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->

a, ACCELERATION VECTOR SENSED ON THE CARRIER EXPRESSED
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[B2.] ORBITER TO CARRIER VRCS TRANSFORMATION MATRIX

EbAR LATERAL AERODYNAMIC REFERENCE LENGTH OF THE CARRIER
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BbRB LATERAL AERODYNAMIC REFERENCE LENGTH OF THE ORBITER

(= 78.0567 ft)
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EbRB LONGITUDINAL AERODYNAMIC REFERENCE LENGTH OF THE ORBITER
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CAR
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1.0 SUMMARY

A method of determining orbiter and carrier total aerodynamic
coefficients from load cell measurements is required to support
the inert and the captive active flights of the ALT program. This
report documents the derivation of a set of equations expressing
the orbiter and carrier total aerodynamic coefficients in terms
of the load cell measurements, the sensed dynamics of the Boeing
747 (carrier) aircraft, and the relative geometry of the orbiter/

carrier.

The requirement for a method of determining orbiter and carrier
total aerodynamic coefficients {s stated in Section 2.0. The as-
sumptions, the geometry, and the derivation of the equations are
presented in Section 3.0. Numerical results of the derived equa-
tions are evaluated in Section 4.0. The conclusions and recommen-
dations are summarized in Section 5.0. Supporting reference

' sources are listed in Section 6.0.



2.0 INTRODUCTION
A method of determining orbiter and carrier total aerodynamic
coefficients from load cell measurements is required to support
the inert and the captive active flights of the ALT program.
During the inert and captive active flights, the mated vehicle
will perform the pre-separation maneuver and attain equilibrium
glide at the target separation conditions. Ivn addition, during
the captive active flights, the orbiter pilet will move the ele-
vons to several positions about the trim position. During these
procedures, 1oad cell readings in the front and aft attach struts
will be recorded. This load cell data in combination with other
data recorded on the flight recurders (i.e. sensed acceleration
of the carrier, body angular rates and accelerations of the rcar-
rier, thrust of the carrier engines, angle of attack of the car-
rier ,and dynamic pressure) will be used to cumpute the total aero-
dynamic coefficients of the orbiter and the carrier. These computed
values will then be compared te the wind tunnel predicted values.
1f there are significant differences between the two sets of values

the target separation conditions will be adjusted accordingly.

The objective of this MDTSCO "Determination of Orbiter and Carrier
Aerodynamic Coefficients from Load Cell Measurements" is to present
a straight forward derivation of the equations necessary to deter-
mine the orbiter and carrier total aerody: a:ic coefficients from

data recorded during the ALT flichts.



3.0 DISCUSS!ON.
This section presents the assumptions, the geometry, and the deri-
vation of the equations necessary to determine the orbiter and
carrier total aerodynamic coefficients. Maximum utilization of
previous analyses is made and source data is referenced accord-

ingly in the subsequent text.

The derivation of the equations of the orbiter and carrier total
aerodynamic coefficients is performed in five steps. The first
step 1s to write the total external forces and moments acting on
the mated vehicle at its cg in terms of the total external forces
and moments acting on the orbiter and carrier at their respective
cg's and also in terms of parameters recorded during the ALT flight.
In the sacond step, the total externa) forces and moments acting on
the carrier at 1ts cg are written in terrms of parameters recorded
during the ALT flight. The third step is to solve the equations

' from steps 1 and 2 simultaneously to obtain equations expressing
the total external forces and moments acting on the orbiter at ite
cg. In the fourth step, the forces and moments due to engine thrust
are subtracted from the forces and moments from steps 2 and 3 to
obtain the total aerodynamic forces and moments acting on the or-
biter and carrier at their respective cg's. In step 5, the forces
and moments from step 4 are used to determine the aerodynamic axial,
sidg. and normal force coefficients and the rolling, pitching, and
yawing moment coefficients of both the orbiter and carrier at their

respective cg's. Also, the aerodynamic forces of the orbiter and



carrier from step 4 are transformed to their respective stability
axes and transferred to their respective MRC's to determine the

aerodynamic drag and 1ift coefficients and the rolling, pitching,
and yawing moment coefficients of both the orbiter and carrier at

their respective MRC's.

3.1 Assumptions

There are two categories of assumptions used in this report. The
first category is assumptions pertaining to the form of the re-
corded data while the assumptions of the second category seive to

simplify the problem.

It is assumed that the following parameters will be expressed
(where applicable) in the vehicle referenced coordinate system
(VRCS) of the carrier and will be given in the units indicated.

1) The force vectors in the front, left aft, and right aft

-+ -+

aitach struts, FF’ FLA’ and FRA respectively in 1b.

-

2) The force vector due to carrier engine thrust, Fr in 1b.

-

3) The sensed acceleration vector of the carrier, a in ft/sec?
CAR
4) The angular rate vector of the carrier, w in rad/sec.
g 2

5) The angular acceleration vectcr of the carrier, w in rad/sec .
6) The dynamic pressure sensed on the carrier, q in 1b/ft?.

7) The angle of attack of the carrier acpp 10 rad.

To simplify the problem, the following assumptions are made.
1) The mated vehicle is considered to be two rigid bodies (the

orbiter and the carrier) constrained to move as one rigid body.



2) The dynamfc pressure of the orbiter s equal to that of the
carrier. This assumption is necessary since during the time
that the orbiter's air data probe is in proximity to the carrier,

it will make incorrect measurements.

3.2 Geometry of the Orbiter/Carrier

The orbiter is oriented in the vehicle's plane of symmetry with
respect to the carrier at an angle of incidence. The incidence
angle and location and orientation of the VRCS of both vehicles
are illustrated in Figure 1. The transformation of the orbiter
VRCS to the carrier VRCS may b« expressed as

COSA® 0.0 sindd

[le]‘ 0.0 1.0 0.0 . [3.2.1]
-sinAg 0.0 CoSA8

Figure 2 illustrates the relative positions of the attach points,

the orbiter cg, the carrier cg, and the mated cg.

The mass properties of the mated vehicle, in terms of the mass

properties of the orbiter and carrier and the geometry, may be

written as
] . T, MepcMoon oTp ooT
[IHAT] [ICAR] + [Bzx] [IORB" [le] +__c%:.“:?’ﬂ [R R-RR ] [3.2.3]

From the VRCS positions of the attach points and the thrust appli-
cation point (Reference 1) the relative position vectors shown in

Figure 2 may be written as

aEbku Ui Y OF T
REPROs UL L
5= ORIGINAL Palu 15 POOR



> - ->
RF = PF - CGCAR » [3.204]
-> -> ->
RLA = PLA - CGCAR [ [30205]
- > - . A
RM = PRA - CGCAR [} [3.2-6]
- L d ->
R = P - CG s [3.2.7]
RAorg ~ Rhgpg  ORB
- -» -
RT = PT - CGCAR » [3-2;8]
-»> -> - )
R = R - [Bzg] R ’ [3.2.9]
RA RAors
-> M -»>
R, = __ORB R, and [3.2.10]
T
-> M +
R, = --—CARR. [3.2.11]

Rt

3.3 Derivation of Equations

The total external forces acting on the mated vehicle may be ex-
pressed, in terms of the total external forces acting on the orbiter

and the carrier, as
->

-> -+
Fuar = Fear * (82,] Forg . [3.3.1]

Similarily, the total external moments acting on the mated vehicle

may be expressed as
<> -

->
Gyat = Gcart(B21160pg

+ > -

->
+R1XFCAR+R2X[82;]FORB . [3-3.2]

e st i e o i e e b e, 8 1t e e



->

->
By substituting equations [3.2.10] and[3.2.11] for R, and Ra,
equation [3.3.2] may also be written as

- P ona
Guat = Scart[B21160gp v R"FCAR

-

M
::: Rx[B,,]FORB [3.3.3)

Also, the total external forces and moments on the mated vehicle

may be expressed, in terms of data recorded during the flight, as

-+ - i e

Frar ™ My fis., - xR o wky) § ©[3.3.4)
g -+

GMAT = [IMAT] woowX [IMAT] R [3.3.5]

By substituting equations [3.2.3] and [3.2.10] for [IMAT] and
Y
Ry, equations [3.3.4] and [3.3.5] may be written as

->

-+ -> -> -+ -> ->
Fuat = Myar ®scar *Mopg w X R+ Moae{ wx (wx R)} [3.3.6]
+ - >
Suar = [lcard @ * @ x [lgppl 0+ ‘ [3.3.7]

> -> ->

[B21] [lgggd [B211" G + w x [B21] [Igggd [821]T w +

Year'ore 277 _ wToeearoR (> oTe e o,

o e wx [RIR - RK']

Reference 2 shows that the forces and moments imparted to the car-
rier by the orbiter thru the attach structures may be expressed in

the following two ways.




- -> ->

Fe ™ Mear a‘cAn - Fear {3.3.8)
- . -

Fo= - (Fp* Fla* Fpp) [3.3.9]
- . - . -

6. = [Teppl w+wx [Iaed o= 6epp [3.3.10]
- . 2 o+ o+ e+

Gc =z -(RF x Fp + RLA X FLA *+ Rop X FRA) [3.3.11]

From equations [3.3.8] thru [3.3.11], the total external forces
and moments acting on the carrier at its cg may be solved for in

terms of the recorded data, mass properties, and geometry.

- - -+ -> ->
Fear " Mear 2., Y PRt Fia® Fra . [3.3.12]
CAR
+> + > + o -+ + -+ - >
Gepr = [lcapd @+ 0 x [Teppl w + Re X F # Rip X Fi o % Rpy x Fou
[3.3.13]

By solving equations [3.3.1], [3.3.3], [3.3.6], [3.3.7], [3.3.12],
and [3.3.13] simultaneously, the total externai forces and moments
acting on the orbiter at its cg may be written in terms of the re-
corded data, the mass properties, énd the relative geometry of the

orbiter/carrier.

-+ > + > > > - -+

g T e -
Forp = [B21] {MORB[aSCAR+ xR + wx(wR)]-(Fp + Fp+ Pl [3.3.10]



-»> _ Tt T T*
Gopg = [lgpg-iB21] w+ [82:] wx [IORB][Bzx] w + [3.3.15])
T > -> > > - *> > -
[BZI] (R"RF) X FF + (R'RLA) X FLA + (R'RRA) X FRA}

To obtain the total aerodynamic forces and moments, the forces and momerts
due to the engine thrust must be subtracted from the total external
forces and moments. Therefore the aerodynamic forces and moments

acting on the orbiter and carrier at their respective cgs may be

written as

-+ -

FAORB = Forg ° (3.3.16]

-+ - _ .

GAORB = Gopp * . : [3.3.17]

-> -+ -+

Fa .o~ FCAR - F; , and [3.3.16]
CAR T

-> -+ -

GACAR = GCAR - RT X FT . [3.3.19]

From the forces and moments given by equations [3.3.16] and [3.3.17],
the orbiter aerodynamic coefficients CA N CY ’ CN s C2 ’
ORB ORB ORB 90rp

Cm , and Cn may be written as

“Iors “90re

c 8 = F /a . A ’ [3.3.20]
X ORB
Pore Aors |



¢ =F T Ao » [3.3.21)
Y Y / ORB
ORB  'Agca
s - F /q— . . [3.3.22]
CNORB onna Aoz,
czc - GXA /q * Aopg " Bors [3.3.23)
90RB ORB
c =6 /6 * Pops Coon » and [3.3.24]
m Y R8 * “ORB
S9ors  Pore
cnc = GZA //q * Aopp ° SbRB. [3.3.25])
JoRrB ORB

By transforming the forces given by equation [3.3.16] to the sta-
bility axis system of the orbiter and transferring them to the

orbiter's MRC, the aerodynamic coefficients CD . CL ’ C2 .
ORB ORB ORB
C , and Cn may be written as
TORB ORB
“Dore =.[FXA * COS{agpp + 80) + Fr, SIN(GCAR+A6)}/G'A0RB’ (3.3.26]
. ORB ORB
C =-[-Fx 'SIN(acAR+Ae) +Fy 'SIN(aCAR+Ae)] Q"Agpp [3.3.27)

ORB Aors Aors




c = (G //E‘ +(CG -6, )°F -(c6, -G, )°F a/%3A
] X ORB™ \“JY Y z Z Y ORB
ORB Aors REFgpg  ORB  “Agep REFyp ORB  'Ag-g ’
(3.3.28)
Cn o = Ly /%bRB*(CGz -Gy )Py, . <(CGy o CEy )P JfaAgeg
"or Pore REForg “ORB  "Agpp  "REFgpg  "REFopp  “Agps
[3.3.29]
c. =6 /% +(CG €6, )-F, -(CG <6, )°F /%3A i
n y/ ORB™ ‘U X Y Y Y X ORB
[3.3.29]
Similarily from equations [3.3.18Jand [3.3.19], the carrier aero-
dynamic coefficients C » C s C s C » C » C ’
Acar” Year” Mear” Dear’ Lear” g
CAR
C , C , C , C , and C may be written as
n 2 m n
“EgCAR Cgcar  CAR  TCAR CAR
¢, =-F //a'- A, [3.3.31]
A X CAR
CAR AcAR _
. =F //a'- Ao, [3.3.32)
Y Y CAR
CAR Acar
c = -F //a'- Acro s [(3.3.33]
N z CAR
CAR Acar

-11-
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CAR

r

)

Cn

¢

n
C9car

Lear

* C0Sagug + F;  * STNagyp] / T+ Acaps [3.3.34]
CAR Acar

" . SINQCAR + FZA . COSQCAR]/Q ' ACAR" [3.3.35]
AR CAR ‘
= GXA /q ¢ ACAR * FCAR’ [303036]
CAR
Y q * ACAR * CCAR' [3-3037]
Aear
=6y, /q * Aepr ” Boare [3.3.38)
AR
/: +(CGy -6, )°F, -(CG €6, )Fy  1/aAnos
Y z 2 z Y CAR
[3.3.40)
foens H(C6g oGO Py By €Oy )P ]/q.'ACAR, and
"Acan EFcAR CAR  "Acpp  REFpp TCAR Acpp
[3.3.41]
/‘ +(C6 -6, )'F,  -(CG 6, )F, 1fqA
CAR X Y Y Y X CAR
REFeun  "CAR 'Acue  REFue  TCAR XA
[3'3.4]]

=12~



4.0 RESULTS
To evaluate numerical results of the derived equations [3.3.20]
thru [3.3.41], the Space Vehicle Dynamics Simulation (SVDS) Program
is used to generate the parameters required that will be recorded
during an ALT flight. The mass properties used in this example are
for flight number 1 with the tailcone on as defined in Reference 3,
the incidence angle is set at 6.5 deg, and the time point i{s at the
instant separation would occur., Tabulated in Table 1 are the pa-
rameters required, their SVDS mnemonic names, their values, and
their units as output by the SVDS. The results of the derived
equations ([3.3.20] thru [3.3.41]) for the orbiter and carrier
aerodynamic coefficients are tabulated in Tables 2 and 3 respec-
tively. For the ease of comparison, the actual values of the coef-
ficients computed by the SVDS and the percent.error in the hand com-
puted coefficients are also tabulated in Tables 2 and 3. In this

analysis, all computations were carried out to 8 significant digits.

‘ Table 2 shows that the range of error in the hand computed values
of the orbiter coefficients compared to the values output by the
SVDS is 0.087% to 0.0936%. This is much smaller than the 5%

accuracy of the dynamic pressure (see Reference 1).

-13-



Table 3 shows no difference in the carrier coefficients out to 5
significant digits. The largest error encountered is less than
0.00032% and the smallest is 0%. These errors are accounted for

by the truncation inherent in digit computers.

-14-
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CONCLUSIONS AND RECOMMENDATIONS

From the above plus the results discussed in Section 4.0, it {s
concluded that the equations derived in Section 3.0 will yield
acceptable results within the operating region of the ALT flights.
It is therefore recommended that equations [3.3.20] thru [3.3.41]
be used in the determination of the orbiter and carrier aerodynamic

coefficients from load cell measurements.
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FIGURE 1
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FIGURE 2 RELATIVE POSITION VECTORS
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TABLE 1 DATA REQUIRED FOR ANALYSIS
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PARAMETER SVDS VALUE UNITS

MNEMONIC

»> FFV(1) 1.5504 x 10° LB

Fe FFV(2) -1.6446 x 107"
FFV(3) 2.6494 x 10°

-+ FAL(1) 1.3177 x 103

FLa FAL(2) 0.0 LB
FAL(3) 2.6758 x 10"

+ FAR(1) 1.2637 x 10°

FRA FAR(2) -1.8641 LB
FAR(3) 2.6363 x 10*

. SACATX -4.3488

a SACA7Y -1.3629 x 1072 ft/sec?

CAR SAL471 -3.1595 x 10}

- OMEGX 7.3742 x 1072

w OMEGY i -1.5785 x 1072 deg/sec
CMEGZ 2.3054 x 1072

+ OMEGXD -2.0051 x 107"

w OHEGYD 5.6490 x 10”3 deg/sec?
OMEGZD 8.9711 x 10°®

- FBTMX 9.8046 x 103

Fr FBTMY 0.0 Lb
FeTMz -4.,2834 x 102

_ QBAR 2.3482 x 102 LB/ft?

q
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_LE 2 RESULTS OF DERIVED EQUATIONS
(ORBITER)
COEFFICIENT SVDS HAND OUTPUT BY PERCENT
MNEMONIC COMPUTED SVDS ERROR
Ca -2.2565 x 1073 |-2.2586 x 1073 0.0932
ORB
Cy cY -9.8334 x 1075 [-9.8424 x 10" | 0.0907
ORB
Cy 3.6130 x 10°' | 3.6164 x 10 | 0.0935
ORB
c ¢ 5.4983 x 107> | 5.5034 x 10”2 | 0.0930
ORB
C cL 3.5710 x 107 | 3.5743 x 10-* | 0.0936
0P8
C, CcLL 1.1839 x 107 | 1.1850 x 10°* | 0.0926
“90r8
C, CM 1.4610 x 10”2 | 1.4624 x 102 | 0.0936
CSorp
c, CLN 1.1642 x 10-¢ | 1.1652 x 10~ | 0.0870
CI0RrsB
C, 1.2156 x 10~2 | 1.2167 x 1072 | 0.0935
ORB
C, -1.5346 -1.5360 0.0935
ORB
o 4.9799 x 107" | 4.9844 x 10-* 0.0910
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TABLE 3 RESULTS OF DERIVED EQUATIONS

(CARRIER)
COEFFICIENT SVDS HAND OUTPUT BY PERCENT
MNEMONIC COMPUTED SVDS ERROR
Ch 4.0403 x 102 4.0403 x 102 | less than
CAR .00032
Cy cY -1.1430 x 107 [-1.1430 x 10°*
CAR
Cy 1.9965 x 107} 1.9965 x 10-}
CAR
Cp (o)) -4,9456 x 10=2 | 4.9456 x 10-2
CAR
1
c, cL 1.9760 x 10-! 1.9760 x 10™
CAR
C, CLL -1.2846 x 10-5 |-1.2846 x 10~
SIcar
C, CM -1.3553 x 1072 [-1.3553 x 10-2
CScar
C, CLN 2.0738 x 10¢ | 2.0738 x 10-¢
€9car
C, 2.9100 x 10-* | 2.9100 x 10-*
CAR
C, 7.3718 x 10=2 | 7.3718 x 10-2
CAR
Cncar -1.0270 x 10~* [-1.0270 x 10-" ~\\V//
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