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FOREWORD -

This document describes work conducted and completed by 

Pratt & Whitney Aircraft Division of United Technologies 
Corporation-under the -Alternate Fuels Addendum- to-Phase
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Administration (NASA) Lewis Research Center in com­
pliance with the requirements of Modifications No. 2 and No. 3 

of Contract NAS3-18544. 

The authors of this report wish to acknowledge the guidance
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R. Niedzwiecki of the NASA Lewis Research Center and
 
Mr. A. R. Marsh of Pratt & Whitney Aircraft.
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SUMMARY
 

An experimental program was conducted to investigate exhaust emissions, performance, and 
durability characteristics of advanced technology, low-pollution combustors operating with 
fuels which represent composition and physical property changes which might result from 
future broadened aviation turbine fuel specifications or use of synthetically derived crude 
feedstocks. The scope of the program was restricted to investigation of increases in final 
boiling point and aromatic content. The four test fuels included commercial grade No. 2 
Diesel and No. 2 Home Heat oils and specially prepared blends of Jet A with Xylene and 
with Naphthalene blending stocks. The Alternate Fuels program was conducted as an ad­
dendum to the Experimental Clean Combustor Program (ECCP), Phase II, and the technical 
effort was integrated with the ECCP testing to allow back-to-back evaluation of the test . 
fuels and the baseline Jet A fuel. The program included evaluation of the Hybrid and Vor­
bix combustor concepts. 

Results of the program indicate a significant increase in CO and a small increase in NO x emis­
sions at Idle. In the case of the Vorbix combustor, THC emissions increased at the simulated 
Idle condition when using the subject fuels. Minimal difference in gaseous emission levels was 
observed at high power. The two combustor concepts exhibited different responses in exhaust 
smoke level and altitude stability. Exhaust smoke increased with increasing fuel aromatic 
content for the Vorbix combustor, which employs direct liquid fuel injection pilot and main 
zone designs. The Hybrid combustor, which employs intrinsically low smoke, premix-type 
burning zones, exhibited no significant increase in exhaust smoke. Altitude stability (blow 
out) was not affected for the Vorbix combustor, but was substantially reduced relative to the 
Jet A baseline for the Hybrid concept. 

Severe carbon deposition was observed in both combustors following the limited endurance 
testing using No. 2 Home Heat fuel, indicating a potentially detrimental effect on engine 
hot section durability. No consistent trend to increased liner temperature was indicated 
with increasing fuel aromatic content. 
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INTRODUCTION
 

This report presents exhaust gas emissions, engine performance, and component durability 
measurements from two advanced-technology, low-emission combustor concepts operated 

with four special fuels and Jet A fuel. The objective of the-program.is-to-provide-a prelim­

inary assessment of the pollution and performance impact of broadened fuel specifications 

for combustors designed to attain Environmental Protection Agency (EPA) standards. The 

scope of tiis program was limited to investigation of two specific changes to current avia­

tion turbine fuel specifications, increased aromatic concentration and increased final boiling 

point, both of which might be necessary for synerude derived fuels. 

The United States is currently importing approximately thirty percent of the petroleum 

consumed in this country. Continuing depletion of domestic crude oil reserves makes it 

highly desirable that substitute fuels be developed from other resources such as shale oil or 

coal. Since aviation gas turbine fuels represent a significant percentage of the total petro­

leum consumption in the United States, it is appropriate that fuels produced from non­

petroleum sources be considered for this application. Due to economic and other considera­

tions, synthetic fuels may not meet present aviation turbine fuel specifications. In addition, 

a broadening of these specifications would permit a relative increase in supply from petro­

leum feedstocks. Although broadening of the fuel specifications may increase the supply of 

aviation turbine fuels, it may also incur penalties to exhaust gas emissions, engine perform­

ance, and/or component durability. 

The Alternate Fuels program was conducted as an addendum to the NASA/P&WA Experi­

mental Clean Combustor Program, Phase II (Reference 1). Testing of the subject fuels was 

conducted on two advanced combustor concepts (the Vorbix concept and the Hybrid con­

cept) following evaluation under the basic ECCP Phase II program. American Society for 

Testing Materials (ASTM) Jet A fuel was used as a baseline for comparison purposes. Test­

ing was conducted in a 90-degree sector test rig simulating the 1T9D engine combustor en­

velope and at simulated engine Idle and Sea Level Take-Off (SLTO) conditions. All com­

bustor inlet conditions were the same as those produced in the engine except for inlet pres­

sure at SLTO, which was limited to 6.8 atmospheres by test facility airflow capacity. The 
Suitable correctioncorresponding inlet pressure produced in the engine is 21.7 atmospheres. 

factors were applied to the gaseous emission data to account for this difference. Smoke 

levels arc presented as measured rig values. 

2
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CHAPTER I PROGRAM DESCRIPTION 

The Alternate Fuels program was-conducted concurrently with, and as an addendum to, 
the Experimental Clean Combustor Program (ECCP) Phase II, Contract NAS3-18544, 
during the last six months of 1975. The program was aimed at investigating exhaust emis­
sions, performance, and durability aspects of low pollution combustors operating with test 
fuels that simulate specific characteristics of possible synthetic and petroleum fuels with 
broadened specifications. The four test fuels,,No. 2 Diesel, No. 2 Home Heat, Jet A + 
Xylene bottoms, and Jet A + Naphthalene blending stock, were chosen to provide indica­
tions of the effects of increased boiling point and increased aromatic content (lower percent 
hydrogen). 

The major program tasks included high pressure screening tests of the Hybrid and Vorbix 
concepts with the four test fuels, altitude relight tests with the No. 2 Home Heat fuel, and 
high pressure endurance testing, again with the No. 2 Home Heat fuel. 

The screening tests were conducted at the high pressure test facility, test stand X-903. The 
Hybrid and Vorbix combustor concepts were evaluated at simulated Idle and Sea Level 
Take-Off conditions with the four test fuels and the baseline fuel, Jet A. Data acquired in­
cluded emissions, performance characteristics such as Idle stability and pattern factor, and 
liner temperature data. 

Following the fuels screening tests at the high pressure facility, both combustor concepts 
were tested at the altitude relight test facility, stand X-306. No. 2 Home Heat fuel was 
selected for these tests since this fuel was expected to exhibit the greatest deficiency due to 
the combined increases in aromatic content and final boiling point. 

The Hybrid and Vorbix combustors were then returned to the high pressure test facility for 
endurance testing. Each combustor concept was modified in a manner dictated by the 
pollution reduction and performance objectives of the basic Phase 11 program, consistent 
with improvement of problem areas identified in the alternate fuels screening tests. The 
endurapce testing consisted of four hours of continuous operation at SLTO, followed by 
visual hardware inspection, and four hours of operation at Idle conditions. No. 2 Home 
Heat was chosen as the test fuel because it represented the combination of properties ex­
pected to have the greatest impact on durability. The endurance testing was intended to in­
dicate carbon deposition and nozzle coking problems rather than to predict areas of long 
term hardware deterioration. 

3 
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CHAPTER II EQUIPMENT AND EXPERIMENTAL PROCEDURES 

A. Test Combustors 

The evaluation of the four subject fuels was conducted on Hybrid combustor configuration 

H-6 and the Vorbix combustor configuration S-20. Endurance testing with No. 2 Home 

Heat fuel was conducted on Hybrid combustor configuration H-7 and the Vorbix combustor 

configuration S-22. All testing was conducted' in 90-degree sector rigs simulating the JT9D 

engine combustor envelope. Design features of the Phase II ECCP Hybrid and Vorbix corn­

bustor concepts are shown in Figures 1 and 2, respectively. A more detailed description of 

each combustor concept is provided in the ECCP Phase II Final Report (Reference 1). Spe­

cific design information, including liner hole area distribution, is contained in Appendix A. 

Hybrid combustor configuration H-6 utilized hollow-cone, pressure atomizing pilot nozzles 

and low AP main fuel injectors. This configuration had no pilot or main dilution air, but 

had increased pilot flameholder and main zone bulkhead cooling. Configuration H-7 dif­

fered from configuration H-6 in the substitution of solid-cone, pressure atomizing pilot fuel 

nozzles. 

Both Vorbix combustor configurations S-20 and S-22 utilized pressure atomizing pilot and 

main fuel nozzles. The principal differences between these configurations were liner airflow 

distribution changes affected by modifications to the inlet hood geometry, revised pilot 

bulkhead cooling, and increased pilot airflow through use of a larger pilot swirler. 

B. Fuels Description 

The properties of synthetic aviation fuels will depend heavily on the raw materials available 

and the refining processes used. The four fuels selected for this program were intended to 

provide a cross section of possible synthetic fuel characteristics. Fuel properties specifically 

addressed in this program were aromatic content and final boiling point. 

The four test fuels included: 

o No. 2 Diesel (commercial grade) 
* No. 2 Home Heat (commercial grade) 
* Jet A + Xylene Blend 
* Jet A + Naphthalene Blend 

Analyses of the Jet A baseline and the subject fuels are presented in Table I. 

The No. 2 Diesel and No. 2 Home Heat fuels tested were commercially available No. 2 oils. 

Both fuels had similar boiling ranges with a final boiling point 40 to 50 K higher than the 

Jet A specification (ASTM D-1 655). Both fuels also contained higher aromatics than the 

Jet A specification, No. 2 Diesel with 27.0 percent and No. 2 Home Heat with 38.5 percent. 
The No. 2 Diesel and Home Heat fuels selected for this program provide two levels of 

4 



TABLE I 

ANALYSIS OF TEST FUELS 

ASTM D-1655 P&WA TEST FUELS 

Specific Gravity 289/289 K 

Viscosity @311 K, (m2 /s) 
@ 292K, (m2 /s) 

Flash Point K 

Heat of Combustion, Net (j/kg) 

Freezing Point K 
Sulfur (wt. %) 
Nitrogen (ppm) 
Aniline Point (K) 
Luminometer Number 
Distillation (K) 

Initial Boiling Point 
10% 
20% 
30% 

40% 
50% 

60% 

70% 

80% 
90% 

Final Boiling Point 
Recovery (vol. %) 
Residue (vol. %) 
Loss (vol. %) 
Aromatics (vol. %) 
Olefins (vol. %) 
Hydrogen (vol. %) 
Hydrogen to Carbon Ratio 
Naphthalenes (vol. %) 

Jet A 
Specification 

0.7753-0.8398 

-
358 

42.8 X 106 min 

233 
0.3 max 

45 min 

-
500 max 

-


506 max 

-

-

-

-

561 max 

1.5 max 
1.5 max 

20 max 


3.0 

Jet A 
Baseline 

0.8151 

61.57 X 10­
-2.16 X 10 6 

327 
43.2 X 106 

228 
0.034 
5 
335 

44 

441 
459 

467 
477 

483 
489 

496 

503 

513 

524 
548 
98.0 
1.2 
0.8 
18.0 
0.4 
13.71 
1.89:1 
2.1 

No. 2 
Diesel 

0.8519 

2.75 X i0- 6 

4.23 X 10- 6 
347 
42.7 X 106 

253 
0.24 
42 
335 

33 

456 
495 

508 

517 

524 
532 

540 

550 

562 

580 
605 
97.5 
2.1 
0.4 
27.0 
0.3 
12.97 
1.78:1 
7.1 

No. 2 
Home Heat 

0.8623 

2.32 X 10-6 
- 63.47 X I0

327 
42.5 X 106 

257 
0.18 
93 
324 

21 

437 
474 

493 

507 

518 
528 

538 

550 

561 

579 
607 
98.0 
2.0 
0.0 
38.5 
0.7 
12.33 
1.68:1 
10.9 

Jet A + 
Xylene 

0.8358 

1.05 X 10- 6 

61.37 X 10­

316 
42.3 X 106 

216 
0.02 

6 

300 

23 

422 
437 

442 
446 

451 

458 

468 

480 

493 

506 
533 
98.0 
1.0 
1.0 
47.9 
0.5 
12.20 
1.66:1 
1.3 

Jet A + 
Naphthalene 

0.8571 
61.50 X 10- o 
62.08 X 10­

333 
42.2 X 106 

229 
0.03 
5 
315 
24 

442 
468
 
476
 
483
 
487
 
491
 
495
 
499
 
505
 
514 
536 
98.5 
0;9 
0.6
 
35-5
 
0.4 
12.15 
1.65:1 
16.2 
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increased aromatic content relative to the Jet A baseline, at approximately constant final 

boiling point. The No. 2 Home Heat contained a higher percentage of complex naphthalenic 

aromatics and a significantly lower percent of hydrogen when compared to the Jet A base­

line. 

The two custom blended, Jet A based fuels were supplied by the Ashland Oil and Refining 
The first of these fuels was blended from an in-specificationCompany, Ashland, Kentucky. 

Jet A base fuel (approximately 65 percent) and a blend of alkyl-benzene aromatic compo­

nents (approximately 35 percent), described as "xylene bottoms". The second of these 

fuels was blended from the same Jet A base fuel (approximately 75 percent) and.a.naphltha­

lene charge stock (approximately 25 percent) containing greater than 50 percent naphtha­

lene precursors. A representative analysis of the naphthalene stock-used in the Jet A + 

Naphthalene blend is given in Table II below! 

TABLE It 

TYPICAL NAPHTHALENE BLENDING STOCK ANALYSIS 

Weight PercentComponent 

3.0benzene, toluene, xylenes 
13.7alkyl aromatics-(not naphthalenes) 
0.5indane 
4.3indene 
5.1tetralin 

19:9naphthalene 
33.1dimethyl naphthalene 
13.6biphenyl naphthalene 

higher boiling naphthalenes 6.3 
0.5other 

These aromatics might be expected in alternate gas turbine fuels since most either occur 

naturally or derive from conventional refining techniques. 

The two blended fuels were chosen to simulate a synthetic fuel with a boiling range within 

the Jet A specification but with a percent hydrogen about 1.5 to 2.0 percent lower than a 

typical Jet A fuel. The aromatics exceeded the Jet A specification by magnitudes of two to 

three. The two blended fuels were designed to permit identification of the effect of aroma­

tic type (simple versus complex) at approximately constant final boiling point and hydrogen 
content. 

Certain other requirements of the Jet A specification, such as freezing point and luminometer 

number, as well as operational requirements such as resistance to thermal decomposition 
For these reasons, the test fuels mayand oxidation, have not been met by the test fuels. 

not be representative of actual aircraft quality fuels having these values of final boiling point 

and aromatic content. In fact, relaxation of the final boiling point and aromatic content 

6
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may prove incompatible with maintenance of the other requirements of the Jet A specifica­
tion. However., the fuels selected are in keeping with the program objectiveiofi discerning 
the first-order effects of relaxing current aviation turbine fuel specifications in the principal, 
areas being addressed. 

C. Test Facilities 

The combustor tests were conducted in two test facilities. The emissions, performance,
and endurance evaluations were conducted at X-903 stand, a high pressure test facility
located at the P&WA branch plant in Middletown, Connecticut. Altitude stability and relight 
testing was conducted in an altitude test facility, stand'X-306, located in East Hartford, 
Connecticut. 

A detailed description of both facilities is presented in the ECCP Phase I Final Report
(Reference 2). The only modification to the Middletown facility was the addition of portable 
storage tanks for the two Jet A fuel blends. Two existing on-site tanks were used to store 
the No. 2 Diesel and No. 2 Home Heat oils, Separate lines were plumbed to the test cell 
for the fuels tests. A constant displacement pump was used in conjunction with a return 
system to continuously circulate the fuel to ensure that the blended fuels remained well 
mixed. The capacity of the pump was eiglt.to ten times that required for the test ig.
Prior to testing each of the fuels, the common lines were flushed with the fuel to be tested 
and all filters were changed. A fuel sample was drawn at the test rig before each run for 
verification of the fuel quality. 

Two 90-degree sector combustor rigs, fabricated during the ECCP Phase I, were modified 
for use during Phase II and the Fuels Addendum programs. A detailed description of the 
rig configuration is provided-in the ECCP Phase I Final Report (Reference 2). A schematic 
diagram of a test rig and the adapting duct work installed in the test facility is shown in 
Figure 3. 

D. Instrumentation 

Both the high pressure test facility and the altitude test facility contained sufficient instru­
mentation to document the rig operating conditions. In addition to the basic instrumenta­
tion contained by both facilities, the high pressure facility contained an automatic­
sequencing traversing probe located at the combustor exhaust plane to obtain temperature, 
pressure, and gas sampling information. 

The altitude test facility was equipped with exit plane temperature instrumentation to per­
mit determination of the lit or unlit status of the test combustor for altitude stability and 
relight testing. This facility also contained a closed-circuit television system to permit ob­
servation of the flame propagation after lighting. A detailed description of the gas analysis
equipment,.automatic data recording system, and other combustor instrumentation is pro­
vided in the ECCP Phase I Final Report (Reference 2). Specific improvements to the gas
analysis equipment and the automatic-sequencing traverse rake systems installed for the 
Phase I1 test program are described in the ECCP Phase II Final Report (Reference 1). 

'7 
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Embedded liner thermocouples were utilized during the alternate fuels screening tests to 

measure liner temperatures as a function of changes in fuel composition and operating con­

ditions. Liner thermocouple locations for the Hybrid and Vorbix test combustors are 

shown in Figures 4 and 5, respectively. Chromel-Alumel thermocouples were used. The 
technique illustrated inthermocouple junctions were installed employing the "wedge-wire ' 

Since combustor durability is proportional to maximum liner temperature, the
Figure 6. 

Both louver lap­
thermocouples were located in regions of expected highest temperature. 

Redundant instrumen­joint weld areas and single-thickness louver locations were utilized. 

tation permitted a modest thermocouple failure rate to be absorbed. 

E. Test Conditions and Procedures 

The combustor rig test conditions were set to match the JT9D-7 design table engine condi­

tions for SLTO and Idle as closely as possible. The Idle condition, run with simulation of 

compressor air bleed, was typical of engine conditions which would occur in an engine in­

stalled on an aircraft in service. Fuel-air ratio excursions were investigated at both SLTO 

and.Idle conditions. The overall fuel-air ratio was varied from 0.006 to 0.016 at Idle and 

from 0.014 to 0.023 at SLTO. 

The test rig conditions are listed in Table III below and are compared with the corresponding 

JT9D-7 engine conditions. 

TABLE Ill 

TEST RIG CONDITION AND ACTUAL JT9D-7 

ENGINE CONDITIONS 

Bled Idle Sea Level Take-Off 

Rig Engine Rig Engine 

Compressor Exit 
Pressure (atm) 2.93 2.93 6.80 21.70 

Compressor Exit 
Temperature (K) 428 428 769 769 

Combustor Total 
Airflow (kg/s) 3.90 16.53 6.88 92.90 

Combustor Fuel 
Flow-(kg/s) 0.049 0.209 0.156 2.110 

Fuel-Air Ratio 0.0126 0.0126 0.0227 0.0227 

8
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All operating conditions were duplicated except for the inlet pressure at SLTO conditions, 
which was limited -by the test facility ,airflow capacity to 6.8 atmospheres. Test fig-fuel 
and airflow rates are scaled to the nominal one-quarter sector rig. 

Variation of the pilot-to-main fuel flow split was investigated for each combustor configura­
tion using Jet A fuel as part of the basic Phase II test program. Pilot-to-main fuel split 
was varied while holding the total fuel flow constant. The resulting data provided a basis 
for determining the optimum fuel distribution between the pilot and main burners. The 
optimum pilot fuel-air ratio (pilot fuel flow divided by total burner airflow)-was defined as 
that which provided the lowest value for the emissions index of oxides of nitrogen (El NOx) 
at 99+ percent efficiency. This pilot fuel-air ratio was then maintained constant for each 
combustor configuration during the subsequent special fuels tests. Overall fuel-air ratio was 
altered by varying main fuel flow only. 

Altitude stability tests were-conducted at simulated JT9D-7 engine windmiUing conditions. 
Actual engine combustor inlet temperature and pressure conditions were simulated while 
fuel flow and airflow levels were scaled for the one-quarter sector rig. The range of 
simulated conditions is shown in Figure 7, defining the flight regime in which the engine is 
required to relight in the event of a blow out. 

The Fuels Addendum testing was conducted concurrently with the ECCP Phase II program. 
The Alternate Fuels program was integrated with the main program to minimize cost and 
provide back-to-back tests of the baseline fuel (Jet A) and the subject fuels. Details of the 
high pressure and altitude stability test procedures implemented during the Fuels Addendum 
portion of the program are discussed in the ECCP Phase I and Phase II Final Reports (Ref­
erences 2 and 1). The endurance testing was conducted in two continuous four-hour seg­
ments for each combustor concept. Sea Level Take-Off power was evaluated first since pilot
coking was expected to be more severe at Idle operation. Both combustors were visually in­
spected after the SLTO test to note any distress or carbon deposits. Following tests at the 
Idle condition, a detailed inspection of the combustors was made. 

F. Emission and Performance Data Calculation Procedures 

1. Emissions 

Fuel-air ratio was calculated by two methods, from measured flow rates for air and fuel and 
using the carbon balance method in accordance with SAE ARP 1,256 procedures, Reference 
3. Frofn-the-carbon balance fuel-air ratio and the volume concentration of pollutant, the 
emission index (EI) can be expressed as grams of pollutant per kilograms of fuel. The de­
tails of this calculation are discussed in the ECCP Phase II Final Report (Reference 1).
The combustion efficiency was calculated on a deficit basis as described in Reference 2. 
The smoke numbers presented in this report have been obtained in accordance with pro­
cedures outlined in SAE ARP 1179, Reference 4, and the Federal Register, Reference 5. 
Details of the smoke measurement system are contained in Appendix A of the ECCP Phase 
I Final Report, (Reference 2). 

2. Performance 

A complete description of the performance data calculations is presented in the ECCP Phase 
II Final Report (Reference 1). 
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3. Extrapolation of Pollution Data to Engine Conditions 

Due to facility airflow limitations, it was not possible to simulate combustor inlet pressure 

and airflow in the sector rig at the SLTO operating point. In addition, a small amount of 

variation in-the-setting'of combustor inlet conditions-was-unavoidable for-successive-test 

fuels. Therefore, the emissions data for oxides of nitrogen (NOX), carbon monoxide (CO), 

and hydrocarbons (THC), were corrected to full engine operating conditions to permit pre-

The NOx emission indices were corrected for pressure, refer­
ise comparison of the results. 
ence velocity, combustor inlet temperature, combustor exit temperature, and ambient hu-

Smoke data are presented as mea­
midity. CO and THC were corrected for pressure only. 


sured at the reduced pressure, rig operating conditions. The correlations used are as follows:
 

0.5/ 4co./Vrefas ) Ttsorr 
NOx corr. = (NOx meas) 	 ( c 0
 

\Pt4 meas. Vref. corr. Tt5 meas.
 

(Reference 1)	 (Tt4 corrT-'t4 meas. 

exp[00188 (Hmeas. -Hconr.) exp28 mas) 

meas.
CA4 


__COcorr = (COineas•) ­

\Pt4 corr/
 

(Reference 6) 

Pt4 meas.
 = (THCmeas)THCcorr. F Pt4 corr. 

(Reference 6) 

NO = Emission level of oxides of nitrogen, Equivalent NO 2 (g/kg fuel)where: x 

CO = Emission level of carbon monoxide (g/kg fuel)
 

THC = Emission level of total hydrocarbons, Equivalent CH 4 (g/kg fuel)
 

Pt4 Inlet total pressure (atm)
= 

= Inlet total temperature (K)Tt4 


Vref. = Reference velocity (m/s)
 

H = Inlet specific humidity (g H2 0/kg air)
 

Tt5 = Combustor exit temperature (K)
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and subscripts: 

corr. = Relates to value at corrected (engine) condition 
meas. = Relates to value at measured (rig) condition 
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CHAPTER III RESULTS AND DISCUSSION 

A. Idle Emission Results 

The Idle emission results at the design table Idle condition are presented in Table IV and are 

plotted versus overall (pilot) fuel-air ratio in Figures 8 through 13). 

TABLE IV 

IDLE EMISSIONS DATA FOR THE HYBRID AND VORBIX COMBUSTORS 
CORRECTED TO ENGINE CONDITIONS 

HYBRID CONFIGURATION H-6 

No. 2 No. 2 let A + Jet A + 
Jet A Diesel Home Heat Xylene Naphthalene 

Idle (El) 
NOx (a, c) 4.3 4.5 4.3 4.5 4.5 
CO (b) 10.0 21.0 18.5 12.0 15.0 
THC (b, d) 4.4 2.5 3.2 4.7 4.0 

Efficiency 99.2 99.2 99.2 99.2 99.2 

VORBIX CONFIGURATION 8-20 

No. 2 No. 2 Jet A + Jet A+ 
Jet A Diesel Home Heat Xylenc Naphthalene 

Idle (El) 
NOx (a, c) 3.1 3.2 3.6 3.7 3.4 

CO (b) 46.0 54.0 69.0 67.0 46.0 
THC (b, d) 6.3 10.6 10.2 6.9 4.2 

Efficiency 98.2 97.5 97.2 97.6 98.4 

(a) 	NO x corrected to engine design table values of inlet pressure, temperature, reference 
velocity; f/a = 0.0126, corrected to 0.0063 specific'humidity. 

(b) CO, THC corrected to engine design table inlet pressure. 
(c) 	NO x expressed as equivalent NO 2 . 
(d) THC expressed as equivalent CH4 . 

Both combustor concepts exhibited increases in NOx and CO emission indices, relative to 

the Jet A baseline values, when burning the subject fuels. With reference to Figure 9 for the 

Hybrid combustor, CO exhibited an increasing trend with both aromatic complexity (Jet A + 

Xylene versus Jet A + Naphthalene) and increased final boiling point (No. 2 oils versus blends). 

The increase exceeds 100 percent at the design Idle fuel-air ratio. However, the trend versus 

hydrogen content was not maintained with the No. 2 oils. The increase in CO emission in­

dex for the Vorbix combustor, up to 50 percent at the design point, and the smaller increases 
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in NOx for both combustors did not occur systematically,with fuel properties. The trend to 
reduced THC emissions observed for the Hybrid combustor is attributed to the premix-type 
pilot zone design employed with this concept. The lack of a systematic response makes it 
difficult to generalize the Hybrid and Vorbix results with respect to fuel properties. As a ­
less-specific generalization, the test-fuels as a class producecf emissions in excess of the Jet A 
baseline in all cases except THC for'the Hybrid combustor. 

B. Sea Level Take-Off Emission Results 

The SLTO emission results are presented in Table V at the design conditions, and are plotted 
versus overall fuel-air ratio in Figures 14 througlh 19. Pilot fuel-air ratio, which was held con­
stant for this sequence of tests, is identified in Table V and the figures. 

TABLE V 

SLTO EMISSIONS DATA FOR THE HYBRID AND VORBIX COMBUSTORS 
CORRECTED TO ENGINE CONDITIONS 

HYBRID CONFIGURATION H-6 (Pilot f/a =,0.0076) 

No. 2 No. 2 Jet A + Jet A + 
Jet A Diesel Home Heat - Xylene Naphthalene 

SLTO. (El) 
NO x (a, c) 18.3 18.6 20.8 21-3 -22.0 
CO (b) 5.2 2.4 2.5 3.0 3.0 
THC (b, d) 0.4 0.2 0.1 0.2 0.2 

Efficiency 99.8 99.9 99.9 99.9 99.9 

=VORBIX CONFIGURATION S-20 (Pilot f/a. 0.0044) 

No. 2 No. 2 . JetAt JetA+ 
Jet A Diesel Home Heat .Xylene ,Naphthalene 

SLTO (EI) 
NOx (a, c) 15.6 15.7 14.7 16.1 14.9 
CO(b) 11.0 12.1 5.8 8.1 11.0, 
THC (b, d) 0.1. 0.1 0.1 0 0.1 

Efficiency 99.7 99.7 99.9 99.8 99..7 

(a) NOx corrected, to engine design table values of inlet pressure, temperature, reference 
velocity; f/a = 0.0227; corrected to 0.0063. specific humidity. 

(b) CO, THC corrected to engine design table inlet pressure. 
(c) NO x expressed as equivalent NO 2 . 

(d) THC expressed as equivalent CH 4. 
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Examination of the plotted curves indicates that variation of fuel properties at SLTO did 
not produce the general increases in gaseous emission levels observed at Idle operating con­
ditions. Only the observed NOx level for the Hybrid combustor exhibited a significant in­
crease over the Jet A baseline. The maximum increase was approximately 20 percent at the 
design fuel-air ratio, in a direction which might be attributed to reduced fuel hydrogen con­
tent. CO and THC emissions for both combustors were at or below the Jet A baseline values, 
indicating no impact on high power combustion efficiency for the range of fuel composition 
investigated. The difference in observed NO x trend for the Hybrid and Vbrbix combustors 
is possibly due to differences in main zone fuel preparation technique. Fuel is injected and 
partially premixed at compressor discharge conditions in the Hybrid, while main fuel is in­
jected directly into the heated pilot exhaust flow in the Vorbix. The hot environment and 
locally fuel-rich mixture conditions in the Vorbix would tend to minimize changes in burn­
ing rate and localized peak temperature due to changes in fuel evaporation characteristics. 
Although there is a small theoretical increase in peak flame temperature with decreasing hy­
drogen content, this is compensated by a corresponding decrease in heating value for the test 
fuels. 

It was anticipated that NOx emission levels would be higher for the No. 2 fuels as compared 
to Jet A, since the nitrogen content in these fuels was significantly higher (42 ppm for 
No. 2 Diesel and 93 ppm for No. 2 Home Heat versus 5 ppm for Jet A). Since not all fuel 
properties were held constant, the scatter observed at both Idle and SLTO may be due to 
other factors not under investigation, such as fuel viscosity or volatility. 

The SAE smoke numbers for the Hybrid and Vorbix combustors at SLTO are presented in 
Figures 20 and 21, respectively. The Hybrid combustor demonstrated very low smoke num­
bers (less than 5) at rig pressure for all of the fuels tested. Smoke number was below the 
Jet A baseline at lower fuel-air ratio, increasing to approximately the baseline value at the 
SLTO design fuel-air ratio. The Vorbix combustor, however, exhibited significant increases 
in smoke number for the subject fuels. The highest Jet A smoke number was 4 as compared 
to the smoke number for Jet A + Naphthalene which was 23. Smoke number appears to in­
crease with decreasing hydrogen content, with the Naphthalene blend producing consider­
ably higher smoke levels than the Xylene blend. The relatively low smoke produced by the 
No. 2 Home Heat fuel indicates that neither hydrogen content alone, nor simple characteri­
zation of aromatic content, is sufficient to specify smoke formation tendency. The absence 
of an increasing smoke trend for the Hybrid combustor suggests that intrinsically low smoke 
concepts, such as the premix-type Hybrid pilot and main zones, will be more tolerant of fuel 
composition changes which would tend to increase smoke level in a conventional, direct in­
jection combustor. 

Figures 22 and 23 show that the combustor radial exit temperature profiles for both com­
bustor concepts are unaffected by the range of fuel composition investigated. 

C. Altitude Stability and Idle Lean Blow Out 

Minimum pressure blow out (MPBO) tests were conducted at the altitude simulation test fa­
cility to evaluate altitude stability. No. 2 Home Heat oil was selected as the test fuel since, 
due to its increased final boiling point, it was expected to produce the greatest deterioration 
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in altitude stability. Results for the Hybrid and Vorbix combustor concepts are presented 

in Figures 24 and 25, respectively. Vorbix configuration S-22 exhibited no deterioration 

in MPBO, while the Hybrid combustor demonstrated a significant reduction in MPBO capa-

A reduction of 1000 m was noted at the low airflow windmilling curve and a .6000 mbility. 
It appears that the premix pilot incorporated-indeficit was incurred at the highest airflow. 

the Hybrid concept is much more sensitive to increased final boiling point at simulated altitude 

In contrast to the deteriorated altitudeconditions.than the conventional-type Vorbix pilot. 

stability of the Hybrid concept, the Idle lean blow.out data (Table VI) indicate no penalty 

for the range of fuels tested. Similarly, the Vorbix combustor indicated no Idle stability 

problems. 

TABLE VI 

IDLE LEAN BLOW OUT FUEL-AIR RATIOS " 

Hybrid Vorbix 

Jet A 0.0063 0.0038 

No. 2 Diesel 0.0054 0.0036 

No. 2 Home Heat 0.0051 0.0037 

Jet A + Xylene - 0.0039 

Jet A + Naphthalene - 0.0037 

D. Combustor Liner Durability 

Liner temperature data were acquired for both the Hybrid and Vorbix combustors during 

the rig Idle and SLTO fuels screening tests. These data were taken for the purpose of identi­

fying potential liner durability problems relatable to fuel composition and physical proper­

ties. Temperatures were measured by installing approximately 20 embedded thermocouples 
Interpretation of the result­at selected locationson the1lybrid and Vorbix combustor liners. 


ing temperature data is difficult, since not all of the thermocouples exhibited similar trends..
 

This is possibly due to a variety of reasons, all relatable to the non-uniform nature of the
 

burning fuel-air mixture in the combustor primary zone. Changes in fuel viscosity; volatility,
 

and chemical composition are all expected to affect the atomization, ignition, and combus­

tion processes. Furthermore, the actual burning equivalence ratio and fuel aromatic content 
Since the radiant heat load is verywill influence the radiant heat flux emitted to the liner. 


significant at high engine power, the reduced rig pressure level of 6.8 atm could mask poten­

tial durability problems associated with high pressure radiation loads.
 

The above considerations imply that the use of liner maximum temperatures to grade the
 

durability impact of the test fuels could be misleading, since shifting liner hot spots cannot
 

be accurately monitored with a finite number of liner thermocouples. Therefore, it was de­

cided to examine the liner thermocouple data on the basis of an average of all temperature
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readings relative to the average baseline readings. The same set of thermocuples was used 
for all tests of a given combustor configuration. Thermocouples which failed part way 
through the screening tests were eliminated from consideration. 

Average liner temperature data for the Hybrid inner liner (pilot side) and Vorbix pilot zone 
liners are presented in Figures 26 and 27, respectively, for Idle operation. As can be seen 
from Figure 26, the Hybrid inner liner thermocouples indicated higher metal temperatures 
at Idle conditions for all of the subject fuels when compared to Jet A. The Vorbix data indi­

cate some scatter on either side of the Jet A baseline. Vorbix liner temperatures were ap­
proximately 200 K higher than the corresponding Hybrid values at the Idle design point and 
exhibited a much steeper trend with fuel-air ratio. This is assumed to be due to the higher 
bulk fuel-air ratio of the Vorbix pilot design and less conservative liner cooling. However, 
the actual liner temperature levels for both combustors remain considerably below the maxi­
mum levels achieved at high power operation, so the consequence of any local increases is 
probably small. 

Average liner temperature data for the Hybrid outer liner (main zone side) are presented in 
Figure 28 for simulated SLTO operation. These data correspond to rig operation at 6.8 atm, 
and have not been corrected to full engine pressure. As can be seen from Figure 28, only a 
small amount of scatter was observed in average liner temperature level. Since all of the liner 
thermocouples were located in the pilot of the Vorbix and the pilot fuel-air ratio Was held 
constant at SLTO, liner temperatures did not vary at simulated take-off conditions with 
changes in main fuel flow. It cannot be concluded on this basis that the variations in fuel 
properties and chemical composition investigated in this study pose a threat to liner durabi­
lity. 

E. Endurance Test Results 

Endurance tests were run on both the Hybrid and Vorbix combustors with No. 2 Home Heat 

fuel. The program was conducted in two segments; four hours run at SLTO followed by a 

visual inspection, and four hours run at Idle, followed by teardown and a full inspection. 
The SLTO portion of the endurance testing was conducted with pilot fuel-air ratios of 
0.0077 and 0.0020 for the Hybrid and Vorbix combustors, respectively. 

Results of the Hybrid endurance test at SLTO indicated localized burning and carbon depo­
sits on the pilot flameholder. The flameholder distress and carbon deposition continued dur­
ing the Idle portion of the program. Pilot flameholder durability has been a problem in the 

past. However, carbon deposition and local burning of the flameholder were noticeably 
more severe with the No. 2 Home Heat fuel than with Jet A. Figure 29 shows the pilot 
flameholder in the Hybrid combustor (configuration H-7) following completion of the en­

durance testing. Carbon deposits were not apparent anywhere in the main zone. 
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A slight build up of carbon was noted on the outer liner near the main fuel nozzles follow­

ig the SLTO portion of the Vorbix endurance test, as'shown in Figure 30. Figure 31 shows 

several large carbon deposits removed from the pilot of the Vorbix combustor following the 

Idle-portion of the endurance-test. Although this carbon deposition was located in a region 

where aspiration from the combustor had occurred, similar deposits were not found follow­

ig the baseline Jet A test program or the SLTO portion of the endurance testing. The 

severe carbon deposition encountered in the Vorbix pilot, when compared to the lesser 

amount deposited in the Hybrid, suggests that a pilot of conventional design is less tolerant 
This observation parallels the ob­to increased fuel carbon content and/or boiling range. 


served smoke characteristics at high power, where the premix-type Hybrid combustor proved
 

insensitive to fuel composition and property changes.
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Figure 10 	 Hybrid Combustor Total Unburned Hydrocarbon Emission Levels as a Function 
of Fuel-Air Ratio at Idle (Pilot only fueled) 
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Figure 14 	 Hybrid Combustor Oxides of Nitrogen Emission Levels as a Function of Fuel-
Air Ratio at SLTO (Pilot fuel-air ratio = 0.0076) 
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Figure 17 	 Vorbix Combustor Oxides of Nitrogen Emission Levels as a Function of Fuel-
Air Ratio at SLTO (Pilot fuel-air ratio = 0.0044) 
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Figure 18 	 Vorbix Combustor Carbon Monoxide Emission Levels as a Function of Fuel-

Air Ratio at SLTO (Pilot fuel-air ratio = 0.0044)
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O-3 Figure 19 Vorbix Combustor Total Unburned Hydrocarbon Emission Levels as a Function 
w ofFuel-Air Ratio at SLTO (Pilot fuel-air ratio 0.0044) 
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HYBRID COMBUSTOR CONFIGURATION H-6 SLTO SMOKE NUMBERS 
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Figure 20 Hybrid SAE Smoke Number as a Function of Fuel-Air Ratio 
(Pilot fuel-air ratio = 0.0076) 
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Figure 21 Vorbix SAE Smoke Number as a Function of Fuel-Air Ratio 
(Pilot fuel-air ratio = 0.0044) 
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Figure 22 	 Hybrid Scheme H-6 Combustor Radial Exit Temperature Profile 
(Pilot fuel-air ratio = 0.0076) 
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Figure 23 Vorbix Scheme S-20 Combustor Radial Exit Temperature Profile 
(Pilot fuel-air ratio = 0.0044) 
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Figure 24 'Hybrid Scheme 11-6 Mininium Pressure Blow Out Results 
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Figure 25 Vorbix Scheme S-20 Minimum Pressure Blow Out Results 

41 



PRATT & WHITNEY AIRCRAFT 

300 

NOMINAL CONDITIONS 

PT4. 2.93 atm 

428 KTT 4 

2
250

w 200 

-J 
I-

I­

150I­

,
+ JETA+XYLEN 

X JET A + NAPHTHALENE 
100 Q 	NO.2DIESEL-

NO. 2 HOME HEAT 

50 
0.011 0012 0.013 0.014 0015 - 0016 

OVERALL FUEL-AIR RATIO 

0.008 0009 0.010 

Figure 26 	 Average Inner Liner Metal Temperature at Idle, Hybrid Configuration H-6 

(Pilot only fueled) 
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Figure 27 	 Average Pilot Liner Metal Temperature at Idle, Vorbix Configuration S-20 
(Pilot only fueled) 

43 



HYBRID COMBUSTOR CONFIGURATION H-6 
OUTER LINER METAL TEMPERATURE AT SLTO (AVERAGE) 
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Figure 28 Average Outer Liner Metal Temperature at SLTO, Hybrid Configuration H-6 (Pilot fuel-air ratio = 0.0076) 



A1 

~PI 	 LOT 
~FLAMEHOLDER I
 

C:-


IM. 

Figure 29 	 View Looking Upstream, Hybrid Combustor Configuration H-6, Following the 
Endurance Test on No. 2 Home Heat Fuel 
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Figure 30 View Looking Upstream, Vorbix Combustor Configuration S-22, Following the Endurance 

Test on No. 2 Home Heat Fuel 
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Figure 31 	 Carbon Deposits Removed from the Vorbix Combustor Pilot Zone Following the 
Four-Hour Idle Endurance Test on No. 2 Home Heat Fuel 
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CHAPTER IV SUMMARY OF RESULTS 

The Alternate Fuels Addendum test program was conducted to provide an assessment of 
the effects of increased hydrocarbon fuel aromatic content and increased boiling point for 
two advanced-technology, low emission combustor concepts. The Hybrid and Vorbix com­
bustors developed in the Experimental Clean Combustor Program represent fundamentally 
different emission control strategies. The Hybrid is a premix-type concept, where fuel in­
jection and partial premixing occurs prior to fuel entry into the pilot and main burning zones. 
The Vorbix combustor employs a conventional, direct fuel injection pilot design with main 
fuel injected directly into the pilot zone exhaust stream. Not unexpectedly, the two com­
bustors responded differently to the four special test fuels in certain performance categories. 

At Idle, NOx and CO emission levels for both the Hybrid and Vorbix combustors were gene­
rally higher for the test fuels when compared to Jet A. Hybrid CO emissions exhibited an 
increasing trend with both aromatic complexity and increased boiling point; however, the 
trend versus hydrogen content was not maintained with the No. 2 oils. Unburned hydrocar­
bons exhibited a similar trend in the Vorbix combustor with three of the four test fuels 
showing higher THC emissions when compared to the baseline fuel. The Hybrid combustor 
did not exhibit a systematic trend with respect to hydrocarbon emissions. 

The only significant emission changes observed at simulated SLTO operation were a modest 
increase in NOx level for the Hybrid combustor and a substantial increase in smoke for the 
Vorbix combustor. In each instance, the increase appeared to correlate with reduction in 
fuel hydrogen content. The absence of an increasing smoke trend for the Hybrid combustor 
suggests that intrinsically low smoke concepts, such as the premix-type Hybrid pilot and 
main zones, will be more tolerant of fuel composition changes which would tend to increase 
smoke level in a conventional, direct injection combustor. 

At simulated altitude conditions, the Hybrid combustor demonstrated a significant deteriora­
tion in minimum pressure blow out (MPBO) capability while the Vorbix combustor showed 
no change in altitude stability between the Jet A baseline and No. 2 Home Heat fuel. In con­
trast to the deteriorated altitude stability of the Hybrid concept, neither combustor exhibited 
a penalty in Idle stability (lean blow out) with No. 2 Home Heat fuel. No consistent trend 
to increased liner temperature was observed at simulated SLTO operation for the range of 
fuels investigated. However, excessive carbon deposition was observed on the Hybrid pilot 
flameholder and on localized regions of the Vorbix liner at Idle following endurance testing 
with No. 2 Home Heat fuel. 
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CHAPTER V CONCLUDING REMARKS 

Selection of the four test fuels was based on anticipated future trends in the composition of 
jet fuels, both due to broadened specifications for petroleum-derived fuels and consideration 
of alternate raw material sources. Since synthetic fuels could be produced from a number of 
raw material sources, such as shale oil or coal, the composition of these fuels-is expected to 
vary widely. The four fuels investigated in this program were chosen to simulate fuels with a 
higher boiling range and/or varying fractions of aromatics when compared to current Jet A 
fuel. 

As shown in Table I, the Jet A + Xylene and the Jet A + Naphthalene blends meet the boiling 
range specification for Jet A and are very similar with respect to other Jet A properties, such 
,as viscosity and freezing point. The fuels were custom blended to simulate high aromatic 
synthetic fuels. The xylene blend represents a simple benzene derivative aromatic and the 
naphthalene is a more.complex aromatic. The No. 2 Diesel and No. 2 Home Heat fuels were. 
chosen to simulate higher boiling fuels with varying fractions of both simple and complex 
aromatics. Since it was not possible to hold all other fuel properties constant, the impact of 
certain of these changes may mask the trends associated with the properties under investiga­
tion. However, since both No. 2 oils were commercial grade fuels, the changes in viscosity 
and freezing point are those which would naturally accompany an increase in final boiling 
point. It probably is not appropriate to consider an increase in final boiling point without 
these other property changes. 

At the outset of the Alternate Fuels program, it was anticipated that the following could 

result from increasing the aromatic content of the fuel: 

* increase in flame radiation and higher combustor metal temperatures 

* increase in smoke emission levels 

* increase in NOx emission levels 

* increase in carbon deposition tendencies 

It was also anticipated that increasing the final boiling point would lower the volatility making 
such fuels more difficult to vaporize and burn. This could be reflected by a reduction in 
Idle efficiency and stability (blow out). 

With the exception of an increase in exhaust smoke for the Vorbix combustor (conventional 
pilot), carbon deposition problems relatable to the No. 2 Home Heat fuel, and a deteriora­
tion in altitude stability for the Hybrid combustor (premix-type pilot), these expectations 
have not been realized. The lack of a strong negative impact in advanced technology hard­
ware suggests that broadening of aviation turbine fuel specifications in the directions inves­
tigated may be one approach to possibly increasing the available fuel supply for future air­
craft operations. In particular, the differing responses of the two combustor types to changes 

49 



PRATT & WHITNEVAIRCRAFT 

in fuel composition and physical properties suggest the possibility that selection of aow­
emission combustor concept might be influenced by the need to accommodate specific fuel 
characteristics. 

In-interpreting-the -results-of-this-prograrfi, it shoulif be realized that the scope of the pro­

gram was limited and only general trends could be observed for each of the fuels tested. In 
particular, the limited endurance testing may have prevented identification of trends which, 
although-small, would have a detrimental impact in long-term operation. The following ad­
ditional research is suggested to better definie the suitability of alternate fuels for aircraft 
gas turbine applications: 

* 	 better definition of all fuel property changes which will accompany composition 
changes for fuels refined from identifiable feedstocks; 

* 	 definition.of whether such property changes are or can be made acceptable for 
aircraft flight operations; 

* 	 actual engine testing as proposed alternate fuels and production-candidate ad­
vanced technology combustors became better defined. 
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CONFIGURATION H 6 
1 2 3 4 5 6 7 8 910 

11 12 13 14 15 16 17 18 19 
COOLING HOLE PATTERN 

INNER LINER 	 OUTER LINER 

DIA.AREA DIA AREA 
3 2 X1 4

LOUVER 	 X HOLES m LOUVERI mX 10 -3 HOLES m2 X1O 

132 85 1.17 11 1.32 110 1.51 

2 1.32 85 1.17 12 1.32 110 1.51 

1.32 85 1.17 13 1." 110 1.51 

4 1.32 85 1.17 14 1 32 110 1.51 

5 1.32 92 1.26 15 - 1.93 60 1 1.75 

6 1.32 81 1.11 16 .216 60 2.19 

S7 1 132 92 1.26 17 231 60 2.52 

8 I 1.32 122 18 2.36 60. 263 
9 159 85 168 19 1.59 110 217 

10 159 s5 1 68 ___ _________ 	 AREA m2xl 

2
PILOT BURNER FLAMEHOLDER 94 @0 80 x 10- DIAMETER 47.26 ACO (EFFECTIVE AREA) 

PILOT BURNER FLAMEHOLDER WEEP 7.43 ACD (EFFECTIVE AREA) 

MAIN BURNER OUTER SWIRLER 11 LEFT HAND SWIRLERS 62.31 ACD (EFFECTIVE AREA) 

11 RIGHT HAND SWIRLERS 34.42 ACD (EFFECTIVE AREA)MAIN BURNER INNER SWIRLER 

BULKHEAD 	COOLING 172 @0 411 X 10-2 m DIAMETER 22.87 

FLAMEHOLDER COOLING (ON OUTER WALL) 39 @0.254 X 10"2m DIAMETER 1.97 

38 @ 0.254 X 10-2 m DIAMETER 1.92FLAMEHOLDER COOLING (ON INNER WALL) 


FINWALL ( ® (INNER WALL)- 1.01%WAB (BLUi-ER AIRFLOW)
 

FINWALL(OUTER WALL) 1-23% WAB (BURNER AIRFLOW)
 

SIDEWALL COOLING 5 00%WA4 (TOTAL AIRFLOW - STATION 4)
 

TURBINE COOLING (INNER WALL) 	 7.5%WA4 (TOTAL AIRFLOW - STATION 4) 

TURBINE COOLING (OUTER-WALL) 	 8.4% WA4 (TOTAL AIRFLOW - STATION 4) 

PILOT BURNER NOZZLE - P/N 	 DLN 27700-11 10 LOCATIONS 

MAIN BURNER NOZZLE - P/N LOW AP 11 LOCATIONS
 

MODIFICATIONS REFERENCE H5
 

ELIMINATE INNER LINER DILUTION COOLING
 

ADD 35% OF DILUTION AIR TO BULKHEAD COOLING
 

ADD 65% OF DILUTION AIR TO OUTER LINER FLAMEHOLDER COOLING
 

PRIMARY FUEL INJECTORS EXTENDED ONE INCH DOWNSTREAM
 

PILOT BURNER PREMIX PASSAGE AIRFLOW52 INCREASE 



APPENDIX A (Cont'd) 
CONFIGURATION H7 

1 2 3 4 5 6 7 8, 910 

11 12 13 14 1 16 7 18 19 
COOLING HOLE PATTERN 

INNER LINER OUTER LINER 

LOUVER 
DIA. 
MX10 - =HOLES 

AREA 
m 2 X 10-4 LOUVER 

DIA. 
mXi HOLES 

AREA 
m X 16O4 

1 1.32 85 1.17 11 1.32 110 1.51 

2 1.32 85 1.17 12 1.32 110 1.51 

3 1.32 85 1.17 13 1.32 110 1.51 

4 1.32 85 1 17 14 1.32 110 1.51 

5 1.32 192 1.26 15 1.93 60 11.75 

6' 1.32 81 1.11 16 216 60 2.19 

7 1.32 92 1.26 17 12.31 60 252 

8 1.32 122 1.67 18 236 60 2.63 

9 - 159 85 1.68 19 1.59 110 2.17 

10 1.59 85 1.68 

AREA m 2 X 10"4 
PILOT BURNER FLAMEHOLDER ­ 94 @0.80 X 10"2m DIAMETER 47.26 
PILOT BURNER F LAMEHO LDER WEEP 7.43 ACD (EFFECTIVE AREA)
MAIN BURNER OUTER SWIRLER 11 LEFT HAND SWIRLERS 62.31 ACD (EFFECTIVE AREA)
MAIN BURNER INNER SWIRLER 11 RIGHT HAND SWIRLERS 34.42 ACD (EFFECTIVE AREA) 
BULKHEADCOOLING 172 @0.411 X 10"2m DIAMETER 22.87 
FLAMEHOLDER COOLING (ON OUTER WALL) 39 @0.254 X 10"2 m DIAMETER 1.97 
FLAMEHOLDER COOLING (ON INNER WALL) 38 @0.254 X 10"2m DIAMETER 1.92 
FINWALLD(INNER WALL) 1.01%WAB (BURNER AIRFLOW) 
F INWALL ® (OUTER WALL) 1.23%WAB (BURNER AIRFLOW) 
SIDEWALL COOLING 5.00%WA4 (TOTAL AIRFLOW - STATION 4) 
TURBINE COOLING (INNER WALL) 7 .5%iVA4 (TOTAL AIRFLOW - STATION 4) 
TURBINE COOLING (OUTER WALL) 8.4% WA4 (TOTAL AIRFLOW - STATION 4) 
PILOT BURNER NOZZLE - P/N DLN 34800 10 LOCATIONS 
MAIN BURNER NOZZLE - P/N LOW AP 11 LOCATIONS 

MODIFICATIONS REFERENCE H6 
INSTALL SOLID CONE PILOT BURNER FUEL NOZZLES 
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CONFIGURATION S 20 
1 2 3 4 5 6 7 8 9 10 11 12-13 

".1 NER AND OUTRl 

LINLER D ILUTION ' 

LES IN LIER OUTER LINER 
WITH INJECTORS" ILUTIO N HOLES 2IN LINE WITH 1O 

' 'PI LCT INJECTORSt 

COLSIN HOLE PATTER A 

14 
4 

1 
1. 17 19 20 21 22 2 4 

2505 

COOLING HOLE PATTERN 

INNER LINER OUTER LINER 

LOUVER 
DIA. 
mXlO "3 #HOLES 

AREA 
m2X10 "4 LOUVER 

DIA. 
m X10 °3  #HOLES 

AREA 
m2XlO " . 4 ' 

1 1.63 84 1.74 14 2.34 84 3.61 

2 1.63 84 1.74 22 1.63 84 1.74
 
3 -1.63 84 1.74 16 
 1.63 84 1.74* 

10 1.63 84 1.74 17 1.63 934 1.74 
5 1.96 84 1 2.52 118 1.80 84 2.15 

- 2.27 84 3.45 19 2.0 130 4.43 
7 1.93 85 2.49 20 1.63 99 2.05 

8 1.32 85 1.17 21 1.63 99 2.05 

9 1.32 85 1.17 22 1.32 118 1.62 
10 1.32 85 1.17 23 1 .k3 95 1.30
 

11 1.'32 85 1.17 24 
 1.3 106 1.45 

12 1.32 85 1 1.17 25 1.79 1 85 2.11 

13 1.32 85 1.17 26 1.3,10 1.51 

42 X 1O-AREA m 
PILOT BURNER SWIRLER 7 LEFT HAND SWIRLERS 24.39 ACD (EFFECTIVE AREA) 
BULKHEAD COOLING 147 @ 0.226 X 10"2 m DIAMETER 5.90 
MAIN BURNER NOZZLE COOLING 52 @0.254 X 10"2 m DIAMETER 2.63 
PILOT BURNER DILUTION (INNER WALL) 7 @1.631 X 10"2 m DIAMETER 14.62 
PILOT BURNER DILUTION (OUTER WALL) 7 @ 1.631 X 10°2 m DIAM -TER 14.62 
MAIN BURNER SWIRLERS 28 RIGHT HAND SWIRLEalS 101.16 ACD (EFFECTIVE AREA) 
SIDEWALL COOLING 5% WA 4 (TOTAL AIRFLOW - STATION 4) 
TURBINE COOLING (INNER WALL) 7.5% WA4 (TOTAL AIRFLOW - STATION 4) 
TURBINE COOLING (OUTER WALL) 8.4% WA4 (TOTAL AIRFLOW - STATION 4) 
PILOT BURNER NOZZLE DLN 27700-11.7 LOCATIONS 
MAIN BURNER NOZZLE DLN 27700-11, 13 LOCATIONS 
MAIN BURNER DILUTION (INNER WALL) 7 @ 1.664 X 10"2 m DIAMETER 15.22 
MAIN BURNER DILUTION (OUTER WALL) 7 @ 1.664 X 10"2 m DIAMETER 15.22 

MODIFICATIONS REFERENCE S 19 

INCREASE PILOT BURNER SWIRLER AIR FLOW 
DECREASE MAIN BURNER SWIRLER AIR FLOW 

REPRODUO]ETLITY OF THE 
ORIGINAL PAGE IS POOR 
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CONFIGURATION $22 
APPENDIX A (Cont'd) 

1
1 2 " 3 4 5 67 8 11 1210 


14 15 16 17 18 


COOLING HOLE PATTERN 

INNER LINER 

DIA. 
HOLESLOUVER mXl1 3 


1 163 84 


2 1.63 84 


3 163 84 


"4 163 84 


5 1.96 84 


6 227 84 


7 1.93 85 


8 1.32 85 


9 1.32 85 


10 1.32 85 


11 1.32 85 


12 1.32 85 


13 132 85 


PILOT BURNER SWIRLER (INCLUDING SLOTS IN 
CENTER TUBE OF SWIRLER) 

BULKHEAD COOLING 

MAIN BURNER NOZZLE COOLING 

PILOT BURNER DILUTION (INNER WALL ROW 1) 


PILOT BURNER DILUTION (OUTER WALL ROW 14) 


MAIN BURNER SWIRLERS 


SIDEWALL COOLING 


TURBINE COOLING (INNER WALL) 


TURBINE COOLING (OUTER WALL) 


PILOT BURNER NOZZLE 


MAIN BURNER NOZZLE 


MAIN BURNER DILUTION OUTER WALL 


MAIN BURNER DILUTION INNER WALL 


AREA 
4 


m2 Xi­

1.74 


1.74 

1.74 

1.74 

252 

3.45 

2.49 

1.17 


117 


1.17 

117 


117 


1.17 

LOUVER 

14 


15 


16 


17 


18 

19 


20 


21 


22 


23 


24 


25 

26 


19 20 21 22
 

OUTER LINER 

DIA. 
mXI 3 #HOLES 

234 84 


1.63 84 


1.63 84 


1.63 

1.80 84 

208 130 


1.63 99 


1.63 99 


1.32 118 


1 32 95 


132 106 


1.79 85 


1.32 110 


7 LEFTHAND SWIRLERS 

140 @ 0.234 X 10 2 m DIAMETER 


52 @0.254 X 10 2 m DIAMETER 


7 @163 X C02m DIAMETER 


7 @1.63 X 10 2 m.DIAMETER 


28 RIGHT HAND SWIRLERS
 

5% WA 4 (TOTAL AIRFLOW - STATION 4) 

7.5% WA4 (TOTAL AIRFLOW - STATION 4) 

8.4% WA4 (TOTAL AIRFLOW - STATION 4) 

DLN 27700-13,7 LOCATIONS 

DLN 27700-11,13 LOCATIONS 
15.22 
15.22 

AREA 4
 
m2 x0 

3.61 

1.74 

1.74 

1.74 

216
 
4.43 

2.05 

2.05 

1.62 

1.30 

1.45
 

211
 
1.51 

-4
 
2X 10
AREA 

27.46 ACD (EFFECTIVE AREA) 

6.09 
2.63 

14.62 
14.62 

MODIFICATIONS REFERENCE S21 

INSTALL HOOD 

INSTALL NEW SWIRLER - TORROIDAL DEFLECTOR WITH 3.3 X 10-2m DIAMETER HOLE.
 

ADD OUTER LINER SCOOP
 

REVISE BULKHEAP WITH COOLING AIR ENTERING THROUGH RING CONCENTRIC WITH SWIRLER.
 

55
ADD TEMPERATURE-SENSITIVE PAINT ON LINER (INSIDE AND OUT) 

REMOVE PREMIXING TUBE FROM MAIN BURNER. 
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oit 

LOOKING DOWNSTREAM 

HYBRID LINER TEMPERATURE DATA (K) 

FUEL JET A 

IDLE SLTO
 

POINT 8 1 6 7 POINT 19 23 24 

F/A PI LOt 0.0102 0.0123 0.0157 0.0077 0.0076 0.0075 0.0076 
F/A TOTAL 0.0102 0.0123 0.0157 0.0077 0.0223 0.0199 0.0160 

TT4 -K 430 429 426 427 767 767 773 

T/C 209 661 682 696 537 941 935 932 
TIC 210 528 539 559 445 869 866 867 

T/C 211 587 593 614 482 903 897 892 

T/C 212 545 570 580 456 878 873 829 

TIC 213 490 498 508 438 856 852 852 

T/C 215 677 722 742 509 1045 1036 1029 

T/C 216 561 567 595 454 1004 998 994 

TIC 217 521 536 554 464 956 964 956 

T/C 219 567 583 598 457 981 973 968 

T/C 220 518 528 549 464 970 973 963 

TIC 223 442 446 448 428 807 808 793 
T/C 224 452 459 464 433 850 836 822 

T/C 225 460 470 478 433 914 891 856 

T/C 226 461 471 479 433 870 875 829 
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HYBRID LINER TEMPERATURE DATA (Cont'd) 

FUEL = NO. 2 DIESEL 

IDLE SLTO 

POINT 305 306 307 368 POINT 318 319 320 321 

F/A PILOT 
F/A TOTAL 
TT4 -K 

00099 
0.0099 
432 

0.0125 
0.0125 
430 

0.0139 
0.0139 
430 

0.0161 
0.0161 
429 

0.0077 
00226 
767 

0.0077 
0.0200 
767 

0.0077 
0.0181 
771 

00077 
0.0160 
766 

TIC 209 656 694 706 717 938 935 922 914 

TIC 210 
TIC 211 
T/C 212 
T/C 213 
TIC 215 

551 
609 
542 
519 
660 

572 
645 
572 
529 
707 

579 
658 
582 
534 
724 

588 
679 
695 
542 
744 

880 
886 
842 
871 
1016 

877 
883 
841 
868 
1017 

865 
873 
829 
854 
1003 

855 
867 
822 
844 
996 

T/C 216 
TIC 217 
TIC 219 

640 
563 
647 

652 
599 
666 

657 
617 
674 

667 
656 
684 

1035 
998 
998 

1030 
998 
994 

'1008 
981 
976 

995 
966 
963 

T/C 220 
TIC 223 

548 
444 

575 
453 

592 
457 

631 
465 

991 
812 

988 
809 

971 
797 

959 
785 

T/C 224 
TIC 225 

429 
456 

436 
469 

439 
476 

489 
489 

893 
897 

868 
879 

844 
861 

819' 
838 

TIC 226 465 483 493 412 858 849 834 813 

FUEL = NO. 2 HOME HEAT 

IDLE SLTO 

POINT 205 206 207 208 POINT 218 219 220 221 

F/A PILOT 
F/A TOTAL 
TT4 -K 

0.0102 
00102 
431 

0.0125 
0.0125 
428 

0.0142 
00142 
428 

0.0160 
0.0160 
431 

0.0076 
00223 
772 

0.0077 
0.0199 
759 

0.0072 
0.0169 
767 

0.0076 
0.0159 
772 

TIC 209 
TIC 210 
TIC 211 
TIC 212 
TIC 213 
TIC 215, 
TIC 216 
T/C 217 
T/C 219 
TIC 220 
TIC 223 
TIC 224 
TIC 225 
TIC 226 

666 
546 
631 
539 
509 
657 
616 
573 
606 
556 
447 
457 
454 
467 

686 
573 
672 
567 
527 
706 
646 
631 
647 
594 
462 
473 
474 
495 

688 
587 
712 
587 
542 
742 
665 
704 
671 
653 
473 
443 
490 
519 

720 
612 
736 
608 
566 
776 
714 
774 
717 
731 
489 
456 
512 
552 

927 
879 
896 
843 
867 
1026 
1024 
991 
998 
994 
828 
871 
898 
889 

912 
859 
876 
824 
846 
994 
1001 
948 
972 
956 
804 
839 
848 
919 

938 
864 
878 
840 
858 
1012 
1011 
962 
983 
961 
807 
855 
849 
862 

923 
860 
874 
832 
849 
998 
997 
967 
968 
959 
803 
836 
832 
853 
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APPENDIX B (Cont'd)
 

HYBRID LINER TEMPERATURE DATA (Cont'd)
 

FUEL = JET A+ XYLENE 

IDLE SLTO 

POINT 405 406 406 407 409 POINT 418 419 420 421 

F/A PILOT 0.0101 0.0130 0.0132 0.0141 0.0164 0.0076 0.0077 0.0076 0.0077 
F/ATOTAL 0.0101 0.0130 0.0132 0.0141 0.0164 0.0224 0.0199 0.0180 0.0161 
TT4 -K 426 424 429 426 431 759 772 772 774 

T/C 209 660 696 699 698 692 927 931 924 921
 

TIC 210 556 569 576 572 590 876 881 873 871
 
T/C 211 637 695 692 691 697 891 897 889 888
 

T/C 212 554 578 589 594 615 831 837 832 836
 

T/C 213 507 526 533 535 552 855 862 854 854
 

T/C 215 659 726 740 748 772 1032 1038 1030 1029
 
T/C 216 618 654 663 666 688 1013 1016 1000 997
 

TIC 217 591 667 674 691 721 979 979 968 971
 

T/C 219 446 656 666 668 695 987 991 975 974
 

T/C 220 563 625 632 654 693 985 984 971 1025
 

T/C 223 440 454 461 462 473 809 813 840 801
 
T/C 224 433 442 446 479 495 859 854 861 832
 

T/C 225 449 469 475 479 496 894 883 861 844
 

T/C 226 459 488 495 504 524 882 866 869 838
 

FUEL = JET A+ NAPHTHALENE 

IDLE SLTO
 

POINT 505 506 507 508 POINT 518 519 520 521 

F/A PILOT 0,0103 0.0126 0.0140 0.0160 0.0076 0.0076 0.0076 0.0076 
F/A TOTAL 0.0103 0.0126 0.0140 0.0160 0.0223 0.0199 0.0179 0.0162 
TT4 -K 427 428 426 427 766 771 771 768 

T/C 209 645 681 679 689 928 926 926 921
 
T/C 210 545 567 566 584 877 873 871 863
 
T/C 211 611 640 652 667 882 881 882 876
 
T/C 212 521 557 571 592 840 837 832 826
 
T/C 213 507 527 531 551 863 860 855 847
 
T/C 215 624 698 723 744 1017 1012 1004 999
 
T/C 216 611 648 651 690 1027 1017 1007 994
 
T/C 217 575 632 682 718 1006 994 976 962
 
T/C 219 611 651 657 701 994 . 984 975 964 
T/C 220 564 600 649 699 1004 991 974 961
 
T/C 223 445 458 464 472 817 814 808 794
 
T/C 224 453 469 479 491 868 853 832 823
 
TIC 225 453 471 483 498 892 873 858 839
 
T/C 226 464 491 508 527 866 859 852 j826
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APPENDIX B (dont'd) 

LOOKING DOWNSTREAM 

VORBIX LINER TEMPERATURE DATA (K) 

FUEL = JET A 

IDLE SLTO
 

POINT 2 3 4 5 POINT 16 19 20 

F/A PILOT 0.0125 0.0158 0.0080 0.0059 0.0045 0.0045 0.0045 
F/A TOTAL 0.0125 0.0158 0.0080 0.0059 0.0226 0.0199 0.0159 
TT4 - K 427 427 426 428 769 768 768 

T1C 213 599 635 541 498 842 843 845
 
T/C 216 1002 1040 819 652 977 964 963
 
TIC 224 836 925 638 566 953 954 932
 
T/C 225 689 708 1025 698 1022 1043 1017
 
T/C 226 1112 1022 724 641 999 998 965
 
T/C 229 1161 1064 767 668 1026 1020 993
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APPENDIX B (Cont'd)
 

VORBIX LINER TEMPERATURE DATA (Cont'd)
 

FUEL = NO. 2 DIESEL 

IDLE SLTO 

POINT 302 302 303 304 305 POINT 318 319 320 321' 

F/A PILOT 0.0126 0.0124 0.0160 0.0078 0.0058 0.0045 0.0040 0.0044 0.0044 
F/ATOTAL 0.0126 0.0124 0.0160 0.0078 0.0058 0.0225 0.0200 0.0161 0.0139 
TT4 -K 426 429 429 427 427 771 765 768 770 

T/C 213 639 744 653 565 491 828 816 819 828 
T/C 216 989 983' 966 665 559 971 932 918 '921, 
T/C 224 893 860 901 . 684 548 911 889 982 958 
T/C 225 757 780 772 991 648 1072 994 989 988 
T/C 226. 986 981 777 752 655 1036 992 1015 1011 
T/C 229 1225 1189 1152 953 780 1054 1008 966 972 

FUEL = NO. 2 HOME HEAT 

IDLE SLTO 

POINT 202 202 203 204 205 POINT 218 219 220 221 

F/A PILOT 0.0124 0.0125 0.0159 0.0079 0.0060 0.0045 0.0044 0.0044 0.0045 
F/A TOTAL 0.0124 0.0125 0.0159 0.0079 0.0060 0.0225 0.0196 0.0158 0.0141 
TT4-K 426 427 426 427 426 768 767 967 768 

T/C 213 578 622 662 549 468 822 823 819 751 
T/C 215 968 973- 1063 697 681 949 945 947 826 
T/C 224 897 892 771 803 638 1018 1002 1022 893 
T/C 225 867 813 893 564 503 840 854 864 907 
T/C 226 972 951 957 647 555 934 929 945 955 
T/C 229 1037 1068 883 671 566 925 916 926 1005 
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APPENDIX B (Cont'd)
 

VORBIX LINER TEMPERATURE DATA (Cont'd)
 

FUEL = JETA+XYLENE 

IDLE SLTO
 

POINT 402 402 403 404, 405 POINT 418 419 420 420 " 421 

F/A PILOT 0.0124 0.0122 0.0156 0.0077 0.0060 0.0059 -0.0044 0.0045 0.0045 0.0044 0.0044 
F/A TOTAL 0.0124 0.0122 0.0156 0.0077 0.0060 0.0059. 0.0221 0.0200 0.0159 0.0161 0.0142 
TT4 - K 434 429 429 429 424 428 768 768 771 772 771 

T/C 213 713 706 781 501 469 472 822 824 822 828 826 
TIC 215 1099 1082 1066 732 630 629 942 942. 940 958 979 
TIC 224 1073 1043 805 747 675 680 1013 1016 1015 1004 1026 
TIC 225 790 749 867 577 512 512 938, 847. 852 861 869 
TIC 226 1012 994 1049 739 608 602 930 920 924 939 947 
TIC 229 1084 1044 1076 745 624 624 868 913 922 916 926 

FUEL = JET A+ NAPHTHALENE 

IDLE SLTO 

POINT 502 502 503 504 505 POINT 518 519 520' 521 521 

F/A PILOT 0.0126 0.0126 0.0160 0.0080 0.0061 0.0044 0.0043 0.0045 0.0045 0.0045 
F/A TOTAL 0.0126 0.0126 0.0160 0.0080 0.0061 0.0220 0.0198 0.0158 0.0135 0.0137 
TT4 - K 424 425 426 427 424 766 767 770 767 768 

T/C 213 680 694 871 556 481 846 841 854 851 847 
T/C 215 961 973 1232 633 570 940 978 964 962 961 
T/C224 884 887 - 824 572 536 903 - 901 912 907 915 
T/C 225 856 819 937 954 676 1027 1035 1024 1019 1051' 
T/C 226 868 826 719 712 584 1008 1009 1020 1020 1045 
T/C 229 988 1094 1317 862 667 1020 1024 1037 1036 1063 

62 



APPENDIX C
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Configuration H-6 

2 
£4 LO, g 00 E a.4 0 Uo 

1 4.84 5.35 0.047'2 0.0 0.0472 .40k. 429. 2.93 0.0122 0.0 0.0 902. 182 L. 1.94 L7.9 0.0 0.0 0.0 0.0 rO. 0.0 1.0 JETA 
,4 97 

o4:94
7 5-0 

3 95 
3:93
4.02 

0.0485 
0.0612
0.0307 

0.0 
0.0
0.0 

0.048 
O.O612
0.0307 

301. 
301.
301. 

421. 
425.
4Z7. 

2.9-4 0.012 0.0090 0.73 
2.90 0.Q156 0.01,17 0.7>
2.91 O.0076 0.U029 U.382o0 

Y0oI 
1015.

732. 

0. 0.0 
(0j-0.0

U. 

18.3 1." 
18,3 2 31
1 .8,0.54 

is.O 
X7.1
20.2 

7.9 
56.a

198.5 

4 . 4 
4 .4
O.Q 

.L 
4,.1.0 

99.3 
98,2
95.4 

1.0 
1*0 

JETA 
JETAJETA 

8 .81. 3.82 0.0390.0.0 0.0,390 300. 30° 2.94_.0.0102 0.00974 0.?3 829. 0',. 0.0 17.7 1;.50 '18.7 :11 .3 11,.7 2 .7 98.4. 0.9 JLTA 
.19
2 

8:71
8.63 

6:93b.6 0.0526 G,1019 0,L545 4o0. 767. 6.92 0.0223 0.0215
Q.05kf 0,08 2 0.1369 600. 767. 6.91 u.0199 O.0iov 0.96 0 L-.

0.9H 14 5..­
0. 0.0
0. 0.0 

24.4 4.32 13.8
Z4.2 6.77 14.6 17". .

Z6.9 
2.1? 11.2;

10.4 
99.4 I.3
98.7 1.1 4ETA

J0TA 

246 .60
.4 8.30248 

6.84
6.86 

*0524
U.0522 

0.0565
U.0572 

U.10d9 301.
0.1094 301. 

770.
M. 

o.7
6.80 

vGiU.015 .O0.0159 0.0 
0 0.9140.0 1325. 0.

U27., 1547, 0.0(). 24.7 2.920.0 16.00.0 73. aU. 9..0°0 7°b0.0 97.,2 1,.50.0 1.3 SN=5 JETAJETA 



Configuration H-6 (Cont'd) 

= U, ' Z Coment
 

31 8.6 o,8 o052+ 0101 682 0,5433000021 0,4 123, O, ,0 ,44.3 141 78 07 1.6 9,71,8SN-2 8£$0
76, ,025 

31 .3 ,70051001 017 0.77 ,5 ,20008 ,814, O , 4438 491, , 039, , ,-I0 8
 
3208,9 6,83002 00101350070,68008100709239. OOO2443018533 28 9, 989,7/=1DEE


32 86 ,10{ 0. 0, ,8 ,06 00120,9132, O 002%62,1 65 69 0. ,3 9,21, N=
69 00590,58 IEE
 

316 8.60 0.85 U.05240 0.01 0.15430 767. 682. 0.0225 0.0212 0.94 15960. O. 0.0 24.4 2.59 14.1 0.7 11.6 98.7 1.5 DETSENA7.8 ,; 

3198 .63 3,88 0.05319 O.0d~ 0.017 290. 767. 6.85 0.0200 0.0186 0.893 1445. 0. 0.0 24.42.82 14.9 14.9 1.2 10.3 99, , EY+A 

320 8.59 o.88 0.0524 0.0711 0.1235 300. 770. 6.8. 0.0181 0.01867 0.92 1391. 0. 0.0 24.4 3.40 15.5 320 .32.8 9. 9 95 1 7 JNlDIETAEN 

321 8.68 6.91 0.0529 0.0578 0.1117 300. 765. 6.84 U.0161 0.01423 0.89 1322. 0. 0.0 24+.6 2.81 16.5 686.9 10.5 "8.3 97.8 1.7 SN=8 DIESELN 
321 8.66 6.91 0.0520 0.0566 0.1019 300. 771. 6.82 0.0157 0.0 0.0 1317. 1556. 0.446 24.8 0.0 0.0 0.0 0.0 0.0 0.0 1.7 DIETSENL 
505 4.7U $.80 0.03+90 0.066 0.0390 296. 427. 2.93 0.O03 0.001,.9.30 . 0. 0.0 17.6 1.3 18.3 7.7 5. 2.3 909.2 1.3 J2TA+NAP 
5+06 4.85 3.85 0.0484,0.0 0.0484 295. 42a. 2.93 0.0126 0.008 0.86 911. 0. 0.0 1781 2.5,7. 1 4. 4.4 4.32, 99.1 1.3 JSETA XML 
507 4.75 3.86 01.0540 0.0 0.05408 296. 426. 2.95 0.0140 O0O0127 0.01 960. 0. 0.0 17.7 2.59 1"7.2 39.6 3.7 5.0 98.7 1.3 JE"TA+XYLP 
507 4.89 B.89 u0413 0.0 041 296.. 427. 2.93 0.0139 0.0 0.0 958. 1793. 1.571.0 0.0 0.0 0.0 0-0 0.0 0.0 1.4 JZTA+XYL 

508 4.878 3.88 0.06219 0.0 0.0619 296. 427., 2.91 0.0159 0.0141 0.9 102,8. 0. 0.0 17.8 2.82 16.5 "857 4.2 5.2 97.5 1.3 JETA+XAL 
518 8.7 6.91 0.0522 0,l030 0.15405 297. 766. 6.87 0.0223 0.0211 109 15. 0. 0.0 24.5 4.7 1435 9.1+ 0.7 13.1 99.7 1.7 .SN=2 JElAeXAP 
5"19 862 o85 00519 0.0843 0.1362 308. 770. 688 00199 00206 10.93 1446. 0. 00 24.4 3.84 15.1 150 13 11.3 99.5 1.7 N= JETA XYL 
520 8.72 6.91 0.0526 0.0714 0.1-240 298. 770. 6.82 0.0179 0.0163 0.92 1384. 0. 0.0 24.9 3.29 15.8 2.7" 7.3 8.8 98.2 1.5 SN=2 JETA+XYP 

521 8.72 b.94 U030 0.05,89 .. 119 299. 7766. 6.86 0.0161 0.0 0 .0 13Z6. 1584. 0.46 24.7 0.0 0.0 0.0 0.0 0.0 0.0 1.5 J ETA XYL 
220 8.67 6.91 0.0498 0.06 0.116798 . 767. 6.01 0.0169 0.0169 100() 1331. 0. 0.0 24.7 3.38 1562 34.5 3.1 8.8 97.8 1.6 $N 92WA Y 
405 4.80 .98 0.03604 0.0 0.0384 299. 42b. 2.97 0.0101 0.0084 0.83 821. 0. 0.0 18.1 1.76 18.3 8.1 3,.1 2.8 ".2 1.2 JE2HXY 
206 4.75 3.07 0.0498 0.0 009 299. 429. 2.97 u.012 0.0114 0.86 908. 0. 0.0 17.3 2.317.2, 17.0 4.7 4.8 99.1 1.1 J#E -I1Y 
406 4.84 3.85 0.093 0.0 0.0493 2Q9. 4,24. 2.97 0.0128 0.0 0.0 91b. 156.3 1.21 17.4 0.0 0.0 0.0 0.0 0.0 0.0 1.1 #2ETA+Y 
407 4.,84 -%85 U.0541 0.0 (10.541300 4925. 2.96 0.014+1 0.0125 0.69 963. 0. 0.0 17.4 2.56 17.0 31.7 43 5.2 98.809 ,1 #21tt 
408 4.8 3.80 0.0624 0.0 0.0624 299. 431. 2.91 0.0164 0.0147 0.901 048. O. 0.0 17.9 2.94 16.3 705.7 3.8 5.16 9.8 0.9 J E2AXY 
418 8.73 6.95 0.0525 0.1010 0.1555 290. 759. 6.859 0.0224 0.02316 10 1513. 0. 0.0 24.5 4.76/ 13.5 9.4 0.6 13.0 ".,7 1.4 3N=3 #21TA+Y 
419 8.63 6.87 0.0527 0.0842 0.,36301. 79Z.596.85 0.0199 0.020671094 1449., 0. 0.0 24.6 4.8"3 14.4 174"0 1.3 101.2 ".5 1.4 SN=2 JE2PXY 

421 8.68 6.90 0.0524 0.0574 0.1098 09,71. , 6.85 0.0159 0.0 0.0 1326. 1584., 0.47 24.9 0.0 0.0 0.0 0.0 0.0 0.0 1.4 JE2HXY 
421 8.59 6.83 0.0528 0.0570 0.1098 301. "774. 6.87 0.0161 0.0152 0. 89 1331. O. 0.0 24.57 2.86 16.2 62.29. 8-.8 97.4 1.4 SN=2 #2TA8XY
205 4.95 3.93 0.001 0.0 0.0401 296. 430. 2.97 0.01029 0.0085 0.83 820. 0. 0.0 18.1 1.78 18.2 "8.6 3.4 32 ".°4 0.9 D#EM 

206 4.86 3.97 0.04,8L 0.0 U.0481 296. 428. 2.93 0.0124 0.0105 0.85* 908. 0. 0.0 17.9 2.19/17.5 169 3.4 4.4 99.2 1.0 O02FMI 
206 4.83 3.85 0.043 0.0 0.0483 296. 428. 2.895 0.0125 0.0 0.0 9120. 1693. 1.61 17.7 0.0 0.0 0.0 0.0 0.0 0.0 1.L OIES4 
207 4.8 3.80 0.05a7 0.0 0*0537 2986. 420- 2.93 .. 0141 0.0121+0.86 989. 0. 0.0 17.6 2.4b 1"7.0 46.8 2.2 4.9 98.6 1.1 0#ZME 
208 4.872 3.87 0.0619 0.0 u.0619 296. 4329, 2,97 0,0160 0,0145 0.91 1034.' 0. 0.0 1780 2.86 16.2 101.2 2.94.7o" 97.3 1.1 02M 8 

http:24.42.82


Config~uration H-7 

4,_ , 
= ,-- 7 = # 

202 
2021 

8.ba 
8.7Z 

O.?0 U.0857 O.106b U.1505 
6.93 u. U530 O.W6e9 0.1599 

2n4. 
295. 

770. 
769. 

6.82 
6.91 

0.0233 
0.0231 

0.0213 
0.021[2 

0.91 1848. 0. 
0.9;2 1[541'. 0. 

0.0 
0.0 

24.7 4.38 
24.6 4.37 

14.1 
1[4.2 

12.2 
1[3.4 

0.6 
0.7 

12.7 
12.3 

9-9.6 .o0 
99.6 1 1. 

#2W 
02M 

> 
-0 

2U22 8.67 6.91 0.0D527 U°lU28 0.1555 295. 770. 6.87 0.0225 0.0211 0o.Y4 1525. 0. 0.0 24.7 4.34 14,.4 13.2 0.9 12.3 99.6 1.1 2 Ffi 

2023 
2024 

8.7Z 
8.63 

6.93 
6.D7 

UoOa3 0.1066 
0.0534 D. 1u6l 

0,1 01 
u.1595 

295. 
29b. 

766. 
769. 

6.Q3 
6.79 

0.0211 
0.0232 

0.0206 
0.021o 

O.bq 
.. 93 

15 0. 
15845. 

0. 
0. 

0.0 
0.0 

Z4.3 
Z4.7 

4.24 
4.43 

14.3 
14.2 

15.2 
15.4 

0.8 
0.9 

12.8 
13.0 

919.6 1,.2 
"9.5 1-1 

02 
2M C 

Z031L 4, Bb 3,5 0,oD406 0.0 00468 Z94. 4.34, 4.5q O.0122 O.0093 0.765 903. 0. 0.0 18.4 1.90 17.9 36.9 5.0 4.0 978.6 1-1 #ZWN 
2031 4.89 3.98 0.047'3 0.0 0.0473 294. -30. 2.8b 0,O122 0.0 O.0 :1O. 146a. 1.19 1[8.5 0.0 

" 
0.0 0.0 0.0 0.0 0.0 1.1 *ZW > 

Z032 4.92 3.91[ 0.0472 0.0 0.0472 294.° 430. 2.9 U.01.21[ 0.0091,0.75 d97. 0. 0.0 La8., 1.88 18.0 32.8 2.8 4.2 98.9 1.1 Z2 
2032 4.95 3°94 O°O0'74 0.0 0. 0,74 244. " 3.. 2.8- 0O, 2O 0 0.0O* 895. 1[45>. I.o20 18.7 0.0 0.0 0.0 0.0 0.0 0.0 1.1[ 2z 
2033 4.o85 3.0 0.0471 0.0 uov471 289. 42G. 2.92 0.0122 0.0091 0,75 q03. 0. 0.0 18.0 1.87 18.0 3a.0 2.S 4.4 9S.9 1-1 #2w 
20]33 
2034 

4.89 
4.82 

3.88 
3.83 

U.°0473 
0.0472 

0.0 
0.0 

0.0473 
0.04-72 

294. 
294. 

430. 2.89 
4'26. 2.89 

0.O122 
U.01.23 

0.0 
0.0093 

0.0 
0.76 

900. 
q04. 

1454., 
0. 

1*L18 .3 
0.0 18.°0 

0.0 
1.°9a 

0.0 
t8.0 

0.0 
37.). 

0.0 
L.9 

0.0 
4,.5 

0o0 ir2 
98:9 1.o1 

802 
2 

OC 
0 

2034 4.°86 3.8b 0.0473 0.0 o.04t73 289. 4.28. 2.838 0.0122 0.0 ..0 900. 1503. 1.°28 18.3 0.0 0.0 0.0 0.0 0.0 0.0 1.1 #W21 1 
2035 4.89 2 .08 0.04z74 D.0 0.0474 293. 428. 2.91 0.0122 0.0092 0.75 900. 0. 0.0 18.[ 1.885 -8,.0 39.7 L..9 4.6 98.9 1.1 02W {L 

2035 4.88 M*88 0.0473 DI.0 0.0473 293. '28. 2.87 0.0122 0.0 0.0 899. 1534. 1.3. 1.4 0.0 0.0 O.0 0.0 0.0 0.0 1.1 I ZMI 



Configuration S-20 

a 0 .2 0 2 o .00 0. . NT 

20 

290 8 .. 47 .. -. . 

2 /. 9 1 3.79 ,..0 40 U .0 01 O .,'. 30 t. 7.3u. .95 0.0142 .0 .0 . 1 04.. Z1.40 61.4 U.0 0.0 0.0 0.02O .04490 .0 o0 2.1 JETAV.U477 v.0 0.0477 3'6.o '447. o) U .1 b.o/d.VQ9, i.±.A 1= Uu= 2. .5l. U-. 0.0 2.2 JETA2 4.56 3.ao °00 ~~~ ~u/ O. 2.V4 u.014 .. . , O 9. SI JA
495 Q'.06103 - 3-93 QOiL -Oj.V 10 30k. '.4?. 2.9 0 .O1.O.02 0.7yy 1, Q cL.4-4 7IC 98.0 2.0 JETA0. 9.v- li An -. - .LL.A4 4.88 3.89 0.Oius 0.0 0.0305 3U.. 4.26. 2.9'. 0.OO78 0.006b1 0.78 738. U. 0.0 31.1 1.24 ±2.5 35.1 9.a 2.5 8 .119J5 4.92 3.92 0.0230 0.0 (7.02, 3tUO. 428. 2.94 U.U5 (1.05'.7 O& . .. ( j1. U.9 19. 91. 29.8 T9 '11 98. 

19 8.62 o.o0O( .~u014 31 o .3 .13 .02472 8.8 0.91 (.0307 0.78 .1o93 307. 1.31 13138. C. 0.0 '.4.4 4.7o 13.5 15.6 0.1 9.4 99.6 2.4O SN=1 JETA?ud. ..83 's.o1,o 0,.a13 1.17 1318. 'J. .9I '2.9 .7s 14.U3 9.13 0.4 .5 99.7 2.7 SNMl20 6.71i 4.93,.k.OJ-07 vs/4g.tovq 0-1 9.01)7, O. Lt . v, - iii,. lbll. 0., 
JETAv7.ttn. o.8.! 4,.1 Oty_. u.Q.09 0. 0. 00 2. JETA OA 

ON
 



Configuration S-20 (Cont'd) 

202~~4. .4L°4033 2.2.4002 .1100 6. 0 . 15 .01o 681. . 7311 l.z3o H 
000*539 .6600 o6633 

2044.8 3 t0.3090. u03 34. 
2.29 
27 29 

.Ioa02 07 
*079 .0650.2 

5 
72. 

*003. 
O.0.0314 

.51. 
'.3' 7*%512 

701. 
e5 

.2 

. 
70lI#H 
979 IIe2H 

2054.2 .910.2304 42. OO.9 00240.06 0000 08366. . 00 1. 0.5 8. 17.0402 .2 1. 11 2H 

202 4.94 
203 4.95 
24 4.93 
2054 .92 

3.91 0.0480,0.0f 
3.9A 0.0626 0.0, 
3.97 0.603 0.0 
3.91 0.0342 0.0 

0.0490 303. 427. 2.894 0.Q23 0.0101 0.81 
0.0480 304. 425. Z-93 0,.0121 0.0l2 0.77 
V.063 304. 427. 2.94 V.0179 0.0631 V.82 
6034 304. 426. 2.94 0.0060 0.0006 0.83 

908. DO 0.0 
8962. 10. 0.30 
7042. 0. 0.0 
668. 0. 0.0 

31.5 2.o7 17.4 
312.5 6. 3 0 
31.4 21.62 16.4 
31.3 0.95 18.1 

6687 
77.0 
51.2 
147.0 

10.2 
10.0 
7.5 
40.Z 

4.0 
3.2, 
3.1 
2.9 

97.3 1.1 
970 1-1 
97.4 1-1 
98.0 1-1 

*ET+XH 
92HHXY 
#2T+XH 
JET+H Y 

218 8.176 6.-0 0.0308 0.1241 0.1549 304. 768. 6.87 0.0224 0.0262 1.12 1521. 0. 0.0 42.6 5.37 12.6 1223 0.4 9 .2 99.5 1.4 JNETA+XYL 
219 8.72 
220 8.74 
221 8o68 

6.94 (1.0308 0.1063 0.1359 3 3. 768. 6.67 0..000 0.0227 1.16 145. 0. 0.0 44.3 4.8 13.0 
6.96 0.0312 0.0786 .1O97 35+. 77. 6.75 0.0157 0.0 ,0.0 1314. 170. 0.6 43.2.0 COO.0
6.92 0.03 0.U76 U01970 305. 7"62. 6.8 0.014e 0.0156 1.11 1260. 0. 0.0 43.3 3.79.15.8 

14:7 
0 0 
13.9 

0.6 
0.0 
1:2 

8.4 
0.0, 
7.7 

99-6 1.4 JETA2YL 
0:0 1,:4 SN=3 JE2+XY 
9974 13SN=3 JETHHY 

402 
402 
403 
404 
405 

4.93 
5.01 
4.8 
5.01 
S.9I 

3.91 0.0480 0.0 
3.98 0.0480 DO(O 
3.97 0.0613 0o0 
3.99 0302 0.e 
3.98 0.0.237 0. 0 

0.0480 304. 434. 2-89 0.0124 0.0102 0.84 908. 0. 0.0 2.5 2.03 17.6 7 
0.0480 304. 429. 2.91 0.0121 0.0 0.0 896. 1054.,0.34 32.5 0.0 0.0 O. 
O.O613 303. 429. 2.98 0.0158 0.0131 0.85 1014. 0. 0.0 31.5 2.62 16.7 -14.9 
0.0302 303. 429. 2.91 0.0076 0.0066 ..87 731. 0. 0.0 32.5 1.35 19.0 4429 
6.0237 3u3. 424. 2.98 0..00 0.0052 D.87 665.. 0 .0 320.01 19.7 110 

. 9 
0 00 
3.8 
8.5 

27.6 

4:1 
0 a 
3.0 
2.9 
1.9 

97.6 1.1 
0.0 1.1 

97.4 1.2 
98.0 1.3 
94.2 1.2 

JETA NAP 
JETA+NAP 
JYE7A+NAP 
JETA NAP 
JETA NAP 

0 

418 8.74 6-q5 0.0306 0o1229 0.1535 303. 768. 6.87 0.0221 0.027269 184 0 . 4. .1 .0 29.0 0.0 9.0 09.0,1.1 F2H6EAHAP c 
01.26o40G9 .1663 0.1374 303. 769. 6.80 0.0200 0.0233 1.16 1450. 

420, 8.65 6.88 0.602 0.0785 D.1097 30A. 7U8. 6.85 0.0159 . .,11.179 
0. 0.0 42.8 4.80 13.3 

.64. . .0.0 
13.8 0oo . 

. 
5 
8 

96I9SN2JT 
9. 7 . 1.1 ,JETA+NAP 

420 8.58 6.83 O.030 .75 19 0.70 .3005 .9 1.2 1324. 170. 0.69 4Z.8 0.0 0 .1
2287 6.26 0 0 94.6626 .09 49. 772. 6.689 0.015 U.0183 1.14 129. 0. O.D 42.2 3.39 15.3 

21 8.69 6 .98 0.0306 0.0676 0.0982 3C06. 771. 6.9U 0.0142 e.0166 1.13 1269. 0. 0:0 42.4 3.32 6 .0 
419 8.61 6.V4 0.0336 0.06 6.18 3. 6. 2 9 .701 0.020O 01.0 103 1466 . 0.0U3.6 4.7213.5 
502 4.R8 3.88 0.0483 0 0 0.0483 305, 424. 3.05 0.0124 0.0104 0.84 906. 0. 0.0 29.7 2.0213 . 

01.0 
13.1 
9i.4 
5. 3 0. 

271. 

0.0 
(1.0 
0.7 
0 6 

7.0 
9.8 
8.3 

.0 

. 

99.71 18 
99.7 1:1 
199.7 1.08 
9. 0. 5 

7616DEE 

SN=5 JETA+NAP 
SN=3 JETA NAP 

N JETA+NAP 
-DIESEL 

502 4.9 3.9 0.04082 00 u0482 305. 425. 2.30.0 8.03 08179 D0036 17.7 4914.4 4.1 428 98.5 0.4 JDESELNA 
535 4.87.5 003 . .2034 2.2 0.0124 0.004

31 . 3 .P5 0.0610 0.022 0.010 305. 426. 3.93 4.0158 0.0132 
050424.084 3.85O.G22.39886836270103.2 306. 475. 2.99 0.09006 

0.80 
0859 

.34 

904. 105. 0.031 3 0.0 09.0 10.0 
04 

O.,.0.0 429.8276 16.8 53.6443. 1J.0.0 30.3 1.37 19. 2. 9 

0.0 

3.5
68.1 

2.0 

2.9
.5 

92.0 1.1 

98.41.
98.5 1.3 

DIESELN 

E;5NASN0DEE
SN=2 NADIS 

5205 4.91 .90 0.0236 0.087 0.0236 306. 424. 2.8 0.0017 0.0010 .84 6690. '*0.0 . 3.8.9 19.603.3 4.1 1.79 93.6 1.3 JTADIESL 
510 8.64 6-82 0.0299 0.2231 0.1510 306. 765. 6.95 0.0220 0.027 1.26 1504. 69. 0.0 41.8 5.61 12.5 29.O 0.4 9.1 99.O3,1.D ESELAP in 
519 8.72 
520 8.70 

6.94 O.0292 G.1073 0'.1372 3r07. 767. 6.9 0.0198 0.0237 1.20 12440. 
6.82 0.0308 0.0785 6.1093 30a. 768. 6.84 0.0158 0.0 .012.I8 

0. 0.0 
0743 

42.7 4.86 13.6 
. O 

507.420.3 
. 00 

8.5.- 996 1.9 
OO.2DEL 

SN-23 DESELNA 

521 
5211 

8.71 
8.65 

6.92 6.0308 0.6626 409314 M,9. 767. 6.880.0OE1 0.0162 1.20 123. 
6.88 0.0307 0.0633 0.0940 305. 768. 6.90 0.0137 0.0167 1.92 1260. 

O. 
0. 

0.0 
0.0 

42.6 3.36 16.0 
4232 3.46 16.5 

12. 
IL.9 

1.5'6 
6:5 

8.s 
,7.6 

99.6 1.5 
99.7 1.8, 

SN=3 DESELN 
JNIDESELN 



Configuration S-22 

2 
21 
22 
23 
24 

3 
3 
3 
3 
3 
33 
3 
3 
3 

0 

8.65 
8.63 
8.68 
8.67 
8.66 
4.94 
4;94 
4.91 
4.93 
4.92 

4.91
4.98 
4.94 
4.9c 
4.94 

.-

ciIi 

6.80 ,i.)141 3.1384 
6.87 0.0141 0.1378 
6.91 0.0139 0.1377 
6.89 v.C14', 0.1379 
6.88 0-.0140 0.1382 
3.93 -. )5,i7 0. 
3.q2 0.0507 0.0 
3.00 0.0508 0.0 
3.0l . q507 0.0 
3-01 0.05,)7 0.., 
3.90 0.65)6 0.'3.95 .. ,)506 0.0 
3.90 0.0506 0.0 
3.80 0.C503 0.0 
3.03 0.0506 0.) 

0 ci oo 
'a 0.. o 0 

0 

X,.1525 288. 774. 6.85 3.0221 0.0284 1.29 
0.1519 289. 772. 6.79 0.0221 0.0284 1.29 
0.1516 289. 770. 6.80 0.0220 0.0291 1.32 
J.l1l9 269. 772. 6.80 0.0220 0.0295 1.34 
C.1522 293. 774. 6.83 1.0221 0.0290 1.31 
.. 0537 201. 429. 2.94 D.,129 0.0-97 0.75 
0.0507 291. 428. 2.91 0.0129 0.0 0.0 
0.0500 290. 429. 2.94 0.0130 0.0096 0.74 
0.t5,7 29V. 429. 2.93 0.0129 0.0 0.0 
... Su7 290. 428. 2.98 0.0130 0.0099 .. 76 
V05 '6 290. 426. 2.96 n.Z130 0.0 C.,6.656 290. 420k. 2.96 ;-.0128 0.0098 .. 77 
0.0566 290. 428. 2.94 0.0130 0.0 0.0 
0..,5C3 290. 429. 2.97 .. 0130 0.0091 0.70 
0.05,6 290. 428. 2.95 O.I.129 0.0 0.0 

1519. 
1516. 
1510. 
1515. 
1519. 
926. 
926. 
930. 
928. 
928. 
928.
923. 
928. 
928. 
925. 

0. 
U. 
0. 
0. 
0. 
.. 

1161. 
0. 

2224. 
.o 

1160.
6. 

1215. 
0. 

1209. 

! 

0.0 43.0 5.61 12.6 
,.O0 43.1 5.6V' 12.4 
0.0 43.2 5.74 12.4 
0.0 43.2 5.81 12.2 
0.0 43.1 5.72 12.3 
0.0 31.7 1.93 18.0 
0.47 31.9 0.0 ).0 
0.0 31.4 1.91 17.9 
0.59 31.6 0.0 0.0 
0.0 31.0 1.97 17.8 
0.46 31.1 0.0 0.00.0 31.5 1.95 17.9 
0.57 31.4 0.0 0.0 
0.0 31.0 1.81 18.1 
0.57 31.5 0.0 0.0 

31.9 
30.8 
30.1 
33.5 
32.7 
60.5 
0.0 

60.7 
0.0 

58.6 
0.0

62.4 
0.0 

58.2 
0.0 

2.9 
2.9 
2.9 
3.6 
3.7 
3.4 
0.0 
3.2 
0.0 
3.0 
0.0
2.7 
0.0 
3.0 
0.0 

8.9 
9.1 
9.3 
-9.2 
9.4 
3.5 
0.0 
3.5 
0.0 
3.4 
G.
3.4 
0.0 
3.5 
0.0 

0 s 0 

'Ew 

98.9 0.0 
98.9 0.0 

-99.0 0.0 
98.8 0.0 
98.8 0.0 
98.2 0.0 

0.0 0.0 
98.2 0.0 

0.0 0.0 
98.3 0.0 
0.0 0.00

98.2 0.0 
0.0 0.0 

98.3 0.0 
0.0 0.0 

#2HH 
#2HH 
#2HH 
W2HH 
#2HH 
#2HH 

#2HH 

#2HH 

S2HH 

'#2HH 



APPENDIX D
 

70 



APPENDIX D 

ALTITUDE STABILITY TEST RESULTS 
FOR HYBRID COMBUSTOR CONFIGURATION H-6 

Combustor Operating Conditions at the Minimum Pressure Blow Out (MPBO) 
I­
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ALTITUDE STABILITY TEST RESULTS
 
FOR VORBIX COMBUSTOR CONFIGURATION.S-20
 

Combustor Operating Conditions at the Minimum Pressure Blow Out (MPBO)
 

4 1.25 0.0208 293 268 0.380 284 Jet A 

9 1.25 0.0208 293 268 0.380 284 Jet A 

3 1.06 0.0208 293 261 0.340 284 Jet A 

6 1.06 0.0208 293 261 0.340 284 Jet A 

10 0.84 0.0208 293 250 0.317 283 Jet A 

12 0.84 0.0208 293 250 0.327 283 Jet A 

15 0.64 0.0208 293 242 .0.267 283 JetA 

16 0.64 0.0208 293 242 0.273 283 Jet A 

30 0.79 0.0208 292 250 0.317 286 No. 2 H.H. 

31 0.79 0.0208 292 250 0.327 286 No. 2H.H. 

32 -0.67 0.0208 292 242 0.270 "287 No. 2 H.. 

33 0.67 0.0208 292 242 0.270 287 No. 2 H.H. 

34 1.01 0.0208 292 261 0.337 287 No. 2 H.H. 

35 1.01 0.0208 292 261 0.337 287 No. 2 H.H. 

36 1.25 0.0208 293 268 0.370 287 No. 2 N.H. 

37 1.25 0.0208 293 268 0.377 288 No. 2 N.H. 
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Attn: S. Moskowitz 1 Long Beach, CA 90801 

Attn: Mr. W.R. Dunbar (36-41) 
10. AiResearch Manufacturing Company A. T. Peacock 

2525 W. 190 Street 
Torrance, CA 90509 18. Lockheed California Company 
Attn: L. C. Wright Lockheed Aircraft Corporation 

Burbank, CA 
11. AVCO Corporation Attn: E. F. Versaw 

Lycoming Division 
550 South Main Street 19. Applied Systems Corporation 
Stratford, CT 215 Mill Street 
Atta: N. R. Marchionna 1 Vienna, VA 22180 

G. Opdyke 1 Attn: H. Bartick 
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20. 	 United Technologies Corporation 
Pratt & Whitney Aircraft Division 
400 Main Street 
East Hartford, CT 06108 
Attn: R. Marshafl 1 

P. Goldberg 1 
Library 1 
R. Roberts 1 
A. R. Marsh 1 

21. 	 United Technologies, Corporation 
Pratt & Whitney Aircraft Division 
Florida Research & Development Ctr.
 
Box 2691
 
West Palm Beach, FL 33402
 
Attn: G. Lewis 

S. Mosier 

22. 	 Cameron Engineers 
1315 South Clarkson Street 
Denver, CO 80210 
Attn: G. L. Baughman 

23. 	 United Airlines 
San Francisco, CA 
Attn: Paul Campbell 

24. 	 Phillips Petroleum Company
 
Bartlesville, OK 74004
 
Attn: R. M. Schirmer R&D 1
 

25. 	 American Airlines
 
3500 North Mingo Road
 
Tulsa, OK 74151
 
Attn: J. K. Siddons
 

26. 	 AiResearch Manufacturing Company
 
of Arizona
 
P. 0.Box 5217
 
Phoenix, AZ 85010
 
Attn: Dr. H. C. Mongia
 

27. 	 General Electric Company
 
Flight Propulsion Division
 
Cincinnati, OH 45215
 
Attn: C. Danforth H-32
 

D. Bahr H-33 
Technical Information Ctr N-32 
C. C. Gleason H-33 
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