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NOMENCLATURE
 

Symbol 	 Definition 

Orbital transfer chord vector (see Figure 10) 

C 	 Orbital transfer chord unit vector, c/Ic 

c 	 Orbital transfer chord length, SI
 

e Orbit eccentricity 

f True anomaly 

g Gravitational acceleration under standard conditions, 

32.174 ft/sec
2
 

i Orbit inclination relative to equator
 

1, J, k Local-vertical unit vectors (k= - I 
= - r x vr x v, i = x k 

I, 3, K Local vertical unit vectors at perigee
 

ISP Specific impulse
 

N Unit vector pointing in the direction of a relative node
 

P Orbit period
 

p Semilatus rectum of orbit
 

r Distance from center of earth
 

r Position vector
 

t Time
 

u Argument of latitude
 

U 	 Unit vector directed toward point of maximum northerly 
declination in orbit 

v 	 Velocity magnitude
 

v Velocity vector
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NOMENCLATURE (Continued) 

Symbol Definition 

V SRM stage AV capability 

G Velocity to be gained 

IR Required velocity 

W Wedge angle between orbit planes 

WBO Burnout gross weight 

W P Propellant weight 

x, Y, z Local-vertical components of velocity ( v •, 

v j, v k) 

X, Y Scan-control variables 

Thrust angle relative to VG 

SFlight path angle 

A Wedge angle between initial and target orbit planes 

AV Velocity increment magnitude 

AV Velocity increment 

oTransfer angle 

2Angle between relative node and impulse point 

Gravitational parameter of the earth 

TT Ratio of circumference to diameter of a circle, 
3.14159 ..... 

CArgument of perigee 

Right ascension of ascending node on the equator 

Unit vector pointing in direction of ascending node 

V 



NOMENCLATURE (Continued) 

Subscripts 

Symbol Definition 

A Apogee 

F "Free" (unconstrained) impulse point 

I Initial orbit 

x, m, n Indices of particular solutions in cases where multiple 
solutions are possible 

0 Premaneuver condition or condition at a constrained 
impulse point 

P Perigee 

T Target orbit 

X Transfer orbit 

a Apsidal condition 
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1. INTRODUCTION
 

The Space and Missile Systems Organization of the Department of Defense
 

(DOD) has recently issued a Request for Proposal (RFP) for the design of an
 

Interim Upper Stage (IUS) to be used in conjunction with the Space Shuttle
 
for transporting STS payloads to orbits beyond the Shuttle performance
 

envolope.
 

The IUS design is to employ expendable solid rocket motors (SRM's) for
 

major translational maneuvers. Although the question is not addressed spe­
cifically in the RFP, it is expected that the IUS design will not provide
 

for guidance-commanded SRM thrust termination such as might conceivably be
 

effected by chemical quenching or thrust chamber venting. A summary of prob­
able IUS design characteristics, extracted from the aforementioned RFP, is
 

included in the Appendix.
 

The main purpose of this report is to discuss techniques of trajectory
 
design, maneuver execution, and stage loading that are compatible with the
 
use of SRM's which, once ignited, must burn to propellant depletion. It is
 

anticipated that some Shuttle payloads will use non-IUS solid propellant kick
 

stages; therefore this'subject is also pertinent to Shuttle flights other
 

than those involving the use of the IUS.
 

The SRM utilization techniques can be divided into two major categories:
 

(1) those in which the stage performance is adjusted to match the AV require­

ments of a preselected trajectory, and (2) those inwhich the trajectory is.
 
designed to match the AV capability of the stage(s). These two categories
 

are discussed separately in Sections 2 and 3.
 



2. ADJUSTMENT OF SRM STAGE PERFORMANCE
 
TO MATCH-TRAJECTORY AV REQUIREMENTS
 

Within this category of techniques it is assumed that a nominal trajectory
 
has been selected to deliver a particular payload to a specific orbit and that,
 

for each major velocity impulse, an SRM has been identified which is capable
 

of delivering more than the required AV. The problem then is one of reducing
 

the effective AV delivered by the SRM stage so as to match the trajectory
 

requirement.
 

These techniques allow the use of conventional trajectory design methods
 
and software; i.e., those in which velocity impulse magnitudes are not con­

strained to be equal to specific values. Aside from any question of compu­
tational difficulty, it is not desirable to impose equality constraints on
 

the velocity impulses during trajectory design because doing so removes, de­

grees of freedom which may be needed to satisfy environmental or operational
 

constraints.
 

2.1 STAGE BALLASTING
 

For a given specific impulse Isp, propellant loading Wp, and burnout
 

gross weight WBO' the ideal velocity increment that will be delivered by
 

the SRM is uniquely determined by the rocket equation
 

AVideal g pP (WBo WP) 


Ballasting increases the burnout weight WBO' thereby reducing the AV capability
 

of the stage. Although useful in some instances, this technique is generally
 

undesirable because it involves a double weight penalty. The weight of the
 

excess propellant and the weight of the ballast necessary to counteract it
 

must both be transported into orbit by the Shuttle.
 

The velocity increment that would be realized by thrusting in a fixed
 
direction in gravity-free space.
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2.2 PROPELLANT OFFLOADING
 

The AV capability of a given SRM stage can also be reduced by offloading
 

propellant, thereby reducing Wp in Equation (1). Weightwise, this is more
 

efficient than ballasting. The magnitude of the weight advantage over bal­
lasting will depend on whether or not it is necessary to replace the offloaded
 

propellant with inert material so as to maintain the structural integrity of
 

the SRM, which in turn depends mainly on the propellant grain configuration.
 

A practical problem associated with SRM propellant offloading is that
 

itmust be accomplished at the manufacturing facility, well in advance of the
 

flight date. Therefore this technique is intolerant of changes in payload
 

weight or flight objective after the SRM has been assembled.
 

2.3 POWERED-FLIGHT ATTITUDE MANEUVERS
 

Neither of the two preceding techniques affords, within themselves, the
 
capability to compensate for trajectory dispersions detected during flight.
 
If the upper stage guidance and control system is capable of controlled at­
titude maneuvers during the SRM burn, then such compensations can be made by
 
varying the orientation of the thrust vector. Given sufficient maneuver­
ability, gross reductions of the effective SRM AV can be attained. The basic
 
idea is to waste the excess AV produced by the SRM by thrusting in a "non­
optimum" direction. Many variations of this technique are possible; two of
 

the simpler ones are discussed in Sections 2.3.1 and 2.3.2.
 

2.3.1 Dog-Leg Steering
 

Figure 1 illustrates the geometry, in inertial velocity space, of the
 
dog-leg maneuver. This is essentially an "external AV" maneuver type, in.
 
which the objective is to achieve a resultant AV vector (as sensed by onboard
 

accelerometers) supplied as a target value by premaneuver computations.
 
Operationally, the SRM thrust line would be aligned with the inertial direc­
tion of Leg 1 prior to ignition. After ignition, the thrust direction would
 
be held fixed until the proper time (as determined by accelerometer output)
 

for initiating a constant-rate turn that would align the thrust vector
 
with Leg 2. After achieving proper alignment on Leg 2 (on a bearing that
 
passes through the coordinates of the desired resultant AV), the thrust
 

direction would again be held inertially fixed until SRM burnout occurred.
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Figure I. Dog-Leg Steering Geometry 
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For a given SRM AV capability greater than the required resultant AV,
 
there are obviously many different combinations of turning rate and Leg l/
 

Leg 2 orientation that would nominally achieve the desired result. The
 

turning rate will of course be limited by permissable load factors and by
 

the available directional control authority and control accuracy. Assume
 

for the moment that a rate has been determined. This still leaves open the
 

question of how the direction of Leg 1 or of Leg 2 should be chosen. If the
 

orientation of either leg is specified, the orientation of the other is
 

uniquely determined by the SRM AV capability.
 

Since the total AV delivered by the SRM (consequently, the length of
 

Leg 2) will always be uncertain to some extent, it is believed that the best
 

policy for dog-leg steering would be to align Leg 2 with the "least critical
 

direction" in velocity space. By definition, this is the direction inwhich
 

a velocity variation of a given magnitude will have the smallest possible
 

undesirable effect on the ensuing trajectory. The definition of the least
 

critical direction would depend on the maneuver objective. For instance,
 

if the maneuver were calculated to intercept a moving target, this might be
 

the direction (easily calculable from a state transition matrix or from sclu­

tion of Lambert's problem) in which a small velocity variation would not cause
 

the target to be missed, but instead would only change the time of intercept.
 

In general, the least critical direction can be defined by the vector cross
 

product of the gradients, in velocity space, of the two most critical
 

postmaneuver trajectory parameters.
 

2.3.2 Circular-Arc Steering
 

The geometry of the circular-arc steering algorithm (Reference 1) is
 
illustrated in Figure 2. Unlike the dog-leg method, its use is not restricted
 

to "external AV" maneuver types. It can also be used in conjunction with
 

guidance logic in which the required velocity IR is periodically updated
 

during the maneuver (e.g., by Lambert solutions based on the navigation sys­

tem's estimate of the current state vector). At any instant, the desired 

angle a between the thrust vector and the velocity-to-be'gained vector VG is 
calculated from the equation 

sin a 1VG
 
s V (2) 
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where V is the guidance system's estimate of the remaining AV capability
 

of the SRM. As illustrated inFigure 2,V and VG' correspond to the arc
 

length and chord length, respectively, of a segment of a circle. A potential
 

advantage of this steering policy isthat ittends to minimize the turning
 

rate, although inpractice itmay be necessary to freeze the thrust direction
 

near the end of the burn to preclude excessive rates that could result from
 

underestimating V.
 

Itshould be noted that the thrust direction isnot completely defined 

by Equation (2). The steering angle a can be measured inany plane that 

contains VG" And for any permissable plane, either of two opposite angular 

directions may be chosen. To minimize the deleterious effects of SRM AV 

uncertainties, probably the best policy would be to choose the steering plane 

and angular direction that would align the burnout thrust vector as closely 

as possible with the "least-critical" direction discussed in Section 2.3.1. 
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3. 	DESIGN OF TRAJECTORIES TO MATCH SRM
 
STAGE AV CAPABILITIES
 

For SRM stages incapable of powered-flight attitude maneuvers, it may
 

be necessary to design trajectories with velocity impulse magnitudes con­

strained to be equal to specific stage AV capabilities. Even if ballasting
 

and/or propellant offloading techniques are used to adjust SRM stage per­

formance to the requirements of a preselected nominal trajectory, such a
 

trajectory design capability may be needed during flight operations so that
 

maneuvers can be retargeted to compensate for dispersions.
 

In Sections 3.1 through 3.4, various classes of upper-stage maneuver
 

targeting and trajectory design problems are discussed. Emphasis is placed
 

on the nature and types of the solutions that are possible when AV magnitudes
 

are constrained to specific values, as deduced from analytical considerations.
 

A conic-impulsive trajectory model, wherein coasting flight segments are ap­

proximated by two-body motion and powered flight segments are approximated
 

by instantaneous velocity increments, is used in all cases for analyti'cal
 

purposes. Such a model is adequate in most cases for conceptual design and
 

for feasibility assessment. Analytic solutions based on such modeling are
 

also valuable for high-fidelity precision maneuver targeting. They can serve
 

either to generate "first guesses" for conventional iteration processes that
 

use state transition matrices, or to provide'both the first guesses and updated
 

independent variable values (based on trial trajectory integrations) in a
 

recursive iteration loop similar to that described in References 2 and 3.
 

3.1 SINGLE-IMPULSE ORBIT MODIFICATION
 

The problem types to be considered in this section are those where it
 

is desired to attain, with a single velocity increment of fixed magnitude,
 

a postmaneuver orbit having speciffc characteristics. In the general case
 

where the impulse can be applied at any point on the premaneuver orbit, it
 

may be possible to satisfy as many as three mutually independent postmaneuver
 

orbit constraints. However, the discussion in this section will be limited
 

to the restricted case where the maneuver position and the premaneuver veloc­

ity are fixed; e.g., by specifying either the time of the impulse or the
 

angular position of the impulse point in the premaneuver orbit. With this
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type of restriction there are only two degrees of freedom (represented,
 

say, by two angles that define the direction of the velocity increment), 
and therefore no more than two mutually independent postmaneuver orbit
 

constraints can be satisfied simultaneously.
 

For analysis purposes, consider an inertial Cartesian coordinate system
 

inwhich the Z-axis is oriented in a direction opposite to that of the posi­

tion vector of the impulse point, the Y-axis is oriented in a direction op­

posite to that of the angular momentum vector, and the X-axis completes a
 

right hand orthogonal triad. The impulse position and premaneuver vectors
 

can then be represented by
 

r. o - kr0 (3) 

and
 

0 0 (4)VO =iX0+kZ 


As illustrated in Figure 3, the locus of all. possible postmaneuver velocity
 

coordinates is represented by the surface of an "SRM capability sphere" in
 

velocity space. The equation of the capability sphere is
 

2 + 2 V2 (5)
- )2 + Z = 

where V represents the magnitude of the velocity increment produced by
 

the SRM, and where the postmaneuver velocity vector is represented by
 

= iX+ j +kZ (6) 

In general, the specification of one postmaneuver orbit constraint
 

defines a surface in velocity space. The specification of two constraints
 

defines one or more curves in velocity space representing the intersection(s)
 

of two surfaces, provided of course that it is physically possible to satisfy
 

the two constraints (i.e., that the constraint surfaces do in fact intersect
 

each other). The maneuver targeting problems discussed in Sections 3.1.1
 

through 3.1.5 involve geometric solutions to find the points, if they exist,
 

at which such curves intersect the surface of the SRM.capability sphere.
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The problem types to be discussed are representative of those commonly
 
encountered, but by no means do they encompass all possible single-impulse
 

targeting problems.
 

3.1.1 Orbit Circularization
 

Requiring the postmaneuver orbit to be circular is the same as requiring
 

the eccentricity e to be zero. In general, assignment of a specific value
 

to e defines a surface in velocity space just as if it were any other scalar
 

orbit parameter. At e = 0, however, the constraint surface degenerates into
 

a curve. Specifically, the locus of velocity coordinates that satisfy this
 

constraint is a circle whose equations are
 

0 (7)
 

and
 

R2 + ?2 =/r , (8) 

where p is the gravitational parameter of the central body. Substituting 

Equations (7)and (8) into Equation (5)yields the partial solution 

= (,/ro + R02 + 2V )/(2 o) (9) 

provided Yo 0 . The remainder of the solution is found by substituting 

the numerical value of R from Equation (9)in.o Equation (8)and solving
 

for the two possible values of ?,thus:
 

= (./ro) _ , (10) 

If *o = 0 (which is unlikely, since it could only occur if the preianeuver 

velocity vector were either zero or oriented in a vertical direction), then a 

solution exists only if P/r0 + 02 + 202 V2 = . 

II
 



where the subscript Z takes on the value 1 when the minus sign is used
 

and the value 2 when the plus sign is used. If the radicand is negative
 

in Equation (10), then of course there is no physical solution to the
 

targeting problem.
 

In general, the roots of Equation (10) will not be zero. This means
 

than an orbital plane change is generally necessary if the orbit is to be
 

circularized with a velocity increment of fixed magnitude. The magnitude
 

and direction of the plane change is defined by the wedge angle W, where
 

sin W = / 2 (11)
 

and
 

+4k2
cos W = + 2 (12)
 

The wedge angle is positive when the maneuver produces a positive rotation
 

of the orbit plane about the Z-axis.
 

3.1.2 Achievement of Specified Apogee and Perigee Altitudes
 

Specifying the altitude of either apsis (apogee or perigee) of the
 

postmaneuver orbit is a special case of a more general type of constraint
 

which requires that the flight path angle s (the angle between the position
 

vector and the velocity vector) have a specific value T at a given radial
 

distance rT from the center of attraction. Since tue general form is appli­

cable to other targeting problems (e.g., calculating deorbit maneuvers), the
 

general equation of the constraint surface will be developed before invoking
 

the special conditions that apply to apsis altitude constraints.
 

For the trivial case where rT = ro, the constraint surface is that of
 

a cone whose equation is
 

Z2 sin' OT = (R2 +Y2)cos 2 OT (13)
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For the non-trivial case (i.e., where rT / ro), the conservation of energy
 
and angular momentum requires that
 

X' + ++ 2 2/r ° = T 2J/rT (14)
 

and that
 

ro2 2 4+2) = rT2 VT2 sin2 OT ' (15) 

where vT is the velocity magnitude in the postmaneuver orbit at distance rT
 

from the center of attraction. Substitution of the expression for VT2 from
 

Equation (14) into Equation (15) yields, after some algebraic manipulation,
 

the equation
 

(R2 + .2)[l - r 2/(rT sin T)2J +2 

(2/ro)( - ro/rT) + (211/r )(I - ro/rT) - 1 (16) 

If rT < r0 , then Equation (16) defines a hyperboloid of one sheet whose
 

intersection with the X-Z plane is shown in Figure 4. If rT > ro, then the
 

geometric figure represented by Equation (16) depends on sin OT* When
 

sin 5T < (ro/rT) the figure is a hyperboloid of two sheets that degenerates
 

into two parallel planes at sin 5T = (ro/rT). When sin 6T > (ro/rT)' the
 

figure is an ellipsoid. The intersections of the constraint surfaces with 

the X-Z plane for these latter three cases in shown in Figure 5. In all 

cases, the surfaces are symmetrical about the origin and about the Z-axis.
 

The applicable surface in three-dimensional velocity space for each case can
 

be visualized as that which is sweot out by the appropriate curve in Figure 4
 

or Figure 5, as it is rotated about the Z-axis.
 

Now consider the special case where rT represents the desired distance
 

of one of the apsides (either perigee or apogee) from the center of attrac­

tion. If the subscript a is used to designate apsidal conditions in lieu
 

of the general subscript T, then rT is replaced by r., cos 6T is replaced by
 

0, and si-n 5T is replaced by 1 in the preceding equations, since the flight
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path angle s must be equal to 90 degrees at either apsis. Again, taking
 

up first the trivial case where r = ro , Equation (13) becomes
 

2 = 0 , (17)
 

which is of course the equation of a horizontal plane in velocity space.
 

For the non-trivial case (where r r0), Equation (16) can be simplified
 

to the form
 

+ ?2)(l + r0/r) 22 

(2p/r0 ) (2p/r0)(l - r/r )
0 


Note that the first term in Equation (18) is always postive, and that the
 

second term is positive or negative depending on whether ra is greater
 

than or less than r0 . Physically, of course, if r. is greater than ro it
 

must represent the apogee distance rA, and if it is less than ro it must
 

represent the perigee distance rp. For the general case where rp < r0 < rA'
 

the two.equations
 

(x2 + 2)(1 + r0/rA) 2 

(211/r 0) + (2p/r )(l r =1 (19) 

and
 

(R2 + ?2)(ro/r P +I) 21
 

(2p/r 0) (2p/ro)(r0 /rP - I) 

must be satisfied simultaneously. Equations (19) and (20), respectively,
 

define an ellipsoid and a hyperboloid of one sheet whose intersections with
 

the X - Z plane are illustrated in Figure 6. The intersections of the
 

ellipsoid and hyperboloid with each other form two parallel circles in
 

velocity space whose equations are
 

9= (2j) (I- ro/rA)(ro/rp -( 

(ro/rp + ro/rA) (21)
VFro) 
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and
 

R2 + 2 (2r) (22)
(r0/rP + ro/rA)
 

and where the subscript k is assigned a value of 1 when the minus sign
 

is used and a value of 2 when the plus sign is used. The two circles can
 

be visualized as those which are swept out by the points of intersection be­

tween the ellipse and one branch of the hyperbola shown in Figure 6, as they
 

are rotated about the Z-axis.
 

Given ro, rA , and rp, Equation (21) can be used to compute the two
 

numerical values of that will satisfy the targeting constraints. These
 

values can be substituted into Equation (5), along with the expression
 

(21,/r ) (23)
(r0/rP + ro/rA)
 

from Equation (22), to obtain two linear equations in R of the form
 

V2
 + (2 /r)/(r/rp + ro/rA)
R 2 + (2 - 0


0
 

where X takes on the valdes 1 and 2. Finally, the targeting solution
 

is completed by substituting the numerical values of and 4 back into
 

Equation (23); obtaining
 

+ r (2 /ro) v2
 

(25)
9,m -V (r 2+o/r A) - 2 


Again, the subscript k takes on the values 1 and 2, and for each value
 

of k the subscript m is assigned a value of 1 when the minus sign is
 

used in Equation (25), and a value of 2 when the plus sign is used. Of
 

course, only real values of , are acceptable.
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If the radicand in Equation (25) is positive for both values of t,
 

then there are four physical solutions of the maneuver targeting problem.
 

As in the case of the orbit circularization problem, the values of %',,
 

will not be zero in general, which means that an orbital plane change gen­

erally will be necessary if specific values of apogee and perigee altitude
 

are to be attained with a single velocity increment of fixed magnitude.
 

3.1.3 Achievement of Specified Orbit Period and Apsis Altitude
 

Requiring the postmaneuver orbit to have a specified period P defines
 

a sphere in velocity space whose equation is
 

2 +. 2 + 2 = (2p/r ) - (2 p/P) 2/3 (26)* 

If it is desired also to achieve a specified apsidal distance r , then
 

Equations (18) and (26) must be satisfied simultaneously. The loci of
 

solutions (if any exist) are two parallel circles whose equations are
 

(27)

: - ( Zn2 2/3 (r/r )2 -l1(r/r 


r0/r0)( (r0/r)j
 

and
 

(r/r )(2p/r (28/P)2/3
2 C2 

+ 0Y 2(28) 

(r/r) 2 

where the subscript i is assigned a value of 1 when the minus sign is
 

used and a value of 2 when the plus sign is used.
 

Given r0, r , and P, Equation (27) can be used to compute the two
 

numerical values of Z that will satisfy the targeting constraints. These
 

values can be substituted into Equation (5), along with the expression
 

_ X (29)(

I(ro/r 22(2vp/P)2/3
)(24/ro) ) 

If (2p/r ) - (27ri//P) 213 < 0, of course there is no physical solution
 

to the problem. 19
 



from the Equation (28) to obtain two linear equations in R of the form
 

0 2 + )2+ [(ro/r )(2p/ro) - (2p/p)213 ] /(ro/r9 2 - V2 (30) 

x0 ±(0 

where z takes on the values 1 and 2. The targeting solution is
 

completed by substituting the numerical values of Xl and *2 back into
 

Equation (29) to obtain
 

+ (ro/r(2p/ro) i 21 3 - 2 

(ro/ra) -


Ns before, the subscript Z takes on the values 1 and 2, and for each
 

value of z the subscript m is assigned a value of 1 when the minus
 

sign is used in Equation (31) and a value of 2 when the plus sign is used.
 

And again, of course, only real values of 4zm represent acceptable solutions.
 

3.1.4 	Achievement of Specified Orbit Period and Wedge Angle
 

Imposing an equality constraint on the wedge angle W (the angle
 

through which the orbit plane is rotated by the velocity impulse) defines a
 

half-plane in velocity space whose equation is
 

X sin 	W = 4 cos W , (32) 

where R is required to have the sign of cos W and 4 is required to have the 

sign of sin U. The intersection of this half-plane with the sphere defined 

by Equation (26) is a semicircle whose radius is equal to 

.4 (2/r 0 /p) / 

First consider the case where cos W = 0. Equation (32) then yields 

0 	 (33)
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which can be substituted into Equations (5)and (26) to obtain
 

2+ ( 0)2 = V2 X20 (34)
 

and
 

2 + 22 = (2p/r0) - (2iri/pP)2/3 , (35) 

where of course the right hand sides of both equations must be greater than
 

or equal to zero if a real solution is to exist. Expanding Equation (34)
 

and then subtracting it from Equation (35) yields the linear equation
 

o+ 0 (36)*
+ 2 2 V2 + (2v/r0) (2 p/P)2/3 * 

2 2
 
0
 

which can be used to obtain a numerical value of 2. This numerical value
 

can be used in the equation
 

== o2_- (2 - o)2  sin W (37) 

to complete the solution for the special case of cos W = 0. Equation (37) 
is derived from Equation (34) and the condition imposed on Equation (32) 

regarding the sign of 4. 

Now consider the case where cos W 0. Equation (32) yields
 

=R tan N , (38)
 

which can be substituted into Equations (5)and (26) to obtain
 

2o)2 V2
-o)2 + (2
_ + *2 tan2 W - = (39)
 

If 20 = 0, then a solution is possible only if
 

02 + o2 - V + (2p/ro) (2 i/p)2/3 0. 
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and
 

R2 + R2 tan2 W + 2 = 0 (2v/P) (40)(2p/ro) 213  


Expanding Equation (39) and subtracting it from Equation (40) yields
 

Ql 0o 0 (41)
 

where
 

2Q (2p/ro) (2iri/P)2/3 _ V2 + 2o (42)
 

If Zo = 0, then Equation (41) can be used to obtain a numerical value
 

for X, thus
 

=Ql/Xo (43)
 

If the computed value of R does not have the same sign as cos W, then
 

there is no solution to the problem. If the numerical value of X does 

have the same sign as cos N, then it can be substituted into Equation (38) 

to obtain 4. In this case, the two permissable values of t are found by 
substituting the numerical value of X into Equation (40), yielding 

2A= ±V (2/ro) - (2x /P)2/3 - (R/cos W)2 , (44) 

where £ is assigned the value 1 when the minus sign is used in Equation
 

(44) and the value 2 when the plus sign is used.
 

If o 0 o, then the solution is found by squaring both sides of Equation
 

(41) and substituting an expression for Z2 from Equation (40) into the result,
 

thus:
 

Q,~~Q 2 2 2 r2/
 
2 -2QI o +2 = o [ (2p/ro) - (2wp/P)2/3 

R2 0 + tan2 W)] (45) 
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Equation (45) can be arranged in the quadratic form
 

A1 2 + A2 R + A3 = 0 (46)
 

which has the roots
 

X= (A2 A22- 4AI A3 )/2A 1 , (47) 

where
 

W)2
A = 0o2 + (2o/Cos (48) 

A2 =-2Q, 0 (49)
 

and
 

A3 = Q - 2 [(2/r o) - (2ir/P) 2/ 3 j , (50) 

and where P, is assigned the value 1 when the minus sign is used in 

Equation (47) and the value 2 when the plus sign is used. Only those real 

values of , that have the same sign as cos W satisfy the wedge angle con­

straint. The acceptable values of XP (ifany) can be substituted into 

Equations (38) and (41) to obtain the associated values of ? and Z. 

3.1.5 Achievement of Specified Apsis Altitude and Wedge Angle
 

This targeting problem requires the simultaneous satisfaction of
 

Equations (5), (18), and (32). The conditions associated with Equation (32)
 

regarding the sign of X and of , as delineated in Section 3.1.4, must
 

also be satisfied.
 

Again, consider first the case where cos W = 0. Substitution of
 

R2 = 0 from Equation (33) into Equation (18) yields
 

42 [i (o/r)2 ] + 12 = (2j/ro)(l - ro/r ) (51) 
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Equation (34), which resulted from substituting 0 into Equation (5),
 

can be subtracted from Equation (51) to obtain
 

2Z Z = (ro/r )2 2 - 2Q2 , (52) 

where
 

2Q2 V2 ( 2 + o2 ) - (2p/ro)(l - ro/r ) (53) 

If 0 = 0, Equation (52) and the sign conditions associated with Equation
 

(32) yield immediately
 

= [iQ /(roir j] sin W (54) 

There is no solution to the problem if Q2 <0. Assuming Q2 > 0, the numerical
 

value obtained from Equation (54) can be substituted into Equation (51) to
 

solve for 2, thus:
 

Z = ±J(1 - ro/r ) [ (21/ro) - (1 + ro/rj ?2] (55) 

where k is assigned a value of 1 when the minus sign is used and a value
 

of 2 when the plus sign is used.
 

If Z0 0, the solution is obtained by squaring both sides of Equation
 

(52). Then an expression for 2, obtained from Equation (51), can be
 

substituted into the result to produce
 

B1 Y4 + B2 Y2 + B3 = 0 (56)
 

which has the roots
 

2 2
it ( 2+ B2 - 4B,1 3 )/2B1 (57) 
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where
 

B1 = (to/r)4/4 (58) 

B2 02 -(r/r (/o/rr2 Q2 (59)
 

and
 

-B3 Q22 02 (2p/ro)(1 -ro/r , (60)
 

and where t is assigned the value 1 when the minus sign isused'in
 
Equation (57) and the value 2 when the plus sign is used. For each of
 

the real positive values of 4, 2 (if any) obtained from Equation (57), the
 

out-of-plane postmaneuver velocity component isgiven by
 

S= 2 sin W (61) 

The radial velocity components are found by substituting the computed values 

of 4 into Equation (52). 

Now, consider the case where cos W 0
0. Subsititution of Equation ('38)
 

into Equation (18) yields
 

R2 (I+ tan 2 W)I + r/r) +2 + $/ r/r 1 (62))l = 
(2p/r0 ) (2p/r OW - ro/r ' 

from which Equation (39) can be subtracted to obtain
 

o 2= Q3 2 _ o R - Q2 (63) 

where 

2Q3 = (ro/r)2(l + tan 2 L.1) (64) 

and where Q2 is given by Equation (53).
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IfZo = 0, then Equation (63) reduces to
 

=
Q3 _ 0 -Q 2 O (65)
 

which has the roots
 

R,.= (Xo +VXo + 4Q2 Q3 ) /(203) (66), 

where x is assigned the value I or 2 depending on whether the minus
 

sign or the plus sign is used in Equation (66). Only those roots of Equation
 

(65) that are real and that have the same sign as cbs W are acceptable. For 

the acceptable values of R, the corresponding values of ' are obtained from 

Equation (38). The postmaneuver radial velocity components are obtained from 

Equation (62), thus: 

2X m = + (2u/ro)(l - r0/r) - [I - (ro/r) 2 ] (jcos W)2 (67) 

where, for each of the two possible values of P.,the subscript m is assigned
 

a value of 1 or 2 depending on whether the minus sign or the plus sign is
 

used in Equation (67).
 

If 2 0 O, both sides of Equation (63) are squared and an expression
 

for Z2 is obtained from Equation (62) and substituted into the result. This
 

yields
 

Cl 4 + C2 R3 + C3 R2 + C4 R + C5 = 0 (65)
 

where
 

C1 2Q312 (66)
 

C2 -2Q3 Ro0 (67)
 

C3 = 0 2Q2 Q3 + (2o/cos W )2 [1 - (ro/r) 2J , (68) 

C4 = 2Q2 0o (69)
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and
 

C5 Q22 _ 2o2 (2p/ro)(l - ro/r) (70)
 

The numerical values (where £ = 1,2, 3, 4)which satisfy Equation (65) 

can be computed by using an explicit algorithm which exists for finding the 

roots of a quartic equation. Of the four possible roots, only those which 

are real and which have the same sign as cos W are acceptable. Given any 

acceptable value %, the corresponding value ?,can be obtained from Equation
 

(38) and 2 can be obtained from Equation (63).
 

3.2 TWO-IMPULSE ORBITAL TRANSFER WITHOUT PHASING CONSTPAINT
 

The orbit of any satellite can be defined completely by six scalar orbit
 

constants, such as the following classical set
 

p semilatus rectum
 

e eccentricity
 

i inclination
 

Q right ascension of the ascending node
 

W argument of perigee
 

tpP time of perigee passage.
 

That is to say, given appropriate numerical values for these six scalars,
 

the position and velocity of the satellite can be calculated at any arbitrary
 

time t.
 

The first five quantities listed in the preceding paragraph define the
 

size and shape of the orbit and its orientation inan equatorial inertial
 

reference frame. They provide sufficient information to calculate satellite
 

position and velocity vectors as functions of a geometric variable such as
 

the true anomaly f. The sixth quantity (tp) is a phasing constant whose
 

value must be known to calculate the satellite position and velocity as a
 

function of time.
 

This set iscompletely definitive for all orbits except those involving
 
rectilinear motion, where p = 0 and e = 1 and consequently the orbital 
energy cannot be calculated. Insuch a case (which isnot considered to
 
be of interest here), the value of some other parameter such as the
 
semimajor axis a must be known.
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The problem to be considered in this section is that of transferring a
 

spacecraft from a fully defined initial orbit to a target orbit whose size,
 

shape, and orientation (p,e, i, si, w) are given as input but whose phasing
 

constant (tp) is not specified. Furthermore, the transfer is to be effected
 

by two velocity increments, at least one of which is required to have a
 

specific magnitude.
 

If the positions of both impulse points and the orientation of the
 

transfer orbit angular momentum vector are known, then there exists a "singly­

constrained" analytic solution to determine explicitly just which transfer
 

trajectories (ifany) will satisfy a AV constraint at one end or the other
 

of the transfer arc. Often it will be necessary to satisfy arbitrary con­

straints on velocity increment magnitude at both ends of the transfer arc.
 

No explicit solution is known for the latter problem. However, doubly­

constrained solutions can be found by a straightforward procedure which.
 

involves "scanning" singly-constrained solution families. The scanning is
 

accomplished by systematically varying the values of two independent variables
 

that jointly define the two impulse locations and the direction of the trans­

fer orbit angular.momentum vector. Depending on the overall nature of the
 

trajectory design problem, itmay be preferable when generating the singly­

constrained analytic solutions to satisfy the V constraint on either the
 

final or the initial impulse. Assume for the sake of argument that it is
 

chosen to satisfy the constraint on the initial impluse. Then it is a simple
 

matter, each time a singly-constrained solution is found, to calculate the
 

required final AV as an output variable. Since every member of the solution
 

family satisfies the AV constraint on the initial impulse, the solutions to
 

the doubly-constrained problem can be found (ifthey exist) by examining the
 

output data to determine which combinations of independent variable values
 

produce the desired final AV.
 

Of course there are many other transfer trajectory parameters besides
 

the magnitude of the unconstrained velocity increment which can be computed
 

as output from the singly-constrained solution, and which may have to be
 

considered in the selection of a transfer trajectory. Given an array of
 

data resulting from a systematic scan of two independent variables, general­

purpose software is available for generating a display which depicts the
 

28
 



behavior of any selected set of output variables over the entire two­
dimensional scan space (Reference 4, pp. 12-13). The ability to utilize
 

such a capability to solve this type of trajectory design problem is highly
 
desirable. The key to successful utilization lies in the identification of
 
a pair of scalar independent variables 7 and Y such that a systematic
 
variation of their values will generate all possible solutions of interest.
 

3.2.1 Selection of Scan-Control Variables
 

In general, the planes of the initial orbit and the target orbit will
 
be inclined to one another at some angle A. As illustrated in Figure 7,
 
the position of the initial impulse can be defined by the angle xI, which
 
ismeasured from a relative node (say, the ascending node of the initial
 
orbit on the target orbit plane) in the direction of orbital motion in the
 
initial orbit. The position of the final impulse can be defined by the angle
 
AT' measured from the same relative node in the direction of motion in the
 
target orbit plane. The transfer angle e ismeasured from the initial
 

impulse point to the final impulse point, in the direction of motion in the
 
transfer orbit. The transfer orbit makes the wedge angles WI and WT' respec­
tively, with the initial orbit plane and the target orbit plane. The wedge
 
angles are measured from the appropriate (initial or target) orbit plane to
 
the transfer orbit plane, and are positive in the direction of clockwise
 

rotation when viewed from a vantage point above the appropriate impulse
 
point, looking downward toward the center of gravitational attraction.
 

The positions of the impulse points obviously can he defined by specifying
 
values for x, and T. However, this combination of variables would not be a
 
good choice as the only method of scan control because their systematic vari­
ation would not generate the solution families which are associated with
 
nodal transfer (i.e., where AI = 00 and xT = 180' or xI = 1800 and AT ='360o).
 
In a nodal transfer case the number of possible transfer orbit planes is
 

infinite. Consequently it is necessary to specify the value of some addi­
tional input quantity, such as the wedge angle at one of the impulse points,
 

in order to generate a unique solution.
 

There is no ambiguity at any point regarding the orientation of the
 
transfer orbit plane if,say, AI and WI are chosen as scan control variables.
 

29
 



T WI TARGET ORBIT F' 

iTT
 

Figure 7. Geometry of Orbital Transfer Problem
 



Again, this would not be a good choice as the only method of scan control
 

because (for instance) when xI = 0 and WI = A, the number of possible loca­

tions for the second impulse is infinite and some other input quantity such
 

as xT must be input to generate a unique solution.
 

It turns out, unfortunately, that there is no single pair of independent
 

variables whose systematic variation will generate all of the solutions which
 

might be of interest in this type of trajectory design problem. However, all
 

possible solutions can be generated by separately scanning at most two sets
 

of independent variables, such as those designated as Set No. 1, 2, 3, and
 

4 in Table I..As indicated in the table, Sets 1 and 2 apply when the singly­

constrained analytic solution is to satisfy an equality constraint-on the
 

magnitude of the initial impulse, and Sets 3 and 4 apply when an equality
 

constraint is to be applied to the final impulse magnitude in the analytic
 

solution.
 

For any one set of independent variables, there are certain combinations
 

of values which will produce "manifold ambiguties" (i.e., situations inwhich
 

there are infinite number of possible solutions) of the type previously dis­

cussed, wherein a whole family of solutions is obscured by the particular
 

choice of independent variables. The conditions which characterize these
 

situations are shown in Table 1, along with suggested "resolutions" (i.e.,
 

arbitrary conditions to be imposed for the purpose of generating one unique
 

solution from the obscured family). The true resolution of any manifold
 

ambiguity requires a separate scan of the appropriate alternative variable
 

set, which allows the obscured family to be surveyed in its entirety.
 

In addition to the manifold ambiguities associated with particular
 

combinations of independent variable values, there is a "twofold ambiguity"
 

associated with every combination of values. In the cases where ?I and xT
 

are specified, this arises from the Dossibility of two opposite orientations
 

of the transfer orbit angular momentum vector. The suggested resolution in
 

such cases is to require the cosine of the wedge angle at the constrained
 

impulse point to have a particular sign, as defined by an auxiliary input
 

variable H that is required to have the value + 1.0 or - 1.0 throughout
 

any particular scanning operation. In the cases where XI and WI or where
 

AT and WT are specified, the twofold ambiguity arises from the fact that
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00 
Table 1. Scan Control Data 

INDEPENDENT 

VARIABLE 

SET 

NO. 

(ISET) 

IMPULSE 

AT WHICH 

AV CONSTRAINT 

IS APPLIED 

DEFINITION OF 

SCAN CONTROL VARIABLES 

x y 

RESOLUTION 

OF TWOFOLD 
AMBIGUITY 

MANIFOLD AMBIGUITY 

CONDITION 
FOR OCCURRENCE RESOLUTION 

INITIAL WI COS e = H I - sin2 0 sin 2 0 = 0 

2 

3 

INITIAL 

FINAL 

AI 

AT 

AT 

U1T 

COS W1 

cos a 

= - H 

= H [ 

- sin 2 WI 

- sin2 

sin a = 0 

sin WI = 0 

sin 2 W, = sin2 A 

sin 2 a = 0 

4 FINAL AT xI cos WT = - H 1 - sin 2 WT sin e = 0 sin2 WT = sin 2 A 



the transfer angle e may have either of two values which differ by 180'.
 

The suggested resolution in such cases is to have the aforementioned variable
 

H define the sign of cos e.
 

The equations shown in Table 1 for the resolution of twofold ambiguities
 

are designed such that, in each case, the subset of transfer orbits associated
 

with a value of H = - 1.0 will generally require lower AV magnitudes than the
 

subset associated with a value of H = + 1.0. This increases the probability
 

that all possible solutions for a particular problem can be generated by using
 

only one of the two allowable values of H.
 

3.2.2 Selection of Reference Node
 

In the general case where sin A >> 0, it makes little difference which
 

of the relative modes between the initial and target orbit planes is used as
 

a reference for measuring xI and XT. Either the ascending or the descending
 

node of one orbit on the plane of the other might be chosen, so long as it
 

is used consistently. However, when sin A << 1 (i.e., when the orbits are
 

nearly coplanar), special considerations may have to be taken into 'account
 

if discontinuities are to be avoided in the output data between separate
 

scans over neighboring orbits, or between successive discrete solutions in
 

an iterative precision targeting process.
 

When the initial orbit and the target orbit are coplanar, the relative 

node line is of course undefined. The orbits can be coplanar only if ­

iI = iT or if i1 = 1800 - iT. In all cases but the very special one where 

sin iI = sin i = 0, it is also necessary that RI = QT when iI = iT or that 

2I = 0T + 1800 when iI = 1800 - iT. Because gravitational harmonics generally 

produce different values for the nodal regression rates st and 6T' perfect 

coplanarity between satellite orbits is at most a fleeting circumstance in 

the real world of orbital flight operations. 

Figure 8 illustrates a typical case of the type under consideration 

where, for simplicity, the plane of the target orbit is assumed to be station­

ary. If perfect coplanarity occurs at the time t , then between the times 

t - e and t + 6 there is a discontinuous change of 1800 in the inertial 
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Figure 8. Node Shift Geometry for Nearly Coplanar Orbits,
 



locations of both the ascending and the descending relative nodes. If either
 

of these nodes were used as the reference for measuring xI and AT' then
 

clearly there would also be, within the same time interval, discontinuous
 

changes of 1800 in the inertial directions of impulse position vectors
 

defined by fixed values of AI and AT.
 

It can be seen by inspecting Figure 8 that the northerly and southerly
 

(as distinguished from the ascending and descending) relative nodes approach
 

the positions defined by u = 900 and u = 2700, respectively, as s (hence 

also sin A) approaches zero, where u is the argument of latitude in either
 

the initial or the target orbit. It follows that the discontinuities just
 

described can be removed if X, and AT are referenced to, say, the northerly
 

relative node when sin A $ 0 and to the position defined by u = 900 when 
sin A = 0.
 

Although the convention described in the preceding paragraph is to be
 

preferred when the initial and final orbits are in the neighborhood of
 

coplanarity, unfortunately it can not be used generally for all orbit com­

binations. To do so could produce discontinuities, similar to those pre­

viously described, whenever the relative nodes happen to lie in the vicinity
 

of the equator. Since the choice of convention is necessary to avoid dis­

continuities between rather than within separate scans or discrete solutions,
 

there is no basis for making such a choice within the logic of the analytic
 

solution itself. Therefore it is necessary to provide an input flag IREF
 

which tan be given either of two values by the trajectorv analyst, specifying
 

whether the reference for measuring AI and xT is to be the northerly relative
 

node or the ascending relative node.
 

3.2.3 	 Calculation of Position and Velocity Vectors in the Initial and
 
the Target Orbits
 

The purpose in this section is to define equations for calculating 

position and velocity vectors in the initial and the target orbits as func­

tions of the independent variable set identification flag ISET and the as­

sociated scan control variables 7 and Y which are defined in Table 1, the 

auxiliary input variable H, and the reference convention flag IREF. These 

computations are necessary to generate inputs to the transfer orbit velocity 

vector equations which will be defined in Section 3.2.4. Only the case where 
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the AV constraint is to be applied to the initial impulse (ISET = 1 or 2)
 

will be addressed specifically. The logic and equations.for the other case
 

(ISET = 3 or 4) can be obtained by replacing ISET with ISET + 2, changing
 

the sign of the transfer angle a, and interchanging the subscripts I and
 
T or the words "initial" and "target" wherever they appear in the following
 

discussion.
 

To facilitate subsequent computations, it is convenient to define the
 
geocentric inertial components of a set of unit vectors relating to the
 

initial and target orbits. In general for any orbit the unit vector pointing
 

in the direction of its ascending node on the equator is given by
 

[Cos 

~ sin Q21 (74) 

The unit vector
 

sin Q sin ii 
3= cos o sin i(75) 

points in a direction opposite to that of the angular momentum, and the unit
 

vector
 

U=Qxd (76)
 

is directed toward the point of maximum northerly declination in the orbit.
 

The unit vectors
 

K=- cos -Usin (77)
 

and
 

I = x (78) 

complete an orthogonal triad (I, , K) which defines the local vertical 
coordinate system at nerigee just as the triad (i, j, k) used in Section 3.1 

defines the local vertical coordinate system at an arbitrary point in the orbit. 
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The cosine of the relative inclination between the two orbits is given
 

by 

Cos A = T 1 (79) 

and the sine by
 

sin A l-cos2 A , (80) 

where J, and JT are obtained by substituting the appropriate-elements of the
 
=
initial and target orbits, respectively, into Equation (75). If sin A 0, 

then xI and AT will be measured from a reference defined by the unit vector 

N = U . (81) 

If sin A 0, then the unit vector
 

= ( x 1I /sin A (82) 

defines the direction of the initial orbit's'ascending node on the target
 

orbit plane. This is the reference for measuring xI and AT when IREF = 1.
 

When IREF = 0, then the "nearly coplanar" convention is to be used and it
 

is necessary to test the sign of the third component of the vector defined
 

by Equation (82). If this component is negative, then Equation (82) has
 

defined the southerly relative node, and the sign of all three components
 

of N must be reversed (thereby defining the northerly node) before
 

proceeding with the rest of the calculations.
 

Now, it is necessary to compute the triad of unit vectors ( o Jo' k0 ) 
which define the local vertical coordinate system at the constrained impulse 

point. These are given by the equations 

ko= (Q xN) sin - N cosx (83) 

Jo JI (84)
 

37
 



and
 

i0 = 3Ixk0
 ,0(85)
 

where, of course, the scan control variable X represents xI for IREF = 1 or 2.
 

The sine and cosine of the true anomaly in the initial orbit at the constrained
 

impulse point can then be obtained from the equations
 

sin f0 = x K 1 (86) 

and
 

cos fo = ko .K (87)
 

The position and velocity vectors at the constrained impulse point are then
 

given by
 

r° k0 r0 (88)
 

and
 

vo = r II (ei+ cos + KI sin fo (89) 

where 

ro =pl/(l + eI cos f) (90) 

The local vertical components of v are given by the equations 

(91)
0 t 1 0 

and
 

(92)

0 Vo 0 
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When ISET = 1, then of course it follows from Table 1 that 

sin WI = sin Y (93) 

and 

cos WI = cos Y (94). 

The equation
 

=
ix jo cos W, - io sin W, (95)
 

defines a unit vector which points in a direction opposite to that of the
 

transfer orbit's angular momentum vector. The cosine of the wedge angle at
 

the unconstrained impulse point then can be obtained from the equation
 

cos WT = JT * X (96)
 

A trial-value for the sine of this angle (whose sign may have to be reversed,
 

depending on the results of subsequent tests) is then computed by use of the
 

equation
 

sin WT 1 -cos 2 WT (97)
 

If sin WT = 0, then there is a manifold ambiguity regarding the location
 

of the unconstrained impulse, which is resolved arbitrarily by setting
 

k=F -H , (98) 

where H is the auxiliary input variable (described in Section 3.2.2) which
 

must have the value + 1.0 or - 1.0. The unit vector kF points in a direction
 

opposite to that of the position vector at the "free" (i.e., unconstrained)
 

impulse point.
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If Equation (97) yields a value of sin WT 0, then a trial value of
 

kF is computed from the equation
 

kF 3TX3X) /sin WT (99)
 

Ifthe quantity H. k° kF is negative, then the signs of all three
 
components of kF and the sign of sin WT must be reversed before continuing
 

the calculations.
 

Having fixed the values of sin WT and kF the remaining two unit vectors
 
of the local vertical triad at the unconstrained impulse point are obtained
 

from
 

(100)
JF = 'T 

and
 

IF = x kF (101) 

and the sine and cosine of the true anomaly in the target orbit are obtained
 

from the equations
 

=sin fF kF x KT " T (102) 

and
 

cos f = kF * KT (103)
 

The position and velocity vectors in the target orbit are given by
 

r= - kF rF (104) 

and
 

+ KT s i n F T [I T (eT + cos fF ) f F] (105) 
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where
 

rF = pT/(l + eT Cos fF) (106) 

The local vertical components of_/F are obtained froni the equations
 

F = VF "IF (107)
 

and
 

=
2F VF * kE (108)
 

Finally for the case where ISET = 1,the sine and cosine of the transfer
 
angle are given by
 

sin e = kF x ko (109) 

and
 

cos 6 = kF ' k° (I10)
 

When ISET = 2, then Y XT and the value of kF is given unambiguously 

by the equation 

kF = T N sin Y- N cos Y (111) 

The values of 3F' 'F' sin fF' cos fF' rF' VP rF' X F and 2F can then be
 
obtained from Equations (100) through (108), and the value of cos e from
 
Equation (110). A trial value of sin e is computed by use of the equation
 

sin 0 1-cos2 o (112)
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If sin 	0 = 0, there is a manifold ambiguity regarding the direction of the
 

transfer orbit's angular momentum vector, which is resolved arbitrarily by
 

setting
 

= 	 (113)
X H JI 


If sin e 0, then a trial value of JX is computed by using the equation
 

3= x(kXo /sin 8 	 (114) 

If the quantity H dI dx ) is greater than zero, then the signs of sin 6 
and all three components of J must be reversed before continuing the 

calculations. 

After having fixed the values of sin a and JXM the sines and cosines
 

of the wedge angles are computed from the equations
 

sin WI 	=I x 3X k0 , (115) 

JX
cos WI 	= I (116)
 

sin W T 	=T x " kF ' (117)
 

and
 

cos WT 	= T JX (118)
 

3.2.4 	Calculation of the Transfer Orbit Velocity Vector at the Constrained
 
Impulse Point
 

As in the last section, only the case where the AV constraint is applied
 

to the initial impulse will be addressed specifically here. The logic and
 

equations for the other case (where the AV constraint is applied to the final
 

impulse) can be obtained by changing the sign of e and interchanging
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the subscripts I and T, the words "initial" and "target," and the words
 
premaneuver" and "postmaneuver," wherever they appear in the following
 

discussion.
 

For the purposes of calculating the transfer orbit, it is convenient
 

to rotate the local vertical coordinates at the constrained impulse point
 

through the wedge angle WI as illustrated in Figure 9, by means of the
 

transformation equations
 

T = X cos WI + Y sin WI , (119) 

S =-X sin WI + Y cosW I , (120) 

and
 

R =-Z (121)
 

The R and T axes lie in the transfer orbit plane, and the S axis is
 

perpendicular to it. The inverse transformation is defined by the equations
 

X = - S sin WI + T cos WI , (122) 

Y S cos WI + T sin WI , (123) 

and
 

Z =-R (124)
 

In the rotated coordinate system, the postmaneuver velocity coordinates
 

are designated i, S, and t,and the equation of the SRM capability sphere
 

takes the form
 

(0- )2 + (- )2 +(T-T)2 V2 , (125) 

which is equivalent to Equation (5)with
 

Ro =- Z0 (126)
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= -X sinW I , (127) 

and
 

0 = Cos W (128). 

2 
 <S 0f 

if2 0, then the capability sphere does not intersect the required 

transfer orbit plane, and no solution is possible. If V2 > 2, then the 

capability sphere does intersect the required transfer orbit plane to form 

a circle in velocity space which is defined by the equations
 

S=0 (129)
 

0 )2+ (t _o)2= v 2 _o2 (130) 

The existence of a solution depends on whether or not this circle intersects
 

a hyperbola, also lying in the transfer orbit plane, whose equation is to
 

be developed shortly.
 

Figure 10 is a combined position and velocity vector diagram pertaining
 

to the problem at hand. The equations for calculating the transfer angle e
 

and the two position vectors r0 and rF were defined in Section 3.2.3. The
 

chord vector c can be expressed as
 

CcC (131)
 

where
 

rF - rI (132) 

and
 

c= rF - ro /c . (133) 
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The sine and cosine of the angle 2 , which will be used later, can then be
 

obtained from the equations
 

sin 24 = k x c Jx (133)
 

and
 

cos 2p= k0 *c , (134) 

where, again, the equations for ko and JX were defined inSection 3.2.3.
 

Battin has shown (Reference 5, pp. 104-107) that in general the locus
 

of coordinates for all possible transfer orbit velocity vectors (i.e., those
 

velocity vectors which, if supplied to a spacecraft at position r , would
 
cause its orbit to pass through the position rF) is a hyperbola whose asymp­

totes coincide with the chord vector c and with the extension of the position
 

vector ro . The equation of this hyperbola can be developed from the equation
 

for the semilatus rectum of the transfer orbit
 

P " ( ro) 2/ (135) 

and the polar equation
 

PX rF (I - cos 0) (136) 
r o tr o - TrF cos + R rF sin e 

from Reference 6. Equations (135) and (136) can be combined and rearranged
 

to yield
 

f2 ( ro2 _ ro rF cos e ) + t R r o rF sin e : rF (1 - cos e) (137) 

The law of sines and the law of cosines, applied to the triangle shown in
 

Figure 10, yields
 

sin e = (c/rF) sin 24 (138)
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and 

- ro rF cos 6 = (c 2 - ro2 rF2 )/2 (139) 

which can be substituted into Equation (137) to obtain 

t2 [ ( ro2 - rF )/2] + f R c ro sin24 = v r cos e) 140) 

From the law of cosines we also obtain 

(c2 + ro2 - rF2)/ 2 = c ro cos 2 (141) 

which produces
 

t2 cos 2 +t sin 20= (p/ro)(rF/c)(1 - cos e) (142)
 

when substituted into Equation (140). 

Now we rotate the R - T coordinate axes through the angle as 

illustrated in Figure 11 by use of the transformation equations 

p = R cos - TT sin 0 , (143) 

and 

T = R sin 4+ T cos 6 (144) 

The inverse transformation equations 

R = p cos 4 + T sin 4 , (145) 

and 

T = - p sin 4 + T cos 4 , (146) 

when applied to Equation (142), produce 

2 C2 - .2 sin2 = /ro)(rF/c)(l _ cos e) (147) 
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after some algebraic manipulation and the substitution of appropriate
 

trigonometric identities.
 

The right hand side of Equation (147) is always greater than zero
 
except for the very special case where cos e = 1. Such a case is of little
 

practical interest since it involves vertical rectilinear motion in the
 
transfer orbit. Therefore, for our purposes we will assume that no solution
 

exists when cos e = 1
1. When cos e 1, Equation (147) can be written in
 

the form
 

.2 2
2 Cos p -2 sin 22 -1 (148) 

(rF/c) o)(rF/Cl - cos a) 

which can be recognized as the equation of a hyperbola whose center lies at
 

the origin of coordinates and whose major axis coincides with the T-axis.
 

Now we return to Equation (130), or rather to its equivalent'in the 

p - T coordinate system, which is 

S )2 + 0)2 V2 02 (149) 

where
 

Po = cos - T00 sin 4 (150) 

and
 

o Ro sin +T o cos . (151) 

The solutions to the singly-constrained orbital transfer problem (ifany
 

such exist) must satisfy Equations (147) and (149) simultaneously.
 

For the special case where sin p = 0 (which occurs when 0 = 1800), 

Equation.(147) yields immediately 

:= (P/ro)(rF/c)(l - cos 9) (152)
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There is no ambiguity regarding the sign of . It must be positive; 

otherwise the direction of the transfer orbit's angular momentum vector 

(which, at this point, has already been fixed by the equations inSection
 

3.2.3) would be reversed. The numerical value obtained from Equation (152)
 

can be substituted into Equation (149) to obtain the two solutions
 

= _ V 2 ; )2 (153)*
 

where z takes on the value 1 when the minus sign is used in Equation (153)
 

and the value 2 when the plus sign is used.
 

value of cos p = 0 can occur only if cos 9 = 1, in which case we have 

already decided to assume that no solution exists for the targeting problem. 

For the more general case where neither sin @ nor cos p is equal to zero, 

the expression
 

S= .2 tan2 + (p/ro0)(rF/c)(l - cos 9)(l + tan2 ) (154)
 

can be obtained from Equation (147) and substituted into Equation (149) to
 

produce the equation
 

=2 0o 2 ( + tan2 @)-2o0 + Q4 (155) 

where
 

*•2 •2 *2 2 
2 2
Q4 =po +So +o + (/r)(r/C)(l - cos e)(l + tan2 fl (156) 

Q= o 0 0 0 F/c( 

If O = 0, then Equation (155) reduces to the quadratic form 

.2 (I+ tan ) - 2 + Q = 0 (157) 

If the radicand is negative in Equation (153), then of course there is no
 
real solution to the targeting problem.
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which has the roots
 

Q4 (1 + tan2 
)
 

p:V- Po o Po- z(158) 
(1+ tan )
 

where x is assigned the value 1 when the minus sign is used in Equation
 

(158) and the value 2 when the plus sign is used. If the roots of Equation
 

(157) are real, then they can be substituted into Equation (154) to obtain
 

T =f2 tan2 q + (i/r )(rF/C)(l - cos e)(l + tan2 ,) (159) 

where, again, T91 must be positive to maintain the proper direction of the
 

angular momentum vector.
 

If 0o 0,,then both sides of Equation (155) are squared, and Equation
 

(154) is again substituted into the result to obtain the quartic equation
 

3D1 + 2 + 3 
2D +4 4 + D5 =0 , (160) 

where
 

D1 = (1+ tan 2 4)2 , (161) 

D2=- 4$o (1 + tan 2 4) , (162) 

03= o + 2Q4 (1 + tan )- 44 0 2 tan
2 

, (163) 

,o
D4 = 4Q4 (164) 

and
 

5 = Q4 - 4To2 (j/ro)(rF/C)(l - cos e)(l + tan2 (165)
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Of course, there may be 0, 2, or 4 real roots of Equation (160). Their 
values (if they exist) can be found by using an explicit algorithm for solving 

a quartic equation. If the real roots are designated r , then the corres­

ponding values can be obtained from Equation (155), thus:
 

92(C + tan2 ) - 2o0k +.Q4
p9_=( 	+ (166) 
72 	 o
 

Again, negative values for are unacceptable and must be rejected along
 

with the root , that produced the negative value when substituted into
 

Equation (166).
 

3.2.5 	 Designation of the Desired Solution and Calculation of the
 
Transfer Orbit Parameters
 

In the preceding section we have seen that there may be as many as four 

distinct real solutions characterized by transfer orbit velocity coordinate 

pairs (p*,, <)at the constrained impulse point, where the subscript k can 

have the value 1, 2, 3, or 4. It has already been pointed out that X must 

be positive in order to preserve the proper direction of the angular momentum 2 2 
vector. In addition, it is necessary that P + T < (2p/r ) whenever 

ISET = 1 or 2 and P > 0 or whenever ISET = 3 or 4 and 9 < 0. This latter 

restriction is necessary to insure that the transfer orbit, extended in the 

appropriate direction of motion, will actually pass through the position 

defined by rF' 

To obtain a unique solution from the logic described in Section 3.2.4,
 

it is necessary for the trajectory designer to assign an integer value
 

between 1 and 4 to an input flag N to designate the particular solu­

tion that he desires. The value of N must remain constant during any
 

particular scanning operation or iterative targeting process, and the selec­

tion procedure within the analytic solution logic must be such that the output
 

data generated by a fixed value of N will vary continuously (at least as
 

nearly as possible) as functions of the scan control variables X and V.
 

This probably can best be accomplished by ordering all of the acceptable
 
p
coordinate pairs n' n) such that Pn-l % when ISET = 1 or 2 and
 

such that Pn-l n > Pn+l when ISET = 3 or 4. This has the effect of
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ordering the acceptable solutions such that Atnl < Atn < Atn+I , where At 

is the flight time which must be spent in the transfer orbit. If there is 

an Nth solution in the ordered set, then it should be used to generate the 

output data. Otherwise, a "no solution" flag should be set to indicate the 

non-existence of the Nth solution, and further computations should be bypassed. 

If the Nth solution does exist, then the local vertical velocity
 

components (A, T) in the associated transfer orbit at the constrained impulse
 

point can be calculated by substituting N and N into Equations (145) and
 

(146). The transfer orbit's semilatus rectum PX can then be obtained from
 

Equation (135), and the eccentricity eX can be computed from the equation
 

ex =YE(pxro) - i2 + R2 (px/k) (167) 

The sine and cosine of the true anomaly in the transfer orbit at the­

constrained impulse point can be obtained from the equations
 

sin f = -PX/) /ex (168) 

and
 

= 
cos foX p(Px/ro) -1] /ex (169)
 

provided ex 0. If eX = 0, foX can be assigned an arbitrary value of zero.
 

The "local vertical" unit vectors at perigee of the transfer orbit are
 

defined by the equations
 

IX = X x ko cos foX*- sin foX (170) 

and
 

KX X x xK sin f + ko0 cos fox (171)
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The sine and cosine of the true anomaly in the transfer orbit at the
 

unconstrained maneuver point can be obtained from the equations
 

sin fFX = sin fox cos e + cos.fox sin e (172) 

and
 

Cos fFX = Cos fox Cos e sin fox sin e , (173) 

where the upper sign is to be used when ISET = 1 or 2 and the lower sign
 

when ISET = 3 or 4. The velocity vector in the transfer orbit at the
 

unconstrained impulse point then can be computed by use of the equation
 

VFX =I /nx x (ex + cos fFX ) + Kx sin fFX] (174) 

which can be used in the equation
 

AVF = I - (175) 

to compute the magnitude of the unconstrained velocity increment.
 

3.3 TWO-IMPULSE ORBITAL TRANSFER WITH PHASING CONSTRAINT
 

The problem type to be considered in this section is sometimes referred
 

to as the "two-impulse orbital rendezvous problem," since of course to effect
 

a rendezvous it is necessary for the active vehicle to adjust all six of its
 

orbit constants (p,e, i, Q, W, tp) to match those of the target.spacecraft.
 

In the true rendezvous problem, where the target is an actual physical object,
 

usually there are a number of very stringent constraints relating to natural
 

lighting conditions at the time of intercept and to the direction and speed
 

of relative motion during the final approach. These constraints do not apply
 

to the general case under consideration here, which more properly might be
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thought of as a "phantom rendezvous" in which the target spacecraft is
 

purely imaginary and therefore incapable of inflicting collision damage on
 

the maneuvering vehicle.
 

In relation to the targeting problem discussed in Section 3.2, adding
 

an equality constraint on the phasing constant (tp) of the target orbit has
 
the effect of removing one degree of freedom in the problem solution and
 

drastically reducing the number of possible transfer trajectories. This
 

perhaps can best be illustrated by referring to Figure 10 in Section 3.21.4.
 

If r0 is the position of the initial impulse, then the maneuvering vehicle
 

reaches the initial impulse point at a specific time to which is determinedt
 

by the phasing constant of the initial orbit. Likewise, the phasing constant
 

of the target orbit determinest the time tF at which the vehicle must reach
 

the final impulse point defined by SF. The flight time in the transfer arc
 

therefore must equal the difference in tF and to* Ifwe restrict the dis­

cussion for now to partial-revolution transfer arcs (i.e., where the transfer
 

angle e is smaller than 3600), then the flight time varies monotonically
 

between zero and infinity along the hyperbolic locus of allowable transfer
 

orbit velocity vector coordinates. It follows that only one discrete point
 

on the hyperbola ---hence only one particular transfer trajectory ---will
 

satisfy the target orbit phasing constraint. In general then, for arbitrarily
 

fixed impulse locations such as illustrated in Figure 10, it is not possible
 

to satisfy a target orbit phasing constraint simultaneously with an equality
 

constraint on the velocity increment magnitude of either (much less both) of
 
the impulses.
 

There is no explicit solution for calculating the discrete point on the
 

hyperbolic locus that will satisfy the flight time constraint discussed in the
 

previous paragraph. There are a number of efficient iterative algorithms
 

(e.g., Reference 7) for calculating a fixed-flight-time transfer trajectory
 

The term "spatial rendezvous" has sometimes been used to distinguish this
 
problem from that of true rendezvous with a physical object; however, the
 
terminology used above is thought to be less ambiguous.
 

tSubject to discrete variations which are equal to integer multiples of the
 

appropriate orbit period.
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from one arbitrary point to another in an inverse-square gravity field.
 

Most of these are based on Lambert's theorem regarding the relationship
 

between flight time, the semimajor axis of the transfer orbit, and the
 

lengths of the sides of the triangle illustrated in Figure 10. For this
 

reason, this particular problem type (where the flight time and the impulse
 

point locations are fixed) is generally characterized as "Lambert's problem"
 

and the solution to such a problem is referred to as a "Lambert solution."
 

When the initi.al and final orbits are fully defined (i.e., when p, e,
 

i, Q, b3,and tp are known for both orbits) as they are in this case, then
 
the transfer trajectory flight time and- the locations of both impulses can
 

be fixed unambiguously by assigning values to the impulse times to and tF.
 

Since it is not possible to satisfy an equality constraint on AV at either
 

impulse point when to and tF are assigned arbitrary values, we are reduced
 

to the stratagem of systematically varying (i.e., scanning) the impulse
 

times and computing a Lambert solution for each discrete combination of
 

values in the hope that some particdlar combinations will produce the
 

desired velocity increment magnitude(s).
 

The Two-Maneuver Spatial Rendezvous Processor (SR2MAN) of the prototype
 

Mission Design and Analysis Subsystem (MDAS), which is described in Reference
 

4, is configured to facilitate scanning operations of the type described in
 

the preceding paragraph. In SR2MAN, the scan-control variables consist of
 

one impulse time and a transfer-arc flight time. The specified impulse time
 

may apply either to the first or the second maneuver, and the flight time
 

may be either positive or negative. Based on the sign of the flight time,
 

SR2MAN deduces whether the specified impulse time applies to the first or
 

second maneuver, and computes the time of the other impulse accordingly.
 

During a scanning operation, the SR2MAN processor is executed repeatedly
 

under the control of the MDAS Monitor Program, according to user-supplied
 

specifications that define the scope and resolution of the scan. The value
 

of the impulse time and the flight time is fixed for each SR2MAN execution.
 

After each execution, the Monitor program stores the SRZMAN output data in
 

an array called a "data box" for subsequent processing, and increments the
 

impulse time and/or the flight time before returning control to SR2MAN so
 

that it can compute a new solution.
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Each time it is executed, SR2MAN calculates a value for each of 27
 

different scalar dependent variables that describe the nature of the trans­

fer trajectory and of the associated maneuvers. After the completion of a
 

scan, all of the output values that were generated during the scan reside
 

in the data box mentioned in the preceding paragraph. Employing the Data
 

Box Display Processor (DBDISP), the MDAS user can create two-dimensional
 

quasi-graphical displays which summarize the behavior of selected dependent
 

variables over the complete scan space. Figure 12 is an example of such a
 

display, where the dependent variables are the magnitudes of the initial and
 

the final velocity increment. Crude contours have been sketched in to illus­

trate the approximate loci of solutions as they might appear for a particular
 

combination of SRM stage AV capabilities. The solution of a singly-constrained
 

or a doubly-constrained problem can be located as accurately as may be nec­

essary (if it exists) by "zooming in" on the appropriate region of the display
 

space in subsequent scans of lesser scope and greater resolution.
 

If the flight time between the initial and the final impulse is suffi­

ciently great, itmay be possible to find multiple solutions to Lambert's
 

problem by allowing the spacecraft to coast through one or more complete rev­

olutions in the transfer orbit. Each complete revolution that is allowed
 

increases the number of possible solutions by two, one of which is charac­

terized by a larger transfer orbit semimajor axis than the other. An integer
 

input variable IXPSOL is used in SR2MAN to determine which solution is desired.
 

A value of 1 designates that the basic partial-rev solution is desired.
 

To obtain a multi-rev solution the user sets IXPSOL = 2 M + L, where M is
 

the number of complete revolutions to be allowed in the transfer orbit and
 

where L has the value 0 or 1 depending on whether the transfer orbit
 

with the larger or the smaller semimajor axis is to be selected. Of course,
 

the value of IXPSOL is always fixed throughout any particular scanning
 

operation.
 

Although the SR2MAN processor as it is presently configured affords 

the basic capability (inconjunction with the DBDISP processor) for solving 

the phantom rendezvous problem as it applies to SRM stages, some modifica­

tions are needed to make it fully effective. Using impulse time and flight 

time as independent variables for scan control produces-twofold and manifold 
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UPPER NUMBER =
 
(DVi ) SCALE = 1.0+01, UNITS = FT/SEC
 

LOWER NUMBER =
 
(DV2 ) SCALE = i 0+81, UNITS = FT/SEC
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Figure 12. 	 Typical Display Generated by Use of the MDAS
 
SR2MAN and DBDISP Processors
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ambiguities regarding the orientation of the transfer orbit angular momentum
 

vector. These ambiguities are essentially the same as those described in
 

Section 3.2.1 for the case where AI and AT are considered as scan control
 

variables. The SR2MAN logic was formulated originally for use in the design
 

of trajectories for liquid propellant engines, where generally the objective
 

is to minimize the velocity increment magnitudes. Accordingly, within the
 

SR2MAN logic the ambiguities were resolved arbitrarily in favor of smaller'
 

AV values. An alternate pair of scan-control variables, such as impulse
 

time and wedge angle of the first maneuver, should be provided so that the
 

manifold ambiguity associated with nodal transfers can be resolved fully.
 

An auxiliary input variable (such as the variable H defined in Table 1)
 

should also be provided so that the resolution of the twofold ambiguity that
 

arises in every solution can be controlled externally.
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4. RECOMMENDATIONS
 

The analytic solution for two-impulse orbital transfer without a
 

phasing constraint (Section 3.2) should be given priority with regard to
 

software development. This is the most complicated of the trajectory design
 

problems considered in this report, and probably the one that will have to
 

be solved most frequently in connection with Shuttle payload operations in­

volving solid rocket motors. Preferably the software should be designed,
 
along the same lines as SR2MAN', to operate within the MDAS framework. This
 

will allow the existing MDAS Monitor and the DBDISP processor to be used
 

for scan control and data display.
 

The SRM targeting requirements for interplanetary injection from a
 

Shuttle parking orbit need to be analyzed in detail. For a given injection
 

point in a fully-defined parking orbit and a specified arrival time at the
 

target planet, all three components of the injection velocity impulse are
 

uniquely determined (subject to very slight'variations with varying values
 

of target parameters at the destination planet). Satisfaction of an equality
 

constraint on the magnitude of the velocity increment will therefore be pos­

sible only at certain discrete points in the parking orbit. By assuming
 

that v is fixed (which is reasonable for analytical purposes) it appears
 

from a preliminary study of the appropriate equations that an explicit solu­
tion for the impulse points might be possible. However, the complexity of
 
such a solution (if it exists) appeared to be such that itwould be more
 

properly treated as the subject of a separate report.
 

Finally, with regard to the algorithms discussed in Section 2.3, a
 

decision regarding possible development of software for simulating SRM
 

powered-flight attitude maneuvers might profitably be delayed bntil details
 

of the IUS design become more firmly established.
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APPENDIX:
 

PROBABLE IUS DESIGN CHARACTERISTICS
 



The following excerpts from Request for Proposal F04701-76-R-0057 (dated
 

21 January 1976) and its attachments are presented for the purpose of
 

identifying probable design and operational characteristics of the Interim
 

Upper Stage.
 



A.l OPERATIONAL PERIOD
 

"The IUS system segment extends the capability of the Space Shuttle,
 

so that DOD and NASA spacecraft can be delivered beyond low-earth orbits
 

during the 1980-1985 time period." (RFP Attachment 1, p. 1)
 

A.2 	COMPATIBILITY
 

"The IUS system is primarily to be compatible with the Space Shuttle.
 

However, potential compatibility of the IUS with a Titan booster will be
 

investigated during the validation phase." (RFP, p. 10)
 

"The IUS vehicle and ASE shall (a) be capable of remaining in the
 

payload bay for a minimum of three orbital periods, and (b)'also be compatible
 

with abort, descent, and post landing operations." (RFP Attachment 2, p. 9)
 

"The IUS vehicle with attached spacecraft should be capable of being
 

deployed from the Orbiter-mounted ASE within 20 minutes, starting at anytime
 

after insertion into the nominal Orbiter parking orbit(s)." (RFP Attachment 2,
 

p. 30)
 

A.3 	 OVERALL DESIGN
 

"The IUS system is to consist of expendable solid propellant stage and
 

appropriate support subsystems." (RFP, p. 9)
 

"The IUS vehicle comprises the expendable stages that leave the Orbiter
 

and place spacecraft in either extended earth orbits or in planetary mission
 

orbits, in identified configurations suitable for the missions. It includes
 

the stage structure, the solid rocket motors, the reaction control system,
 

the avionics for guidance, navigation and control, telemetry, tracking and
 

command communications, instrumentation, data management equipment, and the
 

required electrical power and electrical cabling. The IUS vehicle also in­

cludes the stage to spacecraft interfaces, and the stage to airborne support
 

equipment interfaces." (RFP Attachment 2, p. 7)
 

"The conceptual design steady-state limit load factor for the IUS vehicle 

should be limited to -5.0 g's in the longitudinal axis for earth orbital mis­

sions. The associated lateral load factors, other than vibrational loads, 

should be + 2.0 g's in the pitch and yaw directions. These total loads shall 

include thermally induced loads," (RFP Attachment 2, p. 38) 
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"Conceptual design limit load factors should be limited to -5 g's in
 

the longitudinal axis for earth orbital missions, -10 g's for three-axis
 

stabilized planetary spacecraft, and -15 g's for spinning spacecraft. The
 

associated lateral load factors should be limited to + 2.0 g's in the pitch
 

and yaw directions. The total load should include thermal induced loads."
 

(RFP Attachment 3, p. 8)
 

"The IUS system shall provide, by a spin table, the capability to spin
 

spacecraft up to 100 RPM." (RFP Attachment 3, p. 8)
 

A.4 MAIN PROPULSION
 

"Propulsion designs shall identify motor family sizes including motor
 

off-loadings, performance Parameters, control authority and predicted system
 

life." (RFP Attachment 1, p. 8)
 

The IUS contractor will be required to determine "the minimum practicable
 

stable of propulsive modules needed to insure operational flexibility in the
 

implementation of the DOD, NASA, and non-NASA mission models." (RFP
 

Attachment 1, p. 13)
 

Movable nozzles and fixed nozzles with LITVC are to be considered for
 

thrust vectot control during SRM design trade studies. (RFP Attachment 6,
 

p. 10)
 

"The SRM total impulse shall vary by no more than + TBD per motor."
 

(RFP Attachment 2, p. 49)
 

A.5 REACTION CONTROL SYSTEM
 

"RCS operational functions shall include (a) velocity vernier for SRM
 

impulse uncertainty, (b) velocity increments, as for spacecraft post separation
 

maneuvers, (3) single or multi axis attitude maneuvers, (d) coarse or fine
 

mode attitude control, and (e) powered flight roll control." (RFP
 

Attachment 2, p. 49)
 

Cold gas, monopropellant, and bipropellant systems are to be considered
 

in RCS design trade studies. (RFP Attachment 6, p. 10)
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A.6 	 GUIDANCE, NAVIGATION, AND CONTROL SYSTEM
 

"The IUS 'vehicle shall have stable attitude control, about the guidance
 

commanded attitude, for all phases of coast and powered flight operations."
 

(RFP Attachment 2, p. 27)
 

"The IUS shall be capable of transmitting to the ground: (1) state
 

vector and attitude data at final orbit injection of the IUS vehicle and
 

spacecraft, and ...... The IUS should also be capable of transmitting state
 

vector and attitude data at transfer orbit injection." (RFP Attachment 2,
 

p.20)
 

"The SGLS compatible radio links shall be capable of coherent turnaround
 

of PRN modulation used to determine range and range rate at AFSCF ground
 

stations." (RFP Attachment 2, p. 31)
 

"The STDN compatible radio links shall be capable of coherent turnaround
 

of the side tone ranging used to determine range and range rate at the STDN
 

ground station." (RFP Attachment 3, p. 8)
 

A.7 	PERFORMANCE
 

The IUS vehicle will be capable of delivering a 5000 pound spacecraft
 

to geosynchronous orbit or a 6000 pound spacecraft to a 12-hour orbit
 
(hA = 21450 n mi, hp = 175/350/900 (min/nom/max), i = 63.430, w = 2700).
 

(RFP Attachment 2, pp. 24 and 25)
 

The general position and velocity 3-sigma accuracies required at
 

geosynchronous orbit injection are given below:
 

Position (nmi) Velocity (fps)
 

Tangential + 66 + 16 

Normal + 40 + 12 

Radial + 50 + 75 

RSS + 92 + 78 

(RFP Attachment 2, p. 26) 

These are designated as "Guidance and Navigation Accuracies" in the RFP
 
attachment, but considering the context, it is believed that they are intended
 
to represent the total allowable errors at the time of orbit injection.
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"The IUS system shall be capable of placing single or multiple spacecraft
 

in orbit by use of a single IUS vehicle in a single Shuttle launch. The IUS
 

shall nominally place the spacecraft at a single orbital location (the space­

craft being required to move to its final location). Relative phasing of the
 

spacecraft shall not be required, except that ..... .For multiple deploy­

ment, capability for a velocity increment of TBD shall be provided between
 

each spacecraft deployment." (RFP Attachment 2, pp. 8 and 30)
 

"The IUS vehicle shall be capable of performing maneuvers following
 

separation which prevent direct IUS vehicle plume impingement on the space­

craft and eliminate the possibility of subsequent :re-contact with the
 

spacecraft." (RFP Attachment 2, p. 31)
 

For NASA geosynchronous missions, "The longitudinal placement for
 
' 
synchronous orbit spacecraft shall be + 45O' (RFP Attachment 3, p. 6) 

"Ballasting, off-loading, pitch steering and other various energy
 

management techniques should be considered." in motor sizing trade studies.
 

(RFP Attachment 6, p. 10)
 

RFP Attachment 3 contains Design Reference Mission specifications for three
 
specific planetary missions and one sun synchronous mission.
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