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POREWORD
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ABSTRACT: Differential cross sections for the excitation of the

first four neutron-hole states and the doublet at 2.61 MeV

by 61 . 2 MeV protons have been measured. The data are

analyzed in terms of both a purely collective model

description and a microscopic model supplemented by macro-

scopic core polarization. A "realistic" two-body inter-

action is used and knock-on amplitudes are included. Core

polarization is found to be important but represents a

relatively smaller contribution than in most nuclei

previously studied. A parallel analysis of similar data

at lower proton bombarding energies reveals a surprisingly 	
.'

-°	 strong enexgy dependence of the reaction mechanisms.
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1. L - JCTION

The differential cross sections have been measured for,the

excitation of the neutron-hole levels at 0.570 MeV, 0.898 MeV,

1.63 MeV, and 2.34 MeV and the doublet at 2.64 MeV using 	 .2 MeV

protons from the Oak Ridge Isochronous Cyclotron (ORIC).

Our earlier experiments showed that the more strongly

structured cross sections for proton bombarding energy (B p) of

61 MeV helped to stringently tes-,: microscopic models of

inelastic scattering 1-5 ). Both spin-flip and core polarization

mechanisms were shown to be important for scattering from 89X at

this energy 112

For both Bp 40 MeV and RP 61 bieV, the excitation of the

first `l+, 4+ and 5- levels in 90 Zrwas dominated by core polar-

ization whose contribution is consistent with measured B(BL)

values for these l + and 5 levels 2,6 ). In our experiment on 90 Zr

at 61 MeV, considerably less core polarization was required for

the calculated cross sections for the 6 + and 8+ levels, and it

appeared that either a more microscopic description of core

polarization was needed or that non-central parts of the inter-

action should be used for the valence contributions 2 ). Later

calculations 7 ) which included the spin-orbit part of the effective

interaction for these proton excitations gave a better fit to the

shapes of the measured cross sections:

The L=3 shape of the differential cross section for

excitation of the 12 single proton state at 1.63 MeV in 209Bi

I
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by 61 MeV protons clearly showed the importance of core

polarization in inelastic scattering 3 ), because of the strong

coupling of the h 9/2 proton to the 3 excitation of the 208 Pb

`	 core which had been predicted earlier8).

Current microscopic models, with core polarization treated

collectively or microscopically, are discussed in references

^, 4, and 9 and references cited therein. Giant multipole

resonances ha/e been shown to be important at lower proton

energies 10 ), particularly for lighter nuclei and especially

_.

	

	 for states excited directly by the weak parts of the force.

These effects are not believed to be important for low-lying

natural parity states in medium and large-A nuclei with proton

energies much above 30 McV11)

Excited states of nuclei in the mass region near 	 doubly-

magic	 208Pb have been studied extensively in recent years,
^	 1

both experimentally and theoretically, because many of these

states are expected to have simple structures involving either

single particles or single holes coupled to this very strongly
a

excited core.	 Much of this work is listed in reference 12, ti

including that on inelastic scattering of protons.

The 207 Pbground state has (to lowest order) one neutron

hole in the doubly-closed shell of 208 Pb, and the first four
i

excited states are predominantly single neutron-hole excitations 13).

For inelastic scattering, the ground state spin value of h highly

restricts the possible values of angular momentum transfer L, so

there are only a few 'allowed' amplitudes compared to the very

large number involved in the excitation of the single-proton

.r
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state in 209 B at 1.63 MeV 3 ). Because of the large matrix

elements of the 2.619 MeV core state of 208 Pbto this 1.63 MeV

state in 209Bi, it was also not possible to study the relative

importance of the valence contributions because core

excitation completely dominates this transition. An additional

reason for studying these neutron-hole transitions in 207 Pb

with protons was that it appeared unlikely the spin-orbit part

of the proton-neutron interaction would be important, and this

may make it possible to see the effects of the tensor part of

the nucleon-nucleon interaction. A similar experiment with

20.2 MeV protons had been reported 14 ), so it would also be

possible to study the energy dependence of the reaction

mechanisms. Another experiment with 35 McV'protons was reported

later 15,16).

The experimental procedures are discussed in chapter 2.

The collective model analyses and the effects of different optical

model parameter sets are discussed in section 3.1.1 for data from

this experiment and from the experiments 14,15,16) at the lower

proton energies of 20.2 MeV and 35 MeV. Our microscopic model

calculations, with collective core polarization, are discussed

in section 3:2 for the data at E p=20.2 MeV and 61.2 MeV and

are compared with similar calculations 15 ) for the experiment

with 35 MeV protons.

i
I

I
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2. T IT T: EXPERIMENT

The 61.2 MeV proton beam w;xs obtained from the Oak Ridge

Isochronous Cyclotron (ORIC) and the scattered protons detected

at the focal plane of the broad-range spectrograph 17 ) in Ilford

5.2 cm x 25.9 cm nuclear-track plates, which had 50 4im thick

G5 emulsions and extra plasticizer.	 A 0.18 cm thick aluminium

absorber was placed in front of the emulsions to stop heavy

particles with the same magnetic rigidity, and also reduce the

-.	 energy of the elastically scattered protons by about 9 MeV

because the protons approach the focal plane at an angle of
 J

37.5 degrees to the emulsion. 	 A thin sheet of mylar, 25.9 pm
i

in thickness, was placed between the aluminium absorber and the j

emulsions to prevent pressure and scratching which when developed

would obscure the relatively faint proton tracks. 	 Freshly made

'Brussels	 amidol'	 developer, a stop bath with acetic acid,' i

and sodium thiosulphate fixer solution were used lII ).	 The target,

l	 enriched to 92.9% of 207 Pband rolled to 6.5 mg/cm2 thickness, {

1 was self-supported and purchased from the Isotope Sales Division
^

of the Oak Ridge National Laboratory. 	 The overall resolution

ranged from 90 KeV at small angles to about 55 KeV, at 100 degrees.
d
i

The data were accumulated in two separate beam runs. 	 The

relative normalizations of all the data were determined by

making short exposures at different times during each run at aI	 ;^

number j' jelected angles to observe the protons elastically

scattered from 207P1, ) with the same solid angle, effective

1	 I	 target thickness and Faraday cup calibration as in the inelastic

REPRODUCIBILITY OF T11F
ORIGINAL PAGB IS POOR; y
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scattering exposures of each run. From these 'elastic

calibrations', absolute values of the inelastic cross sections

were determined by assuming the elastic cross sections for

207 Pbto be the same as those measured earliL:r for 208 Pb at

the same energy 19 ). Overall 94 plates were taken with the

spectrograph acceptance angle (in the scattering plane) of 3.0 °1

41 plates with this angle at 1.00 , and 17 plates at 0.5 0 . With

this angle at 3.0 0 counting tracks in a strip 2 cm length at the

focal plane corresponds to a solid angle of 0.230 msr. At

angles near those at whivii proton peaks f qr elastic scattering

from 12C and 160 contaminants overlapped inelastic 207 Pbpeaks,

the smaller acceptance angles of 1.0° and 0.5° were used and

the focal plane position shifted to narrow these contaminant

peaks and allow a better determination of the 207 Pbcross

sections. This `,echnique has been discussed previously l).

The measured differential cross sections for the

excitation of the first few 207 Pblevels and the doublet at

2.64 MeV are shown in table 1. The errors shown include those

due to counting statistics, an estimate of the error made in the

background subtraction and an estimate of the scatter in the

track counting.

3. ANALYSES OP THE EXPERIMENTAL RESULTS

3.1 Collective (Weak-Coupling) Model Analysis

Of the six states reported from the present experiment,

only the unresolved doublet 
20`21) 

at 2.64 MeV excitation is well



.	 ,

t

f:

described by the weak coupling model. Although the first few

excited states are believed to result from largely single

neutron-hole excitations, for conpletenoss collective model'

calculations were made for all of the transitions to the first

I

	

	 six excited states. The observed transitions are described

entirely by the excitation of phonons in the 208 
Pbcore with

the single neutron-hole (3g •	 p 1/2) in the ground state coupling to

these phonons to form a doublet of states. Both the real and

imaginary parts of the optical potential wore deformed in our

r
calculations and Coulomb excitation was included for quadrupole

and octupole transitions. Our definition of the deformation

parameter 0L does not included statistical factors, and should

equal that extracted for a 0+L transition in 208 
Pb if the weak

coupling model is strictly valid. Our values of 0L are obtained

from the other common definition by multiplying by the statistical

factor ((2Ji+l) (2L • 1.1)/(2J f+l)1 .

3.1.1 BEST PTT AND ENERGY DEPENDENT OPTICAL PARAMETERS

Because of previous discussions of ambiguities in normali-

zation of collective model calculations (for example in references

16 and 22), we made two s-as of collective model calculations

for the measured cross secticns at Ep=20.2 and 35 MeV (refer-

ences 14,15) and 61.2,MeV in the present experiment. The.first

set of calculations were made with 'best fit' optical model

parameters, the 'first set' of reference 14 for Ep 20.2 MeV, those

from reference 23 for E  35 MeV, and those from reference 19 for

I
	 a

i

-7-



.18-

J

Bpa61.2 MeV.	 The values of 0 we obtained using those 'best
fit' parameters are listed as BFOM in column 5 of table 2 from

an ovorall fit to the measured cross sections at all angles;

not to the first prominent maxima in the angular distributions.

In column 6 of table 2 0L-061 is the percentage difference of
4-+

the value of 5  we deduced at each lower energy from the value !c

at 61 MeV.

The values of 0L shown in column 7 of table 2 were deduced

from a second set of collective model calculations for B p=20.2 MeV,

35 MeV, and 61.2 MeV, with the energy dependent parameters for

208 Pbof reference 24 which were derived from those of reference

25.	 The	 of RL in column 7 of table 2 labelled by HSOM

(halbert-Satchler optical mode].) were obtained from an overall

fit to the measured cross sections at all angles, not to the

first prominent maxima in the angular distributions. 	 The

percentage differences of these values of R L from the values

for 61 MeV are shown in column 8.

Column 9 of table 2 compares the value of 0  deduced at
each proton energy with the HSOM parameters with the corresponding

value of RL in column 5 deduced at the same energy but with the

BI'OM parameters, expressing the differences as percentages.

For completeness,the values ofRL shown in column 10 for

35 MeV protons, labelled as BGOM, are those from reference 16

multiplied by the appropriate statistical factors
1
i

[(2Ji+1)(2i+1)/(2J f+1)1 31 .	 The Bechetti `and Greenlees optical,

model was used in that analysis. 	 The last column of table 2

i

J
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gives the percentage differences of these BGOM values of 0 
from the BFOM values listed'in column S.

3.1.2 TIIE DOUBLET CENTERED AT 2.64 MeV

This doublet (z* , 2*) at 2.64 MeV in 207 Pbis described

fas an octupole excitation of the core. The excitation energy

of this double,,6. is in very good agreement 16,26) with the energies

of the underlying 3- state in 268 Pband the multiplet of states

seen in 209 Bi. Figure 1 displays the excellent agreement between

the 'best fit' colle„tive model calculation with 03=0.103. This

value is almost identical with the final corrected 'best fit'

values of 5 3=0.101 and R 3=0.103 for the excitation by 61.2 MeV

protons of the corresponding 3 multiplet at 2.62 MeV in 209 B

and the 3 core at 2.615 MeV in 208Pb, respectively 4 ). All

measured cross sections for 209 B in reference 3 should be

increased by an experimental calibration factor of 1.060, which

causes an innrease of all values of 0 L by a factor of 1.03.

Although the shape of this BPOM calculation is an excellent fit

to these data for multiplets in 207 Pband 209 B and the 3 state

in 
208 Pb, the collective model shape has small but definite

differences from all three measured shapes. A direct comparison

was made between these measured cross sections at 61.2 MeV by

drawing a smooth curve through the data for the 207Pb doublet

at 2.64 MeV and comparing this 'data curve' with the measured

cross sections for the corresponding excitations in 208 Pband

209 Bi. All measured shapes are more alike than like the collective

model shape. With a best value of 5 3=0.103 for this . 
208Pb cross

II	 .-

I



section'), this direct comparison yields R 3=0.100 
i 0.001 for the

doublet in 207Pb at 2.64 MeV and 0 3-0.098 
a 0.001 for the	 l

multiplet in 209 B at 2.62 MeV.

The collective model calculation at 61.2 MeV, with Halbert

and Satchler optical parameters for 208 Pb, yields values of
t

0 3=0.1001 0.098, and 0.095 from direct comparison with the 	 7
measured cross sections for these 'corresponding' excitations	 +

in 207 Pb, 208 Pb, and 209 Bi. The fall-off predicted by the

HSOM collective model calculation is in poorai. agreement with

experiment than is the BFOM collective model calculation.

This HSOM collective. model calculation is shown for 207 Pbas

the dashed curve in fig. 1.

3.1.3 THE STATES AT 0.570 MeV, 0.898 McV,.1.63 MeV, and 2.34 Me'7

Figure 2 shows a comparison between the collective model

calculations and measured cross sections for the first few excited

states in 207 .b for E  61.2 MeV with thebest fit'' parameters

(BFOM) of reference 19 and the IISOM parameters of reference 24.

The shapes of all these cross sections are well described by

these collective model calculations, with the BFOM calculations

providing a slightly superior description of the fall-off of

a(0) with 0. Similar conclusions hold for analogous calculations

at Ep 35 MeV with the exception that the angular distribution for

y	 the excitation of the 1.63 MeV state (L=7) is rather poorly

described by the collective model.

I
irr
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first- two excited states.
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Our BPOM collective model calculations arms shown in fig. 4

for Ep=20.2 MeV. Both sets (BFOM and IISOM) of optical parameters

give fairly good fits to the shapes of the data 14 ), but the IISOM

calculations are poorer for the L=7 transition.

There is a'significant difference between the values of

RL in table 2 for these four transitions for E p=20.2, 35, and 61.2 MeV.

With the BP014 parameters, the values of SL for Ep=20.2 MeV are larger

than those for hp = 61.2 MeV by 7%, 20 1 59S and 56% for the L=2

(0.570 MeV), L=2 (0.898 MeV), L=4 (,2-.34 MeV), and L=7 (1.63 MeV)

transitions, respectively. For Ep=35 MeV, the corresponding values

of R  are .larger than those at 61.2 MeV by 22%, 14%, 14%, and

26% respectively. The value of R2 from electromagnetic measure-

ments for the L=2 transition to the 0.570 MeV state is the same

as the value for Ep=G1.2 MeV, but the electromagnetic value for

the L=2 transition to the 0.898 Y V state is 14% smaller than the

value for Ep 61.2 McV27).

With IISOM parameters the trends are essentially the same,.

the values of a  at Ep=20.2 MeV ai±d 3 i MeV are all larger than

for Ep=61.2 MeV. The electromagnetic values for R 2 for the

transition to the first excited state at 0.570 MeV is close to

the IISOM value, but the IISOM value ib lW.gcr than the electro-

magnetic value for the L=2 transition to the 0.85'8 MeV state.

Column 9 of table 2 reveals that the differences in the

values of 0  with BFOI4 and IISOM parameters at the same proton

energy are quite small, especially for the L=2 transitions to the

,
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For either optical model parameter set, the energy dependence

of R 2 for the first two transitions is relatively small and
irregular but there is a smooth and strong decrease in RL for

r' the L=4 and L=7 transitions as Bp increases from 20 MeV to

4 61 MeV.	 Such an energy dependence of collective values of RL ~

is not without parallel. 	 Previous	 (p, p') data for 89 Y showed !'

`J a decrease in 0  for excitation of the low-lying states as
the proton energy increased from 25 to 61 McVI ).	 The ground

state of 89Y has a 2p,	 proton-hole ground state configuration
J

u..
and a low-lying spectrum roughly similar to 207Pb.	 For 89Y,

02 decreases by 12U for the excitation of the ^• 	 proton-hole
-

state compared to a decrease of 7; for the excitation of the 
2

I

neutron-hole state in 207 Pbfor a similar increase in bombarding

S energy.	 The R2 for the excitation of the 2- proton-hole state
in 89Y decreases by 20% compared to a decrease of 19% for the 1

uv excitation of the	 neutron-hole sta*-p in 207 Pb.	 The value j
2

of R5 for the excitation of the 
P-H state in 89 Y decreased by 25%

compared to a decrease of 19% inR 4 and R7 for these excitations {

" in 207 Pbat 2.34 MeV and 1.63 MeV.
a

- The electromagnetic values 27 ) of R 2 are deduced from the
weak-coupling model by assuming r^ 1.2 fm and B(F2+)/ e2 = 71 fm4

i
u

T : and 61 fm 	 for the first and second excited states of 207Pb respectively

Although these 02 are in close agreement with the values of R2

for Bp 61.2 MeV, there is sufficient uncertainty in r 	 to render the

comparison somewhat inconclusive. 	 Moreover, only protons

contribute to y-decay and the neutron and proton deformations may {

be different.

I	
A,'
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3.2. SHELL MODEL ANALYSIS INCLUDING CORE POLARIZATION

In the shell idel description of inelastic scattering

used here (semi-microscopic), the zero-order ground state of
207 Pbis taken to be a single 3p ., neutron hole in 208 Pb. The

first four excited states are then reached by filling this

vacancy from lower-lying neutron-particle states (single-hole

excitations). This approximate description is consistent with

single-nucleon transfer data 13 ) which ,indicate that the levels

_	 at 0.570, 0.898, 1.63, and '..34 MeV in 207 Pbcorrespond to the

2f5/2 , 3p3/2 , li13/2, and ?f7/2 neutron-hole states. To next

order the neutron hole interacts with the 208 Pbcore and

polarizes it by inducing both neutron and proton particle-hole

states.	 It has been shown in ref. 15 that the inclusion of rj

these 1p-2h admixtures in a completely microscopic calculation

enhances the cross sections predicted by the single-hole model

by roughly a factor of 4, in reasonable agreement with the data

for each of the first four excited states at E p=35 MeV.

In this paper, those components of the wave function outside

the single-hole space are represented by the collective model a

which has proven quite successful in describing the cross sections
' 1

for the low-lying states of the core system.	 Consequently, the

transition amplitude is composed of a valence and a core polar-
1

ization part.	 The valence part is that associated with excitations

within the zero-order shell model (single-hole excitations) and

the core polarization term arises from the participation of the

core.	 The strength of the core participation (AL y L<k>) as
,

I`
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defined in reference 2 ) can in principle be deduced by knowing

the effective charge (e offfor the corresponding transition 28)

However, since only the quadrupole effective charges are known

(J

	 for the transitions considered, AL is treated as an adjustable

parameter to be compared with those A L which are deduced from
v

other experiments. If the core excitations are isoscalar, AL

is related to the effective charge as described in ref. 2.

The formalism for calculating the valence 29,30) and core 28)

contributions to inelastic scattering have been given elsewhere

so that only the details peculiar to the calculations made here

are given. Since the valence amplitudes arise from protons

scattering from neutrons, the L-S force, which is strongest 31 ) 	I

between like nucleons, was not included. The central part of

the interaction is given by:

Vc (1,2) = -V e-0.37r12	
{

where VSF=30.8 MeV and VTL=91.8 MeV. This interaction has

roughly the same amall momentum components as the truncated

`	 Ramada Johnston interaction used in ref. 29 ). For protons

scattering from neutrons, this potential is more than an order

of magnitude stronger for a spin-transfer (S) of zero than

for S=1. Where indicated a tensor force given by:
r^	

V  (1,2) = -V g(r12 ) S12 !1•T2

a
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was included where S12 is given in ref. 30, g(r) is the

regularized OPBP form given by equations (23 and 39) of ref. 30

and V=-3.99 MeV.

It is well known 32 ) that magnetic moments and magnetic

transitions are quenched relative to their single particle

value; when the effects of core polarization are included. This

fact, together with the weak S=k part of the central p-n inter-

action suggests that the S=1 amplitudes arising from the central

part of the force be neglected and this is done throughout.

Although these amplitudes interfere with those arising from the

mucn stronger tensor force, the latter are also found to be

relatively less important than might be expected, and the net

effect of including the S=1 central force terms is negligible.

Recent evidence 33 ) has suggested that it is important to

include an imaginary term in the interaction inducing the

transition. Since how to do this is poorly understood, the

entire imaginary coupling (valence and core) was taken from
i

the collective model prescription discussed in sect. 3.1 and

normalized by the appropriate(3 b . Since previous calculations

have proven15 ) rather insensitive to the details of the radial
wave functions, all orbitals in the present calculation were

i
calculated assuming a binding energy of 7 McV in a Woods-Saxon

well having r0 =1.2 fm, a=0.7 fm and a spin-orbit force 25 times

the 'Thomas term.

The BPOM parameters of reference 19 were used in all of

the microscopic model calculations discussed below for the proton

41



energy EP=61.2 McV. To study the energy dependence of the excitation

mechanism, similar calculations were made for the corresponding

data at Ep=20.2 MeV, using the first set of optical parameters

of ref. 14. Results of similar calculations at E p='•5 MeV were

obtained from ref. 15.

3.2.1 •.011E 0.570 MeV STATE ( Jr = 2-)

The valence amplitude for this transition arises from

the excitation of a hole from the 3p1/2 level to the 2f5/2

level. This transition is dominated by LSa=202. Figure 3a

shows a comparison between the experimental and theoretical

cross sections for Ep=61.2 MeV. The shape of the valence term

(V) alone is seen to be in poorer agreement with the data than

is the corn (C) term alone. Despite the comparable contributionsr	 .

from the V and C terms (A 2=0.020), the complete cross section is

in good agreement with the data. An analogous comparison for

the excitation of this level at B p=20.2 MeV is shown in fig. Aa.

At this lower energy A 2=0.033. Although the valence term alone

makes a relatively smaller contribution at the lower energy,

the fit to the data is considerably worse.

Table 3 shows a comparison of the effective neutron charges

eeff deduced from the (p,p') experiments at 20.2, 35 and 61.2 MeV
{

along with that deduced from the experimental B(E2). The
r

1	
effective charge obtained from the 61 MeV data for this transition

is much smaller than that from the other experimental data.

One measure of the strength of the two-body interaction and

its dependence on energy is given by the strength and energy
l

variation of the volume integral (per nucleon) of the real part	 ^1

r
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r
of the empirical optical potont..ia1 2 ''). We show in parentheses

in table 3 the values of A 14 and eoff which are extracted when we

scale the volume integral, of the two-body interaction (including

exchange 34 )) to match that of the empirical optical potential

at eacsh proton boi,,bar ding energy. These number:: are approximate

since the calculations were not actually repealed. Instead use

was made of the fact: that the core and valence amplitudes

(exe9,uding the imaginary coupli.ny) are almost completely ir.

phar;e. ror Ep=35 MeV i.ho values of AI and 
eefi' 

shown in paren-

theses are result:, of microscopic care polarization calculations

from ref. 15.

3.2.2 Tt 0.89E MeV 5TATH (J	 3
n: 

	
)

This Lran',it.i.on corresponds to the excitation of a neutron

ho7,e from the 3p1/2 to the 3p 3/2 level. This transition is

mediated predominantly by LSd-202. figure 31) shows a comparison

between the experimental and theoretical cross sections at

Pp=61.2 McV. A similar comparison is shown for hp=20.2 MeV in

fig. 4b. At Ep=61.2 MoV the valence term alone is in poor

agreement with the data. When supplemented by the core polar-

ization term (A 2=0.020), satisfactory agreement with experiment

is obtained. AL E p=20.2 MeV (fig. 4b) the valence plus core

(A2=0.030) terms yield a much less satisfactorily-shaped cross

section, particularly around O cm 80°. This relatively poor

description of the cross section can be traced to the form-

factor for this transition. In particular, the valence form-

factor peaks well inside the nuclear surface and looks completely

unlike the collective model form-factor known to describe the
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	 shape of this cross section quite well. At both of these

1	 energies the V term is larger than the C term, V being relatively

more important at 61 MeV than at.20 MeV. Like the 2 state,

the effective charge of 0.55 extracted from the 61 MeV data is

much less than that obtained from the other experiments at

20 MeV and 35 MeV.

When the central valence interaction is normalized to the

empirical optical model volume integral 25 ), at 61.2 MeV

A2=0.027 and eeff=0.7Q.

3.2.3 THE 1.63 MeV STATE (J if = 12 )

The excitation of this level proceeds primarily by the

excitation of a neutron hole from the 3p l/2. to the 1113/2

state. The LSJ=707 transfer dominates this• transition. figures

3c and 4c show a comparison between the experimental and theoreti-

cal cross sections at Ep=61.2 and 20.2 MeV respectively. At

EP 61.2 MeV the V and C terms together (A 7-0.010) provide an

acceptable description of the angular distribution but one

which is inferior to that predicted by the collective model

alone. At E  20.2 MeV and with A 7=0.030 the fit to the

experimental data is good. This results because of the very

small contribution (<10%) that the valence term alone makes

at the lower energy. The value of the effective charge

deduced from the data at 61.2 MeV is found to.be 0.23 which is

a factor of 2 smaller than the value calculated in ref. 15. and

is even smaller when compared to the value deduced from the

(p,p') data at E,=20.2 MeV.

REPRODUCIBILI Ty OIL̀  2'IIII
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When the central valence interaction is normalized to the

volume integral of the optical potential from elastic scattering 25)

at 61.2 McV I A^=0.012 and eeft`0.28.

3.2.4 THE 2.34 MeV STATE (a ir =	 )

The valence part of this transition corresponds to the

excitation of a 3p1/2 neutron hole to the 2f7/2 level. For

5=0, (and (-) L = Qtr) an (LSJ) transfer of (404) is required for

this transition. Figures 3d and 4d show a comparison between

the experimental and theoretical cross sections at Ep=61.2

and 20.2 D1eV respectively. At 61 MeV the combined V and C

amplitudes provide a reasonable description of the experimental

cross section when A 4=0.015. The V plus C fit to the data is,

however, slightly poorer than the collective model fit alone.

At 20 MeV, a similar result obtains with A 4=0.038 except that the

microscopic (V+C+I) fit to the data is considerably poorer than

the macroscopic prediction alone„ This occurs despite the

relatively smaller contribution of the valence term at the

lower energy. The effective charge deduced at 61 MeV is

substantially smaller than those <=ef•f found from (p,p') data at

Ep 20 and 35 MeV as well as that calculated in ref. 15 (see

table 3).

When the central valence interaction is normalized to the

empirical optical potential at 61.2 MeV, A 4=0.019 and eefE 0.49.

3.2.5 TENSOR FORCE CONTRIBUTIONS

The tensor force only gives rise to S=1 amplitudes 30

Since these are nearly incoherent with the S=0 amplitudes,

'J

J^

f;

1
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the contributions (direct andand exchange) from the tensor

force have been calculated separately. it has boon shown is)

that the S=1 cross sections are overestimated for this nuclous

by roughly a factor of three for the transitions considered

here when only a single hole transition is considered.

Consequently, the S=l valence cross sections were divided by

3 before they were added to the-S=0 terms. This roughly

accounts for core polarization of the S=1 type. When included

in this way the S=1 terms make very little difference (no

change in AL) ;n the full (S=O+S=1) cross sections for any of

the transitions considered at L =61 MeV. Consequently, the
e

S=1 terms were not calculated at L p=20 MeV.

3.2.6 ENERGY DEPENDENCE

As can brr seen in table 3, in order for these semi-

microscopic model calculations to describe the experimental

cross sections at both '"P=61 and 20 MeV, there must be a strong

energy dependence of the cure polarization strengths AL (see

column 6 of table 3). This energy dependence of AL is much
stronger than that for 0  when the collective model is used.
This arises from the fact that the valence contribution," to the

cross sections fall off much slower with increasing energy than

do the experimental cross sections. In fact, for the 22

level, the valence contribution to the cross section increases

by a factor of 2 in going from Np=20 to 
E  

61 MeV whereas the

experimental cross section decreases by a factor of 0.64!

Scaling the valence contributions to the empirical energy-

dependent optical potential helps but does not resolve this

€,

i

t
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difficulty. Consequently, unless the other single particle

m

	

	
amplitudes arising from a completel microscopic treatment of

the core exhibit an energy dependence significantly different

from that of the dominant single-hole amplitude, there appears

to be a serious problem in regarding this transition as a

w

	

	 simple one-step process (at least over this entire energy

range). The above continent assumes that there is no large

in.rinsic energy dependence of Vpn . If, on the other hand, the

extreme assumption is made that the AL ex!:racted at Np=20 MeV

are correct and energy independent then Vpn decreases dramatically

with increasing energy becoming repulsive for the L=4 and L=7

transitions! This is in strong disagreement with the optical

potential. If AL decreases with increasing, proton energy at

the same rate as the 0L from the collective model, then Vpn

must be considerably weaker than its "realistic" two-body value.

4. DISCUSSION

The presumably simple shell-model states excited in this

4

	

	 experiment are found to be described in terms of the collective

model with a significant energy dependence of the deformation

parameters. Those 02 deduced from experimental values of B(D2)

are in best agreement with the 0 2 found at 61 MeV.

1

	

	 The microscopic description of inelastic scattering (with

macroscopic core polarization) provides a reasonable dcscrirr.i,;i

of the shell-model states seen in this experiment. However, A

consistent description of this experiment and a similar one at

.s
J
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ILp^20.2 NoV could only be achieved by allowing the core strengths

(Ab) to decrease rapidly with increasing energy. Whether a

completely microscopic description of this transition can

describe completely the observed energy de pendence within the

framework of a one-step reaction mechanism is unknown since such

a calculation has only been carried out at L p=35 McV. Such a

calculation at the other proton bombarding energies could be

very illuminating. For transitions a,s weak as these in 207pb

the possibility of multiple excitation should be considered.

Inclusion of such terms might help explain the increase in R 

(or AL) as the bombarding energy is reduced.

It appears that whatever model is used to describe these

transitions, it must effectively give rise to a surface peaked

form-factor in order: to describe the shape. (and perhaps energy

dependence) of the angular distributions. This may necessitate

the use of a density dependent interaction. These conclusions

are to be contrasted with those of Ialbert and S,•.chler2`I),who

find an interaction similar to t,ie one used here to be reasonably

adequate (when exchange is included exactly) in explaining the

excitation of 208 Pbover a similar range of energies when a

completely microscopic description is used.

Because of the quenching of the S=1 contributions for

these neutron-hole transitions, the effects of the tensor part

of the nucloon-nucleon force were unfortunately negligible for

these neutron-hole transitions. 	 The core polarization

'LithJ contributions here were unusual as they were comparable	 the

„^

valence contributions, so that the relative importance of these

could be studied with more clarity than in experiments exciting
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natural parity states in moat other nuclei in which core

polarization is generally much larger than the valence contri-

butions.

1

3

j

J
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FIGURL CAPTIONS

Figure 1 Collective model fait to the experimental data for the
excitation of the doublet at H 	 =2.63 MeV by 61.2 MeV
protons.

Figure 2 Comparison between the collective model calculation
and the experimental cross sections for the excitation
of the first :four excited stvtos in 207Pb by 61.2 MeV
protons.

Figure 3 Comparison of the experimental cross sections for
populating the first four excited states at Ep=61.2 MeV
with those. predicted by the microscopic model (including
macroscopic core polarization). 	 The valence,core and
imaginary contributions are denoted by V, C and I
respectively.	 The core contribution includes the
imaginary part; the valence term does not.

Figure A Comparison of the experimental cross sections for
populating the first four excited states at Fp=20.2 MeV
with those predicted by the collective (---) and
microscopic	 (	 ) models.	 V, C and I are as
defined for fig.	 3.
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TAW: 1

011fnrontlal Cron Ccutluna for 6talon in 207rb Gaelted try 61,7 NrV Protons

2.

fao .1	
2•	 1	 -Y	 f	 5,f

9	 (0,570 NOVI	 (0.098 NOV)	 11,62 Nov)	 0.74 NO)	 (2,64 NOV)

1).06	 1,4010.0)•103

14,07	 1.3610.07

15.00	 6.7010,10.10 1	 5.5010.57+10 1	 3,180.04
t

14.00	 4.7710,59	 4.1610.72	 2.8910.51.10 1	 1.7510.06

17.00	 3.5110.57	 1.1110.05

16.09	 3.9710.51	 3.6510.40	 1.7410.03

70.10	 1.5210,25	 9.8412.47030 2	 2.930.30	 1.0710.05

30.60	 2.9Dt0,40

22.11	 2.6810.34	 7.960.36.300

71,12	 2,2510.25	 5.3610.27

26,12	 2.0910,34	 2.231D.22	 3.950.16

51.65	 7.0210,71	 1.3010.17-20-1	 1..69!0.17	 3.290,16

70.15	 7.5310,77	 1.0910.14	 1,3510.14	 3.3610.16

79,14	 2.2910.10	 1.0310.10	 1,2110.10	 3,6910.16

30.14	 1.9410.13	 9.3010.87+10 2	 1.0710.00	 7.6410.15

32.15	 9.6910.74.10'2	 4.3070.18

37.15	 9.1811.70.10 2	 C.1910,90-10-2

34.16	 1.0010,08+10"1

25.17	 7.7110,90	 5,4510.91

26.17	 1.1710.07	 3.2310.14

78.18	 7.6710.90	 `1.1510.00	 7.2910.10

41.19	 0.15t0.79	 5.3010.77	 1.27lD.C6

43,19	 1.0340.10-10-1	 8.401141

44.20	 1.1010.07	 4.3910.39	 7.0010.42-10-2

46.21	 4.7310.71

47,21	 8.3510.94-10-2	 3.41to.65	 2.1610.30	 1.5710.01

49.77.	 5.1610.57	 2.6010.50	 1.7110.08

51.22	 2.2510.49	 3.5)10.41

$2.22	 2.4510.54	 2.6310.50	 3,64sd 54	 1,0710.05

54.23	 3.6010.43	 2.02!0.37	 4.0910.40	 8.08t0.39.10"1

55.23	 7.210./7	 3.0610.47

57.24	 2.43!0.47	 3.0310.40	 4.7010.27

56.74	 4.2010.41	 4.5310.47	 2.4710.29	 2, BD10.36	 4060.21

60.25	 3.4910.26	 3.4910.30	 2.1510.20	 2.4710.30	 5.2810.24

62.25	 2.0010.24	 7.2610.29	 1.0610.24	 1.5410.24	 6.0610.26

65.76	 1.6010.34	 1.2010.27	 9.512.2-10-3	 6.0010.21

60.26	 7.811.5.10"3
	 1.351D.19-10-2	 4.1610.70

70.27	 9.4!2,5.10 2
	 6.5!1.6.10 1
	 4,811.5	 1/11.9.10 

2	
2.9710.15

71.27	 8.611.8	 5.61111	 4.911.6	 1.111.6	 2.0110.10

5 7 1 7	 6 111 0	 2 '1910 11

t

..v	 76,96	 6.011.4	 1.011,4	 .	 I	 .	 ..	 ,

)))	
80.21	 4.411 J	 1.510.8	 1.710.7	 5.011.5	 2.1210.11

15.201.911.4	 7.810.9	 2.110.9	 7.511.0	 1.4710.08

9D.70	 11311.5	 1.6t0.6	 1.0800.61+10 2

)

95.28	 I.7t1.0	 6.5110.50

300.28	 7.31o.9	 1.210,6	 6.4010.50

•	 105.20	 ).1010.26
3

twesaod In n4,/Ur In c,n.s, 	 Crrorn quoted Include counting alatl.tten, an ant{malr of uncertainties
1n tLo Lack'lround cu0trae lion and ml .•ntlmatn Of tUn n•prodnrlLlllty or the track enunelnq.
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Compari on of dtforn,tion ptrirvt.tn ohtained with different optical mode3s
_	 _...... _.._-	 _	 --	 ._.	 .....	 _._	 .°.-•--	 _	 .____	 ^	 ._..._,..-_..._rte.. __

Muclou,	 E0X	 r.	 Ep 9 otf° ____^ 1750t^fb _ UCOMO

(MOV)	 (mvv) Ol, 00061 OL R[7'061 Ons-ODP Oi. OPG OPF',
8 B 4 ^

20.2 D.029 +7.4' 0.031 +10.7 +2.2

207
Pb 	 0,570	 2	 35.0 0.033 422,2 0.035 +25.0 +6.1 0,034 +3.0

61.2 0.027 0.020 +3.7

Did 0.027d 0.0 n.n27d +3.5

20.2 0.036 +24.1 0.035 +16.7 -2.7

207pb	 0.090	 2	 354 0.033 +13.0 0.036 420.0 +9.1 0.040 +21,2

61.2 0.029 0.030 +3.4

fafd 0.0254 •-13.n 0.025d -16.7

20.2 0.046 +50.G 0.649 +50.1 +6.5 -

207 Ph
	 2.34	 4	 35.0 0.033 +13.0 0.039 +10.2 +10,2 0.036 +9.1

61 .2

- '-

0.079 01031 +6.9

20.2 0.036 456.5 0.040 451.9 +11.1

201pb"	 1.G3	 7	 35.0 0.029 +26.1 0.031 +14.0 +6.9 0.020 -3.4
v

61.2 0.023 0.077 417.4

35.0 0.1160

207
1'b	 2.64	 3	 61.2 0.103 0.100

Doublet

200 Ph 	 2.614	 3	 _	 61.7 0.1030__4___ 0.090

209Ui	 2.62	 3	 61.2 0.101 0.095Q
Multiplet f

61.2 0.090

°'neat fit' optical modol paravetcxr: from roforences 14,	 23, and 39 respectively.
' 1

j

btlalberC and natchler energy dep ,• n<k,nk parametcrn her 
200

11), ref;::unee 24,

0nechotti and Grcenlees optical model, lefrrence 23.

dZiectromagnetic values, referenoo 27,

e$um of 03 from reforene, • 16.

- (measured cross ,ectionn -P. measured 
200Ph croon section, assumcc 0200 r. 0.103

9Correctad value,, carli, values were incorrect.
a

LL'L
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s TADLE 3

--	 Microscopic model core-coupling parameters and effective charges, collective deformation parameters

Eex Ji JF	 I. Ep ILL °eff

Mev Mev

20.2 0.033 (0.031) 1.0 (1.0)

0.570 2 2	 2 35.0 0.030° 0.95 (0.05)d

61.2 0.020 (0.025)b 0.63 (0.79)b

_ EM 0.030° 0.95

20.2 0.030 (0.030)b 0.83 (0.83)b

0.098• 3	 2 35.0 0.027° 0.74 (0.07)d

61.2 0.020 (0.027)b 0.55 (0.74)b

EM 0.028°. 0.76

o	 20.2 0.030 (0.030)b 0.99 (0.99)b

2.34 2 7	 4 35.0 0.023° 0.61 (0.78)d

61.2 0.015 (0.019)b 0.39 (0.49)b

20.2 0.030 (0.030)b 0.69 (0.69)b

1.63 ^
13	 7 35.0 0.0190 0.43 (0.41)d_

61.2 0.010 (0.0121b 0.23 (0.2816

a '0ost fit' optical model parameters except where stated otherwise, collective core polarization

bcentral interaction normalized by elastic volume integrals from experiments

-	 aReference 15

d,microscopic sore' calcl lations, reference 15

°Reference 27
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