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ABSTRACT

A model describing the failure in tempered glass is
proposed and a method of solution is presented. An infinite
elastic strip is assumed to represent the glass and the loads
vanish everywhere on the boundary as well as at infinity.
The problem will be solved using the integral equations technique
where the input will be the residual stresses in the glass.

INTRODUCTION

A sudden failure of a tempered glass is an important

as well as a practical problem which requires a closer look

as far as the fracture initiation is concerned. A practical

model will be chosen as follows:

Consider two semi-infinite strips which have curved

surfaces at one of their ends defined by a function y = f(x)

(See fig. 1). According to this model, the actual situation

in a tempered glass will be obtained if these two curved

surfaces are brought together and bonded along a line

-a <x < a (fig. 1). At both ends along the x axis a frictionless

contact is assumed to take place (b<lxl<h). 	 Hence, f(x)

will be the input function taking the place of residual

stresses. The problem can be formulated and solved under

these conditions and considering the appropriate singularities

at x - + a and x - +b.
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FORMULATION OF THE PROBLEM

Let the elastic constants of the strip be E and v. The

thicknessis assumed to be 2h. Then the boundary conditions

will be

a x (±h, y ) = T xy ( +h , y ) = 0. O .^y<-	 (1)

Txy (x,0)= 0	 , -h<x<h	 (2)

v(x,O)= - f(x) +v, 	,Ixl<a and	 (3)
b<lxl<h

ay (x,0) = 0,	 a<lxl<b	 (4)

(c*
x9

ay ^Txy ) 40 	 at infinity

(See Fig. 1 for v.)

where ax (x,y), ay (x,y) and T xy (x,y) are the stresses

and u(x,y), v(x,y) will represent the displacements. A

set of solution of the Navier'sequations are

u(x,y) _ - a D `° A t (	 _ ty) e ty sin(tx) dt
t

20 {t [B(t)-	 C(t)] sinh (tx)

+ x C(t) cosh (tx)) cos (ty) dt

v ( x , y ) = n f°° A t (K+l + ty ) e ty cos(tx) dt
t

+ . o°° { l—^ [ B (t) + K- l C(t)] cosh (tx)

+x C(t) sinh(tx) )sin(ty) dt
	

(5)
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where A(t), B(t), C(t) are the new unknowns

and

K	 {3-4v	 , for plane strain

(3-v)/(1+v), for generalized plane 	 (6)
stress

The stresses are then determined as

_ -R	 A(t) (1-ty) e ty cos(tx) dt

-2 
o

o* [B(t) cosh(tx) + tx C(t) sinh (tx)]cos(ty) dtIr

_-2 f°° A(t) (1+ty) e ty cos(tx) dt +
n G

? f `° {[B(t) + 2 C(t)] cosh (tx)
^ a

+ tx C(t) sinh (tx) )cos(ty) dt

T,	 _ -;	 yt A(t) e ty sin (tx) dt
u

+ ? f" {[B(t) + C(t)] sinh (tx)
n O

+ tx C(t) cosh (tx) ) sin(ty) dt 	 (7)

u = E/2(1+v)

Hence the symmetry conditions are automatically satisfied.

Using the stress expressions ( 7) and an inversion, the first

set of boundary conditions ( 1) can be expressed as

B(t) + ht C(t) tanh (ht) _ o1(t)

_	 4t	 f C A(E)	 cos(hC) dt
n cosh	 t	 ° ( C ++ t2)2

B(t) tanh (ht) + [tanh (ht)+ ht] C(t)	 2 (t)

-3-



„	 4t	 a*
jrw cos 	t

2j AD sin(hE) dt

(C + t
Z 

)2
(8)

Second bound

satisfied by (7).

v(x,O) = K±ln

a u 0 = 4

ary c

The

f^
a

lim
y-'0

onditions (2) is automatically

mixed conditions (3) and(4) give

	

A(t	 cos(tx) dt - -f(x) + v,

	

t -	 lxl<a,b<lxi<h (9)

{ o°° A(t) (1+ty) e ty cos(tx) dt

+ ,2—̂ om.{[B(t)+2 C(t)] cosh (tx)

+tx C(t) sinh (tx) ) cos(ty) dt) 	 (10)

Defining

^(x) = av x 0	 such that
ax

^(x) _ -f'(x) for lxl<a	 , b <lxl <h 	 (11)

and differentiating and inverting (9). A(t) can be

expressed in terms of ^(x). Moreover, solving (8) for

B(t) and C(t) and hence expressing these also in terms of

4(x) and substituting all these into (10) and separating

singularities,one arrives at the following singular integral

equation:

b 1	 + 1	 + k(x,t)]^(t) dt -g(x) - 0

u	 y	 a	 a<x<b (12)

where

g(x) ` (;a + bh)[
t+x + t-x + k(x,t)] f-(t) dt	 (13)
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and

k(x,t) - f o* [K(x,t,n) e(h-t)n -K(x,-t,n) e(h+t)n]dn	 (14)
O

and

K(x,t,T I ) _ [ (xn) sinh(xn) [-1+2n(h-t)-e 2hn ]

+ cosh(xn) (nh-2-(2nh-3)(h-t)n + [(h-t)n-(hn+2)]

O nh } I/ ( [2hn + sinh(2hn)]e hn }	 (15)

where the singularity is to be taken care of appropriately

and the single-valuedness of the displacements will be expressed

as

f  ^(t) dt = f(a)-f(b)	 (16)
a

To solve (12) and (16) non-dimensional variables
will be used, i.e.:

b +a	 b-a X
x = T_

+ -T—

t = b+a + b-a T	 (17)
2	 2

Then(12) and (16) become

1 f1	 " (-r) dT 
+ f l	 ko(x,T)	 dT

n - 1 	 T-X	 -1

= 9.(x). (xI<l

f 1 ^ ' (T)dT = 
2

[f(a)-f(b)]	

(18)-1 

where
^,(T) _ ^( t ) .9o(X) = 9(x)/n

k..(v.T) =	 b-a	 r 1 	+ k(x.t)l	 (19)
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Choosing the unknown as

4o(T) - F(T)	 +i	 F(T) /jbT = m(t)

, I T I < 1	 (20)

(18) can be solved numerically [1],

kE _2_x_1_-Irk	 F(Tk) [ l 	 + wko(xr,Tk)] = gO(xr)
= 1 ^^	

k r

r = 1,---n	 (21)

n
E 2 1- T k	 F(Tk)	 22	 [f(a)-f(b)]	 (22)

k=1	 n+	 it

for F N ), k=1,---n and "b". Here,

Tk = cos ( n-+ ) ,	 k=1 , ---n

	= cos ( 2r-1 n)	 r=1,---n
x r	 ^	 (23)

Specifying a and choosing b, equation (21) is

solved for F(Tk ) and equation (22)is checked. An iteration

is needed to determine b such that equ. (22) is also satisfied.

The stresses on the x axis can be found from (12) and (20).

THE STRESS INTENSITY FACTOR

The stress intensity factors can be found from

(12) and [2] by investigating the behavior of the Cauchy

integrals around the end points. Hence defining

K(a) = lim	 2 a-x	 ay(x,0)	 (24)
x4a

one obtains

K(a) = l+rc
	
/ 2(b-a)	 F(-1)	 (25)
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