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OPTIMIZATION AND DESIGN OF THREE-DIMENSIONAL AERODYNAMIC
CONFIGURATIONS OF ARBITRARY SHAPE

BY A VORTEX LATTICE METHOD

Winfried M. Feifel
The Boeing Company

SUMMARY

A new method based on vortex lattice theory has been devel-
oped which can be applied to the combined analysis, induced drag
optimization, and aerodynamic design of three-dimensional config-
urations of arbitrary shape. Geometric and aerodynamic con-
straints can be imposed on both the optimization and the design
process. The method is compared with several known analytical
solutions and is applied to several different design and optimi-
zation problems, including formation flight and wingtip fins for
the Boeing KC-135 tanker airplane. Good agreement has been
observed between the theoretical predictions and the wind tunnel
test results for the KC-135 modification.

INTRODUCTION

Falkner (ref. 1) has used vortex lattice networks as early a
1943 for the calculation of the aerodynamic forces on surfaces of

S

arbitrary shape. With the advent of electronic digital computers,

vortex lattice methods were the first powerful tools for three-
dimensional potential flow analysis. In the past decade, vortex
lattice computer codes were developed independently by several

investigators, including Rubbert (ref. 2) and the author of this

paper (ref. 3).

The vortex lattice approach is still favored for many engi-

neering applications for several reasons, such as the ease of the

problem description, the relatively sma'l computational effort
required and the "remarkable accuracy o. the solution", as noted
by James (ref. 4). One specific advantage of :he vortex lattice
idealization over the advanced panel methods is that the leading
edge suction force is inherently included in the solution. This
allows the computation of the configuration induced drag without
resorting to the Trefftz-plane theorem.
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Vortex lattice methods tend to slightly underpredict induced
drag, as observed by Rubbert (ref. 2) and Kalman (ref. 5). How-
ever, as long as the paneling scheme is kept uniform, the induced
drag computed by the vortex lattice method varies in a consistent
fashion from known exact solutions. Therefore, it appears to be
justifiable to utilize the vortex lattice near-field induced drag
predictions for the optimization of the aerodynamic load distri-
bution.

This paper presents a unified approach for the combined
analysis, optimization, and design of three-dimensional aerody-
namic configurations based on the vortex lattice technique. The
new method will satisfy aerodynamic and geometric constraints
while redesigning the contour of the configuration to yield mini-
mum induced drag.

The new combined analysis-optimization-design method takes
advantage of the vortex lattice near-field induced drag solution
for the optimization process. When linearized boundary condi-
tions with respect to the first guess of the configuration geo-
metry are introduced, the new method can predict with good
accuracy the changes in twist and camber required to achieve the
load distribution for minimum induced drag and also satisfy addi-
tional design constraints.

PROBLEM FORMULATION

A good example of a complex design problem is the addition
of wingtip fins to an existing airplane. For a given wing fin
height and planform, the task is to determine the fin twist and
camber, and the angle of attack of both the fin and the wing that
will result in minimal induced drag for the airplane at a pre-
scribed lift coefficient. To accomplish this, a mixed analysis/
design problem must be solved. The problem can be stated as
follows: Determine the twist and/or camber distribution required
for portions or all of a threc-dimensional system of wings with
arbitrary planforms while a number of prescribed design require-
ments are satisfied. The design requirements could be any mean-
ingful combination of the cc.dition that the induced drag of the
system (or of part of the system) be a minimum while at the same
time a number of constraint conditions are imposed. Typical con-
straints would be, for example, that a given amount of lift be
generated at a given pitching or rolling moment, or that the
boundary conditions be satisfied on portions of the initial con-
figuration.
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Translated into the language of mathematics, the task des-
crihed avove amounts to finding the extremum of a function sub-
ject to a set of imposed constraints. Such a problem can be
solved by Lagrange's method of multipliers.

SOLUTION

The configuration to be analyzed or designed is subdivided
irto a network of n panels spaced uniformly in spanwise and
chordwise direction, as outlined in figure 1. Based »n the
theorem of Pistolesi (ref. 6) an unknown lifting vortex singular-
ity v is located along the l/4-chord line of each panel. Hel-
moltz' law is satisfied by shedding a p:ir of trailing vortices
along the panel edges downstream to infinity. It is a basic
assumption for this horseshoe vortex model that these trailing
vortices are aligned with the locnl flow direction; therefore,
caly the forces acting on the lifting vortex elements need to be
computed. There are two points of special significance located
on each panel: the lifting vortex midpoint aid a boundary point
at 3/4-chord.

Boundary Conditions

In the configuration analysis mcde, the strength of the
unknown singularities y is determin<<¢ such that the flow tangency
condition is satisfied at all boundary points. 1In the configura-
tion design mode, the boundary condi-ions need not necessarily
be satisfied on the initial geometry, but there the angle formed
between the panel surface and the velocity vector at the panel
3/4-chord poi-t represents the unknown values Aa, AR of the
changes in panel orientation, which are necessary to yield the
contour of the updated configuration.

The boundary condition for the panel j can be written in the
generalized form

n
>
C(Yyr Yy eo¥y- bagr 8B5) = i2=:1 vy £33 = Bogag-bBsbiR -G =0 (1)

i J J )
where
f'i = boundary point influence coefficient indicating the
] velocity induced by a unit strength singularity i
parallel to the surface normal vector Nj on panel j.
Aaj,AB. = vnknown pitch and yaw angles that may be required to

reorient the panel j in order to satisfy the flow tan-
gency at its boundary point.
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a.,b. = panel reorientation 1nfluence coefficients that indi-
J cate the change in ﬁj-um when the panel j is pitched /
or yawed by Aa=AR=1°7

Uco = free stream velocity vector.

The panel reorientation influence coefficients are linear- N
ized with respect to the initial panel location. Therefore : .
equation (1) can be considered accurate for orientation changes
of approximately up to Aaj=ABj=20°. If the boundary condition
has to be satisfied at the original position of the panel (analy-
sis mode) then Aaj and ABj are zero.

Computation of Forces

The conditions at the 1/4-chord point (vortex m1dp01nt)
govern the forces acting on the panel. The velocity veator Vs
at the 1/4-chord point is obtained as the sum of the free stream
velocity vector Ue» and the velocity induced according to Biot-
Savert's law by all unknown vortex singularities in the flow
field:

n
> > >
vj =u_ + z; wji Y (2)

14

where @-i denotes the velocity induced at the midpoint of panel j
by the unit strength horseshoe vortex of panel i. The vel-city
at the midpoint is assumed to repr¢sent the average value .ver
the paunel and 1s used to determine the force F- acting on the
panel by applying Kutta-Joukowsky's law for a %luid of unit
density:

> -> ->

where $: describes the length and orientation of the lifting
vortex element.

The force vectox Fi comprises the panel drag compunent Ds;
and the lift vector Ly, which by definition is oriented normai to
the free stream vector u,

The induced drag of a whole configuration with n panels can

be exprer sed as a quadratic function of all the panel vortex
strengths y in the ftnrm of the double sum:

D(yy*"*vy) = El vy B 4 (4)
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The induced drag influence coefficients d4j describe the
drag force experienced by the panel j due to tge panel i when
their horseshoe vortices have unit strength. The drag influence
coefficients contain only geometrical terms. 1In order to get a
nontrivial minimum induced drag solution, at least one constraint
must be introduced in addition to equation (4).

Constraint Conditions

There are a large number of different constraint conditions
which can be imposed on the minimum induced drag problem. 1In the
present method, any meaningful combination of the following con-
straints may be specified:

1) Boundary conditions: For each boundary condition to be satis-
fied, a new equation (1) is introduced.

2) Relationships between unknown singularities: The strength of
certain horseshoe vortices or a relationship between groups of
horseshoe vortices is introduced via an equation of the type:

n
Clygr Ypuurvy) = 3 93 Y3 ¥ 954, = 0 (3)
i=1

where the constants (g) are weighting functions describing the
particular constraint condition.

3) Relationships between the panel reorientation parameters:

The movements of panels or of groups of panels are controlled by
the following constraint equations that establish relationships
between the unknowns Aa and/or AR:

n n

Cllay---Bop, 88y--*8B ) = 3 gjla;+ 3o gy .q BB+, .0 = 0 (6)
i=1 i=1

4) Force or moment relationships between groups of panels: Forces

and moments due to individual panels or groups of panels are pre-
scribed by equations of the following type:

ii

n
C(Yl""Yn) = i§1 g.h Yi * 9p41 (7)

where the influence coefficient hj indicates the force or the
moment of ‘he panel i for yj;=1.

75

AN e 05 1 i i ol ikt A I ot ST o A T ]

»




The influence coefficients hj are, in principle, described
by equation (3). Equation (2) shows that for the computation of
hj, all vortex strengths y need to be known. Equation (7) there-
fore is nonlinear. However, rather than solving the nonlinear
problem directly, an iterative scheme is employed where the first
solution of the vorticity distribution is found for hj 0 =hi(ﬁw)°

Subsequent iterations use updated coefficients, hj (k) = hj (U,

Yl(k—l),...Yn(k'l)) which are based on the vortex distribution of
the previous solution. This process converges very rapidly, and
in many cases the firs* solution is already sufficiently accurate.

Drag Minimizc tion Under Constraint Conditions

The induced drag function (4) and the constraints C given by
the expressions (1) and (5) through (7) may be combined in a new
quadratic function:

m

G(Y]_"Yn,Aal° °Aan,A81"ABn:)\l'"Am)=D(Y1"Yn)"‘_Z:1 Al Cl (8)
i=

where A are the Lagrangian multipliers for m constraints imposed.
A necessary requirement for the induced drag to be a minimum is
that all the partial derivatives of equation (8) be zero. Differ-
entiating the function G with respect to all its variables y)
through )\, yields a system of simultaneous linear equations for
the unknowns vy, Aa, AB, A. Solution of this system of equations
completes the configuration analysis-optimization-design process,
unless an iteration is required to update the influence coeffi-
cients h of equation (7) or if the redesigned geometry deviates
too much from the starting configuration.

VALIDATION OF THE TECHNIQUE

Tne vortex lattice analysis-optimization-design method has
been programmed in FORTRAN IV on the CDC6600 computer. A series
of data cases have been run to check the method against known
analytical solutions.

Planar Wings

R. T. Jones (ref. 7) has given an analytical solution for the
load distribution about wings of varying spans having the same
prescribed 1ift and wing root bending moment. Some of his cases
have been analysed by the present vortex lattice method using a
single lifting line subdivided into 40 equal panels. The wingtip
panel and its traili;a vortex were inset by 1/4-panel span as
proposed by Rubbert /ref. 2). The agreement between the vortex
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lattice results and Jones' exact solution is excellent for both the :
shape and the spanwise load distribution (see figure 2) and the in- j
duced drag ratios shown -n figure 3. ‘

Nonplanar Configurations

Lundry (ref. 8) gives the induced drag factor, e, and the
optimum spanwise circulation distribution obtained by a Trefftz-
plane analysis of wings with a wingtip mounted end plate. Figure
4 shows the optimum circulation distribution on a wing with a 20%
end plate compared to two vortex lattice results obtained with a
single lifting line but using a different number of spanwise
panels. The agreement with the exact solution is excellent,
except in the corner between- the wing and the tip fin. There the
vortex lattice solution obtained with 25 panels per half-wing
deviates slightly from the exact solution.

Some understanding of the source of the slight differences
in span loading can be gained by comparing the downwash and side-
wash computed at the midpoints of the lifting vortex elements
with the known exact distribution. The Trefftz-plane analysis
yields constant downwash along the span of the wing and zero
sidewash along the span of the tip fin for the minimum induced
drag load distribution. The present vortex lattice solution
yields essentially the same results, but there are noticeable
discrepancies in a small region of the wing-fin intersection, as
shown in figure 5. This indicates that under certain conditions,
the point selected for induced drag computation should not always
be located exactly in the middle of each panel lifting vortex
elemant. This error is, however, confired to a relatively small
portion of the configuration and some of the downwash deviations
are of oscillatory nature and therefore self-cancelling. The in-
duced drag efficiency factors indicated by the vortex lattice
method and by the exact solution are thus practically identical
for this particular configuration, as shown in figure 6.

APPLICATION OF THE PRESENT VORTEX LATTICE DESIGN METHOD

The present method has been applied to a variety of problems,
such as the design of wingtip fins, the modification of wings of
a hydrofoil boat, and the optimum positioning of the leading-edge
devices of the YC-14 military transport. The following two
examples demonstrate some of the capabilities of the combined
analysis-optimization-design vortex lattice method.
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Formation Flight

Formation flying techniques have been proposed repeatedly as
a means of reducing airplane drag. To get an estimate of the
possible savings in induced drag, a group of five airplanes flying
at the same altitude in an arrow formation illustrated in figure 7
were analyzed. The ideal (elliptic) load distribution, which
yields minimum drag for the whole formation, is well known from
the Trefftz-plane analysis. This optimum solution is, however,
not practical since none of the airplanes off the centerline
would be balanced in roll. In addition, a completely impractical
wing twist distribution would be required to achieve such a load
distribution. The induced drag savings indicated by this simple
theory are, therefore, far too optimistic.

A more realistic picture is obtained by introducing the
constraint that each airplane of the formation be trimmed in
pitch and roll with respect to its own center of gravity. For
this analysis, the airplanes are assumed to have swept:. constant
cho-d wings without wing twist. The left-hand and right-hand
ailzrons of each airplane are interconnected such that they de-
flect by equal but opposite angles. The horizontal tail is a
simple flat plate. The unknown geometry variables are the angular
deflections of every surface in the formation; ie, wing and hori-
zontal tail incidences and aileron deflection angles. A 1lift
coefficient of C;, = 0.5 is prescribed for the formation.

When only the lift for the whole airplane formation is pre-
scribed, each of the airplanes carries a different amount of load,
as seen in the top of figure 8. This distribution of the load
between airplanes creates the minimum amount of induced drag for
the whole formation flying at the conditions stated.

A more practical result is obtained when the constraint is
introduced that cach airplane in the formation flies at the same
1lift coefficient. Then the problem is fully defined, and only an
analysis-design scheme has to be implemented. The load distribu-
tion and the induced drag values for the airplanes operating
under this condition are shown in the center of figure 8.

As a third variant of the formation flight problem, the in-
duced drag of only the No. 2 and No. 4 airplane has been mini-
mized by allowing a redistribution of the formation weight among
the other airplanes. The results are shown at the bottom of
figure 8. The 1lift of the No. 2 and No. 4 airplanes is close to
zero for minimum induced drag; the small residual 1lift stems from
the condition that the planes are trimmed. This solution is only
of academic interest, but it demonstrates the capability of the
present method to minimize the induced drag of subsets of a con-
figuration.
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The analysis of this five-airplane formation using the vor-
tex lattice method indicates that drag savings can be significant
though much smaller than predicted by the idealizing Trefftz-
plane assumptions. In addition, it is seen that the induced drag
is unevenly distributed among the airplanes in the formation.
Therefore, different formation arrangements should be used to
obtain a more uniform drag level for all airplanes involved.

Wingtip Fins for the KC-135 Airplane

The present vortex lattice method has been used extensively
by Ishimitsu, et al., (ref. 9) to evaluate and design tip fins
for the KC-135 tanker airplane,

Figure 9 shows a typical vortex lattice representation of
the KC-135 wing with the tip fins. Since the prime area of
interest of this study was the region near the wingtip, the body
of the airplane was not modeled in potential flow. The small
loss in accuracy was believed to be outweighed by the savings in
computer time. After a series of trades varying tip fin height
and cant angle, the final planform was selected for the tip fin.
For this given fin planform, thc¢ fin incidence angle and the pro-
file camber shape were designed to yield minimum induced drag,
while at the same time the boundary conditions were satisfied on
the remainder of the airplane. As a first guess, the wing fin
was input as a flat plate. The chordwise vorticity distribution
on the fin was approximated by 10 lifting vortex elements, while
6 panels were used in the spanwise direction. Since the induced
drag is independent of the shape of the chordwise load distribu-
tion (Munck's stagger theorem), the induced drag minimization
problem is not fully defined unless a weighting fuaction is intro-
duced that prescribes how the vorticity is distributed among the
10 chordwise lifting elements. The vortex lattice progrem solves
for the optimum total amount of lift carried by each chordwise
column and for the orientation of tne panels necessary to produce
the prescribed chordwise load variation. The airfoil section
camber line is obtained by integrating the panel slope changes
calculated by the vortex lattice program. Thin airfoil theory
has been used to superimpose a suitable thickness distribution
and the fin camber lines. The results of this process are shown
in figure 10.

The final tip fin configuration was tested in a wind tunnel.
Figure 11 shows good agreement between the measured changes in a
airplane drag and the predictions of the vortex lattice analysis.
The experimental and theoretical loads on the wing and the tip
fin are compared in figure 12. Considering that the incompress-
ible vortex lattice analysis did not include the effects of the
body and wing thickness, the agreement with the experiment is
surprisingly good.
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CONCLUSION /

The vortex lattice method has been successfully applied to
the design and optimization of three-dimensional configurations.
The nonlinear analysis-design-optimization problem in which both
the geometry or portions thereof and the optimum load distribu-
tion are unknown can be solved in a straightforward manner. The *
validity of the method has been demonstrated by application to
several problems, previously not directly amenable to theoretical
analysis. The new method has no serious dra..oacks, but it must
be applied with caution in regions of sudden geometric changes,
such as intersecting wing surfaces, in which case additional work
is required to determine the best paneling scheme and optimum
location of the control points. Even though more advanced panel
methods have been developed, the vortex lattice approach is still
preferred in many applications for several reasons. The theory
is simple and can be translated into fast numerical schemes.

The vortex lattice approach, unlike many other methods, accounts
for the leading edge suction force and therefore, yields an
accurate near-field drag solution. These characteristics make
the vor*~ex lattice scheme a powerful tool in the hands of an ex-
perienc :d aerodynamicist for the analysis, modification, and
optimization of three-dimensional configurations.
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APPENDIX
SYMBOLS
A Wing area
. AR Wing aspect ratio

: b Wing span

‘ C Local chord length
c Mean chord length
Cp Total airplane drag
CDi Airplane induced drag
CDi 11 Induced drag of elliptically loaded wing

e

Cy, Wing lift coefficient
Cy Local 1ift coefficient

* e Induced drag efficiency factor
h Height of winglet
M, Free stream Mach number
n Number of panels
8 Wing kalf span
Sell Half span of elliptic wing
W Downwash or sidewash at vortex midpoint
X,Y,2 Cartesian coordinates
Y Local vortex strength
n Nondimensional spanwise station

—
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