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l, Introduction

Presented here are various flutter-analysis techniques ob-
tained by approximating the aerodynamic-influence-coefficient matrix
(within the fluttcr range of the reduced frequency) in a form which
is convenient to write the dynamic equaticns of the aircraft in a

State Space format i.e., of the type

sx = Ax (1)

where s is the complex frequency, x is the state vector, A is a

f+ -uency-independent matrix or may be treated as such (for instance
if the problem is solved by iteration with A constant in each
iteration).

In recent years optimal structural design and active control
technology have gained an increasingly important role in the
improvement of aircraft performance; sophisticated techniques are
required, especially for flexible aircrafts. The optimal design
as well as the control-systems design involve the interaction of
numerous disciplines including structures, aerodynamics, aero-
elasticity, guidance and control.

It may be noted that for the analysis of flexible aircrafts
the equations of the aircraft dynamics may be cast in the format
of Eq. (1} (with constant A) by approximating the aerodynamic
matrix with the two lowest terms of their Taylor series around
k=0 (where k is the reduced frequency): This approximation is
used for instance in FCAP (Flight Control Analysis Program, Refs.
1l and 2) which is a general purpose program for the analysis of
flexible aircrafts of arbitrary shape with active control. The
low frequency formulation however is too restrictive for analysis
of flutter or even control-surface dynamics. In this case fully-
unsteady-aerodynamic influence coefficients are being used in

FCAP (Pefs. 1 and 2).
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In addition it should be noted that there exist already
aerodynamic codes capable of dealing with transient response
(analysis off the imaginary axis) such as SOUSSA (Refs. 3 to 8)
which is the most generul one presently available, since it
can be used for steady, oscillatory and fully unsteady, sub-
sonic and supersonic flows around aircrafts having arbitrary
shapes. Note that SOUSSA is the only fully unsteady code for
complex configurations.,* ;

However, the currently, available flutter-analysis routines
are limited to the analysis of the aerodynamic loads for purely
imaginary reduced frequenc'.es (oscillatory flow). This short-
coming is partly due to the fact that aerodynamic loads ob-
tained from existing aerodynamics calculation methods had been
limited until very recently to sinusoidal motions only and
hence the classical flutter analyses (such as the V.g method)
are limited to the imaginary axis. It is obvious that the
flutter analysis needs to be re-formulated if one wants to
talte full advantage of the transient response feature of the
aerodynamic routine SOUSSA.

The purvose of this paper is to present and assess
various methods for approximating the aerodynamic forces
so that the two basic features introduced above (State Space
formulation and off-the-imaginary axis analysis) are retained.
The advantages of retaining these features are considerable, not
only in simplifying the flutter analysis, but especially for
more advanced applications such as optimal design of active
control in which the flutter is merely a contraint to the

optimization problemn.

*S0USSA is used as aerodynamic subprograr inFcap,1.2




Therefore presented here are 3 procedures for the calcula-
tion of flutter frequencies and speeds. In additicn to the varia-
tions of the traditional V-g method, a new formulation incorporat-
ing state space techniques of the type gpﬁg is introduced. The
¢dvantages of the state space format are also presented.

Preliminary results are briefly described.




q.

9 v-q Method

The V-g method is briefly outlined here. Consider the

1€
Lagrange equation of motion for simple harmonic motion, e “’4’

..Ld"’_"_lf rUflt‘f/}K: +¢{ g(k)x = Q (1)

where x is the vector of the generalized Lagrangian coordin-
ates, M and K are the mass and stiffness matrices, q is the
dynamic pressure and E(k) is the aerodynamic influence matrix
(function of the reduced frequency k=w2/V)and g is a fictitious
damping coefficient introduced to avoid the use of complex

frequencies. With some algebraic manipulations, a standard

eigenvalue problem is resulted which has the form (Ref. 9)
(A-0I) x=0

where A is a function of k, It should be noted that 2 has
the expression

2 = (Eijg)z ( lf‘g)

For different values of k, a corresponding results.
The flutter frequency, however, is the one in which g=0, i.n.
0 is real. This yields w and hence V (from k).

Preliminary results are presented in Figs. a and b and

compared with the ones of Ref. 10.
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3 Truncated Power Series Approximation to the Aerodynamic
Influence Coefficients

The flutter ar ' 's can be greatly simplified (by cast-
ing it into a space- :e format) if the aerodynamic influence
coefficients E are expressed as a truncated power series in

ij

the reduced frequency k

E() = E, +1k E-K*E, -1 %28y 400 ) (B)

—_—

Preliminary results for the approximation of the aerodynamic
forces with three-terms power series are presented in Figs. 1
to 18, which present the real and imaginary parts of the nine
aerodynamic coefficients relative to the first two bending
modes (i=1 and 2 respectively) and one torsion mode (i=3) for
a rectangular uniform wing.* Note that in Fig. 1, and Fig. §
the third order approximations replicate the actual value; quite
accurately. Unfortunately, not all the coefficients were
represented precisely by the third order power series: see in
particular Fig. 5. 1In these particular cases, either higher
order powar series or an iterative scheme must be used if

accuratce approximations are desired.

* These values were obtained with the procedure described
in Appendix A,

5.
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4, Natural State Space Method

Combining Egs. (1) and (2) one obtains, in the time domain
(\Nitn 3':U)

hlx**—‘-%"’%(é—: EJ;.rgf E )'('-r_ép.‘i-rg,_k):o
— - V o= - VI. = & —" - ‘

which can be recast in the State Space format as

- -} . .
X ‘ LS 1 © ol ! O 1 *
V3] R :
= “"O I © i ST A (3)
. }': : A -~ A -~ X
' | O O £ K+t+E& £ M+ E,
= P e P i

where

By varying the values of V, standard root-locus techniques
can be employed to determine the roots as a function of the
velocity, and therefore the stability boundary (flutter speed).

Unfortunately, the validity of the State Space method is

contingent on the invertibility of the E., matrix. If E_, is

3 3
ill conditioned, then small truncation or roundoff errors will
yvield large variations in its inverse, modifying the dynamics

represented by Eq. (2).



Preliminary results were not satisfactory. The problem

was traced down to the near-invertibility of the E3 matrix.

For a typical evaluation of the coefficient matrices of the

power series, E, took on the following value

3

‘ 8.15214 -6.60933 10.8949 |
E, : | -7.32938 ' 6.28561 10.11678
¥-31.13977 24.86876 39.64769 |

Note that the value of the determinant is D=,08, Note also
that the product of the three diagonal terms is approximately
equrl to 2000. This implies a very strong elimination of
significant tigure, which is to be expected, since the first row

is approximately equal to the second multiplied by -1.04.
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5. Pade's Space-State Method

The representation of E(s) can be expressed as a matrix

Pade aPproximant in the form
EG) - [(5-A]"[B 158 +s°8,]

which could yield a better approximation at high frequencies
than the power series approximation.

Introducing a new state variable:

y < (s1-A)7[8 ¢s8 0528 ] x

and modifying Eq. (SL results in the following state space

model :
3 X 15 i e " o it O ¥
Z1 i en o Lk 6 <148
\
4 © -B, I w REE sl E s e
ll

Matrices, A, Bys By, B,, are all dependent on E; . I2 B

3
is near singular, the accuracy of the Pade approximation

will be sensitive to truncation and roundoff error. The
preliminary results were not satisfactory due, again, to

the near singularitv of the the E, matrix.

-3

* Neglecting terms of order k4 one obcains:

A=E-1E2, B

3 =—AE0, B1=E0-AE1. B

=E,=AE

0 > Wipe ¢ 2



6. Iterative State Space Method

In an effort to alleviate the problem elicited by this
ill conditioned matrix, an iterative State Space method is
considered. 1In order to justify the method, consider the

simple equation

bex) - ex? yaxt sbx+ec 2O (¢ »0)

The amplitude of one of the roots of f(x) approaches
infinity as £ goes to zero. Hence, the root does not play
an important role in determining the locus of roots obtained
by varying the cocificients of the lower order termsc(as
long as it is in the left hand side of the plane).

The other two roots may be obtained by solving by

iteration the quadratic equation

axtsbx+eczo

or

ax®* +bx + € = O

with a=a + Sx,'Bab + S?x c = c+£3x respectively. Therefore

Eg. (3) is equivalent to (in the freguency domain)

i

bé(fﬂr E;) X +.'§

i fris»

. S
XK. s+ 1 4+ & )Xz O

2 A ~
(with El = El + 52 E3) or, in space-state format

- -

where X, = sX,.
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It should be noted that the roots of Eq. (3) which are
not obtaine. are expected to be highly damped and therefore
of littie interest.

Also it should be noted that a variation of the above
method is obtained if the actual value of E is used (by
employing obvious appropriate definitions for Eb and ﬁl in
each iteration). 4 -

Results using this method are now being obtained.
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11.

p £ Concluding Remarks

Several nathods to solve the flutter equations have been
briefly ‘described. Preliminary results have been presented,

The state-space method has certain advantages over tho
V-g method. Because the approximation to the aerodynamic
influence coefficients is a function of the complex variable
8, the truncated power sericrs can be evaluated at points off
the imaginary axis. Hence, eigenvalues obtained which are
not purely imaginary have physical interpretation. 1In the
V-g method, eigenvalues obtained for which the value of g is
not identically zero have no physical meaning, but are merely
mathematically introduced,

Tn the V-g method, the value of k for a flutter crossing
ig .iust determined, then V is computed. If it is desired to
obtain the lowest value of V for which a croesing of the
imaginary axis occurs, k must sweep out to infinity, for the
redurad frequency varies as 1/V. 1In the new method, V is
directly inputed as a parameter, hence thie sweep can be deter-
mined at the first crossing. In the V-g method, many flutter
crossings will occur.

In addition, system theoretic concepts can be employed in
the formulation of an active control solution to flutter. For
example, optimal control techniques can be carried out subject
to the dynamical constraints of the system. Also,expression
of the aerodynamic influence coefficients in the state variable
format enables the analysis of nonlinear dynamics using various
methods such as multiple time scaling or the Lie transform.
Dynamic stability of the wing under study can be evaluated as

well as overall system performance.

-—



12,

APPENDIX A

EVALUATION OF 'ATRICES Ek

Fig. 1 through Fig. 18 compare the polynomial approxi-
mations with the actual values of the aerodynamic influence
coefficients ohtained by SOUSSA for each element of the force
matrix. The value of the coefficients are plotted as a function
of the reduced frequency, k. The squares represent the actual

values, while the triangles represent the polynomial approxi-

mation.

The coefficient matrices EO and E, were obtained as

E, ~ Pt’a,[é {L:.ulnj]

é; s muﬁ Lg U-:.Oul)j/c(?/

E2 and E3 were computed as

E .2 Z,Eeufg‘g(k,)jﬂ & /N

<
- &
A,

- L2y

i ™

L=y

Tl ’mﬁi"i‘l & & / /N

The expression in brackets is constant if E(k) was equal to

a cubic polynomial within the range of frequencies Ki (i), ..., N).,
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—— two dimensional airfoil
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Figure . a. Flutter speed as a function of @ /W, for a rectangular wing with
AR=16, M=0, + =0,1%, p=5, Xz =0.2, I, =0.5, and
NX =8, NY = 10, Results cre compared with exact solution
given by two dimensional airfoil theory (Ref.10) (Xp, = =0.2C).
b 2
b'ua e i I i
two dimensional
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@  present method
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1.0
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Figure b, Flutter spead os a function of 'u)I/J!Q for u rectangular wing with

AR=16, M=0, +=0.1%, =10, X4 =0.2, 1, =0.5 ord
MX = 8, NY = 10. Results are compa ed with exact solution
given by two dimensional airioil theory (Ref. lO)():EA = -0,2C).
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