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Figure 6.- Span load and section suction distributions on a swept and
skewed wing. A = 45°; A =1; M= 0.
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N76-28164

HISTORICAL EVOLUTION OF VORTEX-LATTICE METHODS

John DeYoung
Vought Corporation Hampton Technical Center

Good morning. In this short talk I will give a review of the beginnings
and some orientation of the vortex-lattice method. The vortex-lattice method
is a discrete vortex colocation method for obtaining numerical solutions to
the loading integral equation relating normal velocity an” wing loading. It is
a branch of computer fluid dynamics which in turn is mathumatically descended
from finite-difference concepts. Finite-difference concepts had been applied
to the development of calculus which dates it a relatively long time ago. For
our subject the beginning is much more current. Here for orientation we will
follow the historical course of the vortex-lattice method in conjunction with
its field of computational fluid dynamics. An outline of the concurrent
development of computer fluid dynamics and vortex-lattice methods is as follows:

L.F. RICHARDSON (1910) V.M. FALKNER (1943) FIRST USE OF NAME
VORTEX~LATTICE THEORY
L. PRANDTL (1918, 1921)
R. V. SOUTHWELL (1946)
H. LIEPMANN (1918)
C.M. TYLER, JR. (1949)
R. COURANT, K. FRIEDRICHS, AND
H. LEWY (1928) ELLIPTIC AND D. N. DeG. ALLEN, AND S.C.R. DENNIS
HYPERBOLIC EQUATIONS (1951)

A. THOM (1928) FIRST NUMEPICAL D. N. DeG. ALLEN, AND R.V. SOUTHWELL
SOLUTION OF VISCOUS FLUID- (1955)
DYNAMICS PROBLEM

F. H. HARLOW, AND J. E. FROMM (1965)
1/4 - 3/4 RULE CHORD CONCEPT (1937)

AERODYNAMIC ANALYSIS REQUIRING
%. H.)SHORTLEY, AND R. WELLER ADVANCED COMPUTERS, NASA SP347 (1975)

1938

LOS ALAMOS SCIENTIFIC LABORATORY
(WORLD WAR I1)

Since many mathematical models of fluid dynamics can be expressed as partial
differential equations then, historically, computer fluid dynamics can be said
to start with L. F. Richardson's paper. Some consider this paper as the
foundation of modern numerical analysis of partial differential equations. He
applied his methods to the engineering problem of determining stresses in a
masonry dam. In 1918 Prandtl formulated the 1ifting-line theory. The chord
loading is concentrated into a single load vortex, thus it is a one panel chord-
wise vortex lattice with flow conditions satisfied at the load line. In 1938
Prandtl proposed an explicit finite-difference method for solving boundary-
layer equations. Liepmann showed how to improve the convergence rate of
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Richardson's procedure. In later years Liepmann's method was found very
compatible with electronic computers and has been further developed. The
classic paper of Courant, Friedrichs, and Levy has become a guide for practical
fluid flow computational solutions. A.Thomm did early computational work in
fluid flow, two-dimensional and flow past circular cylinders.

The 1/4-3/4 rule has a fundamental role in vortex-lattice methods. This
concept first appeared in a paper by E. Pistolesi in 1937. He in effect did a
single panel vortex-lattice solution for a two-dimensional wing and found that
with the load vortex at the 1/4 chord line and downwash or normal wash point
(no-flow through condition) at 3/4 chord, the section 1ift and moment for con-
stant angle of attack is exactly that of thin wing theory. And 1ift is
predicted exactly for wing with parabolic camber. This rule was first applied
to wings of finite aspect ratio by W. Mutterperl (1941) and J. Weissinger (1942
and very often since by others. P.A. Byrd (Ing.-Arch. 19, 321-323, 1951)
expanded Pistolesi's work for sections divided into more than one panel on the
chord and with the 1/4-3/4 rule applied for each panel found that 1ift and
moment are predicted exactly. In later years this chordwise rule received
further mathematical attention. Shortley and Weller developed block relaxation-
a developed version of Liepmann's method. It was this work from QOhio State
University I had used in a gradu.te course at Washington State in 1943 to
numerically solve the Laplace equation for determining the stress pattern in a
twisted grooved rod. Work at the Los Alamos Scientific Laboratory has
contributed much to the advancement of computer fluid dynamics. This includes
the work of J. von Neumann, J. Fromm, and F. Harlow. From Los Alamos a graphics
fluid dynamics motion picture was circulated in this country in the 1960's.

It showed a computer fluid dynamics flow prediction of a dam bursting and the
water cascading down a gorge. V. Falkner covered the wing with a grid of
straight horsechoe vortices. Wing surface loadings were predicted. In one
report he uses the titie, "The Solution of Lifting Plane Problems by Vortex
Lattice Theory,” A.R.C.R.& M. 2591, 1947, which is a fir<t use of this name.
Faulkner's method and variations were tried extensively throughout the

industry during the 1950's. However, the calculation effect was large which
limited the number of panels then accuracy became questionable for some con-
figuration designs. The vortex-lattice method had to await computer capability.
Southwell improved the relaxation procedure by scanning the mesh for larger
residuals for new values calculation. This scanning procedure is not so
suitable for electronic computers. Tyler, in a Ph.D. dissertation, and Allen
and Dennis developed relaxation method solutions for computing wing lifting
surface loading. Using Southwell's relaxation method, Allen and Southwell did
a solution for the viscous imcompressible flow over a cylinder. The year 1965
is considered by some as a modern start to computer or computational fluid
dynamics. Harlow and Fromm provided stimulus and awareness in a Scientific
American paper entitlied, "Computer Experiments in Fluid Dynamics" which
includes the concept of numerical simulation. It has been observed that the
percentage of published scientific engineering numerical methods papers to
total papers has increased twenty fold in the decade of 1963 to 1973. The year
1965 can be considered as the start of the computational vortex-lattice method.
It has had a many fold growth in applications and development during the last
decade. It was certainly influenced by the stimuius and awareness of the
potential of the scientific computer occurring throughout the field of
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computational fluid dynamics. In the mid 1960's four independent papers
appeared on vortex-lattice methods, respectively Ly Rubbert, Dulmovits, Hedman,
and Belotserkovskii. These were extensions of Faulkner's method and adapted

to electronic computers. For the reported work of the 1960's and 70's
reference can be made to the bibliography list of this workshop. The state of
the art in general computational fluid dynamics is demonstrated in the volumes
of NASA SP-347 which is the result of a March 4-6, 1975 NASA conference at
Langler.

Computer capacity is developing rapidly. Computational speed has been
increased by a factor of 2.5 each year. The application of the vortex-lattice
method is being made to increasingly complex configuration designs such as multi-

‘planes, nonplanar wings, interference, and wing tip. It is a powerful tool as

an aid in parameter study and optimization. Currently attention is being
directed toward further improving the vortex-lattice representation by lattice
arrangement, panel geometry, and by better mathematical modeling of the flow
in the panel region. These have been referred to as advanced panel methods.
However, in some of these developments the simplicity of an elemental vortex
representation is lessened and leads to greater mathematical model complexity
of the panel flow, but computational efficiency may be increased. In summary,
this is computationally a new technology field only about 10 years old. It is
computer oriented with numerical simulation of the physical laws governing

the problem. It is a supplement to the two disciplines of theory and
experiment. It can logically be extended to find answers of complex flow
impractical to measure experimentally. In this workshop we will learn of

many unique utilizations of the vortex-lattice method, of lattice analytical
advancements, and the power and nature of this new discipline. Thank you.
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SUBSONIC FINITE ELEMENTS FOR WING-BODY COMBINATIONS
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James L. Thomas
NASA Langley Research Center

SUMMARY

Capabilities, limitations, and applications of various theories for the
prediction of wing-body aerodynamics are reviewed. The methods range from
app.oximate planar representations applicable in preliminary design to surface
singularity approaches applicable in the later stages of detail design. The
available methods for three-dimensional configurations are limited as inviscid
solutions with viscous effects included on an empirical or strip basis.

INTRODUCTION

Current research efforts directed toward the design of fuel-efficient air-
craft dictate that adequate tools be available for the assessment of aerodynamic
loads .cross the expected speed envelope. Ashley and Rodden (ref. 1) have sum-
marized the available methods for aerodynamic analyses of wings and bodies in
steady and oscillatory motion at both subsonic and supersonic speeds. The ana-
lytical methods applicable to generalized configurations vary over a range of
sophistication, accuracy, and computer times required but are generally limited
as inviscid solutions. Some inviscid-viscid coupling techniques in two dimen- '
sions have yielded good results (refs. 2 and 3), and their inclusion on a strip '
basis into three-dimensional inviscid solutions may serve as a near~-term solu-
tion. The inclusion of viscous effects for generalized configurations across
the Mach number range remains a far-term solution requiring extensive computer
resources and advances in turbulence modeling (ref. 4). Immediate design and
verification methods are thus a combination of experimental and analytical tech-
niques. The analytical methods largely remain inviscid solutions guided by the
inclusion of viscous effects on a semiempirical or scrip basis.

The purpose of this paper is to summerize the capabilities and limitations
of the existing methods for the steady subsonic analysis of wing-body combina-
tions. Solutions to the linearized perturbation potential equation (Laplace's
equation), with Mach number effects included by the Prandtl-Glauert transforma-
tion, are considered. Since the governing partial differential equation is
linear, the solutions may be approximated by distributing a finite number of
elemental solutions over the body and solving for their relative strengths by
imposing proper boundary conditions; for example, the flow field must satisfy
the tangential requirement on the body surface and the Kutta condition at sub-
sonic trailing edges. Such finite-element solutions have proven to be most
useful and versatile at subsonic as well as supersonic speeds. The quality of
the resulting solution is, however, a function of the type, distribution, and -
number of elemental solutions assumed. They require considerably less computer .
resources than the equivalent three~-dimensional finite-difference solutions

required at transonic speeds where the governing equations are nonlinear
(ref. 5).
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SYMBOLS

aspect ratio, bZ/s
wing span

lift coefficient
pressure coefficient
chord

section lift coefficient
body diameter

body length

Mach number

body radius

wing area

axis system

distances along X- and Z-axes
angle of attack
distance along semispan
sweep angle

taper ratio

Subscripts:

av

max

average
maximum
free stream

fuselage

GENERAL SLENDER BODY AND PLANAR WING SOLUTION

A large number of methods exist for the analysis of planar lifting surfaces

which account approximately for the presence of bodies.
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treat the body separately in an initial analysis and then modify the analysis
of the lifting surface such that the normal wash on the wing from the body is
included and the flow is diverted around the body.

Slender body theory is used in the initial analysis of the body since its
accuracy is consistent with the assumptions to be made in the wing-body inter-
actions. Slender body theory assumes the total potential can be composed of a
far-field potential dependent only on the area distribution and the Mach number
and a near-field constant-density cross-flow potential solved subject to the
three-dimensional boundary conditions of flow tangency at the surface (refs. 6
and 7). The equivalence rule extends the formulation to bodies of general cross
section as indicated in figure 1. The fiow around the actual body differs from
that of the equivalent body of revolution by only a two~dimensional constant-~
density cross-flow potential that satisfies the flow tangency condition at the
surface.

The constant-density cross-flow potential can be solved by any two-
dimensional method. Dillenius, Goodwin, and Nielsen (ref. 8) have developed a
solution applicable to noncircular fuselages composed of polar harmonic and two-~
dimensional source-sink terms. A conformal transformation and a distributed
singularity approach are shown in figure 2. The conformal transformation is an
adaption of the Theodorsen technique for airfoil design and was developed by
Bonner of Rockwell International (ref. 9). The actual body is mapped into a
circle and the potential for a source or doublet satisfying the boundary condi-
tions for the equivalent body is transformed back to the physical plane. The
method is very fast and simple but is limited to bodies in uniform flow fields
that can be described in polar coordinates as a single-valued function of radius
versus subtended angle. The distributed singularities approach was developed by
J. Werner and A. R. Krenkel of Polytechnic Institute of New York and solves for
the strengths of constant-strength source segments around the body by satisfying
the flow tangency requirement. The method is applicable to very arbitrary
bodies in nonuniform flow fields. Comparison of the conformal transformation
technique of Bonner with experiment (ref. 10) for a parabolic body of revolution
of fineness ratio 12 and elliptic cross section is shown in figure 3. The
agreement at this high subsonic Mach number at angles of attack of 0° and 4° is
generally very good.

Giesing, Kdlman. and Rodden (ref. 11) and Dillenius, Goodwin, and Nielsen
{-er. 8) have developed methods based on general slender body theory in combina-
“1on with vortex-latiice theory and the method of images. In both methods, the
influe',ze of the body on the "ifting surface is accounted for by including the
normal wash exterior to the body and then imaging the external singularities
inside the body. Since the method of images 1s based on a two-dimensional ana-
lysis, it does not entirely negate the normal wash from the wing onto the body.
Thus, the body loading in the nonuniform flow field of the lifting surface and
imag.: system must be recalculated to solve for this residual potential. The
complete splution is an iterative process in which the continued interaction
between the body and the lifting surface needs to be computed. However, refer-
ence 8 has indicated the method is strongly convergent and most of the effects
are included after the first iteration. The method of images is very attractive
in that no new unknowns are introduced into the solutions since the ‘mage
strength and location are directly related to the external singularity strengths
and the geometry of the body cross section.
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An alternate approach has been used by Spangler, Mendenhall, and Dillenius
(ref. 12) and Woodward (ref. 13) to approximately account for interference
effects. 1In their analysis, interference panels are placed on constant-section
stream tubes of the body. The normal wash from the body is included on the
lifting surface exterior to the body and the interference panels exist to cancel
the normal wash induced on the surface of the body. The net result is exactly
the same as that using the method of images in that the initial influence of the
body on the wing is included and the normal wash onto the body from the wing is
negated. However, there are more equations to solve when the interference
panels are used, although the region of influence of the wing on the body can
generally be assumed to be within a couple of chord lengths of the wing root.

A schematic of the utilization of general slender body theory with a traditional
vortex-lattice system is shown in figure 4.

The methods of images (ref. 14) and interference paneling in combination
with a vortex lattice are compared with an earlier modified Multhopp lifting-
line approach (ref. 15) for a high-~aspect-ratio wing~body combination in fig-~
ure 5. Both the method of images and the method of interference panels give
similar results and give lower results for the loadings than the earlier
Multhopp results. Reference 11 has compared the method of images with the
interference paneling used by Woodward and the agreement is excellent.

The assumption with either approach is that the flow field around the body
in the presence of the wing is the same as ihat for the body alone. Thin-wing
assumptions are used which do not account for the finite regions of intersection
between a wing and a body or the longitudinal acceleration of flow over the body
on the wing. Because of the singularities trailing downstream with either
images or interference paneling in accounting for interference effects, the body
representation is restricted to constant-section cylinders. The methods thus
give identical results for equivalent positions of the wing above or below the
midwing position as indicated in figure 6. The results presented are for a

high-aspect-ratio wing-body combination using a vortex lattice with interference
paneling.

A comparison of the theoretical and experimental (ref. 16) span loads for
a wing-body combination is given in figure 7. All the theoretical methods over-
estimate the span loading because of the low Reynolds number of the experiment
(0.3 x 106). The more approximate theories, however, agree well in the loading
prediction with the more exact surface singularity representations, such as
those of Labrujere (ref. 17) or Hess (ref. 18), and, in general, adequate pre-
dictions of 1lift and moment are possible with the approximate theories.

The assumptions of the methods which limit their applicability to general-
ized configurations also anhance their capability as a preliminary design tool.
Most of the wing-body interactions are handled and the computer resources
required are small because of the relatively small number of unknowns. Since
planar representations are used, the intersection of the wing and body is a line
and the geometry can be input rapidly. The capability is provided to predict
quickly and accurately overall lift, moment, and induced drag for complete con-
figurations at the early design stage, such as in the store separation studies
of reference 8. The prediction of optimum trimmed loadings subject to 1lift and
moment constraints are also possible from a far-field equivalent-horseshoe-
vortex Trefftz plane analysis such as in references 19 and 20.
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QUADRILATERAL VORTEX AND SOURCE LATTICE SOLUTION

A method which computes the interfering flow fields of both wing and body
simultaneously while still retaining the linearized boundary condition 1is that
of Tulinius (ref. 21). The method distributes a series of constant-strength
quadrilateral vortices over the surface of the body and in the region of the
wing near the wing-body intersection region as shown in figure 8, Horseshoe
vortices are used in regions of the wing away from the wing-body intersection
region. A source lattice 1s distributed over the surface of the wing at the
quarter-chord and three-quarter-chord of each panel, and the source strengths
are defined as the local slopes of the thickness distribution independent of
the wing 1ift. The influence of the quadrilateral vortex dies off rapidly at
points awsy from the quadrilateral because of the canceling effects of adjeacent
sides. Hence, the panels can be extended over the fore and aft regions of the
body. The analysis has been extended to predict thick wing and pylon-fuselage-
fanpod-nacelle characteristics at subsonic speeds by placing the vortices along
the mean camber line of the wing (ref. 22).

Results of the Tulinius wing-body program are compared with experiment in
figures 9, 10, and 11 for a swept wing-body combination at a Mach number of 0.60
and an angle of attack of 4°. The unit span load clc/CLcav and the longitudi-

nal distribution of fuselage lift c1 fd/dmax are predicted very well by the
’

theory (fig. 9); the fuselage 1ift increases rapidly in the region of the wing
root. The pressure coefficients on the wing at two spanwise stations in fig-
ure 10 and the pressure coefficients on the body at longitudinal stations just
above and below the wing in figure 11 are also predicted well. The body pres-
sures are influenced by the wing primarily in the wing root region, and the
pressures over the aft end of the body are not predicted because of viscous and
separation effects. The agreement with theory is expected since the wing is
relatively thin and attached in the midwing position.

The method cannot account for the longitudinal acceleration of flow over
the body on the wing (speed bump effect) or equivalent high and low positions
of the wing because of the linearized planar boundary conditions. The pressure
coefficients and not just loadings are predicted so that streamlining and con-
touring of adjacent surfaces at high subsonic Mach numbers can be accomplished.
Regions of intersecting surfaces are lines so that geometry description is rela-
tively easy. The number of equations to solve for the simultaneous quadrilateral
and horseshoe vortex strength increases in comparison with the slender body and
planar wing analyses but the quality of the aerodynamic solution iz higher since
the body and wing flow fields are solved simultaneously.

SURFACE SINGULARITY POTENTIAL FLOW

In order to account for the full potential interactions between the wing
and body, a surface singularity technique such as that in references 17, 18, 23,
24, or 25 must be used. In such a method, the singularities are placed on the
surface of the wing and body such that the tangency and Kutta conditions are
satisfied. The type of finite-element modeling used for the lifting surfaces
has been varied, including (1) constant-strength surface source panels with a
constant-strength vortex sheet on the surface (ref. 18), (2) constant-strength
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source pauels on the surface with interior vortex sheet (ref. 17), or (3) lin-

early varying source and quadratically varying doublet distributions on curved ; é
surface panels (ref. 25). Constant-strength source panels have been generally H :
used to model the body with the lifting surface carried through the body in order ¥

to approximately account for the wing carry-throug ‘'ift.

Such a surface singularity approach accounts for the finite intersection .
region of a wing and body as well as the longitudinal velocity perturbations of -
the body on the wing. However, the method requires a considerable amount of . iy
geometry specification to panel a complete configuration as shown in figure 12. t
The quality of the resulting aerodynamic solutions are a function of the par-
ticular finite elements chosen, their placement on the body, and the number
chosen, G35ince matrix solutior times are a function of the number of elements ,
cubed, the paneling of complete configurations with a minimum of computer time ;
while retaining desired accuracy is a difficult task. Recent advances to relieve '
the dependence of the resulting solution on the aerodynamic paneling chosen and
to reduce the number of unknowns required have been made in references 25 to 27.

Results for the Hess surface singularity approach (ref. 18) are presented B
in figure 13 for the A = 6 untapered unswept wing attached in intermediate, 1 ;
high, and low positions to an infinite circular-cylinder body - the case con-
sidered earlier with the approximate theory. The local span loading and total
1ift vary with the relative placement of the wing on the body; the body loads
are shown as average values since the available version of the computer program
only outputs pressures and integrated loads for the body. The intersection of
the wing section with the curved body is another curved region that tends to o i
accelerate the flow under the wing in a high wing position and above the wing g
in a low wing position. Since the singularities are on the surface, the local
velocity increase on the lower surface of the high wing decreases the local
loading and vice versa. Thus, the surface singularity approach yields differ-
ences in potential theory for high and low wing pladement, whereas, the linear-
ized planar lifting surface theories do not. However, the integrated values of
1lift differ very little with wing placement, indicating again that the approxi- i
mate theories are able to give reasonable estimates of the total forces and
moments.

The surface singularity approach is a detaill design tool applicable in the ‘
later stages of design after the initial planform sizes and locations have been C
determined, such as in the design of cruise overwing nacelle configurations in
reference 28. The inverse design for the surface singularity approach has been
completed in reference 24, but the procedure for generalized configurations is
necessarily lengthy and difficult, The surface singularity approach allows the ;
calculation of detailed pressure distributions in regions of adjacent surfaces ‘ :
(wing fillets, nacelle-strut intersections, etc.) so that contouring and stream-
lining for minimum adverse pressure and viscous drag can be accomplished.

CONCLUDING REMARKS 1 :

Various approximate methods utilizing some variation of general slender ,
body theory in combination with a planar lifting-surface representation, such : 7
as the vortex-lattice method or the constant-pressure panel of Woodward, are
adequate to estimate the loads, moments, and pressures in preliminary design

“
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applications., Such methods require limited computer resources and simple
geometry input specifications and are well suited to inverse design procedures
since the number of unknowns are small and the planar boundary conditions ara
retained. The methods are most applicable to midwing cases with constant-section

cylindrical bodies.

An extension of the vovrex-~lattice method to include a quadrilateral vortex
representation of the body solves for the wing and body loads simultaneously.

No restrictions on body shape or wing shape in the intersection regions are made
although the thin-wing representation is retained. Regions of intersecting sur-
faces are curved lines and the geometry input remains relatively simple. With
the method, pressures in regions of adjacent surfa-es are predicted to allow
contouring and streamlining. The method is also well suited to inverse design
procedures for the wing in the presence of the body since the camber and thick-
ness solutions are separate.

In order to accurately predict the correct potential flow pressures in
areas of intersecting wings and bodies, a surface singularity approach is needed.
The surface singularity approach removes all thin-wing and linearized-boundary-
condition assumpiions but more than doubles the number of unknowns to be solved

and the geometry definition required. The detail pressure distributions in
regions of intersecting surfaces are available so that adverse viscous effects

can be minimized.

Viscous effects are not predicted in any of the methods. For the present,
empirical or strip analyses must be used, such as in the prediction of viscous
effects using an infinite yawed-wing analogy in two-dimensional strips along a
swept wing. The usefulness of all the wing-body theories depend on how well the
theoretical loadings or pressures can be related to the actual physical situa-
tion. The nonlinear and viscous effects, such as vortex formation near the
wing-body juncture or separated flow at higher angles of attack, remains untract-
able computationally. The viscous calculation for generalized configurations

. across the Mach number range remains a far-term solution.
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FLOW FIELD AT ANY POINT DUE TO AN ARBITRARY BODY IS GIVEN BY
EQUIVALENCE RULE:

~A

d?OO - O

FLOW FIELD DUE =  SOLUTION FOR + 2D - 2-D
TO ACTUAL BODY EQUIVALENT BODY SOLUTION SOLUTION
OF REVOLUTION FOR ACTUAL FOR

BODY CROSS- EQUIVALENT
SECTION A-A CROSS-
SECTION A-A
- ~ J
3-D BOUNDARY CONDITIONS
ARE SATISFIED IN THESE
2-D SOLUTIONS ’

Figure 1.- General slender body theory.

Z 4 z
Y Y Y
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CONFORMAL TRANSFORMATION DISTRIBUTED SINGULARITIES

Figure 2.~ Methods for solving two-dimensional cross-flow potential for
arbitrary cross sections.
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Figure 3.- Comparison of slender body theory and experiment.
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circular-cylinder combination using vortex lattice with interfer-
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EXTENDED APPLICATIONS OF THE VORTEX LATTICE METHOD

Luis R, Miranda
Lockheed-California Company

SUMMARY

The application of the vortex lattice method to problems not usually
dealt with by this technique is considered, It is shown that if the dis-
crete vortex lattice is considered as an approximation to surface-dis-
tributed vorticity, then the concept of the generalized principal part
of an integral yields a residual term to the vortex-induced velocity that
renders the vortex lattice method valid for supersonic flow, Special
schemes for simulating non-zero thickness lifting surfaces and fusiform
bodies with vortex lattice elements are presented. Thickness effects of
wing~-like components are simulated by a double vortex lattice layer, and
fusiform bodies are represented by & vortex grid arranged on a series of
concentrical cylindrical surfaces, Numerical considerationa peculiar
to the application of these techniques are briefly discussed,

INTRODUCTION

The several versions or variations of the vortex lattice method that
are presently available have proven to be very practical and versatile
theoretical tools for the aerodynamic aralysis and design of planar and non-
planar configurations. The success of the method is due in great pert to
the relative simplicity of the numerical techniques involved, and to the
high accuracy, within the limitations of the basiec theory, of the results
obtained. But most of the work on vortex lattice methods appears to have
concentrated on subsonic flow application. The applicability of the basic
techniques of vortex lattice theory to supersonic flow has been largely
ignored. It is one of the obJectives of this paper to show how the vortex
lattice method can be easily extended to deal with problems at supersonic
Mach numbers with the same degree of success that it enjoys in subsonic flow.

The other objective of this paper is to discuss a couple of schemes
by which it is possible to simulate thickness and volume effects by using
vortex lattice elements only. This represents an alternative, with somewhat
reduced computational requirements, to the method of quadrilatera) vortex
rings (refs. 1 and 2), The simulation of thickness and volume effects makes
possible the computation of the surface pressure distribution on wing-bvody
configurations. The fact that this can be done without having to resort to
additional types of singularities, such as sources, results in a simpler
digital computer code.
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THE BASIC EQUATIONS

Ward has shown, (ref. 3), that the small-perturbation, linearized flow
of an inviscid compressible fluid is governed by the three first order vector
equations:

Vv =75, V.%=4q, v=V.7 (1)

on the assumption that the vorticity W and the source intensity Q are known
functions of the point whose position vector is R. The vector V is the
perturbation velocity with orthogonal cartesian components u, v, and w, and
WV is a constant symmetrical tensor that for orthogonal cartesian coordinates
with the x-axis aligned with the freestream direction has the form

2
1-M 0 0
[« ]
v = 0 1 .0 (2)
0 0 1

where M, is the freestream Mach number. If 82 = l-M&.z, then the vector w

has the components W = B2 u I +v J + w K. This vector was first introduced
by Robinson (ref. 4), who called it the "reduced current velocity". If W
denotes the total velocity vector, i.e., W =(uw+u) T+vJ +wk, and p
the fluid density, then it can be shown that for irrotational and homentropic
flow

PU = p,Ug +p, W +higher order terms (3)
where the subscript « indicates the value of the quantity at upstream infinity,

e.g8.s o = Uy 1. Therefore, to a linear approximation, the vector W is
directly related to the perturbation mass flux as follows:

W=(pT - po Tw) /Pex (L)

The second equation of (1), i.e., the continuity condition, shows that for
source-free flows (Q = 0), w is a conserved quantity.

Ward hus integrated the three first order vector equationeg directly
without having to resort to an auxiliary potential functign., He obtained
two different solutions for v (R), depending on whether B° is positive (sub-
sonic flow), or negative (supersonic flow). These two solutions can be com-
bined formally into & single expression if the following convention is used:

K=2 for 32 >0
2

R’ = Real part of {(x-xl)2 + 32[(y-yl)2 + (Z-Zl)z]}
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f = Finite part of integral as defined by Hadamard (refs. 5
and 6).

The resulting solution for the perturbation velocity V at the point
whose position vector is Rl =X 1+ Yy 3+ z, %, is given by

V(R = - 5x ][H.W(ﬁ)vh—]e‘- as

(]

2 [R-
. 7LQ(§>V%;dV*5LK L w®) av  (5)

This formula determines the value of V within the region V bounded by
the surface S. The vector W is the unit outward (from the region V) normal
to the surface 8, Furthermore, it is understood that for supersonic flow
only those parts of V and S lying within the domain of dependence (Mach
forecone) of the point Rl are to be included in the integration.

For source-free (Q=0), irrotational (=0) flow, equation (5) reduces
to

2 R-R
¥ (R) = - 5= T.w(R) Vi as +%7(—{ﬁ x WE)} R—3-l as (6)
s s g

This is & relation between V inside S and the values of n.wand n x v
on S, but- these two quantities cannot be specified independently on S.

To determine the source-free, irrotational flow about an arbitrary body
B by means of equation (6), assume that the surface S coincides with the
wetted surface of the body, with any trailing wake that it may have, and with

a sphere of infinite radius enclosing the body and the whole flow field about
it, namely, S = SB + %ﬂ + Sm.

This surface S divides the space into two regicns, Ve external to the

body, and Vi internal to it. Applying equation (6) to both Ve and Vi, since
the integrals over S, converge to zerc, the following expression is obtained:
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R, = 2% fﬁ.m(mv-;—’ e - Lo f{ﬁ'
By * By

where § = fiy= -He is the unit normal to the body, or wake as the case may be,
positive from the interior to the exterior of the body, A W = We - Wi, and
AV = Ve - Vi, Here the subscripts designate the values of the quantities on
the corresponding face of S. The first surface integral can be considered
as representing the contribution of a source distribution of surface density
N . AW, while the second surface integral gives the contribution of a vorti-
city distribution of surface density N x A V.

If the boundery condition of zero mass flux through the surface SB + SW
is applied to both external and internal flows

-ﬁ.p'ﬁi--ﬁ.(pa'ﬁ +p°7ii)-0 (8)

then the condition N . A W = O exists over 85 + 8§, and the flow field is
uniquely determined by

) _
HE,) = - =2 7L TR x5 as (9)
SB.+SW

where ¥ (R) = N x A 7 is the surface vorticity density.

EXTENSION TO SUPERSONIC FLOW

In order to extend the application of the vortex lattice method to
supersonic flow, it is essential to consider the fundamental element of the
method, the vortex filament, as a nu-2rical approximation scheme to the
integral expressicn (9) instead of a real physical entity. The velocity field
generated by a vortex filament can be obtained by a straightforward limiting
procees, the result being

2 [ _ BF
W(Ry) =§§-K~ )(' rx 31 at (10)
c Ry
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where ['= lim Y. 0@~
Y=~o0
8 = O

§ is a dimension normal to y, and dl is the distance element along y. In the
classical vortex lattice method, applicable only to subsonie flow, the vorti-
city distribution over the body and the wake, i.e., over the surface Sp + Sy,
is replaced by a suitable arrangement of vortex filaments whose velocity
fields are everywhere determined by equation (10). This procedure is no
longer appropriate for supersonic flow. For this latter case, it is necessary
to go back to equation (9) and to derive an approximation to it. This is

done in the following.

If the surface Sp + Sy, which defines the body and its wake, is considered
as being composed of a large number of discrete flat area elements 7 over
which the surface vorticity density ¥ can be assumed approximately constant,
then equation (9) can be approximated by the following equation:

N
2 R-R
V(ﬁl)'-é‘.-"f 2 ‘fVJXR?A as (11)
J=l Ts 8

where N is the totai number of discrete area elements 7. When the poini
whose position vector is Ry is not part of TJ, the integral over this dis-
crete area can be approximated by the mean value theorem as fcllows:

R-R R-K '
f%*?'l'ds'% °J><]( < o (12)
R R
s B CJ ]

vhere Cy is a line in 7y parallel to the average direction of ¥ in Ty, &
is a distance normal to Cy, and 4l is the arc length element along Cg. Thip
means that the velocity field induced by a discrete vorticity patch 75 can
be approximated for points outside of 7y by some mean discrete vortex line
whos- strength per unit length is yy 4y. But if the point Ry I8 part of the
dizcvete area T, the integral in equation (11) has an inherent singularity
ot the Cauchy type due to the fact that R = R} at some point within r. In
order to evaluate the integral expression for this case, consider a point
close to Ry but located just above r by a distance ¢. As indicated in figure
1, the area of integration in 7 is divided into two regions, A ..  and A,
Obviously, the integral over A ,_ e has no Cauchy-type singularity, Hadamard's
finite part concept being sufficient to perform the indicated integration.
Thus,
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R3 e
Yo N €=»0 .
T

]
A T-r
'R'-El
=lim I(e) +ya <" 3 U (13)
N . R
c

The last integral in equation (13) represents the convertional discrete
vortex line contribution whose evaluation presents no difficulty. In order
to determine the integration denoted by I(«) assume that, for simplicity,
the coordinate system is centered at the pecint Pl, and that the x-y plane is
determined by the discrete area T. Then, if Y denotes the modulus of Y,

1( &) =.YJ_ Y,sénA-xgos/\ )‘3/2 dx dy (1k4)
A X ‘B (y

[

where A is the angle between the y-axis and the direction of the vorticity
in 7, and B2 = -8 (supersonic flow). The components of the vector
cross product ¥ ¥ (R-Ry ) ¥ x R which are nos normal to the plane of 7 have
been left out of equation (14) vecause, when the limit operation €0 is
carried out, they will vanish. The area Ae is bounded by & line parallel to
the vorticity direction going through x -(1+B)e and by the intersection of the
Mach forecone from the point (o, o, €) with the t-plane, consequently, if
the integration with respect to x is performed first,

"2 By? + &

ty - x )
e ”“AI[( freti e o )
M ty -(1+B)e

where t = tan A, and 1j, A2 are the values of y corresponding to the inter-
section of the line x=ty -(l+B)6‘ with the hyperbola , _ _Bi?‘yz + 20 Let

g= ¢ (1+213)-2( 1+B) ety -(B -t ) y2 , then the finiie part of the x-

integration yields

I(e) = A ty (ty-(1+B)e)
() Yc087C {Ba(y2+62)ﬁ JT}dy

A
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B y2 + 62

M

xcosA ‘ 2--(1*‘3) "tY‘(Ba‘ 2)Y2 l ay (16)
'3

Since ¢ is a very small quantity, the variation of y in the interval (Al, J\g)
is going to be equally small, ana, therefore, the quantity within brackets in
the last integrand of equation (16) can be replaced by a mean value and taken
outside of the integral sign. The same is not true of the term l/ﬂ- since
it will vary from co for y = A3, go through finite values in the integration

interval, and then again increase to @ for y = \2. With this in mind, and if
¥ denotes a mean value of y, I(€) can be written as

~ 2,2\ ~2 )‘2
I(e) = YCOSA Bee_(1+B) ety - (B°-t7) ¥ _[_ dy (17)
B2 3;2 + s2 ) ﬁ‘
M
But A1, X2 are the roots of ty-€ = -B\Jy2 + 62 , i.e., they are the roots of

the polynomial denoted by @#. Thus

Jo - J2imemetmay - (2 & V22 Joumey)  (8)

Introducing this expression for ./ @ into (17), and taking the limit
¢—0, the following value for I{e) is obtained:

I(o) = 1m1<e)--1£°—SLJ 7L ( (19)
M

c —0 -Y)(y-)\z)

The integral appearing in equation (19) can be easily evaluated by com-
plex variable methods; its value is found to be

_ dy
)\f V(=¥ (y-1,)
1
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The contribution of the inherent singularity to the velocity field induced
by vorticity patch T, within 7, denoted herein by w*, is therefore given by

Mo B 1me - xoeh (fR (21)

2n € -0

This contribution is perpendicular to the plane of 7, and it has only
physical meaning when B2 > t2, i.e., when the vortex lines are swept in front
of the Mach lines. It is expression (21), taken in conjunction with equation
(12), that makes the vortex lattice method applicable to svpersonic flow.

MODELING OF LIFTING SURFACES WITH THICKNESS

The method of quadrilateral vortex rings placed on the actual body sur-
face (ref. 1) provides a way of computing the surface pressure distribution
of arbitrary bodies using discrete vortex lines only. Numerical difficulties
may occur when the above method is applied to the analysis of airfoils with
sharp trailing edges due to the close proximity of two vortex surfaces of
nearly parallel direction. An alternative approach, requiring somewhat less
computer storage and easier to handle numerically, consists in using a double,
or biplanar, sheet of swept horseshoe vortices to model a lifting surface
with thickness, as shown schematically in figure 2. This constitutes an
approximation to the true location of the singularities, similar in nature to
the 2lassical lifting surface theory approximation of a cambered sheet.

All the swept horseshoe vortices, and their boundary condition control
points, corresponding to a given surface, upper or lower, are located in a
same plane. The upper and lower surface lattice planes are separated by a
gap which represents the chordwise average of the airfoil thickness distri-
bution. The results are not too sensitive to the magnitude of this gap; any
value between one half to the full maximum chordwise thickness of the airfoil
has been found to be adequate, the preferred value being two thirds of the
maximum thickness. Furthermore, the gap can vary in the direction normal to
the x-axis to allow for spanwise thickness taper. On the other hand, the
chordwise distribution, or spacing, of the transverse elements of the horse-
shoe vortices have a significant influence on the accuracy of the computed
surface pressure distribution. For greater accuracy,for a given chordwisge
number of horseshoe vortices, the transverse legs have to be longitudinally
spaced according to the ‘cosine' distribution law

T c 2J-1
xJ-xo 3 [l-cos (rr—ﬁ-)] (22)

where x} - x. represents the distance from the leading edge to the midpoint
of the swept ieg of the Jth horseshoe vortex, ¢ is the length of the local

chord running through the midpoints of a given chordwise strip, and N is the
number of horseshoe vortices per strip. The chordwise control point location
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corresponding to this distribution of vortex elements is given by

xg-xo=§-[l-cos(n%)] (23)

The control points are located along the centerl. ne, or midpoint line, of the
chordwise strip (fig. 3). ILan has shown (ref. 7) that the chordwise 'cosine'’
collocation of the lattice elements, defined by equations (22) and (23),
greatly improve the accuracy of the computation of the effects due to lift.
His results are directly extendable to the computation of surface pressure
distributions of wings with thickness by the 'biplanar' lattice scheme pre-
sented herein,

The smal. perturbation boundary condition

v.h'=-u .h (24)
(- -]
is applied at the control points. In equation (24), n =21 + mJ + nk, and
n' = mJ + nk, where {, m, and n are the direction cosines of the normal to
the actual airfoil surface. Equation (24) implies that |ful <<|mv + nw| .
The use of the small perturbation boundary condition is consis :ent with the
present 'biplanar' approach to the simulation of thick wings.

MODELING OF FUSIFORM BODIES

The modeling of fusiform bodies with horseshoe vortices requires a
special concentrical vortex lattice if the simulation of the volume displace-
ment effects, and the computation of the surface pressure distribution, are
to be carried out. To define this lattice, it is necessary to consider first
an auxiliary body, identical in cross-sectional shape and longitudinal area
distribution to the actual body, with a straight barycentric line, i.e.,
without camber. The cross-sectional shape of this auxiliary body is then
approximated by a polygon whose sides determine the transverse legs of the
horseshoe vortices. The vertices of the polygon and the axis of the auxiliary
body (which by definition is rectilinear (zero camber) and internal to all
possible cross sections of the body) define a set of radial planes in which
the bound trailing legs of the horseshoe vortices lie parallel to the axis
(fig. 4). As the body cross section changes shape along its length, the
corresponding polygon is allowed to change accordingly, but with the constraint
that the polygonal vertices must always lie in the same set of radial planes.
The axial spacing of the cross-sectional planes that determine the transverse
vor“ex elements, or polygonal rings, follows the 'cosine' law of equation (22),
The boundary condition control points are located on the auxiliary body sur-
tace, and in the bisector radial planes, with their longitudinal spacing given
by equation (23).

The boundary condition to be satisfied at these control points is the
zero mass flux equation
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V.E=-T_.7% (25)

where all the components of the scalar product W . n = Bal u +mv +nw

are to be retained. Thus, equation (25) is a higher order condition than

equation (24). The use of this higher order boundary condition, within the .
framework of a linearized theory, is not mathematically consistent. There-

fore, it can only be justified by its results rather than by a strict mathe-

matical derivation. In the present treatment of fusiform bodies, it has been

found that the use of higher order, or ‘'exact' boundary conditions is a re-

quisite for the accurate determination of the surface pressure distribution.

The fact that the vector W, instead of Vv, appears in the left hand member
of equation (25) requires some elaboration. First, it should be pointed out
that for small perturbations W . n= Vv . n'. Furthermore, for incompressible
flow (B = 1), the vector W is identical to the perturbation velocity ¥. Con-
sequently, the boundary condition equation (24) is consistent with the con-
tinuity equation, V. W = 0, to a first order f.r compressible flow, and to any
higher order for incompressible flow. But when a higher order boundary con-
dition is applied in compressible flow to a linearized solution, it should be
remembered that this solution satisfies the conservation of W, not of Vv, i.e.,

V. w = 0. Thus, the higher order boundary condition should involve the
reduced current velocity, or perturbation mass flux, vector W, as in equation
(25), rather than the perturbation velocity vector ¥.

The body camber, which was eliminated in the definition of the auxiliary
body, is taken into account in the computation of the direction cosines f,m,
and n, which are implicit in equation (25). Therefore, the effect of camber
is represented in the boundary condition but ignored in the spatial placement
of the horseshoe elements. This scheme will give a fair approximation to
cambered fusiform bodies provided that the amount of body camber is not too
large.

THE GENERALIZED VORTEX IATTICE METHOD

Description of Method

The three features discussed above, i.e., the inclusion of the vorticity-
induced residual term w* for supersonic flow, the 'biplanar' scheme for rep-
resenting thickness, and the use of a vortex grid of concentrical polygonal
cylinders for the simulation of fusiform bodies, have been implemented in a
computational procedure herein known as the Generalized Vortex Lattice (GVL)
method. The GVL method has been codified in a Fortran IV computer program
(VORIAX), which has been widely utilized throughout the Lockheed-Californis
Company as an efficient aerodynamic design tool for advanced aircraft confi-
gurations in subsonic and supersonic flows.
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The basic element of the method is the swept horseshoe vortex with
'bound' and 'free' legs. In the present version of the method, the free legs
may trail to downstream infinity in any arbitrary, but predetermined, direc-
tion. The lattice formed by the bound legs of the horseshoe vortices is
laid out on the proper cylindrical surfaces, the trailing legs being parallel
to the x-axis., Figure 5 illustrates schematically the representation of a
simple wing-body configuration within the context of the present method. The
streamwise arrangement of the lattice follows the 'cosine' distribution law
(eq. (22)), whereas the spanwise, or cross-flow, spacing of the trailing legs
can be arbitrarily specified. To each horseshoe vortex there corresponds an
associated control point, placed midway between the bound trailing legs of
the horseshoe and longitudinselly spaced according to equation (23).

The velocity field induced by the elementary horseshoe vortex is derived
from equstion (12), and it includes the contribution given by equation (21)
when the velocity induced by a horseshoe at its own control point is evaluated
at supersonic Mach numbers. This veloecity field is used to generate the co-
efficients of a system of linear equations relating the unknown vortex
strengths to the appropriate boundary condition at the control points. This
linear system is solved by either a Gauss-Seidel iterative procedure (ref. 8),
or by a vector orthogonalization technique (ref. 9).

The pressure coefficients are computed in terms of the perturbation
velocity components. Force and moment coefficients are determined through a
numerical integration process. Due account is taken of the leading edge
suction through the application of Lan's procedure (ref. 7), which the GVL
method directly extends to supersonic flow.

Numerical Considerations

At supersonic Mach humbers, the velocity induced by a discrete horseshoe
vortex becomes very large in the very close proximity of the envelope of Mach
cones generated by the transverse leg of the horseshoe. At the characteristic
envelcpe surface itgelf, the induced velocity correctly vanishes, due to the
finite part concept. This singular behavior of the velocity field occurs only
for field points off the plane of the horseshoe. For the planar case, the
velocity field is well behaved in the vicinity of the characteristic surface.
A simple procedure to treat this numerical singularity consists of defining
the characteristic surfaces by the equation

(xx)? = ¢ B (yy)® + (2-22)°) (26)

where C is a numerical constant whose value is greater than, but close to, 1.
It has been found that this procedure yields satisfactory results, and that
these results are quite insensitive to reasonable variations of the parameter
C.
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Another numerical problem, peculiar to the supersonic horseshoe vortex,
exists in the planar case (field point in the plane of the horseshoe) when
the field point is close to a transverse vortex leg swept exactly parallel
to the Mach lines (sonic vortex), while the vortex lines immediately in front
of and behind this sonic vortex are subsonic and supersonic, respectively.
This problem can te handled by replacing the boundar; condition equation for
such sonic vortex with the averaging equation

~Yp*_y t2 ¥k T ypry, = O (27)

where vy # is the circulatior strength of the critical horseshoe vortex, and
Yr*_q ang Ypx4 80 the respective circulation values for the fore-and-aft

adjacent subsonic and supersonic vortices.

The axialwash induced velocity component (u) is needed for the computa-
tion of the surface pressure distribution, and for the formulation of the
boundary condition for fusiform bodies. When the field point is not too
close to the generating vorticity element, the axialwash is adequately des-
cribed by the conventional discrete horseshoe vortex representation. But if
this point is in the close vicinity of the generating element, as may occur
in the biplanar and in the concentrical cylindrical lattices of the present
method, the error in the computation of the axialwash due to the discretiza-
tion of the vorticity becomes unacceptable. This problem is solved by resor-
ting to a vortex-splitting technique, similar to the one presented in refer-
ence 10. Briefly, this technique consists of computing the axialwash induced
by the transverge leg of a horseshoe as the summation of several transverse
legs longitudinally redistributed, according to an interdigitation scheme,
over the region that contains the vorticity represented by the single discrete
vortex., This is done only if the point at which the sxialwash value is re-
quired lies within a given near field region surrounding the original dis-
crete vortex.

COMPARISON WITH OTHER THEORIES AND EXPERIMENTAL RESULTS

Conical flow theory provides a body of 'exact' results, within the con-
text of linearized supersonic flow, for some simple three-dimensional confi-
gurations., These exact results can be used as bench mark cases to evaluate
the accuracy of numerical techniques. This has been done rather extensively
for the GVL method, and very good agreement between it and conical flow theory
has been observed in the computed aerodynamic load distribution and all force
and moment coefficients. Only some typical comparisons are presented in this
paper, figures 6 through 9.

Finally, the capability of computing surface pressure distributions by
the method of this paper is illustrated in figures 10 and 11.
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CONCLUDING REMARKS

It has been shown that vortex lattice theory can be extended to super-
sonic flow if Aue account is taken of the principal part of the surface vorti-
city integral. Furthermore, special vortex lattice layouts, which allow the
simulation of thickness and volume with horseshoe vortices, have been presen-
ted., All this greatly enhances the value of vortex lattice theory as a com-
putationally efficient design and analysis tool, as exemplified by its exten-

sive use at the Lockheed-California Company, discussion of which has been
precluded by space limitations.
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NUMERICAL METHOD TO CALCULATE THE INDUCED DRAG OR
OPTIMUM LOADING FOR ARBITRARY NON-PLANAR AIRCRAFT

James A. Blackwell, Jr.
Lockheed-Georgia Company

SUMMARY

A simple unified numerical method applicahble to non-planar subsonic air-
craft has been developed for calculating either the induced drag for an arbi-
trary loading or the optimum aircraft loading which results in minimum induced
drag. The method utilizes a vortex lattice representation of the aircraft
lifting surfaces coupled with the classic equations and theorems for computing
and minimizing induced drag. Correlation of results from the numerical method
with non-planar solutions obtained from other more complex theories indicates
very good agreement. Comparison of the induced-drag computations using the
numerical method with experimental data for planar and non-planar configura-
tions was also very good.

INTRODUCTION

Over the past few years, increased attention has been focused on improving
aircraft performance. One method to improve performance is to lower the air-
craft induced drag. This can be accomplished by more efficient desizn of con-
ventional configurations »r by developing new and unique designs whose intent
is to minimize induced drag. Typical of new configurations that have been
developed for this purpose are the Lockheed boxplane and the Whitcomb winglet
configuration.

The aircraft lifting surfaces for conventional aircraft as well as for new
configurations are generally non-planar in design. To achieve a minimum in-
duced d.rag, these non~planar surfaces must be designed to support the required
optimum loads as specified by classical theory (refs. 1 and 2). Unfortunately,
the use of classical theory to determine the design loads is quite cumbersome
since rather complex conformal transformations must be utilized. Thus, a
simple inexpensive method is required to determine what the 'design to'" loading
of a no.-planar configuration should be to minimize the aircraft induced drag.
Furthermore, for conditions where the aircraft is not operating at design con~
ditions, an analysis method is required to quickly assess the magnitude of the
aircraft off-design induced drag. Also, methods of this type are of particular
importance in making configurational trade-offs.

The objective of this paper is to present a simple unified numerical
method applicable to subsonic non-planar aircraft for the rapid calculation of:
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1. the induced drag for an arbitrary aircraft loading or
2. the optimum aircraft loading which results in minimum induced drag.

The paper will include a discussion of the fundamental theoretical concepts on
which the method is based, followed by the theoretical formulation of the nu-
merical calculation procedure. Computations will be made using the method and
will be compared to existing theoretical solutions and to experimental data.
This will be followed by an illustration of the utility of the method for
making configurational trade-offs by comparing the loading and induced drag
results for various types of wing additions such as winglets or wing-tip
extensions.

SYMBOLS
Aij geometric influence function
AR aspect ratio, b?/S
b reference span
c local chord of lifting surface
cav average chord (S/b)
¢n section load coefficient normal to load perimeter
CL lift coefficient
CDi induced drag coefficient
Cws bending-moment coefficient
Di induced drag (Dj =CDi qS)
e efficiency factor
F resultant ferce of lifting surface
h length of wing addition
k unit normal vector parallel to Z axis
L length of load perimeter
L lift force (L=Cp qS)
M Mach number
50
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Superscript:

Subscripts:

i

wi
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number of lifting elements on load perimeter
unit vector normal to load perimeter

section load normal to load perimeter (N=q c, c)
free-stream dynamic pressure

semi-width of vortex pair

nondimensional semi-width of vortex pair (s =2s'/b)
reference area

side force

induced velocities

resultant induced velocity

velocity normal to load perimeter

free-stream velocity

lifting element coordinate system

aircraft coordinate system

aircraft spanwise center of pressure

circulation (eq. (10))

rotation angle in the Y-Z plane

indicates vector quantity

»

number designating a vortex pair that model a particular lifting

element

number designating a control point on a particular lifting element

wing

winglet
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BASIC THEORETICAL CONCEPTS

Fundamental to the development of the present model is the representation
of the aircraft non~planar lifting surfaces by a system of rectangular horse-
shoe vortices (ref. 3). The induced drag for a given loading or the optimum
loading for minimum induced drag can be calculated for any arbitrary non-planar
aircraft at subsonic speeds utilizing this vortex representation and the
following basic law and theorems: Munk's Theorems I to I1I, Biot-Savart Law,
and the Kutta-Joukowski Theorem.

Munk's first theorem (ref. 1) can be stated as follows:

The total induced drag of any multiplane system ts unaltered
if any of the lifting elements are moved in the direction of
motion provided that the attitude of the elements is adjusted
to maintain the same distribution of lif' among them.

This theorem is commonly referred to as Munk's stagger theorem. An illustra-
tion of this theorem is shown in figure 1. Several practical applications can
be deduced from this theorem. First, the chordwise distribution of pressure
does not affect the theoretical induced drag of the aircraft if constant
section 1ift is maintained. Second, wing sweep does not effect the theoretical
induced drag as long as the spanwise distribution of 1lift is constant. A third
application is that the load from a system of multi-surfaces (i.e. wing and
horizontal tail) with the same projection in the Y-Z plane can be made equiva-
lent to a single surface for the purpose of calculating induced drag.

In the following theoretical development, use will be made of Munk's first
theorem to lump the chordwise distribution of vorticity into a single chordwise
load and to translate all loads into the 0,Y,Z plane (fig. 1).

Munk's second theorem (ref, 1) is illustrated in figure 2 and can be
stated as:

In caleulating the total induced drag of a lifting system,
once all the forces have been concentrated into the plane
0,Y,2, we may, instead of using the actual values of the
velocity normal to the lifting elements [Vy(x,y,2)] at the
original points of application of the forces, use one-half
the limiting value of the normal velocity [V,(»,y,z)] for
the corresponding values at points P(0,y,3).

This theorem allows the computations to be done in the Trefftz plane (down-
stream infinity) rather than in the real plane. In the subsequent theoretical
derivation, this fact will be utilized to make all the computations in the
Trefftz plane, thereby greatly simplifying the calculations.

The third theorem given by Munk (ref. 1) is presented as follows:
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When all the elements of a lifting system have been trans-
lated longitudinally to a single plane, the induced drag
witll be a mintmum when the component of the induced
velocity normal to the lifting element at each point is
proportional to the cosine of the angle of inclination of
the lifting element at that point.

This theorem is illustrated in figure 3 and can be summarized in equation form
as:

Vy = W cos@ (1)

For a horizontal lifting element it can be seen from equation (1) that the
normal velocity (downwash) across the span is equal to a constant (fig. 3). Tor
a vertical plane (6 =90°), the normal velocity (sidewash) must be equal to zero
for minimum induced drag. The physical interpretation of this theorem will be
further illustrated in a subsequent section.

Equation (1) will be utilized in the following theoretical development as
the boundary condition necessary to achieve a minimum induced drag and hence an
optimum aircraft loading.

Tte basic equation for calculating the aircraft-induced drag can be
derived by applying the Kutta-Joukowski theorem in the drag direction. By
virtue of Munk's thenrems, the calculations can be accomplished in the Trefftz
plane rather than the real plane. Thus, the equation for induced drag ex-
pressed in terms of the Trefftz plane variables and using vector notation is:

Dj = 5~ § Venade (2)

Equation (2) along with the induced velocities in the Trefftz plane de-
rived from the vortex model of the lifting surfaces will comprise the basis for
the induced drag computation. A

PHYSICAL INTERPRETATION OF THEORETICAL CONCEPTS

To provide a better physical understanding of the computation of induced
drag and the calculation of the optimum loading for minimum induced drag, the
theoretical concepts discussed in the previous section will be illustrated
using a wing-winglet configuration. 1In figure 4, the sources of induced drag
for a wing-winglet combination are shown. These are:

o Drag due to the induced flow by the wings on the wing

o Drag due to the induced flow by the wings on the winglet
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o Drag due to the induced flow by the winglets on the winglet
o Drag due to the induced flow by the winglets on the wing

For simplicity, the effects of symmetry are included in the sources of induced
drag shown and are not delineated separately.

In figure 4(a), the effect of the wing induced flow is shown. The wing
under positive_load produces a downwash on itself which results in the wing
force vector, F, tilting rearward by an angle aj. The wing force vector, F, is
perpendicular to the resultant, V, (Kutta-Joukowski thecrem). The rearward
rotation of the force vector results in a wing-induced drag. A sidewash is
also produced by te wing at the winglet location. As can be seen in figure
4(b), the sidewash from the wing combined with the free-stream velocity pro-
duces a tilt forward of the winglet force resulting in a thrust component.

In figure 4(c), the induced drag resulting from the sidewash of the win-,-
let on itself is presented. This results in a rearward tilting of the wing’et
force vector and an attendant induced drag. It should be noted that the d’rec-
tion of the winglet force vector is consistent with a positive (upload) or the
wing. The winglet also induces an upwash on the wing. In figure 4(d), it can
be seen that this upwash rotates the wing force vector forward producing a
thrust force.

The results from figure 4 are summarized in figure 5, where all the in-
duced velocities are combined. For minimum induced drag, equation (1) indi-
cates that the velocity normal to the winglet must be equal to zero (6 =90°).
This can be seen to occur when the sidewash produced on the winglet by the wing
exactly cancels the sidewash produced by the winglet on itself. In other
words, the induced angle of attack (aj) of the winglet is zero. The induced
drag of the wing is also minimized by the presence of a winglet since the wing-
let causes a reduction in the net downwash at the wing; and, hence, the induced
angle of attack is reduced.

DERIVATION OF NUMERICAL METHODS

Vortex Model

By virtue of Munk's theorems, the calculations for induced drag and the
optimum loading can be accomplished in the Trefftz plane. This fact consider-
ably simplifies the calculation problem since the method will not be a function
of the longitudinal coordinate. The projection of the aircraft non-planar
lifting surfaces "1 the Trefftz plane will be referred to as the load
perimater.

In the real plane, the aircraft lifting surfaces will be represented by a

system of horseshoe vortices. The equations describing the induced velocities
in the Trefftz plane at a control point P(e,y{,zj) (fig. 6) due to a horseshoe
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vortex located in the real plane at a point P(xj,yj,zj) are glven below as de-~
rived from the Biot-Savart Law (ref. 3):

e

v, "¢ (3)

Y _LIohifzt 2z

v, 2 vm(R1 R2> (4)

Y_.L=_1_F_J'_(L-_s_'l__(x;ﬁ).)

Vv, 2m vV R Ry (5)
where

Ry = (2')2 + (y' -s")? (6)

Ry = (2")2 + (y' +s')2 (N

y' = (yy-yj) cosj + (z; -z3) singj (8)

z' = - (yg-yj) sinbj + (z4 - zj) cosd; (9)

and the circulation by virtue of the Kutta-Joukowski theorem is given as

Ts (c c)j
Vl = nz (10)

@

Inspection of equations (3) to (5) indicates that there is no contribution
from the horseshoe bound leg in the Trefftz plane and the induced velocities
are not dependent on x. The resulting model then reduces to describing the
load perimeter in the Trefftz plane (fig. 6) by lifting elements that are
represented by a trailing vortex pair having a circulation of equal magnitude
but of opposite rotation. For each lifting element there is an associated
control point located midway between the pair of vortices.

Induced Drag Calculation

The basic equation for calculating the induced drag for an arbitrary non-
planar lifting system was given in equation (2) as:

1

P17 v

§ Ve NG de

The integral is a circuit integral taken around the perimeter of the pro-
jection of the lifting system in the Trefftz plane. The vector V is the
resultant induced velocity vector in the Trefftz plane from all vortices on the
load perimeter. The vector fi is a unit vector, normal to the load perimeter.

55

S ey st S



Reducing equation (2) to coefficient form, nondimensionalizing the lifting
element length (L) by the reference semispan, and using the relationship for
the average chord, the following result is obtained

1§ i (mc 22!

Cog 4§ v, (cAv)ﬁd(b) an
Writing the above in the form of a srm and assuming symmetry about the X-Z
plane

(cp ey [V eos(V,A)];
cAv Ve

1 m
Cp; = 5 Zl A(28/b) 4 (12)

i

where m equals the number of elements that comprise the load perimeter.
Writing equation (1Z) in terms of the nondimensional lifting element semi-
width(s) and noting thac

v, = Vcos (V,7) (13)

the expression for induced drag can be written as

T Vny (eq )y
T
i=1 Ve

The velocities normal to the lifting elements (V,) can be determined by
utilizing the expressions for the induced velocities in equations (4) and (5).

From the geometry of figure 6, the normal velocity at P; due to a vortex

pair at Pj can be expressed in terms of the induced velocities as:

Yng _ Wy i
vm = v Cos (91“6]) - v 51n(6i—6j) (15)

[+ 2] o0

Combining equations (4), (5), (10), and (15) yields the expression for the
total normal velocity at the control point Py due to vortices at all points Py:

Vis m (c . ¢), c [ (y' +s’
Vl- }‘ 2 = 4AV((Y S) - S))COS(ei‘e-)
© j=1 CAV Ui Rl R2 3
CAV (2" 2z
IR : LA . : =0,
A (Rl Rz) 51n(61 eJ)l (16)

The portion contained in curvy brackets is only a function of the projected
aircraft geometry in the Trefftz plane and will be denoted by Aij' Thus, in
terms of the geometric influence function Ayj,
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% Vny m (cp ¢)
= A (17)
Vo jzl Cav 1]

Substitution of equation (17) into equation (14) yields the fiual expres-
sion for the induced drag:

) / m m (cqy ©) (cq ©).
i i
: Cp, = ( )( )()(A) (18)
: Dl i-z-'l jzl CAV CAV Si ij

-

The independent parameters in equation (18) are the loadings normal to the
load perimeter, the lifting element semi-widths, and the geometric influence
function. The loading normal to the load perimeter will be considered input to
the present method. The normal loading can be determined from any available
non-planar lifting surface calculation procedure such as in reference 3 or from
experimental data. The lifting element semi-width is also considered as input.
The geometric influence function (Aj;), as has been previously mentioned, is a
function of the input aircraft geometry.

For an arbitrary applied load, the 1lift can be determined from the follow-
ing expression

L=¢‘Nﬁoﬁd2 (19)

Expressing equation (19) in coefficient form and writing as a sum

m (cn c), _
CL=2 7} (—————1) (s5) cos(fiy, k) (20)
j=1 CAV
Since
cos(ﬁj, k) = cos ej (21) i

the final expression for the lift coefficient is given by

m ((Cn c).

Cay ) (sj) cos ej (22)

CL =2
j=1

The bending-moment coefficient at the X-axis can be expressed as

p (e ©). y Zs
Cup = 3 L (—-Z;;—l S (37% cosfy + E?%‘sinej) (23)

The spanwise center-of-pressure location can be determined from the following
equation:
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Jep , 1WB «,
b/2 - ¢ (24)

The aircraft efficiency factor can be calculated from the following
standard equation:

2
Cp

e.

Optimum Load Calculation

The expression for the total velocity normal to a lifting element was
given in equation (17) as:

v m (cq ©)
T’P-i- = Z ————‘ln Aij
© j-l CAV

According to Munk's theorem III, the loading for minimum induced drag is
obtained when the distribution of normal velocity satisfies equation (1):

Yoy Wo
v V“COSi

©

where w, is a constant. Using equation (1) as a boundary condition and combin-
ing it with equation (17), there results:

m (cq ©)
%— cosfy = ¥ "—_i Ay (26)
4=1  Cav

where the loading in equation (26) is the optimum loading. Using square
brackets to indicate matrix notation, equation (26) can be written as:

(cq ©)
[cosei] = ;Vm [ Aij] [—_22;—1] (27)

Solving for the optimum loading

5] 2] ]

The value of the arbitrary constant, Wy Can be determined from equation
(22) by specifying the aircraft 1ift coefficient.

In summary, to determine the loading for minimum induced drag, only the
1lift confficient and aircraft geometry are required for input. Once the
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loading has been determined, the minimum induced drag, the spanwise center-of-
pressure location, and efficiency can be determined in the manner previously
presented (eqs. (18), (z4), and (25)).

CORRELATION OF METHOD

The theory described in the previous section for calculating the aircraft
induced drag for a given loading or thz: loading for a minimum induced drag has
been coded for use on Lockheed computers. Jn this section, computations using
the present method will be compared to other theoretical solutions and to

experimental results.
Induced-Drag Correlations

Numerical solutions for the aircraft efficiency for a monoplane of aspect
ratio eight are shown in figurc 7 for various values of lifting element widths.
For this example, the widths of the elements over the load perimeter were held
constant. A more efficient result could have been obtained if, for instance, a
cosine spacing of the elements had been used. The input loading on the mono-
plane was specified to be elliptical. The exact solution for the efficiency
factor (ref. 1) on an elliptically lnaded moucplane is, of course, 1.0. As can
be seen, the numerical solution approaches the exact value as the width of the
elements become smaller. For a lifting element width equal to .0l (b/2), the
error was approximately 0.5% in efficiency.

A similar calculation was made for an aspect ratio eight biplane with
wings of equal span and a height-to-span ratio of 0.5. The biplane was loaded
optimally utilizing the loadings derived in reference 1, based on transforma-
tion theory. The numerical calculation for efficiency factor was 1.6307 (using
constant elements of 0.0125(b/2) in width) compared to the value of 1.6260
given in reference 1. The resulting difference was approximately 0.3%.

In figure 8, induced-drag results calculated using the present method are
compared to the experimental results for an advanced Lockheed transport de-
signed to cruise at 0.95 Mach number and at a lift coefficient of 0.47. The
spanwise loading for the aircraft was obtained from an available 1lifting
surface program similar to that in reference 3. As can be seen, the agreement
between theory and experiment is very good over a range near the design lift
coefficient.

A further correlation example is presented in figure 9 where numerical re-
sults are compared with experimental data for a non-planar Lockheed boxplane
configuration. Again, the loading was obtained from lifting~surface theory.

As indicated, good agreement is obtained.

Optimum Load Correlations

In figure 10 the optimum loading is presented for an aspect ratio eight
monoplane as calculated from equation (28) using constant elements of .01(b/2)
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in width., Also shown is the classic optimum result for a monoplane - an
elliptical loading. The correlation can be seen to be very good. The error in
induced drag of the computed result was approximately 0.57%, which is consistent
with the results in figure 7.

In reference 2, an optimum loading for a wing with a winglet is presented
as derived from transformation theory. This solution is compared to the result
calculated using the present method in figure 1l1. Good agreement between the
two methods is obtained.

ILLUSTRATIVE USE OF METHOD

Taken together, the present numerical method provides a unique tool for
understanding the sources of induced drag and making configuration trade-offs
to achieve an overall aerodynamic as well as structurally optimum aircraft. An
illustration of using the method to provide additional understanding into the
basic sources and mechanisms of induced drag is presented in figure 12, where
the magnitude of the induced-drag components for a wing-winglet configuration
(fig. 4) with optimum load is presented. From the figure, it can be seen that
the induced-drag contribution from the wing on the winglet and -he winglet on
the winglet are of the same magnitude and cancel each otner. Tnis is, of
course, the result previously illustrated in figure 5.

As a result of design or structural constraints, the aircraft may not be
able to achieve the op !mur loading for minimum induced drag. The penalties
that incur from the use of non-optimum loadings can be quickly assessed using
the present method. This is illustrated in f.gure 13, where the winglet load-
ing for a wing-winglet configuration is varied. As can be seen the induced
drag is sensitive to certain types of changes (non-optimum 1) where it is not
to others (non-optimum 2).

The present method can also be used to quickly make configuration trade-
offs. This is illustrated in figures 14 and 15. 1In figure 14 the parametric
effect of wing additions on induced drag and on the wiug spanwise center-of-
pressure location as calculated from the present method are presented. If, for
instance, it was desired to find a configuration which would give the maximum
induced drag reduction for a minimum outboard shift in wing center of pressure,
this can quickly be determined by replotting the parametric data of figure 14
in the form of figure 15 and the result determined.

CONCLUDING REMARKS

A unified numerical method applicable to non-planar subsonic aircraft hcs
been developed for the purpose of calculating the induced drag for an arbitrary
loading or the optimum aircraft loading that gives minimum induced drag.
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Use of the numerical method has indi-ated that:
(1) the method is simple and easy to use

(2) 1induced drag and optimum loading results from the numerical
method correlate very well with non-planar solutions obtained
from more complex theories

(3) numerical induced-drag predictions are in good agreement with
experimental data for planar and non-planar configurations

(4) the numerical method provides both analysis and design capa-
bility which allows the designer to make rapid configuration
assessments and trade-offs for the purpose of achieving an
overall aerodynamic as well as structurally optimum aircraft.
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Figure 2.- Illustration of Munk's theorem II.
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Figure 4.- Sources of induced drag for a wing/winglet configuration.
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Figure 12.- Illustration of induced drag calculations for
a wing/winglet configuration.
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Figure 13.- Effect of changes in winglet loading on the ind :ed drag
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Figure 14.- Basic theoretical effects due to wing additions.
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OPTIMIZATION AND DESIGN OF THREE-DIMENSIONAL AERODYNAMIC
CONFIGURATIONS OF ARBITRARY SHAPE

BY A VORTEX LATTICE METHOD

Winfried M. Feifel
The Boeing Company

SUMMARY

A new method based on vortex lattice theory has been devel-
oped which can be applied to the combined analysis, induced drag
optimization, and aerodynamic design of three-dimensional config-
urations of arbitrary shape. Geometric and aerodynamic con-
straints can be imposed on both the optimization and the design
process. The method is compared with several known analytical
solutions and is applied to several different design and optimi-
zation problems, including formation flight and wingtip fins for
the Boeing KC-135 tanker airplane. Good agreement has been
observed between the theoretical predictions and the wind tunnel
test results for the KC-135 modification.

INTRODUCTION

Falkner (ref. 1) has used vortex lattice networks as early a
1943 for the calculation of the aerodynamic forces on surfaces of

S

arbitrary shape. With the advent of electronic digital computers,

vortex lattice methods were the first powerful tools for three-
dimensional potential flow analysis. In the past decade, vortex
lattice computer codes were developed independently by several

investigators, including Rubbert (ref. 2) and the author of this

paper (ref. 3).

The vortex lattice approach is still favored for many engi-

neering applications for several reasons, such as the ease of the

problem description, the relatively sma'l computational effort
required and the "remarkable accuracy o. the solution", as noted
by James (ref. 4). One specific advantage of :he vortex lattice
idealization over the advanced panel methods is that the leading
edge suction force is inherently included in the solution. This
allows the computation of the configuration induced drag without
resorting to the Trefftz-plane theorem.

T T m————e - - . - ]
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Vortex lattice methods tend to slightly underpredict induced
drag, as observed by Rubbert (ref. 2) and Kalman (ref. 5). How-
ever, as long as the paneling scheme is kept uniform, the induced
drag computed by the vortex lattice method varies in a consistent
fashion from known exact solutions. Therefore, it appears to be
justifiable to utilize the vortex lattice near-field induced drag
predictions for the optimization of the aerodynamic load distri-
bution.

This paper presents a unified approach for the combined
analysis, optimization, and design of three-dimensional aerody-
namic configurations based on the vortex lattice technique. The
new method will satisfy aerodynamic and geometric constraints
while redesigning the contour of the configuration to yield mini-
mum induced drag.

The new combined analysis-optimization-design method takes
advantage of the vortex lattice near-field induced drag solution
for the optimization process. When linearized boundary condi-
tions with respect to the first guess of the configuration geo-
metry are introduced, the new method can predict with good
accuracy the changes in twist and camber required to achieve the
load distribution for minimum induced drag and also satisfy addi-
tional design constraints.

PROBLEM FORMULATION

A good example of a complex design problem is the addition
of wingtip fins to an existing airplane. For a given wing fin
height and planform, the task is to determine the fin twist and
camber, and the angle of attack of both the fin and the wing that
will result in minimal induced drag for the airplane at a pre-
scribed lift coefficient. To accomplish this, a mixed analysis/
design problem must be solved. The problem can be stated as
follows: Determine the twist and/or camber distribution required
for portions or all of a threc-dimensional system of wings with
arbitrary planforms while a number of prescribed design require-
ments are satisfied. The design requirements could be any mean-
ingful combination of the cc.dition that the induced drag of the
system (or of part of the system) be a minimum while at the same
time a number of constraint conditions are imposed. Typical con-
straints would be, for example, that a given amount of lift be
generated at a given pitching or rolling moment, or that the
boundary conditions be satisfied on portions of the initial con-
figuration.
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Translated into the language of mathematics, the task des-
crihed avove amounts to finding the extremum of a function sub-
ject to a set of imposed constraints. Such a problem can be
solved by Lagrange's method of multipliers.

SOLUTION

The configuration to be analyzed or designed is subdivided
irto a network of n panels spaced uniformly in spanwise and
chordwise direction, as outlined in figure 1. Based »n the
theorem of Pistolesi (ref. 6) an unknown lifting vortex singular-
ity v is located along the l/4-chord line of each panel. Hel-
moltz' law is satisfied by shedding a p:ir of trailing vortices
along the panel edges downstream to infinity. It is a basic
assumption for this horseshoe vortex model that these trailing
vortices are aligned with the locnl flow direction; therefore,
caly the forces acting on the lifting vortex elements need to be
computed. There are two points of special significance located
on each panel: the lifting vortex midpoint aid a boundary point
at 3/4-chord.

Boundary Conditions

In the configuration analysis mcde, the strength of the
unknown singularities y is determin<<¢ such that the flow tangency
condition is satisfied at all boundary points. 1In the configura-
tion design mode, the boundary condi-ions need not necessarily
be satisfied on the initial geometry, but there the angle formed
between the panel surface and the velocity vector at the panel
3/4-chord poi-t represents the unknown values Aa, AR of the
changes in panel orientation, which are necessary to yield the
contour of the updated configuration.

The boundary condition for the panel j can be written in the
generalized form

n
>
C(Yyr Yy eo¥y- bagr 8B5) = i2=:1 vy £33 = Bogag-bBsbiR -G =0 (1)

i J J )
where
f'i = boundary point influence coefficient indicating the
] velocity induced by a unit strength singularity i
parallel to the surface normal vector Nj on panel j.
Aaj,AB. = vnknown pitch and yaw angles that may be required to

reorient the panel j in order to satisfy the flow tan-
gency at its boundary point.

73

s vvaren Patieil e ‘ . .
.
™




a.,b. = panel reorientation 1nfluence coefficients that indi-
J cate the change in ﬁj-um when the panel j is pitched /
or yawed by Aa=AR=1°7

Uco = free stream velocity vector.

The panel reorientation influence coefficients are linear- N
ized with respect to the initial panel location. Therefore : .
equation (1) can be considered accurate for orientation changes
of approximately up to Aaj=ABj=20°. If the boundary condition
has to be satisfied at the original position of the panel (analy-
sis mode) then Aaj and ABj are zero.

Computation of Forces

The conditions at the 1/4-chord point (vortex m1dp01nt)
govern the forces acting on the panel. The velocity veator Vs
at the 1/4-chord point is obtained as the sum of the free stream
velocity vector Ue» and the velocity induced according to Biot-
Savert's law by all unknown vortex singularities in the flow
field:

n
> > >
vj =u_ + z; wji Y (2)

14

where @-i denotes the velocity induced at the midpoint of panel j
by the unit strength horseshoe vortex of panel i. The vel-city
at the midpoint is assumed to repr¢sent the average value .ver
the paunel and 1s used to determine the force F- acting on the
panel by applying Kutta-Joukowsky's law for a %luid of unit
density:

> -> ->

where $: describes the length and orientation of the lifting
vortex element.

The force vectox Fi comprises the panel drag compunent Ds;
and the lift vector Ly, which by definition is oriented normai to
the free stream vector u,

The induced drag of a whole configuration with n panels can

be exprer sed as a quadratic function of all the panel vortex
strengths y in the ftnrm of the double sum:

D(yy*"*vy) = El vy B 4 (4)
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The induced drag influence coefficients d4j describe the
drag force experienced by the panel j due to tge panel i when
their horseshoe vortices have unit strength. The drag influence
coefficients contain only geometrical terms. 1In order to get a
nontrivial minimum induced drag solution, at least one constraint
must be introduced in addition to equation (4).

Constraint Conditions

There are a large number of different constraint conditions
which can be imposed on the minimum induced drag problem. 1In the
present method, any meaningful combination of the following con-
straints may be specified:

1) Boundary conditions: For each boundary condition to be satis-
fied, a new equation (1) is introduced.

2) Relationships between unknown singularities: The strength of
certain horseshoe vortices or a relationship between groups of
horseshoe vortices is introduced via an equation of the type:

n
Clygr Ypuurvy) = 3 93 Y3 ¥ 954, = 0 (3)
i=1

where the constants (g) are weighting functions describing the
particular constraint condition.

3) Relationships between the panel reorientation parameters:

The movements of panels or of groups of panels are controlled by
the following constraint equations that establish relationships
between the unknowns Aa and/or AR:

n n

Cllay---Bop, 88y--*8B ) = 3 gjla;+ 3o gy .q BB+, .0 = 0 (6)
i=1 i=1

4) Force or moment relationships between groups of panels: Forces

and moments due to individual panels or groups of panels are pre-
scribed by equations of the following type:

ii

n
C(Yl""Yn) = i§1 g.h Yi * 9p41 (7)

where the influence coefficient hj indicates the force or the
moment of ‘he panel i for yj;=1.
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The influence coefficients hj are, in principle, described
by equation (3). Equation (2) shows that for the computation of
hj, all vortex strengths y need to be known. Equation (7) there-
fore is nonlinear. However, rather than solving the nonlinear
problem directly, an iterative scheme is employed where the first
solution of the vorticity distribution is found for hj 0 =hi(ﬁw)°

Subsequent iterations use updated coefficients, hj (k) = hj (U,

Yl(k—l),...Yn(k'l)) which are based on the vortex distribution of
the previous solution. This process converges very rapidly, and
in many cases the firs* solution is already sufficiently accurate.

Drag Minimizc tion Under Constraint Conditions

The induced drag function (4) and the constraints C given by
the expressions (1) and (5) through (7) may be combined in a new
quadratic function:

m

G(Y]_"Yn,Aal° °Aan,A81"ABn:)\l'"Am)=D(Y1"Yn)"‘_Z:1 Al Cl (8)
i=

where A are the Lagrangian multipliers for m constraints imposed.
A necessary requirement for the induced drag to be a minimum is
that all the partial derivatives of equation (8) be zero. Differ-
entiating the function G with respect to all its variables y)
through )\, yields a system of simultaneous linear equations for
the unknowns vy, Aa, AB, A. Solution of this system of equations
completes the configuration analysis-optimization-design process,
unless an iteration is required to update the influence coeffi-
cients h of equation (7) or if the redesigned geometry deviates
too much from the starting configuration.

VALIDATION OF THE TECHNIQUE

Tne vortex lattice analysis-optimization-design method has
been programmed in FORTRAN IV on the CDC6600 computer. A series
of data cases have been run to check the method against known
analytical solutions.

Planar Wings

R. T. Jones (ref. 7) has given an analytical solution for the
load distribution about wings of varying spans having the same
prescribed 1ift and wing root bending moment. Some of his cases
have been analysed by the present vortex lattice method using a
single lifting line subdivided into 40 equal panels. The wingtip
panel and its traili;a vortex were inset by 1/4-panel span as
proposed by Rubbert /ref. 2). The agreement between the vortex
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lattice results and Jones' exact solution is excellent for both the :
shape and the spanwise load distribution (see figure 2) and the in- j
duced drag ratios shown -n figure 3. ‘

Nonplanar Configurations

Lundry (ref. 8) gives the induced drag factor, e, and the
optimum spanwise circulation distribution obtained by a Trefftz-
plane analysis of wings with a wingtip mounted end plate. Figure
4 shows the optimum circulation distribution on a wing with a 20%
end plate compared to two vortex lattice results obtained with a
single lifting line but using a different number of spanwise
panels. The agreement with the exact solution is excellent,
except in the corner between- the wing and the tip fin. There the
vortex lattice solution obtained with 25 panels per half-wing
deviates slightly from the exact solution.

Some understanding of the source of the slight differences
in span loading can be gained by comparing the downwash and side-
wash computed at the midpoints of the lifting vortex elements
with the known exact distribution. The Trefftz-plane analysis
yields constant downwash along the span of the wing and zero
sidewash along the span of the tip fin for the minimum induced
drag load distribution. The present vortex lattice solution
yields essentially the same results, but there are noticeable
discrepancies in a small region of the wing-fin intersection, as
shown in figure 5. This indicates that under certain conditions,
the point selected for induced drag computation should not always
be located exactly in the middle of each panel lifting vortex
elemant. This error is, however, confired to a relatively small
portion of the configuration and some of the downwash deviations
are of oscillatory nature and therefore self-cancelling. The in-
duced drag efficiency factors indicated by the vortex lattice
method and by the exact solution are thus practically identical
for this particular configuration, as shown in figure 6.

APPLICATION OF THE PRESENT VORTEX LATTICE DESIGN METHOD

The present method has been applied to a variety of problems,
such as the design of wingtip fins, the modification of wings of
a hydrofoil boat, and the optimum positioning of the leading-edge
devices of the YC-14 military transport. The following two
examples demonstrate some of the capabilities of the combined
analysis-optimization-design vortex lattice method.
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Formation Flight

Formation flying techniques have been proposed repeatedly as
a means of reducing airplane drag. To get an estimate of the
possible savings in induced drag, a group of five airplanes flying
at the same altitude in an arrow formation illustrated in figure 7
were analyzed. The ideal (elliptic) load distribution, which
yields minimum drag for the whole formation, is well known from
the Trefftz-plane analysis. This optimum solution is, however,
not practical since none of the airplanes off the centerline
would be balanced in roll. In addition, a completely impractical
wing twist distribution would be required to achieve such a load
distribution. The induced drag savings indicated by this simple
theory are, therefore, far too optimistic.

A more realistic picture is obtained by introducing the
constraint that each airplane of the formation be trimmed in
pitch and roll with respect to its own center of gravity. For
this analysis, the airplanes are assumed to have swept:. constant
cho-d wings without wing twist. The left-hand and right-hand
ailzrons of each airplane are interconnected such that they de-
flect by equal but opposite angles. The horizontal tail is a
simple flat plate. The unknown geometry variables are the angular
deflections of every surface in the formation; ie, wing and hori-
zontal tail incidences and aileron deflection angles. A 1lift
coefficient of C;, = 0.5 is prescribed for the formation.

When only the lift for the whole airplane formation is pre-
scribed, each of the airplanes carries a different amount of load,
as seen in the top of figure 8. This distribution of the load
between airplanes creates the minimum amount of induced drag for
the whole formation flying at the conditions stated.

A more practical result is obtained when the constraint is
introduced that cach airplane in the formation flies at the same
1lift coefficient. Then the problem is fully defined, and only an
analysis-design scheme has to be implemented. The load distribu-
tion and the induced drag values for the airplanes operating
under this condition are shown in the center of figure 8.

As a third variant of the formation flight problem, the in-
duced drag of only the No. 2 and No. 4 airplane has been mini-
mized by allowing a redistribution of the formation weight among
the other airplanes. The results are shown at the bottom of
figure 8. The 1lift of the No. 2 and No. 4 airplanes is close to
zero for minimum induced drag; the small residual 1lift stems from
the condition that the planes are trimmed. This solution is only
of academic interest, but it demonstrates the capability of the
present method to minimize the induced drag of subsets of a con-
figuration.
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The analysis of this five-airplane formation using the vor-
tex lattice method indicates that drag savings can be significant
though much smaller than predicted by the idealizing Trefftz-
plane assumptions. In addition, it is seen that the induced drag
is unevenly distributed among the airplanes in the formation.
Therefore, different formation arrangements should be used to
obtain a more uniform drag level for all airplanes involved.

Wingtip Fins for the KC-135 Airplane

The present vortex lattice method has been used extensively
by Ishimitsu, et al., (ref. 9) to evaluate and design tip fins
for the KC-135 tanker airplane,

Figure 9 shows a typical vortex lattice representation of
the KC-135 wing with the tip fins. Since the prime area of
interest of this study was the region near the wingtip, the body
of the airplane was not modeled in potential flow. The small
loss in accuracy was believed to be outweighed by the savings in
computer time. After a series of trades varying tip fin height
and cant angle, the final planform was selected for the tip fin.
For this given fin planform, thc¢ fin incidence angle and the pro-
file camber shape were designed to yield minimum induced drag,
while at the same time the boundary conditions were satisfied on
the remainder of the airplane. As a first guess, the wing fin
was input as a flat plate. The chordwise vorticity distribution
on the fin was approximated by 10 lifting vortex elements, while
6 panels were used in the spanwise direction. Since the induced
drag is independent of the shape of the chordwise load distribu-
tion (Munck's stagger theorem), the induced drag minimization
problem is not fully defined unless a weighting fuaction is intro-
duced that prescribes how the vorticity is distributed among the
10 chordwise lifting elements. The vortex lattice progrem solves
for the optimum total amount of lift carried by each chordwise
column and for the orientation of tne panels necessary to produce
the prescribed chordwise load variation. The airfoil section
camber line is obtained by integrating the panel slope changes
calculated by the vortex lattice program. Thin airfoil theory
has been used to superimpose a suitable thickness distribution
and the fin camber lines. The results of this process are shown
in figure 10.

The final tip fin configuration was tested in a wind tunnel.
Figure 11 shows good agreement between the measured changes in a
airplane drag and the predictions of the vortex lattice analysis.
The experimental and theoretical loads on the wing and the tip
fin are compared in figure 12. Considering that the incompress-
ible vortex lattice analysis did not include the effects of the
body and wing thickness, the agreement with the experiment is
surprisingly good.
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CONCLUSION /

The vortex lattice method has been successfully applied to
the design and optimization of three-dimensional configurations.
The nonlinear analysis-design-optimization problem in which both
the geometry or portions thereof and the optimum load distribu-
tion are unknown can be solved in a straightforward manner. The *
validity of the method has been demonstrated by application to
several problems, previously not directly amenable to theoretical
analysis. The new method has no serious dra..oacks, but it must
be applied with caution in regions of sudden geometric changes,
such as intersecting wing surfaces, in which case additional work
is required to determine the best paneling scheme and optimum
location of the control points. Even though more advanced panel
methods have been developed, the vortex lattice approach is still
preferred in many applications for several reasons. The theory
is simple and can be translated into fast numerical schemes.

The vortex lattice approach, unlike many other methods, accounts
for the leading edge suction force and therefore, yields an
accurate near-field drag solution. These characteristics make
the vor*~ex lattice scheme a powerful tool in the hands of an ex-
perienc :d aerodynamicist for the analysis, modification, and
optimization of three-dimensional configurations.
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APPENDIX
SYMBOLS
A Wing area
. AR Wing aspect ratio

: b Wing span

‘ C Local chord length
c Mean chord length
Cp Total airplane drag
CDi Airplane induced drag
CDi 11 Induced drag of elliptically loaded wing

e

Cy, Wing lift coefficient
Cy Local 1ift coefficient

* e Induced drag efficiency factor
h Height of winglet
M, Free stream Mach number
n Number of panels
8 Wing kalf span
Sell Half span of elliptic wing
W Downwash or sidewash at vortex midpoint
X,Y,2 Cartesian coordinates
Y Local vortex strength
n Nondimensional spanwise station

—
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MINIMUM TRIM DRAG DESIGN FOR INTERFERING LIFTING

SURFACES USING VORTEX-LATTICE METHODOLOGY

John E. Lamar
NASA Langley Research Center

SUMMARY

A new subsonic method has been developed by which the mean camber surface
can be determined for trimmed noncoplanar planforms with minimum vortex drag.
This method uses a vortex lattice and overcomes previous difficulties with
chord loading specification. This method uses a Trefftz plane analysis to
determine the optimum span loading for minimum drag, then solves for the mean
camber surface of the wing, which will provide the required loading. Pitching-
moment or root-bending-moment constraints can be employed as well at the design
lift coefficient.

Sensitivity studies of vortex~lattice arrangement have been made with this
method and are presented. Comparisons with other theories show generally good
agreement. The versatility of the method is demonstrated by applying it to
(1) isolated wings, (2) wing-canard configurations, (3) a tandem wing, and
(4) a wing-winglet configuration.

INTRODUCTION

Configuration design for subsonic transports usually begins with the wing,
after which the body and its effects are taken into account, and then the tails
are sized and located by taking into account stability and control requirements.
With the advent of highly maneuverable aircraft having closely coupled lifting '
surfaces, there has been an increased interest in changing the design order so :
that multiple surfaces could be designed together to yield a trimmed configura-
tion with minimum induced drag at some specified 1ift coefficient. Such a com-
bined design approach requires that the mutual interference of the lifting sur-
faces be considered initially.

Single planform design methods are available to optimize the mean camber
surface, better called the local elevation surface, for wings flying at sub-
sonic speeds (for example, ref. 1) and at supersonic speeds (for example,
refs. 2 and 3). The design method presented in reference 1 was developed from
an established analysis method (Multhopp type), also presented in reference 1,
by using the same mathematical model, but the design method solves for the
local mean slopes rather than the lifting pressures. In the usual implementa-
tion of reference 1, the design lifting pressures are taken to be linear chord-
wise, but must be represented in this solution by a sine series which oscillates
about them. An example presented herein demonstrates that corresponding oscil-
lations may appear in pressure distributions measured on wings which have been
designed by the method of reference 1. The method developed herein overcomes

this oscillatory lifting pressure behavior by specifying linear chord loadings
at the outset.
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The development approach used in the two~planform design problem will be
similar to that used for a single planform. The analytic method employed,
selected because of its geometric versatility, is the noncoplanar two-planform
vortex-lattice method of reference 4.

The design procedure is essentially an optimization or extremization prnb-
lem. Subsonic methods (for example, see refs. 5 and 6) are available for deter-
mining the span load distributions on bent lifting lines in the Trefftz plane,
but they do not describe the necessary local elevation surface. This is one of
the objectives of the present method which will utilize the Lagrange multiplier
technique (also employed in refs. 2 and 3). The method of reference 4 is used
to provide the needed geometrical relationships between the circulation and
induced normal flow for complex planforms, as well as to compute the lift, drag,
and pitching moment.

This paper presents limited results of precision studies and comparisons
with other methods and data and is a condensed version of reference 7. Several
examples of solutions for configurations of recent interest are also presented.

SYMBOLS
A a element of aerodynamic influence function matrix A which con-
1 tains induced normal flow at lth point due to nth horseshoe

vortex of unit strength; total number of elements is g-x g
AR aspect ratio
a fractional chord location where chord load changes from constant

value to linearly varying value toward zero at trailing edge
ai’bi’ci coefficients in spanwise scaling polynomial
b wing span
CD drag coefficient
CD,o drag coefficient at CL =0
CD vortex or induced drag coefficient, Yortex drag

A\ qS
o ref
C lift coefficient, Life
L q S
o ref
'Cm pitching-moment coefficient about ?-axis, Pitc:ingémoment
Y refCref

ACp 1lifting pressure coefficient
c chord
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section lift coefficient

reference chord
z [ﬁca + 0.75} (brackets indicate "take the greatest integer'")

maximum number of spanwise scaling terms in solution technique
for wings without dihedral

lift
pitching moment about coordinate origin
free-stream Mach number

number of span stations where pressure modes are defined as used
in reference 1

maximum number of elemental panels on both sides of configura-
tion; maximum number of chordal control points at each of m
span stations as used in reference 1

number of elemental panels from leading to trailing edge in
chordwise row

total number of (chordwise) rows in spanwise direction of
elemental panels on configuration semispan

free-stream dynamic pressure

reference area

horseshoe vortex semiwidth in plane of horseshoe (see fig. 1)
free-stream velocity

axis system of given horseshoe vortex (see fig. 1)

body~axis system for planform (see fig. 1)

wind~axis system for planform (see sketch (a))

distance along X-, Y-, and Z-axis, respectively

distance along X-, Y-, and Z-axis, respectively

incremental movement of X-Y coordinate origin in streamwise
direction
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*  k

Yy .2 y and 2z distances from imege vortices located on right half
of plane of symmetry, as viewed from behind, to points on {
left panel

Ec canard height with respect to wing plane, positive down

z/c local elevation normalized by local chord, referenced to local
trailing-edge height, positive down

(3z/93%) 1th elemental local slope in vector {3z/3x} of N/2 elements

1 (see eq. (1))

a angle of attack, deg

T, vortex strength of nth element in vector {I'} of N/2 elements

€ incidence angle, positive leading edge up, deg

§ independent variable in extremization process

n nondimensional spanwise coordinate based on local planform

1 semispan

£ distance along local chord normalized by local chord

g! fractional chordwise locaticn of point where mean camber height
is to be computed (see eq. (14))

g,c' dihedral angle from trailing vortex to point on left panel being
influenced; o measured from left panel, o' measured from
right panel

¢ horseshoe vortex dihedral angle in Y-Z plane on left wing panel,
deg

o' horseshoe vortex dihedral angle on right wing panel, ¢' = -9,
deg

Subscripts:

c canard

d design

i,j.k indices to vary over the range indicated

le leading edge

1,n assoclated with slope point and horseshoe vortex, respectively,
ranging from 1 to N/2

L left trailing leg
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R right trailing leg
ref reference value
w wing

Matrix notation:
{3 column vector

| square matrix

Flow angle of attack determined
at each slo: # point

i
>

Typical spanwise
vortex filament

S L~
<t

Z
/

oy

Wing section at an

Vortex-lattice trailing filaments
angle of attack

Sketch (a)

THEORETICAL DEVELOPMEN'T

This section presents the application of vortex-lattice methodology to the
mean-camber~surface design of two lifting planforms which may be separated ver-
tically and have dihedral. For a given planform, local vertical displacements
of the surfaces with respect to their chord lines in the wing axis (see
sketch (a)) are assumed to be negligible; however, vertical displacements of
the solution surfaces due to planform separation or dihedral are included. The
wakes of these beat lifting planforms are assumed to lie in their respective
extended bent chord planes with no roll up. For a two-planform configuration
the resulting local elevation surface solutions are those for which both the
vortex drag is minimized at the design lift coefficient and the pitching moment
is constrained to be zero about the origin. For an isolated planform no
pitching-moment constraint is imposed. Thus, the solution is the local eleva-
tion surface yielding the minimum vortex drag at the design 1ift coefficient.
Lagrange multipliers together with suitable interpolating and integrating pro-
cedures are used to obtain the solutions. The details of the solution are given
in the following five subsections.

Relationship Between Local Slope and Circulation

From reference 4, the distributed circulation over a lifting system is
related to the local slope by

93

-
;
e



P SN

w g -

Ty e

*

ot

TR et

]
-
Y

- -

S

-0 ()

where the matrix [A] 1is the aerodynamic influence coefficient matrix based on
the paneling technique described in reference 4.

Circulation Specification

Once the surface slope matrix {3z/3x} 1is known, chordwise integration
can be performed to determine the local elevation surface z/c, which contains
the effects of camber, twist, and angie of attack. The major problem to be
solved is determining the necessary circulation matrix {T/U} to employ in
equation (1). The problem is simplified somewhat by having the chordwise shape
of the bound circulation remain unchanged across each span, although the chord-
wise shape may vary from one planform to another. The chordwise loadings allow-
able in the program range from rectangular to right triangular toward the lead-
ing edge and were selected because they are of known utility. An example is
given in figure 2, Two different techniques are utilized to arrive at the span-
wise scaling of the chordwise shapes. The particular technique to be employed
depends on whether the configuration has dihedral.

For a configuration having dihedral, the spanwise scaling must be deter-
mined discretely because no finite polynomial representation c¢f the scaling is
known with certainty, even for ar isolated wing. However, for configurations
with no dihedral, the spanwise scaling can be written as a polynomial for each
planform,

2 2 4
1- n‘ (ai+bin1 +cin1)

(see fig. 2) with a maximum of three coefficients per planform being determined
as part of the solution. It is possible to write this polynomial as a solution
because the isolated wing solution is known to be of the elliptical form

i1 - nlz, and the presence of the other planform is assumed to generate a load-

ing disturbance which can be represented by the other two terms in addition to
adjusting a . Once the scaling is known from either technique, then {r/ul 1is

readily obtained by multiplication.

Lift, Pitching-Moment, and Drag Contributions
Tre contributions to CL and to Cm’ respectively, from the jth chordwise

row of horseshoe vortices are

L 4q 8 cos ¢
- 15
b a8 USrer  1e1

) (2)

t::('—s

© ref
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and
M§ 4q 8 cos O N
i > 1<E (r)-
c - 2 - :E: ~) % (3)
™3 qmSrefcref qwsrefcref gm1 \U 1 3.1
where
<
1 (Ei-a)
(3) : (42)
= _ a
U/ 1-¢, (Ei >a>
l-a
-1i-0.
Ei = -0 75
Nc (4b)
and
- - (= _[1-0.75
R (xle)j 7 cj )
c
Even though CL j and Cm j actually occur on the wing at the jth span-
1 1]

wigse location, they can be utilized in a Trefftz plane solution if the chordwise
summations are performed. This utilization is possible herein because the trail-
ing wake is assumed not to roll up, and the general configuration has specifiable
chord loading shapes. Summing the chordwise loadings at this point allows the
solution of the spanwise scaling to be performed on a bent lifting line located
in the Trefftz plane, which is, of course, ideally suited for the vortex drag
computation. In addition, the summation reduces the number of unknowns from the

product of ﬁc and ﬁs to only ﬁs. Hence, a larger value of N_ can be used

in the Trefftz plane, which should yield improved accuracy in the spanwise scal-
ing factors without affecting the number of horseshoe vortices on the wing.
Then, when the circulations are needed on the wing for use in equation (1), the
well-defined variations of the spanwise scaling factors are interpolated to the
original spanwise positions of the wing vortex lattice which i1s used to generate

[A}. The procedure is implemented as follows:

The summation in the lift expression (eq. (2)) can be written as

N 1 . N

i (%)1 ) Z (ﬁt)i * Zc: (iri)i (6)

i=1 i=1 i=I+4]
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where I is the last 1 wvalue which satisfies 51 S a; that is,

I= [ﬁca + 0.7.'] (7)

where the brackets indicate "take the greatest integer." Hence,

ﬁc(%>i‘1+£ﬁc+o.7j(ﬁc-1)_ . %c:i

- - (8)
¢ i=] N (1 - a) N (1 - a) i=I+1
c c
Similarly, the summation in the pitch expression (eg. (3)) can be written as
N - -
c /1y - _ 0.75¢; (Nc +o.75)(nc - 1) ey L
> ()30 (), + =2 “-2a
i=1 i 3 Nc Nc(l - a) Nc f=]
1 _ 1.5cj Nc:
- <x1e) + cj + — E i
N (1 - a) 3 N i=I+1
) c c
N
c c
+ 3 < 42 (9)
2 i=I+1
N (1 - a)

The contribution to the vortex drag coefficient at the ith chordwise row due
to the jth chordwise row is obtained by using only half the trailing vortex
induced normal wash from the Trefftz plane. The result is
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P Py G teos (0,15 = ¢1)
D,i,] TS U 15 U 3

\‘I(yi’_1 + 8 cos ¢j)2 + (zi,j + s sin ¢j>2

2 2
\/(yi,j - 8 cos ¢j> + (zi,j - 8 sin ¢j>

[/y* + s cos ¢' 2 + (z* + 8 sin ¢' 2
\\\ i,3 3 i,] 3

(10)

* 2 * 2
V(yi’j - 8 cos ¢5) + (zi,j - 8 sin ¢5)

In the % sign, plus indicates that the trailing vortex filament is to the left
of the influenced point; minus, to the right.

In using equations (2), (3), and (10), a new vortex system is set up in the
Trefftz plane in which the bent chord plane is represented by a system of uni-
formly spaced trailing vortices (the quantity 2s 1in fig. 1). This un‘ormity
of vortex spacing leads to a simplification in the equations and can be thought
of as a discretization of the ideas of Munk (ref. 8) and Milne-Thomscen (ref. 9)
for a bound vortex of constant strength,

Spanwise Scaling Determination

To determine the spanwise scaling with either technique requires the com-
bination of the contributions from each spanwise position for configuratione
with dihedral or the mode shape contributions for configurations without dihe-
dral. These contributions must be employed in the appropriate total CL and

Cm constraint equations as well as in the C extremization operation. Due

D,v
to limited space only the solution for wings without dihedral will be discussed.
The equations to be employed in the Lagrange extremization method are

K
c =2 :_L: skcL’k (11)
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K
c =22 6, Cak (12)
k=1
and
K K
8,C ) (13)
cD,V -2 %:é_l 1°D,1,k°k

where K S 6 and C and C are the C and C contributions associ-
L,k m, k L m

ated with the kth term in the polyromials

\’ 2 2 4
1- n1 (61 + 62111 + 63\'11 )
\l 2 2 4

(Note that k = 1, 2, and 3 are assigned to the first planform and 4, 5, and 6
to the second.) These contributions are computed by first assuming a unit value
of scaling with each term in the polynomial, then multiplying each resulting

spanwise scaling distribution by the CL j and Cm j terms of equations (2)
] ]

and (3), and finally summing spanwise over all the chordwise rows associated

with 2ach set of k values (or planform). The vortex drag coefficient associ-

ated with the ith and kth combination of spanwise scaling distributions CD 1.k
L R

or

is compared similarly. The Gk terms are equivalent to the unknown coefficients ,

in the polynomial and are the independent variables in the solution.

An application of the preceding process to a conventional wing-tail config-
uration is shown in figure 3. The resulting idealized loading set is of the
type that would meet the constraints and extremization.

Determination of Local Elevation Curves
With 6§,  known, then {r/v}, C» Cyp» and Cp  cau be determined. The
1]
results for {I'/U} are interpolated to the original spanwise positions of the
paneling which is used in equation (l) and in the following equation to find the
local elevation curves. The equation for the local elevation above the computa-
tional plane at a particular point (£',y) is

- _ g - -
2,9 = j; 2,3 4t (14)

ox
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RESULTS AND DISCUSSION

General

It is riecessary to examine the sensitivity of the results of the present
method to vortex-lattice arrangement., It is 2lso important to compare res:lts
obtaine? with this method with those availabie in the literature. Unfortunately,
the available solutions, whether exact or numerical, may not be for configura-
t‘ons which will exercise the constraint or extreminization capabilities of the
present method. In fact, the available exact solutions are for configurations
which are either two~dimensional sections or iscla:’ . three-dimensionsl wings
with a nonelliptic span loading. The solutions rfor such configurations require
program modifications to the span loading and involve no optimization.

Two-Dimensional Comparison

Various chordwise arrangements and number of vortices were investigated for
several chordwise loading shapes, of which the a = 0.6 results are given in
figure 4. Although difficult to see clearly from this figure, the agreement of
the present method with analytic results (ref. 10) is good for both local slope
and elevation. Examination of figure 4 leads to the following general conclu-
sions concern‘'ng the chordwise arrangement: (1) Unifcrm spacing is preferred;
(2) Nc = 20 {s a good compromise when considering both computntional requira-

ments and completely converged results. An additional conclusion is that the
present method yields incidence angles near the leading edge which are slightly

higher than the analytical ones.

Number of Rows Along Semispan (ﬁs)

Various spanwise arvangements and number of vortices were studied for o..e
planform and from these studies the following conclusions were drawn: (1) Uni-
form spacing is preferred; (2) for at least 10 spanwire rows per semispan, the
local slopes and elevations were not too sensitive to increasing the number.

Three-Dimensional Comparisons

Two comparisons with available mean-camber-surface solutions will be made.

The comparisons are for a high-aspect-ratio sweptback and tapered wing with a
= 1.0 and M_ = 0.9% and a lower aspect-ratio

uniform area loading at CL d
?
a- 0.35, and

trapezoidal wing with a = 1.0, spanwise elliptic loading at CL
?

Mw = 0.40.

Figure 5 presents the predicted results from the present method for the
sweptback wing and compares these results with those from references 1 and 11.
A comparison of the three solutions indicates that they are all in generally

good agreement with the exception of the results at 3%7 = 0.05. The surprising

result is that the present method and the modified Multhopp method (ref. 1)
agree as well as they do at this span station because of the known differences

that exist between them near the plane of symmetry. <rhe reason for the larger

disagreement betweern the present method and that of reference 11 uear 3%5 =0
99
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is not clear, but this disagreement may be caused by the different ﬁc values

utilized by the two methods. Reference 11 effectively uses an infinite number
since over each infinitesimal span strip across the wing the method locates a
single quadrilateral vortex around the periphery of the enclosed area. This
vortex extends from the leading edge to the trailing edge and includes segments
of the edges as well. For a uniform area loading, the trailing leg parts of the
quadrilateral vortices cancel with adjacent spanwise ones all across the wing.
Thi- leaves only the edge segments to contribute to the induced flow field.

The present method utilizes a numerical rather than a graphical sclution in
order to provide a general capability; hence, ﬁc values ure limited as dis-

cussed previously. Also, vortices are not placed eround the leading and trail-
ing edges in the present method.

A comparison of the present design method with that of reference 1 is shown
in figure 6 for a lower aspect-ratio trapezoidal wing. The local s’opes and ele-
vations determined by the two methods are in reasonably close agreement at the
three spanwise locations detziled; however, an oscillatory trend is evident in
the local slopes obtained from the method of reference 1 (fig. 6(a)). These
oscillations apparently originate in the truncated sine series used in refer-
ence 1 to represent a uniform chordwise distribution. 1Integration of the local
slopes to obtain local elevations tends to suppress the oscillations (fig. 6(b));
however, the local pressures depend upon the slope rather than the elevation.
Consequently, the measured chordwise pressure distribution will demonstrate tha
same oscillatory character, A model built according to the design of reference 1
was tested (ref. 12), and the measured pressure distributions for a typical span-
wise location (fig. 6(c)) indicate that indeed the oscillations are present.
Presumably, similar measurements on a model designed by the present method would
not behave in this manner since the input loadings are truly linear.

Force tests (ref. 13) of an essentially identical model indicate that the

c 2
measured drag polar was tangent to CD = CD,o + AR’
was indeed a minimum at the design CL (or 100 percent leading-edge suction was

that is, the vortex drag

obtained). It is presumed from the small differences in local slope between the
present method and the method of reference 1 that a similar result would be
obtained for a design by the present method.

Application to a Wing-Canard Combination

The present method has been demonstrated by optimizing a wing-canard com-
bination (fig. 7). To illustrate how the span load optimizing feature operates
with the constraints, figure 8 presents individual and total span load distri-
butions for various values of a, and a, with the moment trim poiat at

- 2
%%7 = 0.1 and E%E = (0. (This trim point is given with respect to the axis
system shown in the sketch in figure 9.) From figure 8 there are three impor--
tant observations to be made: (1) The individual span loadings change in the
anticipated direction with the changing chord loadings in order to meet the same
CL and Cm constraints; f2) the total span loading does not change; (3) con-

sequently, the vortex drag of the configuration is constant, as would be antic-
ipated from Munk's stagger theorem.
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The effects of varying the vertical separation and the moment trim point on
the resulting drag and span loadings are also illustrated (figs. 9 and 10). All
surfaces are designed for CL 4= 0.2, a, = 0.6, a, = 0.8, and M= 0.30 and

have Cm = () about the moment trim point. Figure 9 shows that for all vertical !

separations, moving the moment trim point forward increases the vortex drag over ‘
some range, and furthermore, increasing the out-of-plane vertical separation Ps
reduces the vortex drag. Of course, not all moment trim points utilized will '
produce a stable configuration. These variations illustrate the importance of
balancing the lift between the two lifting surfaces so that for some reasonable
moment trim point and vertical separation, the vortex drag will be at a minimum.
The minimum point on each vortex drag curve occurs with the pitching-moment con-
straint not affecting the extremization.

Figure 10 presents the individual span loadings with increasing vertical
z
separation 3%5 < 0 above the wing plane| with a = 0.6 and a, = 0.8. There
are three observations which can be made from these results for increasing ver- g
tical separation: (1) The individual span loadings tend to become more ellipti- !
cal; (2) consequently, the vortex drag decreases; (3) the individual 1lift con-
tributions show only a little sensitivity to separation distance once the canard

is above the wing when compared with the coplanar results.

Application to Tandem Wing Design

This design method has-been employed in the determination of the local ele-~
vation surfaces for a tandem wing. Figure 11 shows a sketch of a tandem wing
configuration and selected results taken from the wind-tunnel tests made with a

model based on this design at a Mach number of 0.30 (ref. 14). At CL d= 0.35

the vortex drag increment is correctly estimated. The measured Cm is slightly

£ Rp gy T Ao e B Lk et 4

positive (0.02). Reference 14 states that a part of the Cm error (Cm should be ?

k zero) is a result of a difference in the fuselage length between the designed and
constructed model.

Design of a Wing-Winglet Configuration

H
Figure 12 presents the wing-winglet combination of interest along with !
pertinent aerodynamic characteristics and local elevations obtained from the !
present method. For comparison these same items are calculated with a program
modification that adds a root-bending-moment constraint to produce the same
moment that would be obtained o the original wing extending to the plane of
symmetry but without its basic wingtip. The assumed span loading is elliptical.
The force and moment coefficients are based on the wing outside of a representa-
tive fuselage and without the basic wingtip.

3
H
i
5
i
]
3

The results of this comparison are as follows: (1) The root-bending-moment
constraint increases the vortex drag slightly because of the changes in the ¢ ¢

1
distribution required; (2) the differences in local elevations are confined pri-
marily to the outer 50 percent semispan and result mainly from the differences
in the incidence angles; (3) significant amounts of incidence are required in
the winglet region with or without the root-bending-moment constraint.
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CONCLUDING REMARKS

A new subsonic method has been develuped by which the mean camber (local
elevation) surface can be determined for trimmed noncoplanar planforms with
minimum vortex drag. This method employs a vortex lattice and cvrercomes pre-
vious difficulties with chord loading specification. This method designs con-
figurations to have their local wmidsurface elevations determined to yield the
span load for minimum vortex drag while simultaneously controlling the pitching-
moment or root-bending-moment constraint at the design 1ift coefficient. This
method can be used for planforms which (1) are isolated, (2) are in pairs,

(3) include a winglet, or (4) employ variable sweep, but only at a specified
sweep position.

Results obtained with this method are comparable with those from other
methods for appropriate planforms. The versatility of the present method has
been demonstrated by application to (1) isolated wings, (2) wing-canard config-
urations, (3) a tandem wing, and (4) a wing-winglet configuration.
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Figure 3.~ Idealized loading set on trimmed configuration for minimum drag.
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Figure 6.~ Local slopes, elevations, and lifting pressure distributions;
CL a- 0.35; M_ = 0.40.
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Figure 9.- Vortex drag for range of center-of-gravity positions and vertical
separations; CL 4 = 0.2; M_= 0.30.
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Figure 10.- Effect of vertical displacement of span loadings for trimmed wing-

canard combination; a, = 0.6; a, =0.8; M, = 0.30; %% = 0,.10.
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APPLICATIONS OF "ORTEX-LATTICE THEORY TO

PRELIMINARY AERODYNAMIC DESIGN

John W. Paulson, Jr.
NASA Langley Research Center

STIMMARY

This paper presents some applications of the vortex-lattice theory to the
preliminary aerodynamic design and analysis of subsonic aircraft. These methods
include the Rockwell-Tulinius vortex-lattice theory for estimating aerodynamic
characteristics, a Trefftz plane optimizatlon procedure for determining the span
loads for minimum induced drag, and a modification of the Trefltz plane prcce~
dure to estimate the induced drag for specified span loads. The fi ;t two
methods are used to aerodynamically design aircraft planforms, twists, and cam~
bers, and the latter method is used to estimate the drag or components such as

flape and control surfaces.

Results from the theories for predicting lift and pitching moment, drag due
to lift, and the drag of control surfaces are compared with experimental data.
The data were obtained on a general aviation model with flaps and a close-

coupled canard-wing model.

INTRODUCTION

In the preliminary stages of aircraft design, it is necessary that the
designer have valid estimates of aircraft aerodynamics, particularly lift, drag,
and pitching moments. Lift and pitching moment are required to size the plan-
forms (wing, tail, and canard) and locate them with respect to a moment center,
usually a desired aircraft center of gravity, for trimmed lift requirements and
stability margins. Skin friction, form, and induced drags must be estimated
and minimized for best performance. Many theoretical methods involving various
levels of complexity have been developed which estimate these characteristics to
varying degrees of accuracy. The preliminary designer, however, wants methods
that are fast, reasonably accurate, and easy to use so that changes in aircraft
configuration can be easily assessed. Once the overall configuration geometry
is defined, he may wish to use some of the more highly sophisticated methods to
refine his estimates before beginning experimental verification of the design.
This paper will address applications of easy-to-use methods appropriate at the
preliminary design stage; these methods include the Rockwell-Tulinius vortex-
lattice theory for estimating aerodynamic characteristics, a Trefftz plane opti-
mization procedure for determining the span loads for minimum induced drag, and
a modification of the Trefftz plane procedure to estimate the induced drag for

specified span lioads.
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SYMBOLS

aspect ratio, b2/S
span
drag coefficient

induced drag coefficient

minimum drag coefficient
lift coefficient

li1ft-curve slope

pitching-moment coefficient

normal-force coefficient

chord

average chord

mean aerodynamic chord

section 1i"t ccefficient

section normal-forcg coefficient

y-component of influence function for pair of trailing vortex legs

z-component of influence function for pair of trailing vortex legs v

induced-drag efficiency parameter, CLi/hD iWA
b

vertical separation -between canard and wing
y-component of normal unit vector
z-component of normal unit vector

dynamic pressure

wing area

incremental section width (from ref. 1)

tangent unit vector spanwise component
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Tz tangent unit vector vertical component
Vy free-stream velocity
w downwash velocity
X,Y,2 axis system
X,y distance along X- and Y-axes
X c moment~-center location
o angle of attack
r section circulation
Gf flap deflection
n fraction of semispan, x/%lz
o] density
Subscripts:
cp center of pressure
d design
i,k indices
max maximum
DISCUSSION

Prediction of Lift and Pitching Moment

The Rockwell-Tulinius unified vortex-lattice theory (refs. 1 and 2) can be
used to predict static and rotary stability derivatives for configurations with
multiple 1lifting surfaces of arbitrary shape. It can also compute the section
and total configuration forces and moments for arbitrary planform geometries
with twist and camber. This method, as programed, is fast, easy to use, and
fairly accurate.

The agreement between this theory and experimental data for the lift of a
simplified general aviation model is shown in figure 1. The model has a
straight untapered wing using the NASA GA(W)-1 airfoil section (refs. 3 and 4)
and had 2° of twist (washout) from the root to the tip. The model body was a
flat-sided ellipse. For the theoretical calculations, the fuselage was modeled
as a flat plate and the wing as a camber line with twist. Agreement between the
estimated CL and the experimental CL was quite good at low angles of attack

prior to flow separation which occurred at a = 49,
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Also shown in figure 1 are the theoretical drag polars for O-percent and
100-percent leading-edge suction as given by the equations
C

2
- L
¢ = CD,o t Tae

for 100-percent leading-edge suction and

for O-percent leading-edge suction. The value for CD o Vvas obtained from the
E]

experimental data. These curves for 100-percent and O-percent leading-edge
suction represent the best and worst possible drag polars, respectively, for a
given configuration. The leading-edge radius and/or camber design should pro-
duce data that are as close to the 100-percent suction polar as possible. Near-
field analyses are required to minimize viscous and separated flow cffects to
approach the 100-percent suction polar. For this case, the data show that the
design was close to the 100-percent suction polar up to CL = 1.2.

Two-dimensional separation can be delayed and minimized for moderate angles
of attack by proper planform shaping, camber design, and leading-edge~radius
selection. However, at large angles of attack, the viscous form drag must be
reduced by taking advantage of interfering flow fields of adjacent surfaces,
vortex flows, or induced propulsion effects. Examples of applications of this
appirvach for reducing viscous form drag due to 1ift are shown later in this
paper.

Figure 2 is a skeich of a close-coupled canard model tested in the Langley
V/STOL tunnel to investigate the effects of propulsion on stahility at high
angles of attack. A similar unpowered model was tested in the Langley high-
speed 7- by 10-foot tunnel by Blair B. Gloss (ref. 5) to determine the effect of

vortex lift on performance, especially CL nax’ The wings and canards of both
’

models had symmetrical circular arc airfoil sections. Also, strakes were uti-
lized in both tests to produce vortex lift at the higher angles of attack. The
agreement between theory and data of Gloss (fig. 3) is good over the linear
range of the data for the wing and the wing-canard configurations. The method
does not predict the additional vortex lift and resulting pitching moment when
the strake is present.

This mcthod was used to establish a moment center for a wing-canard model
to give a stability margin at low CL of -5 percent (30m/BCL = 0.05) prior to

testing in the V/STOL tunnel. The data, shown in figure 4, indicate a value of
BCm/BCL of about 0.06 to 0.05 at low CL’ which agrees well with the predi ted

value.
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Prediction of Minimum Induced Drag

Once the pla:..orms of a configuration have been sized and located to meet
lift and stability requirements, it is necessary to compute the optimum span
loads for minimum induced drag for the interfering planforms. The expression
for the induced drag was developed by using an equivalent lifting-line Trefftz
plane approach of reference 1 and is illustrated by the following sketch and

equation:

z . TRAILING
CANARD VORTEX LEG
A e eetetee __ SECTION
WING CIRCULATION
) ()
Y

TREFFTZ PLANE
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1
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By utilizing the method of Lagrangian multipliers with the induced-drag equatiom,
the span loads for minimum CD § ey be calculated while constraining CL and
b

Cm to desired values. This procedure was programed by Tulinius and Gloss, and

the results are given in reference 2. The input for this program consists of
the basic planform geometry, as in the Rockwell-Tulinius method, along with the
desired (x/c)cp distribution. The (x/c)cp distribution is required to locate

the chordwise position of the net span load for constraining the pitching moment
and is generally selected from a desired two-dimensional section loading.

The method was applied to the close-coupled wing-canard model of Gloss and
the results with and without constraints on Cm are presented in figure 5.

The variation of the induced-drag efficiency parameter e 1s a function of

wing-canard span ratio bCanard b, wing-canard separation h/b, and wing-canard
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lift ratio. The left side of figure 5 gives estimates of e when CL is con-

strained and Cm is unconstrained. It can be seen that the estimated valu«~a

of e increase as h/b and b /b increase and are equal to or greater

canard
than 1.0. The right side of figure 5 gives estimates of e when both CL and
Cm are constrained to produce a trimmed configuration. It can be seen that the
extra constraint lowers the values of e; however, e can still be greater than
1.0 if an upload on the canavd is required for trim. When a canard or emparnag-
download is required for trim, e is equal to or less than 1. In this figure,

the location of the moment center was .ompletely arbifrary and was chosen simply
to give uploads and downloads on the canard.

A detailed study of the cffect of moment-center locrotiun on e was per-
fcrwed for one configuration (h/b = 0.09, bcanard/b = 0.6?) and is presented

in figure 6. It can be seen that e 1is a maximum at a moment-center location
of about 10 percent c¢ due to the nearly elliptic span loads present for this
case. As the moment center is moved away from 10 percent c¢, the loads required
on the wing and canard for trim become more nonelliptic and e decreases
accordingly.

It should be noted that the wing and canard must be twisted and cambered to
produce the span loads required to approach the minimum CD e The data of
s

Gloss (ref. 5) were obtained for both flat and cambered wings in the presence of
a canard. The cambered wings were designed to 1ift coefficients of 9.35 and
0.70. These experimental data are compared with the theoretical minimum value

C,-¢C
of —2——-52L2 in figure 7. The uncambered wing alone does not approach the
CL
theoretical minimum at low CL because the sharp leading edge does not carry

any leading-edge thrust. This wing departs drastically from the minimum at
higher CL because of the flow separation from the sharp leading edge. The

downwash and vortex from the canard and strake retard the two-dimensional type
of separation on the wing and the data show large improvements over the wing
alone at higher CL. However, the flat wing-canard-strake combination still

does not approach the theoretical minimum because of the zero leading-edge
thrust associated with the sharp leading edge. The cambered wings for the wing-
canard configuration do approach the theoretical minimum at the design CL

because the cambered airfoil carries thrust on the camber line and the leading
edge is drooped into the local flow direction to reduce the leading-edge flow
separation.

Prediction of Induced Drag Due to Control Deflections

In addition to using the theory to aerodynamically design a configuration
to meet the primary mission requirements, it is also useful in examining the
effects of deflecting control surfaces and high-lift devices on the induced
drag. A modification was made by Paulson and Thomas to the induced drag mini-~

118




B S

e R

Gt BRI W

1

|

|
# . > —————

" mization program to calculate the induced drag for specified span loads. The

E input span loads may be obtained either theoretically or experimentally. An

& example of the variation in span load due to two different types of flaps is

¢ shown in figure 8. This analysis was done on the general aviation model shown

¥ in figure 1 without the fuselage. The span loads were calculated by using the

£ Rockwell-Tulinius method for the plain wing and for the wing with either slotted
¥ flaps or Fowler flaps deflected. Figure 9 shows the experimental drag polars

= for the three configurations. At CL = 1.0, the calculated differences in

- induced drag between the plain wing and the wing with slotted flaps or Fowler

flaps were 0.0010 and 0.0126, respectively. (See table 1.) The corresponding

> differences in the experimental data were 0.0012 and 0.0165, respectively. The
¢ additional skin-friction drag for the deflected Fowler flap (ref. 6) was esti-
. mated to be 0.0024. When this is combined with the computed induced drag, a

total theoretical increment in drag of 0.0150 is obtained for the Fowler flap.
This agrees well with the experimentally measured increment of 0.0165.

CONCLUDING REMARKS

Three applications of theoretical methods for preliminary aerodynamic
design have been discussed. These methods are used to estimate wing and empen-
nage geometries and locations to meet performance and stability requirements, to
estimate span loads for minimum trimmed induced drag, and to analyze the effects
of control surface deflection on induced drag. The theories are, in general,
easy to use, fast, and the agreement with experimental data shows that they give
accurate results. These methods are being used to design complex multiple
lifting-surface models for experimental investigations in the Langley V/STOL
tunnel.
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Figure 1.- Aerodynamic characteristics of general aviation model.

Figure 2.- Powered wing-canard research configurationm.
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Figure 7.- Effects of canard, strake, and wing camber
on drag due to lift.
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Figure 9.- Experimental drag polars for general aviation model.
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UTILIZATION OF THE AEDC THREE-DIMENSIONAL

POTENTIAL FLOW COMPUTER PROGRAM*

Richard L. Palko
ARO, Inc.

SUMMARY

A potential flow computer program has been in use at the Arnold Engineering De-
velopment Center (AEDC) for several years. This program has been used primarily as
a tool for flow-field analysis in support of test activities in the transonic wind tunnels
of the Propulsion Wind Tunnel Facility (PWT). Analyses have been made over a Mach
nuinber range from 0 to 0.9 for a variety of configurations from aircraft to wind tun-
nels, with excellent agreement between calculated flow fields and measured wind tunnel
data. Analytical and experimental data for seven different flow analysis problems are

presented  n this paper.

INTRODUCTION

The AEDC T'hree-Dimensional Potential Flow Computer Program (PFP) in the
existing form was develoned primarily as a result of the need to make calculations of
the flow field in the vicinity of aircraft fuselages (typically at locations where aircraft
inlets might be located). This need arose because of the suppori the theoretical flow-
field calculations could lend to a research program carried out at AEDC to simulate the
inlet flow fields in a wind-tunnel test of full/scale inlet/enJine systems (refs. 1 and 2).
Much of the computing capability that the PFP presently has resulted from these flow-
field calculations which have as their primary variables the flow angularity (upwash and
sidewash) over a y-z plane. After the initial solution of the velocity field for a given
model attitude and Mach number is obtained, the upwash and sidewash can be deter-
mined for any given point or over any grid desired. A new solution is required for each
model attitude or Mach number. In addition to computing the upwash and sidewash, the

PFP also computes the local Mach number, Cp, and flow streamlines. A computer
plotting program has been written to supplement the PFP, and computer plots can be

*The research reported herein was conducted by the Arnold Engineering Develop-
ment Center, Air Forcc Systems Command. Research results were obtained by per-
sonnel of ARO, Inc., Contract Operator at AEDC. Further reproduction is authorized
to satisfy needs of the U. S. Government,
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obtained for most of the above parameters. A streamline can be traced from any point
in the stream either upstream or downstream (or both). The capability to make a plot
of the mathematical representation of the model geometry before running the complete
program allows corrections to be made, if needed, with only a slight loss of computer
time. A two-volume report (ref. 3) that details the program, modeling techniques, ap-
plication, and verification has been published.

This paper briefly outlines the PFP application to seven flow analysis problems in
support of the transonic wind tunnels in the PWT at AEDC.

SYMBOLS

Values are given in both SI and U. S. Customary Units. The measurements and
calculations were made in U. S. Customary Units.

A angle of attack

CL lift coefficient

Cp pressure co:fficient

M, free-stream Mach number

p/po ratio of surface static pressure to free stream total pressure
X coordinate along tunnel axis, positive downstream
Y horizontal coordinate, sign as indicated

Z vertical coordinate, sign as indicated

a model angle of attack, deg, positive up

B model angle of yaw, deg, sign as indicated

€ upwash, deg, positive up

o sidewash, deg, positive as indicated

PFP APPLICATION AND UTILIZATION

The PFP at AEDC has been used primarily as a ool for analysis of the flow in the
far field. (Far field refers to a distance away from the analysis model surface equal
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to, or greater than, the vortex spacing in the direction of flov'.) The modeling tech-
niques required for this type of analysis are presented in vciume II of reference 3.
However, work is underway to develop the modeling technique to allow accurate analysis
of the surface pressure. Results of some of this continuing effort are reported in
reference 4. All the flow problems presented here are of the far-field type.

Flow Field Between Two Hollow Circular Cylinders

The analysis of these cylinders was part of a research program in which the objec-
tive was to create flow fields by some auxiliary method to simulate the flow entering a
full-scale inlet/engine at high angles of attack and yaw. The device was to deflect (or
induce) the flow upward as it passed between the inclined cylinders. A mathematical
model of the cylinders is shown in figure 1. The last circumferential ray on each cyl-
inder had trailing vortices that were trailed at an angle equal to one-half the cylinder
pitch angle. A comparison between the theoretical and experimental flow angularity
data is shown in figure 2. The theoretical results are shown as lines of constant flow
angle (both upwash and sidewash), and the solid symbols show the relative location of
experimental data with the magnitude of the measured angles indicated. The Mach num-
ber at which these data were taken was 0.9. It can be seen that the PFP overestimated

the flow inclination angles by approximately 1°,

Flow Field Around an Aircraft Fuselage

Primary purpose of this analysis was to verify the results obtained from the PFP.
Experimental flow-field data used for comparison with theory were available from wind-
tunnel measurements made during the Tailor Mate test series. The objective of the
wind-tunnel test was to determine the flow field (upwash and sidewash) at a typical en-
gine inlet fuselage location. The mathematical model of the fuselage configuration is
shown in figure 3. The comparison between the predictions from the PFP and the wind-
tunnel data for a pitch angle of 25° and a free-stream Mach number of 0.9 are shown in

figure 4. Here again, excellent agreement was obtained.

Flow Field Under a Fuselage-Wing Configuration

The purpose of this analysis was also for program verification; again experimental
data obtained during the Tailor Mate studies were used. The fuselage-wing configura-
tion was analyzed to compute the flow field under the wing at the wing-fuselage junction,
The computer math model used in the analysis is shown in figure 5. A comparison be-
tween the upwash and sidewash predictions and the experimental data for a Mach num-
ber of 0.9 and an angle of attack of 10° is shown in figure 6. Analytical and experi-
mental data trends show excellent agreement, although the predicted data show some-
what higher flow angularity gradients across the survey area than the measured data.,
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Streamtube Entering Inlet Behind Wing

The purpose of this analysis was to determine the origin of the streamtube entering
the inlet in support of an inlet hot gas ingestion investigation. The comparison between
experimental and theoretical data are shown in figure 7. These data were taken during
a store separation study in an effort to verify the accuracy of the PFP to predict the
correct flow field above and behind the wing. Data were taken at a Mach number of 0.3
with an angle of attack of 89, and show excellent agreement between the experimental
and theoretical values., The mathematical model and the predicted streamtube are
shown in figure 8. The streamtube was determined by tracing streamlines from four
locations beginning just upstream of the inlet and extending forw rd to just upstream of
the aircraft nose. A Mach number of 0.3 and an angle of attack of 8° were also used
for the streamtube analysis. This mathematical model is the largest analyzed to date,

with 1559 loop vortices and 20 horseshoe vortices, and required approximately 4 hours
run time on the AEDC IBM 370/165 computer.

Inlet/Engine in Crosswind

This analysis was made in support of a crosswind experiment conducted during an
inlet study in the AEDC 16-ft (4. 88-m) Transonic Wind Tunnel (PWT-16T). The objec-
tive of the analysis was to determine if a 0. 91-m-diameter (3-ft-diameter) crosswind
simulator would adequately simulate the crosswind when used in conjunction with the in-
let model, and to determine the position for the simulator to give best results. The
theoretical analysis was made with the inlet/engine in an infinite crosswind. The math-
ematical model included only a portion of the experimental model as shown in figure 9.
A computer plot of the mathematical model is shown in figure 10. The engine ducts
were closed on the downstream end and a negative source was located near the rear
center of each engine duct to produce the correct inlet mass flow when that particular
engine was in operation. Streamlines were traced upstream from near the four corners
of the inlet, for each engine in operation, to determine the flow pattern of the air-
stream entering the inlet. By tracing the streamlines, a fan position was deter-
mined that would influence the inlet flow for all engine power settings and cross-
wind velocities required. A typical flow pattern for the analysis is shown in figure

11 for a crosswind velocity of 20.57 m/sec (67.5 ft/sec) with both engines operat-
ing.

Pressure Distribution in PWT-16T Contraction Section
The objective of this analysis was to determine the pressure distribution

along the bottom and side walls of the PWT-16T contracti_n section. Pressure dis-
tributions were needed for use in a theoretical boundary-layer analysis of the wind-

tunnel nozzle to support a test-section flow angularity study., Mathematical modeling

used in the analysis is shown in figure 12. The flow in the test section area was speci-
fied to give the pressure ratio desired for Mach number 0. 6. The analysis provided

130

NF A e 5 s s mtemen T S« OSARASIAHAIRG,  ~ P

(ST

St

© v e s T S £

v e e ® T

e



A et

B R S Tt

streamline information at a distance of 0. 305 m (1 ft) from the walls, and the calculated
Cp was converted to p/po. Following the calculation of the theoretical pressure dis-
tribution, the pressure distribution was experimentally measured in the contraction
section. A comparison between the theoretical and experimental pressure distribution
is shown in figure 13, with excellent agreement indicated.

Strut Effects Analysis

The objective of this analysis was to determine the strut effect corrections to mea-
sured force and moment data for a slender winged vehicle with a mid-strut mount. The
vehicle wing was located just forward of the strut. For this analysis the upwash angle
was determined with the PFP for the body alone (fig. 14) and the body with strut (fig. 15).
An incremental upwash angle was then determined at the wing location from these two
sets of data. In this case the incremental values were negative because of the down flow
around the strut. The incremental values along the wing location were averaged and the
ACq, correction calculated from the average angle-of-attack change. A comparison of
the calculated corrections and those measured with a subscale model are shown in fig-
ure 16. Excellent agreement is shown in both the trend with Mach number and the ab-
solute values.

CONCLUDING REMARKS

The AEDC Potential Flow Program is used primarily as a tool for flow-field
analysis in support of the test activities in the fransonic wind tunnels of PWT. This
paper has covered seven different problems that have utilized the PFP including both
external and internal analysis. All but one of the examples have experimental data to
verify the calculated flow fields, and all comparisons show excellent agreement. The
PFP at AEDC has not been used as a tool to obtain absolute values, but rather as a tool
to predict and verify flow fields in support of the test activities. In addition fo the
problems presented, the PFP has been used to predict the flow angularity at the model
resulting from sting and support systems, to predict the flow around various types of
support systems, and many other general flow analysis problems directly connected
with wind-tunnel testing.
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EXPERIMENTAL  THEORETICAL

€= -6.15° € * 6,540
0= 3,36 o- 338

€ = -13.410 g = -13, 80
/_o- 2.70 o+ 540

— —

EXPERIMENTAL  THEORETICAL

€ = -615 £ * -6,580
6+ 3,360 o= 3.38

Figure 7.~ Comparison between experimental and theoretical data for
Mach number 0.3 at an angle of attack of 8°.
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REPORT ON THE STATUS OF A SLOTTED WIND-
TUNNEL WALL REPRESENTATION USING THE VORTEX-

LATTICE TECHNIQUE*

Fred L. Heltsley
ARO, Inc.

SUMMARY

A combined analytical/experimental program for development
of an improved slotted wind-tunnel wall representation is de-
scribed. The effort is presently being conducted at the Arnold
Engineering Development Center (AEDC) and is scheduled for com-
pletion in 1977. The vortex-lattice technique which is being
used as the primary analytical tool for representing both the
wind-tunnel and the lifting model is discussed. Comparisons of
results obtained to date with available data are presented.
Included also is a brief description of the experimental effort
to be conducted in conjunction with the analytical development.

INTRODUCTION

The literature contains numerous examples of the application
of vortex-lattice theory to the modeling of closed wall wind
tunnels (refs. 1 through 3). Interference factors provided by
the vortex lattice method correlate well with values computed
using various analytical techniques. Considerably less work,
however, has been directed toward the vortex-lattice simulation
of tunnels with partially open walls, in particular those with
slots (refs. 2 and 3). In addition, comparisons of the resulting
interference factors with those generated by analytical methods
are limited to cases involving extremely simplified wall config-
urations and equally simple test vehicle geometries since analyt-
ical solutions are not available for the more complex models.
This paper describes a program presently underway at the AEDC
which is intended to provide a more useful vortex-lattice venti-
lated wind-tunnel model by accounting for the viscous effects

*The work reported herein is sponsored by NASA/Ames Research Center
and was conducted by the Arnold Engineering Development Center, Air
Force Systems Command. Research results were obtained by personnel

of ARO, Inc., Contract Operator at AEDC. Further reproduction is
authorized to satisfy needs of the U.S. Government.
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associated with flow through and/cr across the slots (ref. 4).
Similar studies have been conducted to develop representations of
several aerodynamic configurations (refs. 5 through 9). Many of
the resulting models are capable of generating the effects of
complex real flow phenomena such as separated wakes and jet
exhausts although most of the simulations are strongly dependent
upon empirical information. The intent of the present effort is
to develop an improved mathematical wind-tunnel wall formulation

by supplementing an in-depth analytical study with appropriate
experimentation.

SYMBOLS
ﬁi unit normal vector at the ith control point, negative
away from the boundary on the inner surface
51 unit normal vector at the ith control point
c tunnel cross-sectional area
c* reference tunnel area
E.. influence of the jth singularity on the ith control
1 point
Cr, lift coefficient
Cp pressure coefficient
ds length of a vortex line
ii singularity density at the ith control point
N number of singularities
P wall
ﬁi unit vector parallel to the boundary at the ith
control point
(] wing area
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u free-stream velocity

-
v, velocity induced at the ith control point in the
vortex sheet

;I velocity induced at the ith control point on the
inner surface of the vortex sheet

;;* velocity induced at the ith control point on the
outer surface of the vortex sheet

$w free-stream velocity

Av velocity jump across the vortex sheet

W local downwash velocity

X nondimensionalized distance from model along center
line

x/c nondimensionalized chord length

a angle of attack

Fj strength of the jth singularity

8 lift interference factor

§* normalized lift interference factor

A ratio of tunnel height to tunnel width

T ratio of wing span to tunnel span

ANALYTICAL STUDY

Vortex-Lattice Technique
The analytical work has been directed toward representing

both the wind-tunnel walls and the lifting model. The vortex-
lattice technique was chosen as the primary tool since the
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method can be extended to simulate extremely complex aerodynamic :
geometries without changing the basic solution scheme. Reference /
10 describes a digital program (PFP) which has been developed at :
the Arnold Engineering Development Center for potential flow |
analysis using vortex-lattice theory. The computation procedure
involves definition of the model geometry and boundary conditions,
calculation of the influence coefficient matrix, and solution of
the resulting set of linear equations for the strengths of the
individual vortex filaments. Once the singularity strengths are
known, velocities can be determined anywhere in the flow field,
including the model surfaces. In addition, the program is capable
of computirg lift forces, pressure coefficients, and streamlines.
Routines are also available for generating three-view, isometric,
and perspective plots of both the model input geometry and computed
streamlines and velocity vectors.

Solid Surface Simulation

The PFP has been used extensively at the AEDC for aerco-
dynamic analyses involving solid boundaries (refs. 5, 6, 8, and
10). These cases involved the classical form of the vortex
lattice equation:

> A > ~
V, - by = Vg . byt LgTy (€, . b.) (1)

4

A

-
Application of the solid-wall boundary condition, vy ot b; =0,

forces the components of velocity perpendicular to the surface to
vanish and permits solution of the resulting N linear homogeneous
equations.

The technique has been used to compute lift interference in
a closed wall wind tunnel. A simple example is illustrated in
figure 1. The resulting interference levels averaged along the
span at each axial location are shown in figure 2. 1Included also
in the plot are interference distributions for several other
tunnel cross sections along with corresponding analytical results
due to Kraft (ref. 12).

Slotted Wall Simulation

Exten.ion of the method to represent tunnels with partially
open walls is somewhat more difficult due to the added complexity
of applying the constant-pressure boundary condition in the
slots. This requires that the tangential component of velocity
on the interior surface of the vortex sheet which represents the
free jet boundary must vanish. It can be shown that the
continuity in the tangential component of velocity across the
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b vortex sheet is equal to the local vortex density, i.e.,

K = dr'/d%. Since equation (1) is expressed in terms of the
velocity directly on the sheet, only half of the velocity jump
must be accounted for. Modification of equation (1) yields

”~

Ir 5. o= - N p3 - 12 "
vi.p; =V .p;+ j£1 3 (Cij - p;)+(zK; x B.) . p; (2)

The nomenclature used in equations (1) and (2) is illustrated in
figure 3.

A vortex-lattice model of a slotted wall tunnel is presented
in figure 4 to demonstrate the application of both types of
boundary conditions. The wall interference distribution computed
for the configuration show in figure 5. 1In addition, distribu-~
tions for a closed tunnel and a tunnel with open upper and lower
walls and closed side walls are shown. Theoretical data due to
Kraft (ref. 12) and vortex-lattice results computed by Bhateley
(ref. 2) for similar configurations are included for comparison.
Two basic rules of thumb to be followed in the construction of a
model such as the one in figure 4 should be noted here. These
are (1) the edge of each slot should coincide with a vortex
filament and (2) the vortex grid and the control points should be
positioned by the same function. 1In the present case, the slot
configuration has been conveniently selected so that a uniform
spacing satisfies both rules. Situations in which the slots are
narrow relative to the width of the solid wall panels are some-
what more difficult to handle. Two primary alternatives exist. A
uniform spacing which is at least as narrow as the slots can be
used for both the slots and the solid wall panels. This may
result, however, in a prohibitive number of singularities. An
alternate solution is to select a nonuniform spacing. The use of
a cosine function has been found to yield good tip definition
when representing finite wings. A similar technique, illustrated
in figure 6, has been used by the author. 1In addition to reducing
the number of singularities required, the scheme provides excellent
mutual slot/panel edge definition.

Lifting Model

The experimental model used during this study to provide 1lift
interference measurements is shown in figure 7. The wing assembly
consists of a 32.0 in. (81.28 cm) span x 9.0 in. (22.86 cm) chord
NACA 63A006 airfoil with a minimum blockage circular centerbody.

A similar half-scale assembly is mounted aft of and above the
wing to provide tail surface measurements. A vortex-lattice
representation of the lifting model is presented in figure 8.
Since the PFP is capable of assuming symmetry, definition of only
one-halc of the mcdel is required. Pressure coefficient
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distributions over a two-dimensional version of the wing model

are shown in figures 9 and 10 to illustrate the effects of grid
spacing and angle of attack, respectively. In all cases, a
precisely computed cosine (cosine) function was used to determine
both the vortex and the control point locations. An attempt to
interpolate between previously obtained "as built" coordinates
proved to be unsuccessful due to the extreme sensitivity to the
lack of measurement precision. Finally, good results were achieved

by generating slope continuous smoothing functions to define the
surface.

Details of the leading and trailing edaes of the lattice
wing model are shown in figure 11. It should be noted that the
trailing edge was not closed but was allowed to "leak" in both
the two- and three-dimensional models since the tips of the
three-dimensional wing were closed witbh lattice plates.

A less detailed vortex-lattice representation of the lifting
model is under development which will require a significantly
smaller number of singularities. The new model will be utilized
in order to reduce the computer time required during the develop-
ment of the tunnel wall model. Later, the detailed vortex lattice
lifting model will be recalled to provide the necessary precision

for correlation of analytical and experimental interference
results,

EXPERIMENTAL PROGRAM
Wind-Tunnel Description

The AEDC Low Speed Wind Tunnel (V/STOL) shown in figure 12
will be used to provide experimental interference data. The
tunnel has a test section 45.0 in. (114.3 cm) wide and 36.0 in.
(91.44 cm) high and is capable of generating velocities from near
zero to 250 ft/sec (76.2 m/sec). The solid test section walls
can easily be replaced with selected slotted walls to provide
wall flow relief. Figure 13 is a schematic of the lifting model
installed in the V/STOL tunnel. The installation shown permits
an angle-of-attack variation from 6° to 16° about the pitch center.

Interference Free Data
Only a limited amount of suitable interference free data are
available for the lifting model since a majority of the previous

tests has been conducted at high Mach numbers. Plans are presently

underway to obtain the necessary additional interference free
data for the lower Mach numbers.
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CONCLUDING REMARKS

The vortex-lattice technique has been successfully used to
represent solid surfaces for both the wind-tunnel walls and the
lifting model. Correlation with available interference free
experimental data and analytical results were excellent. 1In
addition, the free jet boundary condition has been applied to
simulate the flow in the tunnel wall slots. Good agreement was
obtained with existing analytical predictions. Development of
both vortex-lattice models is continuing.

Preparation for the experimental program is underway and
testing will begin in the near future.
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Figure 1.- Vortex-lattice representation of the
NASA Ames flat oval tunnel.
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Figure 3.- Vortex-lattice boundary condition nomenclature.
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Figure 12.- AEDC low speed wind tunnel (V/STOL).
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A QUADRILATERAL VORTEX METHOD
APPLIED TO CONFIGURATIONS WITH HIGH CIRCULATION

Brian Maskew
Analytical Methods, Inc.

SUMMARY

A quadrilateral vortex-lattice method is briefly described for calcula-
ting the potential flow aerodynamic characteristics of high-lift configurations.
It incorporates an iterative scheme for calculating the deformation of force-
free wakes, including wakes frcm side edges. The method is applicable to mul-
tiple lifting surfaces with part-span flaps deflected, and can include ground
effect and wind-tnnel interference. Numerical results, presented for a number

of high-lift configurations, demonstrate rapid convergence of the iterative

technique. The results are in good agreement with available experimental data.

INTRODUCTION

The calculation of aerodynamic characteristics for three~dimensional
configurations with high circulation, e.g., a wing with flap and tailplane can
be misleading unless the trailing vortex wakes are represented correctly. In
fact, initial applications of a quadrilateral vortex-lattice method with rigid
non-planar wake (refs. 1 and 2) showed that results for a wing alone were sen-
sitive to wake location at even moderate lift coefficients. The high circula-
tion case, therefore, is non-linear, and requires a force-free wake represen-~

tation.

The problem of calculating vortex sheet roll-up has recieved considerable
attention in the past, (see review by Rossow {ref. 3)), but has been concerned
mainly with the two-dimensional case. More recent work has included three-di-
mensional factors. Butter and Hancock (ref. 4) and also Hackett and Evans
(ref. 5) included the influence of a bound vortex, and Belotserkovskii (ref. 6)
incorporated a wake roll-up procedure with a vortex-lattice method. Mook and
Maddox (ref. 7) developed a vortex-lattice method with leading-edge vortex rell-
up. The roll-up procedure incorporated in the quadrilateral vecrtex method
(ref. 2) differs slightly from the above methods, and is described here before

discussing the high-lift applications.
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SYMBOLS

o] incidence, in degrees
S area
c chord
< reference chord
a aspect ratio
n spanwise position normalised by wing semispan
CL lift coefficient
CM pitching moment coefficient (about the mid chord)
CD. induced drag coefficient

i
k induced drag factor, = TA CD./CL2

1

Subscripts:
W wing
T tailplane or wind tunnel
calc calculated
exp experimental

METHOD DESCRIPTION

The method, which incorporates an iterative procedure for wake shape, is
based on vortex-lattice theory (e.g., ref. 8), but the lattice is formed into
quadrilateral vortices (fig. 1) instead of horse-shoe vortices. The quadrila-
teral torm is equivalent to a piecewise constant doublet dictribution and each
vortex "panel” is self-contained, This makes it easier to apply to cambered
surfaces. Another advantage is that only the guadrilaterals adjacent to trail-
ing edges (and to side edges when edge separation is included) have trailing
vortices, and so they are the only panels whose influence coefficients vary in
the iterations [or wake shape. The complete matrix of influence coefficients
would be affected for the horse-shoe vortex model.

164

e g e e 7



L e

G

3

5, - PR Yl

X
&
t

For the wake model, each trailing vortex is divided into straight seg-
ments (fig. 1), the number and length of which can be varied from vortex to
vortex to allow more detailed representation in roll~-up regions. The segmented
part of each vortex ends in a semi-infinite vortex in the free-stream direction.
In the iterative wake procedure, each trailing vortex segment is made approxi-
mately force-free by aligning it with the local mean velocity vector. The
segment midpoint is the most appropriate position to apply this condition, yet
most methods use the upstream end of the segment (following ref. 6). Th~ pre-
sent method calculates the mean welocity at 55% of the segment leagth (extra-
polated from the previous segment) after examining a roll-up calculation
(ref. 2) for a pair of equal strength, segmented vortices. Compared with the
upstream end point, the 55% point gives faster convergence, and the results

are less sensitive to segment length, (fig. 2).

Small Rankine vortex cores are placed cn the vortices to avoid large
velocities being calculated near the vortices; nevertheless, when calculating
the velocity vectors for the wake relaxation, the local vortex contribution is
excluded. To obtain the first vortex strength solution, the trailing vortices
are assumed semi-infinite in the free-stream direction. A new vortex strength
solution is obtained after each wake relaxation is completed.

RESULTS AND DISCUSSION

Wing-flap-tailplane

The wing-flap-tailplane configuration is a typical problem facing the
aerodynamicist when calculating the behavior of an aircraft during landing and
take-off. The present method enables the free-air and the ground-effect re-
gimes to be evaluated. An illustrative calculation was performed for the part
span flap configuration shown in figure 3(a). The geometric characteristics

are presented in table 1.

Figure 3(a) shows the calculated vortex trajectories in free air after
the fourth iteration. The vortex roll-up region from the flap edge passes
close to the tailplane tip (outboard and below) and has clearly influenced the
tailplane tip vortex trajectory (compare vortex (15) with vortex (10) from the
wing tip, especially in the side view). The plan view shows wing inboard trail-
ing vortices passing directly below the centers of tailplane quadrilaterals.
If these vortices had been close to the tailplane surface, then the results
would have diverged. In its present form the method is not applicable to close
approach problems unless the vortex trajec.ories are constrained to align with
the local surface lattice. However, the close approach problem has been inves-
tigated, and a technique developed to overcome it (refs. 9 and 10) but, so far,
this has not been incorporated in the main program.

The effect of iteration on the trajectory of vortex (7) from the flap
edge region is giver separately in figure 3(b). This vortex moved the most in
the group; nevertheless, the figure shows little change between the third and

fourth iterations. Sections through the calculated wakes in free air and in
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ground effect are shown in figure 3(c). Compared with the free-air positions,
the vortices move outwards in ground effect, and are deflected upwards. This
movement will influence the ground-effect conditions at the tailplane.

Figure 4 shows the changes in wing and tailplane calculated lift and in-
duced drag with iteration in free-air conditions. The wing lift is essentially
converged by the second iteration and the induced drag factor, k, by the third.
The tailplane lift and induced drag (in the presence of the wing) are essenti-
ally converged by the second iteration after a relatively big jump from the
streamwise-wake value,

Table II gives the calculated values of lift and induced drag for free air

alone. These results impnly (for the combined configuraiioci) an average down-
wash angle at the tailplane of about 10.7° in free air and 1.7° in ground ef-
fect. The method, however, takes into acccunt variations in downwash - and
sidewash - across the span and chord of the tailplane. The presence of the
tailplane causes small changes in the wing characteristics. 1In free air there
is a small decrease in wing lift (= 0.8%) and a small increase in induced drag
factor (from 1.100 to 1.108), which result from a small downwash induced by the
negative circulation on the tailplane. In ground effect, however, the tailplane
- which now has positive lift - causes a small increase ir wing lift and a de-
crease in its induced drag factor (from 0.613 to 0.581). Although the tailplane
alone results show the expected increase in lift with ground effect, the wing-
flap alone result shows a decrease. This apparent anomaly is in accordance
with results found earlier in reference 1ll; with increasing camber and/or in-
cidence, the initial increase in wing lift in ground effect decreases and even-
tually goes negative. This feature is made more apparent in the spanwise dis-
tribution.

The calculated spanwise load distribution, CLC/E, and center of pressure

locus for the wing are shown in figures 5(a) and 5(b) for both free-air and
ground-effect conditions. I~ jround effect (at the same incidence as in free-
air) there is a relative loss in lift in the flapped region - evidently over
the flap itself because the center of pressure moves forward there ~ while out-
board there is a small increase in lift and a rearward shift in center of pres-
sure (i.e., the normally accepted influences of ground effect). The net result,
as already seen in table II, is a decrease in overall lift. Evidently, camber
has a strong influence .. the grnund interference effect which must be taken
into account when predicting aerodynamic characteristics near the ground

(ref. 11).

As would be expected, the induced drag is concentrated over the flapped
region in free air (fig. 5(c¢)), and in fact an induced thrust is calculated
over the unflapped region - a plausible consequence of concentrating the load
over the inboard part of a swept wing. In ground effect, the expected reduc-
tion in induced drag occurs mainly inboard of the flap edge region (i.e., in
the upwash region from the flap edge trailing vortex image).
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Wing-Flap in Wind Tunnel

Standard correction methods for wind-tunnel interference are largely
based on image techniques, and assume the wing wake to be undeflected. When
testing high-1lift configurations, the trailing wake moves considerably from the
basic wing plane, so unless the model is very small relative to the tunnel (with
possible Reynolds Number problems), the real flow violates the assumptiomns.

The present method calculates the wake shape in the prasence of the model and
the tunnel walls - the latter also being represented by a distribution »f quad-
rilateral vortices. A calculation of this form would be particularly useful
for wing-tailplane configurations, but suificient elements were not available
for a fair application to such a problem at this time (i.e., to cover wing,
tailplane and wind tunnel). The results from a high-1ift wing-flap calculation,
therefore, are given here. The general arrangement is shown in figure 6, and
the geometry is defined in table III. Lift values were available from unpubli-
shed wind-tunnel measurements on a biown-flap model.

Figure 7 shows the calculated vortex trajectories for o = 5° in the wird
tunnel. The lift coefficient is 2.14, and a correspondingly high rate of vor-
tex roll-up is andicated. The tip vertex - which was allowed to separate from
the flap hinge line to be more representative of the real flow conditions -
moves steadily inboard as more vorticity is "entrained". The vortices just in-
board of the tip have large "curvature" at the start, and ideally, should have
had smaller segments there. A section through the calculated wake (fig. 7) is
compared with that for free-stream conditions at approximately the same 1lift
coefficient. This required a free-ai. incidence of 10° compared with 5° in the
tunnel. 1In the tunnel, the roll-v. region is squashed in a vertical sense and,
on the whole, the vortex positions iie outboard relative to their positions in
free air. 1In the tunnel, the vortices over the inboard region lie above the
free-air position ~ a recult of the rcduced downwash in the tunnel.

Figure 8(a) show: the ¢y, characteristics calculated in the tunnel and
in free air. The standard incidence correction (i.e., Aa = GCL SW/ST' with
§ = 0.101 here) applied to the in-tunnel values falls shor. of the free-air
result by the order of 35%. Al<~ shown are some values representing the experi-
mental wind tunnel measurem:nts with near critical blowing over the trailing-
edge flap. These measurements were originally for a wing-body configuration,
and have been modified to gross wing conditions. 1In view of this, they are in-
cluded here o.aly to indicate that the calculated in-tunnel Cp, ~ 0 values are

plausible. The modification for CL applied to the measured net wing Cp,
was of the form: gross
c \ c C
L - L L L
gross exp gross net theory net exp

The theoretical facvor was obtained after applying the method first to
the uross wing, and then to the net wing in the presence of a representative
body. The factor was found to be a function of incidence, and varied from
1.145 at o = 0° to 1.10 at a = 10°.
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The calculated induced drag factor characteristics are shown in figure
8(b), and show a dependence on C_ in both free-air and in-_unnel conditions -
the form of the dependence is noE shown since only two points were calculated
for each condition. The standard correction for drag (ACD = CLan) added to

the calculated in-tunnel induced drag gave k values which fell short of the
free-air calculations; the difference in the increment in k -

i.e., (& - Y/

calc standard Akcalc

varied from i:% at CL = 1.98 to 18% at CL = 2.14.

Small Aspect Ratio Wing

For an extreme test case for the wake roll-up calculatio»n, a slender
rectangular wing of aspect ratio 0.25 was considered at 20° incidence. CcCal-
culations were performed using an 8 x 6 vortex array and two iterations for
two configurations:

(a) flat plate
(b) bent plate (20o deflecticn about the mid choxd)

Flow visualization studies and wind-tunnel force and moment measurements have
been carried out on these configurations by Wickens (ref. i2). The real flow
for these cases is dominated by the tip-edge vorticity, and surfac viscous
effects are rr atively small; a comparison betw en the potential flow calcula-
tior and 2xperiment is therefore practicable.

The side view and plan view of the calculated vortex trajectories from
the flat 2ud bent plates are presented in figures 9(a) and 9(b), respectively.
Included in the side views are the approximate positions of the vortex cores
from flow visualization (ref. 12) and the calculated centroid of vorticity
locus. 1In the flat plate case, these lines are in excellent agreement, and
in fact are inclined at approximately &/2 to the surface - i.e., the theoretical
angle for vanishingly small aspect ratio. In the bent plate case, two vortex
cores appear in the experiment, one from the leading-edge tip and the other
from the bend line tip - i.e., from the two peak vorticity regions. Wwhen cal-~
culating the centroid of vorticity locus for this case, the edge vortices were
divided into two groups, the leading-edge vortex starting the first group, and
the hinge-line vortex the second. The calculated centroid loci initially have
fair agreement with the observed vortex cores, but later tend to diverge, indi-
cating . slower rate of roll-up in the calculation. Another iteration might
have helped here, but *he proximity of the end of the segment-represented region
(the extent of which was limited by the number of segments available in the
program) must have influenced the shape near the downstream end.
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Although the principal objective here was to observe the behavior of the
vortex roll-up calculation under extreme conditions, it is interesting to see
(fig. 10) that the calculated lift, drag and pitching moment are in reasonable
agreement with the experimental measurements from reference 12; the flat plate
results are particularly good, while the indications are that the bent plate
calculations are not fully converged. 1In the latter case, the changes in the
characteristics from the initiil (streamwise) wake values to those from the
second iteration are particularly large (see table 1IV).

Tip-Edge Separation

Earlier applications (unpub.ished) of che method to wings at large inci-
dence (8 to 16°) gave poor correlation with experimental spanwise lcad distri-
butions and wake deformation. The differences were attributable to the presence,
in the experiment, of tip-edge vortices of the type calculated on the small
aspect ratio wing. These effects are demonstrated here for a rectangular wing
of aspect ratio 5.33 and at 12° incidence. The vortex .attice is shown in
figure 11, and includes tip-edge vortices. The calculated vortex trajectories
are shown after two iterations. Figure 12{a) shows the spanwise load distri-
bution with and without the tip-edge vortices present. The edge separation
gives a higher loading level towards the tip and a local bulge near the tip
when using a large number of spanwise intervals. The bulge, consistently cal-
culated using lattices with 15 and 25 spanwise intervals, is also apparent in
the experimental load distribution from refiurence 13. (The lower lift level in
the experiment is caused by an inboard separation resulting from the interaction
hetween the wing and wall boundary layer.) The calculated lift coefficient
inceeases from 0.85 to 0.93 with the tip-edge vortices.

The calculations indicate that the extra loading near the tip is carried
on the rear of the wing; the center of pressure locus, (fig. 12(b)), shows a
marked rearward movement near the t.p with the tip-edge vortices compared with
the usual forward movement calculated with the "linear" method. The locus is
consistently calculated using 8, 15 and 25 spanwise intervals.

These edge effects, which are present also at flap edges, etc., have mark-
ed implicati~ns for calculations at high lift, affecting boundary layer deve-
lopment, tip .urtex formation and trailing vortex sheet shape. However, furtier
evaluation of these effects (such as detailed surface pressure distributicas)
would require the previously mentioned problem of close interference between
discretized vortex sheets to be removed. For such applications, the method
would need extending to include a near-field technique such as that developed
in references 9 and 10,

CONCLUDING REMARKS

1he guadrilateral vort~x lattice method with the iterative wake relaxa-
tion procedure has been applied to a number of configurations with high circu-
lation. The iterative procedure shows rapid convergence, and the calculations
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are in good agreement with available experimental results. Tip-edge separa-
tion effects have been shown to be important aspects of high-lift calculations.
More detailed theoretical evaluation of these effects, e.g., in terms of sur-
face pressure distributions, would require extensions of the method to incor-
porate recently developed near-field techniques. Such an extension would also
allow other close interference effects to be studied.

f
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TABLE I. GEOMETRIC CHARACTERISTICS FOR THE
WING-FLAP-TAILPLANE CONFIGURATIONS

General:
INCIAENCE & ¢ ¢ v ¢ « o v o o o o = 4 o o s « e . . W10

Ground height (normalized by wing mear chord c) . ...0.5

Wing:
Aspect ratio ¢ . . v ¢ ¢ 4« v i e 4 e v e e s e e .. s 4
Sweep back . .+ + v ¢« - ¢ 4 4 4 et 4 4 e e+ e s s+ . . 45
Taper ratlo . . . ¢ & ¢ ¢« v o 4 e e 4 e e e e e e . o1
Flap ChOXA/C v = & & & & o e e e e e e e e e e e . .. 0.25
Flap span/semispan . . « « « « = o = o« o« o« o« « o« « « » 0>0.48
Flap deflection: normal to hinge line . . . . . . . . . 36
in vertical streamwise plane . . . . . 27
Vortex quadrilateral array: across chord . . . . . . . 3

across semispan . . . . . 7

Tailplane:
Aspect Fatio . o v ¢« v v 4 4 e 4 e s e 8 e e e e .. 2
Sweep back . . . v 4 i e i 4 4 s e e 4 e e s e s s . . 45
Taper ratio . « & & ¢ ¢ « o o o o & o v o o« o 4 o s .
Span/Jing SPAn « -« « « ¢+« 4 e e s s e s e s s 4 e

(Distance aft from wing)/; e e s e e e e e e e e e s

Angle to wing plane . . . « « ¢ « ¢ s« e e e e e .

1
0
2

(Distance above wing plane)/z S ¢ )
0
Vortex quadrilateral array: across chord . . . . . . . 3
4

across semispan . . . . .
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TABLE II. CALCULATED WING-FLAP-TAILPLANE LIFT AND INDUCED DRAG
CHARACTERISTICS IN FREE AIR AND IN GROUND EFFECT
(SECOND ITERATION)

Configuration Wing-Flap Tailplane
(based on wing area)
CL k CLT CD_

tp
Free-air together 0.9613 1.108 -0.0104 -0.00206
alone 0.9691 1.100 0.1279 0.00761
Ground- together 0.9388 0.581 0.1067 0.01119
Effect alone 0.9385 0.013 0.1441 0.00757
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TABLE III. BASIC CHARACTERISTICS FOR THE WING-FLAP
IN WIND-TUNNEL CONFIGURATION

Theoretical Model

Wing:
Aspect Ratio .« o ¢ ¢ ¢ 4o ¢ ¢ ¢t ¢ 4 o 4 0 e s s s e e ..

Taper Ratio e o o 8 e s = e e a o a4 o e o s s e s e o
Leading edge sweepbaCk . ¢ « ¢ ¢ ¢ ¢ o & o ¢ o o o o o

Trailing-edge flap:
Span/wing SPan . .« « . . e 4 e o s s o 4 e o o o o o
Chord/wing chord . . . ¢ « ¢ & o o« « o o o 2 o o o
Deflection (normal to hinge line) . . . . . . . . . .
Hinge-line sweepback . . + « ¢« ¢ ¢« &« + o &« & o o« « =«

Vortex quadrilateral array (chordwise x spanwise) . . . .
Wind Tunnel:

Wing span/tunnel width . . . . . . . . . . . ¢+ ¢ . ..

Wing airea/tunnel cross section area (Sw/ST) e e e e e e .

Tunnel 'length'/wing mean chord . . . . . . . . . « . . .

Vortex quadrilateral array (lengthwise x circumferential)

Experiment
Reynolds Number (based on wing mean chord) . . . . . . . . .

Gross Wing:
Basic details are the same as for theoretical model,
but in addition:

Leading edge flap:
Full net span
Chord/wing chord . « « ¢ o o o o o & = o o« « o o 2 o =
Deflection. « + v ¢ o o o o o o o o o o o o o o o o
Hinge-line sweepback c v e . « o e s s s s s s e s

Trailing-edge flap blowigg momentum coefficient
(critical value at @ = 87) . . v & « ¢ o o o ¢ o o o o

Body:
Width . & v v ¢ ¢ 4 v v o o e s e e s e s e e e s e e e s
Depth . . v ¢ ¢ ¢ ¢ ¢ o ¢ 6 o 4 o e o s 4 o v e s o o o« o
Length .« & v ¢ ¢ v o o o o o o o o o o = o s o o« o o s
Length of fore and aft fairings . . . . « . . . ¢« « .« . .
Wing position (above body center line). . . . . . . .<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>