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NOTATION

a, b polynomial coefficient or participation coefficient

A airfoil cross-sectional area

A, A, 22 vector of participation coefficieats

c chord

CQ“ section wave-drag coefficient

cL section 1lift coefficient

CH section pitching-moment coefficient

CP pressure coefficient

J number of chordwise stations at which the coordinates of the
airfoil are defined

£ boundary condition number

L total number of boundary conditions

LS lower surface

M Mach number

N number of basis vectors and participation coefficients

tTE trailing edge thickness

t/e thickness to ci:ord ratio

us upper surface

x chordwise distance

x/c fractional chordwise distance

y airfoil ordinate

y basis vector defining airfoil ordinates

y0 vector of boundary values

(¥l, Y matrix of basis vectors, y

YIJ’YIZ’YZI’YZZ submatrices of Y

a angle of attack

iii



NUMERICAL AIRFOIL OPTIMIZATION USING A REDUCED NUMBER

OF DESIGN COORDINATES
Garret N. Vanderplaats and Raymond M. Hicks

Ames Research Center
SUMMARY

A method is presented for numerical airfoil optimization whereby a
reduced number of design coordinates are used to define the airfoil shape.
The approach is to cefine the airfoil as a linear combination of shapes.
These basic shapes may be analytically or numerically defined, allowing the
designer to use his insight to propose candidate designs. The design problem
becomes one of determining the participation of each such function in defining
the optimum airfoil. Examples are presented for two-dimensional airfoil
design and are compared with previous results based on a polynomial repre-
sentation of the airfoil shape. Four existing NACA airfoils are used as basic
shapes. Solutions equivalent to previous results are achieved with a factor
of more than 3 improvement in efficiency, while superior designs are demon-
strated with an efficiency greater than 2 over previous methods. With this
shaps definition, the optimization process is shown to exploit the simplifying
assumptions in the inviscid aerodynamic analysis used here, thus demonstrating
the need to use more advanced aercdynamics for airfoil optimization.

INTRODUCTION

The design of airfoils using numerical optimization techniques has been
the subject of considerable recent interest. The basic design problem
addressed is the determination of the optimum airfoil shape which will
minimize or maximize a prescribed design objective subject to constraints
which the design must satisfy. For example, the design objective may be to
min:mize the wave drag on a high-speed airfoil. The design constraints
pay be the requirement that at a prescribed angle of attack, a, the lift
coefficient must be greater than C; and the pitching moment coefficient
must not exceed EH in magnitude. Additionally, physical constraints such as
a minimum allowable thickness-to-chord ratio of t/c may be imposed.

The design approach has been to couple a two-dimensional inviscid aero-
dynamics program (ref. 1) with an existing optimization program (ref. 2).
This design procedure is described in references 3 and 4 and applications to
airfoil design are described in references 5 through 7.



Various techniques may be used to define the airfoil shape. The aerody-
namic analysis program usually requires a set of upper and lower surface
y-coordinates at a specified number of chcrdwise locations along the airfoil,
say at 50 points. Ideally, each of these y-coordinates would be treated as an
independent design variable to ensure the widest variety of airfoil shapes.
Then the design basis would be the same as the set of analysis coordinates.
However, this is too large a number of design variables for the optimization
program to handle efficiently. Therefore, it is desirable to use a reduced
set of design variables which will adequately define the airfoil shape. A
mcre common approach has been to describe the upper and lower surfaces of the
airfoil with polynomials of the form

y = al‘é + azf + 33(5)2 + ... + aN(g)N-l 1

c

One polynomial may be used to describe an entire surface, or several poly-
nomials may be used to describe the surface in a piecewise fashion. The
design variables considered by the optimization program are the coefficients
of the polynomials. If piecewise polynomials are used, the coordinates and
slopes along the surface at the matchpoint between polynomials may also be
design variables and some of the polynomial coefficients are eliminated in
favor of these physical design variables.

Two problems arise when describing the airfoil surface with polynomials.
First, the number of different geometric shapes that can be represented is
limited and may not include the shape that corresponds to the true optimum
airfoil. The second problem is one of numerical conditioning arising from
*he fact that a surface described by a polynomial may be quite "wavy." That
is, the optimization may produce an airfoil for which the curvature of the
surface changes sign at several locations. This results from the fact that
the aerodynamic analysis is not sensitive to minor waviness in the airfoil
and therefore, the optimization program does not see any design penalty for
introducing waviness.

A procedure is presented here for airfoil shape definition which allows
for the consideration of a wide range of airfoil geometries. The restriction
to shapes which can be described by polynomials is eliminated. While it cannot
be shown that surfaces describe ' using the techniques presented here will be
smooth, experience has shown that the problem of surface "waviness" is greatly
reduced. Also, it cannot be guaranteed that the shapes described by this
method will define the true optimum airfoil. However, the generality of the
method and the fact that the designer can use his judgment znd experience
in choosing the airfoil shape parameters produces high quality results.

AIRFOIL SHAPE DEFINITION

First, consider an airfoil surface defined by the polynomial given in
equation (1), where one polynomial may be used to describe the upper surface
of the airfoil and a second polynomial to describe the lower surface. The



coefficients of the polynomial, a,, a, ..., ay, are treated as design
variables and the objective of the design process is to determine the combina-
tion of these variables which will provide an optimum airfoil. Most aerody-
namic analysis codes require a set of y-coordinates along the upper and lower
surface of the airfoil, at J chordwise stations. Therefore, during the
optimization process, for each proposed set of design variables the polynomials
are evaluated at these J points for each surface. The results are stored

in vector y, for use in aerodynamic analysis.

An equivalent surface definition may be formulated by recognizing that
the polynomial defined by equation (1) is simply the algebraic sum of curves
defined by the terms of the polynomial. Curves defined by these terms are
shown in figure 1. Each curve evaluated at J chordwise locations defines
a distinct y. For example, the curve, /x/c will be defined as ¥,. Curve
x/c defines ?2 and curve (x/¢)N-! defines ¥N- Therefore, for any set
of design variables, a;, a, ..., ay the vector of y-coordinates defining
the airfoil shape is defined by

y=ay, +ay,+ ... +agyy (2)

The individual vectors on the right hand side of equation (2) are referred to
as basis vectors.

Note that the fundamental distinction between equations (1) and (2)
is that in equation (1) the y-coordinates are defined analytically, whereas
in equation (2) the y-coordinates are defined numerically. Therefore, the
basis vectors are not restricted to vectors defined by analytical functions,
but can be chosen to define any set of shapes which may be expected to define
a realistic airfoil. One logical choice of shapes is a set of existing
airfoils and this approach is used in the examples presented in this report.

The vectors y, ¥;, ¥, ... yy may contain coordinates of both the upper
and lower surface of the airfoil so that, in general

- y
y = {-‘.’5 } 3)
Yis

where iUS defines the coordinates of the upper surface and ;LS defines
the coordinates of the lower surface.

Equation (2) may be written in matrix form as:

y = [Y]A (4)
where a,
- - - - a,

[Y]2 xN = [Y1Y2 o yN] y A= H (5)
ayN



The design process now entails determining the values of the participation
coefficients, aj, i =1, 2, ..., N, which define the optimum airfoil.

Note that, while the airfoil shape is defined as a linear combination of
component shapes, the aerodynamics may be quite nonlinear in these variables.
Therefore, the design prccess is a general nonlinear optimization problem.

PARTIAL AIRFOIL MODIFICATION

It is sometimes necessary to modify only a portion of an existing airfoil.
For example, it may be desirable to retrofit an existing aircraft with a
modified leading edge to improve low-speed characteristics. This is easily
accomplished using basis vectors as described by equation (4). The first
basis vector y; is taken as the vector of y-coordinates defining the existing
airfoil. The participation coefficient a; 1is set to unity and is not changed
during the design process. That is, a is not a design variable. The
remaining basis vectors 1y, through yy will have nonzero entries over the
portion of the airfoil which is to be modified and zero entries for the portion
of the airfoil which is not modified. The participation coefficients, a
through ay are then the design variables, which, when multiplied by their
corresponding y-vectors, define the modified airfoil shape. As a further
example, if it is desired to modify the upper surface of an existing airfoil
while leaving the lower surface unchanged, vectors y, through yy will
contain nonzero entries corresponding to upper surface coordinates and zero
entries corresponding to lower surface coordinates. The initial basis vector,
Y)s will contain entries corresponding to the lower surface coordinates of
the actual airfoil. Entries in y,; corresponding to the upper surface may or
may not be zero. 1If these entries correspond to the actual airfoil, the
modifications defined by the remaining basis vectors will simply be added to
(subtracted if a; is negative) the existing airfoil. If the upper surface
coordinates of vector y; are specified as 0, the remaining vectors will
actually describe the entire upper surface of the airfoil. It is usually
desirable that vector y. define the actual airfoil to be mndified and that
the participation coefficients a, through a, be set initially at zero.
Then, the first airfoil analyzed will be the existing airfoil and, as the
participation coefficients a, through ay are changed during the optimiza-
tion process, the design improvements can be readily observed.

The [Y] matrix in equation (4) is presented schematically for upper
surface modification as:

J

XXX . X
X X X . x | uPPer
surface
XXX . « X
A ¢ | coordinates
XXX . ..X
T =13667770 |Tower )
x00. . .0 | surface
x09 .. .0 |coordinates
560, . .6



In this way, by the appropriate choice of zero and nonzero entries in the
basis vectors, one or more segments of an existing airfoil can be readily
modified. However, applying this approach directly does not guarantee that
the coordinates, slopes, or curvatures of the modified surface will match

the existing surface at the point where the two join. These boundary condi-
tions could be imposed as constraints in the optimization problem; however,
because these conditions represent simple geometric constraints on the airfoil
geometry, they can be imposed directly. The procedure for doing this is
described in the following section.

BOUNDARY CONDITIONS

Probably the most common boundary condition is the requirement that the
airfoil thickness at the trailing edge be zero or some specified finite
thickness. Other common boundary conditions include continuity of coordinates,
slopes and curvatures at the match point between the modified and existing
airfoil section, and the requirement that the airfoil thickness has a
specified value at some chordwise location.

For example, assume that the airfoil thickness, tTE’ at the trailing edge
. -] o) .
is required to have a specified value t7p and that one or more of the basis
vectors has a defined finite trailing edge thickness. Let tTEi be the

trailing edge thickness defined by the ith basis vector. One of the basis
vectors can now be eliminated in favor of this boundary condition. Assume
that basis vector yy defines an airfoil of finite trailing edge thickness
and that this basis vector will be eliminated in favor of the boundary condi-
tion. Because the design airfoil must have a trailing edge thickness T%E’
it follows that

o N-1

to. = 3, at,_ . +a.t (7)

TE {2 TLTE; O CNTE,

The design variables, a3, 1 =1, 2 . . . N-1, are specified at each stage of
the optimization process. Therefore ay 1is the only unknown in equation (7).
This equation may be rewritten solving for ay

1 o N-1
3N T (tTE - X 3t ) (8)
TE -t 1

Note that for a to be defined, trg, must have a nonzero value; that is,
the airfoil defined by the nth basis vector must have a finite trailing edge
thickness. Note also that this method of applying boundary conditions applies
to equality conditions only. If it is desired to let the trailing edge
thickness change during the optimization process so that the only requirement
is that the thickness be greater than zero and less than some finite value,



this would be handled as an inequality constraint by the optimization
program and would not be imposed directly as a boundary condition.

Other boundary conditions, such as thickness at some chordwise location,
surface slopes, or curvatures, can be imposed in a similar manner. For the
general case, assume that there are L geometric equality constraints to be
imposed on the airfoil. Then, L basis vectors will be eliminated in favor
of these boundary conditions (L < N). Because the coefficients of these basis
vectors are determined such that the boundary conditions are satisfied
exactly, these coefficients are not design variables in the optimization
process.

For the A4th geometric boundary conditior.. the associated parameter will
be stored in 2J + % location of each of the basis vectors for i = 1, N. The
required boundary value will be stored in the 2J + £ location of vector ¥y
and will be denoted by the superscript 0. Assume that the last L basis
vectors will be used to satisfy the boundary conditions. In matrix form, this
may be written as

2 (Z.) - [ﬁs-il&a](ﬁ_) L )
L Ay Y1 ) Y220\A/ L

2J + LxN

Y11 and le contain the original basis vectors. Y,, and Y,, contain the
geometric values corresponding to these basis vectors for the boundary condi-
tions which must be imposed. §0 contains the boundary values. A; and A,
contain the participation coefficients for the basis vectors. Because X&,
contains the design variables defined by the optimization program, the value
of A; is known. It is now necessary to determine A, so that the boundary
conditions are precisely satisfied. This is easily accomplished by solving
the last L equations defined by the matrix equation (9). These equations
are written as

oAy + Y, A (10)

Solving for Kz yields

=~ _ 1 fz0 v =
A, =Y, (y Y21A1) (11)

Finally, substituting the values for Kz defined by equation (11) into the
first 25 equations defined by matrix equation (9) yields

A

- ' A1 -
y =¥, Y,] (---) = [Y]A 12)
2

Equation (12) defines an airfoil which satisfies the boundary conditionms
precisely. Note that the only requirement for satisfaction of the boundary



conditions is that the submatrix Y be nonsingular. Usually, only a few
boundary conditions are imposed on the airfoil and the basis vectors to be
eliminated in terms of these boundary conditions can be chosen by inspection
so that Y,, will satisfy this requirement.

DESIGN EXAMPLES

Examples are presented here to identify the generality and efficiency of
the reduced basis concept as applied to numerical airfoil optimization. Four
existing airfoils are used as the design basis. These are the NACA 2412,
NACA 64,-412, NACA 65,-415, and the NACA 64,A215 airfoils. The coordinates
are defined at 50 points along the upper and lower surfaces. The coordinates
are approximate, obtained from curve fits of the existing airfoil data
(refs. 8 and 9) and no attempt was made to precisely match the data given
in the references. Two additional basis vectors were used to impose the
boundary conditions at the trailing edge of the airfoil. These are
yys = x/c, ypg = 0 and yyg = 0, yg= -(x/c). The shapes defined by these
six basis vectors are shown in figure 2. 1In each of the following examples,
except case 4, the NACA 2412 airfoil was chosen as the initial design with an
associated participation coefficient of unity. In case 4, the optimum
airfoil from case 3 was used as the initial design. The participation
coefficients for the basis vectors 2, 3, and 4 were initially O and vectors 5
and 6 were used to impose the requirement that the trailing edge thickness
be zero for cases 1 and 2 and that the trailing edge thickness be 0.25 percent
of the chord length for cases 3 and 4, The initial vector of four independent
design variables is

Al = (1.0 0.0 0.0 0.0) (13)

The boundary condition vector y¥ in equation (9) which insures a zero
trailing edge thickness for cases 1 and 2 is given by

— _ fo.0
y® = (o.o) (14)

The boundary condition vector ;0 used to define a trailing edge thickness

of 0.25 percent in cases 3 and 4 is given by

_ 0.00125\ upper surface ordinate
= (15)

0
'y -0.00125 / lower surface ordinate

Case 1 - Lift Maximization, M = 0.1, a = 6° - Figure 3 shows results
from the optimization of an airfoil for maximum 1lift. Constraints were
imposed on the area enclosed by the airfoil, the upper surface pressure
coefficient near the leading edge, and the magnictude of the pitching moment
coefficient. The initial airfoil is shown as a solid line in figure 3 and



the final airfoil is shown as a dashed line. This figure also represents
initial and final pressiure distributions and airfoil characteristics. The
results of this design example are significant in two respects. First, it is
highly improbable that a 1ift coefficient of 1.478, as predicted by the invis-
cid aerodynamics program, could be achieved for the highly unconventional
airfoil shape obtained by the optimization program. The optimization process
wa5 arbitrarily terminated after 10 design iterations. Had it been allowed

to continue, even rurther mathematical improvements in the design lift
coefficient could have been achieved. This suggests that the optimization
process is taking undue advantage of simplifying assumptions in the inviscid
aerodynamic analysis. This is verified by the fact that when viscosity terms
are included in the aerodynamic analysis by methods described in reference 10,
upper surface separation is predicted at the 65 percent chordwise location.
The second noteworthy point of this result is that the use of basis vectors
appears to provide a higher degree of generality in airfoil shapes than was
previously obtainable using polynomial representations. The airfoil obtained
for the same design conditions in reference 4 using a polynomial representa-
tion with 14 independent design variables did not exploit the simplifying
assumptions of the aerodynamic code. A lift coefficient of 1.478 was obtained
in the present study as compared to 1.085 reported in reference 4. Using

the basis vector approach of the current study, this shape was obtained using
only four independent design variables. This design required 72 aerodynamic
analyses as compared to 103 analyses reported in reference 4. The final vector
of independent participation coefficients obtained from the optimization
process is

T

A= (6.49 -4.65 6.59 -6.47) (16)

Case 2 - Lift Maximization, M = 0.1, o = 6° - The airfoil designed as
case 1 was reoptimized with the addition of two geometric constraints. The
maximum thickness-to-chord ratio was not allowed to exceed 15 percent and
the maximum camber was not allowed to exceed 4 percent. The results of the
optimization are shown in figure 4 together with the airfoil design of
reference 4. The z2irfoil shapes and pressure distributions are somewhat
different, even though the airfoil section coefficients are nearly the same.
This suggests that the optimum airfoil shape is not unique and that a variety
of airfoils may exist which provide the same section coefficients. This
optimization required 44 aerodynamic analyses representing an improvement in
efficiency of more than a factor of 2 over reference 4. The final vector of
independent participation coefficients for this case is

a = (1.89 -0.54 0.89 -0.96) (17)

Case & - Lift Maximization, M = 0.75, a = 0° - Figure 5 presents the
results of 1ift maximization for a high-speed airfoil with a wave drag con-
straint. The airfoil was required to have a finite trailing edge thickness of
0.25 percent of the chord length. The initial ajfifoil violates the drag
constraint by nearly a factor of 3. The optimum airfoil satisfies this drag



constraint with a lift coefficient of Cj = 0.4188; a more than 7 percent
improvement over the value of Cp = 0.3881 reported in reference 4. The
basis vectors used here are for airfoils intended for low speed applications.
Further design improvements may be possible by utilizing existing high-speed
airfoils as basis vectors. The optimum airfoil obtained here required

70 aerodynamic analyses as compared to 143 analyses reported in reference 4,
again representing a factor of 2 improvement in efficiency. A 1ift coefficient
of Cp = 0.3896 was obtained after 42 aerodynamic analyses, representing a
factor of more than three gain in efficiency to achieve a design equivalent to
that of reference 4. The final vector of independent participation coeffi-
cients is

T = (0.47 0.53 -1.00 0.99) (18)

Casez 4 - Wave Drag Minimization, M = 0.75, o = 0 — The high-speed airfoil
presented as case 3 was reoptimized, where now the wave drag was minimized
subject to the requirement that the 1ift cocfficient be 0.30 or greater. The
initial design was taken as the optimum obtaiied in case 3 and is defined by
equation (18). The results of this optimization are shown in figure 6. This
design required 44 aerodynamic analyses and yielded a final vector of indepen-
dent participation coefficients of

AT = (0.31 0.37 -1.03 1.26) 19)

CONCLUDING REMARKS

A procedure has been presented for airfoil shape definition which allows
for the consideration of a wide range of airfoil geometries. The set of basis
vectors use” to define the airfoil may be any analytically or numerically
defined coordinate representations. It is noteworthy that this concept is
equivalent to the reduced basis ccncept for structural optimization presented
by Pickett et al. in reference 11 and by Schmit and Miura in reference 12.
Indeed, the idea of applying reduced basis concepts to airfoil optimization
originated from private communications with the authors of reference 12.%
Equality boundary conditions were not required for the structural optimization
problem of reference 12. The boundary condition requirements in airfoil
optimization could be handled as natural boundary conditions by choosing each
basis vector such that the boundary conditions are satisfied. However, the
approach presented here is less restrictive, allowing the engineer to change
the boundary conditions without respecifying the basis vectors.

The procedure presented here is in no way restricted tc twc—dimensional
airfoil design. The reduced basis concept 18 directly applicable to three-
dimensional aerodynamic design of wings or of propulsion system inlets.

*ARC/UCLA Consortium on Structural Optimization.



In the examples presented here, existing airfoils were used as basis
vectors. The results, using only 4 independent design variables, were compared
with results previously obtained using a polynomial representation for the
airfoil with 14 independent design variables. In each case, the number of
aerodynamic analyses required to obtain a design equivalent to the previous
results was reduced by a factor of more than 3. This is consistent with the
observation that the required number of analyses is approximately linearly
proporticnal to the number of independent design variables. Therefore, any
procedure which can be used to reduce the number of design variables without
introducing numerical ill-conditioning can be expected to improve design
efficiency. This efficiency improvement, with its assc¢-i:-ted reduction in
computational time, will allow for the use of more sophisticated (and time
consuming) aerodynamic analyses. The fact that the optimization process
exploits the simplifying assumptions in the aerodynamic analysis suggests that
more sophisticated analyses are requi.ed if a truly practical airfoil
optimization capability is to be developed.

10
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y = a1 Jxjc + az(xfc) + as(x/c)® + -« + aﬂ‘(x/c)".l

Figure 1.- Compor.ents of polynomial shape.
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Constraints: |Cp . (x/e = 0.00)|< 2.0 o< 0.015 & 2 0.015
tfc < 0.15 camber < 0.0h4
Cy, Cm A t/c camber
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Figure U4.- Case 2 1ift maximization: M = 0.1, a - 6€°.
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Figure 5.- Case 3 1ift maximization; M = 0.75, a = 0°.



Constraints: Cr, 20.30 A>0.075

Cy, Cow Cm A
Initial 0.4188 0.0040 -0.1092 0.079%

——— Optimum 0.3000 0.0007 -0.0817 0.0779
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Figure 6.- Case 4 wave drag minimization; M = 0.75, a = 0°.



