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NUMERICAL MODELING OF POLLUTANT TRANSPORT USING A

LAGRANGIAN MARKER PARTICLE TECHNIQUE

By Malcolm Spaulding
University of Rhode Island*

SUMMARY

A derivation and code ',lave been developed for the three-dimensional mass

transpo., ,quation, using a particle-in-cell solution technique, to solve

coastal zone waste discharge problems where particles are a major component of

the waste. Improvements in the particle movement techniques have been suggested

and typical examples illustrated. Preliminary model comparisons with analytic

solutions for an instantaneous point release in a uniform flow have shown good

results in resolving the waste motion. The findings to date indicate that this

computational model will provide a useful techniquU to study the motion of sedi-

ment, dredged spoils, and other particulate waste loads commonly deposited in

coastal waters.

INTRODUCTION

The finite difference and finite element techniques have enjoyed widespread

use in solving the advection-diffusion equation for water pollution transport

problems. This fact is well documented in the bibliography on numerical models

by Spaulding and Gordon (1) . In the application of these techniques to ocean

waste disposal (dredged spoils or sewage sludge) and sediment transport

several marked shortcomings are noted. The most serious problems

encountered are: (1) generation of fictitious diffusion; (2) severe depression

of concentration fields upstream of point discharges; (3) poor representation

*NASA-ASEE Summer Faculty Fellow Program — 1975
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of constituent movement when waste consists rZ varying particle sizes (each

with its own settling characteristics); (4) inability to readily handle

resuspension of waste material on a mass dependent basis;,and (5) extreme

difficulty in handling scale dependent diffusion processes.

In an effort to develop a new technique which would account for these

problem areas, the literature on solutions to the advective-diffusion equation

was reviewed. Following recommendations made by Johnson (Z) in a review of

ocean dredge waste disposal modeling for the Corp. of Engineers and Lange et al.

(3,4) in their work on air pollution problems, a particle-in-cell method appears

particularly promising. This method has received considerable development in

application to air pollution problems as noted in the work of Sklarew et al.

(5 ), Hirt and Cook (6) , and Lange et al, (3 )^')	 The investigations have shown

the method capable of performing useful computations to determine the fate of

pollutant constituents under very complex air flow conditions.

Employing the experience gained in the air pollution field, it is felt

that the particle-in-cell method provides a very useful algorithm for handling

complex particulate water pollutant problems.

SYMBOLS

C	 concentration of a dissolved or suspended constituent (mg/1)

t	 time

U 
	 advective velocity vector (UAi + VAU I. wAK)

V	 del or gradient operator a/a x ( ) + 
a/ ay 

O + 
a/ az ( )

Kid	 diffusivity tensor

UO	diffusion velocity vector (U p + V0^ + wOK)

UT	
total pseudo transport velocity UT = UA + UU

2
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C
i,i,k	

finite difference representation of C located at iAx,JAy,kAz

Ax finite difference grid spacing in the 	 x	 direction

Ay finite difference grid spacing in the 	 y	 direction

Az finite difference grid spacing in the 	 z	 direction

x,y,z three dimensional Cartesian coordinate axes

At time increment

Kx ,Ky ,Kz diagonal or principal terms of the diffusivity tensor	 Kid	 in the

x,y, and	 z	 directions, respectively

Rnew
updated position vector of a particle (k ow = xi + yj + zk) at

time	 t + At

Hold
previous position vector of a particle at time	 t

UT particle
total transport velocity interpolated to the particular particle

location

XP x	 position of a particle within a cell referenced to the cell wall

YP y	 position of a particle within a cell referenced to the cell wall

v cell or grid volume (AX) 	 (AY)	 (AZ)

M 
particle mass

L characteristic dye patch size

AL dissipation parameter

UPp finite difference approximation to the diffusion velocity

Uexact exact differential expression for the diffusivity velocity

a standard deviation 	 a2 
= ax 	

+ a	 + or

Q quantity of waste released

U,V,IV x,y, and	 z	 directed velocities, respectively

ax , ay , a x standard deviations in the 	 x,)• , and	 z	 directions, respectively

D deviation of mean from the desired mean
mean

3
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Ka 	 number of standard deviations for a specified confidence interval

n	 number of particles

oxo'oyo'ozo standard deviation in the x,y, and z directions,

respectively, at t = 0.

COMPUTATIONAL MODEL - WAPIC

WAPIC (water advection particle-in-cell) is a three-dimensional numerical

solution code to the time dependent advection-diffusion equation for water

pollutant transport employing the particle-in-cell technique. Pollutant

concentration is represented statistically by embedded Legrangian marker parti-

cles in an Bulerian grid. The discussion which follows will outline the

details of the method to include its procedural steps, stability and accuracy,

and program options.

Pseudo Velocity Approach

Thr pseudo velocity approach consists of the following. Given the transport

diffusion equation

3C+ U
A * VC = ^ ^K..VC	 (1.

7

where C is the concentration of the waste, K id the diffusivity tensor, and

LrA the advection velocity (from a suitable hydrodynamic model or mass

consistent velocity field). Rewriting Eq. (1) in a flux conservative form with

the incompressibility assumption yields:

K..	 1

at + V*[C(UA - C7 VC)
1

 = 0	 ('-)

If one defines a diffusion velocity as

UD = - K. iii Ĉ	 (3)

4
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then a total velocity, including b 	 o advection velocity and the diffusion

velocity can be written as

U.l. = U A + U 	 (4)

Using Eqs, (2),(3), and (4) the resulting advuctivo-diffusion equation 	 Jmes:

aC + V e [C6'j= 0	 (5)

Equation (5) forms the fundamental starting point on which the method is

based. The solution to this equation is performed in two steps: an Eulerian

step and a Lagrangian step. Each will be detailed in the following paragraphs:

Eulerian Step.- From a space staggered grid system as shown in figure 1,

the concentrations, C, are used to calculate the diffusivity velocities

(relationship defined in Eq. (3)). A typical finite-difference representation

might be

2Kx	 C  + 1 .) ,k - C i,7 ,k	 (^)
UO = - (Ci,],k + Ci + 1 ,J, k 	

Ax

for the x velocity component, It has been assumed that Kid reduces to Kii

such that K11 - Kx, In general, it is not necessary to make this approximation,

however, it is commonly done. The diffusion velocities for the other coordinate

directions are similarly defined as:

2KY	
Ci,J + l,k - Ci,J,k

V  -	 (Cl 
,7 ,k 

+ Ci	
+ 1)k)
	 py	 C^)

IV
	 ZKz	 Ci 7 k + 1'	 Ci ,], k	 (g)

U -	 (Ci,J,k + 1 + Ci,J,k)
	 Az

with these difference approximations the diffusion velocities are seen to be

defined at the same points in the grid system as the advective velocities, This

scheme proves to be very useful when calculating the total velocity at any

position in the grid system.
5
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The final task to be performed in this step of the computation is the

addition of the advective and diffusion velocities to determine the total

or pseudo transport velocity. Since both velocities have been defined at the

same location in the grid system, a simple addition for each coordinate direction

velocity is all that is required.

Lagrangian Step.- Each marker particle contained in an Eulerian cell is

transported for one time step At according to the total transport velocity

U.r (defined in Eq. (4))

knew = old + k particle At	 (9)

where Mold is the Lagrangian particle position at time step t, 
11new 

is the

position at time step t + At and UT 
particle 

is thr bilinear weighted

velocity at the particle for time step t. Figure 2 shows a simple two-

dimensional example for detannining the velocities at a particular particle

location. This approach can readily be generalized to the three-dimensional case.

Although the bilinear weighting scheme or a light variation has been used

to determine the velocity at particle locations in the models of Lange and

Knox (4) for the air pollutant transport problems, it is felt that this tech-

pique is not adequate. In particular, when the streamlines or pathlines of the

clew field are curved, the marker particles tend to drift in such a manner that

the true streamlines and those given by the marker particles are not coincident.

Sy reducing the time step At the error can be reduced substantially; however,

at the expense of computational time and, therefore, cost.

L,orester (7) has proposed an iterative approach to particle motion

rrodi:tien that alleviates many of the problems inherent with the simple

:Linear velocity weighting scheme. Instead of employing Eq. (9) to represent

11IGINAL PAGE IS
JP` POOR QUALITY



the particle motion computation, lie suggests the following:

4. old	 now	 ^t
It -

it
	 + UT particle + UT particle	

(lU)

where UT particle represents the bilinear weighted velocity at the old

particle position Rold and U,f particle represents the bilinear weighted

velocity at the new particle position inew . With an iteration procedure where

each estimate of 
Rnew 

is used to calculate an updated particle velocity

U,. new	 Eq. (10) is solved to find the new particle positions, for a
I particle

given convergence error on 1new'

In an attempt to assess the usefulness of the iteration procedure, several

trial cases have been executed. Using a simple four-cell velocity field with

rotational currents (as shown in figures 3 and A), a grid spacing of 10 in in

both the x and y directions, and varying time step, particle trajectories

were predicted with and without the iteration procedure previously outlined.

Figure 3 shows that without iteration and even for very small time steps (i.e.,

1!10 of a grid space per time step) the trajectories show a definite spiraling

outward from the true particle pathline--a closed circle for this velocity field.

Figure 4 presents the same simulations but employing the iteration procedure.

It is readily seen that there is a marked improvement in particle trajectory

representation with this approach.

Therefore, it is concluded that the use of the proposed iteration tech-

nique is the best method to determine particle motion, since it requires less

computational effort for more accurate results. Without this procedure, it can

be seen that eddy type structures are more rapidly depleted of their pollutant

load_ than occurs in the real case.

The final portion of the Lagrangian step is to compute the concentration

given "o new particle positions and moss. it "fictitious" volume is associated

7



with each particlo mass at the start of the computation. The overlap of this

volume into the surrounding Hulerit.n cells de'.ermines the distribution of mass

into the various cells and allows the concentration field to be calculated.

Figure 5 shows the details of the computational procedure for a typical particle

in a two-dimensional grid system. This algorithm is simply repeated for all

particles in the system for a given time. A further refinement can be added in

the bagrangian step to allow for grid expansion or a grid system that moves

with the mean motion of the particles. Incorporation of this feature permits

maximum resolution of the concentration field with a minimum number of computa-

tional grids, and is particularly useful for determining the behavior of "puff"

or instantaneous paint releases. Variations of the moving grid system procedure

would allow the resolution of some particular portion of the pollutant field,

i.c„ determining where partiel.es of a specified mass are transported.

Figure 6 presents a flow chart for the computational procedure that has

been outlined in the previous paragraphs.

Velocity Information

In order to perform computations with IVAPIC, a mass consistent velocity

field is required. That is a velocity field that conserves water mass. This

information for both spatial and temporal variations can be obtained from a

finite difference or finite element model of the coastal zone hydrodynamics.

Reference 1 gives an extensive list of suitable circulation models of both the

two-dimensional vertically averaged and three-dimensional types. It is also

possible to use statistical predictor type models (8191 based on data taken for

a particular area -_'lie main requirement of each, however, is conservation of

water mass.

8



The final requirement of the flow field is that the velocity information

can be resolved into the space staggered grV system as shown in figure 1. A

simple linear weight processing technique with a water consel,vation constraint

should readily achieve this goal.

Boundary Conditions

WAPIC has two basic types of boundary conditions, a closed or zero mass flux

boundary 
Cu  

particles C) = 0, and a mass flux boundary NT particles C) = constant,

In the application of these boundary specifications,consistency of boundary

type for both the Bulerian and Lagraf+(clan step calculatians as well as the input

velocity field must be maintained. Specifically, the Gulerian step must account

for the flux of pollutant particles due to diffusion while the Lagrangian step

resolves the advective particle flux.

Another boundary condition particularly applicable to the sediment trans-

port problem is a deposition or storage boundary. When particles which are

settling from the flow field reach the bottom of the water column they may be

stored at that geographic location until such time as the y might be resuspended

by an increased shear at the water-soil interface.

Diffusion Parameters

In the general case, WAPIC can, in principle, accommodate the full Cartesian

eddy diffusivity tensor K id . In practice, isotropy of the Seater turbulence is

assumed and only the diagonal terms noted as K
x

, KV„ and K_ remain. In

addition,for most coastal zone flow conditions it is generally assumed K` = K .

It still remains, however, to determine values or empirical relations that

approximate the diffusion processes for coastal _one areas.

g



Ilia majority of investigations for horizontal turbulent diffusion in the

ocean monitor the size of tracer dye patch as a function of time and then using

si-;,lc diffusion models, which disregard both shoar current and vertical trans-

port, calculate the diffusion coefficients (10)

The values of horizontal diffusion coefficients obtained Jn the ocean range

from 5 X 10 2 to 4 X 108 cm /sec. The largest number of measurements were

obtained at the ocean surface. In general, it was found that the K  was a

direct function of the diffusing patch size L, figure 7 shows a collection of

data and illustrates this relationship quite wail. Although the data scatter

is significant, in general

K ^ 
AI,L4/3	 1p -l ft < L t 108 ft	 (11)

where AL is a constant called the dissipation parameter and varies from 0,005

to 0100015 ft2/3/sec.

Diffusion coefficients obtained in the ocean are not strictly applicable

to estuarine waters, they are, however, useful in demonstrating trends and

magnitudes. Urandsima and Divoky (12) have shown that data from tidal estuaries

lie right on the ocean data when applying the four-thirds power law. There-

fore, @q. (11) should be a useful first approximation to horizontal diffusion

parameters for both coastal zone and estuarine waters, further refinements to

horizontal diffusion prediction will probably rely on field experiments in the

local area.

The vertical diffusion coefficient in the ocean is gonerally much smaller

than the horizontal coefficient, Table I shows a summary of typical values

employed for a variety of coastal and open ocean conditions. Although there

appear to be no general relations for vertical diffusion, it normally displays

a maximum near the surface (caused by wind mixing) and decreases with depth,

10
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In addition, the vertical mixing decreases as the Richardson numbe:

density stratification) increases. Table II indicates some typical formulations

for the vertical diffusion coefficient.

Accuracy and Stability Requirements

In all numerical solutions to the advective-diffusion transport equations,

there are requirements which must be met in order to achieve accurate and stable

solutions to the equations. Discussed below are detailed conditions for the

pseudo velocity approach.

Number of Eulerian Cells per problem,- It is a basic requirement for all

methods that use Eulerian grid systems and finite difference or elements

approximations ;l: ;x sufficient grids are used to resolve the concentration

gradients of interest. When this condition is achieved, the numerically

calculated gradients of concentration and the actual gradients agree with one

another. In addition, as the cells used to represent the concentration field

increase the agreement between actual concentrations and those of the numerical

cairputation becomes better.

In an effort to develop an approximate quantitative estimate of the lower

limit and the number of grids necessary to resolve the concentration distribu-

tion, we will follow the approach outlined by Lange (3). Consider the one-

dimensional finite difference approximation to the diffusion velocity given b%

_	 hx i + 1/2 (Ci + 1 - C i )	 1121
Ui + 1/2	 px	 C  + 1/2

Using a Taylor series expansion about i + 1/2 for C  + 1 and C i , substitut-

ing into Eq. 12 and dropping the i + 1/2 subscript yields

U AxC rC
Ax + _1 2^ 

px3 + higher order terms	 (13)

I1
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Ther. expanding Eq. (13) and dropping higher order terms gives

- Kx DC	 Kx Ax' a3C	 (14)
C ax - 2A  7C ax3

The first term on the right -hand side of Eq. (14)is the exact differential

expression for the diffusivity velocity. faking the ratio of the diffusion

velocity defined by finite differences (Eq. (14)) and the exact differential

results in:

a 
3 
C

U
rD ax3 AX 
	

(151

Dexact	 + a2 24
ac

In order to obtain a quantitative measure of this ratio estimates of the

first and third derivatives of concentration with distance are required.

Assuming a simple one-dimensional Gaussian di.,+ribution:

x2/2a2
C = a e	 (1G)

and finding the first

- R e- x2/202
ax	 3

a

and third derivatives

3	 r	 2;	 2	 2

a 3 = ^I 3 - x2i ¢-x /2a
	

(18)
ax	 a L a Y

this estimate can be made,

Substituting Egs.(17) ar,d (19) into Eq. (15) one obtains

	

O FD 2	AX1	 1	 (19)

Dexact	 24 (
x
a2 

3j
 ) a2

Employing the fact that 99.9 percent of all particles in a one-dimensional

12

(17)
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iGaussian distribution are within x = 3a, we can substitute x = 3a in

:8q, (19) and find

UFO	 = 1 - 4x2

exact	 Ac12

°rom this relationship, it is seen that when a grid cell is either larger or

comparable to the standard deviation for particle distribution, the finite

difference algorithm underestimates the diffusion velocity. However, as more

grid cells are employed for a given standard deviation, the finite difference

approximation becomes an increasingly better estimate of the diffusion velocity.

Number of Particles er Cell.- Since the particles represent a statistically

quantized density, it is desirable to have as many particles as possible for any

particular problem, An upper bound on per`°cles would be either the storage

capability or maximum program run time (this is directly proportional to the

number of particles) for a particular computer. The lower bound is at least

one particle per cell. Fewer particles and in particular when a particle has

no neighbors withi,i one cell length, the particle is moved to the grid boundary

and "frozen" in place when considering the diffusion velocit y . This freezing

process is a direct consequence of the algorithm for determining concentrations

from particle positions (see figure 5). It can be readily seen that any parti-

cle must distribute its mass to its nearest neighbor cells. if another distri-

bution algorithm were chosen which distributed the particles over a greater

volume, the one particle per cell minimum could be relaxed.

Particle Generation.- In general, it is desirable to start either steady

state or time dependent point discharge simulations with some initial Gaussian

or normal distribution. Several experiments were conducted using random number

generator techniques similar to those in the work of Lange (3) , which proved

(20)



to give distributions that displayed noticeable "bunching" of particles around

the directions of the coordinate axes. 	 It was felt that this problem was

directly related to the quality of the normal random number generator available
3

at the time.

In an effort to alleviate this problem, it was decided to specify the exact

number of particles in each cell using the Gaussian probability distribution

function.	 Knowing the cell size, standard deviation of the distribution, and

the total number of particles in the field one can then pompute the number of

particles in each cell using the normal distribution constraint. 	 Next, a

uniform random number generator was used to locate the appropriate number of

particles in each cell.	 All cells were filled in this manner.	 If it is

decided to obtain another type of initial	 condition, all one needs to do is

specify the desired distribution as a constraint for defining the manner in

which these cells are to be filled with particles. 	 The remainder of the algoritam

remains unchanged.

Time Step Restriction.- Similar to many finite difference schemes, WAPIC

has a restriction that the fastest moving particle cannot move more than one-

half cell length in one time stop, .fit.	 In equation form this restriction

becomes

VTT^t , WQ t ,^ < 1/2maximum	 I UTXt , ( 
21,L

where	 UTV.r	and	 WT	are the total or pseudeo transpo't velocities	 -t	 is the
,

time step, and	 Ax, Ay, and	 ,z	 are the grid spacings in the 	 x,y,_and z

directions, respectively.	 These are accuracy conditions rather than stability

ones.
C

As was discussed earlier, if one does not choose to employ the iteration

particle location technique and the flow-field displa ys marked ad ,-:,.- structure

14
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or curved streamlines, it becomes necessary to further restrict the maximum time

step, The exact value to be employed in that particular situation is highly

problem dependent and it is, therefore, recommended to use the iteration

procedure in all cases.

Number of Particles for Given Confidence Limit on Mean.- When undertaking

a problem, it is extremely desirable to have at least a first estimate of the

number of particles necessary to define a particular distribution or starting

condition. Since the Gaussian distribution is often employed to define the

initial conditions, a logical manner to determine the number of particles is to

use simple statistical the ory to find the number of particles necessary to

assume a given confidence in the deviation of the mean from the desired mean.

In Bowker and Lieberman's text (13) it is shown that the lower one-sided

deviation from the mean confidence limit is;

	

`ax2 + a2 + a2	
1/2

y	 z
Dmean - Ka

a 2 = Jx2 + a y 2 + a 

where Dmean - deviation of the mean from the desired value, 	 - the standard

deviation of the normal distribution, n —the number of particles,and K a - the

number of standard deviations for a given confidence interval (e,g., for 95

percent confidence interval _ Ka = 1.645),

In an effort to gain a more quantitative estimate of this relation, a

parameteric study on confidence limit (70 - 95 percent) with a aX = ay 1000. m,

o z = 1.5 m, and a mean of 5000 m is shown in figure 8. In general, it indicates

that for this distribution about 1000 particles are adequate to define the

initial conditions.

The influence of a on the number of particles for a given confidence

limit and deviation from the mean is shown in figure 9. As expected the

15
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smaller the standard deviation the loss particles necessary to define the mean

to within a given confidence i, erval,

Although figures 8 and 9 are for a particular problem, the technique out-

' k 	 lined provides a simple procedure to determine an order of magnitude estimate

of the number of particles necessary for a given problem. In addition, pre-

liminary estimates on error bounds for subsequent program solution can be

obtained.

Options in WAN%

Sources and Sinks.- Sources or sinks ri pollutant can be generated anywhere

within the Eulerian grid mesh and may eit ter be instantaneous, continuous, or

intermittent. From accuracy considerations; previously discussed, the

initial pollutant distribution must cover at least two grid lengths, otherwise,

the particles diffuse too slowly. This, therefore, requires special sub-grid

treatment if accurate near-field results are necessary.

Deposition and Resusoension.- The deposition of particles can readily be

accommodated with WAPIC. Knowing the particle density and shape/surface

characteristics, a settling velocity can be approximated for each particle and

simply added to the total transport velocity. The ability to handle each

particle separately allows highly detailed behavior of waste material contain-

ing varying size distribution such as sediment or dredged material to be

predl.cted,

Resuspension or material froth tl+e bottom or some other storage area can be

handled on a particle size basis provided the hydrod ynamic model input provides

sufficient detail of bottom current structure.

Flocculation.- A rather prevalent process in the settling of fine sediment

and waste material is flocculation. Electrostatic forces between neighboring

16
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particles cause an aggrograte to be formed with new settling characteristics.

Classical finite difference and finite element solutions to the advoctive-

diffusion equation are unable to represent this process very accurately since

they rely on a gross adjustment, such as an additional sink of the waste

material to replicate the flocculation process.

WAPIC allows one to assign electrostatic and other properties to u given

particle and the separation distance between particles is easily obtained

from the Lagrangian marker paths. With this information, better resolution

of the details of flocculation can be achieved.

Time History of Particles.- In some sediment transport studies, radioactive

tracer materials are used to monitor the time dependent sediment motion. Using

the detailed time history of the particles available with WAPIC, one can

assume given radioactive decay rates for the tracer particles as they travel

along their trajectories. These time path histories, therefore, provide an

additional capability over classical solutions to the advective-diffusion

equation.

VERIFICATION

In an effort to perform preliminary model verification, several simple

instantaneous releases of pollutant were simulated. A spherically symmetric

Gaussian puff distribution consisting of 1984 particles was instantaneously

released into a uniform velocity field. The model parameters for this case

were:

Grid spacing do = Ay = 500 m Az = 1.5 m

Diffusion Coefficients K x = Ky,= 10 m2 /sec., K z = 0.0001 m2/sec.

17
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Standard Deviations
(of initial distributions) ax0 = ay0 = 1000 m,az0 = 1.5 in

Time step At = 250 soc.

Grid system with mean particle motion.

A corresponding analytical solution for this problem was obtained from

the work of )kubo of al. (14) and modified to include an initial distribution

of the concentra'cion field. The solution is given by

C (x, y , z , t) _	 1	 G

(2Tr)3/2 ;ax02 + 2Kxt, 1/2 `ay0 2 + 2Ky t) 1/2 (a70 2 + 2Kzt)1/2

1	
1	

2
x ex 1I

f 
_ 1	 (x - ut) 2	 +	 y2	 + z	 iI (23)

pl2 ^ax02 + 2Kxt	 y0a 2 + 2Kyt az0 2 + 2Kzt J

Comparison of the model results with the analytic solution are shown in

figures 10 and 11. Figure 10 gives a comparison of the concentration distri-

bution in downstream direction for several time increments. Only half of the

profiles were plotted on the first and last time steps in order to aid in

interpreting the graph. The variation of model predictions to data is with

+ 5 percent for all cases. Figure 11 shows a similar graph but in the vertical

plane. Again, the comparison appears within 5 percent. If an increased number

of particles were employed and better initial resolution (finer than

CT a= yp = 
2Ax ' az0 Az) this error in model predictions could be further reduced,

CONCLUSIONS

A derivation and code have been developed for the three-dimensional mass

transport equation, using a particle-in-cell solution technique, to solve

coastal zone waste discharge problems where particles are a major component

of the waste. Improvements in the particle movement techniques have been

"	 18
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suggested and typical examples illustrated. Preliminary model comparisons with

analytic solutions for an instantaneous point release in a uniform flow have

shown good results in resolving the waste motion. The findings to date indicate

that this computational model will provide a useful technique to study the

motion of sediment, dredged spoils, and other particulate waste loads commonly

deposited in coastal waters.
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TABLE I

SUMMARY OF VALUES

OF VERTICAL DIFFUSION COEFFICIENT K Z IN THE OCEAN
(Reference 10)

Note: Molecular diffusivity for heat: 1. 5 x 10-3 cm2 / sec (at 200C, 1 atm)
salt: 1.3 x 10-5 cm2 /sec (at 200C, I atm)

Vertical Diffusion
Current or oceanic Depth of Coefficient KL

region layer (m) (cm /sec) Reference

Philippine Trench 5000-9788 2.0-3.2 Schmidt,	 1917
Algerian Coast	 • 0-	 20 35-40 Schmidt,	 1917	 1
Mediterranean 0-	 28 42 Schmidt, 1917
California Current 0- 200 30-40 McEwen, 1919
Caspian Sea 0. 100 1-3 Stockman,	 1936
Barents Sea ----- 4-14 Subov,	 1938

Bay of Biscay 0- 100 2-16 Fjeldstad,	 1933
Equatorial Atlantic

Ocean 0-	 50 320 Defant,	 1932
Randesfjord 0-	 15 0 . 1-0.4 Jacobsen,	 1913
Schultz Grund 0.	 25 0.04-0.74 Jacobsen,	 1913
Kuroshio 0- 200 30-80 Sverdrup-Staff, 1942
Kuroshio 0- 400 7-90 Suds, 1936
Southern Atlantic

Ocean 400-1400 5-10 Defant,	 1936
Arctic Ocean 200- 500 20-50 Sverdrup,	 1933
Carribean Sea 500- 700 2 . 8 Seiwell,	 1938
South Atlantic Ocean 3000-Bottom 4 Defant,	 1936
South Atlantic Ocean Near Bottom 4 Wattenberg,	 1935
West Atlantic Trough

50 0S to 100N ) Near Bottom 7-50 Wiist,	 1955	 ex.
ort	 Atlantic

Indian Ocean
Pacific Ocean Near Bottom 4-30 Koczy,	 1956	 s^'
Tidal Channel Bowden, 19 5

(Mersey estuary 0-	 20 (with R  from
and Irish Sea) (bottom) 2-40 0. 1 to	 2. 01

Near Cape. Kennedy, 19 (in August) Carter and Okubo,

1311clni Lagoon	 u- 5e	 Lbu	 MunK, LWing and

	

lhmfn^l	 Revolln. 104q

talitornia toast	 V. I- IV	 F-OXwortny, 110 1
and Barsom, 1066

------	 4	 15-180	 Sto•+tmel and
(at wind force	 Woodcock, 1951	 =4,:'r

3-41

As given by Defant, 1961
As given by Bowden, 1962

ra'q. As given by Harremoes, 1967
As given by Wiegel, 1964
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TABLC 11	 • I

SUMMARY OF FORMULAS
ON 'CORRELATION OF VERTICAL DIFFUSION COEFFICIENT KZ
WITH RICHARDSON'S NUMBER R i (OR DENSITY GRADIENT e)
(Reforenco 10)

Note: Kz,O : K z at R I = 0, i,e„ the neutral case 8 : proportionality constant varies
from case to case

Roo sby and Montgomery	 KZ = i 0 (1 +8 RI)-1
(1935)41

Roo 
11 

and Montgomery	 K  = KZ0 (1 +8 RI)
(1935)0

Holzman (1943) 0	 KZ = Kz .0 (1 - 9 R I )	 R 5 1
i 8

Yamamoto (1959)x'	 KZ = 1Z0 (1 _ 6 RI)1/2 	
Ri S I B

Mamayev (1958)0	 Kz = K 0 e-ORI

Munk and Anderson	 K = K	 (1 +8 R)-3/2
(1948)00	 z	 z 0	 i

9 = 3,33 based upon data by Jacobsen (1913)
and Taylor (1931)

Harremoes	 (1968)	 Kz	 =	 5 x 10-3 x t-2/3 cm2/sec
note:	 g in m-1 ; approximate experimental

range 5x 1 0 -9 <c< 15x10-5m-I

Kolesnikov, at al	 KZ	 °	 Ki + 
E 

in cm2/secmin(1961)000
Kz and 8 are empirically determinedmin
to be:

KZ - 12,	 8 = 8,3 x 10 -5 (1958 andmin	 1960 observations)

K =	 2,	 8	 = 10,0 x 10 -5 (1959min	 observations)

Koh and Fan (1969)	 KZ = 10-4 /E (K Z In cm2 /sec: r in m - I)

4 x 10 -7 < e 5 10-2m- I

*; As given by Okubo 0062)
As given by 13mcden (In6a)
The formulas presented in the translated version are apparently erroneous,
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Figure 1.- Three Dimensional Space Staggered Grid System
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I + 1	 } ^_,an

UI-1,J+1	 UI,J+1	 AY

J

	

VI-1,J	
VI , J	 VI-1,J

Particle

UI-1,J	 UI' J	 V

XP	 ^, 

J	
I	

VI -t1,J-1	 VT. ,7_t	 VI+1,J-1
^1 =ypp

UI-1'J _ 1	 UI'J-1

	 T

I-1	 I	 I+1

X DIRECTED VELOCITY (LID) AT PARTICLE POSITION

24

U1 = XP (U
	
U
1-1 J) + 

U
I-1 J

U2 = 
XP
zffx

(UI J-1 - UI-1,J- 1)
 + U1-1,J-1

Up =(YF 
+sy-

AY/2) (U1 - U2) + U2

Y DIRECTED VELOCITY (VI)) AT PARTICLE POSI

V1 = ^ (V1 J - V I J-l ) 
+ vi,J-1

V2 = ^ (VI+1,J	 VI+1,J-1) + VI+1,J-1

VP 
_ (XP - XAX/2) (V2 - VI) +1'1
- 

Figure 2.- Simple 1110 Dimensional (X,Y) Ile
To Determine the Bilinear Veloc.
At The particle Positions.
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I-1	 I	 I+1

CONCENTRATION COMPUTATIONS

CI J = ^M (AZ) 
(3AX	 XP) (3Av. - YP)

CI+1,J ^V (AZ) (XP - zX ) ( 32Y - YP)

CI+1,J+1 = 72 (A Z ) ( XP - AZ)(YP - AZ)

C I,J+l = v12 (AZ) (o2\ _ XP) (YP - =2)

Figure S.- Computational Algorithm to Determine
Concentrations, given Particle Position
and Mass.
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FIGURE G Generalized
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