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SIMULATION AND MODELING OF THE

DEEP SPACE RECEIVER INTERACTION WITH CHANNEL

DECODING PERFORMANCE

Harry W. Jones, Or.

Ames Research Center:

ABSTRACT

Computer models were developed in an attempt to reproduce the

- sequential decoder computation carve of Deep Space Network (DSN)`-ground

stat-on-,receivers, by simulation of the: binary data output of the

gaussian channel 'with. the .carrier phas.elock Ioop`and the subcarrier de-

modulator assembly. 	 Simulatibns here-rup at'bit rates equal to the

powers of 2 from 8 to 2048, and agreement wfth'DSN dat-A-.was generally

good above 32 bits per second.	 Simulation results at data rates of 82
:.

16, and 32 bits per second did not closely match experimental .data.

This simulation provides a more accurate..pred-iction of DSN computation

lengths than either current mathematical models or simulatiops without

both the subcarrier demodulator and carrier loop.

INTRODUCTION

The performance of sequential decoders and the ;behavior of the' a

deep space network carrier loop have been extensively investigated,

but no satisfactory mathematical model of sequential. decoding perform-
4

ance exists for medium (10 to - 10	 bps) data rates (Layland).-	 The ex-

perimental : data have noise ,bursts,: due primarily to carrier tracking

t	 errors (Hofman and,Lumb). 	 The noise bursas increase the probability

I.	 that a large number of.,:computations gill be required to decode a data

frame.	 Since the carrier phaselock loop has been-well described

-
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(Viterbi, Farnworth, Edelson, JPL), it was decided to attempt to re-

produce the data by simulating the channel and carrier phaselock loop.

The experimental data were collected at two.NASA deep space

communications facilities. 	 An alternating 1,0 symbol sequence was

used to PSK modulate a 32,768 Hz square-wave subcarrier which phase

modulated an S-band carrier. 	 Data rates ranged from 16 to 4096

symbols per second in binary steps. 	 Signal strength and modulation

index were set for various combinations of P c/No2Blo and normalized

symbol signal-to-noise ratio (E s/NQ}.	 The standard Deep Space

Network configuration of S-band receiver with 12 Hz threshold carrier

loop bandwidth, Subcarrier Demodulator Assembly (SDA), and Symbol

Synchronizer Assembly (SSA) were used.	 The raw data were digital mag-

netic tape recordings of the SSA outputs, quantized to 256 levels.

These data were. used as inputs to a program at Ames Research Center

that simulates the Pioneer 10/11 rated /2, k=32 sequential decoder,

and are optimum rate 1/2, k=7 Viterbi decoder.	 Frame length was 384

symbols; tail length was 48 symbols; and an upper limit of 105

computations per frame was set.

The experimental data were used to generate a power budget for

each test (Table I).	 The error probability corresponds to an E /Ns	 o
at the decoder input (ES/N

0
),	 The modulation index and the Es 

were used in computer programs based on Linsey's work (Linsey 1964,

Linsey 1968)to compute the E
S
 /No loss due to the . carrier loop (Rx).,

i

The losses due to the subcarrier loop . (SDA) and bit synchronizer (SSA);

were taken from JPL 810-5.	 The computed 'Es/HO is in fair agreement._,.
^f

with measured values.
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The Basic simulation (mode. l) produces eight-level quantized

ut . to adata corresponding to an alternate l,0 symbo l sequence i nY	 o	 p °^

gaussian noi se channel	 (Jacobs).	 Mode 2 adds a simulation of the y}

carrier phaselock loop to the channel simulation, by reducing E5/No

according to the current phase error. 	 Mode 3 similarly adds a- simu-

y	
lation of the subcarrier demodulator to the channel, and Made 4

combines channel, carrier, and subcarrier simulations.	 The rude
4

numbers follow a slash in the graphs of the appendices, so that

SIM 20-3/1 is a Made 1 simulation. 	 As in mode 4, modes 5 and 7 use

the carrier and subcarrier simulations, but in mode 5 the subcarrier

loop depends on the current carri er tracking error, rather than the

average error,. and in mode 7 the subcarrier loop depends both on the

current state of the carrier loop and the recent channel noise.

Mode 6 is like mode 3 in that only the channel and subcarrier are a

1

simulated, but in mode 6 the subcarrier loop .depends on the current
s

channel noise.	 The computation.curve simulations of the modes with added

dependencies (modes 5, .6, and 7) are not consistently differentfferent f.

from the simulations of the corresponding modes with no dependencies.

Carrier Phase Lock Loop Simulation

The carrier phase lock loop simulation is based on the analysis.i

by Vi terbi , Farnsworth, and Edelson and .sin the DSN phase lock loop

specification (JPL).	 The exact 0SN parameters are used to completely

determine the simulation. 	 The limiter suppression factor is

'	 included.	 The simulation block diagram and parameter computations-are

given : in Fig.	 1.
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Again, the measurements plotted in Fig..3 agree closely with theory

at high Pc/No2BLg or when the loop is linearized. The minimum

Pc/No2FL is -8.16 dB corresponding to a maximum a20 and equal to
7r2/3, the variance of a uniform distribution of 0 in the interval
-if, -r. The data for low P c/No2BL is highly variable because of poor

loop tracking and consequent high dependence of the phase reference

on the particular random noise sequence input to the simulation.

(The BSN experimental P	 in the range 6 to 26 dB.	 All thec
/N 

o
2B	 is

LO	 9	 ^	 ^I

receiver simulations use the nonlinear loop model.

Barrier Phase Lock Loop Simulation Results

When the carrier phase lock loop simulation was combined with

the channel simulation two problems were observed. The program

run time was excessively long and speed was increased by an

average factor of 25 by reducing the noise spectral wiath (and!

the noise sample rate).from the receiver IF bandwidth to a
I^

noise bandwidth of several times the carrier loop bandwidth. The

3

1.
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-distribution of the simulated output data in the eight different

quantization bins differed greatly from the experimental data. For

best performance the quantization bin widths should be 0.5 a, where a

is the noise variance (Heller and Jacobs). The actual receiver bin

width is nominaIIy fixed at 0.5 a for a E s/No corresponding to 9%

error rate, and would be larger in terms of a for smaller err-,,r

rate. Since the data bin widths vary widely from the nominal values,

the simulation bin widths were made equal to the data bin widths for

each simulation.

All the simulations of the channel and phase lock loop, except

three runs 'For which no mode I (channel only) simulations were made,

are given in Appendix A.

The probability of error (PE) for the data and'for the simulations

are given in Table II. The Linsey loss (R 
X

) produced by the simu-

lation is easily computed.. The simulation PE corresponds to a given

EsINo on the P5K error curve. The difference between this measured

EsINo and the simulation input EsINo is the Linsey Ioss. Except at

8 bps, the data and simulation values agree closely. The 8 bps simula-

tions designated R below have R  adjusted to the simulation value.

The sequential decoding computation curves of the appendices are

approximately straight lines of negative slope k on Iog--log graphs.

This is the Pareto distribution (Wozencraft and Jacobs, p. 440).

Probability (number of computations is greater than L) = Poi_...k

}

.3

I-

a
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is very small. At the low rates the carrier loss is high, but the

:i
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If the slopes of the data, the Gaussian simulation, and the phase lock

loop simulation are measured at the largest L where all the curves are

available, a numerical rating of the simulation can be made; namely,

Rating = 'simulation	 Gaussian

kdata	 kGaussian

The rating is the fraction of the difference between the data and

Gaussian slopes that is reproduced by the simulation. A rating of 1.0

would correspond to a perfect simulation, a rating of 0 would correspond

to a simulation no better than Gaussian. The ratings agree fairly

well with subjective evaluations of the full curves. Ratings for all

the carrier phase lock loop simulations are given in Fig. 4. The

simulations are good at medium rates and poor at high and low rates.

This performance is what would be expected from theoretical

considerations. The noise equivalent bandwidth, B L, of the phase lock

loop is directly obtainable from the loop parameters (Viterbi, p. 36)

(JPL spec.), If the bandpass is assumed to be rectangular, the low

frequency noise components are overemphasized and the correlation

time of the phase reference is increased. For a rectangular bandpass

of width 2B L , the phase autocorrelation is of the (sin x)/x form, with

the first zero crossing at t = 1/(2B L ) . Using this as an overestimate

i

ij

t

i

i

of the correlation time, the maximum number of symbols correlated is
	 1

2(rate)/2BL. This number is given in Table III. At the high rates,

the number of pulses correlated is high but the carrier tracking loss 	 4	 a
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phase error is uncorrelated between pulses. In both cases, the

simulation does not produce error bursts that would cause the de-

coding computation curve to depart from the Gaussian noise curve.

In the middle range of rates, losses are large and the number of

pulses correlated is significant. Here the data deviate most from a

Gaussian noise curve, and the simulations are reasonably close

to the data.

It seems apparent that, although the carrier phase lock loop

accounts for the largest deviations from Gaussian noise behavior, it

isn't fully responsible for all such deviations. The table also gives

the losses and number of symbols correlated for the subcarrier de-

modulator and for the symbol synchronizer. The correlations were

computed in the same way as carrier correlation (subcarrier BL

from 810-5, p. 2-76)(synchronizer B L from 810-5, p. 2-93,.4). All

correlations are significant compared to the frame length of 384

symbols, but the subcarrier losses are larger. It was decide.d.to  add a

subcarrier demodulator simWation to the receiver simulation.

Subcarrier phase Lock Loop Simulation.

The subcarrier loop simulation is similar to the carrier
	

h

simulation, but it uses a soft limiter instead of a hard limiter, and

it also includes a loss due to data errors (since the data controls 	 #..,

subcarrier phase and a data estimate is used to recover the subcarrier). 	 !.;

The subcarrier loop is a linear loop since. the subcarrier is a square

j;	 wave. The simulation is basted on the analysis of Edelson and Brockman

(1967, 1968). The simulation block diagram and computations are given
to

in Fig. 5.

a



The E
S A	 loss produced by the simulation is in close agreement 0

With.theoretical values derived from loopparameters, but, over a 25 dB

range of input	 Es /No , the simulation loss differs by as much as .1 dB

from the values given in 810-5, Rev. D.	 The simulation is much closer

to 810-5 at values of Es0/N	 near 0 dB.	 Table IV lists the power

budget (Table I) inpuODA losses, originally taken from 810-.5,

Rev. C, and the simulation SDA losses.

All..of the simulations of file Gaussian channel with the sub-

carrier demodulator are given in Appendix B, and the slope ratings are

given in Fig. 6. below.	 The ratings are all quite.low,, indicating

that thesubcarrier demddulator (SDA) is not a major cause of the data

t deviation from Gaussian, especially when the deviation is. large.

Simulations Using the Channel, Carrier, and Subcarrier

A1.1 the simulations made using . both carrier and subcarrier loops

are given in Appendix.C, and the slope ratings are gi. ven in Fig. 7.

The addition of the subearrier loop improves the simulation at high

.J 1 . rates:, as shown..I^y.the average slope ratings, given in Fig. 8.	 This

is reasonable, slnce. .the difference between the data and a Gaussian

..channel only simulai.on is small at the high rates, and •the.effect of

the subca.rrier demodulator is also small.	 At medium rates the simulation

is- Only. slightly changed . from the carrier only case.. 	 Appendix D,

I
^pages T . and 2, shows carrier only ( 12.) and carrier and subcarrier

V-431	 15,. /7). simulations for two medium -rate runs. 	 The 64 bps simulations. .

at lower Pc/NO2B L0 (5-1, 40-5) differ more from the data than

simulations.at higher P.c/NO2B LO (40. -1	 21	 The-apparent improvement

A
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I

at low rates is due to the use of the Linsey loss (Rx ) found by the
carrier simulation, rather than the original estimate at 8 bps. None

of the 8 or 16 bps simulations, with carrier or subcarrier or both,

differ significantly from the Gaussian channel simulations.

There are seven cases of repeated runs in Appendix C, and in

four of the five cases where probabilities in the order of 10 -3 are

plotted, the curves are noticeably different. This occurs because

there are only a few frames in a group of total probability of 10-3,

so that large relative fluctuations occur. The number of frames of

data and simulated data for each run is given in Table V. There are

also some similar data runs given in Appendix D, pp. 3-6, which show

random fluctuations at low probability levels. Runs 14-3 and 35-3

are quite different because the bit synchronizer lost lock during 35-3,

as it did in all but four of twenty-four attempted runs at 8 bps.

The performance parameter of most interest in sequential decoding

is the probability that the number of computations required is so

large that the decoder time allowed per frame will be insufficient, and

the frame will not be decoded. This is the deletion probability, Pdel,

which is given in Fig. 9 and 10, assuming that the maximum computation

length is 103 . Each run is represented by a line w?th the top point

being Pdel for the Cita, and the lower points being simulations. The

curve is Pde •i for a Gaussian channel. For the high rates, Fig. 9, the

simulations gi.v9,Pdel corresponding to an Fs/No within .2 dB of the data

Es/No , except in three , of fourteen cases where the is/Na errors are .3,	 is

.3, and .4 dB. For the low rates Fs /No errors vary from .3 to 2.0 dB.

The Viterbi error rates are not t"^,,lated.
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Concluding Remarks.,

The carrier simulation reproduces the large deviations from

Gaussian channel performance found at medium bit rates. The
3.

additional simulation of the subcarrier improves the simulation's

agreement with the small deviations found at the higher bit rates.

The large, inconsistent deviations from Gaussian channel performance 	
{.'

at low bit rates were not reproduced. The symbol synchronizer was

not simulated, but its effects would be much smaller than those of

the subcarrier demodulator.

The DSN and the experimental data should be investigated to de-

!	 termine the cause of non-Gaussian behavior at low rates.

The simulation could be used to find the modulation index that

minimizes Pdel given total signal power. This would be significant

design information.

The tradeoff could be examined between larger thermal noise (and

more errors) and Iower correlation time (and easier decoding of

errors) as the loop bandwidths are increased.

A mathematical model of the DSN similar to Layland's, but with

greater accuracy, at high rates, could possibly be generated using

the simulation results.



EsjNo 
In

Exp I t Unexplained pc
Rate (BPS) TD PE (%) MI (deg) Es/No (dB) Rx SSA SDA [dB) Es/No Losses (dB)

2048 20-3 .7.60 45.0 .10 .02 .07 .24 .43 1.12 .69 25.76
20-1 5.35 53.0 1.15 .09 .06 .22 1.52 2.18 .66 24.39

1024 32-1 5.11 53.0 1.25 .11 .06 .26 1.68 1.88 .20 22.04
12-11 6.74 63.5 .49 .25 .06 .27 1.07 1.4 .33 17.11

512 18-1 6.31 45.0 .70 .15 .06 .35 1.26 1.60 .34 17.56
39-4 2.81 66.54 2.55 .27 .05 .29 3.16 3.26 .10 15.22

256 7-1 8.27 66.5 -.17 .80 .05 .17 AS 1.30 .45 9.92
7-2 5.28 66.5 1.17 .65 .05 .16 2.03 1.80 .23 11.10

x^
128. 43-2 4.38 56.0 1.60 .58 '.05 .21 2.38 2.72 .34 12.25

21-5 8.22 40.0 -.15 .35 .08 .27 .55 .71 .16 15.47

64. 5.1 6.52 66.5 .58 2.00 .04 .20* 2.82 3.80 .98 5.87
40-5 5.14 66.5 1.25 1.70 .06 .27 3.28 3.28 .0 6.31
40-1 .4.91 53.0 1.36 .82 .05 .27 2.49 2.56 .07 10.31
21-2 3.57 50.0 2.10 .80 .05 .24 3.19 3.11 - .08 11.94

32 38-2 4.07 42.0 1.85 .80 .05 .30 3.00 2.87 - .13 11.18
24--2 3. 76 50.0 1.95 1.15 .05 .30 3.45 3.60 .15 9.19
22-7 3.5'5 4'0.0 2.05 .65 .05 .30 3.05 3.07 .02 11.85

Y	 '

16 23-5 2.98 37.0 2.45 .95 .08 .35 3.85 4.02 .19 10.55
24-1 2.69 45.0 2.65 1.45 .08 .34 4.52 4.44 -.08 8.78

` 8 32-3 7.51 31.7 .15 1.60 ,12 .54 2.41 3.30 .89 7.85
r 14-3 .2.92 45.0 2.49 2.80 .08 .44 5.82 5.86 .04 7.03

35-5 4.55 40.0 1.53 2.22 .10 .47 4.32. 3.89 -.43 7.10

*Should
be .28
.20 used

L

i
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TABLE II - CARRIER SDULATIOI RESULTS

Linsey Lass
Data Rate PE (RX)

ID BPS Data Sim Data Sim

20-3 2048 7.60 7.65, 7.66 .02 .03, .03
20-1 2048 5.35 5.25 .09 .10s .09

32--1 1024 5.11 5.11, 5.10 .11 .10, .09
12-11 1024 6.74 6.72 .25 .25

? -1 256 8.27 8.40, 8.36 .80 .859 .84
7-2 256 5.28 5.41 .65 .71

5-1 64 6.52 6.45, 6.45 2.00 1.96, 1.96
40-5 64 5.14 5.48 1.70 1.88

38-2 32 4.017 3.83, 3.84 .80 .709 .70
24-2 32 3.76 3.88 1.15 1.06

12-3 8 7.51 6.50 1.60 1.16
14-3 8 2.98 1.69 2.80 1.72
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TABLE III - SUBSYSTEM CORRELATIONS AND LOSSES

CARRIER SUBCAFtRIBR SYMBOL SYNC

Rate (BPS) ID 2BL #Correlated	 Loss (Rx) 2BL #Correlated boss #Correlated Loss

2048 20-3 98 42.0- .02 3.0 1360 .24 800 .07
20-1 93 44.0 .09 3.2 1280 .22 800 .06

1024 32-1 83 25.0 .11 2.5 820 .26 800 .06
12'-11 59 35.0 .25 2.3 890 .27 800 .06

512 18-1 62 17.0 .15 1.7 600 .35 800 .06
39-4 50 21.0 .27 2.4 430 .29 800 .05

256 7-1 30 17.0 .80 .2 2600 .17 800 .05
7-2 34 15.0 .65 .3 1700 .16 800 .05

128 43-2 37 6.9 .58 .15 1700 .21 800 .05	
w

21-5 51 5.0 .35 .14 1800 .27 800 .08

64 5-1 20.5 6.2 2.00 .15 850 .20 800 .04
40-5 21.5 6.0 1.70 .15 850 .27 800 .06
40-1 31.5 4.1 .82 .15 850 .27 800 .05
21-2 37.0 3.5 .80 .15 850 .24 800 .05

32 38-2 34.0 1.9 .80 .08 800 .30 800 .05
24-2 28.0 2.3 1.15 .08 800 .30 800 .05
22-7 36.0 1.8 .65 .08 800 .30 800 .05

16 23-5 32.0 1.0 .95 .08 400 .35 1000 .08
24-1 27.0 1.2 1.45 .08 400 .34 1000 .08

S 12-3 24.5 .65 1.60 .05 320 .54 1000 .12
14-3 23.0 .69 2.80 .06 260 .44 1000 .09
35-5 23.0 .65 2.22 .06 260 .47 1000 .10

...ti.y.. ..4va.aW.,^__ ^•- 	 _ _.a... :..mow.	 ... ...	 ^.v..s:.^...uai.s.a. ^	 ^.,.... ..	 _ n^ _.._.,	 _	 ^f. ^i
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TABLE IV - SUBCARRTER LOSS

SDA LOSS, dB

RATE ID INPUT	 SIMULATION

2048 20-3 .24 .22
" 20-1 .22 .21

1024 32-1 .26 .27
" 12-11 .27 .28

i	 512 18-1 .35 .34
39-4 .29 .32

256 7-1 .17 .18
7-2 .16 .18

128 43--2 .21 .22
21-5 .27 .28

64 5-1 .28 .27'
40--5 .27 .27
40-1 .27 .28
21-2" .24 .26

32 38-2 .30 .32
24-2 .30 .32
22-7 .30 .32

16 23--5 .35 .38
24--1 .34 .39

8 12-3 .54 .51
14-3 .44 .47
35-5 .47 .50
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TABLE V - NUBER OF FRMES

ID
# Frames

Data
# Frames

Simulated

20-3 7214 5328
20-1 6958 5328

32-1 6345 5328
12-11 5248 5328

18-1 55:3 5328
39-4 4896 5328

7-1 1000 5328
7-2 3484 5328

43-2 5360 5328
21-5 2317 5328

5-1. 11567 2664
40-S" 3111 2664
40-1 2786 2664
21-2 2200 2664

38-2 7976 2131
24-2 1934 2131
22-7 1960 2131

23-5 2131 1598
24-1 1875 1598

12-3 1150 1598
14-3 1156 1598
35-5 953 1598
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Figure 1. Carrier Loop Simulation

a = 8, KL = 246.5, BzP = 2,000, N = MM
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APPENDIX A

This appendix contains experimental data ( EXP XX-X), gaussian

channel only simulations (SIM XX -X/1), and gaussian channel with

carrier phase lock loop simulations (SIM XX-X and SIM XX-X/2), for

the following runs in order of decreasing rate.

Number of Carrier
Rate BPS	 Run	 Simulations	 Page

	

2048	 20-3	 2	 27

	

20-1	 1	 28

	

1024	 32-1	 2	 24

	

12-11	 1	 30

	

512	 --

	

256	 7-1	 2	 31

	

7-2	 1	 32

	

128	 --

	

64	 5-1	 2	 33

	

40-5	 1	 34

	

32	 38-2	 2	 35

	

24-2	 1	 36

	

16	 --

	

8	 12-3	 1	 37

	

14-3	 1	 38
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APPENDIX B

This appendix contains experimental data (EXP XX-X), gaussian

channel only simulations (SIM XX-X/1), and gaussian channel with

subcarrier loop simulations (SIM XX-X/3 and SIM XX-X16), for the

following runs in order of decreasing rate.
1

Number of Carrier

u	 Pate	 BPS Run	 Simulations Page

2048 20-3	 2 40 I
i.

IO24 32-1	 1 41

512 0

256 7-1	 1 42

128 ---	 0

- 64 5-1	 2 43 s	 `;;
40-5	 1 44

32 38-2	 2 45
24-2	 1 46 J

16 ---	 0
t

8 12-3	 1 47
14-3	 1 48
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APPENDIX C

This appendix contains experimental data (EXP XX-X), gaussian
i

channel only simulations (SIM XX-X/1), and gaussian channel with both
I

carrier phase lock loop and subcarrier (SDA) phase lock loop

(SIM XX-X/4, SIM XX-X/5, SIM XX•-X/7), for the following funs in order

of decreasing rate.

Number of Carrier
and Subcarrier

Rate (BPS) Run	 Simulations Page
a

2048 20-3	 3 50
20-1	 1 51

1024 32-1	 3 52
12-11	 1 53

512 18-1	 1 54
39-4	 1 55 -`

256 7-1	 3 56
7-2	 1 57

128 43-2	 1 58
21-5	 1 59 3

64 5-1	 3 60
40-5	 2 61
40-1	 1 62

i
21-2	 1 63

-

32 38-2	 3 64
24-2	 2 65
22-7	 1 66 j

16 23-5	 1 67
24-1	 1 68

8 12-3	 1 69
14-3	 1 70
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APPENDIX D

This appendix contains spacial graphs referred to in the test.

Run	 Page

7-1	 73

5-1	 74

	

32-1 & 19-1	 75

	

38-2 & 38-1	 76

	

14-3 & 35-3	 77

Table of Run Data	 78
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TABLE OF RUN DATA

Pe

Rate (BPS) ID MI PE Es/N0 NQ2BLO

1024 32-1 53 5.1. 1.25 22.04
19-1 53 5.15 1.25 21.58

32 38-2 42 4.07 1.8.5 11.I8
38-1 45 4.08 1.85. 10.32

8 14-3 45 2.92 2.49 7.03
35-3 45 2.99 2.45 7.03
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