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COMMENTS ON DIFFERENCE SCHEMES FOR THE THREE-DIMENSIONAL
TRANSONIC SMALL-DISTURBANCE EQUATION FOR SWEPT WINGS

By Jerry C. South, Jr.

Langley Research Center

SUMMARY

Certain problems arise in constructing stable finite-difference schemes
for the three-dimensional transonic small-disturbance equation when cross-
flow terms are included to better »pproximate swept wings. These problems

are discussed and some possible remedies are offered.

INTRODUCTION

Recently, some effort (refs. 1 to 3) has been devoted to improving the
three-dimensional transonic small disturbance equation for applications to
swept wings. It seems that the important crossflow term that needs to be
included is ¢y ¢xy' where x is the longitudinal coordinate and y is the span-
wise coordinate. Without this term, the small disturbance equation cannot
adequately predict weak, swept shock waves. The purpose of this paper is to
point out some numerical difficulties that may arise in constructing stable

finite-difference approximations to equations which include this additional

term.



ANALYSIS

Jameson (ref. 4) has sho.n that it is advantageous to examine the
canonical form for the potential equation, particularly when studying
appropriate methods for combining central and backward differences for various
derivatives in supersonic regions of the flow. As in reference 4, then, the

canonical form is written as:
2_n2 2 2h e =
(a%-q%) o + 2% (Vio-¢ ) = O (1)

where ¢ss represents differencing in the local streamline direction, and

2 = ™ r';z 2 2
q 1+2-.x+.x+¢y+¢z (2)
a = a2 - G (q7-1) (3)
a =M. (4)
2 = u? 2 2
q ¢ss " 1’:n(x o | d’yy v l1’zzz

+ ?uv¢xy + 2uw¢x: + 2vw¢yz (5)
us=1+ by (6)
Ve (7)



Combining equations (2) to (4) gives:

2 2 ¥
a’ 2 (a2
reler) K- D) (10)

If terms involving perturbation velocity products are ignored, equations

(2). (5), (9), and (10) become:

0 ~ 1+ 29 (1)
f%iﬂi ~ 1= M- (yH M, (12)
a’ ‘

o~ 1 (1, (13)
Ogs = Oyx * 2¢y¢xy t 20y (14)

o= i
The term V¢ ¢ss is:

2 - - -
Vi = bgs ™ by * 0y, - 200,y - 20,0,, (15)
Substituting equations (12) to (15) into (1) yields:
A‘*xx + 2¢y¢xy + 2¢z¢xz)
+Bloy, * ¢, - 2.0, - 209,,) =0 (16)
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“here

e 1M e (y 4 1) W (17)

.|I‘x
e Ve (v o 24
B=1-(y-1) Mo (18)

In the interest of further simplication, mast researchers have ignored

the term ¢_¢ as unimportant for the swept wing problem. Some discussion

2"x2
of the relative size of this term is given in reference 2. For the purpose of

this paper, ¢z¢xz will also be deleted from equation (16), yielding finally:

A by *20,8,) +B (0, +0,, -200.)0 (19)
where second derivative terms belonging to ¢ss are barred to indicate that
they shoulw be represented by upwind differences in supersonic regions of
flow, and terms deriving from 774 - s should be represented by central
differencer, in the spirit of Jameson's rotated difference scheme (ref. 4).
To a close approximation, equation (19) changes from ellipt: - hyperbolic
type when the coefficient A changes from positive to negative. Hence, a
stable numerical scheme with artificial viscosity of the correct sign is
obtained by using upwind differences for 3. and $;; whenever A<Q

That is, for 6;;'we have:

S T - 2¢
BX% Byx ® 04,5,k = 2%41,5,k * %4-2,4.k (20)



and for 3:; we have:

BxAY Sy “ 94,4,k © %4-1,4.k T *1-1,5-1,k

* .50 (21)
if °y >0
and
BXBY Oy * 04 541,k = P4-1,541,k * Yi-1,5,k
- ¢'|.J.k (22)
if ¢y <0

It is important to note that such formulas always enhance diagonal dominance;

that is, they produce a contribution to the diagonal (coefficient of °1jk) of :

20|
N
A e | BRhy (23)

Such schemes are highly desirable from the viewpoint of numerical stability.

Equation (19) still has an important deficiency: because of the absence
of certain deleted small terms, it cannot be cast into divergence form.
Further expedient approximations can be made, however, to achieve a divergence
form. For example, in reference 1, the total coefficient of ¢y¢xy was

collected and approximated by ignoring by

2(A - B) = -2M2 (i +2¢ ) ~ -2M? (24)

on



and the ¢ contribution in the coefficient of 0,, Was also ignored, yielding:

- 2 \ =
Ad Oyy = M y¢xy B ¢yy + 9y, 0 (25)
The bar over ¢ has been dropped in equation (25) because of the slight
confusion created by combining the coefficients of » = and ¢ in equation (24).
Strictly speaking, to retain the identity of 5;; and é.. in equation (25), one

Xy
would write:

2 26 & .
AD +2(IM)¢¢ by B, 4, 20 (26)
However, upwind differencing for E;;} as given by equations (21) and (22),
detracts from diagonc1 dominance! That is, application of formulas (20) to

(22) in equation (26) produces a diagonal contribution of:

_M2
A, (1-M2) 1o, |

AXAy (27)

Ax?

and the two terms compete with one another, since A<0. For large cross flows
(large |¢y|). such a procedure would be unstable. From a numerical point

of view, then, one should use an upwind difference only for E;;} and use
central differences for all other terms in equations (25) or (26). An

alternative is to retard 6;; in the x-direction only, for example:

ZAXAy#xy ¢1,J+],k = ¢1_'| L34,k * ¢1_]'j-].k

= 95,3-1,k (28)



but then that is not & "rotated" difference scheme, since the direction of
the crossflow is ignored. Furthermrre, the artificial viscosity that is intro-
diced has the wrong sign, since its coefficient is 1 - M’ rather than A,

In reference 2, this confusion was avoided by using a different
approximation to equaiion (19). Namely, the term 6;'; is dropped, and B
approximated by 1, so that equation (19) becomes:

Mgy * by * 055 = 20ybyy = 0 (29)
Here there is no question about the differencing of the ¢xy term, sirze it
may be considered as deriving entirely from v’¢-mss. and thus would always
be centrally differenced.

In reference 3, the difficulty of constructing a divergence form after
neglecting certain terms is overcome by a simple but effective idea: the

equation is expanded in the original conservative form,
[o(146,)1, + [06,]y + [0o,], = 0 (30)

where p is the density. The terms neqlected in reference 3 are essentially

the same as those dropped in reference 1, and the same delicate point finally
arises concerning 3;; and ¢xy. It is stated that retardation in the x-direc-
tion only is then used for the wss-cnntributions. so a formula related to
equation (28) is used. The equivalent artificial viscosity will have the wrong
sign, for the same reason as before. Although the title of reference 3 includes
the word "rotzted difference," the claim here is that this is not a rotated

difference scheme, but rather a "split" scheme, as in reference 2.
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CONCLUDING REMARKS

Experience has shown that rotated difference schemes have nice stability
properties, since if they are carr’'-d out correctlv, each upwind difference
(including cross derivatives like ¢xy) enhences diagonal dominance, as
illustrated in equations (21) to (23). This feature is an indication that the
artificial viscosity is correct (ref. 4). Retarding a difference formuls for

¢.., in the x-direction only does not insure the correct sign to the resulting

X
ar{ificicl viscosity unless the coefficient of @xy is the correct sign. Such
retardation might damage stability more than a central difference formula,
which produces zero viscosity.

It is felt that the Dutch apprvach (ref. 3) is a good one for deriving
a conservative approximation for swepi wings, but that more terms should be
retained to force a "switching" coefficient similar to A (eq. (17)) on the
equivalent 3;;. In this way, a rotated scheme can be devised with correct

artifical viscosity, and the concomitant diagonal dominance. Otherwise one

should use a central difrerence formula for E;;.
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