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ABSTRACT

A method was developed for the construction of probabilistic

state-space models for non-repairable systems. 	 This method allows h

the construction of system models with considerably fewer states
z

than the model resulting from more traditional approaches. 	 Models

were developed for several systems which achieved reliability improve-

ment by means of error-coding, modularized sparing., massive replication N

and other fault-tolerant techniques.

From the models developed, sets of reliability and coverage

equations for the systems were developed_ 	 Comparative analyses of the

systems were performed using these equation sets.	 In .addition, the

effects of varyi ng subunit reliabilities on system reliability and

coverage.were described.	 The results of . these analyses indicated.

that a significant gai n.in system reliability may be achieved by use of j

combnatia'ns of modularized sparing, error coding and software error

r

control.	 For sufficiently reliable system subunits, this gain may far

exceed the reliability gain achieved by use of massive-replication. ^1

techniques, yet result in a considerable saving in system cast.

_	
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I.	 INTRODUCTION

As the.field of computing. system design has developed, the need

for reliable computers has become crucial:	 Advances in the aerospace

area in-particular have. necessitated the design of computing systems that

are highly reliable and capable of operation in a non--repairable environ-

meat.	 In many other system applications, while repair may be possible,

an interruption in system operation is unacceptable.

Due to the large number of components which it contains, the main

memory has typically been the most unreliable subunit of the computing

system [1].	 Since this subunit contributes a.high percentage of total

system size and weight and ma	 must operate within limitations	 i

in these areas, ,massive replication techniques for memory reliability

-- improvement are. often. not applicable. .	 Thus, much research has been {

performed to find methods of memory reliab pity improvement by other means.

Several methods of improvement have been utilized.	 One such	 3

method is the development of error-control codes for use in the memory

. array.	 Also, modular memory organizations have.been designed in an..

a k attempt to limit the passible ways that shored-word errors can occur	 1

anti to ease system reconfiguration problems.` The example systems of

Y4 this paper utilize both 'coding and modular design-for improved system	 -

reliability.	 These systems are described in Chapter II.

A method is presented in this paper for calculating the reliability

i

V



1lebli.cati oh. an the memory system level L2, 3] has been used as a

solution for the ultra-reliable memory problem. Substantial increase

in memory reliability has resulted in many cases. System cost, however,

has. i ncreased linearly with the number of duplicated systems. Other

limiting factors, such as system w':ight and size, have prevented the use

of massive replication techniques in many applications.

..R number.of proposed and actual. systems [1, 4, 5, 6, 7, 8] have

utilized a modular concept of memory arrangement, usually in conjunction
i

with error coding. In additi on, a number :. [9, 10, ll, 12]. of burst-error

correcting nodes have been developed. These codes are well suited for use 	

L,

. . .. . In word-sl. ce oriented memories 3n which a majority of the word errors 	 q

may be expected to occur within groups of word bits.	 :?

Several < articles [13, 14, .15] have developed reliability calculation
r ^,

procedures for the fault--tolerant memory problem. many others . L16, 17, 18J

have shown- cal.cuiation procedures for fault-tolerant systems in general.

When a state--space approach to system modeling has been taker, the time

alloWed for stake transitions to. occur is generally din at. Typically,
At 

only one system event is allowed to occur in this transition interval.

Multiple states are then necessary to represent; all possibly combinations

of conditions of sysfft subunits resulting in large numbers of' stares for

highly Zomplex systems..
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H.	 FAULT TOLERANT MEMORY DESCRIPTION

{ In this chapter, several fault-tolerant memory systems are

described.	 The first section describes a system which is taken as

a basis for the comparison of related systems. 	 Several related systems

3
are described	 the second section.	 Reliabili ty and coverage

computations for these systems will be examined in fol l owing chapters.

e

}
Basic System	 -

The basic computer system to be analyzed has been designed for use

in extended aerospar__c-	 ' ~.siot7s.	 It was desirable to implement the

computer memory in a manver so as to be withi n wei ght, size, and

economic limitations, yet be highly -Fault-tolerant.

A modular design approach has been undertaken in which the memory

array " is made up of memory slices, each of which. contains the same bit

location of all memory words,	 if n words are contained in the memory

-. and each word is k bits long, then there must be k memory modules and

each module must contain n bits.	 These modules will be referred to as

on-dine bit planes.

In addition tothe bit planes already discussed, the system contains

f ^ identically-sized spare bit planes which may be switched to replace any

failed on-line bit plane. 	 The arrangement of on-line and spare bit

( a Ie.Ci	 '7 C	 C ^'7rt1.1!'c	 ^i M
	 Figure

  	 -^	 ^•	 -^	 ..	 .. .P I 	 -_,Win ,,. 	^ .	 one functional orientation of memory wards

is shown in Figure 2.
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A single-error-correcting/double-error-detecting (22, 16) code [191

is used for memory data word encoding. This code has the property that

any odd number of errors in a codeword will produce an odd-weighted

error syndrome. ...Double errors will produce a non-zero.even-weighted error

syndrome and hi gher numbers of even errors will produce even-weighted

(including all zero) error syndromes. These features of the code

will be further discussed n a later  section.

External to the-memory, data words are encoded using only 2 byte
it

parity bits. For this reason, circuitry which translates between the two

codes is necessary for use in memory write and read cycles. This	 ?

function is performed by the memory translator. In addition, the translator

	

'	 9
contains circuitry for the correction of single bit errors and detection 	 .J

of multiple bit errors in memory words, and control of the reconfigura-

Lion switching circuitry which directs each word bit to the appropriate

bit plane. These functions will now be examined.

For a memory write operation, the translator accepts a byte--parity

encoded word From the CPU-memory bus. The byte parity bits are saved

and the check bits for the SfC/DED code are generated. A validity 	 :y

check is then.made.by.a comparison.of . the saved byte parity bits with 	 -.

the generated . check bits._ if no error is found, the data word with SEC/DED

check bits appended is stored:in.the memory.. If a n error. is found, a.

program interrupt is sent to the CPU.

For a memory read operation,.the requested encoded word is read	 d V

from the memory array and placed in, -the storage data register (SDR) The

error syndrome For the word is formed from the encoded word and if a zero
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(no.error) syndrome is signaled, the byte parity bits for the . data word

are formed and the word is transmitted on the data bus.

An odd-weight (odd error) syndrome signal causes a bit inversion to

be made by the single error correction circuitry. The error syndrome for

the corrected word is then generated. If no error is.signalled, then

it is assumed that there was a single error in the encoded word. The

byte parity bits are generated and the word is transmitted an the data

bus. If an error is signaled, a program interrupt is generated.

When the translator receives the information that a certain

designated spare bit plane is to replace an on-line bit plane, it must

reconfigure the memory array input and output switching to reflect this

change. Memory input switching is reconfigured first. Each memory word

is then read from the on-line array, corrected if necessary, and

re-written in the on--line array with the spare bit plane replacing the

designated on-line bit plane. After all memory words have . been read and

restored, the memory array output switching is reconfigured appropriately.

The decision to replace an on-line bit plane may . be arrived.at by

use of various switching strategies: It is assumed for the basic-system 	
{

that the reconfiguration signal is issued by the CPU as a result of

4rror signals received from the translator. it is also assumed that the

switching strategy is to replace a bit plane as soon as it is detected

that the bit plane contains an error. Another switching strategy will j

be discussed •i n. a following section.

In the basic system, there is assumed to be no facility available

for the correction of multiple errors... If system failure is defined to

f	 --
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be the occurrence of a non-- correctable error, then the occurrence of

more than one error in a single memory word will constitute failure for

this system. For purposes of system modeling the occurrence of

simultaneous failures in multiple bit planes is assumed to be

equivalent to the occurrence of multiple errors in a single memory word.
^F}

System failure, then, will occur when more than one on-line bit plane

has failed.

Sure bit planes are assumed to operate in a mode identical to the

on-line bit planes prior to their insertion into the on-line array.

Spare bit planes, then, fail with the same characteristics as the

on-line units. It is also assumed that after a bit plane has been

removed from the on-line array, it is never re-inserted. A bit plane

which has been replaced is called an unavailable spare.. A spare bit.

plane which has not been inserted into the on-line array and which may 	 T'

or may not be failed is an available spare. a.

The system, then may be divided into subsystems by function. These

subsystems are:

1) The on-line memory array consisting of a number of bit
planes,

2) The spare bit plane array including both available and

unavailable spares,

3) The error detection circuitry.of the translator,

4) The error correction circuitry of the translator,

6) The reconfiguration switching array, and

6) The encoding and decoding subsystems of the translator.

References will be made to these subsystems in fol-lowing sections.

1
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Alternate Designs

Several fault-tolerant memory systems which are related to the

basic system have been studied. Four of these systems will be described

in this section.

The non-spared system is identical to the basic system except that

no spare bit planes are provided. In addition, no reconfiguration switch-

ing circuitry is included, since such circuitry would have no use in this

system. Comparisons made between this system and the basic system will

show the relative improvement to be gained by the use of the spare bit

plane approach.

The TMR system consists of three systems cf the non-spared type

in a triple modular redundant configuration. The functional operation

of this system may be described as follows:

1) For a memory write operation, SECJDED-encoded word is
stored in the same logical location in Pll three memories.

2} For a memory read operation, the requested memory location
is read in all three memories. Single error correction
is performed independently by the systems and byte parity
bits are generated in each case. The three byte-parity
encoded words are then voted on by majority logic in a
bit-by-bit F=ashion. The output word is constructed by
using the majority vote for each bit. If the constructed
word is still a codeword, it is transmitted on the data bus.
If it is not a codeword, an error program interrupt is
generated.

This system, then, will produce the correct output word as long as

at least two of the three memories can construct the correct word. A

functional depiction of this system is shown in Figure 3.

The duplicated system is composed of two identical non-spared

subsystems. Data to be loaded is stored in the same logical location in
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both subsystems. Data read from the system is read from only one memory.

If a non-correctable error is signalled by the on-line unit, output

bussing is switched to the other unit and the.data is read from the same

E
location. if both subsystems signal a none-correctable error in the

sane memory word, an error program interrupt is generated.

The double-error-correcting system is a modified version of the

basic system which will correct double errors and detect a triple error

y	
which produces a single error syndrome. The additional features are

achieved by the use of software routines [20] which are CPU implemented.
d-i

Since double errors are correctable in this system, a reconfiguration

switching strategy is assumed in which an on-line bit plane is replaced

only if it contains an erroneous bit position of a word which has two

or more errors. This system will be more fully discussed in a later

chapter.
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III. RELIABILITY MODEL DEVELOPMENT

In this chapter, a generalized method for the computation of

reliability, the probability of satisfactory operation, and coverage,

the probability of recovery if a failure occurs, for a system is

described. This method is applied to form sets of reliability and 	 t::r

coverage equations for the basic system described in the proceeding

chapter. Computer implementation of these equations is examined in the

x ..
last section.

General Techniques

Prior to the development, it is appropriate that certain notation

be defined. A listing of notation used is shown in Table 1. 	
R.'

For the purpose of reliability computation, the performance of a

device may often be represented as a set of states and state transitions.

Suppose, for example, that a certain non-repairable device has three

possible modes of operation:

1) Satisfactory operation,

2) Degraded operation caused by event A which occurred while
the device was operating satisfactorily, and	 r

3) Unsatisfactory operation caused by event B which occurred
while the device was operating satisfactorily or by event
C which occurred while the device was operating in its ,a
degraded mode.

These three nodes of operation form three natural states for the device.

12	 ,:	 l
1
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TABLE= 1. Definition of . No .tati ors .

! Notation Meaning

l P(x) Probabili ty of the occurrence of event x

P(x,r) Probability of the occurrence of events x and r

P(x or r) Probability of the occurrence of event x or event t"
or both

P(x/r) Probability of the occurrence of event x given that
event r has occurred

Px (t,At) Probability of the occurrence of event x in the time
period from t to t + At

P.	 (t,Atli) Probability of the occurrence of a transition from state
x or	 ^'

P i,j (t ' At)
i to state j in the time period from t to t + At given
that the state at time t is i

Pi (t) Probability that the system is in state.i at time t

P.(t + Atli) Probability that the system is in state i at time t + At 	 v
^- and that it was in state j at time t

.`E P.(t + At/j) Probability that the system is in state i at time t + At
7 given that it was in state j at time t

-; r.(t) Probability that component j is non-failed at time t

r(t) Probability that a generalized component is non-failed.
t at time t



If the assumption is made.that the system is operating in state.?

(satisfactory operation) at time t, then the probability that the system P

Will bL in state 2 (degraded operation) at time t + At, a small interval

of time later, is the probability that event A occurred in the time

Period from t to t + At,	 1'n equation. form

P19 2 (t,At/1)	 PA (t,At)

where P1,2 (t,At/1) is the probability of a transition from state 1 to

state 2 in time t to t + At given that the system was in state 1 at
j{

time t and PA (t, At) is the probability of the occurrence of event A

in the same time period.

In a similar manner, the transition probabilities into state 3

(the failed state) are
t

Plj3	
(t,At/1)	

P 
	 ('f,' . bt),	 and

1

P	 (t,At/2)	 P	 (t, At).

r

Y	 9

$	 S

This state model can be described graphically by a state diagram as shown {

in Figure 4.

An equivalent form of device state representation is a matrix T

which has as its i,j entry P. 	 (t,At/) for i # i and 1 	 -	 E 1Ti,kj {

for i	 j, where N.is the number of device states. 	 The T matrix For the

example device is given below.
_	 -	 -	 l	

2	 3
_	 1

PA•_	 P (t,At)
.
	P (tsAt ) s't,-P	 At)	 A	 g

T	 2. 0	 1-PC(t,At)_	 PC(t,At) -

3	 0	 0	 1
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Deleting the (t,ot) subscripts yields

l	 2	 3

I I-pA PA	 Pg
S

= 2	 0	 I-P^ PO

3	 0	 0	 1

The probabil ity that the system is in any given state at time

t + At may be expressed in terms of the transition probabilities and

the distribution of state probabilities at time t. These equations may

be obtained by assuming that the system is operating in a state i at time t

and by computing the probability of the occurrence of the transition

event to state j in the time period from t to At.

For W e development, the i =ol l ouing notational convention will be

used.

P(system operating in state i at t + At given that the
system was in state j at time t) = P i (t + At/j).

To obtain the equation for P l (t + At/1), it must be considered

1	 that for the system to be in state 1 at time t + At, no state transition

out of state 1 may occur between t and t + At. Then the complement of

the two state transitions out of state 1 must be combined as follows:

P1 (t + At/1)	 0 - P1'2 (t,At/ 1)) (l - P1,3 (t,^t/1))

1	 P1,2 (t,ot/1) -- Pl 
13 

(t,ot/1)

+ P1,2 (t,At/1) PI,3 (t,At/1)

S
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If At is defined to be a	 time	 is	 toperiod of	 which	 small enough	 allow

only one state transition to take place, the last term in this.equation

becomes negligible since it defines the probability of more than one state

transition occurring in time t to t + at.	 Then,

Pl	
(t + At/1) = l - P1,2 ( t ,At/ 1 ) - P ly	 (t,At/1)

I	 - PA (t,At)	 - PS	 (t,At)

Recalling that

P	 X.	
f

YP(X/Y) _	 )	 [251,{ 

>
;hen

v 
j

Pl (t + Atli)
P ( t ) ! 

y 1 -- PA (t,At)	 PB (t,At)

P l 	(t + At l i) = P l (t)(l - P^(t,at) -- PB(t,At)).

Since there are no transition paths into state 1, the event "the

system is in state 1 at t + At" implies the event "the system is in state

I at time t."	 Then,

P l (t + At, 1)	 P l (t + At)

. _.
So,

Pl(t + At)	 P I WO	 PA ( tyAt ) -. PS(tlht))..
r.,: n

There are two ways for the system to be in state 2 at time t + At.

t; Either the system was operating in state 1 at time t and the transi ti on



f
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from state 1 to state 2 occurred in the time period from t to 	 + At,

or the system Was operating in state 2 at time t and no transition event

out of state 2 occurred in t to t + At.	
_.

E	 The equation for P2 (t + qt) may then be formed as follows:

I

P2 (t+ pt) - P2 (t + at, l) + P2(t + At, 2)'

. = P 1 ^ 2 (t,At/l)P l (t) + (l	
- P2^3(t,Qt/2))p2(t)

' = PA(t,at} p l (t)	 (1 - P^(t,at))P2W.

By similar reasoning,

P3 (t
+ at) = P. 3 (t+ qt,l) + P 3 (t + ot,2) ± p3 (t	 ot,3)

P l ^ 3 (t,o /l } P 1 (t) + P2^ 3 (t,At/2)P(t) + P 3 (t + at,3)
i

Pg(t,pt)Pl(t) + P
C (t,At)P2 (t) + P 3 ( t + At,3).

Since there are no transition paths out of state 3, the probabili ty that

the system is in state 3 at t + At and that it was in state 3 at time t is

`	 the probability of the latter condition, or

P3 (t + dt,3)`= P3(t),-

By substituti on, the equation for P(t + At) becomes

P3 (t + at)	 P8 (t,ot)P- I (t) + PC (t,dt)P2 ( t ) + P3(t)•	 3

In general, the state probability equation for stave 
i 

is

Mt +
n	 n

At)-	 ^ l P.	 (t,At/3)P^(t)	 t .(1 ^^
=1

 p
i
 k(t, At/M P^W

JJ	 I	 ,

3
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where n is the number of system states. 	 The first summation in this

equation represents the sum of the probabilities of all possible. 	 -

transitions into state i from another state. 	 The coefficient of

r P^(t) is the probability that no transition out of state i will occur

in t to t + At given that the system was in state i at time t.

S-nce for each term of the form.P(t,Ot/u), the u inside.the
u,v

parentheses is redundant, this probability may be represented as

Pu ^V(t,ot) where the deleted u is.'understood.

The gene;-al state probability equation then becomes

n	 n
p i (t + At) _	 PJ^i(t,At)P^(t) + (1	 Pi,k(t,ot))P W W.

j=1	 k=1
Vi	 (3-1)

If vectors p(t + At) and P(t) are defined by

Pl (t + At)	 '1(t)

Pz (t + At) P2(t}

P(t + At) -- P(t}

P n ( t + 
At)

Pn(t)

then equation (3--1) maybe represented in matrix form as

At)	 TT x P(t)	 (3--2)

6

1

where T is previously defined and Tr is the transpose of T.

In a complex system, the events whicah cause state transitions may be.

composed of many subevents which must occur for the transition event to

occur.	 It may be more desirable to work with these subevent probabilities

1
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than to attempt to determine the probability of the overall event. For

this reason, it is necessary to analyze the possible types of subevents

and to be able to calculate the probability of occurrence of each type.	 a

For any transition event i,j with probability of occurrence P

it is possible to place any subevent in exactly one of the following six
I
i

event classes:

1. The failure event of a system component or component group
prior to time t + et.

2. The non-failure event of a system component or component
group prior to time t + qt.

3. The failure event.of a system component or component group
in the time period from t to t + et.

4. The non-failure event of a system component or component
group in the time period from t to t + qt.

5. The.failure event of a system component.or component
group in the time period. from t to t + At given its non--
failure prior to t.

6. The non"failure event of a system component or component
group in the time period from t to t + At given its non-
failure prior to t.

i
In. order to compute the probability of events in each of these 	 --

classes, it is necessary to first examine the basis for the computation

of failure probabilities

Each system component or component group has associated with it a

failure Probability density function, f(t). In the general case,'

f(t:)
r ddtt

and f f(t)dt 1.	 [23]
0

The apriori probability of component (group) failure in the time period

from tl to t, may be expressed as
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7

which is the probability that the component (group) will fail in the

interval from t to t + At given that it is non-failed prior to time t.

By use of these concepts, the subevent probabilities for each class

may now be computed as follows:

t+At
Class 1. P 1 	f	 f(t)dt	

x

C 9m

	

= 1 - f	 f(t)dt

t +At
i

1	 r(t + At).

t+At
Class.2. P2 = 1 w 

J	
f(t)dt

0

- 1 - P1

= r(t + At).

t + At

Class 3. P3 =	 f(t)dt
 f

t

CO

f f(t)dt -	 f(t)dt

t	 t + At

= r(t) - r(t + At) .

t +At
Class 4. P4	1	

J	
f(t)dt

t

	

Yl -p3	 v

1 - r(t) + r(t + At).
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At
Class 5. P B = f f(t)dt

0

1 - r( At ) .
At

Class 6. P 6 = l - f f(t)dt

0

=1-P5

r( At)

To completely specify the state probabilities, it is necessary to

select a base time, 
tbase. 

In general, 
tbase 

may be any time at which

all state probabilities are known. The following discussion will

assume that 
tbase 

is 0. It is common to denote one system state, m, as

the starting state and assume that

Pm (t = 
t
base = 0) = 1, and

P n (t = tbase = 0) = 0 for all n#m.

The state probabilities may be computed for any t > 0 if:

1. All state transition equations are known, and

2. All system component (group) reliability equations are

known.

To obtain a closed-form solution for each probability equation,

it is common to rearrange each equation into its differential form and

solve the equation set simultaneously. By making simplifying assumptions,

the equation set may be approximated by a set of linear differential

equations. For systems with a large number of states, however, the

simultaneous solution problem may become quite involved 	 In addition
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if the analysis of a related system is desired, only a slight difference

in architecture or operation may necessitate the re-derivation of all

state equations.

If computer evaluation of state probabilities is possible, however,

the open form of the state probability equations may yield satisfactory

results at considerable savings in effort. In addition, no simplifying

assumptions need be made to assure equation linearity. State probability

equations to be derived in this paper will remain in this open form.

Reliability Equations

For the basic memory system, the insertion of each spare bit plane

on-line performs a natural partitioning of system states. By determining

the number of available spares it is possible to define the state of

the system. If the basic system has k bits per memory word and s spare

bit planes initially available, the system state diagram may be constructed

as shown in Figure 5.

For each state i (1 t i e s+l) in this diagram, the system is

operating with exactly s	 i + 1 spare bit planes available, and no

failed bits in any word (no failed bit planes on-line). In state s+2,

the system has suffered a single bit plane failure but there are no

available spare bit planes to replace the failed on-line bit plane.

The system must use the single-error--correction circuitry to correct

one error in each memory word in this state. The FAIL.. state is the

system state when an uncorrectable error has occurred.

The development of transition and state probability equations for

this system will now be shown.
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For the transition event to occur from state i to state i+1

(l < i < s) in the time period from t to t + At, exactly four subevents

must occur. These subevents are:

El : The failure of exactly one on-line t
time period from t to t + At given t
of all on-line bit planes prior to i

E,: The non-failure of the system error
`'	 prior to time t + At,

E3 : The non--failure of the system reconi
circuitry (group) prior to time t +

E4-: The non-failure of at least one avai
prior to time t + At.

These subevents belong to classes 5, 2, 2, and 2, respectively.

The subevent probabilities may be computed as:

PE (t,At) = (^)(r(At))(k-1)(1-r(At))
l

_ k (r(At ))(k-l)(l-r(At))

PE
2 
(t;At) = rd (t + At)

PE (t,At) = rs (t + ;At)
3

P E. (t.,At) = 1-(l - r(t + At))(s - i + 1}

4

where all symbols are as defined in Tables l and '2.
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T:

_.. TABLE 2.	 Definition of Reliability Symbols

for Basic System

oh
symbol Meaning

r(t) Reliability of an on-line or available spare
bit plane at time t.

^. a
rd (t) Reliability of the system

4
error detector (group)

at time t.

rc (t) Reliability of the system error corrector (group)

at time t.
x

rs (t) Reliability of the system reconfiguration switching
circuitry (group) at time t.

ii

^r

I'

^1
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Eb :	 The failure of all s - i + 1 available spare-bit pl anes
prior to time t + At.

E:	 The failure of the system reconfiguration switching7 
circuitry (group) prior to - time t + At.

The state transition probability may now be formed as

{ pi 	 (t ' At ) - k(r(At )) (k-l) 0 r(At)) rd-rc-

+(l-(1-r^j(s -i+l}}(I-rs-A ,
W .A

which reduces to

!- Pi,s+2(t,At)	 k (r(At))(k-1)(1-r(At)) rd'rc'
h;

1

- 

C l	rs	
(1-(1^r,)(s-i+l?)^

4 M

For 	 <i <s+1.

Define for each state i in the system state diagram a probability

P i,	 (t,At)	 i

`- which is the probability.that, if the system is in state i at time t,

no.transition .out of state i.will occur . before time t +. At.	 Then, for

the basic system,

P.	 .[t.,At	 + P.	 t At	 + P,	 t At	 + P-	 l)	 (^	 }	 (	 )	 (t^At)	 =^,i	 ^,^+1	 -2_	 ^,5•t,FAIL	 -

fort <i <s,

Ps±l,sfl:(t
,At) ± Ps+1,s2(t'At) + ps+1,FAIL 	 At}	 1,
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P
s+2,s+2 (t "At) + P

s+2,FAIL (t,At) = 1, and

PFAIL,FAIL(t,At) = 1.

The formulation of the equation for P, , (t,At), then, uniquely

specifies the equation for Pi,FAIL(t,At). Since, for this system, the

non-transition event. involves fewer subevents than the transition

event to the failed state, these non-transition equations will be developed.

For states l through s+l, the only event occurrence which is

necessary for the non-transition event to occur in time t to t + At

is the note-failure of the k on--line bit planes in the same time interval

given that all were non-failed at time t. Then

P- .(t,At) _ (r(At)) k	for 1 < i < s + 1.

The operation of the system error detector and corrector is required

for the system to be in state s+2 at time t. The non-transition event

for this state, then contains the subevents

ES Q The non-failure of the system error detector (group)
in the time period from t to t + At, given its non-
failure prior to.. t, and

E9 The non-failure.of the system error corrector (group)
in the time period from t to t +'At. given its non-
failure prior-to t.

In addition, none of the k-^l on-line operating bit planes may fail from

t to t + At. Then

Ps+2,s+2(t,At) - (rd(At))(rc(At))(r(At))
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For any state i, (1 < i < s), F

	

	 (t At) may now be compui ted as,FAIL

P(t,At) -- '-	 (,At} . p	 (t,At) --	 (t,ot).
i,AIL	 i, i 	 i,s+2	 i,i+1

	

f ;̀.	 = i -- (r(utj ) k - k(r(At)) (k`1) (1-r(At)) rd'rc'

• ^1 - rs (1-(1-r')(s

_ k(r( At))( k-1)(1-r(At) )rd'r.'(1-0--r-)(s-i+1))
l

= 1 - (r(At)) k - k(r(At))(k-1)(1-r^^.t)}
i	

[r 'r '- r 'r 'r l(1-(1-r-)(s-7+1))
d o	 d c s

't

i. " rd .rs"(1-0-r,.) (5-i+1) ),

(r(At)) k - k(r(At))(k-1)(1-r(At))rd'

	

3 4 ^	 r	 f	 (s--i+l )

	

{	 Crc + r5 '(1-rc )(l-(1-r)	 )7

Fort <i <s.
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f	 The state probability equation for state , l may be obtained by

use of equation (3-1')., the general probability equation. The resultant

equation is

P1(t + At) _ (1--P1,2(t'At) - Pl s+2(t'ot) - PI,FRIL(t,At))Pj(t)

= P l,l (t,At)P 1 (t)	 (3-3)

(r(nt))kPl(t).	 T

The state.probability equation for states 2 through s may be obtained as

P i
 (t + fit)	

Pi-l,i(t,pt) Pi-1 (t) 
+ (1-Pi,i+1(t,et)

- P	 +2(t,At) - P i FlllL(
t,ntj)',P.(t)

i,s

r Pi-l,i (t ' dt) Pi-1 (t) + Pi'i (t,At) Pi(t)

(k-1)	 (sy^)k[(r(dt))	 (1-rr(bt))rd 

r 

rs (I -O-r - )	 ]P-i_,(t)	 M.

3
3

(r(pt)) k Pi(t)

For 2ci <s.	 -

For state s+l, the state probability equation is

P	 (t + At} = P	 (t, qt) P (t) + P	 (t,Qt) P	 (t}s+1	 srs+1	 s	 s+1,s+1	 s+1	 .._

.r

= k	 (k`l)(1-r(et)) rd'rs, (1-(1 -r'} }^PS(t)

+,(r(pt))k Ps+l (t)

}
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S+2	 m.

PFAIL (t + At)= k^l Pk,FAIL(t,ot) Pk(t) + 'FAIL(t)

S
k	

(k-1)
	[I- (r(ot))

	 k(r(dt))	 (1-r(ot))rdf
k=1

- [rc^ + (1--rc ') rs ' (1-(1-r-)(s-k+l))7^ Pk(t)

+ (1- (r(Qt) )k - k(r(dt))(k-1)(1-r(At))rd.^rcfps+1(t)

+ (1-- (rd(At))(rc(At))(r(At))(k-l) Ps+2(t)
s- 
I P k(t) + Ps+l (t) + 

PFAIL (t) + Ps+2 (t)	 rr
k=1

5+1

E [(r(Qt)) k + k(r(ot))(k-1)(1-r(at))rd'
k=1	 _

- [rG + (1--rc '} rs (1-(1--r-)(s-k+1) )I] P k ( t )	 -

- [rd (At) rc(At
)(r(tt))(k-1)^ Ps+2(t)

s+1
= l	

[(r(At))k + k (r(at))(k-1)(1-r(ot)) rd,
k=1

-[rc. + ( 1 -rcl rs ' (1-(i--r')(s-k+l))IIPk(t)

(k-1)	 -
[r^(at) rc (et)(r{dt})	 1 Ps+z(t) • 	

(3:- 6.)

The system reliability may now be computed as the summation of

probabilities of being in any state other than the failed state. Then:

s+2

R(t) -	 Pi(t) - 1-PI
iAIL(t)
	 (3-7)	 :..

where the P l s are obtained from equations (3--3) through (3-6.).
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It is	 then, to	 the	 the occurrenceonly necessary	 compute	 probability of

of state FAIL at any time t to determine the system reliability at that

times

Coverage Equations

System coverage (C) is defined to be the probability that the system

will recover given that a failure has occurred [211.	 This probability

is useful in reliability calculations and provides an.indication of the

_ effectiveness of a fault-tolerant system.	 Hence, a derivation of

coverage equations for the basic system will now be shown.

If the system's states are examined, it is evident that a failure

in the time period from t to t + at m-!y N., grouped into 1 of 3 classes

dependent: upon the failure's effect on the system state at time t + At.

These classes are

1.	 The failure causes no change in system state,

2.	 The failure causes a transition to another system state
which is not the failed state, and	 !

3.	 The failure causes a transition to the failed state.
t

The occurrence of class 1 and 2 failures contribute to system coverage

while the occurrence of class 3 failures does not. 	 Denoting the

probability of the occurrence of class L - type failures given that a_	
_

1

failure has occurred in the time period from t to t + . At by P(L), then

1 C(t)	 = P(l) + P(2)	 i
9

But	 P(l) + P(2) + P(3)	 1

so	 C(t) _ 1_P(3)

1-P(Class 3 failure/a failure has occurred in t to t+At).

{

r
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In general, however, the subevents which constitute the class 3

failure event are dependent on the current system configuration (or state).

To overcome this difficult the state coverage C. t y,	 ^	 I ( ) {system coverage

given that the system state at time t is i) is introduced, wherer

Ci(t) = l - P(state i, class 3 failure/a failure has occurred
in t to t + At where the system is in state i at
time t),

and a state i, class 3 failure is a component failure which causes a

transition from state i to the failed state.

Now, by Bayes' Theorem,

P(B/A.}P(Aj)
P(Aj /B) 	P B/Al P Al + ... +	

n P An

where

P(Aj,Ar)=0 for I <j,r<n

and

P(Al or A2 or ... or An ) = I.

The following events are considered

A1: No failure has occurred in t to t + At;

A2: Occurrence of a state i, class l failure in t to t + At;

A3: Occurrence of a state i, class 2 failure in t to t + fit;

A4: Occurrence of a state i, class 3 failure in t to t + At;

B: Occurrence of a failure in t to t + At where the system
state at time t is 1.

I
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Then

Ci(t) = 1 - P(A4/B)

P(B/A4)P(A4)

I	
P B/Al F Al + P B/A2 P(A2 ) + F B/A3 P A3 + P (B/R4)P(A4)

But P(B/A2) = P(B/A3 ) = F(B/A4 ) = 1, and P(BJAl ) = O, so

P(A4)

Gi (t) y I
	

P(A2) + P(A3) + P A4

W P(Orcurrence of a state i, class 3 failure t to t+At)
P Occurrence of a failure in t to t+At/state at t is i

Since each occurrence of a state i, class 3 failure results in a

transition from state i to the failed state and no other conditions

cause this transition, it follows that

P(Occurrence of a state 1, class 3 failure in t to t + qt)

P(transition from state i to the failed state in t to t + At) 	 I

= Pi,FAIL(t,ot).

To compute the probability of a failure in the time period from

t to t + At, a hypothetical series system S, which contains all system

components for state i, may be constructed.

If the reliability, Rs (t), of this system is computed, then the

failure density function of the system may be obtained as

i
d Rs(t)

fs (t)	 ^- dt

1
The probability of system S failure in the time period from t to t + At

is



..........

38

t+At
P(Failure of S in t to t + A t) = f	 fs(t) dt

4

= R
s
 (t)- Rs (t,+ At)

3r

t J

as was shown in a previous section.

The reliability of a series system is the product of all system

component reliabilities, so

n.	 n.

P(failure of S in t to t + At) = R r.(t) - H r•(t + At),

3~l 
J	

j=l

where n  is the number of components in S and r j (t) is the reliability

of the j th system component at time t.

Since the failure event for a series system occurs when any system

component or combination of components fails and since S contains all

components of interest for state i of the original system, then

P(Failure of S in t to t + At)

= P(occurrence of a failure in t to t + of/state at t is i)

n 
	 ni

	

_ ff r. (t) - H	 r (t + At),
j=l 

J	 j=l

where n  is the number of components in state i of the original system.

As was shown previously,

rj (t) = l and rj (t + At) = rj(At)

for a system component j which is required for operation in state i at

time t. If the number of these components is m i . then

r.

s^1

d

{
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P(occurrence of a failure in t to t + At/state at t is i)

ni-mi	
M 
	 ni -mi

1 r^(t) - q=1 rq(At) 
k 
j rk(t + At).

For state i (1 < i < s+l) of the basic system, this probabilit y is

rdrersr( s-i+1) - (r(At) }k rd.rc^rs.(r.)( s-i+1)

There all symbols have been previously defined.

Then

_	 Pi,FA^L(t,ot)Ci
(t)	 l -	 s-i+l	 k	

-) ' s- m)
	 (3-8)

rdrer sr	 -(r (At)) rd rc rs (r }

for i < i < s + 1.

For state s+2, Cs+2 (t) may be obtained as

C	 (t} = 1 _	
Ps+2,FATL(t)	

(3-9)s+2	
r  _ (r(At))(k-1)rd(At)rc(At)rs.

Recalling that

C i (t) = P ( system will recover/a failure occurs in t to t + At
where the system is in state i at time t),

then

P[(System will recover/a failure occurs in t to t + At) and
the system is non-failed at time t]
s+2

_	 Ci(t) Pi(t)
=1

Since, for a non--repairable system, it is meaningless to compute

coverage for the system after it has failed, the total system coverage

may be considered to be



This is of the form

P[ A /B]

P[ A and B].

P[A/B]= P[APBand B

since

then

i

i

r	 i i

(3-10)	 I

whereas the previously derived equation is of the form

C(t) = Total system coverage

s+2

1 
Ci ( t) Pi (t)

i=

Pi(t)

s+2
C i ( t ) Pi(t)

-
^ ^l R$	

,

where the C i 's are obtained from equations (3-B) and (3-9), the Pi's

from equations (3-3) through (3-6) and R from equation (3-7).

Computer Evaluation

Three approaches to computer evaluation of equations of the type

presented will be described in this section. These methods are:

1) Manual substitution of transition probability equations
into the general state probability equation and evaluation
of the state probability equations each At,

i
f
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^a

2) Evaluation of the transition probability equations and
-- substitution of the results into the general state
_ probabili ty equation each At, and

` 3) Evaluation of a product of a T - type matrix and a T

matrix which is updated each At.

Methods 1 and 2 are straightforward.	 Method 3 will now be discussed.

It was shown in a preceding section that

P(t + At) = TT x P(t) (3-2)

where P(t + Qt) and P(t) are state probability vectors and T contains

P	 (t,At) in Its i,j location

Then

q P(t + tot) = T 1T x P(t + At)

-iM where Tl is T evaluated at time t + at.	 By substitution,

T' P(t + 2At) = T lT x fTT x P(t)y

DTI	x. TTI x P(t).

In general,

—	 T	 T	 —T
P(t + nQt) = CTnwl x 

'fn_2 
x ... x T1 x T ] P(t)

9

CT x T1 x ... x —T n-2x in_1 IT P(t)
	

i

= Tn*T P(t)	
i

wherei n = [T' x T i x ... x Tn-2 x T'n-1 ]'	 (3-11)

Thus,'to evaluate P(t + not) when P(t) is known, the following algorithm

may be used.
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k	 1. i=valuate T at time t, set T.* T, i	 1.
z	 _

2. Evaluate T at time t + 1 A t to obtain Ti.

F: 3. Ti+1* Ti* x Ti•

4. If i < n then i	 1 + 1, go to 2. Otherwise, p (t + nAt)

Tn* x P(t), stop.

For a system with a small number of states and state transitions,

method 7 is managable. For systems with a large number of states, how-

r:	 ever, either method 2 or 3 is more expedient.. Example flowcharts for

methods 2 and 3 are presented in Appendix A. Program listings may be

found in [271.

The selection of a suitable At for use in the computer evaluation

of these equations is a difficult task. This problem will now be

discussed.

The time period of was originally defined to be a -time period in

which no more than one state transition is likely to occur. Since

the probability of more than one state transition occurring may be.

represented as a product of state transition probabilities, the

monitoring of these products during execution will give an indication

of the appropriateness of the selected At.

By specifying a maximum allowable probability, pmax, for the

occurrence of two state transitions in t'is,,a &t, and reducing At when

this probability is exceeded, the computational error may. be reduced.

The following algorithm will implement this self-monitoring oatrol

for a method 3-type evaluation.

1. Evaluate T at time t, set Tj j = T, i = 1.

Ia. Specify initial At, pmax

v
i

€	 i Is	i

i

i

1
j

r
k	 i.

i

i

i



w __	 l	 l	 I	 I	 1 ^	 ^.
}

.. 43

77
2.	 Evaluate T at time t + iQt to obtain Ti.

,Y 2a. For each non-diagonal entry Ti ( j,k) compute Ti(,j,k)-(T1(k,m)
for each m.

" 2b. If any of these products is greater than pmax 	 reduce At
and go to.2.

3.	 Ti+1* W Ti * x Ti

4.	 If i < n then i = i + 1, go to 2. 	 Otherwise P(t + net) =

_. TnT x P{t}, stop.

In general, the value selected for pmax i s dependent on the

subsystem failure rates and the computational accuracy of the com-

puting system used.	 For the computations of this paper, satisfactory

results were obtained by the use of pmax in the range from . 0001 to

.000001.
3

The magnitude of the computational error accumulated at time t may

_ be approximated by determining the magnitude of the difference of the

sum of all state probabilities and 1. 	 In equational form,

`
N

le(t)1	 _	 11	 -	Y	 Pi (t) l

i=1

adhere N is th q number of system states.

The percent error in system reliability may be approximated by

°.

e(t)q =	 x 100%.
R( t )

ak

J

i



and

44

i	 _L _ I	 I	 I

IV. RELIABILITY EQUATIONS FOR ALTERNATE SYSTEMS

This chapter will show equational developments for the reliability-

of the non-spared, TMR, duplicated and double-error-correcting systems.

A method will also be shown which allows the computation of the
L.. r

probability of various memory ward fault patterns and the effects of

these patterns on system reliability.

Non-Spared System

The non-spared system is capable of operation in only 3 states.

These states correspond to states 1, s+2, and FAIL in the basic system.

By substitution of O for s in the equations for the basic system, the

state probability equations for states 1, 2, and FAIL of the non-spared

system are obtained as follows:

1

PNS (t + At)	 (r(At) )kpN51(t)
	 (4-1)?

1	 ,
(k-1) 

1-r At ) r	 (t)PNS (t + At)	 k(r( At))	 (	 'r( ) 	 d c
'P 

NS1	
^..2

+ (rd (at))(rc(At))(r(At)) (k-1) PRS 2 (t)	 (4-2)

P	 (t + At)	 1- (r(At)) k + k(r(At))(k-1)(1-r(At))rd'rc'] .
NS

FAIL

• pNS (t) - [
rd

(At)rc (At)(r(At))(k-l)]pNS (t)
1	 Z

(4-3)
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RMS(t) = pNS1 (t) + RNS 2 (t) = 1
	

FAIL
pNS	 (t)	 (4-4)

where the p NI S. `s are obtained from equations (4-1) through (4-3)

TMR System

The reliability of the TMR system may be approximated from the

reliability of the non-spared system.by application of the. classical

TMR equation. From [24], this equation is

R ]MR (t) r C3 (R(t ) ) 2 	2(R(t))] rU1-(t,

where R(t) is the unreplicated unit reliability, and ryT(t) is the

reliability of the voting and codeword testing circuitry.

Fhen

"TMR (t) = [3(RNS (t)) 2 - 2(RNS (t))31 rVT (t) '	 (4-5)

where	 RO.t) is obtained by use of equation (44)
i

Duplicated System

The reliability of the duplicated system may be computed by

determining the probability of the various operational modes of the

system. These modes are:

1. Both non--spared units operate correctly,

2. the unit currently on-line fails, and the sense switching
circuitry.switches the system output to the other unit
which is non--failed, and

3. the unit currently off-line fails.

The reliability of this system, then, is

i
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RD (t) _ [RNS (t)]^	 [1 - R
N
s(t)] RS(t) rss ( t)

+ RNS(t) [l	 RNS (t)

R^s (t)	 [I - R^^(t}5(ts) r ss (t}
= 	(-s)

where r5 5 (t) is the reliability of the sense-switching-circuitry and

RNS is obtained by use of equation (4-4).

Double-Error-Correcting (DEC) System
t

Carter and McCarthy [20] have described a.fault-tolerant memory

system of the double-error-correcting type which utilizes a software

implementable double-error-correction algorithm. The algorithm is based

on a concept of memory word error modeling which will now be described.

The non-operational modes of a memory word-bit cell are assumed

to be:

1) Stuck--at-one (s-a-l),and 3

2) Stuck-at-zero (s-a-0).

The occurrence of ei ther of these modes is termed a fault.

The.class of all faults.may be partitioned into two subclasses

by the effect of each fault on the correct memory word bit. If the
,

fault is of the s-a-x type.anti the correct memory word bit for that

a -^	 tlocation i	 e	 't' cur	 u	 o this1	 tlon s X, then no effect 	 the memory b^ oc s	 Faultss fY	 _.

subclass are termed failures. If the fault is 	 s-a-x and the correct

bit is x, then the fault causes an incorrect response o rs a memory read

operation. Faults of this type are called errors:

The weight  of a binary word is defined to be the number of

binary digits (bits) in the word which.are logic 1. By analysis of
_	 _	 f
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m
the words of a particular code the sum of all codeword weights, W, may

~ be obtained.. An. average codeword weight, w is com puted by

W

where V is the.total number of codewords.	 If w is divided by N, the

- length in bits of each. codeword, are approximation to the statistical

probability of any given bit of a word being a logic l is obtained.

In equationa;i form,

p (Word bit = 1) = Pwl = ^, and

-- P(Word bit - 0) - Pwo
	 1	 pwl - 1	

N.

A statistical analysis of faults for a memory system should isolate

the following probabilities.for the bit locations of a .data word.

P(Bit location s-a-1 /l ocation faulted) = Psi, and

P (Bit location s-a--0/location faulted) = PSO:

- ^t is now possible to obtain the probability of a.fail:ure when it

is knovp that a single word fault has occurred.	 This probability is
i

- P(failure /1 fault) = PUBIT location s-a-1/location faulted)
and Word Bit. W 11 + P[(Bit location

. s-a-0/l ocation faulted) and word bit
01

^p	 P	 + p'	 p
sl	 wl	 So	 wO

^. In a simila	 manner,

,i-,
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P(Error/l fault)	
PSI 

Pw + 
PSG pwl.

Sir ►ice P.(failure/i fault) +.P(error/l fault)

pSl P
wl + Pso 

Pwo + PSo Pwl + PSl Pw

( PSl + PSO)(Pwl + PWO)

the binomial probability distribution may be used to compute the probability

of any combination of errors and failures in a word given that a 	 Lain

number of faults has occurred.	 z

Then	 _i

P(n failures and m errors/n + m faults)

( n+m)(P _P	 + P P ) n (P P	 + P P )m
n	 51 wl	 So wo	 Sl wo	 So wl ;t

i

If the binomial distribution is also used to compute the probability
i

of n+m fau ] is , then	 ^..

P(n failures and m errors, n + m faults in b nits)

n+m	 n	 m b	 b-(nom)	 (n+m)
- (	 ) (P P +p P ) (P P +P P } • ( 	 )r	 (1-r}

n	 Sl wl S^ w^	 51 w S wl	 n+m

wh.ar e:. Y? is the reliability of a memory word bit location.

Since ( nbm) is the number of nom--fault words which may occur and

(nn ) is the number of ways that exactly n failures may be ordered among

n+m faults, then the number of distinct m+n-fault words with n failures 	 Y

wi s , (n+rn) ( b ) . The total number of distinct (w nth rt^ard' to number andn n+m

order of failures) n+m-fault words, is then
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nfm

0+m)	 (non)C

These numbers may now be used to obtain the percentage of f-fault

words which contain a -given number of failures. 	 For example, the

percentage of f-fault words of b bits which contain f failures is

(f)(f)	 1	 0To	
x 100x 100%	 1,f

( i
f 	C.1	 ()]

i=o	 7 -0

a useful figure, since an f-fault word with f failures is error-free.

The application of these concepts to }re double--error-correcting

system will be shown following a discussion of correctable error types

__. for the system.

A fault pattern vector for a memory word is defined as

FPV = ('he jf, ge,nf)
a

.,

where h and q are the numbers . of errors in the memory word data and
I

4 check bits, respectively, and j and n are the numbers of failures.

The double-error-correction algorithm discussed will always

produce a valid correction when presented with memory words with FPV's

of certain forms.	 These forms, from [20],.are as follows.

(2e Of, lie Of); (le Of, le Of);	 (Oe Of, ze Of)

(2e. If, ,fie Of); 	 (2e Of, Oe If); : (Oe Of, 2e If).

(2c, If, Oe If);	 (2e Of, Oe 2f);	 (Oe Of, 2e 2f);

(Oa Of, 4e of).
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For Memory word. with FPV's o`F the following forms correction may or

may not be attempted and results may be invalid [20]

(le Of, le if); (@e If, 2e Of);

(le Of, le 2f); (Oe If, 2e If).

No error correction is attempted in the following cases [20]

(le If, le Of);

(2e 2f, Oe Of); (le 2f, le Of); (le If, le If);

(4e Of, Oe Of); (3e Of, le Of); (2e Of, 2e Of).

It should be noted that the preceding FPV's listed all contain an

;I
even number of errors and will produce error syndrome vectors of even

weight. The computation of a syndrome of this type by the memory

translator causes the invocation of this algorithm.

A second algorithm has been designed to attempt data reconstruction

when ail odd-weight error syndrome is computed. Since many triple-error 	 i

patterns produce a single-error syndrome and a high percentage of these

syndromes imply an error in a valid bit, a critical function of this

algorithm is "Co distinguish between single and triple word errors.

This algorithm is capable of reconstructing all memory words with

FPV's containing exactly one error and two or fewer failures. In

addition, all memory words with FPV's containing one error and three

failures are corrected with the exception of the FPV

(Oe 3f, le Of)

for which no reconstruction is attempted [20].
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Valid results, [20], are also produced for

(0e Of, 3e Of) and (0e Of, 3e If).

Correction results are variable E20] for memory words with the

following FPV ` s

(2e Of, le Of); (le Of, 2e Of);

(2e Of, le If); (le Of, 2e If).

No correction is attempted, [201, for the case listed above and the

cases

(3e Of, Oe Of); (3e Of, Oe If).

The listings above show that any combination of two or fewer

faults in a memory word will be algorithmically corrected. For words

with three faults, the percentage of words which are corrected may be

computed as foIIows.

The number of ways in which three faults may appear in a word with

K bits is

(The number of ways 3 faults can appear) +

(The number of ways 2 faults and 1 error can appear) +

(The number of ways 1 fault and 2 errors can appear) +

(The number of ways 3 errors can appear)

^) + 3(3 ) + 3( k ) + ( k	= g	 (3}

The first term of this sum represents all 3-fault words with no errors.

No correction is required for these words. In addition, the triple

i



1

52
i I

^l

error algorithm will correct all 3(3) three-fault words with only one 	 .Z'A

error. ,t

A 3-fault word contaihing 2 errors will not be corrected if the FPV

is of the form

1

j

If the number of data bits in the word is C and the number of check bits 	
I

is C, then the number of 3-fault patterns of this fora is

( C )( 2 )( C ) = 2 (C)C._2 l 1	 .2

The number of 3-fault words with 2 errors for which correction is

uncertain is

(°)( 2 )( 1 ) + ( ° )(C) = 2 D(C) + a( C ) = 3 D(2).

A 3-fault word with three errors will be corrected if the FPV is

of the form

(Oe Of, 3e Of).

The number of patterns of this form is

(3)•

The number of 3-fault words with three errors -for which correction is

.:ncertain is

C(2)( 1) + (°)(2)7 = IC(°)+ 	D(C)I.

(le If, le Of).
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The total number, T3 , of 3-fault words which are correctable is then

bounded as follows

I(') + 3(3) + 3(3) - 2C(') + (3}̂	 < T3 <

U k + 3( 3) + 3(') - 2C( 2 ) + (C) + 3D( 2 ) + C(') + D(2)l

?(3) - 2C(') + (3)l < T3 < [7() - C( 2 ) + ( 3) + 4D(^)^.

Since there are 8( 3 ) possible ways that 3 fau":ts can occur, the

percentage, u 3 , of 3 faults words that can be corrected is

T

u3 = 8(k) x 100%.	 T.

3

For the (22, 16) code of the basic system, u 3 may be computed as:

75.96% < u3 < 89.45%

A breakdown of double-error-correcting system correction percentages

by the number of memory word faults is shown in Table 3. In this

table, u
m,n 

denotes n errors which are system correctable. um

denotes the total percentage of m-fault FPV's which are correctable.

The switchin g strategy assumed for the double-error correcting

system is as follows:

1) If a memory word is detected to have a single error, the
single error correction procedure is performed.

2) If the word has two errors, one of the faulty on-line
bit planes is switched out and replaced with a spare.
Error correction is attempted by use of the double-error
correction procedure.

t
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i

TABLE 3. Percentage of Memory Word FPV's Correctable for

the Double-Error-Correcting System ( 22, 16) Code

uF,e

F	 e	 (9 correctable/100%)
# FAULTS	 # ERRORS	 x(1 of F-fault words with e errors/1009)

0	 0	 u0^0 = 1

0	 0	 u0=1

1	 0	 u1

------------ -------------------- u^ ^^
	

--------------------

0,10,1	 u1

z	 0	 u2,0 = .25

2 1 u2,1 = .5

2 2 u2,2	
.25

2 0,1,2 u2 = 1

3 0
u3,0	

,125

3 1 u3,1 = -375

3 2 .258 < u3,2 < .317

3 3 .0016 < ti33 < .078
3

5
0----^-----------------^----------------------------- ------- I -----------

3 0,1;2,3 .7596 < u3 <_.8945

F
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Table 3 (continued)
uF,e

F	 e	 N correctable/100%)
# FAULTS	 # ERRORS	 x(l of F-fault words with a errors/1.00%)

4	 4	 u4,0 ^ -0525

4	 1	 u4,1 ^'- .25

4	 2	 .1.02 < u4,2 < .119

4	 3	 .0005 < u4,3 < .0395

4	 4	
u4,4 4-- .0001

4	 0,1,2,3,4	 .4151 < u4 < .4711
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1 s	 ^

3) If the word has either three or four errors, a correction 	 E
is attempted. If the correction is successful, faulty
on-line -rba_t planes are replaced with spare bit planes until
either all avail-able spares are exhausted or only one
faulty bit plane remaUs on-line. 	 y

A T matrix may be constructed as shown in Figure 6 with the stfstem	 1

configuration in each state as shown in Table 4.

	

	 f
I'

Appendix B shows the derivation of the state transition probability

equations for this system. If the notational simplifications 	
fA `

(u k-x+yak-x^y)(y)(r(ot)(x-y)(1-r(At))y, 	 = D(x,y,

2	 (s—x+2—k)	 k _	 _

k^0
(s-x+ k ) (l wr )	 (r) - E(x,y), and r(At) - r

are made and the reliability of the algorithmic correction procedure

T	 is denoted by rA, then the transition equations appear as follows:

P12 (t,At) 	 D(k,l ) rd'rc "rA'•

P1,3 (t,At) = D(k,2) rd'rc'rA'rs'(1-E(2,0)).

P1,4(t,At) = D(k,3) rd'rc'rA'rS'(1-E(2,1)).

P1,5 (t,At) = D(k,4) rd'rc'rA`rs'(1--E(2,2))..

P1,s+3(t,At) = D(k,2) rd'rc 'rA'(1-rs ' + rs ' E(2,0))

+ D(k,3) rd'rc'rA'rs'(E(2,1)-E(2,0))

+ D( k,4) rd'rc'rA'rs'(E(2,2)-E(2,1)).

Pl,s+4(t,At) = D(k,3) rd'rc'rOl -rs ' + r s ' E(2,0))

+ D(k,4) rd'rc'rA'rS'(E(2,1)-E(2,0)).

Pl,s+5(t,At) _ D(k,41 rd rc rA (1-rs + rs ' E(2,0)).

i}
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TABLE 4. State Coni:iguration& For Double -Error-Correcting System

State	 Configuration

1	 K Good bit planes on-line, S available spares

2 < i < s + 2	 K-1 Good bit planes on-line s - i + 2.available
spares

s + 3	 K-2 Good bit planes on-line

s + 4	 K-3 Good bit planes on-line

s + 5	 K-4 Good bit planes on-line

FATS.	 An uncorrectable word error exists

i^
-	 i

^y
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P1,1 (t,At)	 = D(k,a).

'
Pi,.+1(t,At) = D(k-1,1) rd*rc*rA*r$ ' (1-E(i3O)}

for 2	 i <s+1.

Pi,i+2(t,At) = D(k-1 9 2) rd*rc*rA*rs ' {'-E(i,1)}
t
.. for 2 < i < s.

1	

y

i

_.. Pi,i+3(t,At) = D(k-1 ,3) rd*ro*rA*r 5 ' (1-E(i52))

for 2<i <s-1.
i-J

Pi,s+3(t,At) = D(k-1,1) rd*ro*rA*(i-rs ' + rs ' E(i3O)11

•- + D(k-1,2) rd*ro*rA*rs - (`E(1.,1)-E(i,D))
IF

.}
+ D(k-1,3) rd*rC*rA*rs ' (E(i,2)-E(i,l))

for 2<i <s.

.x Pi,s+4(t,At) = D(k-1,2) rd*rC*rA* (1--rs ' + rs ' E(i 3 O))	 i

+ D(k-1,3) rd*ro*rA*r$ ' (E(i,l)-E(i3O))	
i

for 2<i <s+1.

Pi,5+5 ( t ,At) = D( k-1,3) rd*ro*rA* (1-rs ' + rs ' E(1,0))	 i

! for 2 < i < s+1.

Pi (t,At) =

,

D(k-1,0) rd*rc*rA*
s

for 2 < i < s+2.

Fs+1,^+3(L,At) = R(k T,1) rd*ro*rA* (1 -r5 ' + rs ' E(s+1,0)).

+ D(k-1,2) rd 	 *r *r " ((s+1,1}-E(s+l,d}}
d	 c	 A	 s

r^

r-,
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Ps+2 ,	 j(t;At) = D(k- 1,j -2) rd*ro*rA*

for 3 < j < S.

Ps+3,s
+j(t,At) = D(k- 2,j -3) rd*rc*rA*

for 4<j<5.

Ps+4,s+5 (t,At) = D(k-3,1)rd*re*rA*•

Ps+j,s+j(t,At) - D(k--j+l.,Q). r *rc*rA* Ar

for 3<j<5.

Pi,FAIL(t,d) = 1-D(k,Q)-rd 'rG 'rA ' «^ i	 D(k,j). --	 -	 _.

f	 3 s

Pi,FAIL(t,ot) - 1--rd*re*rA*	 D(k-1 ,j) G:
j=D

for 2 < i < s+2.
5-q-

Ps+q,FAIL(t At) = 1-rd*ro*rA*	 E	 D(k-q+l,j).
j=Q -

`r	 !

for 3<q<5.	 E ;

The state orobab4'ii ty equations for this system are also derived
R

in Appendix B.	 The resultant equations are
,

P 1. (t + At) D(k,0)	 P 1 (t) .
i

(4--7)

P2(t + At)
D

( k ' I ) rd'r .rArPI(t) + D(k_1
' Q) rd*rc*r,*P2(t)• r-:n

(4-8)

P3 (t + ©t) D(k,2) rd'rc'rA 'rs '(i-E(2 ' Q})	 PI(t)

rd*rc*rA* C (k-l,l)rs'(i--E(2,Q))P2(t)
LVJ	 a

D (k-1 , Q )	 p 3 (t)] _ ( 4-9)
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P t + et) = D(k,3) 'd"c"rA"rst(1-E(2,1)) Pj(t}

+ rd*rc
*rA* [D(k-1,2) rs ' (1-E(2,1)) P

21
(t)	 (4-10)

+ D(k- 1 ;1) r	 (1--E(3sC)) 	 P3 (t) + D(k-1, 0)	 P4(t)] .

P 6 (t + At) = D(k,4) rd .rc rA.rs. (I-E(2,2)) P1(t)

: + rd*r
c
*rA* ID(k-1,3) rs ' (1-E(2,2)) P2(t)

+ D(k-1,2)	 r.
s '	

(I-E(.3,1))	
P3 (t)
	 (4-11)

+ D(k--1,I)	 rs'	 (I-^E(4,0)	 p4() +D(fc-1,0)	 P()	 .
y pi (t + At) = r

d
	 [D( k-1, 0) P i (t)

f§E

+

3

rs '	 D(k-l^j)(I-E(i-,7,3-1)	 P (t)l	 (4.12)
j ==1

for	 6 <' i < s+2.

Ps+3 (t + At) = r -r^-rA-[D(k;2) (1-rs' + rs " E(2,0)

^... +	 ^	 D(k,3) rs ` (E(2}.3--2)-E(2,j-3))] P1(t)
3=3

S. + rs° E(k,D)}+ rd rC*rA*	 k=2

+ D(k-1, 2 )rs '	 (E(k,1)--E(k,Q))

.^
i

+ D(k-1,3) rs" (E(k,2)-E(k,1))	 Pk{t}

+ CD{
k-I,1}( 1 -.r A + rs . E(s+1,0))

± D(k-1,2) rs ' (E(s+1,1)-E(s+1,0))] PS+1{t)

^.. + 0(k-1,I) P s+^:.(t) + D(k-2,0) Ps i-3 (t).	
(4-13)

1
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Ps+4 (t + at) = rd 'rc '3"A '[D(k,3) ( l ..rs ' + rS- E(2,0))
+ D(k,4) rs - (£(2,1) - £(2,0))] Pl(t)

s+1
+ r

d *r *r
A*	 X	 [D(k-1,2)(1-r

s y + rs ' £(j,0))
j=2

+ D(k-1,3) r s ' (£(j,1)-E(j,,D))] P^(t)

+ D(k-1,2) Ps+2 (t) + D(k-2,1) Ps+3(t)

+ D(k-3,0) Ps+4(t)	 (4-14)

ps+5 (t + Qt) = D(k,4) rd 'rc 'rA '(1-rs ' + rS ' £( 2 , 0 )) Pl(t)

s+l
+ r

d 
*rC*rA*	 E	 D(k-1,3)(1-rs' + rs ' E(j,0))Pj()

j=2

+ D(k-1,3) PS+2(t) + D(k-2,2) Ps+3.(t)

+ D(k-3,1) Ps4 (t) ,	 (4-15)

4
P FAIL (t + at) = 1 -
	 D(k,0) + rd 'rc 'rA '	 0(k,j) Pl(t)

j=1
s+2	 .3

+ rd*rc*rA*	 (^ D(k-i , j ) Pk(t))
k=2 m=0

5 5"n
+	 {	 D(k-n+1,q) Ps n( t ) )^	 (4.-161

w=3 q=0

It should be noted that these equations are developed 'fora

double-error-correcting system with sq-2 greater than 5 (equivalently,
^k

more than 3 spare bit planes). If s+2 i where 2 < 1 < 5, then the

equations involving state j where -i < j ` < 5 'should be modified to delete

this state. This modification will involve only the deletion of the

appropriate equations.
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V. ANALYSIS RESULTS

In this chapter, typical results of analyses performed on the five

systems previously described will be discussed. Comparative reliabilities

of each system are shown and the effect of varying several system

parameters is described.

The base variable values assumed [22] for the system analyses are

shown in Table 5. For each analysis performed, the system variables

are fixed at the base value unless otherwise noted.

A comparative reliability analysis of the five sub,ect systems was

performed by use of equations (3--7), (4-4), (4--5), (4-6), and (4-17).

The results of this analysis are displayed in Figure 7. This figure

shows the reliability of the TMR, non-spared, duplicated, basic, and

double-error-correcting systems for mission lengths of four years or

less. Also shown is the reliability of a simplex system with no error_

detecting or correcting capabilities. This system consists of 16 on-line

bit planes and has reliability (e-XSPt)16 where XBP is obtained from

Table 5. It may be seen from this figure that, for missions of 1/2 year	 y

or less, all of the systems except the non-spared and simplex systems

have reliability greater than .99. For greater mission lengths, however,

the reliability of the non-spared, duplicated, and TMR systems decrease

rapidly. For a 3-year mission, probably only the basic or double-error-

correcting systems would be acceptable.

64



`ABLE 5. Base Values for System Variables

65

L7

# On-line Bit Planes

# Spare Bit Planes

i Bit Plane Failure Rate
i

Detector Failure Rate

Reconfiguration Switch

Faila re Rate

Corrector Failure Rate

DEC Algorithm Failure Rate

Mission Length

t`	 Memory Size

Failure Distribution

4K-Bit Subplane Failure Rate

"eripheral Bit Plane Circuitry

Failure Rate

22

4

2.6384/106 HR

900/106 HR

.583/106 HR

.027/106 Hr

0

3 Years

16k Fords

Exponential

.5596/106 Hr

.3/106 Hr
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FIGURE 7. Reliability of Subje ,-t Systems
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Comparison of the curves for the double-error-correcting and Basic

Systems shows the reliability improvement to be expected from the use of

the software algorithms of the double-error-correcting system. For

1/2-year missions, this improvement is negligible. For missions of

greater lengths, however, the reliability improvement gained by the use

of this systerl becomes important.

It is interesting to note that, while the duplicated and TMR

systems represent a doubling and tripling of memory bit planes over the

non-spared system, the basic and double-error-correcting systems result

in much higher system reliabilities with an addition of only 4 bit planes

to the non--spared system.

Figure a shows the results of a reliability analysis performed on

the basic system for various numbers of spare bit planes. The

corresponding curves for the double-error-correcting system are shown

in Figure 9. Comparison of these two figures shows that the same degree

of reliability achieved by the basic system with 4 spare bit planes may

be reached by a double-error-correcting system with 3 spares and a

sufficiently reliable double-error--correction algorithm. The need for

one spare bit plane may thus be aleviated by the use of software

error correction.

The reliability of the software error correction algorithms used in

the double-error-correcting system is highly important to system success.

The effects on the double-error-correcting system reliability made by

varying a hypothetical failure rate for the CPU hardware which implements

these algorithms is shown in Figure 10.

i
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Also essential to overall system reliability is the failure rate of

the detector. The effects of varying this failure rate are shown

in Figure ll,

The reliability of double-error-correcting systems with various

memory capacities is shown in Figure 12. The major effect of memory size

on the reliability of a system of this type is in the bit plane

failure rate. Also affected are failure rates of memory size-related
i'

components such as address decoder circuits, however, only the bit

r'	 plane failure rates are considered in this figure. The failure

rates used were obtained by assuming that each bit plane is composed

of 4K-bit sub-planes and peripheral circuitry, each with a failure

rate as shown in Table 5.

The results of the memory capacity analysis show that for

missions of 1 year or less, double-error-correcting type memories

containing up to 64K words will achieve high reliability. Greater mission

lengths show a reliability decrease for the larger capacity memories with

a dramatic decrease for memories larger than 32K words and a three"-year

mission length.

The coverage of the basic system for various numbers of spare bit

planes is shown in Figure 13. Coverage may be defined as the probability

that the system will continue to function given that a failure occurs.

As such, the coverage of a system is useful in analyzing the system's

behavior after camponent failures of a nature not predictable by system

failure rates.



7

1.

.9

p

L 8
I
A
B
I
L
i
T
Y .7

.6

72

lu -	 L	 4	 lu	 e	 'F	 lu

DETECTOR FAILURE RATE

FIGURE 11. Reliability of Double-Error-Correcting
System vs. Detector Failure Rate

i



I

73

1 YEAR

.95

•g 2 YEARS

R

E

L

B .85

I._
L

T
Y

•8

; 75

a

7- 3 YEARS

^i 4K	 8K	 16K	 32.K	 64K

MEMORY SIZE (WORDS)

FIGURE 12. Reliability of Double-Error-Correcting

t

System vs. Memory Size.



1.

.9

.S

C
0
V •7
E
R
A
G
E

.6

.5

.4

0	 1

TIME (YEARS)

FIGURE 13. Coverage for Ba

74



75

E	 it may be seen from this figure that a basic system with no

spares is highly vulnerable to system component failures. As the number

of spare bit planes increases, however, this vulnerability decreases

Mb
rapidly until, in the system with 4 spare bit planes, there is a

probability of .96 or greater of successful operation after a failure

for missions of 3 years or less.

Overall results of the analyses performed show that a high degree

of system reliability may be obtained by a ,judicious combination of

coding, modular sparing, and software error correction. Substantial

reliability improvement over massive replication techniques is achieved

with relatively low cost. While some sensitivity is shown to the

reliability of system control components, fault--tolerant techniques

applied to these components should assure high system reliability.

i



VI. CONCLUSION

A technique for the development of reliability and coverage

equations for a class of non-repairable fault-tolerant memory systems

has been presented. The methods discussed have been applied to several

systems and typical results have been shown.

The basic and double-error--correcting fault-tolerant memory systems

have been shown to achieve high reliability at minimal cost. These

systems make efficient use of the spare bit--planes provided and th ,- error-

correction capabilities of the code. By use of software correction,

the double-error-correcting systerin adds an additional level of error

control and may reduce the need for one of the spare bit planes.

A major advantage of the calculation methods presented here over

more traditional reliability calculation methods is the allowance of a

finite of for state transition occurrence. The use of this finite tin,a

increment allows multiple system events to occur during any state

transition. The need for separate states to represent these events is

then diminished. The result is a state diagram with a reduced nuriber of

states with probability equations that are easily computer-impl.enented.

A disadvantage of this method is the lack of a closed form solution

which is easily obtainable by use of other methods. Because of the

dependency of the state probabilities at time t + At on the conditions

at time t, small errors in computation at one time may cause large

errors at succeeding times. A closed form solution should eliminate

this problem.
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Further work in this area could include the following:

I. Development of a closed-form solution from the equations
of this method,

2'. Research into the effect of un—powered spares on system
modeling, and

3. Application of these methods to the repairable system
problem.
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APPENDIX A

Flowcharts for Computational Algorithms

Three methods for computer evaluation of the equations of this

paper were outlined in Chapter III. Flowcharts for evaluation by use of

r-
	

Mothods 2 and 3 are shown here.

Figure 14 shows a typical implementation of evaluation method 2.

For this flowchart, 
tBASE 

is selected to be 0 and the system starting

i`
	 state is state 1. TMAX is the mission length of interest.

f
	

After initialization, all transition probabilities are calculated

for the current time (T) and At. Where a two-state transition is

possible, the product of the two single-state transitions involved is

formed. If this product is greater than PMAX, the maximum allowable

two-state transition probability, the At is reduced. r.

The amount of this reduction is arbitrary. If At and T have units

of hours, then a convenient method of reduction is to multiply at by
r

.9 and set the new at equal to the greatest integral number of hours

less than this number. When this method is used, however, a test must

be performed to assure that At is not 0 since this condition would

prevent any further processing.

If all the two -state transition probabilities are less than PMAX,
r

the state probabilities for time T + At are computed by substitution

of the transition probabilities and state probabilities for time T into

equation (3-1), the general state probability equation. if T is less
	 I

^f
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than TMAX, T is incremented by At and processing continues. Otherwise,	 1

the system reliability is formed as a suitable sum of state probabilities,

results arm output, and processing terminates.

Figure 15 shows an implementation of a Hathod 3 evaluation. This

flowchart follows the steps outlined in the second computational

algorithm of Chapter III.

It should be noted from equation (.3-11) that if the base computation

time is 0 and the system starting state is state i so that P i (0) = 1

then Tnx contains the state probabilities for state j in its (i,j)
a

location. For this case, then, the multiplication by P(t) to obtain
f

P(t k nat) is unnecessary since the state probabilities may be

determined directly.
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APPENDIX s

Development of Equations for the Double-Error-Correcting System

A listing of transition events and subevents causing the transitions

	

'	 is shown in Table 6. In this table, the success of the detector,

corrector, correction algorithm and switch prior to time t + At ark

represented by DA , C , , A-, and W-, respectively. Success in the time

ws interval from t to t + At is denoted by a " superscript. The non-

success event is denoted by a subtraction of the appropriate symbol

	

-	 from 1.

For the derivation of the transition and state probability equations

the following notation will be used.

D(x,y) = P(y correctable on-line bit plane errors out of x
possible on-line bit planes given all were good
at time t)	 i

	

- 	 (y) (r(At)) (x-y)(1--r(ot))y

	

x-	 I

E(x,y)	 P (y or -fewer good spare bit planes out of s - x + 2
available)

	

v_	 y	 ^

(six+2)(l-r,)(.s-x+2-k)(r.)k

k=0	
k

rm = rm (ot)

The double--error-correcting system transition probability equations

may now be specified as

	

3	
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TRANS-
.	 ITION SUBEVENTS`CAUSING TRANSITION 	 -

# on-line

8

correctable
B 	 Errors Other Subevents
# possible
bits

12 1 JK D-C-A-

1,3 2/K D^C'A'.W-(at least l good spare) 	 -

1,4 3JK D-C'A-W-(at least 2 good spares)

1,5 4/K D-C-A'W-(at least 3 good spares)

1,s+3 2/K
3

D-C-A-((1-W,) or W'(No good spares))

or	 1

3JK D^C^A'W'(exactly 1 good spare} 	 -.
_ 

or

' 4/K D-C-A^W'texactly Z good spares)

1,s+4 31K D'C-A'W--W-) or W-(no good spares))
or

4/K D-C,A'W'(exactly 1 good spare)

1,s+5 4JK D-C-A-((l-W') or W(ho good spares))

1,1 OJK
-

i,i+1 1JK-1 D*C*A*Wf(at least l good spare)

2<i <s+1

9
1
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TABLE 6.	 continued

2/K-1 D*C*A*W'(at least 2 good spares)

i , i+3 3; K-1 D'^C*A*W' (at least 3 good spares)

2<i <s-1

i,s+3 1 /K-1 D*C*A* ((1--W , ) or W'(no goad. spares)

2< i <s or

2/K-1 D*C*A*W'(exactly 1 good spare)

or

3/K-1 D*C*A*W'(exactiy 2 good spares)

i,s+4 2/K-1 D*C*A*((1-W-) 	 or VJ.- (no good spares))

2<i<s+l or	 .

3/K-1 D*C*A*W-(exactly 1 good spare)

i,s+5 3/K-1 D*C*A*((1-W') or W-(no good spares)}	 j

2« <s+1

0/K-1 D*C*A*

2<i <s+2

., s+7,s+3 1/K-1 D*C*A*((1-W') or W-(no good spares))

or

Z/K-1 D*C*A*W'(exactly 1 good
i

spare)

s+2' s+ J̀ ^-2^K-1 ^ - ,^D C A
a

_

3<j<5



I	 i	 i	 I	 I	 i	 i	 i

4 .5

s+4,s+5

S+j,S+j

90

TABLE 5. continued

3-3/K-2	 D*C*A*

1/K-3	 D*C*A*

0/K-j+1	 D*C*A*
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The double-error--correcting system transition.probability equations

may now be specified as:

pl,2 (t,ot) = D(k,l) rdlrc'rA'.

"	 P1s3(r,At) = D([c,2} rd'rc-rA'rs'(^-E(2,0))-

P1,4 (t,At) = D(k3) rd'rc'rA'rs'(1-E(2,1)).

P^^ (t,ot} = D(k,4) r 'rc'rA'rs-(1-E(2,2)).

P i,s+3 ( t yQt) = D(k,2) rd'rc"rA'(1_rs' + rs ' E(2,0))

+ D(k_.3) rd'rc'rA'r5'(E(2,1)-E(2,0))

4Y	
+ D (k,4) 

rd' 
rc'rA'rs'(E(2,2)-E(2,t)).

P19s+ (t,ot) = D(k,3) rd 'rc 'rA '( 1 —rs ' + rs ' E(250)}

+ D(k .,4) rd'rc"A'rs'(E(2,1)-E(2,0)}.

P1's 5 (t,©t) = D(k,4) rd 'rc'rA '(1--rs ' +r s ' E(2,0)),

P1,1 (t,At) = D(k,0).

P i i+,(t,At) = D(k-1,l) rd*rc*rA*rs -(1-E(is0)) . 	1

for 2<i<s+l.

P i,i+2 (t,ot) = D(k-1,2) rd*rc*rA*rs ` (1-E(i,1}}

for 2<i <s

P i, 1 ,3 (t,At) = D(k--1,3) rd*rc*rA*r$ ' (1-E(i,2))

for 2<i <s-l.	
-

i
1	 ^

3



.s

P.
y s+3 

(t,At) = D( k-137) rd*rc*rA* (1_rs
 
 + r

^ 

+ D(k-•1 >2) rd*rc*rA rs
- (E(i ,1) .-E(i ; })	 `^

+ D(k•-1,3) rd*rc*re r s ' E (^ )-E{^ a7 ))

for 24i <s. 	
`.1

P., s+4 
(t A }	 D(k-1 2) rd*rc*rA* (1 " ^» r	 rs ° E(i g0)}

i 

+ D{k-1,3} rd* c*rA rs ' (E(-^,l)-E(3,))	 `_

far Z.O <s+l .	
r: a

P-
,
s+5 (t,bt) = D(k-1,3) rd*

rc*rA* (1-rs' + rs E(i,a))
^ 

for 2<i<s+l-

P. -.(t,ot) = D(k-1,0) rd*rc*rA

for 2<i<s+2.

Ps 
1 s+3(t,ot) = D(k-1,1) rd*rc*rA (1-rs '	 rs - E(s+1,D))

+ D(k--1,2) rd*rc*rA*r s (E{s+1 ,1)-E(s+1 ,a))

P	 (t,ot) = D(k--1,j-2) rd*rc*rp*
s+2, s+j

for 3<,^<5.'

P
s+3,s+j

(t,ot) 	 D(k-2,j-3) rd*rc*rA*.

for 4<j<5,	 ..

Ps+4,s+5(t,At)
	 D(k-3,1) rd c*r*rA*.	

—f

P
s+j,s+j

(t,ot) - D(k--j+1>0) rd*rc*rA
^3.

for

Since

p .	 (t9	 1 _ s^5 p.
i,FAILpt)
	

j-1 ^,a
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the following equations may
be developed:

P	 (t3ot)	
1

1 ,FAIL
_ p^^ 2(t,pt) - p l,4(t,at)	 - P1,5(t'at)

4.a

' P1,s+3 (t,At) - Pl,s+4(t=At) - p11(t,At)

P	 (t,Qt) = 11,FAIL
- D(k,0) - D(k,l) rd'rc'rA'

_ D(k,2)rar rACr-(I-E(2,D)+.l-r$'+ r5E(2,D)1

- D( k,3)rdrc
rA[r (1-E(?_,1)}+r$(E(2,1)-E(2Sa))

+ 1-rs ' + r s " E(2,D)l - D(k,4) rd'rc'rA,

(
.	 [rs 	(1-E(2,2)) + rs '	 (E(2,2}-E(2,1))

f + r s '(E(2,1)-E(2,0)) + 1-r s ' + r s ' E(2,0)

= 1 .. D(k,a) - D(M) rd 'rC 'rA' - D(k,2) rd'rc'rA'
.._

_ D(k,3) rd,rc.rA' - D(k,4) rd:rc'rA^

- 1
4

- D(k,0)	 - rd 'rC -rA'	 D(k,j).
^j

j=1

(t,ot} = 1
i,FAIL

- P.	 + (t,ot} - P i ^ i+2 (t,ht ) - Pi,i^3(t=ot)
^,i	 1

for	 1<i<s--1 - P ,S ^ 3 (t,Qt)	 - Pi,s+4(t,'t) - Piss+5(t,flt)

i

I

s

}i'
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Pi,FAIL(t,At) = 1 - D(k-1,0) r d*rC*rA* - D(k-1,1) rd*rc *rA*

• [rs ' (1-E(i 3 O)) + 1-rs ' + rs ' E0,0)1

- D(k-1,2) rd*rc*rA* [rs ' (1-E(i,l))

+ rs ' (E(i,l) - E(i,D)) + 1 - rs ' + rS' E(i,D)]	 R

- D(k-1,3) rd*r^*re[ rs • (1-E(i,2))

+ rs ' (.E(i,2.) - E(i,1)) + 1 - rs ' + r5 ' E(i3O)	
w	 ,

+ rs ' (E(i,l) - E(i3O))]

= 1 - rd c*r*rA*[D(k--1,0)+D(k--1,1)+D(k--1 ,2;

+ D(k-1,3)].

p
s, FAIL (t,At) = 1-Psss+1(t,At)-Ps,S+2(t,At)-Rs^s+3(t,At)

-Ps,s+4(t,ot)-Psis+5(t,At)-P S's (t,A.t)

1 -- rd*rc*rA* B(^--1,0) + D(k-1,1)

• Ers ' (1-E(S,0)) + 1-r S, + rSr E(s,0)]

+ D(k-1,2)[rs' (1-E(s,1)) + r s ' (E( s,l) -E(s,0))

+ 1--rs '+ rs'E(s,D)]+D(k-1,3)[rS, E(s,2)-E(s,l)

+ rs• (E( s,l )-E(s,0)) + 1-rs • + rs• E(s,O)]

1 -- rd*r,'krA* D(k-1,0)+D(k-1,1)+D(k-1,2)

+ D(k-1,3)LrS ' E(s,2) + 1 - rs']

But E(s,2) W	 (2)(1-r-)(2-a)(r_)a	 1.

r=n

s0
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Ps,FAIL(t,At) = 1 - rd*rG*rA*[D(k•-1,0) + D(k-1,1) + D(k-1,2)

+ D(k-1,3)].

Ps+1,FAIL(t,ot) = 1-Ps+l,s+2(teat)-Ps+1,s+3(t'At)-Ps+3,s+5(t,At)

-Ps+1,s+i(t,At)

= 1 - rd*rc*rA* D(k-1,0)+D(k-1,1)[rs-(1-E(s+1,0))

+ 1-r5 ` + r5 ' E(s+1,0)]+D(k-1,2)

• E1-rs '+ rs 'E(s+1,0) + rs'(E(s+1,1)-E(s+1,0))]

`-	 + D(k-1,3)Ers'(E(s+'t,I)-E(s+1,0))

+ I - rs ' + rs ' E(i3O)]

Ps+i,FAIL(t,ot) = 1 - r d*rc*re D(k-1,0)+D(k-1,1)+D(k-1,2)

• [1-r,' + rs ' E(s+1,1)] + D(k-1113)
i

Lrs' E(7,1) + 1 - rs']

But E(s+1,1) =	 ti)(1-r')(I-q)(r')Q	 i
9=0 9

E	

[^
So

Ps+1,FAIL(t,At) = 1-rd*rC*rA*[D(k-1,0)+D(k-1,1)+D(k-1,2)

_._	
+ D(k-1,3)].

Ps+2,FAIL(t,ot) = 1
-
Ps+2,s+2(t,At) -Ps+2,s+3{t9at)`Ps+2=s+(t,At)

_,.	 -Ps+2,S+5(t,6t)

r'	 W i-rd*rc*rA*eD(k-1 ,0)+D(k-1 ,1)+D (k-1 ,2)

+ D(k-'1,3)].

{S
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Ps+3,FAIL(t'At)

Ps+4,FAIL(t,At)

Ps+5,FAIL(t'At)
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1-Ps+3,s+4(t,At)-Ps+3,s+5(t'At)-Ps+3,s+3(t,At)

1-rd*rc*rA*[D(k-2,0)+D(k-2,1)+D(k-2,2)].

I"Ps+4,s+4(t,At)--P s+4,s+5(t,At)

l -rd*rc*rA*[D(k-3,0)+D(k-3,1)].

1- Ps.E5a 
s+5 (t,At) = 1- rd*rc*rA* D(k-4,0):

So
4

P1,FAIL(t,At) = 1-D(k,0)-rd rrc `rA.
	D(kx3)•
^=l

3
Pi,FAIL(t,At) = 1-rd*rc*rA* ^ D(k-1,j)

j-0

for 2<i<s+2.

5-j
Ps+j,FAIL (t,At) = l-rd*rc*rA* qY0 D(k-j+1,q)

for 3<j15 .

By substitution of the transition probability equations into the

general state Probability equation, the state probability equations

for the double-error-correcting system are obtained as follows:

Pl (t + At) = P 1 11 (t,At)P l (t)
= D(k,0)Pl(t),

P2 (t + At) = P1,2 (t,At)P2 (t) + PZ,2(t,At)P2(t)

= D(k,l) rd 'rc 'rA ^P l (t)

+ D(k-1,0) rd*rc*re P2(t).
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p3 (t + At) = P 1 ,3 ( t >At )P I ( t ) + p 2,,3 (t,At)P2 (t) + !' 3 ,P ,.\t )11 .1 ( k.)

= D(k,2) r d rr
c

,rA rrs , (1-E(2,0))Pl(t)

• rd*rG*rA* [D(k-1,1)r$- (1-E(2,0))P2(t)

• D(k-1,0)P3(t)1-

P4(t + At' = P 1 ^ 4 (t,At) p l (t) + p2i4(t,At} p2(t) + P3,4(t,At)P3(t)-

+ P4,4(tsAt)P4(t)

n( k,3) rd ? rc,rAfrs^ (1-E(2,1))pl(t)

+ rd*r
c
*rA*[D(k-1,2)rs r (1-EE2,1))P2(t)

+ D(k-1,1) rs - (1-E(3,0))P3(t) + D(k--1,0)P4(t)].

PS (t + At li = Pl,5 (t,At)Pl (t) + P2?5(t,At)P2(t)

+ p3
,5 (t,ot)P

3 (t) + p4,5 (t,At)P4(t) + P5,5(t,At)P5(t).

= D(k,4)rd-r` -rA'rsr (1-E(2,2))P1(t)

+ rd*rG*rA* ED(k-1 5 3)rs r (T-E(2,2))P2(t)

+ D(k-1,2)rs^ (1-E(3,1))P3(t)

+ D(k-1,1)rS.. (l--E(4,0))P' (t) + D(k-1,0)P (t:)

P i (t + At) = P 1-3,i (t,At)pi-3 (t) + Pi-2,i(t°At)Pi -2(Q

+ Pi_, ,i (t,At) p i _l (t) + p i ,i (t,At)P i (t)

= rd*rc*rA* ED(k-1,3)r s- (1-E( i -3,2))'Pi-3(t)

+ D(k-1,2)rs (1-E(i--2 ))Pi-2(t)

+ 0(k-r1,1)r5- (I-E0-lM)P,-l(t) + D(k-1,o)Pj(t)]

I
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P i (t + At) = rd*rc*rA* [D(k-1,0)Pi(t)

3
+ rs' D(k--l,j)( 1 -E(i-j,j-1))Pi-j(t)1

^j 1

for	 6<i<s+2.

Ps+3 (t + fit) _

s+2

=1 Pj,s+3(t,ot)Pj(t) + Ps+3,s+3(t,ot)Ps+3(t),

= rd 'rc 'rA'[0(k,2)(1-r s ' + rs ' E(2,0)) + D{F,3),^s'

(E(251)-E(2,0)) + D (k,4)rs '	 (E(2,2)-E(2,1))lP1(t)

+
s

rd*rc*rA*	 [D(k-1,1)(1--rs' + rs ' E(j.,0)). .
j=2

+ D(k-1, 2)rs ' (EU M -Eki3O))

+ D(k-1, 3 )rs '	 (E(J,2)-E(j,1))]P^(t)

+ [D(k--1,1)(1-rs 	 + rs ' E(s+1,0)

+ D(k-1,2)	 rs ' (E(s+1,1)	 - E(s+i3O))]Ps+1(t)

+ D(k-1,1)Ps+2 (t) + D(k-210)Ps+3(t)

.	 Ps+4(t + At) =
s+3

Pj,s+4(t,Dt)Pj (t) + Ps+4,s+4(t,ot)Ps+4(t)3 X1

= rd 'rc'rA P CD(k,3)(1-r s ' + rs ' E(2,0))

+ D( k , 4 )	 rs`	 (E(2,l)	 -	 E(2,0))]P1(t)

s+l
+ rd*r,*"A*	 E	 [D(k-1,2)(1-rs' + r s ' E(J,0))

j°2

+ DN-1,3)rs ^ (E(7, l)-E(a,0))]Pi(.Q

+ Dt k-1,Z)P5+2 {t) + D(k-2;l)Ps+3(t).

+
D(k-3,0)Ps+4(t)



i
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s+4W..	

Ps
+5(t + At) = .X1 Pj,S+5(t,At)P3(t) + Ps+5,s+5(t,At)PS+5(t)

^ 
D(k,4) 

rd,rc rA. (1--rs' 
+ rsr E(2,0))P1(t)

`	 + r *r *r * s1 D(k-1,3)(1- rs' + rs. F(^,0))P^(t)
d c A-2

{	
+ D(k-1,3)Ps+2(t) + D(k-2,2)Ps+3(t)

F
+ D(k-3,1)Ps+4(t)

f

s5
FAIL

p	 (t + At) =	 p a, a FAIL
(t,At)Pj (t) + PFAIL(t)

a=1 4

	

_ [1--D(k,0) - rd -r^ :rA"	 D(k,J)7P1(t)

3
+ s2 [ 1 -r *r *r * ^, D(k~1,m)]P (t)

q=2

	

d e A 
m=0	

q

..	 r 

C1 -r *r *r * 5 h

	

-t	 D(k^-n+1,q)7Ps+n(t) +PFAIL(t)
n=3	

d c A --0
q-

s+5

Pr(t) + PFATL(t) + 
[-D( k ,0) -- rd'r.'rA-

r=1e_	
4

•
qq 

D(k,)^p1(t) + rd*rG*r•R

j=l

X5 ;2	 D(k-1,m))P (t)
q=2 m=0	 q

J
( 5^n D(k-n+1 , q)Ps+n(t))1

3 q=0

s+5
But	 ^ Pr ( t) ^' P^AIL(t) 

_ 1

. •	 r=1




