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NU)IERICU AIRFOIL OPTINIZATION USING A REDUCED NUMBER 

OF DESICN COORDINATES 

Carret N. Vanderplaats and Rayaond M. Hicks 

Ames Research Center 

A method is presented f o r  numerical a i r f o i l  optimization whereby a 
reduced number of design coordinates a r e  used t o  def ine the  a i r f o i l  shape. 
The approach is t o  ~ e f i n e  t h e  a i r f o i l  as a linear combination of shapes. 
These bas ic  shapes may be ana ly t i ca l ly  o r  numerically defined, allowing the  
designer t o  use h i s  ins ight  t o  propose candidate designs. The design problem 
becomes one of determining the  pa r t i c ipa t ion  of each such funct ion i n  def ining 
the optimum a i r f o i l .  Examples are presented f o r  tvo-dimensional a i r f o i l  
design and a r e  compared with previous r e s u l t s  based on a polynomial repre- 
sen ta t ion  of the a i r f o i l  shape. Four e x i s t i n g  NACA a i r f o i l s  a r e  used a s  bas ic  
shapes. Solutions equivalent t o  previous r e s u l t s  are achieved with a f ac to r  
of more than 3 improvement i n  e f f ic iency ,  while superior  designs a r e  demon- 
s t r a t e d  with an ef f ic iency  g rea t e r  than 2 over previous methods. With t h i s  
shapc def in i t ion ,  the optimization process is shown t o  exp lo i t  the  simplifying 
assumptions i n  the  inv i sc id  aerodynamic ana lys is  used here,  thus demonstrating 
the need t o  use more advanced aercdynamics f o r  a i r f o i l  optircization. 

The design of a i r f o i l s  using numerical o p t i d z a t i o n  techniques has been 
the subject  of considerable recent  i n t e r e s t .  The basic  design problem 
addressed is the determination of the  optimum a i r f o i l  shape which w i l l  
minimize o r  maximize a prescribed design objec t ive  subject  t o  cons t ra in ts  
which the design must s a t i s f y .  For example, the  design objec t ive  may be t o  
mirtinize the wav* drag on a high-speed a i r f o i l .  The design cons t ra in ts  - 
nay L r  the requirement t h a t  a t  a prescribed - angle of a t t ack ,  a ,  the  l i f t  
coefficient must be g rea t e r  than CL and the  pi tching moment coe f f i c i en t  
must not exceed En i n  magnitude. Additionally,  physical cons t r a in t s  such a s  - 
a minimum allowable thickness-to-chord r a t i o  of t l c  may be imposed. 

The design approach has been t o  couple a two-dimensional i nv i sc id  aero- 
dynamics program ( r e f .  1 )  with an ex i s t i ng  optimization program ( r e f .  2) .  
This design procedure is described i n  references 3 and 4 and appl icat ions t o  
a i r f o i l  design a r e  described i n  references 5 through 7 .  



Various techniques may be used t o  def ine  t he  a i r f o i l  shape. The aerody- 
namic ana lys i s  program usual ly  requi res  a set of upper and lower sur face  
y-coordinates at a spec i f ied  number o f  chcrdwise loca t ions  along the  a i r f o i l ,  
say at 50 points.  Idea l ly ,  each of these y-coordinates would be t r ea t ed  as an 
independent design va r i ab l e  t o  ensure t he  widest v a r i e t y  of  a i r f o i l  shapes. 
Then the  design bas i s  would be t he  same as the  set of ana lys i s  coordinates.  
However, t h i s  is too l a rge  a number of  design var iab les  f o r  t h e  opt imizat ion 
prograa t o  handle e f f i c i e n t l y .  Therefore, i t  is des i rab le  t o  use a reduced 
set of design var iab les  which w i l l  adequately def ine  t he  a i r f o i l  shape. A 
mcre common approach has been t o  descr ibe t h e  upper and lower sur faces  of t h e  
a i r f o i l  with polynomials of t h e  form 

One polynomial may be used t o  descr ibe an e n t i r e  surface,  o r  severa l  poly- 
nomials may be used t o  descr ibe t h e  sur face  i n  a piecewise fashion. The 
8esign var iab les  considered by the  optimization program are t h e  coe f f i c i en t s  
of t h e  polynomials. I f  piecewise polynomials a r e  used, t h e  coordinates  and 
s lopes along the sur face  a t  the  matchpoint between polynomials may a l s o  be 
design var iab les  and some of t h e  polynomial coe f f i c i en t s  are el iminated i n  
favor of these physical design var iables .  

Two problems a r i s e  when descr ibing t h e  a i r f o i l  sur face  with polynomials. 
F i r s t ,  the  number of d i f f e r e n t  geometric shapes t h a t  can be represented is 
l imi ted  and may not include t h e  shape tha t  corresponds t o  t he  t r u e  optimum 
a i r f o i l .  The second problem is one of  numerical conditioning a r i s i n g  from 
the  f a c t  t h a t  a sur face  described by a polynomial may be q u i t e  "wavy." That 
is, the  optimization may produce an a i r f o i l  f o r  which the  curvature  of the  
surface changes s ign  a t  severa l  locat ions.  This r e s u l t s  from the  f a c t  t h a t  
the aerodynamic ana lys i s  is not s ens i t i ve  t o  minor waviness i n  t he  a i r f o i l  
and tkerefore ,  the optimization program does not see any design penalty f o r  
introducing waviness. 

A procedure is presented here  f o r  a i r f o i l  shape d e f i n i t i o n  which allows 
ior t he  considerat ion of a wide range of a i r f o i l  geometries. The r e s t r i c t i o n  
t o  shapes which can be described by polynomials is eliminated. While it cannot 
be shown t h a t  sur faces  descr ibe '  using the  techniques presented here  w i l l  be 
smooth, experience has shown tha t  the problen of sur face  "waviness" is g r e a t l y  
reduced. Also, i t  cannot be guaranteed t h a t  t he  shapes described by t h i s  
method w i l l  def ine the  t rue  optimum airfoi.1.  However, t he  gene ra l i t y  of the  
method and the  f a c t  t h a t  t he  designer can use h i s  judgment znd experience 
i n  choosing the a i r f o i l  shape parameters produces high q u a l i t y  r e s u l t s .  

AIRFOIL SHAPE DEFINITION 

F i r s t ,  consider an a i r f o i l  sur face  defined by the  polynomial given i n  
equation (I), where one polynomial may be used t o  descr ibe t he  upper sur face  
of t he  a i r f o i l  and a second polynomial t o  descr ibe the lower surface.  The 



coe f f i c i en t s  of t h e  polynomial, a l ,  a2 ..., a ~ ,  a r e  t r ea t ed  as design 
var iab les  and the  object ive of the  design process is t o  determine the  combina- 
t i o n  of these var iab les  which vi l l  provide a n  optimum a i r f o i l .  Most aerody- 
namic ana lys is  codes requi re  a s e t  of y-coordinates along the upper and lower 
sur face  of t he  a i r f o i l ,  a t  J chordwise s t a t i ons .  Therefore, during the  
optimization process, f o r  each proposed set of design var iab les  t h e  polynomials 
a r e  evaluated at these  J poin ts  f o r  each surface.  The r e s u l t s  a r e  s tored  
i n  vector  i ,  f o r  use i n  aerodynamic analysis .  

An equivalent surface de f in i t i on  may be formulated by recognizing t h a t  
t he  polynomial defined by equation (1) is simply the  a lgebra ic  sum of curves 
defined by the  terms of t he  polynomial. Curves defined by these terms a r e  
shown i n  f igure  1. Each curve evaluated a t  J chordwise loca t ions  defines  
a d i s t i n c t  y. For example, the  curve, w i l l  be defined a s  yl. Curve 
x/c def ines  y2 and curve (x/c)N-l def ines  FN. Therefore, f o r  any s e t  
of design var iab les ,  a l ,  a2 ..., aN the  vector  of y-coordinates def ining 
the  a i r f o i l  shape is defined by 

The individual  vectors  on the  r i g h t  hand s i d e  of equation (2) a r e  re fer red  to  
as bas i s  vectors.  

Note t h a t  the fundamental d i s t i nc t ion  between equations (1) and (2) 
is t h a t  i n  equation (1) the  y-coordinates a r e  defined ana ly t i ca l ly ,  whereas 
i n  equation (2) the  y-coordinates a r e  defined numerically. Therefore, t he  
bas i s  vectors  a r e  not r e s t r i c t e d  t o  vectors  defined by ana ly t i ca l  funct ions,  
but can be chosen t o  def ine any s e t  of shapes which may be expected t o  def ine 
a r e a l i s t i c  a i r f o i l .  One log ica l  choice of shapes is  a s e t  of ex i s t i ng  
a i r f o i l s  and t h i s  approach is used i n  the examples presented i n  t h i s  repor t .  

- -  - 
The vectors  y, y l ,  y2 . . . yN may contain coordinates of both the  upper 

and lower surface of t he  a i r f o i l  so t h a t ,  i n  general 

where defines  the coordinates of the  upper surface and iLS defines 
t he  coordinates of the  lower surface. 

Equation (2) may be wr i t ten  i n  matrix form as:  

where 



The design process now e n t a i l s  determining the  values  of  the  pa r t i c ipa t ion  
coe f f i c i en t s ,  a%, i = 1, 2,  ..., N ,  which def ine t he  optimum a i r f o i l .  

Note t ha t ,  while t h e  a i r f o i l  shape is defined a s  a l i n e a r  combination of 
component shapes, t h e  aerodynamics may be q u i t e  nonlinear i n  these  var iab les .  
Therefore, the design process is a general nonlinear opt imizat ion problem. 

PARTIAL AIRFOIL MODIFICATION 

It is sometimes necessary t o  modify only a port ion of an e x i s t i n g  a i r f o i l .  
For example, it  may be des i r ab l e  t o  r e t r o f i t  an ex i s t i ng  a i r c r a f t  with a 
modified leadink edge t o  improve low-speed cha rac t e r i s t i c s .  This is e a s i l y  
accomplished using bas i s  vectors  a s  described by equation (4).  The f i r s t  
ba s i s  vector  yl  is taken a s  the  vector  of y-coordinates def ining the  ex i s t i ng  
a i r f o i l .  The pa r t i c ipa t ion  coe f f i c i en t  a l  is set t o  uni ty  and is no t  changed 
during the design process. That is, a l  is not a design var iab le .  The 
remaining bas i s  vec tors  y2 through yN w i l l  have nonzero e n t r i e s  over t h e  
port ion of the a i r f o i l  which is  t o  be modified and zero e n t r i e s  f o r  t he  port ion 
of t he  a i r f o i l  which is  not  modified. The pa r t i c ipa t ion  coe f f i c i en t s ,  a2 
through a~ a r e  then t h e  design var iab les ,  which, when mul t ip l ied  by t h e i r  
corresponding y-vectors, def ine the modified a i r f o i l  shape. A s  a f u r t h e r  
example, i f  i t  is desired t o  modify the  upper sur face  of an e x i s t i n g  a i r f o i l  
while leaving the  lower sur face  unchanged, vec tors  y2 through y~ w i l l  
contain nonzero e n t r i e s  corresponding t o  upper sur face  coordinates  and zero 
e n t r i e s  corresponding t o  lower surface coordinates.  The i n i t i a l  b a s i s  vector,  
y l ,  w i l l  contain e n t r i e s  corresponding t o  the  lower sur face  coordinates  of 
the ac tua l  a i r f o i l .  Ent r ies  i n  yl corresponding t o  t h e  upper sur face  may o r  
may not  be zero. I f  t he se  e n t r i e s  correspond t o  the  a c t u a l  a i r f o i l ,  the  
modifications defined by the remaining b a s i s  vectors  w i l l  simply be added t o  
(subtracted i f  a i  is negative) the  ex i s t i ng  a i r f o i l .  I f  the  upper sur face  
coordinates of vector  yl a r e  spec i f ied  a s  0, the  remaining vec tors  w i l l  
a c tua l ly  descr ibe t he  e n t i r e  upper sur face  of t he  a i r f o i l .  It is usual lv  
des i rab le  t ha t  vector  

Y1 
define t he  a c t u a l  a i r f o i l  t o  be modified and t h a t  

the  pa r t i c ipa t ion  coefficients a2  through aN be s e t  i n i t i a l l y  a t  zero. 
Then, the  f i r s t  a i r f o i l  analyzed w i l l  be t he  ex i s t i ng  a i r f o i l  and, a s  the  
pa r t i c ipa t ion  coe f f i c i en t s  a2  through aN a r e  changed during the  optimiza- 
t i o n  process,  t h e  design improvements can be r ead i ly  observed. 

The [ Y ]  matrix i n  equation (4)  is presented schematically fo r  upper 
surface modification as :  

surf  ace 
coordinates 

X X X .  . X 

[Y] = - I x 6 6 . . . 6 lower 
x 0 0 - -  . . . 0 I- surface 



I n  t h i s  way, by the  appropriate  choice of zero and nonzero e n t r i e s  i n  the  
bas i s  vectors,  one o r  more segments of an ex i s t i ng  a i r f o i l  can be r ead i ly  
modified. However, applying t h i s  approach d i r e c t l y  does not guarantee t h a t  
t he  coordinates,  s lopes,  o r  curvatures of t he  modified surface w i l l  match 
the  ex i s t i ng  surface a t  the  point where the two join. These boundary condi- 
t i ons  could be imposed a s  cons t ra in ts  i n  the optimization problem; however, 
because these conditions represent  simple geometric cons t ra in ts  on the  a i r f o i l  
geometry, they can be imposed d i r ec t ly .  The procedure f o r  doing t h i s  is 
described i n  the following sect ion.  

BOUNDARY CONDITIONS 

Probably the  most common boundary condition is the requirement t h a t  the  
a i r f o i l  thickness a t  the t r a i l i n g  edge be zero o r  some spec i f ied  f i n i t e  
thickness. Other common boundary conditions include cont inui ty of coordinates,  
s lopes and curvatures a t  the  match point between the modified and ex i s t i ng  
a i r f o i l  sec t ion ,  and the  requirement t h a t  t h e  a i r f o i l  thickness has a 
specif ied value a t  some chordwise locat ion.  

For example, assume t h a t  t he  a i r f o i l  t hkkness ,  tTE, a t  t he  t r a i l i n g  edge 
is required t o  have a specif ied value tfE and t h a t  one o r  more of t h e  bas is  
vectors  has a defined f i n i t e  t r a i l i n g  edge thickness.  Let tTE be the 

i 
t r a i l i n g  edge thickness defined by the  i t h  b a s i s  vector.  One of-the b a s i s  
vectors  can now be eliminated i n  favor of t h i s  boundary condition. Assume 
tha t  bas i s  vector  yN defines an a i r f o i l  of f i n i t e  t r a i l i n g  edge thickness 
and t h a t  t h i s  bas i s  vector  w i l l  be eliminated i n  favor of the  boundary condi- 
t ion.  Because the design a i r f o i l  must have a t r a i l i n g  edge thickness 
i t  follows tha t  

To,,, 
N- 1 

to = C aitTEi + aNtTEN 
TE jrl  

(7) 

The design var iab les ,  a i ,  i = 1, 2 . . . N-1, a r e  specif ied a t  each s tage  of 
the optimization process. Therefore aN is the  only unknown i n  equation ( 7 ) .  
This equation may be rewr i t ten  sol-ring fo r  "N 

Note tha t  f o r  aN to  be defined, t~~ must have a nonzero value; t h a t  i s ,  
N the a i r f o i l  defined by the nth bas i s  vector  must have a f i n i t e  t r a i l i n g  edge 

thickness.  Note a l so  tha t  t h i s  method of applying boundary conditions appl ies  
t o  equal i ty  conditions only. If  i t  is desired t o  l e t  the t r c i l i n g  edge 
thickness change during the optimization process so tha t  the only requirement 
is t h a t  t he  thickness be grea te r  than zero and l e s s  than some f i n i t e  value, 



t h i s  would be handled as an inequal i ty  cons t ra in t  by the  optimization 
program and would not be imposed d i r e c t l y  a s  a boundary condition. 

Other boundary conditions,  such as thickness a t  some chordwise locat ion,  
surface slopes,  o r  curvatures,  can be imposed i n  a s imi l a r  manner. For t he  
general case, assume t h a t  there a r e  L geometric equa l i t y  cons t r a in t s  t o  be 
imposed on the a i r f o i l .  Then, L bas i s  vectors  w i l l  be eliminated i n  favor 
of these boundary conditions (L < N). Bscause the  coe f f i c i en t s  of these bas is  
vectors  a r e  determined such t h a t  the  boundary conditions a r e  s a t i s f i e d  
exact ly,  these coe f f i c i en t s  a r e  not design var iab les  i n  the optimization 
process. 

For the %th  geometric boundary condit ior .  the associated parameter w i l l  
be s tored  i n  25 + & l oca t ion  of each of the basib vec tors  f o r  i = 1, N. The - 
required bocndary value w i l l  be s tored  i n  the  25 + 1 loca t ion  of vector  y 
and w i l l  be denoted by the superscr ip t  0. Assume t h a t  the  l a s t  L bas i s  
vectors  w i l l  be used t o  s a t i s f y  the  boundary conditions.  In  matrix form, t h i s  
may be wr i t ten  a s  

Yll and Y12 contain the  o r i g i n a l  bas i s  vectors.  Y21 and Y22 contain the  
geometric values corresponding t o  these basis  vectors  fo r  the  boundary condi- 
t ions  which must be imposed. y o  contains the boundary values.  x1 and A2 
contain the pa r t i c ipa t ion  coe f f i c i en t s  f o r  the bas i s  vectors .  Because A, 
contains the design var iab les  defined by the optimization program, the  value 
of z1 is known. It is  now necessary t o  determine A2 so t h a t  the  boundary 
conditions are  precisely s a t i s f i e d .  This is e a s i l y  accomplished by solving 
the l a s t  L equations defined by the matrix equation (9).  These equations 
a r e  wr-itten a s  

- 
Solving fo r  A2 yie lds  

Final ly ,  subs t i t u t ing  the values f o r  x2 defined by equation (11) i n t o  the  
f i r s t  25 equations defined by matrix equation (9) y i e lds  

Equation (12)  def ines  an a i r f o i l  which s a t i s f i e s  the boundary conditions 
precisely.  Note t h a t  the  only requirement for  s a t i s f a c t i o n  of the boundary 



condi t ions  is t h a t  t h e  submatrix Y2 be nonsingular.  Gsual ly ,  only  a few 
boundary cond i t ions  are imposed on tie a i r f o i l  and t h e  b a s i s  v e c t o r s  t o  be 
e l iminated i n  terms of t h e s e  boundary cond i t ions  can be chosen by inspec t ion  
s o  t h a t  Y22 w i l l  s a t i s f y  t h i s  requirement. 

DESIGN EXAMPLES 

Examples a r e  presented h e r e  t o  i d e n t i f y  t h e  g a n e r a l i t y  and e f f i c i e n c y  of 
t h e  reduced b a s i s  concept a s  app l ied  t o  numerical  a i r f o i l  op t imiza t ion .  Four 
e x i s t i n g  a i r f o i l s  are used as t h e  design b a s i s .  These a r e  t h e  NACA 2412, 
NACA 641-412, NACA 6S2-415, and t h e  NACA 642A215 a i r f o i l s .  The coordinates  
are def ined a t  50 p o i n t s  along t h e  upper and lower su r faces .  The coord ina tes  
a r e  approximate, obta ined from curve f i t s  of t h e  e x i s t i n g  a i r f o i l  d a t a  
( r e f s .  8 and 9) and no attempt was made t o  p r e c i s e l y  match t h e  d a t a  given 
i n  t h e  re fe rences .  Two a d d i t i o n a l  b a s i s  v e c t o r s  were used t o  impose t h e  
boundary cond i t ions  a t  t h e  t r a i l i n g  edge o f  t h e  a i r f o i l .  These a r e  
yus = X / C ,  yLs = 0 and yus = 0,  yLs= -(x/c). The shapes de f ined  by t h e s e  
s i x  b a s i s  v e c t o r s  a t e  shown i n  f i g u r e  2. I n  each of t h e  fol lowing examples, 
except case  4, t h e  NACA 2412 a i r f o i l  was chosen a s  t h e  i n i t i a l  des ign with an 
assoc ia ted  p a r t i c i p a t i o n  c o e f f i c i e n t  o f  ~ n i t y .  I n  case  4, t h e  optimum 
a i r f o i l  from case  3 w a s  used a s  t h e  i n i t i a l  design.  The p a r t i c i p a t i o n  
c o e f f i c i e n t s  f o r  t h e  b a s i s  v e c t o r s  2,  3, and 4 were i n i t i a l l y  0 and v e c t o r s  5 
and 6 were used t o  impose t h e  requirement t h a t  t h e  t r a i l i n g  edge th ickness  
be zero f o r  cases  1 and 2 and t h a t  t h e  t r a i l i n g  edge th ickness  be 0.25 percent  
of t h e  chord l eng th  f o r  c a s e s  3 and 4. The i n i t i a l  vec to r  of f o u r  independent 
des ign v a r i a b l e s  is 

The boundary cond i t ion  vec to r  yo i n  equation (9) which i n s u r e s  a zero  
t r a i l i n g  edge th ickness  f o r  c a s e s  1 and 2 is  given by 

The boundary cond i t ion  vec to r  3' used t o  d e f i n e  a t r a i l i n g  edge th ickness  
of 0.25 percent i n  cases  3 and 4 i s  given by 

- 
upper s u r f a c e  o r d i n a t e  yo ' 
lower s u r f a c e  o r d i n a t e  (15) 

Case I - Lift Maximization, M = 0.1, a = 6' - Figure  3 shows r e s u l t s  
from t h e  opt imizat ion of an a i r f o i l  f o r  maximum l i f t .  C o n s t r a i n t s  were 
imposed on t h e  a r e a  enclosed by t h e  a i r f o i l ,  t h e  upper s u r f a c e  p ressure  
c o e f f i c i e n t  near  t h e  l ead ing  edge, and the  magnitude of t h e  p i t c h i n g  moment 
c o e f f i c i e n t .  The i n i t i a l  a i r f o i l  i s  shown a s  a s o l i d  l i n e  i n  f i g u r e  3 and 



t h e  f i n a l  a i r f o i l  is shown as a dashed l i n e .  This f i g u r e  a l s o  r e p r e s e n t s  
i n i t i a l  and f i n a l  p ressgre  d i s t r i b u t i o n s  and a i r f o i l  c h a r a c t e r i s t i c s .  The 
r e s u l t s  of t h i s  des ign example a r e  s i g n i f i c a n t  i n  two respec t s .  F i r s t ,  i t  is 
h igh ly  improbable t h a t  a l i f t  c o e f f i c i e n t  of 1..478, as pred ic ted  by t h e  inv i s -  
c i d  aerodynamics program, could be achieved f o r  t h e  highly  unconventional 
a i r f o i l  shape obta ined by t h e  op t imiza t ion  program. The opt imizat ion process  
was a r b i t r a r i l y  terminated a f t e r  10 design i t e r a t i o n s .  Had i t  been allowed 
t o  continue,  even f u r t h e r  mathematical improvements i n  t h e  des ign l i f t  
c o e f f i c i e n t  could have been achieved. This sugges t s  t h a t  t h e  op t imiza t ion  
process  i s  tak ing  undue advantage of s impl i fy ing  ass tmpt ions  i n  t h e  i n v i s c i d  
aerodynamic a n a l y s i s .  This is  v e r i f i e d  by t h e  f a c t  t h a t  when v i s c o s i t y  terms 
are included in  t h e  aerodynamic a n a l y s i s  by methods descr ibed i n  re fe rence  10,  
upper s u r f a c e  s e p a r a t i o n  is  pred ic ted  a t  t h e  65 percent chordwise l o c a t i o n .  
The second noteworthy po in t  of t h i s  r e s u l t  is t h a t  t h e  use of b a s i s  v e c t o r s  
appears t o  provide a h igher  degree of g e n e r a l i t y  i n  a i r f o i l  shapes than w a s  
previously  ob ta inab le  us ing polynomial r epresen ta t ions .  The a i r f o i l  obta ined 
f o r  t h e  same design cond i t ions  i n  re fe rence  4 us ing a polynomial representa-  
t i o n  wi th  14 independent des ign v a r i a b l e s  d i d  no t  e x p l o i t  the  s impl i fy ing  
assumptions of t h e  aerodynamic code. A l i f t  c o e f f i c i e n t  of 1.478 was obta ined 
i n  t h e  present  s tudy as compared t o  1.085 repor ted  i n  re fe rence  4. Using 
t h e  b a s i s  v e c t o r  approach of t h e  cur ren t  s tudy,  t h i s  shape was obtained us ing 
only four  independent design var iab les .  This des ign requ i red  72 aerodynamic 
analyses  a s  compared t o  103 analyses  repor ted i n  re fe rence  4 .  The f i n a l  v e c t o r  
of independent p a r t i c i p a t i o n  c o e f f i c i e n t s  obta ined from t h e  opt imizat ion 
process is 

Case 2 - Lift Maimization, M = 0.1, a = 6" - The a i r f o i l  designed a s  
case  1 was reoptimized with t h e  a d d i t i o n  o f  two geometric c o n s t r a i n t s .  The 
maximum thickness-to-chord r a t i o  was not allowed t o  exceed 15 percent  and 
t h e  maximum camber was not allowed t o  exceed 4 percent .  The r e s u l t s  of t h e  
opt imizat ion a r e  shown i n  f i g u r e  4 toge ther  wi th  t h e  a i r f o i l  des ign of 
re fe rence  4. The a i r f o i l  shapes and pressure  d i s t r i b u t i o n s  a r e  somewhat 
d i f f e r e n t ,  even though t h e  a i r f o i l  s e c t i o n  c o e f f i c i e n t s  a r e  near ly  t h e  same. 
This suggests  t h a t  t h e  optimum a i r f o i l  shape i s  n o t  unique and t h a t  a v a r i e t y  
of a i r f o i l s  may e x i s t  which provide the  same s e c t i o n  c o e f f i c i e n t s .  This 
opt imizat ion required 44 aerodynamic analyses  represen t ing  an improvement i n  
e f f i c i e n c y  o f  more than a f a c t o r  of 2 over re fe rence  4 .  The f i n a l  vec to r  of 
independent p a r t i c i p a t i o n  c o e f f i c i e n t s  f o r  t h i s  case  is 

Case 3 - Lift Maximization, M = 0.75, a = 0" - Figure 5 p r e s e n t s  t h e  
r e s u l t s  of l i f t  maximization f o r  a high-speed a i r i o i l  wi th  a wave drag con- 
s t r a i n t .  The a i r f o i l  was required t o  have a f i n i t e  t r a i l i n g  edge th ickness  of 
0.25 percent  of t h e  chord l eng th .  The i n i t i a l  a l i i o i l  vio1a:es t h e  drag 
c o n s t r a i n t  by near ly  a f a c t o r  of 3. The optimum a i r f o i l  s a t i s f i e s  t h i s  drag 



constraint with a lift coefficient of CL = 0.4188; a more than 7 percent 
improvement over the value of CL = 0.3881 reported in reference 4. The 
basis vectors used here are for airfoils intended for low speed applications. 
Further design improvements may be possible by utilizing existing high-speed 
airfoils as basis vectors. The optimum airfoil obtained here required 
70 aerodynamic analyses as compared to 143 analyses reported in reference 4, 
again representing a factor of 2 improvement in efficiency. A lift coefficient 
of CL = 0.3896 was obtained after 42 aerodynamic analyses, representing a 
factor of more than three gain in efficiency to achieve a design equivalent to 
that of reference 4. The final vector of independent participation coeffi- 
cients is 

Casz 4 - Wave Drag Minimization, M = 0.75, a = 0 - The high-speed airfoil 
presented as case 3 was reoptimized, where now the wave drag was minimized 
subject to the requirement that the lift coafficient be 0.30 or greater. The 
initial design was taken as the optimum obtai.~ed in case 3 and is defined by 
equation (18). The results of this optimizatim are shown in figure 6. This 
design required 44 aerouynamic analyses and yielded a final vector of indepen- 
dent participation coefficients of 

CONCLUDING REMARKS 

A procedure has been presented for airfoil shape definition which allows 
for the consideration of a wide range of airfoil geometries. The set of basis 
vectors use? to define the airfoil may be any analytically or ntunerically 
defined coordinate representations. It is noteworthy that this concept is 
equivalent to the reduced basis ccncept for structural optimization presented 
by Pickett et aZ. in reference 11 and by Schmit and Miura in reference 12. 
Indeed, the idea of applying reduced basis concepts to airfoil optimization 
originated from private communications with the authors of reference 12.* 
Equality boundary conditions were not required for the structural optimization 
probl.em of reference 12. The boundary condition requirements in airfoil 
optimization could be handled as natural boundary conditions by choosing each 
basis vector such that the boundary conditions are satisfied. However, the 
approach presented here is less restrictive, allowing the engineer to change 
the boundary conditions without respecifj~ng the basis vectors. 

The procedure presented here is in no way restricted tc two-dimensional 
sirfoil deslgn. The reduced basis concept is directly applicable to three- 
dimensional aerodynamic design of wings or of propulsion system inlets. 

*ARC/UCLA Consortium on Structural Optimization. 
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In the examples presented here,  ex i s t i ng  a i r f o i l s  were used as bas i s  
vectors .  The r e s u l t s ,  using only 4 independent design var iab les ,  were compared 
with r e s u l t s  previously obtained using a polynomial representat ion f o r  t he  
a i r f o i l  with 14 independent design var iab les .  I n  each case, the  number of 
aerodynamic analyses required t o  ob ta in  a design equivalent t o  the  previous 
r e s u l t s  was reduced by a f ac to r  of more than 3. This i s  cons is ten t  with the  
observation tha t  the required number of analyses is approximately l i n e a r l y  
proportional t o  the number of independent design var iab les .  Therefore, any 
procedure which can be used t o  reduce t h e  number of design var iab les  without 
introducing :iumerical i l l -condi t ioning can be expected t o  improve design 
e f f ic iency .  This e f f ic iency  improvement, with i t s  assb-i ted reduction i n  
computational time, w i l l  al low f o r  t he  use of more sophis t ica ted  (and time 
consuming) aerodynamic analyses.  The f a c t  t h a t  the optimization process 
exp lo i t s  the simplifying a s s u p t i o n s  i n  t he  aerodynamic ana lys i s  suggests t h a t  
more sophis t icated analyses a r e  requi-ed i f  a t r u l y  p r a c t i c a l  a i r f o i l  
optimization capab i l i t y  i s  t o  be developed. 
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Figure 1.- Compocents of p l y n ~ m i z l  shape. 



Basis shape 1. 

Basis shape 2- 

Basis shape 3- 

(a! Shapes 1 through 3. 

Figure 2.- Basis vectors. 



Basis shape 4. 

Basis shape 5. 

Y", = 0, q, = -x/c 
t 

Basis shape 6. 

(b) Shapes 4 through 6. 

Figure 2. - Concluded. 



CL C, A t/c camber 

Initid 0.986 -0.0645 0.- 0.119 O.WO1 --- opt- 1.478 -0.0724 0.1705 0.253 0.1400 

Y ,, - / \ 

------ 
Pressure distribution 

r Airfoil shape 

Figure  3. -  Case i lift maximization; M = 0.1, O = 6.. 



Coastnrints: I c ~  ( x f ~  = 0.01)1< 2.0 blc 0.075 A 2 0.075 
t/c 5 0.15 camber _<_ 0.04 

C~ ck A t/c cambsr 
LI Initial 0.986 -0.0645 0.0809 0.119 0.G201 - - - Optimum 1.106 -0.0745 0.1027 0.149 0.0400 -- Ref, 4 1.085 -0.0740 0.0880--0.100=0.0400 

ci? 

Pressure distribution 

" r Airfoil shape 

Figure 4.- Case 2 lift maximization: M = 0.1, a = 6.. 



Constraints : < 0 . a  A 2 0.377 c ~ w  - 
C L %W c~ A 

Initial 0.4825 3.0113 -0.1069 0.062; --- r Optimum 0.~188 0 . a 0  -0.1092 0.0794 

2 - Pressure distribution 

-t A i r f o i l  shape 

E'igilre 5. - Cast? 3 l i f t  nlaximization: M = 0.75, CY = O O .  



Constraints: CL 2 0.30 A 2 0.075 

CL c~ c, A - Initial 0.4188 0.0040 -0.1092 0.0794 --- optimum 0.3000 O.OOO7 -0.0817 0.07'79 

'r Pressure distribution 

" r Airfoil shape 

Figure 6. - Case 4 wave drag minimization; M - 0.75, a = 0.. 


