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I. INTRODUCTION

The period covered by this report has been spent primarily in coding and

verifying the equations of motion for the Earth-Moon system as presented in

Reference [1]. Some attention has also been given to numerical integration

methods and parameter estimation methods. Existing analytical theories such as

Brown's lunar theory as updated in [2]; Eckhardt's theory for lunar rotation,

[3]; and Newcomb's theory for the rotation of the Earth, [4], have been coded

and verified. These analytical theories serve as checks for the numerical

integration. Laser ranging data for the period January 1969 - December 1975

has been collected and is stored on tape.

This report presents descriptions and verifications of the several programs

developed to date. A discussion of the parameter estimation method to be used

and certain supporting theoretical developments are also presented.

The main goal of this research is the development of software to enable" 	 -

physical parameters of the Earth-Moon system to be estimated. making use of the
A

extremely accurate data available from the Lunar Laser Ranging Experiment

(LURE) and the Very Long Base Interferometry experiment (VLBI) of project

Apollo.

A more specific goal is to develop software for the estimation of certain

physical parameters of the Moon such as the inertia ratios a , S , Y , and

the third and fourth harmonic gravity coefficients, C1 3 j o,S'3g , G'4b
St 4k (j = 0, 1, 2, 3 k = 0, 1, 2, 3, 4) 	 A unified model of the translational

and rotational motion of the Moon is to be utilized in the estimation process.

Also LURE data only will be processed.

In preparing the software, several basic questions must be asked, viz:,

A. Should existing software be used to model the dynamics of the Moon?

B. What type and order numerical integration scheme should be used?

C. How are the numerical integration results to be checked?

The answer to these questions--in part--is given below:

A. Existing software provides a piecemeal treatment of the problem in that

three separate numerical integrations must be made:



i) Integration of all planets and Earth-Moon barycenter.

ii) Integration of Moon with respect to Earth-Moon barycenter.

iii) Integration of lunar rotational equations.

This is the approach used by the LURE Team and presented in the literature#

[5]. This approach ignores the coupling of translational and rotational motions

when terms of order (1/r 4 ) in the mutual distance are retained in the differential

equations. It also does not provide for the inclusion of mutual gravitational

potential terms which arise when terms of (1/r 5 ) are retained. Terms of at

least the above orders must be retained to give physical libration accuracies

of .005" to .01". This corresponds to a 2 cm to 3 cm accuracy in the LURE data.

In order to achieve a unified numerical model and to allow rigorous

investigations of the coupling and mutual potential effects it was decided to

develop new software. The dynamical model was discussed in [1] and is referred

to as a unified model of lunar translation and rotation (UMLTR). It is a

numerical integration of the combined lunar translational and rotational

equations providing rigorously for coupling and mutual potential terms. This

model is an integral part of two programs to be described later, viz., RIGEM

and ESTEM.

B. The success of Oesterwinter and Cohen [6] in integrating the solar

system using a high order "Cowell" type method led to the development of a

numerical integration subroutine based on that method. In the process of

developing and verifying this routine, a numerical integration developed by

Everhart, [7], RAI9S was obtained. This is equivalent to a high order

implicit Runge-Kutta scheme and is an implicit single-sequence method using

Gauss-Radau-and Gauss-Lobatto spacings. A new "Cowell" type routine started by

RAI9S was then developed and is referred to as COW. Subroutine RAI9S has been

used in all runs to date in the development of the dynamics although a comparison

-of RAI9S and COW is anticipated. The best integration order should also be

decided based on a future study.

- C. The practice in the literature has been to compare numerical models

of lunar rotation with existing analytical theories Eckhardt's theory [3] as

modified by Williams [8] has been the basis for comparison. More recently,

Eckhardt has developed a 11300 Series" [9] lunar libration model.

2
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To verify the unified model, comparisons must be made with both a lunar

physical libration model and a solar system integration model. Initial

conditions for the integration must be'determined to obtain the best fit

between the theory and the integration.

Program ANEAMO was developed to provide an evaluation of existing lunar

libration theories for comparison purposes. The solar system motion to date

has been compared with data found in Oesterwinter and Cohen's work, [6].

In summary, the programs developed or utilized to date and their

capabilities are:

ANEAMO (01): This program evaluates l) a truncated form of Brown's lunar

theory, 2) Eckhardt's lunar physical libration theory, and 3) Newcomb's theory

for the rotation of the Earth. It provides printed or punched output for use

in other programs.

RAI9S: A single sequence integrator developed by Everhart, [7]. It

integrates a system of N first or second order equations with orders of 7,

11, 15 or 19. Another similar routine RADAU31 has also been checked out which

is capable of orders 7, 11, 15,_19, 23, 27, and 31. This latter routine	 l

requires double precision computations on the CDC 6600 series computers however.

COW: A multistep predictor-corrector method for the solution of first or

second order systems of differential equations, [10]. The method is based on

Bessel's central difference interpolation polynomials and the assumption that

differences of some even order remain constant. The method is started with

RAI9S. Orders of 4, 12, and 16have been utilized. Starting is accomplished

with a comparable order of RAI9Se

RIGEM (01): This program numerically integrates the combined translational

and rotational motions of the Earth and Moon together with the translational

motion of the remaining planets and Sun treated as particles. Options exist

for integrating a subset of the planets and for eliminating Earth rotation.

Subroutine RA19S is utilized. Printed output or punched output is available.,

ESTEM: The basic putpose of this program is to fit the numerically

r calculated values of the lunar libration angles using the UMLTR to those obtained

from an analytical theory. The fit is made using an iterative weighted least

squares approach with -a , S , y , and the initial Euler'parameters and their

3



rates being adjusted in the process. The basic dynamic model i€, RIGEM (01)

(with Earth rotation integration removed). Necessary partial derivatives

are generated using a numerical "variant trajectory" approach. The final

a	 residuals of the fit are output in plotted form.
t

This report includes documentation for ANEAMO (01), RIGEM (01), and ESTEM

Finally a verification run of ESTEM is described which compares the

UMLTR with Eckhardt's libration theory for one year. Final residuals are

t	 periodic with amplitudes of ±3" in the latitude librations Ia and p and

t10" in the longitude libration, T

Work is in progress to reduce the size of those residuals to the 1" level.

Listings and decks for all programs and subroutines are available from the

author.

II. PROGRAM DESCRIPTION AND VERIFICATION
i

A. Program ANEAMO_(Version 01)

General'. Program_ANEAMO (01) provides the capability for evaluating

T

	

	 analytical theories ofthe translational and rotational motions of the Earth

and Moon. Version 01 provides the capabilities for

i

i) Evaluating a truncated form of Brown's lunar theory.

ii), Evaluating Eckhardt's theory for lunar physical librations.

iii) Evaluating Newcomb's expressions for the precession, nutation, and

spin of the Earth,

iv) Providing orientation information in several useful forms such as

direction cosines, Euler parameters, and the axis and angle of rotation, and

v) Providing punched card output of lunar physical librations in

longitude and latitude.

Program and Subroutine Description. Salient features of the main program

and subroutines including theoretical developments are presented here. Further

information may be found in the program listings in Appendix A. Refer to

Reference [1] for general theory.

Program ANEAMO This program handles all input/output operations. It

calls in succession the subroutines ` necessary to evaluate the various theories.

,^,	
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The program also provides for the calculation--by differentiation of a cubic

spline fit--of the time derivatives of the Euler parameters, {S'i} and {$"'I as

evaluated from the rotational theories. These may then be used as initial

guesses at the initial conditions for numerical integrations of the rotational

equations of motion. The spline fit is accomplished using a standard subroutine
n

SPLDER, [11].

This program evaluates all quantities at a series of Julian dates from some

initial date VJIN to a final value VJF in steps of VJINC days.

A multi-case option may be exercised if the parameter ICODE - 1, otherwise

if ICODE = 0 then the program stops.

Finally, the output parameter IPT may be set equal to 1 if it is desired

to have the physical librations in longitude and latitude punched on cards. If,

this option is selected, a printout of these quantities is also made.

Program ANEAMO links several subroutines as follows:

ANEAMO

LUTH 	 LURO	 EARRO^ ICO ^ AXANG

Subroutine Luth. This subroutine contains a truncated form of Brown's

lunar theory taken from Reference [2]. The fundamental arguments:

Q , mean longitude of the Moon (Vl).

Sun's mean longitude of perigee (V2),

mean longitude of lunar perigee (V3),

0 , longitude of mean ascending node of lunar orbit ion the ecliptic (V4),

D	 mean elongation of Moon from Sun (V5),

E , mean obliquity of the ecliptic (V6),

were programmed as they appear in Reference (121. They are equivalent to

	

corresponding arguments L , w' , w , 0 , D 	 e of the Improved Lunar

Ephemeris, [2].

5



The Mon's long

equinox and ecliptic

Longitude

S:

Latitude

sin R

Parallax:

itude, latitude, and parallax with respect to the mean

of data are calculated from the formulae:

= L (i8) + dL (in) + 6L (im) + dL (ia)

= F (ie) + dL (in) - &I (in) + as (ia)

= A sin S + B shin 3S + C sin 5S + DN (is)

+ d Lat (ie)

= (6 sin H (iy) + 6 sin R (ig)) (1 - 4.6747 x 10-5)

= sin R + (1/6 sin3 (H))/(206265)2

(1)

(2)

(3)

(4)

(5) I

where	 1

L (i0) = Q

F (i6) = Q - n

6L (in) = additive terms in longitude

	

dL (ia)	 solar terms in longitude

dL (id) planetary terms in longitude
s_

Sn (in) additive terms in node

	

6S (ia)	 solar terms in latitude

S Lat (ic) planetary terms in latitude

	

N (is)	 solar terms in latitude
3

A = y l +° Y1 C

	

B	 y 2/yl p'	 1{

C = Y 3/Y 1 A

D = 1/y, A

y1 C solar terms in latitude

Yi, Y2 , Y3 = coefficients of principal terms in latitude.

The principal terms in latitude y j , Y2 ir Y3 were respectively multiplied
by the first, third and fifth power of the factor (1 + 2.708 x 10-6 + 139.978 dYC)

F

where 
dyC 

are additive terms from list in a

E:
E,

i
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Ref, No. Add To Coefficient Planet

1365 L 0.-84 --
1366 L 0.31 ' Venus
1373 L 14.27 Venus
1375 L 7.261 --
1376 L 0.282 --
1379 L 0.075 Mercury
1382 L 0.237 Venus
1383 L 0.108 Venus
1385 1, 0.126 Venus
1369 f2 0.63, --
1406 tZ 0.17 Venus

1407 Sr 95.96 --
1408 f2 15.58 --
1409 f2 1.86< .._
1413 Sy - -4.318 --
1414 SYC -0.698 --
141E SYC -0.083 --

t

I	 ^	 i

All notations used above are explained in the ILE. Certain small

correction factors have been ignored that are not consistent with the accuracy

of the terms retained. Table l presents the accuracy of terms retained in

version 01 of ANEAMO.

Table 1. Truncation Level of Brown's Lunar Theory.

Amplitude of smallest terms
retained (rounded to value

Coordinate shown)

Longitude 1"

Latitude l"

Parallax .01"
i
i

Additive terms due to planetary perturbations and other small long period

effects are included in T , 0 , and SyC . Table 2 lists the terms programmed

in version 01 of ANEAMO.

Table 2. Additive Terms Programmed in ANEAMO.



r

j

This subroutine also calculates the geocentric ecliptive coordinates

{xi}ECi	
and geocentric equatorial coordinates 	

{xi}EQ
	 of the Moon.	 These are

mean equinox and ecliptic of date and mean equator and equinox of date systems

-	 respectively.	 Formulae utilized for this computation are

r = (6378.16)/Parallax	 (6)

cos (latitude) cos (longitude)

{x }	 =

Ir

r cos (latitude) sin (longitude) 	 (7)
i ECL

r sin (latitude)

1	 0	 ^
{i
1

{xi }EQ = 0	 cos E	 °sine
{xi}ECL	 (8)

0	 sin a	 cos e

Subroutine LURO. 	 This subroutine calculates the physical librations in

longitude, node, and inclination based on Eckhardt's librational theory contained

in References [3] and [13]. 	 The additive and planetary terms constructed by

Williams in Reference [8] are also included. 	 This is basically a second degree

theory in the lunar gravity harmonic coefficients. 	 Eckhardt's theory provides

the physical librations in the form	 -

T. _	 T.. sin (NL.	 k + NLP,	 ° V + NF.	 F + ND.	 D)
i

Ia. '_	 Ck7 sin (NLk	 X+ NLPk	 Z' + NFk	F + NDk	D)	 (9)	 i
k

3

•	 Rn. sin (N 
m	 k + NLP

m ,° V + NFm 	F + NDm	D)

where

I	 T. 	 physical libration in longitude

ICY _ physical libration in latitude

p. 	 physical libration in inclination
t,

I	 inclination of lunar equator to ecliptic

k	
d

f	 1

t	 8



j = index number for set of coefficients being used

i, k, m = summation indices

Z L w

R' = L' - w'

F _ L 
a

D=L -L'

NL, NLP, NF, ND integer coefficients

The coefficients Tl
j
 , Ckj 	 Rai depend on the inertia ratios 6 , Y

i of the Moon, where

R = (C - A)/B
l

	Y 	
(B A) /C

	

and A , B	 C are the lunar principle inertias. Thus, the j index

distinguishes between the coefficients for different values of $ and y

Currently coefficients for three j's have been used as shown in Table 3 (see

Appendix A for numerical values).

-

	

	 I

Table 3. Eckhardt Coefficients Programmed.

Y

1 5521.6" 6.268 X 10-4 2.3 x 10-4

2 5559.6" 6.3 X 10 4 2.0 x 10-4

3 5550.2" 6.293 X 10-4 2.27 X 10-4

i

The additive and ,planetary contributions as calculated by Williams in [8]

`i	 are for 3 6.293 X 10-4 and _Y = 2.27 x 10-4	The j = 1 coefficients

i,

	

	 come directly from one of Eckhardt's tables and are rounded to 1". The

coefficients in j = 2 and j = 3 were obtained by interpolating between various

tables _given by Eckhardt keeping terms to 0.2" in one of the tables interpolated.

ai

t

, 9



The inclination of the lunar equator to the ecliptic, I ,

function of 0 and y . The values used for I are also shown

as calculated from Eckhardt's empirical formula

I = -1612" - 5.2 x 104 y + 11.4 x 10 6 a .

Once the physical librations are calculated, the Moon's orientation in

inertial space is calculated as fellows.

The physical librations 2 , Ic , p. are perturbations to three Euler
N

angles	 e ,	 locating the Moon with respect to the ecliptic and mean

equinox of date. To express this mathematically, consider the geometry of

Figure 1. The {zi } axes are fixed to the rigid Moon and are principle center-

of-mass axes. The axes 
{xi}ECL are the ecliptic and mean equinox of date

set. The axis notation used here follows that defined in Reference [1).

x3ECL	 Z3

8
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The above axes are related as follows:

{zi } = [RM] {xi }ECL
	 (11)

where

(C^ CO' - s^ s* Ce)	 (CO s* + s^ Ce CV)	 -so se

[RM]	 (-C* r^ o Cq Ce S*)	 (-s- S^ + CT C, Cep	 -c^ se

-s* se	 C^ se	 CO

%he matrix [RM] is a rotation matrix for a rotation from {Xi }ECL to 
{zi}

in the sense ZXZ through angles	 —e ,	 The shorthand notation

S^ B sin	 and C^ = cos	 is used above.

j

	

	 Now, the Euler angles and physical librations are related through the

expressions

e=I+p

=S2+Q	 (12)

= R + (r y + T
a

where I = constant and S2 and	 are the fundamental arguments from the lunar
theory.

E
The orientation of the Moon with respect to the mean equator and equinox of

1950.0 frame, {Xi '} , may be obtained as follows:

{ zi } _ [RM] [EC] T [P ] {Xi' }	
(13)

where

{xi} EQ = [EC] {xi}ECL

{ xi} EQ	
IN {Xi'}

^	 f

g
[P].= Precession matrix (defined later)

11
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l

1	 0	 0
[EC] =	 0	 CE	 -Se ,

0	 SG	 CE

The orientation of the Moon with respect to the reference axes {Zi} for

ithe Moon may be obtained as follows:

I	 -
{zi} = [Xm^] {Zi }	 (14)

In ordet to evaluate matrix , 	the relation between {Xi '} and {Zi}

must be known. This depends only on the position of the Moon's center of mass

with respect to {Xi '} as discussed in Figure 2 of Reference [1]. Referring to

that figure, the relation between {X.'} and {Z.} can be obtained by

i) Rotating {Xi '} through (X + R) about X 3 ' to obtain {Zi'}
I	 ^

and then

ii) Rotating {Z.'} through	 about Z2 ' to obtain {Zi}

The compound rotation provides

{ Zi} _ [T] {gi °}	 (15)

{ where

l

-CX CO	 -C^ sa	 -s$

[T] =	 SX	 -CA	 0

-CJL SO	 -Sa So 	 CO
C	 !

Here	 and X are the geocentric latitude and longitude of the Moon with i

F	 respect to the mean equator and equinox of 1950.0. The Moon's position, {Xi}EQ50

is obtained, from Brown's lunar theory as calculated in LUTH. Thus,

-	 {xi}EQ50 = IN {xi}EQ

Next, the polar coordinates r ,	 a as required in (15) are found from

.K



i

r	
X1EQ50 + ' X2EQ50 + X3EQ50

!	
CO 

CX

	
x	 /r1EQ50

CO Ca '= x2EQ50/r
`	 SO	

x3EQ50 
/r	 (16)

CO _	
X1E 50 + X2E Q	 2.,	 50Q

i

Sa _ CO SA/Cf

i	 Ca = CO Ck/CO

Finally, the matrix	 XMO	 is constructed as follows
a

i
[XMO] _ [RM]	 [EC] T [P]	 {T] T ,	 (17)

thus providing the orientation of the Moon with respect to the	 {Zi}	 reference

axes.

j	 LURO also calculates the Earth 's selenographic coordinates, 	 X 	 and	 lie

By definition, the Earth's selenographic coordinates are the latitude 	 (ue)

r
and longitude	 (ae)	 of the Earth as seen from the	

{zi
}	 axes.	 Thus,

i

Cue CX	 -k1	 it = + k1 0"K1

F;	
Cu	 S1	 = -k2	 i	 = k2	 K2	 {18)e	 e	 r

Sue = -k.3.	 it °_ k 3 	 K3

^	
where it	 is a unit vector directed from the Earth's mass center to the lunar

.^
mass center as shown in Figure 2 of Reference [1]v 	 Since	 it = -K1 ,	 the

direction cosines in (18) are just the elements of the first column of matrix

11

XMO	 Then

i I

_1 XMO	 (2.1)

^I	
^e _tan	 XMO	 (1.1)

^I(19) 	 ',

u	 = tan 1
XMO	 (3,1)

(	 aXM	 (1.1) 2 + XMO	 (2.1)2

13
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f

Subroutine EARRO.	 Version 01 of EARRO contains the approximate expressions

J

for Earth rotation provided in Reference [4].

The true sidereal time, accurate to 0.2"	 or 10-6	is given by

e = 100.075542 + 360.985647348 T

0.29 x 10-12 T2 - 4.392 x 10-3 sin (a )

0.053 X 10-3 sin (a2) - . 0.325 x 10-3 sin a3

- 0.05 x 10-3 sin (a4) (20)

where

1 T = Julian Date - 2433282.5

al = 12'°1128 - 06052954 T

a2 = 2a 1,

a3 = 2 (280°0812 + 0.985647 T)

a4 = 2 (64°3824 + 13.176398 T)
i

The transformation from the	 {Xi '} system to the	 {yi}	 system is given in

1	
Reference [4] as

q	 {yl} _	 [S]	 [N]_ [P]	 {Xi' } (21)

where	 [S]	 -is the spin matrix, 	 [N]	 is the nutation matrix, and	 [P] is the
precession matrix.

J	 More explicitly,

1	

Ce	 se `	o

j

i	 [S]	 _ —se	 Ce	 _	 o (22)

(	 0	 0	 1

(-ASK .SW + CK CW CV) (-CK SW	 SK ' CW CV)	 )	 -CW SV

[P] = (SK CW + CK SW CV) (CK CW- SK SW CV)	 -SW SV (23)

CK SV  -SK SV	 CV

14



&nd

C	 (AV) C(-AU)	 I	 C (w) S( -Au)	 I	 - S	 (Av)

(C	 (-AU)	 S	 (-Ae) S	 (Av)	 (S	 (-AU) S	 (-Ae)	 S	 (Av)	 S (-Ae)

[N] _ - S (-AU) C (-AW	 + C (-Ae) C (-AU)) C (AV) (24)
(C (-AU)	 S	 (Av) C (-Ae)	 (S	 (-A)i)	 S	 (AV) C	 (-Ae)	 C (-Ae)

+ S	 (-Ae)	 S(-Ail))	 I	 - S	 (-Ae)	 C(-AU))	 I C (Av)

The rigorous form of the nutation matrix rather than the approximate form

1	 -Au	 -Av

[N] _ Au	 1	 -Ae (25)

AV	 Ae	 1

was programmed to insure that 	 [N]	 was rigorously orthonormal.

The arguments utilized in the above matrices are
d
a

K	 0°063107 T

w = 0°063107 T_ (26)

v = 0°0548757 T

Au _ -76.7 x 10-6 sin (a l ) + 0.9 x 10-6 sin (a2)

-5.7 x 10-6 sin	 (a3)	 - 0..9_x 10-6-sin (a4)

f Av =	 33.3 x 10- 'sin (a,) + 0.4 x 10-6 sin (a 2 )_-	 ,
(27)

-2.5 x 10- 6 sin (a 3 ) - 0.4 x 10 °6 sin (ay)

Ae _ 44.7 x 10- 6 cos (a2)	 0.4 x 10-6 cos (a2)

+ 2.7 x 10 -6 cos	 (a 3 ) + 0.4 x 10-6 cos (a4 )	 o

Note that	 Au ,	 Av 	 Ae	 are given in radians.

Reference [4] lists the accuracy of the above expressions as :0.2"	 or

f	 10
-6

.

The values given in equations (26) and(27) are programmed. If more accurate

values are required, the following may be used.

p

15
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	 (23042:1 53 + 139 1.0 73 T + 0."06 T2 ) t

+(3Q'23 - 0.'27 T) t2 + 18.'00 t3

w	 K + 179.27 + 0"66 T) t2 + 0.'32 t 3 	(28)

v = (20046.'85 - 85.'33 T	 0.'37 T2 ) t

	+ (-42.67 - 0"37 T) t 2 	41.80 t3

where T is the epoch (1.950.0) of {X . '} and t is the epoch of the mean
2.

sidereal system, both measured in thousands of tropical years from 1900.0.

Also many additional nutation terms are listed in References [2] and [14].

Subroutine ICOND. This-subroutine accomplishes a transformation from the

Euler parameters {S"j for the Earth to the Euler parameters {S'}	 The

relation between those was presented in equation (16) of Reference [1] and is

The Euler parameters {8} locate 'the reference axis system 
{Yi

} with

respect to the system {Xi '}	 Since the {Y} system is rotated, through an

angle, a , about the I 3 ' axis with respect to {X1 1 } can be shown that

Rp = cos (a/2)

81 -, 0
(29)

82=0

S3	 sin (a/2)

where

a = ap + a T.	 (30)

Thus',
a

C (a/2)	 0	 0	 -S ( a/2),

[S]	 0	 S (a/2)	 C (a/2)	 0	 (31)	 :.

S (a/2)	 0	 0	 C (a/2)

16
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Due to the nature of IR]

[R]_1
	

IB] T 	 (32)

Currently,

ap = 100.075542

a = 360.985647348

are programmed.

Subroutine AXANG. This subroutine computes the axis and angle of rotation

from any rotation matrix [R] as well the corresponding Euler parameters

{Si }	 The sense of the rotation is from {x} to {x'} where

{X'} = [R] {x}	 (33)

The formulae for this are provided in Reference [151 and are summarized below.

The angle of rotation is 6 and the direction, cosines of the axis--with respect

to both {x} and {x'} --are {C.}
i

)
cos S	 1/2 (Rll +-R22 + R33 - 1)	 (34)

Cl	 (a23 _ a32)/2 sin 6	 a

C2	 (a31 - a 1 3)/2 sin d	 (35)

C 3	 (a12 - a20/2 sin S

The Euler parameters for the rotation may be found from

$0 = cos (6/2)	 (36)`

Ri	Ci sin (6/2)	 (i = 1, 2, 3) .

Logic is incorporated in this subroutine that keeps the calculated rotationg	 P	 p

axis generally aligned with the body rotation axis.

17



Verification of ANEAMO. The verification of program ANEAMO has been

accomplished in several way

i) Table 4 provides a comparison of the calculated values of the fundamental

arguments of the lunar thec.cy as calculated by ANEAMO and as given in the American

Ephemeris and Nautical Almanac (AENA) for 1974, [12]'.

ii) Table 5 provides the residuals, in geocentric ecliptic longitude,

latitude and parallax from a comparison of ANEAMO with the AENA. The sense of

the residuals is ANEAMO-AENA. Note that the nutation in longitude must be added 	 I

to the values calculated in ANEAMO for the comparison. The calculations are made
3

for a two-month period beginning at J. D. 2442050.5. Table 5 shows actual residuals#
-	 residuals, their mean {x) and standard deviation (5D) for the case when the

longitude and latitude series are truncated at 1" and the parallax series is

truncated at 0.".Ol	 Additional terms in the series are to be programmed but the

accuracy shown in Table , 5 is sufficient for present purposes.

iii) The sidereal time, e , as calculated in EARRO was compared with the

value given in the AENA for J. D. 2442050.5. A residual of 023 resulted.

iv) The calculation of the nutation matrix elements Av , -As , and

-Au was compared with values presented in the AENA. For J. D. 2442050.5,

ANEAMO provides.

Au	 0.78227 x 10-4 rad.

Av = 0.33966 x 10-4 rad.

Ae	 -0.36289_x 10-5 rad.	 0.748"

Comparable values to the above are not presented in the AENA but A* and Ae
_	 a

are given there. The values are

Ae = -0:1740'

A* 17"493

The nutations Au; and Av are related to Air through
3
3

A* Au/cos e = Av/sin e

18
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Table 4. Verification of Fundamental Argument
Calculation in ANE.AMO

Quantity ANEAMOt1 AENA11

35 p02006 35°0201

P 282°49337 282°49335*

t' 105°63199 105.°6320

S2 267°81342 267.°8134

D 112°78291 112.°7829

e 23°44266 23°442661

z 289°38807 289..°3881

L 282.°23714 282,°2371

k' 359°74377 359°74375

F 127°20664 127.°2067



y

1	 ^	 (

l

Table 5. Residuals in Longitude, Latitude, and Parallax
Between ANEAMO and AENA.

Day
Residuals in
Longitude (")

Residuals in
Latitude (")

Residuals in
Parallax (")

0 -4.03 6.19 -.108

5 -1.19 -1.12 -.18

10 -3.38 -8.46 -.108

15 -7.24 -0.04 - -.108

20 -5.51 -0.68 -.108

25 -4.75 -5.08 0

30 -1.62 -2.23 -.18

35 -4.82 4.32 -.108

40 -1.33 0.68'' -.072

45 -3.67 1.22_ -.072

50 -1122 -3.13 -.036

55 ,04 -6.52 .108

60 8.46 0.83 .108

x -2.33 -1.85 -.08

SD 3.85 3.78 .08



i

k	
/

fl	 thus the residuals in =Ac and A* may be calculated as 	 a
4
FI

Res. in A* = 01.11

(	 Res. in Ac = 07008 .

I

v) The precession matrix [P] as calculated in ANEAMO for the date 1974.0
1

(J. D. 2442048.2358) could be compared with the same matrix appearing in the

e worst case residual was 4.76 x 10-7
I	

AENA. Out of the nine elements the 	 ^

Sri) The verification of the calculation of p 	 Ia , and T	 the

physical librations, is manifested by a comparison of the theoretical values

computed in ANEAMO with numerically integrated values. This comparison will

be discussed later.
i

vii) Any set of Euler parameters must satisfy the following constraints: 	 3

R02,+ 31 2 + S22 + R32 = 1	 (37)	 j

0 0 Rp + al al + a2 R2 + R3 03 = 0	 (38)
j

I

These constraints are tested in program ANEAMO. The constraint (37) is satisfied

more accurately than (38) since in the latter the rates B, are calculated from
1

a cubic spline fit to the parameters ^ i . Typical values encountered are

i	 Moon:

02	 1=1.8x10-141
E 3 3. _ -7.5 x,10"13

1 1
I
I	 Earth::I

E S12 - 1 = 3.2 x 10-14
h
a	 •r Ri ^i = 2.2 x 10-8

B. Subroutines, RAI9S, RADAU31

These are numerical integration routines for systems of first or second order

ordinary differential equations. The theoretical development of the method used

2



is presented in Reference [7]. Basically the solutions to x,= F (x, t) are
developed in truncated series in time t whose coefficients are found empirically.

The method. is a single-sequence-method that uses Gauss-Radau and Gauss- Lobatto

spacings for the several substeps within each sequence. The method is equivalent

in principle with the implicit Runge-Kutta methods.

Subroutine RAI9S. This is a single precision deck suitable for a computer

with a 60 bit word length in that precision. Integration orders of 7, 11, 15,

and 19 are provided. This routine is. used both in programs RIGEM and ESTEM and
as a starter to the Cowell second-sun method of subroutine COW.

_Subroutine RADAU31. This is a double,,precision deck suitable for CDC

machines with a 120 bit word or for IBM machines with a 128 bit word. Integration
orders of 7, 11, 15, 19, 23, 27, and 31 are provided.

Verification. Before use both of the above subroutines were verified by the
1

calculation of a test orbit from the restricted three body problem, [10]. The

orbit is shown in Figure 2. It is a periodic orbit in the rotating frame with'
period_

tf 	6.1921693313 19639 70699 23217	 .

Initial conditions are

y l 	1.2	 Yi' = 0.0'

Y2 = 0.0

Y2 '	 1.04935 75098 3031990731 0410134

The orbit has three loops and requires frequent step size changes. a

Table 6 presents the results of the verification.

C. Subroutine COW.

The success of Oesterwinter and Cohen in integrating large-systems-of

equations using high-order multistep methods [6] led to the development of this

subroutine. The method was programmed in accordance with Reference [10]. It is

referred to as Cowell's method and is a multistep predictor-corrector routine for

systems of first or second order ordinary differential equations. Cowell's method



Method Order Ay1 Ay1 Function Calls

RAI9S 7 (5)* 1.7 x 10`5 3.4 x 10-5 736

RAI9S- - 11 (6) 1.1 x 10`7 1.9 x 10-7 1025

RAI9S 11 ('7) 4.6 x 10-9 7.0 x 10-9 1437

RAI9S 15 (10) 4.5 x 10-13 4.9 x_10-13 2867

RAI9S' 19 (12) 2.3 x 10-15 2.6 x 10-15
3802

RADAU31 23 (15) 2.1 x 10-21 3.6 x 10-19 5820

RADAU31 27 (20) 1.0 x 10-24 1.6 x 10-24 39610874
i

Y2

,Y

Q	 1

i
j

I

I Figure 2. Test Orbit for Subroutines RA19S and RADAU31
from Restricted 3-Body Problem. ((D= Earth,
Q Moon)

Table 6: Accuracy of RAI9S and RADAU31 on test orbit.
=.i



is based on Bessel's central difference polynomials and the assumption that

differences of some even order remain constant, [10]. The coefficients for
4th, 12th, and 16th order methods have been punched. The method is started

using RAi9S of a comparable order. A constant or variable step capability as

well as an "exact end" capability is included. The "exact end" capability uses

the RAI9S routine also. Options exist for no corrector, n applications of

the corrector or iteration using the corrector until convergence is obtained

within a specified accuracy level.

Verification. The same test orbit utilized for RAI9S has been integrated

using Cow. The results are shown in Table 7.

Table 7. Verification of COW using test orbit.

Order Halving/Doubling
Limit Ayl Dyl Function CallsStart Run

11 12 1. x 10-10 2.0 x 10-7 3.3 x 10-10 8265*

11 12 1. x 10-11 2.2 x 10-10 1.4 x 10-10 10180

11 12 5. x 10-12 3.8 x 10- 9 1.2 x 10"8 10761

* Iteration using corrector formulae produced large number of function calls.

l
i
i

The orbit integrated here places a stringent test on COW since step size	 1

changes are clumsy to handle with these types of methods. More work needs to be
done on this subroutine in terms of optimization and criterion for choice of

1
order and other: parameters,.

D. Program RIGEM (Version 01)

This program provides the capability for numerically integrating the

1	 coupled translational./rotational motions of the Earth and .Moon treated as
arbitrary rigid bodies together with the remaining planets and Sun modeled as
particles. The general theory is outlined in Reference (1]. Subroutine RAI99

is'ut.lized as the integration routine. Options exist for 1) omitting Earth
rotation; 2) omitting planets Mercury, Saturn, Uranus, Neptune and Pluto

($MPL (1) = 1); 3) for multiple cases and 4) for punched output of the
L
i

I
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calculated values of the lunar physical librations. The main program links

several subroutines as follows

Program RIGEM. This program calls subroutine PROB to obtain all initial

conditions and values of parameters. It 'then provides an integration loop that

calls subroutine RAI9S at TINC'intervals from VJDEP to VJDEP + TMAX. The loop

also provides for output of calculated, quantities and for calculation of the

Earth's selenographic coordinates, the lunar physical librations and Euler

parameter tests for Earth and Moon orientation.

At each time step subroutine RAI9S returns the following current values

to RIGEM•

A. Current time TWR = VJDEP + TF- 	
i
I

B. Position and velocity of planets and Sun with respect to the {X1'} frame.
JI

C. Euler parameters and ratests,'} . {Q.'} , {^ ^^^} r {S oil ; as
i	 i	 i	 i	

3

listed in Table 8.

This program calculates the Euler parameter tests for the Earthmentioned

earlier
1

^	 1	 3

E	 S^ 1 Bl'

Since the immediate use of this program is in analyzing lunar motion, the 	 q

lunar rotation segment has been more thoroughly treated than that of the Earth.

Checks for gross errors have been made in the Earth rotation logic but no

definitive verification studies have been made to date. Currently the Earth

orientation is provided by subroutine EARRO as discussed earlier.

s. 25



Table S. Integration variables in RIGEM.

Translation

Planet Mass Position Velocity

Sun 1 x (1 - 3) v (l - 3)

Mercury 2 x (4 - 6) v (4 - 6)

Venus 3 x (7 - D) v (7 - 9)

Earth 4 x (10 - 12) v (10 - 12)

Noon 5 x (13 - 15,) v (13 - 15)

Mars 6 x (16 - 18) v (16 - 18)

Jupiter 7 x (19 - 21) v (19 - 21)

Saturn 8 x (22 - 24) v (22 - 24)

Uranus 9 x (25 - 27) v (25 - 27)

-Neptune 10 x (28 --30) v (28 - 30)

Pluto 11 x (31 - 33) v (31 - 33)

Rotation

Parameter Rates

Earth
{Sl `}	 {Si'} x (34 - 37 .) v (34 - 37).

Moon

Ml {Ai III } x (38 - 41) v (38 - 41)



The rotation matrix [C (R"')] defined by

{zi } _ [C (^^^^_) ] { Zi }	 (39)

can be evaluated at each step using {Si "'} . The matrix [C (R"')]: is of the

form given in equation (72) of Reference [1]. As shown earlier the Earth's

selenographic longitude and latitude, X  and V. , can be calculated from the
elements of the first column of [C ($`)] as done in equation (15)•

Next, the location of the Moon with respect to the Earth componentiated in

the {Xi '} frame can be found as follows.:

DAL (1) = x (13) - x (10)

DAL (2 ) = x (14) - x (11)	 (40)

DAL (3) = x (15)	 x (12)	 1

The polar coordinates r 	 k	 may be found from equations (16) substituting

DAL (1) forxi
EQ50 ' etc. Next, matrix [T] of equation (15) may be formed.

The physical librations equation (12), may now be calculated as follows.

The relation betwean {z.} ana {Z.} was derived earlier, viz.i	 i
i

{ zl } = [RM] [EC] T [P] [T]T { Zi }	 {41)

F
Comparing equation (39) with equation (41) provides the result

[RM] [EC]T [P] [T] T	 [C (S"^)]

or

[RMI = [C 5 .^^ ) ] [T] [P]T' [EC]	 (42)

Now [C (R"')7 is available from RAI9S, [T] was calculated above, and (P]

and [EC] are calculated as they are in EARRO.

i'	 T
The matrix [PP] defined by [PP]	 [RM] is calculated in RIGEM, viz.
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r

r
[PP]	 _	

[EC]T	 [P]	 [T]T	
[C	 (Sm) ]T	 (43)	 j

a

The elements of 	 [PP]	 (or	 [RM])	 are functions of	 e ,	 ¢ ,	 ,	 the

Euler angles locating the motion with respect to the ecliptic and mean equinox

of date system.
a

Accordingly,

= tan-1	(-PP	 (3,1)/-PP	 (3,2))
j

e _ tan-1	 (	 PP (3,1) 2 + PP	 (3,2) 2/PP	 (3,3))	 (44)
l

tan-1	(-PP	 (1,3) /PP (2,3))

Knowing these angles the physical librations are 	 s

P	 e - L

Q=^-0	 (45)

Finally, the Euler parameter constraints for the Moon are calculated, viz.

E ^
i

E ` 3i Si	 (46)
t

E $.	 3.	 E a.2
i	 •

Subroutine PROB.	 This subroutine provides all initial conditions and

constants for RIGEM. 	 These values are also printed out by`PROB for reference.

Initia,.l conditions for the translational motion and mass parameters are currently

being taken from Table 10 of Reference [6].	 Initial Euler parameters and rates
i

are taken from ANEAMO.

t
If the multi-case option is selected, then a branch to statement 12 occurs in

t this subroutine.	 The initial values	 of the time, integration variables and
k

€	 -} their rates are reset automatically and whatever changes are desired in the

parameters must be read inat this point.

a,
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Subroutine FORCE. This subroutine calculates the accelerations required by

subroutine RAI9S. The calculations are made in the sequence shown in Table 9.

Table 9. Calculation Sequence in Subroutine FORCE.	
i

calculations
Equations

in Reference [1]

A. F	 (4) - F (33) N Particle Accelerations on all 10

planets and Moon.

B. F	 (1)	 - F (3) Accelerations on Sun. = 0 in Version 01

C. F	 (34) - F (37) Euler parameter accelerations 31

{S,'} of Earth.
i

D. F	 (38) - F (41) Euler parameter accelerations 50

{ i "') of Moon.

1t	 ,
Basically (Version 01) subroutine FORCE calculates

1
i) N Body gravitational forces on all bodies treated as particles based

on equations -(10) and (12) of Reference [1].

ii) Torques on the triaxial Earth due to a point mass Moon are given in

equation (98) of Reference [1]'. Note: Torques due to a point mass Sun are not

included in this version.
a

iii) Torques on the triaxial Moon due to a point mass Earth and a point

mass Sun given by equations (84) and (91) of Reference [1].

All geometrical equations and transformation equations are given in equations

(15) (55) of Reference [1] except those providing the location of the Sun with

respect to frame {z i } . They will be developed in the next paragraphs.

The torque components on the Moon due to a point - mass Sun are

1

Mz l 3GM j a mO n (j) /r30 Q
i

"	 Mz2 = -3GM( $ k^ n0 fr30Q	 (47)

Mzg 3GM^ y k0 m0 /r30^

a
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where110 	 mo , n. are the direction cosines of the Sun with respect to the

{zi } frame. RIGEM provides the direction cosines of the Moon with respect to
the {X.'} frame, viz.

Xi '	 x (12 + i)

r	
_	 r	 (48)

O({.	 QQ

The direction cosines of the Sun with respect to a frame {Xl'
T

at the Moon:are

the negative of the ratios given in equations (48).

The direction cosines of the Moon with respect to {z.1 can now be
formed since the rotation matrices [T] and [C (s"')] are available (see	 j

equations (39) and (15))

{Zl} = [T] {X.' }	 s

I

Accordingly,

I

Z.	 X.'1	 ",	 1 49C	 T	 (49)
r [	 (	 )I	 [ l

rOQ	 O(,

Subroutine FORCE also calls subroutine FORTOR to provide the remaining

forces and torques that are modeled,

Subroutine FORTOR. This subroutine calculates:

i) Force on Earth other than N particle force.

ii) Force on Moon other than N particle force.
iii) Torque on Moon other than gravity- radient effect due to Sun andq	 g

Earth. I
iv) Torque on Earth other than gravity-gradient effect due to Moon.

j	 -	 Specifically, in version 01, the following forces and torques are
calculated:

i
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i) Force on Earth--no additional contribution programmed.

ii) Force on Moon--Force due to Earth's figure and Moon's figure.

iii) Torque exerted on Moon because of lunar higher degree gravity

harmonic coefficients and mutual potential terms by an oblate Earth, viz.

a) Torque on Moon due to point mass Earth acting on C30' , C31' o

C32' , S31' , S 32'	 C33' , S 33' , C41' , S41' , C43' o

S42 ' , and
a

b) Torque on Moon due to the interaction of second degree lunar

harmonics with Earth oblateness C20 C20' , C20 C22'
i

iv) Torque on Earth--no additional contribution programmed.

The above torque expressions were given in equations (85) and (90) of

Reference [1].

	

The force expressions can be obtained from equations (59) 	 (78) of

Reference [1]. They may be put in the following form:

-3G m4 m5 a2

	

Fr =	 [P20 C20 + P21 (C21 Ca + S21 SX) + P22 (C22 C2 X + S22 S2 k)]
r454

3G m4 m50 a12 [C20' P20 + P22 
C22' C2 X]

x454

	

_	 4 51 F _ G m m a2 
[C20 P20 + P21 (C21 CX + S21 SX) + P22 (C22 C2 X + S22 S2 A)]

r	 x454

+G M4

454 

a12

x454	
[C20' P20 0 + p220 C22' C2 X]

1 
F	

G m4 
m5 

a2
[P21 ( -C21 SX + S21 Ch) + 2P22 (- 1-22 s2 A + S 22 C2 X)]rCO	 r454 C^

+G m4 m5 a12
[-2P22 C22 S2 a]	 (50)

r454 C^

where r45 , X ,	 are the polar coordinates of the lunar mass center with

respect to {z.	 The quantities P20	 P21 ► P22 o P200	 P210 ► P220
were defined in Reference (1).	 3

C

E
3

F
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i

The primed quantities refer to the Moon and the unprimed quantities refer

to the Earth.	 Here,-

a2 M C20 = 1/2 [A + B + C - 3 (a" 2 A + S'v2 B + y'12 C) ]

a2 M C21 = aa" A + a$" B + yy" C

a2 M S21 = a' a" A + S'	 all 	 + Y' Yto C (51)

4a2 M C22 = A (a12 - a 2 ) + B ($ 12 - 02) + C (Y12 o Y2

2a2 M S22 = aa' A + ss' B + YY' C

where the relative orientation of the Earth and the Moon is given by the [XI

matrix defined by

{yi} =	 [ R]	 {zi} (52)

where

a	 at	 all

Y	 Y'	 Y"

Now, EARRO provides (equation (21))

f
{y. }	 _	 [S]	 [N]	 [P]	 {X-111	 i

and RIGEM provides (equations (39)' and'(15))

so that

F
i [R]	 _	 [S]	 [N]	 [P]	 [T]

T
	[C	 (Stn) ]T

_

(53)

` The torques are programmed directly from equations (85), (89), (90). Note

that the following simplifications have been made in the above torques as

programmed in Version 01:
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1

I
i)	 In the mutual potential terms, only those multiplied by 	 C20	 for the

Earth are retained,

ii)	 In the fourth degree terms only those factored by 	 C41'	 •	
C43'	

•	 542'	 •

and	 S44 '	 have been retained since these produce the	 most significant effects

in the librations,	 {16].

The direction cosines of the Earth withrespect to the 	
{zi

}	 frame as

required by.quations (89) and (90) are immediately available from the 	 [C (a",)]

matrix in RIGEM. 	 The polar coordinates (r ,	 , A) of the lunar mass center with

respect to	 {yi}	 are required in the mutual potential terms.	 These may be

found as follows.

Equation (21) provides

{yi } __	 [S]	 [N]	 [P]	 {Xi° }

or
I

0 C1Al	 __	 C^ CX

C^ ST	 =	 [S]	 [N]	 [P] =	 C^ SA	 (54)
A
S^ 0

t

The cosines	 C^ Ca	 etc. are available from RIGEM and	 [S]	 [N]	 [P]	 is available
3

from EARRO.

s

An equivalent but simpler calculation of the effect due to the Earth's

figure is found by referring these calculations to the	
{y}
	 frame initially.

Thus,'

(5 sing	 1)	 CO,	
CX'

{Fy } _ -	 (3/2) G m
4 m4 

a2 C20	 (5 sing 	- 1) C¢' Sa'	 (55)
E
!

i	 r45	 (5 sing	 - 3) So•	 t

'
{FX } 

= -[R] T {Fy, }	 (56)
1	 1

E

In these equations,	 0' ,	 V	 are referred to	 {y,}	 and	 C20	 is a constant.

Verification of RIGEM.	 The translational motion of the centers of mass of

f
i

the planets and the Moon have been compared with the results given in Reference
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[6]'. Tables 10 and 11 present the results of this comparison. The comparison

was made at J. D. 2442000.5 after an 800-day integration. Table 10 provides

the comparison results for all planets using the 11th order option (NOR = 11)

in RAI9s. The relatively large errors for the inner planets are due to the

exclusion of relativity in this model. Table 11 presents comparisons for the
Earth and Moon only for several RAI9S orders. Note that 22 is an accuracy

parameter as discussed in Reference [7).

The coupled rotational-translational portion of RIGEM has been verified by

fitting the output of RIGEM to the output of ANEAMO as regards the physical
librations in node, inclination, and longitude. Details of this comparison are

presented in the next section.

III. PARAMETER ESTIMATION METHOD AND PROGRAM ESTEM

In order to verify the numerically integrated lunar librations produced by
RIGEM and the analytic librations calculated by ANEAMO in subroutine LURE, a

comparison of these two approaches has been undertaken. Also, the eventual use of

the unified model in the reduction of LURE data will necessitate a comparison of

the observations with the model.

The above comparisons can only be made if the proper set of initial conditions
and model parameters is used in the comparison. The numerically integrated
librations comprise the model in this study. For -a comparison of the model with

the analytic theory a set of initial Euler parameters and rates might be taken
from ANEAMO since these quantities are calculated there. It has been determined

that these parameters and rates are not accurate enough to give the best comparison

of the model to the librational theory. There are several reasons for this,

among them are the fact that 1) the rates are generated by an approximate numerical

method, i.e., by differentiation of a cubic spline, fit to the parameter values and	 a

2) the calculation of the Euler parameters themselves has approximations since the

calculation makes use of -the truncated form of the lunar theory.

It was therefore decided to use a traditional iterative weighted least squares

estimation of the initial state and the parameters a ,` 	 , Y to insure a
"best" fit of the model to the analytical theory.

A complication arose in this process however since the initial Euler para-

meters and the quantities a , S , y are not all independent. An iterative
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Table 10. Comparison of RIGEM with Reference [6].

Planet

lAxI

IAx)

(AV)

(Av/day)
lay 

IoYI
JAll

le2l

Mercury 2 x 10-5 4 x 10-6 3 x 10-6

5 x 10 -7 1..3 x 10-6 6 x 10-7

Venus 1 x 10-10 3 x 10- 9 2 x 10-Q
1 x 10-10 7 x 10-11 4 x 10-11

Earth 4 x 10-9 3 x 10-9 1 x 10-9
5 x 10-11 6 x 10-11	

_ 1 x 10-11

Moon 4 x 10-10 3 x 10-9
8 x 10-10

2 x 10-10 1 x 10-9 6 x 10-10

Mars 2 x 10-8 5 x 10-6 2 x 10-8
2 x 10-10 4 x 10 -10 2 x 10-10

Jupiter 4 x 10 -11 2 x 10- 1 0 7 x 10-11

1 x 10-12 6 x 10-14 2 x 10 -14

Saturn 1 x 10-11 7 x 10-11 4 x 10-11

9 x 10-14 1 x 10-13 2 x 10-14

Uranus 1 x 10-10 3 x 10 -11 2 x 10-11

1 x 10-13 2 x 10-L3 1 x 10-13

Neptune 5 x_10 -11 1 x 10-10 6 x 10-11

9 x 10-1.4 2 x 10-13 1 x 10-13

Pluto 9 x 10-11 1 x 10-11 3 x 10-11

1 x 101-13 2 x 10-13 1 x 10-13



Planet Ax (AV) AY (Av) A (AV) Conditions

Earth - -1.81 X 10-6 8.66 x 10-7 3.49 x 10 -7 NOR = 7 ,	 LL = 5

Moon 2.75 x 10-5 2.27 x 10-6 3.90 x 10-6 OMPL (1) = 1

No Earth or Lunar
figure

Earth -1.46 x 10-6 8.83 x 10-7 3.9 x 10-7 NOR = 15 ,	 LL = 10

Moon -1.02 x 10-6 8.92 X 10-7 4.9 x 10-7 OMPL (1) =.1

No Earth or Lunar
figure

Earth -0.1 x 10-8 -2.1 x 10-9 2.2 x 10-9 NOR = 7 ,	 LL = 10

Moon 4.7 x 10-7 6.6 x 10+9 1.7 x 10-7 All Planets

No Earth or Lunar
figure

Earth -3.87 x 10-9 -2.69 x 10-9 -4.8 x 10-10 NOR = 15 ,	 LL = 10

Moon 1.3 x 10-8 -1.95 x 10-9 1.44 x 10-9 All Planets

Earth figure effect
on Lunar orbit

Earth -3.72 x 10-9 -2.6 x 10-9 -1.4 x 10-9 NOR = 11 ,	 LL = 8

Moon 4.4 x 10-10 -2.5 x 10-9 -7.7 x 10-10 All Planets

Both Earth and Lunar
figure effect on
Lunar orbit

Table 11. Comparison of RIGEM with Reference [6] (Continued).



weighted least squares (IWLS) method was therefore programmed accounting for the

fact that exact constraints must be satisfied between certain estimated variables.

The Euler parameters and rates generated in ANEAMO were utilized as

initial guesses to the IWLS process,

A. Iterative weighted Least Squares with Constraints

Reference [17] provides a formulation of the iterative weighted least

squares method when exact constraints are present. A simplified version of

that formulation is presented here.

The vector of observations y can be related to the vector of theoretically

calculated values from the model by

Yo	 YC (
X ) + e	 (57)

where x is a set of parameters and initial conditions and c is a vector of

measurement errors. In this case, the y 
C 

is nonlinear in the parameters x

and a linearization is made about a nominal set of parameters xO , viz.

y' = y, (x ) + A (x - x-.0 ) + e	 (58)



7

Also, if E are samples of zero-mean Gaussian independent random variables

and if each observation is weighted with its associated error variance the

covariance matrix of the error in x is

^I	 P = (AT WA) -1
 

0r^

the standard error of the estimate of xi is

i

6 c Y P„1	 11
i

and the correlation coefficient between errors in estimates of x i and x. is

P
P =	

1JP. 
iJ

11	 JJ

as shown in Reference [18)

The above development is modified if the parameters are not all independent.

Reference [17] provides the following algorithm in that case:

i) Define

qI

	

RE-1
	 !

where x is a set of "solve -for" parameters and S is a set of "exactly

i
constrained" parameters.

ii) Define the exact constraints by

fi (x. S, Ni ) = 0	 (i = 1,	 •	 n)
i

where N. is a set of n constants.1

iii) Designate one parameter from each exact constraint as a constrained

parameter and solve for it as follows

i
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S i O

{s}

S (x)E	 n

{
3

and determine the following partial derivatives

aS J	 BSI r
ax,	 axn i

IS ]x

as	 as
n	 n

axi	 ax 

iv) Form the residual (observed-calculated) vector

{R} — 
Z _ Z
x - X

a

where

s
Z are observables i

Z are computed observables

x are a priori parameter estimates
i

x are estimated values.

v) Form the A matrix

=	 az I	 az	 x(A] - [Ax AS]
	 (ax 	 as

S fixed i

where

w	 39	
'i



F	 az

as =A +A SS x

vi) Define;

`	 J	 (AX _+ AS _Sx) T W (A x + AS Sx)

where W is a weighting matrix

vii) Then, using a Newton-Raphson integration where x(n) is the nth_	
(n+l)

estimate of x and x	 is the (n + 1)st estimate, there is obtained

(n+1)	 (n)	 T	 (n)
x	 x	 + J	 HAx + AS Sx) W (Z Z (x ))	 (60)

S. (n+1) _ Si (x 
( n+1))	

(61)

B. Program ESTEM (Version 01)

Program ESTEM was prepared to ,fit the output from RIGEM to that of ANEAMO

	

by adjusting initial conditions and certain physical parameters in an iterative 	 i

weighted least squares sense.

i Some general features of ESTEM are discussed below.

Program ESTEM links several subprograms as follows,
4

	

S	 ESTEM	 PLAT	
I

.	 a

RIGEM	 1
y

i

	

RAI9S	 PROB 3

q	
EARRO	 FORCE	 FORTOR

	

DEPHEM	
1

•
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1

r

Subroutines CTASOS and PLOT are LaRc library subroutines for inversion of

matrices and plotting. The other subroutines have been discussed previously.

Subroutine FORCE and FORTOR have been modified for use in ESTEM from

the version described earlier in this report. The changes in summary form

are:

1. The segment that calculates forces on the Sun has been removed.

2. An option has been included that allows the integration of only the

Earth and Moon's translational motion 4MPL (1) = 2).

3. The capability of reading the JPL ephemeris tape DE69 has been added

for those planets not integrated.

4. The segment that calculates the rotational motion of the Earth has

been removed.

5. Relativity perturbations on the planet's orbits have been included

using the modified one-body Eddington/Roberson equations of [20]0

6. The following forces and torques have been added:
9

i) Lunar torques due to Earth acting on all remaining 4th degree

lunar harmonics.
•	 s

ii) Lunar torques due to interaction of C22 with all second degree'

lunar harmonics,

iii) Acceleration of lunar mass center due to_Sun/Earth figure interaction

and to Sun/Moon figure interaction.

iv) Acceleration of Earth mass center due to Earth and lunar figures,

, due to Sun/Earth-figure interaction and due to Sun/Noon figure interactions.

The derivation for items i) and ii) follows that given in [1] while the

derivation of items iii) and iv) follows {6}.

This program basically performs a pre-set number of iterations based on
i	 of '-heequations (58) and (59)- The final est_mate ,. L ^ ^ parameters is used with

the model to compute a final: set of residuals which are then plotted.

More explicitly,	 )
t
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k

ap

a1
a2

`	 ap 63

a2
q

j,
Y

1
a

f1=1- a0 2 R12	 a22- 532 =0

f2 = ap 60 + al Al + $2 s2 + a3 S3 _ 0
, 7

(63)

•	 f3=a	 (1-- OY) ° a +y =0

S1=a3 = +- 1 — $0 	— ai	 -a2

S2 - a3- 3 (a0 ap +
al Al +_S2 $2) (64)

a—
S3 ay

g	 +aOIS1	 +a l /S I +02/S1 0 0 0	 0	 0
-	 IS	 l	 = -$O/a3	 - a1/ 0 3 -a2/a 3 -a0 /S3 -a0/ 0 3 -a2/03	 0	 0 ,	 (65)X

0	 0

r

0 0 0 0	 K1	 K2

i
K1 = (1 ° y2)/(l — ay)2

K2 = (a2'- 1)/(1 - aY)2
__

The weighting matrix is taken to be the identity matrix and the a priori

parameter estimates and estimated values are set equal to zero in	 {R} .

i	 The matrix of observables is
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i
i

Pj

Cr.

T.

where_ p	 a	 T are the physical librations in inclination, node, and

longitude and N is the number of observations and the matrix [A] is generated

by the "variant trajectory" method.

A
In this application, the {Z} observables are calculated from Eckhardt's

theory as _evaluated in ANEAMO. The calculated values {Z} are calculated in

RIGEM.

The model used is summarized below:

i) M. P i	of U + Fi	(i	 1 1 11)	 (67)	 1s

0 	 0

	

1,	 S

2	
W2	 A

	w 3 '	 aC	 5

	

0	 0

d

3

(5 3 7^C

0

d	
-aS

	

dt [C 
W") ]A	 (68)

ico

n
{Z}
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iii) [PP J = MCI [P] [T] T IC] T 	 (69)

iv) = tan-1 (-PP (3,1) /-PP (3,2) )

e = tan-1 (V PP (3,1) + PP (3,2) /PP (3,3))	 (70)

x	 = tan-1 (-PP (1, 3) /PP (2,3))

v) S2	 a + b Q t + cf2t	 (71)

Q=aQ+bQt+cQt2
^	 ll

vi) p9^ I
i
j

v=^	 S2	 (72)

I	
T=

I
'	 In the above, equations (65) and (66) are derived in Reference [1),{

equations (67) and (68) were discussed earlier as equations (43) and (44).

Equations (69) are available in Reference [2], and equation (70) was discussed

earlier as equation (45).

C. A Verification Run

i
The results of the verification runare shown in Figure 3. There the

i residuals in p , Ia , and T in arc seconds are shown versus time in days

r	 past the epoch of J. D. 2441200.5. The fit was made over 1100 days.

The maximum residuals in p and Ia are about ±3" and those in T are

i
about ±10"	 This plot indicates that no gross errors exist but some subtle

inconsistencies still exist in the comparison. The residuals in all angles

should be periodic with maximum amplitudes of <1'.5 . Work__i,s continuing on

improvement of these residuals as well as a comparison with a more extensive

version of the theory (Eckhardt's 300 series).

The following conditions applied for the comparison:

I
ESTEM:

i) Initial conditions for planetary motions per Reference [6]

ii) Planetary masses per Reference [6]
f
I	 iii) Lunar nominal Euler parameters and rates
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Figure 3. Residuals from Comparison of Physical Librations Using
ESTEM with Eckhardt's Theory.
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z

S O = -.9805662538581 	 SO = 1.8721867981837 3 	 1

a l = .1923761339498	 Al = 7.693100373778-3

82 = 3.629025185335-2	 s2 = 1.478710744051-2

S3 = -1.281649334705_2.	 63 = 1.410632074475-2

iv)	 a = 4.023-4

a = 6.293-4	lunar inertia ratios.

y = 2,.27-4

v)	 Sampling interval = 3 days.

vi)	 Integration order = 11 (LL = 8) in RAI9S.

vii)	 Only second degree lunar harmonics considered.

viii)	 C20 = -1.082637 -3	Earth Oblateness,

p ix)	 Speed of light = 299792.5 km/sec.

x)	 Relativity perturbations calculated using Eddington/Robertson form,

Reference [201.

xi)	 No tidal coupling effect on Earth and lunar orbits.

xii)	 Earth and Moon integrated with remaining planetary motions read

from JPL DE69 ephemeris tape.
r

ANEAMO:

i)	 Eckhardt	 j	 3	 model with coefficients as listed in Appendix A.

IV. FUTURE WORK

t The next phases of work _under NSG-1152 will involve the following:

1,.	 Development of observational }quations (laser _ranging data) and partial
_ derivatives;

' 2.	 Adopting a solution parameter set to be estimated from data;
a

{ 3.	 General optimization in terms of running time and storage requirements

of all programs; and
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4. Development of variational equations for use in parameter estimation

process.

To implement the above a series of computer programs based on ANEAMO,

RIGEM, and ESTEM is envisional. Collectively these programs are referred to

as EMSYS.

The individual programs will have the following capabilities:

EMDYN. i) Numerically integrate all translational, rotational and

variational equations of motion from a specified set of initial conditions and

parameters;-ii) Calculate numerical partials of some quantities if necessary;

and iii) Output "ephemeris" of all quantities on tape 10.

EMOBS. i) Read LURE data tape; ii) Apply any necessary corrections to 	 9
the data; and iii) Write resulting observations on tape 11.

EMNORM. i) Reads tapes 10 and 11; ii) Interpolates tape 10 at observation

times; iii) Computes relativistic time delay; iv)_ Calculates all partial

derivatives using analytical results and data from the variational equations

as supplied on tape 10; v) Forms the normal equations; and vi) Outputs

residuals and normal equations on tape 12.	 1

EMEST. i.) Reads tape 12; ii) Solves normal equations for best estimate

of parameters; iii) Outputs useful information in printed and plotted form;

and iv) Computes covariance matrix and other statistical quantities.
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!C R ' F D T, p

0 0 0 2 - 0.43 0 0

0 0 2 -2 1.'63 -	 3.2 - 3.2

0 1 0 0 90.71 0 0

1 -1 0 -1 - 1.2 0 0

1 O -2 0	 - - 0.48 - 24.46 24.52

1 0 0 -2 4.11 2.5 - 1.95

1 0 0 -1 - 3.46 0 0
1 0 0 0 -16.'69 -101..20 -98.97

2 -2 0 -2 0.4 0 0

2 -1 0 -2 0.,96 0 0

2 0 -2 0 33.5 0 0
2 0 0 -2 9.87 0 0

2 0 0 0 - 0.4 0.9 0

0 0 2 0 0 - 10.6 -11

1 0 2 -2 0 0.55 0.61

1 0 2 0 0 -	 0.85 - 0.65

APPENDIX A

ECKHARDT'S LIBRATION THEORY

(J = 3)

r





N1,11-I	
j^	 f	 }

Inverting these expressions provides

r	 A + 02 + pg

X =tan- 1 ( A 2 /Q i ) ,	 and	 (41)

•

¢= tan-1 (0 3 /A •t- p2)

Since the unit vectors ki are related to those of the spherical

polar system by

kl _ -fir

k	 ^^ 	 (42)

k3 =	 a

the inertial angular velocity of the axes {Zi} can be written as

The above vector may be projected on the (Z i } axes providing

i Z/X ,_	 cos	 k3 - sin	 t, +	 k2	 (44)

The components

wi = -a sin

.n
W2 _

W 3 = `COS



I
treated together.	 Finally the term Ug	 and the remaining terms in
U4® Q will be treated [see eqs. (86) and	 (87)].

The reference axes for the second order and coupling terms
a	 are	

{yi}.
Thus the cif	 and sib _ are functions of the orien-

tation angles.	 These functions are

c2 o

-	
l

Iylyl } I; 2y2 - I

i

a2Mi 2 y3y3

=	 1 A + B'+ c 3
(At Y2 + B l yv2 + C

ly
vv2)

ai2M' 2 2

i	

c2i

-	 1
;ly3al2Ml

-	 1 [aYA'	 + q 'Y'B' a' v Y v vcva v 2Mv

i

S 21 =	
1

Iy3y2
0

(80)
a1 2Mv

i

SM _	 1 [ Y SA v 	 + Y v
a

R B
v +	 Y v ,

 S
v vGv ^

a v 2M v

`a

c22 =	
l

[A# ( ^2 — a2) +

1

B v(av2	 a ai2)4a,2Mv

+ Cv (S1v2 —	 atv2^i
Ji

i

s22
l

[a'	
+	 a' O'B' + a v v $ v , C v )

4a v 2Mv



MZ 1	 GMr- 5a2 (B'-. C l) 16P40 { C 20 (a' "Y' + Y
"a' )

+ C22 0 1 V I _ a' a") f + 3P 41 I —C22 (a"Y I + Y"a') ca

- sx (Y' S " 
+ Y" g ') (C20+ C 22 ) }

P 42

2 C20 lc2A((x'a" a g I a ly ) + s2 X (a' ' g ' + a'S")}

P433P42c22c2Xy'-("	 - 2 C 22 I c3a ( a 'Y' + CIO Y'' )
P44

+ s3A(O"y f + g' Y " ) 1 - z C 22 {c4a(a,g" - avail)

MZ 
2	

GMr-5a2 (Cl - A')	 6P40 I c 20 ( Y" a + Ya " )

+ c22 M"	 aa'' ) I + 3P4 1 I -C22 (aY' p + Ya" )Ca

P42
sa (c 2 0 + C 22 ) ( a y " + Y g ')- } + 2 C20 IM''

o	 - aa'') e2^ _ (as l , + g a r a) s2X I	 3P42C22c2ayY" 	 (85)_

P43
- 2 c22 kay " + Ya") c3a + (aY' + y^") s3XI

+ P 44 C 22 1 M11 - aa'') c4a ° ( a g o ' + ga") s4a }]
4-

f-

MZ = GMr- 5a 2 (B' - A') 
C

6P 40 f -c 20 ( a 'Y + Y'a)3

+ c2 2 (aa'	 gg') }	 + 3P 41 I- C 22Ca (a°Y + Y'a)

Y	 (C20 + c22) sa (g' Y + Y' g) } + 
P22 

C 20 l c2a ((Ia'

g(3') - s2a (ag' + $a') }	 - 3P42c22c2aYY'
P 43	 la	 + 2 C 22 J-(a'Y + Y'a)c3a	 (g'Y + Y'$)s3Xf

E P 44
n	 + 4 c 22, { + (aa'	 gg') c4a - s4,a (a' g + a g ') } l
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