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COMMENTS ON DIFFERENCE SCHFMES FOR THE THREE-DIMENSIONAL

TRANSONIC SMALL-DISTURBANCE EQUATION FOR SWEPT WINGS

By ,terry C. South, Jr.

Langley Research Center

SHMMARY

Certain problems arise in constructing stable finite-difference schemes

for the three-dimensional transonic small-disturbance equation when cross-

flow terms are included to better a pproximate swept wings. These problems

are discussed and some possible remedies are offered.

INTRODUCTION

Recently, some effort (refs. 1 to 3) has been devoted to improving tie

three-dimensional transonic small disturbance equation for applications to

swept wings. It seems that the important crossflow term that needs to be

included is my Q xy , where x is the longitudinal coordinate and y is the span-

wise coordinate. Without this term, the small disturbance equation canliot

adequately predict weak, swept shock wa g es. The purpose of this paper is to

point out some numerical difficulties that [flay arise in constructing stable

finite-difference approximations to equations which include this additional

term.
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ANALYSIS

Jameson (ref. 4) has sho •.on that it is advantageous to examine the

canonical form for the potential equation, particularly when studying

appropriate methods for combinin q central and backward differences for various

derivatives in supersonic regions of the flow. As in reference 4, then, the

canonical form is written as:

(a 2 -q') p ss + a' (V'm-`pss) = 0	 (1)

where 
ass 

represents differ •encing in the local streamline direction, and

q2=1+2yx+'1)2+^,2+^2	 (2)

a 2 = a 2 - 
Y21 (

q7 -1)	 (3)

a^ = M 
	

(4)

g2 ^ss	 u2 ^xx + v?`pyy + W2(pzz

+ 711vfixy + 2uw^XZ + 2vw¢	
(5)yz

u = 1+mx	(6)

V 
= +v	 (7)

1.4
z	

(8)
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equations (2) to (A) gives:

a2— f	 = 1-Mrx , - 2	 Mn fq 2 - 1)	 (9)
00

az 
2

 
= 1- Y2	 M', (q' 	 (10)

?rms involving perturbation velocity products are ignored, equations

(9), and (10) hecome:

q2	 1 + 2^	 (11 )

z	 2

a- a - -- ^ 1 - M2 - (Y+1 )M;"^ x	 (12)
m

2
a-^	 I - ( Y -1 ) "^ »^x
	

(13)

CO

a'ss	 xx +	 yxy +	 z^x: l 	(14 )

The term 02^ - `ass is;

ss	 yy	 zz	 y xy	 z xz
15

Substituting equations (12) to (15) into (1) yields:

A(,r xx + 2` ')yfi x,y + 2^Zz xz)

+	 .y.y + `l zz	2^y^xy - ?_`,z¢xz) = 0	 (16)
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- ere

1-M2 - (Y + 1 ) M;;hx	 (11)

d = 1- (y - 1 ) Mn^n	 (18)

In the interest of further simplicat.ion, n;-).;t rPSParchers have ignored

the term 
mZ^xz 

as unimportant for the swept wing prnblem. Some discussion

of the relative size of this term is given in reference 2. For the purpose of

this paper, 
yZpxz 

will also be deleted from equation (16), yielding finally:

1l(ti
xx + 2my$xy) 

+ B (`r YY + `^zz	
2^py ^pxy }	 0	 (19)

where second derivative terms belonging to 
ass 

are barred to indicate that

they shoulG be represented by upwind differences in supersonic regions of

flow, a-id terms deriving from 7 2 ^ - ,)SS should be represented by central

difference,, in the spirit of Jameson's rotated difference scheme (ref. 4).

To a close approximation, equation (19) changes frnm ellipt- 	 hyperbolic

type when the coefficient A changes from positive to negative. Hence, a

stable numerical scheme with artificial viscosity of the correct sign is

obtained by using upwind differences 
forTxx and 'axv whenever A<0

That is, for ;'xx we have:

axZ ^'xx -	 i,J,k	 " i -l..l,k + ^i-2,j,k	
(20)

4
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AxAy 0 x ' (' i ,.1 + l,k	 ^i-lj+l,k + 2i..l,.l,k

^i ,J, k	
(22 )

if 	 <n

It is important to note that such formulas always enhance diagonal dominance;

that is, they produce a contribution to the diagonal (coefficient of y ijk ) of:

/	 2 1
A

	

	 + -Y-
^xZ

AXAv

Such schemes are highly desirable from the viewpoint of numerical stability.

Equation (19) still has an important deficiency: because of the absence

of certain deleted small terms, it cannot be cast into divergence form.

Further expedient approximations can he made, however, to achieve a divergence

form. For example, in reference 1, the total coefficient of ^Y xy was

collected and approximated by ignoring ©x

2(A - R) _ -?Mm (i + 2^	 -2Mm	 (24)

5
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and the 0X - contribution in the coefficient of 
mzz 

was also iqnored, yielding:

AT
xx 

?MM 
my^ x .y + 

8 4 Y + 0 z = 0	 (25)

The bar over 
0 x has been dropped in equation (25) because of the slight

confusion created by combining the coefficients of 7,7- and ^in equation (24).

Strictly speaking, to retain the identity of ^xy and ( x in equation (25;, one

would write:

A ^xx + 2(1-M (') my@xy -2^Y^Xy f B^YY + Tzz = 0	 (26)

However, upwind differencing for ^xy , as given by equations (21) and (22),

detracts from diagonal dominance! That is, application of formulas (20) to

(22) in equation (26) produces a diagonal contribution of:

A	 (1-M2) ^Dyl

Axe	
AxAy

and the two terms compete with one another, since A<O. For large cross flows

(large It1 ), such a procedure would be unstable. From a numerical point

of view, then, one should use an upwind difference only for txx , and use

central differences for all other terms in equations (25) or (2.6). An

alternative is to retard 
QXY 

in the x-direction only, for example:

2AxAy^xy = 
m i,j+l,k - 

Il i-l,j+l,k + ^i-l,j-1,k

i,.l -1,k	 (28)

6
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but then that is not a "rotated" difference schemw, since the direct`on of

the crossflow is ignored. Furthermo re, the artificial viscosity that is intro-

d-.iced has the wrong sign, since its coefficient is 1 - M` , rather than A.

In reference 2, this confusion was avoided by using a different

approximation to equaL"on (19). Namely, the term 
0 x is dropped, and 8

approximated by 1, so that equation (19) becomes:

A,rxx + 
^yy 

+ 
^zz - 4ymxy Z. n	

(29)

Here there is no question about the differencing of the C,xy term, sirze it

may be considered as deriving entirely from V 2 0-1) ss , and thus would always

be centrally differenced.

In reference 3, the difficulty of constructing a divergence form (itter

neglecting certain terms is overcome by a simple but effective idea: the

equation is expanded in the original conservative form,

[ p (1 +mx )] x + [oy]y + [oz ]z = 0
	

(30)

where p is the density. The terms neglected in reference 3 are essentially

the same as those dropped in reference 1, and the same delicate point finally

arises concerning m	 and ^xv . It is stated that retardation in the x-direc-
xy

tion only is then used for the y ss -contributions, so a formula related to

equation (28) is used. The equivalent artificial viscosity will have the wrong

sign, for the same reason as before. Although the title of reference 3 includes

the word "rotated difference," the claim here is that this is not a rotated

difference scheme, but rather a "split" scheme, as in reference 2.
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CONCLUDING RFMARKS

Experience has shown that rotated difference schemes have nice stability

properties, since if they are carr' „ :d out correctly, each upwind difference

(including cross derivatives like y xy ) enh&nces diagonal dominance, as

illustrated in equations (21) to (23). This feature is an indication that the

artificial viscosity is correct (ref. Q). Retarding a difference formul A for

mxy in the x-direction only does not insure the correct sign to the resulting

artificial viscosity unless the coefficient of axy is the correct sign. Such

retardation might damage stability more than a central difference formula,

which produces zero viscosity.

It is felt that the Dutch approach (ref. 3) is a good one for deriving

a conservative approximation for swept winds, but that more terms should be

retained to force a "switching” coefficient similar to A (eq. (17)) on the

equivalent 
TX—Y. 

In this way, a rotated scheme can be devised with correct

art i fical viscosity, and the concomitant diagonal dominance. Otherwise one

should use a central dif^erence formula for pxy.

•
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