (1-E(2,0))Py(t)

rg*rera® [D(k-1,1)rg " {1-E(2,0))P,(t)

D(k-1,0)P4(%)].

Pyt + at) = Py 3(£,08)Py(£) + Py {taat)Pp(t) + Py 4(1.a1IP3(1)

P1,4(taﬂt)P1(t) + P2,4(t,At)P2(t)'+'Paga(t,gt)PS(t)

Py 4 (E:at)P, (1)
D(k,S) LTI PR (1-E(2,1))P1(t)

rd*rc*rA*[D(k—1,2)rS* (1-E(2,1))P2(t)

D{k-1,1) v (1-E(3,0))P4(t) + D{k-1,00P,(t)].

_P-] ’S(tsbt)P] (t) + PZ,S(t’At) Pz(t)

Py 5(t.0)Pg(t) + Py c(t.at)Py(t) + Py gltaat)Pg(t)

D(k,4)rg"r. rpors (1-E(2,2))P (t)
ra*rofry® [D(k-1,3)rg" (1-E(2,2))P,(t)

D(k".‘ sz)rs’ (1"E(3: 1 ))Pa(t)

D(k-1,1)r* (1-E(4,0))P,(t) + D(k-1,0)P.{t)3.

Pig,{(EEIP;_g(8) + Py (taat)P; (%)
Pi1,i(EAEIPy (1) + Py s(Eaat)Py(E)

ra*reirar [D(k-1,3)rg” (1-E(i-3,2))p; 3(t)

D(k-1,2)r " (1-E(1-2,.)0P; p(t)

D(k-1,1)r " (1-E(i-1,00)P;_;(t) + D(k-1.0)

PL(t)]




for

o8

P{(t *AL) = ryRr Ry [D(k—1,0)91(t)

3

Frg” jgl D(k-1,3) (1-E(1-3,3-1))P;_;(t)]

6<igst2.

PS+3(t + At) =

Ps+4(t + At)

4

+

+

s+2

jZ] Pj’5+3(t,at)Pj(t) + Ps+3ss+3(t,at)Ps+3(t) _

rd‘rc‘rA‘[D(k,E)(l-rs” +orgt E(2,0)) + D(k,3)?s’
(E(2,1)-E(2,0)) + D(k,&)r .~ (E(2,2)-E(2,1})1P4(t)

S
rgtrerry® jZZ [D(k=1,1)(1~r " + r.” E(3,0))

D(k-1,2)re" (E(3,1)-Ed,0))

D(k-1,3)ry" (E(3,2)-E(3,1))1P,(t)
(D{k-1,1)(1-ry" + r ” E(s+1,0)

D{k-1,2) v~ (E(s+1,1) - E(s+i,0))IP_,,(E)

D(k-1,1)P5+2(t) + D(k—2,0)Ps+3(t)
5+3

jZ] P graltdtIPs{t) + Popy (albnt)Pg,a(t)

rd'rc'rA’[D(k,B)(i-rS' L E(2,0))

D(k,8) g~ (E(2,1) - E(2,0))17, ()

s+1
Pty j;g [D(k-1,2)(1~r " + rs” E(3.0))

D(k-1,3)rg~ (E(3,1)-E(3,0) 195 (t)

B{k=1,2)P 4o (1) + D(k-2,1)P,a(t)

D(k-3,0)Pg, (1)




-

™

.t

9%

st4 .
j£1 3,s+5(t At)P (£) + Ps+5 s+5(t At)Ps+5( )

It

PS+5(t + At)

1

D(k,4) ryr 7y’ (1-rg” + re” E(2,00)P(t)
stl
'rd*rc*rA* Jéz D(k"]!B-)“‘\"é" + r's" E(J.:O).)Pj(t)

+

+ D{k~1,3)Pgyp(t) + D(k-2,2)Pgy5(t)

+

D(k-3,1)P 4a(t)

s+h
PFAIL(? +At) = & Pj,FAIL(t’At)Pj(t) * Peppy (2)

[1 -D(k,0) - vg™re rg z D{k,3)1P;{t)

' st2 3 _
+ 22 [I-rd*rc*rA* ¥ D(k—l,m)]Pq(t)
e =0
b
T nEB [1-rg¥*r *rp* z D(k~n+1,q)]Ps+n(t)+PFAIL(t)
s+h
L Po(t) + PFATL(t) + [-D(k,0} = rgrrp”

E D(k,3}IPy (£} + ryfr *eg*

j=1
st2
ry | Z D(k-1 ,m))P (t)
q=2 w=0
5 5-n
- 1 (q};ﬁ D(k-n#1,q)Pg,, (£))]

s+b




So

Peap (t + at)
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U
=1 = [D(k,0) + ry7r."ry” 1 D{k,3)IPq(t)

1.

4
_ 5+2 3 ! |

PR [qu [mgﬂ D(k-T,m)P (%)

5 B-n

LoD Dlk-nt1,9))Pg(1)]

n=3 q=0




