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ABSTRACT

The earth's desert boundary layer is modeled in a

wind tunnel. Velocity profile measurcments are deter-

mined on and around a barchan dune model inserted in the

roughness layer on the tunnel floor. A theoretical in-

vestigation is made into •che factors influencing the rate

of sand flow around the dune. 	 Flow visualization tech-

niques are employed in the mapping of streamlines of flow

on the dune's surface.	 Maps of erosion and deposition of

sand are constructed for the barchan model, utilizing

both flow visualization techniques and friction velocities

calculated from the measured velocity profiles. 	 The

sediment budget found experimentally for the model is
q

compared. to predicted and observed results reported by

{
others.	 The comparison shows fairly good agreement

between the experimentally determined and predicted sedi-
r

.ment budgets; this provides encouragement for the utili-

zation of wind tunnel simulation and friction velocity

approximation in determining erosion and deposition rates

due to wind action.
3
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Chapter 1

INTRODUCTION AND BACKGROUND

1.0 Introduction and Background

Photographs taken from the Mariner 9 spacecraft of

the surface of Mars reveal the presence of eolian (wind

blown) landforms closely resembling the desert dunes

found on Earth. In order -to study the characteristics

of the atmospheric winds and surface features of Mars, it

was determined that more information was needed concern-

ing the effects of the earth's desert boundary layer

winds on the formation and transport of sand dunes.

Measurements of the velocity profiles surrounding actual

barchan dunes were made at a location near the Saltonrl

Sea in California [1]. The barchan dune, a crescent-

shaped sand dune, was selected as an appropriate land-

form for study because it appears in the Mariner 9 photo-

graphs. It occurs as an isolated phenomenon and as the

result of unidirectional winds convenient to simulate

in a wind tunnel. The barchan is also self-preserving

i	 in shape and size over time.

A wind tunnel study was performed, wherein the earth's

_desert boundary layer was simulated, and scale models of

the barchan dunes observed in the field were inserted.

One of the mo"'-As, selec •`.ed on the .basis : that it was

symmetrical and small enough to rotate through angles
l
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of -30 0 to 30 0 in the tunnel, was subjected to greater

investigation than the others. Measurements of velocity

profiles around the model yielded information about the

local friction velocities on the dune, from which ex-

pressions could be derived for sand transport on and

around the dune. In addition, qualitative information

about the wind flow at various heights above the surface
of the dune was obtained from the profiles. 	 Streamline

maps determined from hotwire measurements, flow visuali-

zation methods and measurements made in the field aided

in predicting the sand flow.

The "dust bowl" erosion of the Midwest in the 'thirties

stimulated a number of agriculture-related studies of wind

erosion, focusing on the characteristics of particle salta-

tion and prevention of erosion.	 Saltation is a method of

sand transport characterized by a jumping movement of

sand particles.	 Semi-empirical formulae were developed

to give the amount of sand transported over a flat surface

as a function of grain size and friction velocity,

Theoretical studies made of the forces on a sand

grain in saltation were helpful in determining the factors

to be considered in calculating the sediment budget for

the barchan dune. 	 Some controversy arises in determining
ER the forces responsible for the initiation of saltation;

in particular, it is not clear what role lift plays in
e
I

I
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Experimentally determined maps of erosion and deposi-

tion of sand on the barchan dune, constructed from stream-

1-Li ne maps and a friction velocity contour map, are com-

pared to a predicted map of the sediment budget (for dune

equilibrium) and to a map of observed erosion and deposi-

tion for the dune. By comparing maps of the sediment

budget (erosion and deposition), it was possible to deter-

mine qualitatively the accuracy of the wind tunnal simu-

lation and the validity of the methods used in the experi-

mental calculation of the sediment budget.

i

4
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velocity of the wind increases with height, imparting hori-

zontal momentum to the grains, so they travel a greater

horizontal distance on the descent than on the ascent.

The smallest grains may sometimes be expelled by

larger grains and remain aloft for longer periods of time

than the larger grains; those grains are said to be in

-'-	 suspension. Only a fraction of-a percent of the total

bulk of sand grams are transported in suspension [7].

The remaining 20-25% of particles are transported by sur-

face creep, which is characterized by a rolling motion of

grains on the surface. The largest grains generally move

in surface creep.

From reference 6, White et al. list several kinds of

forces acting on an 'individual grain in saltation in a

fluid medium:
.r	 3

(a) the weight of the grain

(b) drag, a force, tangential to the direction. of

grain motion

(c) lift, a force, normal to the'direction of grain

motion, caused by the pressure distribution on the particle's

surface	
1

(d) cohesional forces acting between individual

grains

Q,	 (e) the force of overturning moment in shear flow

(f) the Bassett force, which accounts for the effect

of deviation in flow pattern from steady state
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(g) the apparent mass force, which accelerates the

virtual mass of the particle relative to the ambient fluid

(h) the force resulting from the effect of tempera-

ture gradients in the flow field,

For a more detailed description os these forces, see refer-

ence 9. An additional force, resulting from the fact that

grains in saltation are not isolated, but interact with

grains on the surface, must also be taken into account;

P. Nemenyi [8] calls this force the surface force. The

surface force is any normal or tangential force exerted

on a grain by any other grain, excluding cohesional forces

According to Hinze [9], the Basset force and apparent

mass force are only important if the density of the fluid 	
1

is equal to or greater than the density of the particle.

This is clearly not applicable to the case of sand in

saltation, where the density of quartz grains is at least

three orders of magnitude greater than the density of

air [7]	 From reference 6, the force of overturning No
T	

ment in a shear flow is of importance in calculating the

minimum wind speed necessary to initiate, saltation (fric-

tion threshold speed), but is not important in calculating_

particle trajectory after initiation of motion. The ef-

fect of the overturning moment force is discussed in

Y	 greater detail in section 2.2. From reference 7, cohe-

sional forces are not generally felt to be important for
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sand grains in saltation, since most of the particles

in saltation are too large to allow cohesional effects

to be dominant. The temperature is assumed constant for

the turbulent boundary layer, so forces resulting from

the effect of temperature gradients will not be considered.

The remaining forces can be divided into two classifica-

tions: those responsible chiefly for initiation of the

particle trajectory and those that affect the particle

once it is in flight.

For grains already in flight, Bagnold singles out

the forces of gravity and fluid resistance acting in a

direction opposite to the relative motion of the sand

particle through the fluid as being the predominant forces

acting on the grain [7].

Owen [5] gives the nonlinear equations of motion of

the particles (neglecting lift), once saltation has been

initiated, -as

my + mg + R(s)y/s = 0	 2.0.1	
i

mx - R(s) (U - x)/s = 0,	 2.0.2

where the oncoming wind blows in the x-direction and y is

positive upwards. R is the drag and s	 {y2 + (U -)2
a

From reference _6, the drag force, R, for a spherical parti-

cle may be expressed as -a function of the relative veloci-

ty of the sand particle and the fluid and the coefficient
I
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l0

of drag, CD , in the following manner:

R = CDP aUrel	 8	 2.0.3	 i

where, for Reynold's numbers less,than 100,

C	 = 2224 (1 + 3 Re)	 ;
D	 16Re

for 100 < Re	 < 2000,	 CD	 0	 305865 (2 - log^pRe) ,= 10	 ^

and for Re > 2000, C	 _ 0.4.	 Equations 2.0.1 and 2.0.2

neglect lift as a force effective on particles after the

initiation of saltation. 	 It is unknown if lift is an

important factor in determining the trajectories of sand

grains; if an expression for lift, F L , were included the

lift force (to be defined later in this section) , would

be subtracted from the left hand side of equation 2.0.1.

e The wind strength necessary to initiate saltation,

< u*	 ,	 is a function of the grain size	 (Cf. . Fig.	 2).
t

That a_stronger threshold wind velocity is necessary

to move larger grains is intuitively evident, but the

fact that; for grains below a certain diameter, stronger

winds are again necessary to initiate movement, requires'

some explanation.	 Below Dp - 0.1 mm, the particles are

too small to protrude above larger particles on- the 'bed,

and thus require a higher value of u,, 	 to dislodge them
t

(10]
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0	
.038	 .189	 .380	 .754	 1.132 1.509
Grain Diameter in mm._

Figure 2: Variation of the Threshold Velocity with Grain Size
and Specific Gravity
(Chepil,.W.S.,"Dynamics of [wind Erosion TI", Soil

E	 Science, 60: p.405, 1945)
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There is some controversy concerning which forces

cause grains to initiate saltation. Chepil, from reference

2, discussed the forces initiating grain movement. He

believed that, once saltation had been initiated, the

impacts of saltating grains were responsible for continued

saltation. He experimented with single sand grains on a

smooth surface and noticed that a sand particle, after

rolling a short distance, jumped vertically off the smooth	 J

surface, even though there were no obstructions.	 Combined

Magnus and lift forces were suggested as a possible cause

for the vertical rise.

From reference 3, Chepil and Woodruff modified

Chepil's earlier views on the importance of lift in the

initiation of saltation. 	 They said that the momentum

imparted to the grain by the lift force decreases rapid-

ly with height and becomes hardly detectable "a few grain

diameter heights above the ground, considerably lower

than the height to which many grains rise in saltation.

Thus an additional_ vertical velocity, due to surface im-

pact momentum transferred, must be imparted to the grain.

From pressure measurements made on suspended spheres,

Chepil and Woodruff conclude that lift cannot possibly

be the sole factor involved in the vertical rise.	 The
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angle at which a descending grain strikes a surface ob-

struction would cause the rebound to be nearly vertical

even if lift did not exist. (Similarly, the angle at 1

which a grain in surface creep strikes another grain, 	 1

coupled with the drag force, should cause the initial_

impulse to be vertical.
f

Owen, from reference 5, believes that the vertical

velocity of the particle is attributable to the geometry

of grain impacts He uses an order of magnitude analysis

to find the ratios of lift and drag to the particle's

weight and concludes that, for saltation in air, lift

is at least an order of magnitude smaller than drag

{	 (assuming a spherical grain shape) 	 For saltation in

water, where pla is comparable to unity, lift plays an
i

important role. (The ratio of the density of water, p,

ti	 to a, the density of silicon dioxide, is 1:2.65, if

buoyance effects are neglected).

`
j	

White et al	 from reference _6,,assume that the sand
-	 1

P	 y	
garticle velocity in the initial stages of .lift-off is

very small; they use that assumption as a justification-	 {

$-	 for using Saffman's equations for lift on a spherical

-particle [11]. They maintain that, since saltation occurs

in laminar flow [12] where there are no velocity compo-
y	 -

1	 nents normal to the surface, the occurrence of saltation
4

must be a result of a lift force. The laminar flow stud

f
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,i ied in the case above, however, occurred in a water stream,

k

	

	
where the density ratio between the sand particle and the

fluid was comparable to unity. So although lift forces

may be appreciable in the case of saltation in water,

they cannot be assumed to be important to saltation in air.

The use of Saffman's equations to determine the lift force

on a particle in saltation in air is unjustified, since

one of the limiting conditions for using the equations

is that the Reynold's number, Re = UrelDp/v, must be

small compared to unity. If u* 0.4 m/s is substituted

for Urel then, for a grain with Dp = 3 x 10- 4 m,

(v	 1.4 x 10`-5 m2/s), the Reynold's number is

8.6.

`	 A numerical study was performed to calculate grain

particle trajectories (neglecting lift) for different

values of variables Dp, u*, zo and Vo, the initial

vertical velocity of the grain. Equations of motion,

2.0.1 and 2.0;.2, were numerically integrated, and values

for x, y, x and y were calculated for different values i
of time, t. CD was made to var-% as a function of the

Reynold's number [13]	 The height of rise and path

length of the grains were tabulated for different initial

conditions. Taking a typical example, it was found that

a grain for which Dp = 0.3 mm in a flow where u*, = 0.4 m/s

must have an initial vertical velocity of at least 2.5 m/s
j
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in order to attain the height and downstream distance

travelled found for the particle experimentally [14].

Thus Re for the particle is approximately equal to 50,

which is obviously much greater than unity.

Using the results from the computer program mentioned

above, equation 2.0.3 was evaluated to find an approximate

value for the drag on a particle within a few grain diam-

eters' height of the ground. It was 'round that the drag

on such a particle was about 5 x 10- 7 Newtons: The weight

of the particle, mg, is equal to 3.7 x 10-7 Newtons. The

lift due to circulation around a spinning particle is

given by:

FL 	 pour	 2.0.4

where p is the density of air, U is the velocity in the
a

x-direction at a particular height, and r is the circula-

tion. The lift, drag and weight were calculated for

u * equal to,0.4-m/s, a'particle diameter of 0.3 mm, and

zo equal to 0.08 mm. The circulation, r', is defined as
f a

follows: _

w, r = fU	 ds	 2.0.5

where s is a line element on the spherical sand particle.a
i

The expression for the circulation must be integrated over
i

the sphere, resulting in an equation for the lift force
i	

rT

as follows:,
FL	 27rpaUwRn2 f 

RR
cos2 ( rb 

)db	 2.0 .6
t{•	 -	 . . i

i
1

1
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where Rm , the radius of the sphere is 0.15 mm, and w is

the angular velocity of the particle. Integrating:

FL = 2np aUwRm 3	2.0.7

Values for U and w awe calculated using a logarithmic

velocity profile (equation 2.1.2) and the fact that

U = wRn . When these values, and values for p a and R 

are inserted, the value for the lift force is found to

be 6.84 x 10 -8 Newtons. Thus lift on a spherical particle

is an order of magnitude less than either the drag or the

weight. All studies that have been made of the forces on

sand grains assume a spherical grain:. Since, in

particular, lift forces would vary greatly depending on

the shape of the particle in saltation, an investigation

ought to be made of the forces on different shaped sand

grains.

In conclusion, there are two forces that predominate	
i

in the saltation of a spherical sand grain once the grain

has been ejected: the fluid resistance (drag) and gravi-

ty. The initial vertical velocity of (spherical) narti

cle:ejection is provided chiefly by the momentum trans-

fer that occurs during surface impacts between grains.

The descending grain in saltation possesses momentum ac-

quired from drag and previous impact. If it can be assumed

that spherically-shaped sand grains are capable of initi-

ating saltation, they must acquire an initial vertical
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momentum from some source other than lift; one hypothesis

is that they roll a short distance in surface creep as a

result of drag, then rebound against surface obstructions

vertically, beginning saltation. The nature and magnitude

of lift forces on actual sand grains is unknown, but it

is probable that lift plays an important role in the

saltation of irregularly shaped grains and may not prove

to be negligible, as it is when a spherical grain shape

is assumed [15].
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2.1 Wind Velocity Profiles above a Sand Surface;

Determination of Local Friction Velocities

One of the first steps in the determination

of erosion and deposition patterns at various locations

on a barchan dune is finding the local friction veloci-

ties at these locations, since the rate of sand flow is

a function of the local friction velocity. Values

for friction velocity may be determined from velocity

profiles measured above the locations in question.

Velocity profiles above a flat sandy surface have been

measured by many experimentalists, and two types have

been observed: profiles above stationary sand surfaces

and profiles above drifting sand surfaces.

From reference 7, Bagnold writes the logarithmic

velocity profile equation Tor a stationary sand surface

(where saltation has not occurred):

U = 5.75 u*logo Z -	 2.1.1
o

where U is the fluid velocity at height z above the sur-

face with a roughness constant zo and friction velocity

U* = To/pa where To is the surface shear stress and pa

is the density of air. An alternate form of equation

2. 1.-1 is

l'

1

k
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where K, the von Karman constant is equal to 0.4.

When the friction velocity is sufficiently large,

the sand particles start to move. 	 Bagnold defines

;. two different threshold friction velocities initi-

ating grain movement. 	 The fluid threshold is the

friction velocity that the fluid must attain before

the grains start to move without any other upwind inter-

ference.	 The fluid threshold varies with the grain

diameter as follows:

u*t	 A 	
PgDp	 2.1.3

V/ P

where A is a constant coefficient which is 0.1 for salta-

tion in air; Zingg![16] and Chepil [17] found the same

value for A experimentally. 	 Q and p are the grain and

air densities, respectively,and Dp is the particle diam-

eter.	 if oncoming grains from upwind provide an initial

source of kinetic energy, a lower threshold friction

1 velocity is required to	 initiate	 saltation; this is

the impact threshold.	 For grains where Dp > 0.25 mm

(0.25 mm is the size of fine dune sand grains), the impact

u* is given by equation 2.1.3, where A _ 0.08.	 Chepil,

from reference 10, questions the relevance of adding kinetic

energy to determine a separate threshold velocity.	 Recog-

y.
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nizing the difficulty in determining visually the actual

velocity at which saltation begins, he defines "minimal"

and "maximal" threshold friction velocities.

once saltation is initiated, the velocity still varies

as the log of the height, but the velocity rays pass

through a new fixed focus at height k', which is of the

order of magnitude of the surface ripples formed by the

sand flow [Cf. Figure 3]. 	 The resulting 'equation for
K .a l

the wind velocity U s , where Us is the wind velocity at a

height z for the case of saltating sand, is

Us	 K* In -kz'-r + Ut	2.1.4
- where U 	 is the impact threshold velocity defined by

Ut _ ^Kt In z,^ .
	

2.1.5
0

(u*t is the impact threshold friction velocity defined

in equation 2.1.3).	 Experiments performed by Zingg indi-

cate that, for wind over drifting sand surfaces, K is more

closely approximated by K = 0.375, but Horikawa and Shen

[18] concluded that there is not sufficient evidence_ to

deviate from a value of x = 0.4.

For average dune sand of mixed grain size (Dp vary-

ing from 0.1 mm to 1 mm), Bagnold estimates values of

Ut = 4 m/s; and k' = 1 cm. 	 These values are supported

by Zingg's experimentally determined approximations of

k' = 10 Dp and Ut = 20 Dp; k' and Dp are in millimeters,
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and Ut	 gis given in miles per hour. Local values of the

friction velocity are determined from the velocity pro-

files at different locations on and around a barchan dune

using equation 2.1.4 and substituting in Bagnold's values

for U 	 and M.	 Values for U were obtained in the wind

tunnel at a height z	 2.54 mm (for each location), which,

when multiplied by a factor of 315 (used to scale field

dimensions to wind tunnel dimensions), is equal to a

height of 0.8 m in the desert. 	 The velocity is multiplied

by a scaling factor, C, in order to normalize tunnel

velocities to different assumed wind strengths at a height

z	 0.8 m upstream with respect to the dune in the desert.

This may be done because results from Chapter 4 show that

the flow is Reynold's number independent for the values

of Reynold's numbers at which the measurements were per-

k

formed.	 From velocity profiles measured in the tunnel

_ at a tunnel reference speed UR 	10 m/s, the mean veloci-	 j

ty found upstream of the dune model at z = 2.54 mm is
1

4.5 m/s,	 Thus, in order to normalize all velocity values

to an upstream velocity at that height of, for example,

10 m/s, a scaling factor C _ 2.22 would be used.

Making the appropriate substitutions, the equation

for the local friction velocity is

U* = 0.4 [ cU1n8000] 2.1.6
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The method described above for determining the friction

velocity assumes a logarithmic profile between the lowest

point of measurement (2.54 mm) and the point (Ut ,ln k')

through which the velocity curves pass during saltation.

For velocity profiles over a curved surface, the assump-

tion is not strictly true and must be taken as only an

ii	 approximation.
dG

h

I`i

r
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2.2 Parameters Affecting the Sediment Budget for the

Barchan Dune	 I
i

From equations in section 2.1, an expression for the

local friction velocity was derived from velocity profiles

measured in the wind tunnel, where values were assigned to

to k' and U t .	 The local friction velocities thus deter-

mined can now be used to model the sediment budget for

the dune.	 For a flat sandy surface, the local rate of
sand transfer, q, is a function of the local friction

velocity and the grain diameter.

From reference 7, Bagnold's equation for q, the mass

of sand transported per unit time per unit width, as a

function of u * ', the friction velocity for moving sand
over a flat surface, is:

q= c	 D g u* 13	 2.2.1

where c'is a dimensionless, experimentally determined constant

(C = 1.8 for naturally graded sand of the type found on desert	 i

_.m
3

dunes, and C = 1.5 for uniform sand grains where Dp = 0.25 mm).

The particle diameter is denoted by Dp, D is a standard particle	 9

diameter	 (D = 0.25- mm) , ` and p is the density of air.

Equation 2.2.1 is used to determine the rate of sand

flow at the crest of the barchan model. 	 The crestline of

the dune is the line at which the slope changes abruptly.

9
Ip tt
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The slip face is in the lee of the crest and the leading

edge is just upstream of it. In general, the flow separates

at the crest and forms a reverse circulation at the slip

face [191.

For the dune to be self-preserving, it must be in

equilibrium; that is, all parts of the dune must have the

same rate of translation in the direction of the mean wind

and the height of the dune must remain constant.	 From

reference 1, it can be shown that 	 at the crest, the

direction of sand transport closely follows the local

wind [Cf. Appendix A].	 In discussing the rate of sand

flow over the dune, the emphasis up to this point has been

w placed on the effects of the local friction velocity on 	 `.

t
q.	 The barchan dune has a_sloping surface; the effects

F

of the slope angle, e	 (cf Figure 4), on q must be investi-

< gated.	 Because of the surface slope, gravity no longer 	 i

acts in a direction normal to the surface; particlesi _

initially moving will possess a downslope component of

motion.	 Coarse particles travelling in surface creep are
i

probably affected more than any other particles by surface

w€
slope.	 From reference 1, some particles very close to

`
r

the dune base may be deflected by as much as 30° down- i
slope with respect to the direction of the surface wind.

According to Bagnold (reference 7) , the coarsest particles
E

generally determine ripple formation; thus surface slope

1

n

v ..
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-	 effects may be responsible for deviations measured between

r	 the local surface wind and the normal to the ripple strike
1.

at various locations.

L ., Bagnold [201 modifies the equation for the role of

sand transport as a function of friction velocity to take

C into account local variat Ion in the gravity slope as fol-

lows:

#3

22 P	
U*

q c	 D g cose tang	 tang	 2.2.2T
where all variables are the same as in equation 2.2.1, a

is the angle of repose of the grain on the beds and e is

the surface slope angle [Cf. Figure 41 The slope angle

also affects the threshold velocity,-Ut, of the sand

particles. From reference 7, saltation occurs when

Ff/Fg > tana where F  and F  are the fluid and gravita-

tional forces, respectively, on the grain.

Ff	 a'pu*2Dp2	 2.2.3
I

-	 where s' is an experimentally determined dimensionless co

efficient which depends on the turbulent fluctuations in

the flow, the drag per unit area of the fluid on the grain`

and the height atwhich the drag force acts:

Fg = 6 Dp3 ( a	 p)g 2	 2.2.4

r

and
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Figure 4: Diagram of Angles oc,and B
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At the initiation of particle movement.

f tana	
v au* 2

	2.2.5F 
g	 12 Dp((T - P)g

From reference 1, if surface slope effects are taken into
I.

account, tana must be replaced by the function below:

F f'
/tan 2 a cos 2 e - sin a sin Y - cosy sine

F 
	 2.2.6

where a and 6 are defined above and Y is the angle between

the surface wind and the surface gradient [Cf. Figure 51.

Equating 2.2.5 and 2 . 2.6, an expression for u * at the

initiation of grain movement is easily derived:

u*	 - ^ 12 ^ ^ p ) g,
 

[/_t_a_,_2a  cos 2 e - sin e si2y - cosysine]
-

2.2 .7

i

From equation 2.1.2, an expression for the local -threshold

velocity Ut2 is obtained and is inserted into equation 2.1.6

to yield a new value of u* for each location. The adjusted

u* values are used in equation 2.2.2 to obtain the local

rate of sand transport.

The orientation of the dune with respect to the mean 	 a
a

wind affects both direction and quantity of sand transport

at various locations on the dune. The equation used in

Appendix A to find q, for equilibrium at the crest includes
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I

the angle,E,between the mean wind and crestline. Values

for E are measured in the field.

Two other factors that influence q are the lag effect

is	 and the effect of variation of grain diameter. When the

local friction velocity at a given location, say, Z1,

changes, the amount of sand ejected into saltation changesg ^	 7	 g

w?	 also. Thus the amount of sand transported to a second

location, say Q2, downstream of Q 1 depends, to an extent,

on who tikes place at 9. 1 . This "lag" effect should take

place over a distance of the order of one path length of

the grains in saltation, where the path length is the
i

downstream distance travelled by a grain in a single jump.

The path length varies from a few centimeters to a met,,-r.

Thus the co__centration, q, of sand initially arriving at

a particular location should be determined by what is

happening at various distances upstream. The grain size,
1

Dp, varies with different locations on the dune. As yet,

this factor has not been taken into account in calculating

the sediment budget on the dune; instead, a uniform grain

size of 0.25 mm has been assumed. From equation 2.2.1,

however, it is clear that grain size affects the sand

transport rate. To account for grain size effects, an 	 3

accurate map of the distribution of Dp on a barchan dune

would be required.

z
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In a procedure more fully described in Chapter 4,

streamline maps of barchan #1 are drawn and "cells" of

approximately equal area are marked off between stream-

lines. Values for the parameters described .above that

affect q are found from field and wind tunnel measure-

ments and are tabulated for locations at the center of

each cell. A computer program provides adjusted values

of q for each cell when different combinations of param-

eters are taken into account. The effects of lag on q

are computed for different assumed particle path lengths.

'.	 The resulting erosion :,nd deposition rates are compared



Chapter 3

DESCRIPTION OF EQUIPMENT AND EXPERIMENTAL PROCEDURE

3.0 Wind Tunnel Simulation of the Atmospheric Boundary

Layer

Techniques that have been developed to s timulate the

atmospheric boundary layer were adapted for the experiment

to produce flow over a desert surface [21]. The facility

used for the simulation of a neutral desert boundary layer

is an open return, subsonic wind tunnel with a test sec-

C	 tion 7.92 m long, 0.6 m wide and 0.61 m high (Cf. Figure 6).

The air in the tunnel is initially forced through a con-

traction with a ratio of 22:1.

For ` a neutrally stable atmosphere, the desired mean

velocity profile near the ground (where. Coriolis effects

may be neglected) may be written as

u*	 z

	

U(Z) = K In 
z	

3.0.1

0
I

T

where u* is the friction -velocity ( U	 P—°, To is the shearF
stress at the surface and-p is the density of air), x is

the von Karman constant ( = 0.4) and z is the roughness 	 jo

height [6,22]. A variable rod grid (rod diameter, d, is }

19 mm) produces, in conjunction with the appropriate rough-

ness element fastened to the floor, the desired velocity

5

31
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profile corresponding to the z  found for saltatin,

[1]. The roughness element used is 20-3z grid sil

carbide sandpaper. From reference 21, two grids is

at intervals upstream with respect to the rod grid

duce turbulence intensities similar to those found

earth's atmosphere. Figure 7 is a plot of the tur^ .^^....^

intensity profiles.

The scaling factor used in designing the experiment

se

t

I

is 315:1. Thus the lowest 190 m of the atmospheric surface

layer is represented by the tunnel height of 0.6 m and a

zo of 25.2 mm in the atmosphere is simulated by a zo of

approximately 0.08 mm in the tunnel. A semi-logarithmic

LL '	 plot (Cf. Figure 8) of the mean velocity profiles taken

at different intervals (x) downstream with respect to

the rod grid shows good agreement with equation 3.0.1.

The wind tunnel simulation of the atmosphericboundary
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3.1	 The Sand Dune Models

Velocity profiles are measured around three different

barchan dune models, which are scale models of real dunes

existing near the Salton Sea in California.	 In the field,

the dunes were surveyed and contour maps were drawn [1].
r

Velocity profiles were measured, using cup anemometers, at

various points on the dunes, with special emphasis placed

along the crestlines.	 Also, maps were made showing the

 ;. ripple marks, slope gradient, crestline strike and slope

curvature for each dune.

The models, made from the contour maps, which will be

#
labelled barchan #1, #2 and #3 for convenience, differ in

i
some respects.	 Barchan #1	 [Cf. Figure 9]	 is about 360 mm

' long and 310 mm wide (across the wing-tips), barchan #2

( (Cf. Figure 10] is 430 mm long and 330 mm wide and barchan

#3	 [Cf. Figure 111	 is 340 mm long and 200 mm wide.	 Barchans

r #1 and #2 possess a similar shape with symmetrical wings,

" indicating laterally uniform upwind sand transport, but

barchan #3 is skewed (having one wing substantially dwarfed),

the result of an uneven sand supply upwind (from references

`
6,	 7)

In the field, most of the measurements were made

L]- around the dune corresponding to barchan #1, so the most

detailed set of profiles is determined for barchan #1 in
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Figure 10 Contour Map of Barchan #2

4
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the tunnel. Barchan #1 also has symmetrical wings, and

its dimensions are such that any effects from the warred

walls of the tunnel did not interfere with velocity pro-

files measured on the wings (the effects of the wind tun-

nel walls were determined with a pitot tube; velocity

readings were determined laterally at the position where

the dune models were later inserted). Barchan #2 cannot

be rotated through large angles (to measure effects of
.^	

9multidirectional winds) because it is so large that the

tunnel's wall effects, which extend about 70 mm from

each wall, do interfere with mean velocity readings on

the wings
r	

The dune models are carved from layers of balsa wood;

with each layer corresponding to a height contour on the

bran They are sanded to a smooth, continuous surface and

spray-painted.  The models are embedded into the floor 	 j

roughness at a location 151 d (d = rod diameter) downstream
w.

of the rod grid. Barchan #1 is mounted on a disk that can
a:

be rotated through designated angles to simulate change of

wind direction. Figure 12 shows the locations at which

r	 , ^	 t tvertical velocity profiles are det^..^Yni.lc.^i os..	 ^r=.^, w'Mrian #1.

Line 7 is the center line of the dune arid, in the case of

winds impinging from 0 1 , is aligned with the axial direction

of the tunnel and thus with the freestream flow.
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the tunnel. Barchan #1 also has symmetrical wings, and

its dimensions are such that any effects from the

walls of the tunnel did not interfere with velocity pro-

files measured on the wings (the effects of the wind tun-

nel walls were determined with a pitot tube; velocity

readings were determined laterally at the position where

the dune models were later inserted). Barchan #2 cannot

be rotated through large angles (to measure effects of

multidirectional winds) because it is so large that the

4-
	 11 ff t	 h'h	 t d b t 70 funne	 s wa	 a	 ec s, w is	 ex en	 CL 	 mm	 rom

each wall, do interfere with mean velocity readings on

the wings.

The dune models are carved from layers of balsa wood,_

with each layer corresponding to a height contour on the

map.	 They are sanded to a smooth, continuous surface and

spray-painted.	 The models are embedded into the floor

roughness at a location 151 d (d = rod diameter) downstream

of the rod grid.	 Barchan #1 is mounted on a disk that can

be rotated through designated angles to simulate change of

wind direction.	 Figure 12 shows the locations at which

vertical velocity profiles are determined on barchan #1.

(The profiles were measured, for the most part, at the

intersections of lines 1-13 with lines A,, B and C.)	 The

crest of the dune, which coincides with line A in the area

i to the right of line 9, is indicated by the heavy dotted-

line.	 Point a occurs at the intersection of lines 1-13.

a.
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B,	 D',	 E',	 F',	 G', H'	 and I' are points

42

at which velocity

profiles are measured in the lee of the model.	 Line 7 is

the center line of the dune and, in the case of winds im-

pinging from 0*, is aligned with the axial direction of

the tunnel and	 hi,,,s with the freestream flow.
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3.2 .Velocity Measurement Apparatus and Procedure 9

Mean velocity profiles and fluctuating components

are measured with a miniature hotwire probe connected to

a constant temperature anemometer. 	 The overheat ratio

for the hotwire is 1.6 times the probe resistance.	 The

signal is fed through a linearizer and conditioned by

an auxiliary unit with high and low pass filters and a

nulling circuit which zeroes the mean voltage. 	 D.C. vol-

tage is measured using a digital voltmeter with a variable

damping control which is kept at t = 10 seconds to average

the u-velocities.

., The hotwire is 'positioned with a traversing system

suspended from the tunnel ceiling, and it can be moved

in the x, y and z directions; the traverse mechanism is

accurate to 0.5 mm in all directions.	 Two kinds of minia-

ture probes are used (Cf. . Figure 13) . The first type,

which is designed with the sensitive element perpendicular

to the prongs so that the probe support is horizontal and

parallel to the x-axis,, is used for measuring profiles on

the dune's crest and on the lee side of the crest. 	 The

{ second type is a 45 1 probe (the sensitive element is fas-

tened to the prongs at an angle of 45°) and is supported

at an angle of 45 1 with respect to the z-direction so that

a the sensitive element is perpendicular to the wind; the 45°

r
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probe allows accessibility to the upwind slopes of the 

dune that would otherwise be inaccessible due to inter-

ference from the probe support. 

A system was devised whereby hotwires could be cali-

brated and the wind tunnel drift monitored ~ithout the 

insertion of a pitot tube. A manometer, having resolu-

tion of 0.05 rom of water, is connected by rubber hoses 

to static pressure ports upwind of the contraction aLd 

at an x-location on the test section, close to the dUne 

models. The manometer reads the differencf3' in static 

pressure, from which the mean wind velocity can be 

calculated using Bernoulli's equation. With logarithmic 

and turbulence grids removed, the "reference" manometer 

reads the same values for wind speed as a pitot tube 

positioned at z. With grids and roughness elements 
r 

inserted, the rela.tionship between the velocities determined 

by thepitot tube and the reference manometer is linear. 

For each profile measured, the tunnel drift was thus 

monitored and was restricted to 0.4% of the mean velocity 

'it z • 
r 
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3. 3 The Use of Flow Visualization as a Wind Direction

Indicator

Hotwire measurements of profiles around dune models

are sufficient to provide information about relative wind

speeds at various spatial locations. However, only in

one case is the hotwire used to directly indicate flow

(	 direction; this case will be discussed later in this

section. In all other cases, the technique of flow visu-

alization is employed to determine directional trends.

Several methods of flow visualization were investi-

gated; the method of tufting proved to be the most success-

ful. Thin strips of tissue paper, the "tufts," are glued

at one end to the models being studied, attached in such

C

C:
a way as to have no initial directional bias. When the

wind blows on the models, the tufts align themselves with
I
(	 wind direction, thus indicating streamlines on the dunes.

Photographs are taken of the models at different exposure
^^	 s

times to determine both "instantaneous" and "averaged

L
	

wind trends. A sample of tuft photography for barchan #1

is shown in Figure 14; 14(a) shows an instantaneous tuft
f,

alignment with an exposure time of 1/2 second and 14(b),

taken at an exposure of 2 seconds, illustrates the average

wind flow. It is from photographs of the averaged cases 	 6

that streamline maps of the flow over the dune are drawn.

^1,
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Figure 14: Tuft Flow Visualization Photographs of Barchan #1
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At points near the base of the dune on the windward

side, the tufts normally remain in one position, not

always indicative of flow direction, because the wind at

those points is not strong enough to move the tufts effec-

tively.	 Clearly, for these points another method for find-

ing wind direction is needed. 	 It is in such a	 case that

the hotwire is used as a direction indicator.	 The hotwire
d

has an angular cosine sensitivity to the flow and may be

rotated to find flow direction (27). 	 A 45' hotwire does

not need to be rotated; it may be inserted into a stationary

probe support in two different orientations:	 the first

at an angle of 45° with respect to the x-axis in the posi-

tive y direction; the second at an angle of 45° in the

negative y direction (Cf. Figure 15). 	 Using the equation:

E 2 - E1
:. tan 6' =

 E	 + E	 3 .3 ..1
2	

^

I

where E 1 and E2 are voltages (corresponding to velocity

magnitudes) recorded at the two orientations, it is easy

to compute the resultant angle, 6 1 , at which the wind is

blowing with respect to the x-axis. 	 The angles thus calcu-

lated contribute to the streamline maps of the model dunes.

In the next chapter, the resulting streamline maps and

their importance in computing dune migration will be ex-

plored.

A
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aCh pter 4

EXPERIMENTAL RESULTS	 3

4.0 Velocity Profiles around a Barchan Sand Dune 	 1

In.order to determine local friction velocities

which are needed for the analysis of the sediment budget

of a Barchan dune, it was found necessary to measure an

extensive set of velocitA profiles. Hotwire measurements

of U were made up to heights far greater than was necessary

to determine u* values; one of the additional purposes of
the measurements is to determine flow patterns of the wind

above the saltation layer of the dune. Profile measure-

ments provide the answers to basic questions about the

interaction between the mean wind and the barchan`.

From a study of these velocity profiles, it is possible
e

to determine certain flow trends; for example: the height

at which the flow resumes a logarithmic profile undisturbed	 j

k	 -	 by the dune is approximately equal to six time the maximum

dune height. A region of reverse flow in the lee of the

dune crest is detectable with a-hotwire. Changing the

speed of the mean velocity of the wind has no effect on

the velocity profiles other than a scaling effect if the

mean wind speed is doubled, for example, each of the veloci-

ties in the profiles is also doubled, to within 4% accuracy.

50
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Figure 17(a)r Velocity Profiles Along Line 7 For Barchan 41
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at a decreasing rate as the crest is approached, so that

the profiles converge and become logarithmic at z 	 160 mm.

Profile a, in the lee of the dune, possesses a very ].ow

velocity for z < 10 mm which actually decreases initially
^i

l
as z = 10 mm is approached, then greatly increases to con-

verge with the other profiles. The hotwire is not able to

adequately inte-pret reverse flows, so it can only meaning-

fully be used at a to determine the location of this "dead"

zone in the lee of the crest, and not its characteristics

The dead zone is seen to be approximately 10 mm high and
_P

extends no more than about 90 mm downwind from a.

Similarly, profiles measured on the wings of the dune

model were studied to determine flow trends. For conve-

nience, the wing on which lines 8-13 are drawn is called

wing n and wing n is the wing on which lines 1-6 lie. On

wing A, between height contours 6.3 mm and 9.5 mm [Cf. Fig-

ure 18], the wind attains its greatest near-surface (E;'

2.54 mm) velocity at line 11, which is exactly perpendicu-

lar to the oncoming mean wind. Th'us', the flow experiences
n
1

an acceleration along that location of the wing and a

	

r	 _3

deceleration as the sheltered portion of the wing (lines 12

and 13)_ is approached. Along the crestline of wing A, the

1

velocity at E' = 2.54 mm decreases downstream; this is to

be -expected, because the height z of the crestline decreases

downstream also. A relatively high velocity (at 	 2.54mm)

1

r	 _.
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t	 occurs at the wing tip, indicating a convergence of flow

r	 at that point [Cf. Figure 26]. For all cases except at the

tip, the velocity increases from the lower contours of

r	 the dune to the crestline. All of the profiles measured

on wing A converge at z z 60 mm (scales to a field height

z z 19 m, approximately three times the maximum dune height)

with each other.	 In general the profiles at the crest con-
I

verge with each other at z = 20 to z = 25 mm.	 On both wings,

between contours 1.27 and 1.59, the local wind is deflected

slightly away from the wing tips and towards the center of

the crest.

Analyzing profiles of wing B, one notices that be-

twcen contours 0.63 and 0.95, the maximum near-surface

velocity occurs at line 4, which is not perpendicular to

the oncoming wind, rather than at line 3, which is.	 The

'

probable explanation for this is that at line 3 the wingp	p_ 

is indented slightly,g	 y, which has the effect of protecting

it from the wind; at line 2, the wind accelerates again,
'i

where the wing protrudes outward. 	 The profiles on wing B
i

converge at z = 0.1 m, with the crestal profiles being the

last to converge with the lower ones; the crestal profiles	 7

converge with each other, however, at ,z = 30 mm.

A set of velocity profiles was measursa, for a tunnel

f d- rrierence speec'U	 = 10 m/s in the lee of the dune at six	 3

locations laterally positioned at a distance 210 mm down-r-a

t i

x
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occurs at the wing tip, indicating a convergence of flow

at that point [Cf. Figure 261. For all cases c.•ccept at the

tip, the velocity increases from the lower contours of

the dune to the crestline. All of the profiles measured
4

on wing A converge at z = 60 mm (scales to a field height

z = 19 m, approximately three times the maximum dune height)

with each other. In general,the profiles at the crest con-

verge with each other at z = 20 to z = 25 mm. On both wings,

between contours 12.7 and 15.9 , the local wind is deflected

slightly away from the wing tips and towards the center of

the crest.

Analyzing the profiles of win g B, one notices that be-

tween contours 6.3 and 9.5 the maximum near-surface

velocity occurs at line 4, which is not perpendicular to

the oncoming wind, rather than at line 3, which is. The

probable explanation for this is that at line 3 the wing 	 +.

is indented slightly, which has the effect of protecting

it from the wind; at fine 2, the wind accelerates again,

{	
where the wing protrudes outward. The profiles on wing B

converge at-z z '0.1 m, with the crestal profiles being the

last to converge with the lower ones; the crestal profiles

converge with each other, however, at z z 30 mm.

A set of velocity profiles was measured, for a tunnel

reference speec UR 10 m/s in the lee of the dune at six_

9	 locations laterally positioned at a-distance 210 mm down
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stream with respect to a [Cf. Figure 16]. Profiles y',

F', G' and H' converge and begin to become log,-.:ythmic
L

at z = 95 mm; profiles D' and T' do not converge until

a height z = 210 mm is attained. Velocities recorded
L

for the profiles at a height z = 2.54 mm -are studied in

order to determine a flow pattern for the dune.

A rough pattern of "streamlines" is drawn from the

measurements (Cf. Figure 191; the pattern resulting at

z = 2.54 mm coincides closely with Allen's streamlines

in the lee of a barchan dune [191.

The effect on velocity profiles of changing UR , the

tunnel reference speed, was investigated. Velocity pro-

files were measured at key points on the dune (7A, 13

crest and 2 crest) and at a point 10 cm upwind of the

dune at tunnel speeds of 5, 6,, 7, 8 and 10 m/s. 	 A scal-

E

ing factor by which velocity profiles could be normalized

to a single reference speed (10 m/s) was sought. 	 The

value of predictability of profiles for different on-

coming wind speeds is that it can be used to cut down

considerably on the number of measurements necessary to

determine flow around the barchan dune.'

The most obvious method of determining scaling factors

was investigated first and proved to be fruitful. 	 Each

point in the velocity profile is multipled by a scaling

` factor equal toUR/UX where UR = 10 m/s and UX is the
r

k

^
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j

tunnel reference speed for the profile. 	 The sc-lad pro-

file is plotted on a graph with a profile measured at

the same location for U R = 10 m/s.	 The degree of collapse

may thus be evaluated, or the velocities may be individual-

ly compared to find a percentage difference between them.

Figure 20 shows sample velocity profiles measured at

7A at tunnel speeds of 5 and 10 m/s; the profiles are 1

nondimensionalized by dividing by the appropriate reference

speed.	 The two profiles coincide closely with an average

error of 1.3%; most of the difference occurs close to

the dune's surface.	 The other profiles yielded similar

results with an overall average percentage_ difference of

4%.	 Later in this section, the source and magnitude of

k the errors`wili be presented.	 It will be shown that

the average percentage error in determining velocity
F

t profiles is about 3.8%, so an error of 4% may

be said to lie within experimental error. 	 In conclusion,

the velocity profiles may be scaled in the manner described

above to obtain a representation of the profiles at some

desired wind velocity.	 Reynold's number effects are

thus found to be negligible for wind tunnel speeds used

in the experiment.

An experiment was performed to determine the
extent to which the logarithmic boundary layer artificially

produced in the tunnel affects velocity profiles around the
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dune model. Profiles were measured at certain key loca-

tions on the dune with the turbulence and logar?tT,mic

grids and the roughness element removed. Removing the

grids and roughness element resulted in the formation of a

naturally grown boundary layer in the wind tunnel very close

to the tunnel floor; for convenience, this flow shall be

called "uniform," since the flow above the boundary layer

is uniform, up to the heights at which measurements were

made. The profiles thus determined were compared to profiles

measured at the same positions in the logarithmic boundary

layer. Figure 21 is a sample comparison. Tt is evident

that the two profiles are dissimilar. At the point closest

to the surface of the dune, where the dune affects the flow

to the greatest extent, the percentage difference between 	 l

the two velocities is 5.7`k. The difference increases to

a maximum of 12.11% at z/zo = 1000, then drops as the 	 j

profiles converge at z/z o	2750, where the logarithmic

velocity at that height becomes equal to the free-stream

velocity. The two profiles separate again as z increases

beyond z/zo = 2750-, From the results above and similar

results obtained from other profiles, it is established

that a simulated boundary layer is necessary if an ac-

curate representation of wind flow over a barchan dune

in the atmosphere is to be obtained, provided that the

atmospheric boundary layer is really logarithmic.
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I

A brief investigation was made into the effects on

velocity profiles of changing the angle of the 	 tncoming

wind with respect to the dune.	 The dune was rotated.

'
I

1

(horizontally, about the axis at point a), through angles
^

of -30 0 to 30 0 with respect to the mean wind, at 10° inter-.

vals.	 Profiles were determined, forII F	10 m/s, at posi-

tions 13 crest,	 7A and 2 crest.	 Figures 22,	 23,	 24 and 25

show the resulting velocity profiles for positions 2 crest

{ and 13 crest-
k.

At an angle of 30°, wing A and, thus, 13 crest, is
4

exposed more directly to the oncoming wind and wing B is

partially sheltered.	 The "sheltering" effect can be ob-

served in Figures 22-25. 	 Velocities near the surface of

( 13 crest are highest when the mean wind impinges at 30°F

and become progressively lower as the wind is rotated to

an angle of -30°. 	 The opposite effect, as expected, occurs

for wing B.	 The velocity profiles converge at z/zo _ 3000.

The effect of changing the angle of attack of the wind on

the velocity profiles and on the sediment budget of the

barchan is one that demands more research.

The predominant source of error in the measurement of

mean velocity profiles above the model occur in the posi-

tioning of the hotwire at locations close to the dune's

surface.	 The distance between the sensitive element of

f
the probe and the desired location on the model was 	 ?,

measured with a vernier accurate to 0.01 cm', but some

f
^^
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difficulty was experienced, due to the extreme delicacy

of the probe, in ,getting the vernier close encajn to

the sensitive element to make a reliable reading. Also,

under the influence of the oncoming wind, the sensitive

element often moved slightly from its initial position,

requiring an additional adjustment of the hotwire's

height, which had.to be estimated visually. Assuming a

displacement of 1 mm for the hotwire from the desired

vertical location at each position, the average percentage

of error for a complete velocity profile is 2.2%. (This

error was calculated using equation 2.1.2 and varying

z by 1 mm)	 The error from hotwire displacement varies

from 15%, at	 2.54 mm (where E' is the vertical dis-

tance) of the sensitive element from the surface where the

" profile is determined), to 0.1%, at	 230 mm.

At locations close to the surface, particularly in

the area of the crest and wings of the model, the turbu-

lence intensities were quite high. The damping circuit

t

	

	 on the voltmeter used to determine the mean velocity was

sometimes not adequate to deal with turbulent fluctuations,

and an estimate had to be made of the voltage, which on

occasion fluctuated by as much as 2% of the mean velocity.

Tunnel drift and hotwire calibration together accounted 	 -

for about 0.2% error in all 'velocity profiles-. Totaling

percentages of the sources of error listed above, and

1
1
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assigning an average value of 1.4% to turbulent fluc-

tuations, the average error resulting from velocity pro-

file measurements is equal to 3.8% of the mean velocity

in the wind tunnel.
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4.1- Local Friction Velocities on the Barchan Dune

The method used for determining values for the local

friction velocity, u*, on the barchan dune is discussed

in section 2.1. Equation 2.1.6 yields values of friction i
velocity as a function of the velocity at a height z =

a

2.54 mm in the tunnel, equivalent to a height of 0.8 m

in the desert. Using the C	 2.22 in equation 2.1.6,

friction velocity values are calculated for each location

at which velocity profiles are determined on barchan #1.

Figure 26 is a contour map of the local friction velocities

drawn from a map of calculated u * values.

i

4i

k

F;

 Y
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4.2 Streamline Mapping of Barchan #1

In determining the sediment budget for ba:.!:han #1,

it is necessary to construct accurate streamlines for the

dune. The streamlines are subsequently divided into

"cells" of equal length, and values for erosion or deposi-

tion of sand are computed for the center of each cell.

Three different methods are employed in determining

streamlines for barchan #1. The first streamline map

[Cf. Figure 271 was drawn from a combination of tuft photo-

graphs and directional measurements made at the base of

the model with a 45° hot-wire proble, using the method out-

lined in section 3.3 The tufts in the photographs are

aligned with th.o local wind; streamlines may be interpolated

between the tufts from points slightly upwind of the dune

_	 base to points on the crest. Local wind vectors deter-

mined with the hotwire at the dune's base are added to

the tuft streamlines to form a complete streamline map of

the model.

Measurements made in the field for barchan #1 provide

the second method for determining local wind streamlines

for the dune [1]. Stakes were implanted on the dune's

-	 surface and the directions of the scour marks resulting

from wind action were measured using a compass. The

"vectors" determined by the scour marks were measured

for two different mean wind orientations, impinging from
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11 .1	 1

crestline

Figure 27: Streamline Map of Barchan #1 ( From Tuft Photographs)r

a
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N73E and from S8l•E. The desired local wind vectors zre

for the case where the mean wind impinges from 4Y82E (the

orientation of the dune model'in the wind tunnel), so a

"weighted mean" value for local wind direction at a mean

wind of N82E is calculated from values obtained in the

field. Streamlines are drawn from the direction indicators

thus derived in combination with vectors obtained in the

wind tunnel with the hotwire at the dune's base. Figure 28

is a streamline map determined using the second method for

finding local wind vectors

l	 The third method for determining "streamlines" for

a barchan dune ass;'es a local wind always perpendicular
i

	

to local ripple marks From reference I, ripple strike	 {

*measurements were made in the field for barchan #1 at _ as

the two wind orientations described in the previous para-

graph, and vectors for the local wind direction for an

impinging mean wind at N82E are interpolated from the

two measured set,; of vectors. Figure 29 is a map drawn

from the local wind vectors derived from the ripple strike

measurements; this map will be called a "ripple-line"
3

map, because the lines on it are not streamlines. The sedi-

ment budget for the dune, is calculated for the ripple-lines

in Figure 29 in the same manner as for Figure 28: the

paths determined`by the ripple-lines are divided into cells

of equal length,. and erosion and deposition rates are de-

'3
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termined for each cell. In Figure 29', certain ripple

Lines on the wings branch off from others to fo°.R', two

separate ripple-lines. This occurs where the ripple lines

are dense, indicating a strong convergence of local wind.

Patterns of erosion and deposition found in section

4.3 for the barchan dune, using the streamline and ripple

line maps in Figures 28 and 29, will provide a comparison

between the two "streamlining" methoas. However, com-

parisons may also be made among all three maps by exam-

ining the figures. A comparison of the tuft streamlines

and streamlines determined in Figure 28 from field mea-

surements reveals many similarities between the two:
d

Since the hotwire method described in section 3.3 was

used for both maps to find directional trends at the dune's

base, the streamlines in Figures 27 and 28 are initially

identical Both sets of streamlines diverge initially on

the main section of the frontal slope upwind of the wings,

j	 then converge at the crest. Near the tip of wing A, bothi

streamline maps indicate a strong convergence of flow

t toward the tip, rather than toward the crest; on wing B,

both maps show a flow trend towards the crest for the local

j	 wind, rather than towards the wing tip

'

	

	 The principle difference between the streamlines in

Figures 27 and 28 occurs on the sections of the wings

close to the main central portion of the dune Figure.27
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shows slightly greater convergence of local flow towards

the wing tips than Figure 28 does (where "convc!-gence,"

in this case, implies a bottleneck effect); the local wind

in Figure 28 shows the greater flow tendency towards the

crest. Because the two maps are so similar, only one,

Figure 28, was selected for sediment budget analysis in

section 4.3	 e;

Comparing Figures 27 and 28 to Figure 29, it is im-

mediately evident that ripple-lines show greater conver-

gence of flow towards the wings than the streamlines do.

Streamlines following the measured local wind directions

indicate a comparatively stronger flow towards the cen-

tral crest area of the dune.

}.

	

	 Flow lines for the maps in Figures 27, 28 and 29 are

drawn by hand from photographs or drawings containing only

the short, vector-like direction indicators determined
1

in the field and wind tunnel. Some error must result from	 9

misjudgment in the interpolation of lines between the di-

rection indicators. In an effort to minimize human error,

the streamline maps were drawn independently several times

by two different people, until the;fihal copies were deemed
	 'j

suitable by both.

i
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I	 4.3 Mapping the Sediment Budget for Barchan #1
The final stage of experimental results is e compari-

son of contour maps for the sediment budget of barchan #1.

i
	

Contours obtained using various combinations of the equa -

tions outlined in section 2.2 and the results of the

streamline and ripple-line maps in section 4.2 are compared

with each other and with predicted and observed contours

of erosion and deposition for the dune. All erosion and

deposition contours are normalized with respect to the

rate of forward motion of the dune. t 1 , the erosion at

a point 1 on the dune's surface, is equal to Ah/Qx where

oh is the decrease in the height of the surface at point

1 when the dune has migrated a distance Ax Thus E and

D, the deposition, are nondimensional; E is assigned nega-

tive values because h decreases during Erosion, and D is 	 a

assigned positive values since h increases with deposition.
i

Figures 30 and31 are erosion and deposition contour

maps drawn using the streamlines of Figure 28. Values

for u* used to obtain q, the sediment transport rate, are 	
r

obtained from velocity profiles measured in the wind tun-

nel. The two sets of contours differ only by the slope

factor used to determine q. Figure 30 is drawn using

Bagnold's equation, as expressed by equation 2.2.1, for

sand transport, neglecting the slope effects of the dune.

Figure 31 results from using Bagnold's equation, as ex-

i
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Fi gures 30: Erosion. and Deposition Contours for Barchan #1
( Neglecting Slope Effects, Using Streamlines from 	 -
Local Wind ) The values represent dimensionless
erosion and deposition, where negative values indicate
erosion and positive values indicate deposition.



T

Figure 31: Erosion and Deposition_ Contours for Barchan #1
( Including Slope Effects, Using Streamlines from
Figure 12 5	 '

i
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pressed in equation 2.2.2. Contours for the tanP	 q	 g*ent of the

slope angle of she barchan, from reference 1, a--e given in

Figure 32. From a visual comparison of the two figures,

many similarities are evident. The contours on wing A

in both maps are nearly identical. The portion of wing

B near the central section of the'dune in Figure 31 ex-

periences less erosion than the corresponding location

in Figure 30 does. In Figure 31, the main section of

the dune experiences less erosion and the central crest

section more erosion than in Figure 30. In general, the

two maps show erosion in the central section of the dune,

and on the wing areas closest to the central section.

Deposition on the dune (as opposed to deposition in the

lee of the crest) occurs on the wing tips.
F

Figure 33 is a contour map obtained from values of

erosion and deposition found for the ripple-lines drawn

from ripple marks in Figure 29. Again, Figure 33 is

basically similar to Figures 30 and 31, where q is de-

termined by the local wind. Erosion occurs on the main

section of the dune and deposition takes place on the

wing-tips and on a large section of the crest of wing A.

In section 4.2, it was noted that the ripple-lines of

Figure 29 indicate a strong convergence of flow along the

wings; in Figure 33, deposition does occur on a greater
a

portion of the wings than in the other two figures, but

e
.rum«	 ., _.._^_.J...._._.....
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Figure 33; Erosion and Deposition Contours for Barchan #1
(Including Slope Efzects).Using Ripple-lines
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a
there is relatively much less deposition on the crest of

1. wing B.	 The erosion contours in Figure 33 on ;he main

section shift towards the crest and show a higher erosion

^- rate than either of the other sets of contours do.

Figure 34, from reference 1, shows sediment budget
L

contours for the dune drawn from measurements made of
i

i stake exposure and burial over a two week period. 	 The

pattern of erosion on the dune's central section differs

slightly from all the other cases discussed so far, in

that the area where the greatest amount of erosion occurs

is closer to the crest than in the other cases. 	 There is

more erosion on the tip of wing B and more deposition on

the crest of wing A than in the other figures, but the

erosion on wing A is similar in extent and location to

that found in Figures 30 and 31.

Figure 35, from reference 1, is a map of the predicted

erosion and deposition contours for barchan #1, if dune

equilibrium is preserved [Cf. Appendix A].	 Comparing the

contours in Figures 30, 31, 33 and 34 with the predicted

contours, it is evident that the sediment budget calculated_

for streamlines following the local wind bears the greatest

resemblance to the predicted sediment budget. 	 Erosion rates

on the central portion of the dune are similar to those

found for Figures 31 and 34.	 On wing B, the deposition

!
4	

-

on the crest for the predicted case is greater than for

r

_:	 ....w..w....	 =_

9

..	 ...	 _... 	 .....	 .. 	.wd.ewameu..	 . 	 ...._ra	 , a	 ,i..rw.a.w+.r.._.............s^	 F
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Figure 34: Erosion and Deposition Contours for Barchani
(From Field Observations over a Two-Week Period of
Stake Exposure and Burial, Reference 1)
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most cases and very similar to the deposition occurring

at that location in Figure 34; the erosion on wing B is

similar to that indicated in Figures 30 and 31. 	 The

erosion occurring on wing A in Figure 35 also takes place

in Figure 30; deposition on wing A closely resembles the

pattern found for Figures 30 and 31.

In this section, patterns for the sediment budget

discussed have taken into account only a few of the cases

that were investigated.	 From reference 1, the factors

of grain size, delay time and initial saturation of the

oncoming wind discussed in Chapter 2 were varied; none

of these factors appeared to have a profound effect

on the sediment budget.	 The pattern of erosion and de-

position found for streamlines following the local wind

closely resembles the predicted pattern on the wings, but

differs somewhat from the predicted pattern on the main

section of the dune.

Contour maps of the sediment budget for the barchan

dune are the cumulative result of maps determined for the

streamlines, slope angle and friction velocities on the

model.	 Because of this, they are subject to all of the

sources of error listed in this chapter so far, as well

as some new sources of error resulting from the drawing

of the erosion and deposition contours themeselves. 	 Con-

tours for the friction velocity in Figure 10 (drawn by hand



i
t and subject to human error), are rather widely spaced in

+	 some locations, particularly on the leading edgy of the

dune. Thus, the values for u * found for the different

cells is subject to additional error. Streamlines drawn

from field measurements may have been determined when the

^..;	 dune was not in a state of equilibrium, a fact ,which could

be the reason for the discrepancy between the predicted

and "measured" erosion patterns on the central section

of the dune.

Although the sediment budget for the dune in the case

r of streamlines following the local wind direction bears

a close resemblance to the predicted sediment budget for

dune equilibrium, there is also great similarity between

the erosion patterns on the central dune section for the

r Vple mark and predicted cases. Further investigations

are required to determine factors needed in predicting

the sediment budget; a model combining streamlines obtained

from the local wind and ripple marks may produce erosion

i	 and deposition patterns more sirailar to the predicted ones
j

In conclusion, there exists a promising indication that
i

	

	 s

it is possible to predict the rate and direction of sand

flow around obstacles using the techniques of wind tunnel
9

modelling of conditions in the field and hotwire measure- 1

ment of velocity profiles.
i
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Chapter 5

SUMMARY

5.0	 The Interaction of Unidirecticr-cl n_ncjs with a Barchan

Sand Dune
r

'
3

An experimental inves-Ligation was made of the flow

patterns around a model barchan sand dune which was inserted

into a wind tunnel simulation of the Earth's desert boun-

dary layer.	 A listing follows of the principal results 	
1

achieved.

^t
1. The desert boundary layer of the Earth was success-

..
fully simulated, with a roughness value, z , equal to 0.08., o

MM.

2. Velocity profiles measured with a hotwire anemom-

eter provided insight about flow trends around a model

barchan.
;.

E d
3. A method for scaling velocity profiles to predict 	 j

the effects of changing the speed of the mean oncoming wind

was determined, 	 y
i

4. A comparison of velocity profiles measured on the
I

dune in uniform and logarithmic flows proved the necessity
,

of utilizing 	 logarithmic boundary layer simulation ing	 g	 Y	 Y,

determining flow patterns around a barchan dune's

91
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5. A brief investigation was made into the effects
a

on velocity profiles of changing the angle of '. pie oncoming

mean wind, and resulting changes in the flow trends were
t

noted.

6. Streamline mapping using flow visualization methods

"	 produced results similar to streamline maps of the barchan
i

F	 dune obtained from field measurements. i
i

7. A theoretical investigation was made into the 	 J

forces acting on a sand particle in saltation.
• -	 i

8. Values for the local friction velocity at various

points onon the dune were derived from velocity profiles,P	 Y p	 ,

using Bagnold's equation as stated in eq. 2.1.6.

9. Experimentally determined maps of the sediment

budget for the barchan dune are compared to each other

and to a map of the sediment budget determined theoreti-

cally for dune equilibrium.

,
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Appendix A

COMPARISON OF THE RATE OF SAND TRANSPORT ^,2ASURED

AND CALCULATED TO SATISFY DUNE EQUILIBRIUM AT

THE CREST OF BARCHAN #1 (FROM REFERENCE 1)

r

The requirement for equilibrium of the dune's crest

under the action of unidirectional wind is that the rate

of translation of the crest be uniform at all points and

that the crest height remain constant. 	 The volume rate

of delivery of sand per unit length, Q, of the crest, is:

q sin (E	 - a')
where	 is the angle between the mean wind and the crest-

line and a' is the angle between the transport direction

_ and the mean wind.

a	 - The volume rate of building perpendicular to the

crest is

n dt	 i

{
where y is the horizontal direction perpendicular to the

crestline and Vii. is the height of the crestline above the
;r

base of the dune.	 Because of curvature, the crest, height

must be replaced with an effective height, H e .	 At equi-
1

libriutn

I„
Heat = He	 sinE _ q sin(	 - a')

dt

f
or

i
r..^ n.ry

96- a
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Figure 37: k' 'vs. Position on Crestline for Barchan #1 (From Wind Tunnel Measure-

ments of q)
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