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SIMULATION AND MODELING OF THE
DEEP SPACE RECEIVER INTERACTION WITH CHANNEL
DECODING PERFORMANCE
Harry W. Jones, dr.
Ames'Ré§éaréhﬁCéﬁtérA |

ABSTRACT

Computer models were deveToped in an attempt to reproduce the o ,A :

5 sequentxa] decoder computation curve of Deep-Space«Ngtwork (DSN)-ground oo

staf?onnregngQrs, by simulation of the binary data qutput of the .

gaussian~channei*with the‘carbier-phase]ock-1oopkand'the-subtarrierrdei:.'

modulator assembly. S1mu1at1ons*were run at b1t rates equal to the
powers of 2 frem 8 to 2048, and agreement W1th DSN data wWas genera11y
good above 32 bits per second. S1mu1at1on resuTts at data rates of 8,
16, and 32 bits- per second d1d not c1ose1y'match exper1menta1 data

This simulation provides a more accurate predlct1on of DOSN computat1on
Tengths than either current mathématiCa]*mode1s or‘simq1ations,withoutﬁ

both the subcarrier demodulator and carrier loop.

INTRODUCTION

The performance of Sequgntial_dgqoders‘andzthevihavior;of'th& -_. SRR

deap space netwbrk carrier 100p haVe beeh eXtehsiVé]y investigated5

but no sat1sfactory mathemat1ca1 model of sequentiaj decod1ng perform- st

kance-ex1sts for-medwum (10 to,TO bps) data rates. (Layiand) The ex-

' perimental,data;havennoisémbupstSssdue ptimarily'to;garrwer-tracknngaff R

errors (Hofman and,LumB), Théjnoise burStsLingrease—tﬁe prdbﬁbi}ity 

that a large number -Qf.....‘comtiut:ati ons ._w_i»fl'-_l;'-fb.e‘grifgq;;;ir;eqj.tq-adecp_d'ej--a_-:-'dagﬁa;?::, R S

* frame. Since the carrier phaselock Toop has been well described = = =




(Viterbi, Farnworth, Edelson, JPL), it was decided to attempt to re-
produce the data by simulating the channel and carrier phaSéTOCK-Toop;
The experimental data were collected at two. NASA deep space

communications facilities. An altérnating 1,0 symbol sequence was
used to PSK modulate a 32,768 Hz square-wave subcarrier which phase
modulated an S-band carrier. Data rates ranged from 16 to 4096
symbols per second in binary steps. Signal strength and medulation
index were set for various combinations of PC/NO2B10 and nOrma1izéd
symbol signal-to-noise ratio (ES/N;). The standard Deep Space
Network configuration of S-band receiver with 12 Hz threshold carrier
loop bandwidth, Subcarrier Demodulator Assembly (SDA), and Symbol
Synchronizer Assembly (SSA) were used. The raw data were digital mag-
netic tape recordings of the SSA outputs, quantized to 256 Tevels.
Thése-d&ﬁa-ﬁere;used,as ihputs to a program at Ames Rgsegggh Center
that simulates the Pioneer 10/11 rate 1/2, k=32 sequential decoder,
and an optimum rate 1/2, k=7 Viterbi decoder. Frame 1ength‘was 384
symbols; tail Tength was 48 symbols; and an upper 1imit of 10

h computatmns per frame was set.

The experimental data were used to generate a power budget for
each test (Table I). The arror probability corresponds to an Eg/N,
at the decoder input (E./N ). The modulation index and the E_/N
were used in computer programs based on Linsey's work (Linsey 1964,
Linsey 1968) to comphte the Es/N0 loss due to the carrier Toop (Rx)'
The 1osses'due to the subcarrier Toop (SDA) and bit synchronizer (SSA)
were taken from JPL 810-5. The compyted E/N, 1is in fair agreement

W1th measured Vaiues.



The basic simulation (mode 1) produces eight-Tevel quantized

data corresponding‘to an alternate 1,0 symbol seguanceiinput’td a- :
gaussian noise channel (Jaccbs)' Mode 2 adds a s1mulat1on of the 1;[
carrier phaselock Toop to the channe] s1mu1at1on, by reduc1ng E /N
according to the current phase error. Mode 3 similarly adds a-simu-
Tation of the subcarrier demodu]ator to the channel, and Mode 4
combines channel, carrier, and subcarrier simulations. Thé'node
numbers f011ow a slash in the graphs of the append1ces, S50 “that :
SIM 20-3/1 is a mode 1 simulation. As in mode 4, mndes 5 and 7 use
the carrier and sdbcarviek simulations, but in mode_5 the subcarr1er
Toop depends on the current carrier tracking ertqr, rather than the
average error, dnd in mode 7 the subcarrier loop depends bofhion'ﬁhe
current state of the carrier loop and the recent Channé1 noise.

Mode 6 is 1ike mode 3.in.that only the channel and §ubéarr§ef dre .

simulated, but in mode 6 the subcarrier loop depends on the current

channel noise. The computat1on curve simulations. of the modes with added

dependencies.(modes.5,_6, and 7) are~ppt“con515tent1yidszerent
from the simulations of the corresponding modes with no dépendenties.

Carr1er Phase Lock Loop S1muTat10n o

The carrier phase 1ock toop. s1mu1at1on is based on the ana1ys1s .

by.Viterbi, Farnsworth, and Edelson and on the DSN phase lock loop
specification (JPL). The exact DSN'parametevs are used to completely

- determine the simulation. The Timiter suppression factor is-. .-

included. The simulation block diagram and parameter computations are

given in Fig. T.




The values of the average cosine of the phase error { cos ¢ )
given by the simulation are plotted in Fig. 2. The measurements agree
closely with theory (Linsey 1964)(Viterbi, p. 111} especially for
high P /N ZBLO or for a ]1near1zed (sing = g) simulation. The variance
of the phase error (u-ﬁ) determines the loop signal-to-noise ratio

in the Tinear Toop model (Viterbi, p. 35, 93).

Again, the measurements plotted in Fig..3 agree closely with theory
at high P /NOZBL0 or when the loop is linearized. The minimum
PC/NOZFL is -8.16 dB corresponding to a maximum czﬁ and equal to

w /3, the variance of a uniform distribution of ¢ in the interval

-7, 7. The data for low PC/NQZBL is highly variable because of poor
Toop tracking and consequent high dependence of the phase reference
on the particular random noise sequence input to the simulation.

(The DSN experimental P N ZBLO is in the range 6 to 26 dB.) Ali the

receiver simulations use the nonlinear loop model.

Carrier Phase Lock Loop Simuiation Results

When the carrier phase lock loop simulation was combjned with
the channel simuiation two problems were observed. The program
run time was excessively Tang and speed was increased by an
average factor of 25 by reducing the noise spectral wiath (and
the noise sample rate).from the receiver IF bandwidth to a

noise bandwidth of several times the carrier loop bandwidth. The
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distribution of the simulated output data in the eight different
quantization bins differed greatly from the experimental data. For
best performance the quantization bin widths should be 0.5 o, where ¢
is the noise variance (Heller and Jacobs). The actual receiver bin
width is nominally fixed at 0.5 ¢ for a ES/N0 corresponding to 9%
error rate, and would be larger in terms of o for smaller errsr

rate. Since the data bin widths vary widely from the nominal values,
the simulation bin widths were made equal to the data bin widths for
each simulation.

A11 the simulations of the channel and phase Tock loop, except
three runs for which noc mode T {channel only) simulations were made,
are given in Appendix A.

The probability of error (PE) for the data and for the simuiations
are given in Table II. The Linsey loss (Rx) produced by the simu-
Tation is easily computed. The simulation PE corresponds to a given
ES/NO on the PSK error curve. The difference between this measured
ES/N0 and the simulation input Es/No is the Linsey loss. Except at
8 bps, the data and simulation values agree closely. The 8 bps simula-
tions designated R below have Rx adjusted to the simulation value.

The sequential decoding computation curves of the appendices are
approximately straight Tines of negative slope k on log-log graphs.
This is the Pareto distribution (Wozencraft and Jacobs, p. 440).

Probability (number of computations is greater than L) = POL"k



If the slopes of the data, the Gaussian simulation, and the phase Tock
loop simulation are measured at the Targest L where all the curves are

available, a numerical rating of the simulation can be mades; namely,

k . . - .
‘simulation kGausswn

Rating =
Kdata ~ kGaussian

The rating is the fraction of the difference beiween the data and
Gaussian slopes that is reproduced by the simulation. A rating of 1.0
would correspond to a perfect simulation, a rating of O would correspond
to a simulation no better than Gaussian. The ratings agree fairly
well with subjective evaluations of the full curves. Ratings for all
the carrier phase lock Toop simulations are given in Fig. 4. The
simulations are good at medium rates and poor at high and low rates.
This performance is what would be expected from theoretical
considerations. The noise equivalent bandwidth, BL, of the phase Tock
loop is directly obtainable from the loop parameters (Viterbi, p. 36)
(JPL spec.). If the bandpass is assumed to be rectangular, the Tow
frequency noise components are overemphasized and the correlation
time of the phase reference is increased. For a rectangular bandpass
of width ZBL, the phase autocorralation is of the (sin x)/x form, with
the first zero crossing at t = 1/(2B ), Using this as an overestimate
of the correlation time, the maximum number of symbols correlated is
2(rate)/2B . This number is given in Table III. At the high rates,
the number of pulses correlated is high but the carrier tracking loss

is very small. At the Tow rates the carrier loss is high, but the



phase error is uncorrelated between pulses. In both cases, the
simulation does not produce error bursts that would cause the de-
coding computation curve to depart from the Gaussian noise curve.

In the middie range of rates, losses are large and the number of
pulses correlated is significant. Here the data deviate most from a
Gaussian noise curve, and the simulations are reasonably close

to the data.

It seems apparent that, although the carrier phase Tock Toop
accounts for the largest deviations from Gaussian noise behavior, it
isn't fully responsible for all such deviations. The table also gives
the Tosses and number of symbols correlated for the subcarrier de-
modulator and for the symbol synchronizer. The correlations were
computed in the same way as carrier correlation (subcarrier BL
from 810-5, p. 2-76)(synchronizer B, from 810-5, p. 2-93,4). A1l
correlations are significant compared to the frame,1ength of 384
symbols, but the subcarrier Tosses ars larger. It was decided to add a
subcarrier demodulator sim:'ation to the receiver simulation.-

Subcarrier Phase Lock Loop Simu]ation

The subcarrier Toop simulation is similar to the carrier
simuiation, but it uses a soft limiter instead of a hard limiter, and
it also includes a loss due to data errors (since the data controis
suhcarrier phase and a data estimate is used to recover the subcarrier).
The subcarrier loop is a 1inear loop since the subcarrizr is a square
wave. The simulation is based on the analysis of Edelson and Brockman -
(1967, 1968). The simulation block diagram and computations are given

in Fig. 5.



The E./N, 1635 prbdutéd bylfhé simulation is in close agreement
| Lﬁfthjfhebfetica1~va1ues dérivéd from loop parameters, but, over a 25 dB
rahgé of input ESINO, the simulation loss differs by as much as .7 dB
From fhé.VETUES'éiVen'ih 810-5, Rev, D. The simulation is much closer
to 810-5 at values of E/N, mear 0 dB. Table IV Tists the power
budget (Table I) input. SpA 1osses', originally taken from 810-5,
) _Rev. C, and the s1mu1at1on SDA 1osses.

A11 of the sxmu1at1ons of uhe Gauss1an channel w1th the sub- |
 carr1er demodu]ator are g1Ven 1n Appendix B, and the s!ope rat1ngs are*'

' g1ven in F1g 6. below The rat1ngs are aT] qu1te ]ow, 1nd1cat1ng |

____that the. subcarr1er demodulator (SDA) 15 not a maJor cause of the data

dev1at1on from Gauss1an, espec1a11y when the dev1atnon is Targe.

__-Sxmulatnons Us1ng the Channe1 Carraer, and Subcarr1er

A11 the s1mu1atlons made us1ng both carrier and subcarr1er Toops
~are. g1ven 1n Append1x C and the s1ope rat1ngs are glven in F1g. 7.

,.The add1tnon of the Jubcarr1er Toop 1mproves the simulation at h1gh
frates, as shown bw the average slope rat1ngs, given in Fig. 8, This

- s reasonab?e,.51nce the d1fference betWeen the data and a Gaussian
..channe1 on1y s1mu1a1on is- smal1 at the h1gh rates, and the effect of

7thersubcarr1er demodu]ator is also sma11. At med1um rates the simulation
:15:on1yﬁs1ightlygchanged;frgm;th§ g§rrjer-on1y case. Appendix D,

‘pages T and 2,.shgwstcarrier only ( f2)'and carrief andzsﬁbcarrier

(/&5 /5, /7)~simuja£ions-for'ﬁwq,medium,rate runs. The 64.bps simulations. .
at Tower P. /N 2B (5 1, 40-5) differ more from the d#tg than

“'{fs1mu1at10ns.at-hjgher.chNOZBLo_(40-1,521v2}@_ The_app@ﬁent improvement
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Iat Tow rates is due to the use of the Linsey loss (Rx) found by the
carrier simuiation, rather than the original estimate at 8 bps. None
of the B or 16 bps simulations, with carrier or subcarrier or both,
differ significantly from the Gaussian channel simulations.

There are seven cases of repeated runs in Appendix C, and in
four of the five cases where probabiiities in the order of 10'3 are
plotted, the curves are noticeably different. This occurs because
there are only a few frames in a group of total probability of 10'3,
so that large relative fluctuations occur. The number of frames of
data and simulated data for each run is given in Table V. There are
also some similar data runs given ir Appendix D, pp. 3-6, which show
random fluctuations at low probability Tevels. Runs 14-3 and 35-3
are quite different because the bit synchronizer lost lock during 35-3,
as it did in all but four of twenty-four attempted runs at 8 bps. |

The performance parameter of most interest in sequential decoding
is the probability that the number of computations required is so
large that the decoder time allowed per frame will be insufficient, and
the frame will not be decoded. This is the deletion probability, Pde]’
which is given in Fig. 9 and 10, assuming that the maximum computation
Tength 1is 103. Each run is represented by a Tine with the top point
being Pde1 for the ¢1ta, and the lower points being simulations. The
curve is Pdel for a Gaussian channel. For the high rates, Fig. 9, the
simulations givgﬁgde1 corresponding to an ES!NO within .2 dB of the data
Ec/Njs except in three: of fburteén cases WHEre'the'ES/NO errors are .3,
.3, and .4 dB. For the Tow rates EslNo_errors vary from .3 to 2.0 dB.

The Viterbi error rates are not * %.lated.
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Concluding Remarks

The carrier simulation reproduces the large deviations from
Gaussian channel performance found at medium bit rates. The
additional simulation of the subcarrier improves the simulation's
agreement with the small deviations found at the higher bit rates.
The Targe, inconsistent deviations from Gaussian channel performance
at low bit rates were not reproduced. The symbol synchronizer was
not simulated, but its effects would be much smaller than those of
the subcarrier demodulator. | |

The DSN and the experimental data should be investigated to de-
termine the cause of non-Gaussian behavior at Tow rates.

The simulation could be used to find the moduiation index that
minimizes Pde] given total signal power. This wou1d'be significant .
design information.

The tradeoff could be examined between larger thermal noise (and
more errors) and Tower correlation time (and easier decoding of
errors) as the Toop bandwidths are increased.

A mathematical model of the DSN similar to Layland's, but with
greater accuracy, at high rates. could possibly be generated using

the simulation results.



TABLE I - INPUT DATA
Es/No In Exp't Unexplained

Rate (BPS) ID ©PE (%) MI (deg) Eg/Ny (dB) R, SSA SDA (dB) Eg/N, Losses (dB)
2048 20-3 7.60  45.0 .10 02 .07 .4 A3 1.12 .69
20-1 5.35  53.0 1.15 09 .06 .22 1.52  2.18 66
1024 32-1 5.11  53.0 1.25 g1 .06 .26 1.68  1.88 .20
. 12-11 6.74  63.5 149 75 .66 .27 1.07 1.4 .33
512 18-1 - 6.31  45.0 .70 15 .06 .35 1.26  1.60 .34
o 39-4 . 2.81  66.54 2.55 27 .05 .20 3.16  3.26 .10
256 . 7-1 8.27  66.5 -.17 80 .05 .17 .85 1.30 45
o 7-2  5.28  66.5 1.17 65 .05 .16 2.03  1.80 .23
128 43-2 438 56.0 1.60 58 .05 .21 2.3 2.72 .34
. 21-5 8.22  40.0 -.15 35 .08 .27 5571 16
64. 51 6.52  66.5 .58 2.00 .04  .20% 2.82  3.80 .98

- 40-5 5.14  66.5 1.25 1.70 .06 .27 3.28  3.28 -0
’ 40-1 4‘091 53.0 . 1.36 -82 -05 .27 204‘9 2056 .07
7-2 357 50.0 2.10 .80 .05 \24 3.19  3.11  -.08
L sp 382 407 42.0 1.85 .80 .05 .30 3.00 2.87  -.13
T 24-2 376 50.0 1.95 - 1.15 .05 .30 3.45  3.60 15
2227 355 40.0 2.05 65 .05 .30 3.05  3.07 02
16  23-5 2.98 37.0 2.45 .95 .08 .35 3,85 4,02 .19
241 268 45.0 2.65 1.45 .08 "31 1.52  4.44  -.08
8  12-3 7.51 3.7 .15 1.60 .12 .54 2.4 3.30 .89
C14-3 2,92 45.0 2.49 2.80 .08 A4 5.82  5.86 .04
35-5 4,55 40.0 1.53 2.22 .10 A7 4.32 3.80 .43
#Should
be .28

.20 used

_Ll-.
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TABLE II ~ CARRIER SIMULATION RESULTS

Linsey Loss
Data Rate PE (Rx)

iD BPS Data SIM Data SIM
20-3 2048 7.60 7.65, 7.66 .02 .03, .03
20-1 2048 5.35 5.25 .09 .10, .09
32-1 1024 5.11 5.1%, 5.10 Al A0, .09
12-11 1024 6.74 6.72 .25 .25

7-1 256 8.27 8.40, 8.36 .80 .85, .84

7-2 256 5.28 5.41 .65 .71

5-1 64 6.52 6.45, 6.45 2.00 1.96, 1,96
40-5 64 5.14 5.48 1.70 1.88
38-2 32 4.07 3.83, 3.84 .80 .70, .70
24-2 32 3.76 5.88 1.15 1.06
12-3 8 7.51 6.50 1.60 1.16
14-3 8 2.98 1.69 2.80 1.72



TABLE III - SUBSYSTEM CORRELATIONS AND LOSSES

CARRIER SUBCARRIER SYMBOL SYNC
Rate (BPS) ID 2By, #Correlated Loss (Ry) 2By, #Correlated Loss #Correlated Loss

2048 20-3 98 42.0° .02 3.0 1360 .24 800 .07
20-1 93 4.0 -00 3.2 1280 ‘22 800 |06

1024 32-1 83 25.0 .11 2.5 820 .26 300 .06
12-11 59 35.0 .25 2.3 890 .27 800 .06

512 18-1 62 17.0 .15 1.7 600 .35 800 .06
39-4 50 21.0 .27 2.4 430 .29 800 .05

256 7-1 30 17.0 .80 .2 2600 .17 800 .05
7-2 . 34 15.0 .65 3 1700 .16 800 .05

128 43-2 37 6.0 .58 .15 1700 .21 800 .05
21-5 51 5.0 .35 14 1800 .27 800 .08

64 5-1  20.5 6.2 2.00 .15 850 .20 800 .04
40-5  21.5 6.0 1.70 .15 850 .27 800 .06

40-1  31.5 4.1 .82 15 850 27 800 .05

21-2  37.0 3.5 .80 .15 850 .24 800 .05

37 38-2  34.0 1.9 .80 .08 800 .30 800 .05
- 24-2  28.0 2.3 1.15 .08 800 .30 800 .05
22-7  36.0 1.8 65 .08 800 -30 800 |05

16 23-5  32.0 1.0 .95 .08 400 .35 1000 .08
24-1  27.0 1.2 1.45 .08 400 . .34 1000 .08

8 12-3  24.5 .65 1.60 .05 320 .54 1000 .12
©14-3  23.0 .60 2.80 .06 260 .44 1000 .09

35-5  23.0 .65 2.22 .06 260 .47 1000 .10

-.Sl-
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TABLE IV - SUBCARRIER LOSS

SDA LOSS, dB
RATE 1D INPUT SIMULATION
2048 20-3 .24 .22

20-1 .22 ' .21

1024 32-1 .26 .27
12-11 .27 .28

512 18-1 .35 .34
39-4 .29 .32

- 256 7-1 A7 .18
7-2 .16 .18

128 43-2 21 .22
21-5 27 .28

64 5-1 .28 27
40-5 .27 .27

40-1 .27 .28

21-2° .24 .26

32 38-2 .30 .32
24-2 .30 .32

22-7 .30 .32

16 23-5 .35 .38
24-1 .34 .39

8 12-3 .54 .51
14-3 A4 A7

35-5 A7 .50
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TABLE V -~ NOUMBER OF FRAMES

# Frames # Frames
ID Data Similated
20-3 7214 5328
20-1 6958 ' 5328
32-1 6345 5328
12-11 5248 5328
18-1 5525 5328
39-4 4896 5328
7-1 1000 5328
7-2 3484 5328
43-2 5360 5328
21-5 2317 5328
5-1 11567 2664
40-5 3111 2664
40-1 2786 2664
21-2 2200 2664
38-2 1976 2131
24-2 1934 2131
2257 . 1960 2131
23-5 2131 1598
24~1 1875 1598
12-3 1150 1598
14-3 1156 1598

35-5 953 1598
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Figure 1. Carrier Loop Simulation
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Figure 5. Subcarrier Loop Simulation
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APPENDIX A

This appendix contains experimental data (EXP XX-X}, gaussian
channel only simulations (SIM XX-X/1), and gaussian channel with
carrier phase lock loop simulations (SIM XX-X and SIM XX-X/2). for
the following runs in order of decreasing rate.

Htmber of Carrier

Rate (BPS) Run Simulations Page
2048 20-3 2 27
20-1 o] 28
1024 32-1 2 24
12-11 1 30
512 -
256 o 7=1 2 31
7-2 1 32
128 -
64 5-1 2 33
40-5 1 34
32 38-2 2 35
24-2 1 36
16 -
8 12-3 i 37
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APPENDIX B

* This appendix contains experimental data (EXP XX-X), gaussian
channel only simulations (SIM XX-X/1), and gaussian channel with
subcarrier loop simuiations (SIM XX-X/3 and SIM XX-X/6), for the

following runs in order of decreasing rate.

‘ NumbEf of Carrier
Rate. (BPS) Run Simulations Page

2048 20-3 2 40
1024 32-1 1 41
512 - 0
256 7-1 1 42
128 - 0
64 5-1 2 43
40-5 1 44
32 38-2 2 45
24-2 1 46
16 — 0
8 12-3 1 47
14-3 1 48
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APPENDIX C

This appendix contains experimental data (EXP XX-X), gaussian
channel only simulations (SIM XX-X/1), and gaussian channel with both
carrier phase lock loop and subcarrier {SDA) phase lock loop
(SIM XX-X/4, SIM XX-X/5, SIM XX-X/7), for the following runs in order
of decreasing rate.

Number of Carrier
and Subcarrier

Rate (BPS) Run Simulations Page
2048 20-3 3 50
20-1 1 51
1024 32-1 3 52
12-11 1 53
512 18-1 1 54
39-4 b5
256 7~1 3 56
7-2 . 1 57
128 43-2 1 58
21-5 59
64 5-1 3 60
40-5 2 61
40-1 1 62
21-2 1 63
32 38-2 64
24-2 2 65

22-7 1 66 -
16 23-5 1 67
24-1 1 68
8 12-3 1 69
14-3 1 70
3585 1 71
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APPENDIX D

This appendix contains special graphs referred to in the test.

Run Page

7-1 73

5-1 74
32-1 & 19-1 75
38-2 & 38-1 76
143 & 35-3 77

Table of Run Data 78
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TABLE OF RUN DATA

p

_c

Rate (BPS) 1D MI PE E /N, N, 2B,
1024 32-1 53 5.17 1.25 22 .04
19-1 53 5.15 1.25 21.58

32 38-2 42 4,07 1.85 11.18

38-1 a5 4.08 1.85 10.32
8 14-3 45 2.92 2.49 7.03

35-3 45 2.99 2.45 7.03
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