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Abstract

A fl iccrete, time-invariant system is represented by an

equivalent continuous, periodic system. A combined continuous

plant and discrete controller may then be formulated as a single

continuous, periodic coefficient system. The exact stability

solution for the combined system is obtained, as a matrix

eigenvalue problem. Periodic system theory also gives some

information about the type of instabilities which may be encountered
J.	

in the combined plant and controller.

*Research Scientist, Large Scale Aerodynamics Branch,
NASA/Ames Research Center

-1-



Tntroduction
J

When the control of a continuous plant is implemented using a discrete

filter and controller, it is necessary to analyze the combined system,

which is part continuous and part discrete. One approach is to approximate

the system by one which is all continuous or all discrete, but such an

approximation may either introduce instabilities which are not present in

the real system, or miss the actual instabilities. This approach is probably

satisfactory for analysis of the system performance, such as rms response,

but a better method is desired for calculating the system stability.

An exact method is required for analyzing the stability of a combined

discrete and continuous .system. Two facts suggest that the method be sought

using periodic system theory. The first is the similarity in the state

transition matrices of discrete and periodic systems (as discussed below);

the second is the similarity in the type of instabilities. A major concern

with combined continuous and discrete systems is the possibility of an

instability characterized by the frequency locked at 21r/T (where T is

the sampling period), which is not seen if the states are only observed

at the sampling times. Such an instability is characteristic of a periodic

coefficient system. Clearly the overall model for the system must be

continuous, so we seek an equivalent model for the discrete part of the

system. Consider a linear, time-invariant discrete system, of the form:

x(k+l) = Fx(k) + Gv(k)

where F and G are constant matrices. The solution of this equation is
KA

x(k) - Fk-ko x 	 + .2—r Fk-1-j Gv(j)
^- ke
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Periodic, Continuous Systems

To obtain the equivalf.nt model for this discrete system, the results

of periodic system theory are required. Consider a linear, periodic,

continuous system:

x = A(t)x + A(t)v

where A is a periodic matrix, A(t+T) = A(t). For a general time-varying

system, the solution is described by the state transition matrix 	 s

X(t) = 1( t . te ) x ( to ) + Sj(t.R)e(^)v(^)dz
where I is the solution of	 A-	 l(to,to) = I. It may be

shown [11 that for periodic coefficient equations,	 takes the form:

-*(t,`') = P(t)J'(t'to)P 1(to)

The matrices

	

	 and. P are defined by

of = e^IT = _E(T,O)

P(t)	 cj(t,0)o4t/T ='j(t,0)e-Rt

where o< and. (3 (the eigenvalues) are constant matrices, anJ. P (the

eigenvector matrix) is periodic. Writing of = SO S - 1 9  t - SAS-1

and J. being the eigenvalues of c- and (S respectively, so

J^ TI n ^ ), the transient solution is

x	 ( PS ) e-Atq ( 0 ) _ ^ ui(t)e^'-Itgi(0)

This is a modal expansion of the solution for r., with periodic eigenvectors ui.

Furthermore,	 = A'j gives a differential equation for P:

P = AP - PP	 , P(0) = I, P(t+T) = P(t)

or

ui	 (A -	 iI)ui

-3-
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Now a general result for periodic systems is that the state

transition matrix over any period is related to the initial period byt

cI (t+NT, to ) = cI (t, to ) c-,< 11

It follows that the solution is defined entirely by o< , plus the values

of I over the single period t to to t0-T. The solution of a periodic

coefficient equation, evaluated at t = K, is then:.

	

x(kT) F c-c	 x(1 0T) +	 Sk
kj

I(kT, vt )B('t)v('t)dT_

Finally, note that for the time-invariant case (A constant), the solution

,
reduces to tK = eAf and T= eA(t-to).

Equivalent Periodic and Discrete Systems

Comparing the solutions above for x(k) of a discrete system and

x(kT) for a periodic, continuous system, the similarity mentioned in the

Introduction is apparent. Clearly for the equivalent periodic, continuous

system we want oc = F. To complete the description of the solution, the

state transition matrix is .required over a single period. The obvious

choice for a discrete system model is -I = constant, hence

'I( t , C ) = Fk ,	 (k-i)T -- t4ZZ kT

What does this state transition matrix imply for the system (i.e. A)'

We have

	

P =	 ,(t,o) of
-1,/T 	F-(t/T-k)

so

P =	 (^	 S ( t-JT) ) (F-1) - P(R

Then the differential equation for P gives

A	 (P + P43 )P 1 = (b(t-JT) )( I - F-1)

Similarly the control matrix is chosen to be

D = (.	 S(t-JT) ) F-1G

-4-
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The solution of this periodic system is
w-1

i

	

	 x(t) - Fm-kO x ( k0T ) +	 F m-1-jGV ( j 'P )	 mT C t 4- (ma•1)T

The solution at t = kT i.s indeed then

x(k'P) = Pk-ko x(koT) +

	

	 F"-' -J Gv(jT)
j=ko

the same solution an the discrete system at the sample times (an(I constant

in between).

Hence the equivalent continuous system for

x(k+l) - Fx(k) + Gv(k)

Is

x = ( J ^ 5( t- jT ) ) ((1 - F- )x + F-1Cv )

The periodic part of the equation coefficients is just a sequence of

impulses., as might be expected of a discrete system.

Combined Continuous and Discrete System

The above result may now be applied to the stability analysis of

a combin:1 discrete and continous system. Consider the following plant

and controller:

continuous plant	 x = Fx + Gv

measurement	 z = Hx

discrete filter	 y(k+1) = Ay(k) + Az(k)

controller	 v(k) = Cy(k)

The A/D conversion is part of the measurement stage; infinite word size

is assumed. The D/A conversion here is a first order hold, so the control

signal is constant between sampling times; the D/A filter can be considered

part of the continuous system.

f
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Using the results of the previous section, the discrete system is

modeled by

Y = ( d ,, S ( t-.IT) ) (( I - 
A-1)y + A-1Bz)

v=Cy

Hence the complete coupled system is

(

x	 F	 GC

	

1	 _
	 ( X )y1	 (r-b)A-1BH	 (ES)(I-A-1) 

The time invariant continuous plant plus discrete controller is described

by this continous, periodic system. Two things are gained by thin -formulation:

first, a procedure for calculating the exact stability; and second, information

about the type of instabilities which may be encountered,

Stability Evaluation

For a general periodic system, x = Ax, the stability is obtained by

integrating	 = A ^+ , d(0) . = I over one period, t = 0 to T. Then

the eigenvalues of oC = -I(O,T) determine the stability of the system.

The roots on the s-plane are	 T In ED , where ® is the diagonal

eigenvalue matrix of of . Usually it is necessary to numerically integrate

the equation for -1 , but an analytical solution is possible here since

the periodicity in the coefficients is only due to the impulse sequences.

Hence

-	 F	 GC

( E b ) A -iBH 	 ( E b )(I A-i)

has the solution

-	 eFt + (eFt-I)F 1GCBH	 (eFt-I)F-iGCA

BH	 A

over the first period, t = 0 to T. Then the stability of the combined
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system is tlefined by the eigenvalues of the matrix

(T)
C 0 F + (

e T - I)F-iCCBH	 (e FT - I)F-iCCAJa ^ a
BH	 A

The roots on the s-plane are -A = P In ® , and the eigenvectors may

be evaluated. from (PS)	
Se--&t.

It may be verified that this result has the correct limits for the

cases of an entirely continuous system or an entirely discrete system;

and for the limit of infinite sampling rate, T -+0. This solution may

also be compared with the results obtained by approximating the whole

system as all continuous or all discrete. For the discrete case, the continuous

plant is approximated by

x(k+1) e7x(k) + (e FT - I)F-1Cv(k)

So the stability is given by the eigenvalues of the matrix

eFT	 (e FT I)F7'GC

oG -
BH	 A	 J

This approximate model ie: correct at the sampling times, but contains no

information about the behavior of the plant between sampling times, hence

the differences in the two eigenvalue problems.

Type of Instabilities

Besides the usual real and complex-conjugate-pair roots on the

s-plane, the periodic system may also have pairs of roots which have their 	 j

frequency fixed at a multiple of qr/T. The root locus will show one of

These roots becoming less stable and. the other more stable (so they are

not conjugates). The property of the solution that allows such behavior

-7-
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is that the eigenvectors are periodic. Further discussion of the properties

of periodic systems may be found in the litterature (such as [i] ). Such an

instability of a periodic system is analogous to an instability on the

real z-axis of a discrete system. The motio,^ s at a frequency n(2 W/T)

if the root in on the positive real axis, and at (n4,)(21?r/T) for the root

on the negative real axis. This analogous behavior is the basis for the

representation of the discrete system by an equivalent poriodlc, continuous

system. As expected, an instability of the combined discrete and continuous

system is possible with the frequency locked at a multiple of the Nyquist

frequency m• /T, and periodic nystem theory gives the details of such behavior.

Conclusion

A. periodic, continuous model hao been found which is equivalent

to a discrete system, in the sense that it has the same solution at the

sampling times, and is constant in between. This allows the formulation

of the combinedl, continuous plant and discrete controller as a continuous,

periodic system. Then periodic system theory may be applied to analyze the

stability and response.

Thus the calculation of the exact stability of combined continuous
i

and discrete systems has been reduced to a matrix eigenvalue problem.

Periodic system theory also gives some information on the type of instabilities

which may be encountered. The calculation of the exact forced response

using periodic system theory has not been considered here, but it may
5

be obtained if it proves necessary,

i
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