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NUMERICAL MODELING OF POLLUTANT TRANSPORT USING A
LAGRANGIAN MARKER PARTICLE TECHNIQUE

By Malcolm Spaulding
University of Rhode Island*

SUMMARY

A drrivation and code have been developed for the three-dimensional mass
transpo. . wquation, using a particle-in-cell solution.technique, to solve
coastal zone waste discharge problems where particles are a major component of
the waste. Improvements in the particle movement techniques have been suggested
and typicai examples illustrated. Preliminary model comparisoﬁs with analytic
solutions for an instantaneous point release in a uniform flow have shown good
resﬁlts in resolving the waste motion., The findings to date indicate that this
computational model will provide a useful techniquz to study the motibn of sedi-
ment, dr;dged spoils, and other particulate waste loads commonly deposited in

coastal waters.
INTRODUCTION

The finite difference and finite element techniques have enjoyed widespread
use in solving the advection-diffusion equation for water pollution transport
probléms. This fact is well documented in the bibliogréphy on numerical models
by Spaulding and Gordon [l). In the application of these techniques to ocean
waste disposal (dredged spoils or sewage sludgej and sediment transport
‘several marked shortcomings are notéd. The most serious problems'
encountered are: (1) generation ofrfictitious diffusion; (2) severe depression

of concentration fields'upstream of point discharges; (3) poor representation

*NASA-ASEE Summer Faculty Fellow Program - 1975



of constituent movement when waste consists ¢ varying particle sizes (each
with its own settling characteristics); (4) inability to readily handle
resuspensjon of waste material on a mass dependent basis; and (5) extrene
difficulty in handling scale dependent diffusion processes,

In an effort to develop a new technique which would account for these
problem areas, the literature on solutions to the advective-diffusion equation
was teviewed. Following recommendations made by Johnson (2) in a review of
ocean dredge waste disposal modeling for the Corp. of Engineers and Lange et al,
(3:4) in their work on air pollution problems, a particle-in-cell method appears
particularly promising, This method has received considerable development in
application to air pollution problems as noted in the work of Sklarew et al.
(5), Hirt and Cook (6), and Lange et al, (5%} The investipations have shown
the method capable of performing useful computdtions to determine the fate of
pollutant constituents under very complex air flow conditions,

Employing the experience gainéd iﬁ thelair pollution field, it is felt
that the particle-in-cell method provides a very useful algorithm for handling

~ complex particulate water pollutant problems.

SYMBOLS
C concentration of a dissolved or suspended constituent (mg/1)
t ﬁime
> \ . + T ow T
Uy advective velocity vector CUAl Ve WAh)

~<H-

del or gradient operator 9/, () + 3/ay () +23/,,0)

e

diffusivity tensor

j _
U | ££usi ity T v Wk

D dlffuglon velocity vector (UDl + D + W, )
> . -+ - -+
UT total pseudo transport velocity UT = UA + UD

~n



mean

Ci,j,k finite difference representation of C located at  iAx,jAy,kAz

Ax finite difference grid spacing in the x direction

Ay finite difference grid spacing in the vy dire;tion

Az finite difference grid spacing in the =z direction

XY,2 three dimensional Cartesian coordinate axes

At time increment

Kx’Ky’Kz diagonal or principal terms of the diffusivity tensor Kij' in the
Xx,¥, and 2z directions, respectively

ﬁﬁew updated position vector of a particle (ﬁﬁew = Xi 4+ y?_+ zﬁ) at
time t + At

ﬁold previous position vector of a particle at time ¢t

ﬁ& paiticle'total transport velocity interpolated to the particular particle
location

XP x position of a particle within a cell referonced to the cell wall

YP y position of a particle within a cell referenced to the cell wall

v cell or grid volume (&X) (AY) (AZ)

Mi particle mass

L characteristic dye patch size

AL dissipation parameter

UFD finite difference approximation to the diffusion Velocity

Uexact exact differential expression fof the diffusivity velocity

o standard deviation o° = cxz * dvz + Uyz

Q gquantity of waste released |

u,v,w X,y, and 2 directed velocities, respectively

_ Ui’oyfcx standard devigtions in the x,f, aud “z. difectioﬁs,.respectively
D deviation of mean from the desired mean

R



Ky number of standard deviations for a specified confidence interval

n number of particles
9%0?%0'%20 standard deviation in the x,y, and 2z directions,

respectively, at t = 0,
COMPUTATIONAL MODEL ~ WAPIC

WAPIC (water advection particle-in-cell)} is a three-dimensional numerical
solution code to the time dependent advection-~-diffusion equation for water
pollutant transport employing the particle-in-cell technique, Pollutant
concentration is represented statistically by embedded Legrangian marker parti-
cles in an Eulerian grid. The discussion which follows will outlinz the
details of the method to include its procedural steps, stability and accuracy,

and program options,

Pseudo Velocity Approach
Ths pseudo velocity approach consists of the following. Given the transport
diffusion equation
3—C+U*'3C=$ol<ij3c S
‘where C 1is the concentration of the waste, Kij the diffusivity tensor, and
UA the advection veldcity (from a suitable hydrodynamic model or mass
consistent velocity field), Réwriting Eq. (1) in a flux conservative form with

the incompressibility assumption yields:

K, .
C | Felo . U = | ' 2
atfv*{ccuA = 'V‘C)] =0 (2
If one defines a diffusion.velocity as
TR - | 3)
B I v [



then a total velocity, including b.- s0 adveetion velocity and the diffusion

velocity can be written as

c
(=}
+

=

tr = A D (4)
Using Eqs, (2),(3), and (4) the rosulting advective-diffusion equation © °Jmes:
aC : [ 5 ]_
& Ve clj= 0 (5)
Equation (5) forms the fundamental starting point on which the method is
based. The solution to this equation is performed in two steps: an Eulerian

step and a Lagrangian step. Bach will be detailed in the following paragraphs:

Eulerian Step.- From a space staggered grid system as shown in figuve 1,

the concentrations, C, are used to calculate the diffusivity velocities
{relationship defined in Eq. (3)). A typical finite-difference representation

might be |
U, = - 2Kx Ci + 1.4,k ) Cizjnk CGJ
D (C + Ci . l,j,kj A%

i,j,k
for the x velocity component, It has been assumed that Kij reduces to Kii

such that Kjp = Kx' In general, it is not necessary to make this approximation,

however, it is commonly done. The diffusion velocities for the other coordinate

directions are similarly defined as:

oo 2 Ci i+ 1.k A' ik o
D C., .. +¢C, .
cl,J,k i3+ 1,]{) Y
_ c e
s - B 1k 1 4,50k
WD = - < (8)

C. . + Qo Ly

Cige G0

with these difference approximations the diffusion velocities are seen to be

defined at the same points in the grid system as the advective velocities. This
scheme proves to be very useful when calculating the total velocity at any

position in the grid system. L - 5



The final task to be porformed in this step of the computation is the
addition of the adveetive and diffusion velocities to determine the total
or pscudo transport velocity, Since both velocities have been defined at the
same location in the grid system, a simple addition for oach coordinate direction
veloeity is all that is required.

Lagrangian Step,- Each marker particle contained in an Bulerian cell is

transporced for one time step At according to the total transport velocity

Urp (defined in Eq. (4))

:ﬁ +i,)l- . At
new old T particle (9)
where ﬁold is the Lagrangian particle position at time step t, ﬁﬁew is the
position at time step t + At and ¥ is thr bilinear weighted

T particle
velocity at the particle for time step t. Figure 2 shows a simple two-.

dimensional example for detemining the velocities at a particular particle
location, This approach can readily be generalized to the three-dimensional case,
Although the bilinear weighting scheme or a light variation has been used
to determine the velocity at particle locations in the models of Lange and
knox ) for the air pollutant transport problems, it is felt that this tech-
nique is not adequate. In particulqr, when the streamlines or pathlines of the
flow field are curved, the marker particles tend to drift in such a manner that
the true streamlines and those given by the marker particles are not coincident,
By reducing the time step At the error can be reduced substantially; however,
it the expense of computational time and, therefore, cost.
Forester (7 has proposed an iterative approach to particle motion
~prodicrion that alleviates many of the problems inherent with the simple

Chitinear velocity weighting scheme. Instead of employing Eq. (9) to represent

RIGINAL PAGE IS
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the particle motion computation, he suggests the following:

rooar = old < new - At

new = Ro1a * | Up particle UT'particle ) (10)

ﬁ old

e . represents the bilinear weighted veloeity at the old
I' particle -

where

i o new

particle position Rold and Uy particle represents the bilinear weighted

velocity at the new particle position ﬁﬁew' With an iteration procedure where

-
each estimate of Rnc is used to calculate an updated particle velocity

W

U, new Eq. (10) is solved to find the new particle positions, for a

T particle
given convergence error on ﬁ N

new

In an attempt to assess the usefulness of the iteration procedure, several
trial cases have beei executed, Using a simple four-cell velocity field with
rotational currents (as shown in figures 3 and 4), a grid spacing of 10 m in
both the x and y directions, and varying time step, particle trajectories
were predicted with and without the iteration procedure previously outlined.
Figure 3 shows that without iteration and even for very small time steps (i.e.,
1710 of a grid space per time step) the trajectories show a definite spiraling
outward from the true particle pathline--a closed circle for this velocity field,
Figure 4 presents the same simulations but employing the iteration procedure.
It is readily seen that there is a marked improvement in particle trajectory
representation with this -approach.

Therefore, it is concluded that the use of the proposed iteration tech-
hiqUe is the best method to determine particle motion, since it requires less
computational effort for more accurate results, Without this procedure, it can
be seen that eddy type structures are more rapidly depleted of their pollutant
loads than occurs in the real case.

The final portion of the Lagrangian step is to compute the concentration

given the new particle positions and mass. A “fictitious" volume is associated



with ench puarticle mass at the start of the computation. The overlap of this
volume into the surrounding Eulerien cells determines the distribution of mass
into the various cclis and allows the concentration fleld to be enleulated.
Figure 5 shows the detalls of the computational procedure for a typical particle
in a two-dimensional grid system, This algovithm is simply repeated for all
particles in the system for a given time., A further refinement can be added in
the Lagrangian step to allow for grid expansion or a grid system that moves
with the mean motion of the particles. Incorporation of this feature permits
maximum resolution of the concentration field with a minimum number of computa-
tional grids, and is particularly useful for determining the behavior of "puff"
or instantaneous point vreleases, Variations of the moving grid system procedure
would allow the resolution of some particular portion of the pollutant field,
i,e,, determining where particles of a specified mass are transported,

Figure 6 presents a flow chart for the computational procedure that has

been outlined in the previous paragraphs,

Velocity Information

In order to perform.computations with WAPIC, a mass consistent velocity
field is required.. That is a velocity field that cohserves water mass, This
information for both spatial and temporal variations can be obtained from o
finite difference or finite element model of the coastal zone hydrodynamiés.
Reference 1 gives an extensive list of suitable circulation models of both the
two-dimensional vertically averaged and three-dimensional types. It is also
possible to use statistical predictor type models (8,97 based on data taken for
a particular area . The main requirement of each, however, is conservation of

water mass.



The final requiroment of the flow field is that the velocity information
can be resolved into the space staggered grif system as shown in figure 1. A
simple linear weight processing technique with a water conservation constraint

should readily achieve this goal,

Boundary Conditions

WAPIC has two basic types of boundary conditions, a closed or zero mass flux

boundary (ﬁ C) = 0, and a mass flux boundary GF

T particles T particlesc) = constant,

In the application of these boundary specifications,consistency of boundary
type for both the Eulerian and Lagrariglan step ealculatians as well as the input
velocity field must be maintained. Specifically, the Eulerian step must account
for the flux of pollutant paxticles due to diffusion while the Lagrangian step
“resolves the advective particle flux.

Another boundary condition particularly applicable to the sediment trans-
port problem is a deposition or storage boundary. When particles which are
settling from the flow field reach the bottom of the water column they may be °

stored at that geographic location until such taime as they might be resuspended

by an increased shear at the water-soil interface,

Diffusion Parameters
In the general case, WAPIC can, in principle, accommodate the full Cartesian
eddy diffusivity tensor Kij' In practice, isotropy of the water turbulence is

assumed and only the diagonal terms noted as Kt, K., and K_ remain. In

v
;

addition, for most coastal zone flow conditions it is generally assumed K‘ = Kv‘

It still remains, however, to determine values or empirical relations that

approximate the diffusion processes for coastal cone areas.



The majority of investipgations for horizontal turbulent diffusioen in the
oceun monitor the size of tracer dye patch as o function of time and then using
simzic diffusion models, which disregard both shear current and vertical trans-
port, calculate the diffusion coefficients (10),

The values of horizontal diffusion coefficients obtained ia the ocean range
from 5 X 102 to 4 X 108 cmz/soc. The largest number of measurements were
obtained at the ocean surface. In general, it was found that the K, was a
direct function of the diffusing patch size L, Figure 7 shows a collection of
data and illustrates this relatioaship quite well. Although the data scatter
is significant, in general

_ 8
K = AIL4/3 10 "tEt < L < 1076t (1)

where A, is a constant called the dissipation parameter and varies from 0,005
to 0,00015 £t2/3/s0c,

Diffusion cocfficients obtained in the ocean are not strictly applicable
to estuarine waters; they are, however, useful in demonstrating trends and
magnitudes, DBrandsima and DRLivoky (12) have shown that data from tidal estuaries
lie right on tho ocean data when applying the four-thirds power law. There-
fore, Eq. (11) should be a useful first approximation te horizontal diffusion
parameters for both coastal zone and estuarine waters. FPurther refinements to
horizontal diffuéion prediction will probably rely.on field experiments in the
local area.

The vertical diffusion caefficient in the ocean is generaliy mﬁch smaller
than the horizontal coefficient, Table I shows a summary of typical values
employed for a variety of coastal and open ocean conditions. Although there
appear to be no general relations for veftiéal diffusion, it normﬁllf displays
a_mnximum near the surface (gaused by wind mixing) and decreases with depth.

10



In addition, the vertical mixing decrcases as the Richardson number (measure of
density stratification) increases. Table Il indicates some typieal formulations

for the vertical diffusion coefficient,

Accuracy ard Stability Requirements
In all numerical solutions ﬁo the advective-diffusion transport equations,
there are requirements which must be met in order to achieve accurate and stable
solutions to the equations, Discussed below are detailed conditions for the
pseudo velocity approach.

Number of Eulerian Cells per Problem,- It is o basic requirement for all

methods that use Eulerian grid systems and finite difference or elements
approximations ilu% sufficient grids are used to resolve the concentration
gradients of interest. When this condition is achieved, the numerically
calculated gradients of concentration and the actual gradients agree with one
another, In addition, as the cells used to represent the concentration field
inerease the agroement between actual concentrations and those of the numerical
computation becomes better,

In an effort to develop an approximate quantitative estimate of the lower
limit and the number of grids necessary to resolve the concentration distribu-
tion, we will follow the approach outlined by Lange (3) | Consider the one-
dimensional finite difference approximation to the diffusion velocity given by:
_ M2 G - 6) (12)
i+ 1/2 7 7 TAX C, ., 1/2

U

Using a Taylor series expansion about i + 1/2 for ¢, 1 and Ci’ substitut-

ing into Eq. 12 and dropping the 1 + 1/2 subscript yields

-

‘

K. ° 3
- _Xx_1eC 1 3 3 ; -
U= EEEW?E' Ax + -r §;§ Ax™ + higher order terns {13}

11



Then expanding Eq. (13) and dropping higher order terms gives

L Vo i) (14)
TC W T 24 C x>

The first term on the right-~hand side of Eq. (14) is the exact differential
expression for the diffusivity velocity. Taking the ratio of the diffusion

velocity defined by finite differences (Eq. (14)) and the exact differential

results in:
e
Upp__ _ ., ax° ax? (15)
u aC 24
eXact 'ﬁ-f—

In order to obtain a quantitative measure of this ratio estimates of the
first and third derivatives of concentration with distance are required.

Assuming a simple ore-dimensional Gaussian ditribution:

2 4ol
C = g e“ X/ (16)

and finding the first

L Qx - x%/20° (17)
ox T3 :
o}
and third derivatives
2°¢ 9&[_ x?! - x%/20°
=% = S5~ Sl g _- (18
ax o g )
this estimate can be made, T
Substituting Eqs.(17) and (18) into Eq. (15) one obtains
Upp (x? 0 a? BT |
T, " lomlzo Y T (19)
exact . o /| o '

Employing the fuct that 99.9 percent of all particles in a one-dimensional

12



(Gaussian distribution are within x = 30, we can substitute x = 30 in

:Bq, (19) and find '
] 2
= 1 - %-2- (20)
exact 4u

prom this relationship, it is seen that when a grid cell is either larger or
comparable to the standard deviation for particle distribution, the finite
difference algorithm underestimates the diffusion velocity. However, as more
grid cells are employed for a given standard deviation, the finite difference
approximation becomes an increasingly better estimate of the diffusion velocity.

Number of Particles per Cell,- Since the particles represent a statistically

quantized density, it is desirable to have as many particles as possible for any
particular problem, An upper bound on per**cles would be either the storage
capability or maximum program run time (this is directly propertional to the
number of particles) for a particular computer, The lower bound is at least

one particle per cell, Fewer particles and in particular when a particle has

no neighbors within one cell length, the particle is moved to the grid boundary
and "frozen" in place when considering the diffusion velocity. This freezing
procéss is a direct consequence of the algorithm for determining concentrations
from particle positions (see figure 5). It can be readily seen that any parti-
cle must distribute its mass to its nearest neighbor cells, If another distri-
bution algorithm were chosen which distributed the particles over a greater
yolume, the cne particle per cell minimum could be relaxed,

Particle Generation.- In general, it is desirable to start either steady

state or time dependent point discharge simulations with some initial Gaussian
or normal distribution, Several experiments were conducted using random number

generator techniques similar to those in the work of Lange (J), which proved

15



to give distributions that displayed noticeable '"bunching" of particles around
the di?ectidns of the coordinate axes; It was felt that this problem was
directly related to the quality of the normal random number generator available
at the time,

In an effort to alleviate this problem, it was decided to specify the exact
number of particles in each cell using the Gaussian probability distribution
furction. Knowing the cell size, standard deviation of the distribution, and
the total number of particles in the field one can then gompute the number of
particles in each cell using the normal distribution constraint. Next, a
uniform random number generator was used to locate the appropriate number of
particles in each cell. All cells were filled in this manner, If it is
decided to obtain another type of initial condition, all one needs to do is
specify the desired distribution as a constraint for defining the manner in
which these sells are to be filled with particles, The Temainder of the algoritnm:
remains unchanged,

Time Step Restriction,- Similar to many finite difference schemes, WAPIC

has a restriction that the fastest moving particle cannot move more than one-

"half cell length in one time step, At, In equation form this restriction

becomes
: - | U-At VAT WAt :
maximur |_T__, T, T ,],5 1/2
Ax Ay Az (21)
where UgV., and W, are the total or pseudeo transport velocities At is the
) 3 : . . . ’

time sfep, and Ax, Ay, and Az are the grid gpacings in the x,v, and z
directions, respectively. These are dccuracy conditions rather than stability
ones. ”

As was discussed earlier, if one does not choose to employ the iteration

particle location technique and the flow-field displays marked edcy structure

w1



or curved streamlines, it becomes necessary to further restrict the maximum time
step, The exact value to be employed in that particular situation is highly
problem dependent and it is, therefore, recomnended to use the iteration
procedure in all cases,

Number of Particles for Given Confidence Limit on Mean.. When undertaking

a problem, it is extremely désirable to have at least a first estimate of the
number of particles necessary to define a particular distributjon or starting
condition, Since the Gaussian distribution is often employed to define the
initial conditions, a logical manner to determine the number of particles is to
use simple statistical therry to find the number of particles necessary to
assune a given confidence in the deviation of the mean from the desired mean.
In Bowker and Lieberman's text (}3) it is shown that the lower one-sided

deviation from the mean confidence limit is;

(2+2+2-)1/2
g g g
D . K X v Z
mean o \ﬁT
CJ2 = 7 2, o 2, c2
T Yx y - 2
where D - deviation of the mean from the desired value, 7 - the standard

mean

deviation of the normal distribution, n— the number of particles,and Ky~ the
number of standard deviations for a given confidence interval (e.,g., for 95
percent confidence interval - Ky = 1.645),

In an effort to gain a more quantitative estimate of this relation, a
parameteric study on confidence limit (70 - 95 percent) with a Ux = Gy 1000. m,
o, = 1.5 m, and 2 mean of 5000 m is shown in figure 8. In general, it indicates
that for this distribution about 1000 particles are adequate to define the
initial conditions.

The influence of ‘¢ on thé number of particles for a given confidence

limit and deviation from the mean is shown in figure 9. As expected the
15



smaller the standard deviation the loss particles necessary to define the mean
to within a given confidence i. erval,

Although figures 8 and 9 are for a particular problem, the technique out-
lined provides & simple procedure to determine an order of magnitude estimate
of the number of particles necessary for a given problem. In addition, pre-
liminary estimates on error bounds for subsequent program solution can be
obtained.

Options in WAPZC

Sources and Sinks.- Sources or ginks ri pollutant can be generated anywhere

within the Eulerian grid mesh and may eitier be instantaneous, continuous, or
intermittent. From accuracy considerations, previously discussed, the

initial pollutant distribution must cover at ledst two grid lengths, otherwise,
the particles diffuse too slowly, This, therefore, requires special sub-grid
treatment 1f accurate near-field results are necessary.

Deposition and Resuspension.- The deposition of particles can readily be

accommodated with WAPIC, Knowing the parficle density and shape/surface
- characteristics, a settling velocity can be approximated for each particle and
simply added to the total transport velocity., The ability to handle each
particle éeparately allows highly detailed behavior of waste material contain-
ing varyving size distribution such as sediment or dredged material to be
'predlcted.

Resuspension of material from the bottom or some other storage area can he
handled on a partlcle size ba51s prov1ded the hydrodvnmnlc model 1nput provldcs
sufficient detail of bottom surrent structure,

Floceculation.- A rather prevalent process in the settling of fine sediment

and waste material is flocculation. Electrostatic forces between neighboring

16



particles cause an aggregrate to be formed with new setcling characteristies.
Classical finite difference and finite element solutions to the advective-
diffusion equation are unable to represent this process very accurately since
they rely on a gross adjustment, such as an additional sink of the waste

- material to replicate the flocculation process.

WAPIC allows one to assign electrostatic and other properties to u given
particle and the separation distance between particles is easily obtained
from the Lagrangian marker paths. With this information, better resolution
of the details of flocculation can be achieved.

Time History of Particles.- In some sediment transport studies, radioactive

tracer materials are used to monitor the time dependent sediment motion. Using
the detailed time history.of the particles available with WAPIC, one can
assume given radioactive decay rates for the tracer particles as they travel
along their trajectories, .These time path histories, theréfore, provide an
additional capability over classical solutions to the advective-diffusion

equation.
VERIFICATION

In an efforﬁ to perform preliminary model verificatioh, several simple
instantaneous releases of pollutant were simulated. A spherically symmetric
Gaﬁssian puff distribution consisting of 1984 particles was instantaﬁeously
released into a uniform velocity field. The model parameters for this. case
were: |

| Grid spacing Ax = A =500 m Az = 1.5 m

7

Diffusion Coefficients K, =K,=10 m2/secu K, = 0.0001.m2/50Cg

17



Standard Deviations
(of initinl distributions) Opo = UyO = 1000 ma,, = 1,5 m

Time step At = 230 scc.

Grid system with mean particle motion,

A corresponding analytical selution for this problem was obtained from
the work of Jkubo ot al, (14) and modified to include an initial distribution

of the concentraction field. The solution is given by

G
C(x Z,t) = i .
(x,y,2,t) o2 {5 2 o 2 e 2, ok t)1/2 (g 2 4 2K t}l/2
‘xo Xt ‘YO v *0 :
2 : :
x exp|- L[ B out) ¥ + .
i el
2l 242kt o, feakt o P+t
xo B 4 yo )’ 20 ‘

Comparison of the model results with the analytic solution are shown in
figures 10 and 11, Figure 10 gives a comparison of the concentration distri-
bution in downstream direction for several time increments. Only half of the
profiles were plotted on the first and last time steps in order to aid in
interpreting the graph, The variation of model predictions to data is with
+ 5 percent for all cases, Figure 11 shows a similar graph but in the vertical
plane. Again, the comparison appears within 5 percent. If an increased number
of parficles were employed and better initial resolution (finer than
o

Iy © Uyo = 2Ax%, dzU = Az) this error in model predictions could be further reduced

CONCLUSIONS

A derivation and code have been developed for the three-dimensional mass
transport equation, using a particle-in-cell solution technique, to solve
coastal zone waste discharge problems where particles are a major component

of the waste. Improvements in the particle movement techniques have been’

18



suggasted and typical examples illustrated. Preliminary model comparisons with
analytic solutions for an instantancous point release in a uniform flow have
shown good results in resolving the waste motion., The findings to date indicate
that this computational model will provide a useful technique to study the
motion of sediment, dredged spoils, and other particulate waste loads commonly

deposited in coastal waters.
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OF VERTICAL DIFFUSION COEFFICIENT K

(Reference 10)

TABLE I

SUMMARY OF VALUES
Z

IN THE OCEAN

Note: Molecular diffusivity for heat: 1.5 x 1073 cmz/lec (at 20°C, 1 atm)
salt: 1,3 x 10°° cmzllec {at 20°C, 1 atm)

Vertical Diffusion

Curyent or oceanic Depth of Coen‘iiient l&
region layer (rn) {cm®/sec) Reference

Philippine Trench 5000-9788 2.0-3.2 Schmidt, 1917
Algerian Coast 0- 20 35-40 Schmidt, 1917
Mediterranean 0- 28 42 Schmidt, 1917
California Current 0- 200 30-40 McEwen, 1919
Caspian Sea O~ 100 1-3 Stockman, 1936
Barents Sea eree 4-14 Subov, 1938
Bay of Biscay 0~ 100 2-16 Fjeldstad, 1933
Equatorial Atlantic

Ocean 0- 50 320 Defant, 1932
Randeefjord 0- 15 0.1-0.4 Jacobsen, 1913 )+
Schultz Grund 0- 25 0.04-0, 74 Jacobsen, 1913
Kuroshio 0- 200 30-80 Sverdrup-Staff, 1942
Kuroshio 0- 400 7-90 Suda, 1936
Southern Atlantic _

Ocean 400-1400 5-10 Defant, 1936
Arctic Ocean 200- 500 _ 20-50 Sverdrup, 1933
Carribean Sea 500- 700 2.8 Seiwell, 1938
South Atlantic Ocean 3000-Bottom 4 Defant, 1936
Scuth Atlantic Ocean Near Bottom 4 Wattenberg, 1935
West Atlantic Trough

(50°S to 10°N) Near Bottom 7-50 Wiist, 1955 Ex
North Atlantic
-Indian Ocean :
Pacific Ocean Near Bottom 4-130 Koczy. 1956 w4
Tidal Channe!l Bowden, 1965

(Mersey estuary 0- 20 ' {with Ri from

and Irish Sea) (bottom) 2-40 Q.1te " 2.0}
Near Cape Kennedy, . 19 {in August} Carter and Okubo,

Florida Surface Layer 1.3 (in Summer 1965

Bikini Lagoon 0- 50 ' 260 Munk, Ewing and
{bottom) Revelle, 1049
Coast of Denmark 0. 05-1 Harremoes, l%o7
Catlifornia Coast 0,110 Foxworthy, Tib ¢ .y
. and Barsom, 1966
memnesa 4 - 15-180 Stommel and
{at wind force ~ Woodcoek, 1931 sty
3-4) :

* As given by Defant, 1961
% As given by Bowden, 1962
#u% Ag given by Harremoes, 1967
#Rex Ag piven by Wiegel, 19064




TABLE 11

. SUMMARY OF FORMULAS
ON 'CORRELATION OF VERTICAL DIFFUSION COEFFICIENT K,

WITH RICHARDSON'S NUMBLER Ri (OR DENSITY GRADIENT ¢)
(Reference 10) .

Note: Kz,o ! K at Rl =0, {,e,, the neutral case B : proportionality constant varies
z from case to case

. -1
Roesby and Montgomery K, = K .{l+8R))
. . . —
Rosshy and Montgomery K, = K .(l+8R,)
(1935 20l !
Holzman (1943}% K = K . (l-gR,) 1
Yamamoto (1959)% K, = K o(l-8 Ri)uz R L
2 2 178
: -8R
Mamayev (1958)% K, = Kge {
Munk and Anderson | K. = K, {l1+gR )"3/2
(1948 )i z 20 t
A =3,33 based upon data by Jacobsen (1913}
and Taylor (1931)
Harremoes (1968) Kz = bx 10'3x 6-2/3 szlsec
' note! ¢ in m'l; approximate experimental
range 5x10'9<e < lsxlﬂ'sm-
Kolesnikov, et al ' ' K, = K, i + & in cmz/sec
(1961 )iy min e
Kz min and B are empirically determined
to be:
K, =12, 88,3 x 10" (1958 and
*4 min 1960 observations)
-5
K = 2, @ =10,0x 10" {1959
z min ' observations)
Koh and Fan {1969} | K, = 10"4/e (K, in em®/seci ¢ inm™ )

4x10Tee s 10721

% As given by Okubo (1942)
' As glven by Bowden (1962)
#st The formulas presented in the translated version are apparently erroneous.
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X DIRECTED VELOCITY (Up) AT PARTICLE POSITION
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u Y
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Y DIRECTED VELOCITY (Vp) AT PARTICLE POSITION
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'
3 -V ua
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l‘lguro 2.- Simple Two Dimensional (X,Y) Relations
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Figure 3.- Particle Trajectories for Varying Time Steps (1,5, and 10 Sec.}

Without Position Iteration.
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Read Velocity Data
for Area of Interest
{see Velocity Data Processor)
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FICURE 6  Genecralized Flow Chart for WAPIC
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STANDARD DEVIATION
g = 1414.

gl = sz + 022 + 022

Ox = 1000
oy = 1000
g, = 1.5

— 05% CONFIDENCE LIMIT

LA 90% CONFIDENCE LIMIT
-.\‘ ’ /
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Figure 8.- Numbér of Particles vs, Percent Deviation of Mean for
Varying Confidence Limits Assuming Fixed Mean (u = 5000)
and Standard Deviation (g = 1414).
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Figure 10.- Concentration vs. Horizontal Distance at Time Increments 0., 1000.,
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