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DUAL-ACTION GAS THRUST BEARING FOR IMPROVING LOAD CAPACITY

by Izhak Etsion*

Lewis Research Center

SUMMARY

The principle of utilizing hydrodynamic effects in diverging films to improve the

load-carrying capacity in gas thrust bearings is described. By placing a stationary

member with a diverging film next to the so-far inactive surface of the runner, the

pressure difference across the runner is increased and consequently more load is ob-

tained from a given bearing area.
The new concept, denoted as a dual-action bearing, is analyzed and its potential

demonstrated by solving analytically a simple case of an infinitely long slider. Load

capacity improvement of up to 100 percent is shown to be possible.

A numerical solution is presented for a dual-action bearing consisting of flat

sector-shaped pads. A wide range of compressibility is covered for a pad radius ratio

of 0. 5 and a sector angle of 45. The bearing eccentricity is defined, and the proce-

dure for calculating bearing performance is outlined. Results are given for the case

of zero eccentricity. It is shown that the improvement in load-carrying capacity is

more than 90 percent over the whole range of compressibility.

Although some stability problems might occur under conditions of low load and

high speed, the dual-action bearing could be very useful in increasing load-carrying

capacity and improving efficiency.

INTRODUCTION

The increase in the speed and operating temperature of rotating machinery in

recent years has made the use of gas-lubricated bearings attractive in many applica-

tions. An inherent weakness of self-acting gas bearings is their low load-carrying
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Research Associate.



capacity, which is no more than 1 or 2 atmospheres. Therefore, whenever high or

even moderate loads are considered, external pressurization and/or large bearing
area are needed. However, pressurization complicates the design, and bearing size is

usually constrained. It is therefore natural to search for designs that extract the max-

imum load from a given bearing size. Several such designs have been offered and are

now commonly used. Among them are stepped bearings, tilting pads, and various

grooved configurations (ref. 1).
The load-carrying capacity in hydrodynamic bearings is developed by pressure

generated within a lubricant film due to the wedge action between varying gaps of two

surfaces. To be more specific the load is supported by the pressure difference across

the loaded member of the bearing; and the higher that difference, the higher the load-

carrying capacity.

The pressure difference across the loaded member of a bearing can be increased

by increasing the pressure in the high-pressure region or by decreasing it in the low-

pressure region. Much attention has been paid to the first possibility, but the second

has so far been neglected. This approach is justified in the case of liquid lubricants,
where the maximum reduction in the low-pressure region can be only 1 atmosphere,
which is two orders of magnitude lower than the common pressure increase. However,
with gas-lubricated bearings the reduction might be of the same order as the pressure

increase and could therefore contribute substantially to the bearing load-carrying ca-

pacity.

Referring to bearings that develop their load-carrying capacity merely by a pres-

sure increase on one side of the loaded member as single-action bearings, we shall

use the term dual-action bearings in those cases where the load-carrying capacity is

the result of both a pressure increase on one side and a pressure decrease on the other

side of the loaded member.
In reference 2 the idea of improving load-carrying capacity by pressure reduction

is applied to a gas journal bearing. Although journal bearings, because of their

converging-diverging film shape, are inherently dual-action bearings, it is shown in

reference 2 that a proper design can further improve the load-carrying capacity. This

was accomplished by placing a forward-facing step in me high-pressure region and a

backward-facing step in the low (subambient)-pressure region (fig. 1), thus increasing

the pressure difference across the loaded journal.
In contrast to journal bearings, all conventional hydrodynamic thrust bearings in

present use are of the single-action type, having a relatively large inactive area.
Therefore it seems that they can be improved more than can journal bearings from

proper design based on the dual-action principle.
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In the following sections a dual-action gas thrust bearing is described and a flat

sector-pad configuration analyzed to demonstrate the potential of the dual-action prin-
ciple.

THE DUAL-ACTION GAS THRUST BEARING

It is well known that the generation of above-ambient pressure in a lubricating film
is related to surface movement in the direction of the film convergence. When the sur-
face moves in the direction of film divergence, the result is subambient pressure. A
single-action thrust bearing consists of a runner that rotates next to a stationary mem-
ber (sector pad or grooved disk), so that the rotation is in the direction of film conver-

gence (fig. 2 (a)). By placing an identical stationary member next to the other surface
of the runner, rotation in the direction of film divergence of that member is obtained.
Hence, pressures below ambient are generated on that surface and the bearing becomes
a dual-action one (fig. 2(b)).

The load carried by the dual-action bearing is the sum of that obtained from the
basic single-action configuration and the additional load obtained from the diverging-
film portion of the bearing. Since the performance characteristics of many single-
action configurations are already known, it is sufficient to solve only for the diverging
films and to find their contribution.

Before a complete solution of the two-dimensional Reynolds equation is performed,
it is worthwhile to examine the potential of the dual-action bearing for a simple case.
This will be done now for an infinitely long slider, where the Reynolds equation is

easily solved at both extremes of the velocity range (e. g. ref. 3). Consider the one-

dimensional Reynolds equation

A /ph3 ^ 6^U d^ (1)
dx \ dx/ dx

This equation integrates to

d =.M (ph C,) (2)
dx ph3

where C, is a constant of integration.

At very high speeds as U- , dp/dx can remain finite only if ph C,. This

gives the high-speed asymptote for the gas-lubricated bearing. Hence, for the slider

of figure 2(a) we have
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where p is the ambient pressure at the inlet clearance h,^ and

h h^ ax

The load per unit length of that slider at very high speed is

fW\ F ^^^ fin k ^) (3)
\L^ JQ ^ h / a \ k /

where k h^/h^.
Reversing now the pad of figure 2 (a) so that its leading and trailing edges are in-

terchanged, the pressure distribution becomes-^where now h h + crx.

The load per unit length contributed by the diverging film is

/W\ /B L hm^ d,=
pahM /k_l ^^ ^\L/^ JQ ^\ h / a \ k k /

Dividing equation (4) by equation (3) gives the ratio between the loads contributed by

the two configurations. Thus,

^ =^= k 1 ln k (5)
W,. k ln k k + 1

L/

Differentiating equation (5) with respect to k, we find that r]^^ 1 as k 1, which

means that the dual-action bearing is most effective at low loads.

Figure 3 presents values of 17 for various values of k. It is clear from the fig-

ure that the improvement in load-carrying capacity is substantial over a wide range of

loads. Different values of k could be assigned to the converging and diverging con-

figurations. However, it can be shown that, if the minimum film thickness is to be

kept the same, the value of k that maximizes the pressures in a converging film will

also minimize the subambient pressures in the case of a diverging film. This will

4



maximize the total load of the dual-action bearing of figure 2(b).
At very low speed, equation (1) becomes (ref. 3)

A ^ ^ ^^ ^ (6)
dx \ dx/ dx

Integrating twice gives for the pressure

/x h C
PC Pa ^ ---2 dx (7)

h3
where Cg is a constant of integration. The load per unit length is the integral from
x 0 to x B of the right side of equation (7). Now reversing the direction of U in
figure 2(a) results in changing the sign of U in equation (7) and the pressure distribu-
tion becomes

/^ h C^
Pa Pd 6^ / dx (8)

^O h"

Again if we choose identical clearances on both sides of the runner, it is clear from
equations (7) and (8) that the load contributed by the diverging portion of the dual-action
bearing is equal to that contributed by the converging portion. Note that h has not
been specified; hence, the analysis holds for any arbitrary clearance. The conclusion
is that at very low speed we always have 17 1, which means 100 percent improvement
over the single-action bearing. So far we have been dealing with bearings where the
runner is at the middle of the gap between the top and bottom pads of figure 2(b). To
determine completely the bearing performance, its behavior on both sides of the mid-
plane (fig. 4) should be known.

Having a dual-action bearing with a net clearance 2C and a runner displaced a

distance e from the midplane, we shall define the bearing eccentricity e as the ratio

e/C, where positive eccentricity is in the direction of loading. From this definition it
is clear that the runner can assume any eccentricity e between -1 and 1. Denoting by
subscripts c and d the converging film and diverging film pads, respectively, we
have from figure 4

^m) C e C(l e) (9a)
-c

^m), C + e C(l + e) (9b)
’d
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For identical pads we have h,, h + crB; hence

1^ 1 + 0!B (lOa)0 C(l e)

kd l +-aB- (lob)
C(l + e)

Substituting into equations (3) and (4) and adding them up gives the total load of the dual-

action bearing at any eccentricity -1 < e < 1,

w /^\ L ,J^_^B_^ r^_^B_i (^ ^ r^_^B_i1 ^L \ a \ L C(l e)J L C(l e)J L C(l + e)_|j

Differentiating W in equation (11) with respect to e, we have for the bearing stiffness

K ^L-J- ln [l +-J-1 +---^--- iJl -.--^-tl (i2)
4> [(1 e) L (1 e)J ^ + (1 + e) L (1 + e)JJ

where ^ aB/C.
Values of K are plotted in figure 5. It is seen that the stiffness K decreases

with e and that there is a critical eccentricity e-,.0/’) where the stiffness vanishes.
01.

For e < e the stiffness is negative and the bearing fails. A similar result is ob-
CJL

tained for the low-speed range.

In a way, such behavior of a dual-action bearing is similar to instability problems

in lightly loaded gas journal bearings.

NUMERICAL SOLUTION FOR FINITE BEARING

To demonstrate the potential of a realistic dual-action thrust bearing, a flat

sector- shaped pad was analyzed. Both the pitch and roll of the pad were taken into ac-

count, and an accurate film thickness variation was used. The geometry of the sector

pad is shown in figure 6, and a complete analysis along with the results for converging

configurations is given in reference 4. The Reynolds equation in nondimensional form

as derived in reference 4 is

a^j_ 8^ r_a_ /hi H\l 8Q_ j_ _a_ /^ H\ eQ ^nL aQ

^8R2 R2 962 LSR \ W BR R2 QO \ R/ 80 ^^Q 96

6
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g
where Q (PH) P is the nondimensional pressure defined as P p/p and A, the
compressibility number, is given by A G^ur2 /? h2 It is shown in reference 4 thato / a m
a combined pitch and roll about some point can be transformed into a pure pitch y
about a certain radial line at an angle 6 The nondimensional film thickness then be-
comes

H 1 + - R sin(0 0) (14)

Equation (13) is solved in reference 4 for positive values of A ranging from 1 to 100,
thus covering a wide range of speeds for a runner rotating in the direction of decreas-
ing film thickness. Solving equation (13) for negative values of A provides the results
for the case of rotation in the opposite direction, namely in the direction of increasing
film thickness. Also in reference 4 various values of 6 /f3 were examined, and it
was found that the optimum value of 0 //? for maximizing load-carrying capacity is 1,
in which case h h^. For the present example, a pad having a sector angle /3 of
45 and a radius ratio r^/r^ of 0. 5 was selected. Equation (13) was solved for com-
pressibility numbers A ranging from -1 to -100 at various 0 /p values. This was
done to determine the optimum 6 Again, as in the case of converging films, it was
found that a 0 /f3 of 1 maximizes the load-carrying capacity over the whole range of
compressibility.

Figure 7 presents the unit load for a diverging film sector tilted about its leading
edge. The results are similar to those shown in figure 8 (from ref. 4) for a converging
film sector tilted about its trailing edge.

To obtain the load-carrying capacity of the dual-action bearing at a given eccen-
tricity 6, compressibility A G^r^ /p C2, and clearance parameter <p =yr /C, the
individual compressibility and clearance parameters of each of the sectors have to be
determined. Using equations (9a) and (9b) we have for the converging film sector

A ^o A
c

Pa^m), <1 -)2

y^o

^ (""r ’1 6’

Similarly, for the diverging film sector,
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Ad ---^d ?
(1 + e)2

^ O^)
Design curves for any A, -yr /C, and can now be plotted. This is done by adding

the unit loads W /p A and W./p A obtained from figures 7 and 8, at the appropriate

values of Ag, (p^ and A^, (p^, respectively.

Figure 9 presents the unit load for a centrally positioned dual-action bearing,

namely at e 0. In this particular case we have Ap A^ A, and (p^ cp^ (p. It

is seen that, similar to the single-action bearing (fig. 8), the unit load reaches a max-

imum at clearance parameters between 2 and 5, depending on the compressibility A.

In other words, for any given speed u and clearance C (or minimum film thickness

h in the case of a single-action bearing), there is a maximum value to the load that

can be carried by the bearing. These maximum values for both the single-action and

the centrally positioned dual-action bearings are plotted in figure 10 against the com-

pressibility number A. It can be seen that over the whole range, up to A 100, the

improvement in maximum load-carrying capacity with the dual-action bearing is more

than 90 percent over the single-action bearing. The conclusion is that at any given

operating conditions of speed and minimum film thickness, the dual-action bearing is

able to carry more load than the single action. Alternatively, for a given speed and

load the dual-action bearing operates at a lower compressibility number. Hence, the

minimum clearance needed to carry the load is increased and the danger of surface rub

is reduced; or the outer radius can be decreased, resulting in lower weight.

In reference 4 it is shown mat the efficiency of a bearing, as expressed by the

ratio of load carried to power lost, decreases when A increases. Hence, the dual-

action bearing, by operating at lower A, offers greater efficiency than the single-

action bearing. This advantage and the ability to extend the range of load-carrying

capacity beyond the present limits make the dual-action bearing an attractive design.

CONCLUDING REMARKS

A new concept for a gas thrust bearing, denoted as a dual-action bearing, was

presented. Its potential of improving the load-carrying capacity of gas thrust bearings

was demonstrated both analytically for an infinitely long slider and through a numerical

solution of a sector-shaped thrust bearing. For a given load and speed, the dual-

action bearing should consume less power than the conventional single-action bearing,
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thus offering greater efficiency.

At light loads and high speeds, when the eccentricity becomes negative, stability

problems may occur. The suction on the low-pressure side may increase faster than

the pressure decrease on the high-pressure side of the runner, causing the runner to
contact the diverging film pad. It is believed, however, that this problem can be

solved by controlling the bearing clearance or by providing an auxiliary device like a

carbon button at the end of the shaft to limit its axial movement and prevent the runner

from contacting the diverging pad. Such a device also provides a means of carrying a

momentary thrust load in a reverse direction.
At moderate and high loads, however, the dual-action bearing might be very use-

ful in extending the load-carrying range of gas bearings and in increasing their effi-

ciency.

The design is not limited to flat sector pads; other configurations such as stepped
pads and grooved disks can be used as the stationary member in a dual-action thrust

bearing.

Lewis Research Center,
National Aeronautics and Space Administration,

Cleveland, Ohio, April 27, 1976,
505-04.
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APPENDIX- SYMBOLS

A pad area, jSir^ r^/z
B slider width in direction of motion

C bearing clearance

C-,, Cn constants of integration

e runner displacement from bearing midplane

H nondimensional film thickness, eq. (14)

h film thickness

h,/, maximum film thickness

h minimum film thickness
m

K bearing stiffness, dW/de

k clearance ratio, h,,/h

L slider length perpendicular to direction of motion

P nondimensional pressure, p/pg
p pressure

p ambient pressure

Q (PH)2
R nondimensional radius, r/r

r radial coordinate

r. inner radius of pad

r outer radius of pad

t runner thickness

U linear velocity

W load

x coordinate

cr slider slope

/3 angular extent of pad (sector angle)

10



y pad tilt

e bearing eccentricity, e/C

T? load ratio, W./W.
Q C

0 angular coordinate

2 / 2 2 / 2A compressibility number, 6Lta?r. /p.C or 6ua?r /p-h
O/ Hi O/ ci in

(.x dynamic viscosity

(p sector-pad clearance parameter, yr /C or yr /h

^ slider clearance parameter, crB/C

o> shaft rotational speed

Subscripts:

c film converging in direction of motion

cr critical

d film diverging in direction of motion

p radial pivot line

max maximum

11
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Figure 3. Load-capacity improvement for an infinitely

long dual-action slider.
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Figure 4. Eccentric dual-action thrust bearing.
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Figure 8. Unit load of optimally tilted, converging-p, ^ ^^^ (imally tilted, diverging-film
film sector Ratio of inner to outer pad radius, sector. Ratio of inner to outer pad radius, r.fr,,,r^ 0.5; angular extent of pad, p, 45. (From 0.5; angular extent of pad, p, 45.
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Figure 9. Unit load of dual-action, sector-shaped
thrust bearing. Eccentricity, , 0; ratio of inner to
outer pad radius, r.fr,,, 0.5; angular extent of pad,
P, 45.
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Figure 10. Maximum load capacity of sector-shaped
thrust bearing. Ratio of inner to outer pad radius,
rjfr^, 0.5; angular extent of pad, p, 45.
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