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The advantages and limitations of remote sensing techniques for collect-

ing synoptic data over large coastal and estuarine areas are reviewed with

emphasis on the need for a proper balance between remotely sensed data and

"ground truth". Specific applications presented include mapping wetland

vegetation and coastal land use; monitoring natural and-man-induced changes

in the coastal zone; charting current circulation, including the movement and

dispersion of known water pollutants; and determining the type and concentra-

tion of suspended matter in coastal waters. The photo-interpretation of air-

craft and satellite imagery with the aid of "ground truth" is illustrated, em-

ploying both direct visual and automated computer techniques. For some appli-

cations, it is shown that an integrated boat-aircraft-satellite approach can

produce better results or cost less, than the deployment of large numbers of

boats or field teams without remote sensor support.
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INTRODUCTION

h ! Economic pressures to extract oil, to increase the harvest of food and

to find view or maintain existing waste disposal sites are creating a need to

understand the environment of large estuarine and coastal areas, including r

the entire Continental Shelf. 	 The excessive amount of bout time and cost of
t

;. ground crews required to collect synoptic data over such regions is causing

investigators to look for more-cost-effective means of performing this task.

One technique which appears promising, involves the use of remote sensing,

including standard aerial cameras and other sensors operating beyond the nor-

mal visual range of photographic films. 	 The physical and technical aspects

of imaging with remote sensors were reviewed by Colwell et. al. (9,10). 	 Among

the advantages enumerated are:`'

" 1.	 Wide area coverage, including regions with difficult access.

2.	 High resolution.

G` 3.	 High cartographic accuracy with precision cameras.

4.	 Improved discrimination with multispectral sensors, including

spectral bands outside the 	 region..visible
^i

Rapid, automated interpretation of imagery using optical and
x-

.'.digital enhancement techniques. -

j 6. 'Improved transmission, storage and update of the data in digital

form.

The objective of this paper is to make estuarine and coastal investigators

aware of the advantages and limitations of rerttote. sensing techniques, including

jintegrated boat-aircraft-satellite systems, to collect synoptic data over large
4

t

coastal 'areas.	 The specific applications which will be reviewed include the .;

f ollowing:

a.	 Mapping wetland boundaries and plant species.

E	
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.

b. Monitoring natural and man-induced changes in the coastal zone, in-

eluding land-use and beach erosion.
t

c.	 Employing thermal or turbidity variations and remotely tracked

drogues or dyes to chart current circulation patterns, including the J

movement and dispersion of known water pollutants.

d.	 Determining the type and concentration of certain suspended and dis-

solved substances in estuaries, including surface and subsurface

pollutants.

Imagery obtained from aircraft and satellites will be interpreted with the aid

of "ground truth" collected from helicopters and boats. 	 Direct visual photo-

interpretation and .automated computer techniques will be illustrated.'
I
a

MAPPING WETLAND BOUNDARIES AND PLANT SPECIES

The commitments to environmentally sound coastal land management that

'	 have been generated in federal and state governments over the past few years

have produced a demand for accurate and complete bodies of scientific data on

which to base policy decisions.	 Inventories of wetlands are now specifically

required by individual state laws, such as the New Jersey Wetlands Act of 1970,

the Maryland Wetlands Act of 1970, and the Delaware Wetlands Act of'1973

Further incentive to coastal statedvto- inventory:and manage their coastal re-

sources was 'provided by the Coastal Zone Act of 1972.	 Since plant species

composition appears to be a good indicator of relative marsh-value and also of

the wetlands-uplands boundary, wetlands vegetation is currently being mapped

using various techniques, most of them involving remote sensing. 	 (3,24,44).

Coastal wetlands of the type found along the East and Gulf coasts of the R

-United States are well suited to remote sensing techniques. 	 The uniform
1

ness of marsh topography eliminates variations in reflectance due to sloping
f
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surfaces and shadows. 	 The most common marsh plant species are few in number,

thus simplifying	 photointerpretation.	 Environmental changes generally take

place over large horizontal distances in the marsh.	 Therefore, zones of re-

latively' uniform ,vegetation are usually large-enough-to be discernible, .ven
;r

on very high-altitude imagery.	 Finally, the major plant species are different
a

enough in their morphologies to have distinct reflectance characteristics,

particularly in the near-infrared portion of the spectrum. 	 The net result is

that aerial photographs can be used to make detailed wetlands map showing'

vegetation growth patterns which are related to local environmental factors.

(2,29,44)•

Most of the wetlands mapping is being performed at scales of

1:2,400 and 1:24,000.	 A scale of 1:2,400 is usually employed to define the

"legal" wetlands-uplandsboundary and inventory the plant species composition. y

The maps contain considerable detail and at that scale can be readily related

to local zoning or taxation maps. 	 The maps are	 generally	 prepared by

'	 direct	 photointerpretation of color and color-infrared prints and transparen-

cies obtained from low-flying -aircraft. 	 In the case of'the Delaware wetlands

mapping the photographs were taken from an aircraft altitude of 6,000 feet with

six-inch focal length cameras, producing nine-inch original photographs at a

scale of 1:12,000.	 The nine-inch color transparencies were then used to make
^a

Sx black-and-white enlargements on stable "Mylar" film material at a scale of

'	 1:2,400.	 The lines separating the plant species and the wetlands,from the up-

lands were next drawn in on the enlargements by photointerpreters using the

original color and color-infrared prints and supporting data from ground surveys.

Since these maps will constitute a legal definition of the wetlands boundaries,

highest map accuracy standards must be maintained and accuracy limitations well

known.

r^
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On the other hand a scale of 1:24,000 is being used by many investigators

and agencies to map land cover and land use for planning coastal development

and managing coastal resources. 	 These maps are somewhat easier and less ex-

pensive to prepare than the detailed wetlands maps for several reasons. 	 The

scale is smaller, requiring considerably fewer maps to cover the same area.

For instance, to map Delaware's 115,000 acres of wetlands At ,a scale of

1:2,400 required. 360 maps,; whereas fifteen maps sufficed at a scale of 1:24,000.

Since base maps already existed at a scale of 1:24,000, such as USES topographic

maps, only overlays of the vegetation species were prepared, eliminating the
5

need for expensive geometric corrections and ground grid. controls.	 Figure l

shows a typical overlay map at a scale of 1:24,000 of ten plant species in the

r

wetland region around 	 Taylor's Bridge, Delaware. 	 While primary and secondary

species were	 identified by visual photointerpreation, percentages of minor

species in each of the rectangular areas were obtained_by automated computer

techniques using the General Electric Multispectral Data Processing System
x

(GEMS), a hybrid analog/digital system permitting man-machine,interaction at

nearly real-time rates. (29).	 A modified color TV camera scans the color trans- €

parency and produces three video signals representing the red, blue and green

'	 spectral components of the image.	 The output from the camera is displayed

on a color monitor.	 The human interpreter selects the area.of interest and

then employs various available electronic data processing techniques to 'identify

the spectral characteristics of the area, search the scene for areas with simi-

lar spectral signatures, and compute the percentage of the total scene occupied

by these areas. 	 The fact that most coastal plant species differ in their

spectral signatures, i.e.° the amount of light they reflect at various wavelengths,

forms the basis for -their discrimination by remote sensors using :multispectral.'

techniques.

^	 I
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A relationship between spectral reflection characteristics and productivity,

of certain marsh plant species has been found, making it feasible to mad, marsh

j productivity remotely.. 	 (44).	 However, large amounts of "ground truth" are `re-

quired.and the reliability of the technique leaves much to be desired. r
kL
h

MONITORING LAND-USE AND COASTLINE CHANGES

6 Monitoring natural changes, such as beach erosion, or man-made changes,

such as land-use, requires repetitive photographic coverage of the coastal zone

either by aircraft or satellites:	 (41)	 Fortunately, aircraft from the U. S. r

. Coast and Geodetic Survey or from the U. S. Department ofY Agriculture, Agri-P	 g

cultural Stabilization and Conservation Service (ASCS) have photographed many

r' coastal regions,at least once per decade since 1938. 	 Figures 2, 3 and 4 show .'y

three bl^;ck-and-white aerial 	 of the Indian River Inlet area inphotographs

Delaware, obtained in 1938, 1954 and 1968, respectively. 	 Reshaping of the in-

f' let and construction of the jetty is causing accretion of sand south of the

inlet and erosion north of it, with imminent danger to the highway above it.

To map the coastline change accurately one could use the procedure described

in reference 47 consisting of selecting stable reference points on the aerial
;y

' photographs taken. in different years and measuring the distance between these

points on the transient beach. 	 The measurements obtained are then multiplied x-a

f	 .' by the scale of the aerial photographs to produce ground distances. 	 The differ-'

G
r ences in ground distances ,-determined from aerial photographs taken with several

s

years of time lapse represent the. change in location of the beach over the per-

iod of the time lapse.. As a final - step one can attempt to relate the volume i

of material eroded to the linear distances of beach erosion perpendicular to
?:	 s

i

i the beach.. ?;
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Color, color-:infrared or black-and-white photographs such as shown in Fig

ures 2	 and	 be used o3 a 4 can . u d t map land use change. The most effective way

to accomplish that is to map the land use for each year represented by the

photographs on an overlay superimposed on a base map. 	 To compensate for scale

differences between the photographs and the base mapone can use a Zoom Trans-
a

fer Scope (ZTS) or similar viewing system.	 For instance, the Bausch and Lomb E

ZTS enables the user to view both an aerial photograph and a tor;•agraphical
t

}

-map of the same area. 	 Simplified controls allow the matchjng of differences

in scales and provide other optical corrections so that the two images appear

superimposed.	 Information from the photograph may then be compared or traced

I,
G,	 onto the map.
P

Satellites, such as NASA's LANDSAT-1 	 offer wider and more regular cover-

age than aircraft.	 (16,28).	 For instance, LANDSAT-1 passes over the Delaware

Bay test site every 18 days, and even if on the average two out of three pusses
j

R

are obscured by cloud cover, a successful pass every 54 days is more than r,r .<	 x

sufficient to detect changes Fn coastal land-use. 	 From an'altitude of 920 km, g

the satellite uses a four-channel Multispectral Scanner (MSS) and a Return- K

Beam Vidicon Camera to image an area•of 183 x 198 km in each frame.	 The loca-

tion and bandwidths of the four MSS channels are shown in Table 1.

TABLE 1 4

LANDSAT MSS Bands r

Band No.	 Wavelength Range (Microns) r

4	 0.5 - 0.6

5	 0.6	 0.7
F	 r

f	
6	 0.7 - 0.8 r

7	 0.8 `- 1.1

v

l
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Several investigators have successfully used LANDSAT-1 to monitor coastal L.

.land-use and its changes.	 (14,15,16,29).	 The large amount of data generated

from repetitive coverage and the digital tape format of the satellite data

make	 it attractive to analyze it with computers using multispectral techni-

ques.	 (28,45).	 For instance, digital LANDSAT-1 MSS scanner data and SKYLAB

photographs have been used in an attempt to inventory and monitor significant .r

natural and man-made.cover types in Delaware's coastal zone. 	 .4utomatic class-

ification of LANDSAT data yielded classification accuracies of over 83 per

cent for all categories shown in Table 2. (28). 	 The classification accuracy

of several important categories is shown in Table 3:

TABLE 2
M1

Vegetation and Land-Use Categories

1.	 Forest land.

2.	 Phragmites commuftis (Reed grass).

3.	 Spartinaap tens and Distichlis sp^i.cata (Salt marsh

hay and spike grass.

4.	 S2artina alterniflora (Salt marsh cord grass).
;^	 w

5.-	 Cropland.
_	 3

6.	 Plowed cropland.

7.	 Sand and bare sandy soil.

8.	 Mud and asphalt.

9.	 Saline deep water.

10.	 Sediment laden and shallow saline water.

jj
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TABLE 3

Classification Accuracy Table Derived by Comparison of LANDSAT
Thematic Data with NASA-RB-57 Aircraft Photography

Category Forest S:	 alt. S. pat. Water Agriculture

Forest 89.9% 0.0% 445% 0.0% 5.6%

Spartina alterniflora 0.0% 93.7% 5.7% .6% 0.0%

Spartina RLtens 0.0% 7.77. 87.0% 2.2% 3.0%

u

t
i.

Water 0.0% 2.6% 3.9% 93.5% 0.0%

Agriculture 3.5% 0.3% 2 1% 0.0% 94.1%

Visual interpretation of Skylab Earth Terrain Camera photographs dis-

tinguished a minimum of 10 categories with classification accuracies ranging 	 f

from 75% to 99%..(28). A land-use map derived from SKYLAB imagery is shown in

G
Figure 5. Note that the scale is 1:125,000. Maps derived from satellite or

spacecraft imagery scales generally have.scales smaller than 1'100,000. Thus,'

to obtain wide area coverage from satellite altitudes,: one must give up the

detailed resolution attainable from aircraft imagery. The size of the smallest

resolvable object at high contrast is about 80 meters for LANDSAT, 20 meters

for SKYLAB and less than 1 meter for most mapping aircraft altitudes.

Various land-use classification schemes have been proposed by individuals

and agencies. (1). Most investigators are adopting the Federal Land-Use Class

a
ificaton System for the upper levels and modifying the lower level categories

io suit the needs of their application and geographic region. Once a user has r.

selected the classification categories, he can instruct a computer to perform
Y

"supervised" or "unsupervised" classification of the imagery. Supervised

classification begins with identifying certain sets of resolution cells within

F
a scene that represents known classes of'ca_tegories on the ground. These groups

of`cells are known as 'training sets. The spectral responses in the spectral 	 Hr
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channels of each training set°provides the information needed to identify the

remaining cellos in the image. The "decision rules" that are used to identify

the class of each cell are defined by the user.

Non-supervised classification randomly selects resolution cells within

the scene.	 The spectral characteristics of these random points eventually

provide the statistics for classifying remaining cells. 	 Simply stated, a

sample cell is either placed in a cluster with other sample cells of similar'

spectral responses, or it forms the core of a new cluster. 	 These sample-derived

clusters provide the statistics usedto classify the remainder of the scene.

However, each computer-aided data processing and interpretation approach still

requires that a human interpreter be "in the loop" to verify the final, results.

Both visual and computer-aided interpretation of imagery requires some

"ground truth" data, i. e. a minimum amount of information about the area being

imaged.	 As a result, remote sensing techniques do not eliminate the need for

ground surveys, but only decrease significantly the amount of field data required.

i

CHARTING CURRENT CIRCULATION AND POLLUTION DISPERSION

in the ocean, where scattering and absorption effects are the same order

of magnitude, the penetration depth of visible light may exceed 50 meters. (20,51).

In tidal estuaries and coastal waters, scattering b y suspended matter becomes

severe, resulting in penetration depths and Secchi depths of the order of a few

meters.	 As a result, it is difficult to use remote sensors to map bottom con-

tours in coastal waters. 	 Laser profilers with the help of intense light beams

can penetrate to several times the Secchi depth, but that is still insufficient

to chart the depth contours in most estuaries.	 (5,19).

Remote sensors are also limited to a narrow band in the visible region since.

other wavelengths, such as the ultraviolet or infrared, are strongly absorbed by
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the water.	 Therefore, mult:ispectral photography and analysis over wide ranges

of the electromagnetic spectrum cannot be applied as readily to sensing sub-

stances in water as it has been over land. 	 The attenuation coefficients for
G

distilled, oceanic and coastal waters are plotted in Figure 6.	 Note that as

one goes from deep ocean to coastal conditions, the attenuation not only in-
a`

creases, but the wavelength for best penetration also shifts from the blue to-
f

i

wards the green and red.

Water features tend to changd more rapidly than those on Land, especially

ij
in tidal estuaries.	 For instance, at the mouth of Delaware .Day water samples 4	 `.

1

from ships or helicopters must be obtained within 20 minutes of a satellite r	 `;
ri

overpass to be valid as "ground truth" for suspended sediment `mapping,.com-

pared to an acceptable delay of several weeks for vegetation inventories.

Despite these problems, remote sensing techniques are being applied to attempt ,.

to chart the current circulation and dispersion of known pollutants; to map

the concentration of suspended matter and thickness of certain films; and to

determine the identity of unknown slicks and suspended matter.)
to

' Current circulation patterns have been studied remotely by time photography

of current drogues, tracer dyes, natural tracers, such as suspended. sedimen t, g

or thermal gradients.	 (23,31,36,46). 	 Surface water movement studies utilizing

fluorescent tracer dyes have been conducted on most of the major surface water
r

i

r bodies and near coastal waters of the United`States. 	 These studies have been

conducted to determine the dynamic characteristics of the water bodies with the

primary objective being to trace the current flow rate and direction and the

rate of dispersion. (49).	 Systems used to monitor tracer dyes are visual in-

spection, photographic recording, grab sample collection and laboratory analysess

continuous field sampling and recording with flow-through fluorometers, field

measurements with a submersible pulsed light fluorometer,, and remote measurements

l^



of dye concentrations from an aerial platform.(13) Rhodamine B and Rhodamine

WT are two of the more commonly used dyes, having specific gravities at room

temperature of 1412 and 1.19, and maximum emission wavelengths of 0.579 m4crons

and 0.582 microns, for solutions of 40% to 20%, respectively.
r

Rhodamine W_' dye can be tracked for several hours by low .altitude aircraft

carrying color cameras. (31) After several hours, however, the dye is diluted

to concentrations . that can be discerned only by aircraft cameras with special

optical filters that are optimized 'for the spectrum of each dye used. This is

particularly true for dye experiments in coastal waters. The emission spectrum

of Rhodamine WT and the spectral transmission of suitable filters are shown in

Figure 7. The Wratten 73 is a band-pass filter with its transmission bane 	 i

closely matched,to the spectral emission maximum of Rhodamine WT. Field tests,

however, showed that the Wratten 25A filter was more effective in enhancing

the dye patches. (31) . This result could be part ly explained by Eliason and

Foote's (13) observation that dyes at high concentrations are self-absorbing,

which causes the effective peak of the dye fluorescence line to shift to long -

er wavelengths. Therefore, the dye was tracked from aircraft that carried -	 9

cameras containing Kodachrome-X film with Wratten IA Skylight filters and Tri-X

film with Wratten 25A filters. Aircraft altitudes ranged from 300 to 1,000 m.

The drogues shown in Figure 8 are small, compact units which can be dropped_

and tracked from low-flying aircraft. Their basic, design does not differ sign-

ificantly from that- of drogues used by various investigators during the past

few decades. (40). These small drogues are deployed whenever a detailed chart -

ing of current' circulation over a realatively small area, such as four square

'	 miles, is desired. As shown in Figure 8, the drogues consist of a styrofoam
II 	 g,
^.	

float and line to which is attached a current trap consisting of a stainless

steel biplane. The length of the line determines at what depth currents will

s



be monitored. The floats are color-coded to distinguish their movement and

mark the depth of the biplanes. Packs with dyes of two different colors can

be attached to the float and the biplane. 	 (30).	 The movement of t'e dye and

drogues is tracked by sequential aerial photography, using fixed markers on

t shore or on buoys as reference points to calibratethe scale_and.direction of

drogue movement.	 The results of a combined dye and drogue experiment at the
g

mouth of Delaware Bay are illustrated in Figure 9.	 As shown,'subsurface

currents differed significantly from surface currents during both the ebb and

the flood tidal cycles.	 (31)

Satellites, such as LANDSAT-1 have been used to obtain'a synoptic view of

current circulation over large coastal areas. 	 (27,36,43)•	 Since in turbid
n

coastal regions suspended sediment acts as a natural tracer, cost is minimized

by eliminating the need for expensive injections of large volumes of dye such

r
as Rhodamine-B.	 Figure 10 shows the LANDSAT-1 MSS band 5 image and predicted

tidal currents of a satellite overpass on February 13, 1973, about one hour

after maximum ebb at the mouth of Delaware IBay. 	 The intensity' variations

F throughout the bay are caused by suspended sediment, and not bottom contours,

since the actual water depth in most areas was at least three, times the Secchi
I

depth.	 Strong sediment transport out of the bay in the upper portion of the

water column Is clearly visible, , with some of the plumes extending up to 30 I=

£ out of the bay.	 The northward curvature of small sediment plumes along New -
I

Jersey's coast clearly indicates that the direction of the nearshore current at 	 j
i

that time was-towards the north. 	 The wind velocity at the time of the satellite

overpass was about 13 km'per hour from the west-northwest, reinforcing the tidal

current movement out of the bay.

f
The suspended sediment and current circulation patterns ii. Figure TO can

be significantly enhanced not only by careful print development, but also by,

ICI i'It	 UCS IUTY OF 11
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multispectral enhancement techniques such as color density slicing and color

additive viewing.	 Color density slicing breaks up gradual grey tone variations

into digital-steps and converts each grey tone step into a distinct color,

helping the eye recognize subtle ,grey tone changes.	 This is effective because

the average human eye can distinguish over 100 color hues while it can only

discriminate about a dozen grey scale levels.	 Color	 additive viewing involves

the exact superposition of transparcencies of the same scene obtained with

different filter film combinations. 	 Both enhancement t.chni ues-have°bEien used;. 	 _	 e	 e	 q

with some success to improve the contrast of water features.(27,33,38,53).

One of the principal shortcomings of satellite imaging of coastal currents

has been the inability to determine current magnitude and to penetrate beyond

the upper few metersof the water column.	 These objections have been overcome

by complementing satellite oboervations with drogues tracking currents at var-

iousselected depths . .	 (30).	 One type of drogue used was developed by ITT-Electro

Physics Laboratories and emits a radio signal which is tracked from shore. 	 The

drogue consists of a plastic pipe less than-two inches in diameter, with all of its

u	 electronics and antenna totally enclosed within the pipe'i(Figure 11).- It is also

provided with a water temperature sensor. 	 A current trap (biplane) is attached

to the bottom of the drogue and can operate at a variety of depths from about

one meter to a hundred meters.	 The intended radiated power of the drogues is

such that the position of each drogue can be fixed by triangulation from shore

with .a mobile antenna over a range, in excess of 300 km, with an accuracy

approaching +=0.5 degree.	 By combining `'' the satellites' wide coverage with air-

craft or shore stations capable of tracking the expendable drogues, a cost

effective, integrated system has been devised for monitoring currents over

large areas, various depths and under severe environmental conditions. (30).
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Aircraft and satellites, supported by water sampling conducted from boats,

have also been used to study the movement and dispersion of various pollutants

in estuarines and on the Continental Shelf. (4,32,42,50). 	 Approximately forty
f

nautical miles off the Delaware coast is located the disposal site for waste

<ischarged from a plant processing titanium dioxide.	 The discharge is a

greenish--brown, 15% to 20% acid liquid which consists'primarily of iron chlorides

and sulfates.- The barge: which transports this waste has a 1,000,000 gallon f

capacity and makes at least three trips to the disposal site per month. 	 The

frequency of this dumping made it possible for the LANDSAT-1 satellite to image

the acid plume in various stages of degradation, ranging from minutes to days

after dump initiation. (30). 	 Nine photographs were found which show water dia- ;>

coloration.	 The dump pattern and the time difference between the dump and

photograph give strong indications that the discolorations are the acid plume.

Careful examination of an overpass on January 25, 1973, disclosed a fishhook

shaped plume about 40 miles east of Cape Henlopen caused by a barge , disposing

acid wastes.	 The plume shows up more strongly in the green band than in the

red band,, due to the iron content of the discharge. 	 Enlarged 'enhancements of

the acid waste plumes, prepared from the LANDSAT-1 MSS 'digital tapes (Figure -
;aE^

12) aided considerably in studies of the dispersion of the waste plume. 	 Cur-

rently acid dumps are being coordinated with LANDSAT-1 overpasses in order to

determine the dispersion and movement of the waste materials along the Conti-'

nental Shelf.	 Sludge disposal plumes in the ocean off the Delaware coast and

in the New York Bight have also been detected in LANDSAT-1 imagery. 	 (38).

Thermal scanners on various platforms are frequently employed to chart current

circulation patterns in the ocean and to-study'specific thermal effluent plumes.

(46,48).	 The accuracy of such thermal maps is of the order of + 1°C without

"ground truth'' and about + 0.2`C with calibration provided by surface water

temperature measurements."'



DETERMINING THE CONCENTRATION AND IDENTITY OF WATER POLLUTANTS

It is far more difficult to .remotely sense the concentration and identity

of an unknown pollutant than to monitor the movement and dispersion of a known

substance.	 Oil is one example. 	 Oil slicks have been tracked successfully'

with remote sensors employing the ultraviolet, visible, infrared and micro-

wave regions of the electromagnetic spectrum.(6,26).	 Both passive and active

sensors are being used, such as film cameras and ultraviolet lasers, respec-

tively.	 The least expensive means of tracking oil slicks is from a single

engine aricraft with a camera using color film or a sensitive black-and-white

film, with an ultraviolet filter (e.g. Tri-X film with Kodak Wratten 18A fil-

ter).	 However, except for partially successful attempts under controlled coil- r

daLtions, no reliable technique has yet been developed for remotely determining

oil slick thickness, the concentration of emulsified oil, or'the type of oil

in a slick.

At the beginning of this paper,I pointed out that one of the most effective 	 E

ways to identify and discriminate certain vegetation and Land-use types was by

their spectral signatures.	 This technique is more difficult to ,apply to sub-

stances in water, due to complex mixing, multiple scattering and absorption

proce"ses, especially in coastal waters.	 (17,20,39).	 For instance, approxi-

mate chlorophyl concentrations have been mapped remotely near upwelling regions

of the oceans, but whenever the chlorophyl is mixed with suspended sediment in

estuarine	 or near-shore areas, its assessment becomes extremely complicated.

(.4,7).	 Therefore, it is not surprising to find that the spectral signature of

a substance in water may differ as much from its own signature obtained under

slightly' different conditions (sun angle, _sea state, depth, etc.) as it differs

from that of another substance.	 This sensitivity of spectral signatures to 	 -.

small changes in environmental or imaging conditions, tends to make remote
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sensing of water substances heavily dependent on a well-coordinated ground-

y

truth acquisition program including water sampling at various depths from

boats or helicopters. 	 (33,52).

The suspended sediment concentration map`in Figure 13 illustrates what

can be accomplished with proper ground truth data. 	 The image radiance was
'r

extracted from computer compatible digital tapes comprising a LANDSAT-1 MSS

band 5 image of the Delaware Bay similar to the one shown in Figure 10. 	 The {

image radiance was then correlated with data obtained from water sample
s

analyses of suspended sediment concentration.(27). Since a high degree of

correlation was obtained, the map in Figure 13 was prepared, showing 	 the sus-
t_

#

p'ended sediment concentration in the upper one meter of the entire Delaware

Bay area.	 Other investigators are combining several of the LANDSAT MSS bands e

to map suspended sediment concentrations. 	 (21,52).

GENERAL CONSIDERATIONS AND PRACTICAL ADVICE
f

y

The most frequent question I have encountered during lecture tours con-

cerns the availability of imagery for a given area, how to obtain it and how

to arrange for future remote sensing overflights.	 In addition to aerial 3

photographs at_USGS,, USDA and state,agencies, the U. S. Deparment of Interior's
f	 y

Sioux Falls Data Facility has on file imagery of almost every coastal area of k

the country.	 Some regional NASA centers have an interest in providing local

investigators with mapping overflights if such flights can be made part of

another, contracted mission. 	 'Help from Air National. Guard units and state

_police aircraft can be solicited. 	 For cartographic applications, one may have

to hire a`commercial_company to perform precision overflights`.	 On the other
' s

hand, for rough'surveys, renting a single-engine plane and using hand-held 35mm

cameras may suffice. 	 The rental of single-engine aircraft in Delaware is about

E t''
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$35 per hour. We save about-30% of this cost by providing our own pilot. Any

high-wing aircraft, such as the Cessna 150 or Cessna 172 should be suitable.

To gain additional field of view, during good weather, it.helps • to- remove

the door on the photographers side of the plane.	 Film and filter combinations

should be selected specifically for each-application.	 However, contrast is

generally improved if skylight or,haze filters are used to eliminate the

ultraviolet and a portion of the blue light.

Single-engine, non-pressurized aircraft are limited to altitudes below

12,500 feet and must stay within gliding distance of the shoreline.	 Since the

cost of using twin-engine aircraft or helicopters is three times higher$ single-

engine aircraft can still be used at considerable-distances from shore, if they

are in close proximity to boats.	 Safety; considerations and the collection of

Nom..,

useable ground truth data dictate that a reliable aircraft-ship-shore communi-

cation system be used, including back-up radio channels in case of main

channel failure. 	 Furthermore,, on some missions, in addition to a pilot and a

photographer, a third crew member is desirable for keeping a log of camera

frames, visual observations, and sketching rough maps to aid the subsequent

photointerpretation	 of the aerial photographs.

SUMMARY AND CONCLUSIONS

a

Remote sensing techniques have been applied with varying degrees of suc-
a

cess to accomplish the following in the coastal and estuarine areas; ".

- mapping wetland boundaries, plant ;species diversity and pro-

ductivity.

- monitoring man-made and natural changes; in the coastal zone,

such as.land-use 'change and shoreline erosion.

- charting current circulation and pollutant dispersion, in-

cluding 'slicks and suspended matter. =--



t

,

determining the identity and concentration of . certain natural

and man-made pollutants.

Imaging suspended matter or other subsurface features in water is more
d

difficult than mapping surface :slicks or land-use cover because of complex -

mixing, scattering and absorption processes in the water column.	 The failure
{

of remote sensors to penetrate beyond a few meters into turbid coastal waters

makes it difficult to map bottom contours or track near'-bottom sediment trans-

port.	 Wavelengths outside the visible region are strongly absorbed in the

water column, diminishing the value of ultraviolet and infrared bands, which

are used quite effectively for surface slick and land-cover discrimination.
9

a
Closely coordinated ground truth collection programs are required for

most remote sensing efforts,'especially for the assessment of marsh productiv-

ity, the identification of water pollutants and the mapping of their concen-

tration.	 In general, the acquisition of data from aircraft or satellites has

not eliminated the need for data collection from ships and by ground 	 survey
i x

teams, but well coordinated remote sensing efforts have significantly de-

creased the number of samples that have to be collected. on the ground, result-

ing in cost savings on ship time and ground personnel.

.
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FIGURE 2. AERIAL PHOTOGRAPH OF THE INDIAN RIVER INLET AREA OF THE
DELAWARE COAST, AT A SCALE OF 1:20,000 IN 1938. (USDA-ASCS).
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FIGURE 3. AERIAL PHOTOGRAPH OF THE INDIAN RIVER INLET AREA OF THE
DELAWARE COAST, AT A SCALE OF 1:20,000 IN 1954. (USDA-ASCS).
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FIGURE 4. AERIAL PHOTOGRAPH OF THE INDIAN RIVER INLET AREA OF THE
DELAWARE COAST, AT A SCALE OF 1:20,000 IN 1968. (USDA-ASCS).
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