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1. Introduction

Prosen 4:ed here are various flutter-analysis techniques ob-

tained by approximating the aerodynamic-influence-coefficient ►natrix

(within the flutter range of the reduced frequency) in a form which

is convenient to write the dynamic equations of the aircraft in a

State Space format i.e., of the type

sx = Ax	 (1)

where s is the complex frequency, x is the state vector, A is a

f • -uency-independent matrix or may be treated as such (for instance

if the problem is solved by iteration with A constant in each

iteration).

In recent years optimal structural design and active control.

technology have gained an increasingly important role in the

improvement of aircraft performance; sophisticated techniques are

re%uired, especially for flexible aircr«f.ts. The optimal design

as well as the control-systems design involve the interaction of

numerous disciplines including structures, aerodynamics, aero-

elasticity, guidance and control.

It may be noted that for the analysis of flexible aircrafts

the equations of the aircraft dynamics may be cast in the format

of Eq. (1; (with constant A) 	 by approximating the aerodynamic

matrix i-:ith the two lowest terms of their Taylor series around.

k=0 (where k is the reduced frequency): This approximation is

used for instance in F'CAP (Flight Control Analysis Program, Refs.

1 and 2) which is a general purpose program for the analysis of

flexible aircrafts of arbitrary shape with active control. The

low frequency formulation however is too restrictive for analysis

of -lu tter or even control-surface dynamics. In this case fully-

unsteady-aerodynamic influence coefficients are being used in

FLAP ( Ref s. 1 and 2) . 	
4;



In addition it should be noted that there exist already

aerodynamic codes capable of dealing with transient response

(analysis off the imaginary axis) such as SOUSSA (Refs. 3 to 8)

which is the most general one presently available, since it

can be used for steady, oscillatory and fully unsteady, sub-

sonic and supersonic flows around aircraft having arbitrary

shapes. Note that SOUSSA is the only fully unsteady code for

complex configurations.*

However, the currently, available flutter- analysis routines

are limited to the analysis of the aerodynamic loads for purely

imaginary reduced frcquenc'-es (oscillatory flow). This short-

coming is partly due to the fact that aerodynamic loads ob-

tained from existing aerodynamics calculation methods had been

limited until very recently to sinusoidal motion5 only and

hence the classical flutter analyses (such as the V_g method)

are limited to the imaginary axis. It is obvious that the

flutter analysis needs to be re-formulated if one wants to

ta::e full advantage of the transient response feature of the

aerodynamic routine SOUSSA.

Tho purpose of this paper is to present and assess

various methods for approximating the aerodynamic forces

so that the two basic features introduced above (State Space

formulation and off-the-imaginary axis analysis) are retained.

The advantages of retaining these features are considerable, not

only in simplifying the flutt ,.r analysis, but especially for

more advanced applications such as optimal design of active

control in which the flutter is merely a contraint to the

optimization problem.

z.

*SOUSSA is used as aerodynamic sub, i-ograr in FLAP . 1 , 2



Therefore presented here are 3 procedures for the calcula-

tion of flutter frequencies and speeds. In addition to the varia-

tiuno of the traditional V-g method, a new Formulation incorporat-

ing state space techniques of the type x=Ax is introduced. The

cdvantages of the state space format are also presented.

Preliminary results are briefly described.

3.
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2,	 V-g Method

The V-q method is briefly outlined here. Consider the

Lagrange equation of motion for simple harmonic motion,e x,

where x is the vector of the generalized Lagrangian coordin-

ates, r•l and K are the mass and stiffness matrices, q is the

dynamic pressure and E(k) is the aerodynamic influence matrix

function of the reduced frequency k-w /V)and 5 is a fictitious
d rimping coefficient introduced to avoid the use of complex

frequencies. With some algebraic manipulations, a standard

eigenvalue problem is resulted which has the form (Ref. 9)

(A-P,I) x=0

at	 where A is a function of k. It should be noted that P has

the expression

v	 U

For different values of k, a corresponding P 	 results.

The flutter frequency, however, is the one in which g-0, i.o.

P	 is real. This yi.eld., w and hence V (from k).

Preliminary results are presented in Figs. a and b and

compared with the ones of Ref. 10.
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3.	 Truncated Power Serie- Approximation to the Aerodynamic
Influence Coefficients

The flutter ar	 's can be greatly simplified (by cast-

ing it into a space-	 ;e format) if the aerodynamic influence

coefficients F	 are expressed as a truncated power series in
ij

the reduced frequency k

L l ^< l	
L t' `` r ` kZ 2 - I k^ j t î 	 Ci ^ l r^	 < 2' )

Preliminary results for the approximation of the aerodynamic

forces  with three-terms power series are presented in Figs. 1

to 18, which present the real and imaginary parts of the nine

aerodynamic coefficients relative to the f 4 rst two bending

modes (i=1 and 2 respectively) and one torsion mode (i=3) for

a rectangular uniform wing.* Note that in Fig. 1, and Fig. 9
the third order approximations replicate the actual value.,-.quite

.zccurately. Unfortunately, not all the coefficients were

represented precisely by the third order power series: see in

particular Fig. 5. In these particular cases, either higher

order potiar series or an iterative scheme must be used if

accurate approximations are desired.

These values were obtained with the procedure described
in Appendix A.

r
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4. Natural State Space Method

Combining Eqz. (1)	 and (2) one obtains, in the time domain

^'ix t k x	 t e i C 3 ;^', `F'	 2̂ X	 ,-	 1	 F_^ x	 T	 ^, k)_ U

6

which can be recast in the State Space	 format as

X
	 ( J	 p L

I U
— ^. U x

cl̂' x	 = O	 i U
^ U U _ j

,
x	 ^3^

(G' U ^ 3 I ktL ^ Mt E1

whe re

tz \V r

Y

By varying the values of V, standard root-locus techniques

can be employed to determine the roots as a function of the

velocity, and therefore the stability boundary (flutter speed).

Unfortunately, the validity of the State Space method is

contingent on the invertibility of the E 3 matrix. If F 3 is

ill conditioned, then small truncation or roundoff errors will

yield large variations in its inverse, modifying the dynamics

represented by Eq. (2).
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Preliminary results were not satisfactory. The problem

was traced down to the near-invertibility of the 
E3 

matrix.

For a typical evaluation of the coefficient matrices of the

power series, 
r3 

took on the following value

	8.15214	 -6.60933	 10.8940

I	 I
E 3 _	 -7.32938	 6.23561	 10.11678	 I

	

31.13977	 24.86876	 39. 647G9 .^
L

Note that the value of the determinant is D=.08. mote also

that the prodact of the three diagonal terms is approximately

cdu:-?l to 2000. This implies a very strong elimination of

significant figure, which is to be expected,since the first row

is approximately equal to the second multiplied by -1.04.

b.-A



1

8.

S.	 Pade's Space-State 1,!,.,tl,otl

The representation of F(s) can be expressed as a matrix

Made approximant in the form

l

which could yield a better approximation at high frequencies

than the power series approximation.

Introducing a new state variable:

Y	 L5 j A ]
•r
 	 i 1 6^

and modifying Eq. (5) , results in the following state space

model:

C,	 o	 r u

U	 N1	 O	 ^ ^	 t^	 j

Hatrices, A, 13 Q , B l , B 2 , are all dependant on E 3 1 . If E

is near singular, the accuracy of the Pade approximation

will be sensitive to truncation and roundoff error. 'rho

preliminary result.s were not satisfactory due, again, to

the near sin(lulzri`y of the the E 3 matrix.

•	 * Neglecting terms of order k 4 one oh..ai.ns:

A= E 3 1 E 2 , B0-=-AL''O, B 1 = E Q -11[; 1 , B2=1.1-AE2



G.	 Iterative State s2ace Mf-Ahou

In an effort to allevia::e the problem elicited by this

ill conditioned matrix, an iterative State Space method is

considered. in order to justify the method, consider the

simple equation

t ( x ) - t X' -r A Xt + b x r c = 0	 (1 - v,)

The amplitude of one of the roots of f(x) approaches

infinity as.E goes to zero. Bence, the root does not play

an important role in determining the locus of roots obtained

by varying the cocificients of the lower order terms,c(as

Long as it is in the ]eft hand side of the plane).

The other two roots may be obtained by solving by

iteration the quadratic equation

iti x	 r 10 .< 4 C- __ .-.;'

or

ci X i -+^ x } C n O

ct	 c `	 4 b 0
,vrith a=a + Ex, b-b .F E2 	 c = c+E 3x respcctively. Therefore

Eq.	 (3)	 is equivalent to yin the frequency domain)

(iti1r E,
•1	 1:Z

} x +	 L ^ x
A

(Gi 4Ljx_0

n
Lh	 L 1	-	 }. l

7
+	 s"	 F. 3 )	 or,	 in space-state format

(	 x I	 I	 u i v i-	 r

x , ( 	 ^:	 ^, + , L - . F , r	 5
where x l = sx.

9.
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I

It should be noted that the roots of Eq. (3) which aru

not obtainc .. are expected to be highly damped and therefore

of little interest.

Also it should be noted that a variation of the above

method is obtained if the actual value of E is used (by

employing obvious appropriate definitions for E0 and El in
each iteration).

Results using this method are now being obtained.
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7.	 Concluding Remarks

Severu l rtr^thods to solve the flutter equations have been

briefly described. Preliminary results have been presented.

The state-space method has certain advantages over t.':t

V-g method. Becaaso the approxiration to the aerodynamic

influence coefficients is a function of the complex variable

s, the truncated power serif's can be evaluated at point s off

the imaginary axis. 11once, eigenvalues obtained whica are

not purely imaginary have physical interpretation. In they

V-g method, eigenvalue_s obtained for which the value of g is

not identically zero have no physical meaning, but are merely

mathematically introduced.

T ry the V-q method, the value of k for a flutter crossing

is	 .i.i_st determined,	 then V is computed. If it is desired to

obtain the lowest value of V for which a crossing of the

imaginary axis occurs, k must sweep out to infinity, for the

redur •ed frequency varies aG I/V. In the new method, V is

directly inputed as a parameter, hence t;ie sweep can be deter-

mined at the first crossing. In the 11- 9 !;^othod, many flutter

crossings will occur.

In addition, system theoretic concepts can be employed in

the formulation of an active control solution to flutter. For

example, optimal control techniques can be carried out subject

to the dynamical constraints of the system. Also,expression

of the aerodynamic influence coeF.ficients- in the Rate variable

format enablr.s the analysis of nonlinear dynamics using variou3

nethocls such as multiple time scaling or th rr I,ie transform.

Pynamic stability of the wing under study can be evaluated as

well as overall system performanec,.
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APPLNDIX A

`	 t.VALUATION OF :tATRICES 
E 

Fig. 1 through Fig. 18 compare the polynomial approxi-

nations with the actual values of the aerodynamic influence

coefficients obtained by SOUSSA for each element of the force

matrix.. The value of the coefficients are plotted as a function

of the reduced frequency, k. The squares represent the actual

values while the triangles represent the polynomial approxi-

mation.

The coefficient matrices E D and F. 	 were obtained as

L 2 an;? E3 were computed as

N	 ^-

k'.

1. expression in brackets is constant if E(k) was equal to

a cubic polynomial within the ran ge of frequencies K  (i=1,...,^1).

REPRODUCTILM OF THF,,

ORIQENAL PAGE IS POOR
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