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A Three-Dimensional Viscoelastic Model of a Strike Slip Fault
 

Summary
 

An analytic approximation to the Green's function for the
 

displacements due to a strike slip point source in an elastic
 

layer over a viscoelastic half-space is developed. This approxi­

mate Green's function is useful because it can be analytically
 

integrated over the fault surface. Comparison with a numeri­

cal integration of the exact solution integral indicates that
 

the approximation is quite good. The approximate Green's function
 

is integrated analytically to obtain the displacements due to
 

a finite rectangular strike slip fault in an elastic layer over
 

a viscoelastic half-space. Ground displacements and angle changes
 

from a model survey net are computed to illustrate the visco­

elastic relaxation which follows a fracture in the elastic region.
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Recently there has been a growing interest in the use of
 

static or quasistatic displacements, strains and tilts for the
 

investigation of earthquake-related phenomena. In particular,
 

aseismic horizontal surface displacements due to the San Andreas
 

fault have been studied extensively (Savage & Burford 1973;
 

Thatcher 1974, 1975a,b) by the use of geodetic triangulation
 

techniques. The importance of the San Andreas lies in its well­

documented history (Meade 1973) of aseismic surface motions.
 

With this data we can learn much about the processes involved
 

in pre and postseismic displacements and in tectonic plate motion.
 

Observations of surface movements due to the San Andreas
 

can be interpreted by means of mathematical models obtained
 

by idealizing the fault as a vertical fracture in an elastic
 

medium. The models describing near field displacements are
 

obtained by integration of a Green's function for a strike slip
 

source. For convenience, the source is usually assumed to be
 

located in an elastic half-space whose elastic properties may
 

vary with depth. Although the Green's function has been com­

puted for both Line and point sources in layered half-spaces
 

(Ben-Menahem & Singh 1968; Rybicki 1971; Chinnery & Jovannovich
 

1972; Jovannovich et al. 1974a,b) the Green's function for a
 

point source has nor been analytically integrated over a fault
 

surface. The line source Green's function is really only use­

ful in describing a fault whose dislocation function changes
 

slowly along its strike. The point source Green's function
 

can be used to describe a finite-dimensional fault with an arbi­

trary dislocation function.
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In this paper we construct a model for a rectangular verti­

cal strike slip fault which can be used to explain the post­

seismic surface displacements occurring after a large earth­

quake. We propose to represent the fault as a fracture in an
 

elastic layer over a viscoelastic half-space, a model conceptually
 

similar to that proposed by Nur and Mavko (1974) for infinitely
 

long, dipping thrust faults. Unlike the Nur-Mavko model how­

ever, ours describes a vertical, finite-dimensional strike slip
 

fault. In both models, the displacements from a fracture in
 

an elastic layer overlying an elastic half-space are first com­

puted, and the correspondence principle (Biot 1954; Lee 1955;
 

Tung 1965) is then used to introduce Newtonian viscoelastic
 

properties into the half-space.
 

We base our model on an approximate representation of the
 

Gteen's-function for horizontal displacements due to a strike
 

slip point source in an elastic layer over an elastic half-space.
 

Although thie exact expression for the Green's function has been
 

found (Ben-Menahem & Singh 1968), it is in the form of an inte­

gral over a Fourier wave number k. In our model, three additional
 

integrations of this Green's function are needed: two over
 

the fault surface and an inverse Laplace transform from use
 

of the correspondence principle. These four integrals can be
 

done numerically, but since near field displacements are desired
 

over a wide range of times, small mesh sizes are needed in the inte­

grations. The approximate Green's function described below
 

is accurate, easy to use and has the advantage that all the
 

succeeding integrations can be done analytically. Thus the
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inverse problem (Rundle & Jackson 1976a,b) can be done sixzply
 

using analytically computed partial derivatives.
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An Approximate Image Technique
 

Ishii and Takagi (1967) solved a two-dimensional problem
 

for the displacements from a line force located at the coordinates
 

x3, x2 = 0, in an infinite elastic medium whose rigidity changes 

abruptly at Y3 = 0 (figure 1). Rybicki (1971) showed that the 

equations of elasticity for this case reduce to Poisson's equa­

tion. He was thus able to use the method of images (figure 2)
 

to find the displacements from a line source in and below a
 

horizontal layer over a half-space. For an infinite medium
 

whose yl- Y2 plane divides the space into two parts, one of
 

rigidity ill and another of rigidity pI21 we can write the dis­

placements in the Y1-direction at a point (Y2, Y3) due to a
 

line force at (x2, x3 ) of unit magnitude:
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where p, is the rigidity for y3 < 0 and P2 is the rigidity for
 

indicates the coordinate along
0. The superscript of R 


which the displacement appears, and the subscript indicates
 

the direction along which the force acts. The tilde under the
 

variable denotes a vector.
 
It has been shown (Rybicki 1971) that the displacements
 

V1 2 at (x2, x3) due to an elementary single-couple line dis­

location UodS at (y2' Y3) across a vertical plane can be obtained
 

from ki( , j)by the operation
 

V 2 U (v, )
Y3 0 

{Il13 <0 (2) 

P2 Y3 > 0 

where U is the magnitude of the dislocation and dS is the area
 o 

over which it occurs. It is important-to notice that the dis­

placements Vk 2(, y) at in direction k due to a strike slip 

source at v are proportional to the horizontal (12) shear stresses 

at y due to a unit force at x in direction k. 

We would like to find the displacements due to a line dis­

location in a layered half-space. Using the coordinate sys­

tem of figura 2, one can superpose image line forces to satisfy 

the requirements of a traction-free surface at y3 = 0 and con­

tinuity of the solution and its consequent stresses at y3 = H. 

The drsplacemenrs from a line force in a layered half-space 

whose layer thickness is H (Rybicki 1971) is: 

, ,;G'I
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where p is the layer rigidity and 112 is the half-space rigidity.
 

The operator UodSp1wv can again be used to obtain the displace-

V2
 

"
 ments at (x2 , x3) due to a line strike slip source at (y2' Y3)


Chinnery and Jovannovich (1972) have extended (3) to a many­

layered half-space.
 

Equation (3) satisfies the conditions which uniquely define
 

the Green's function for the linear differential operator, the
 

Navier equation of elastostatic equilibrium, and the boundary
 

conditions of the problem (Courant & Hllbert 1953, p. 353):
 

(i) For fixed x2 1 a singularity
and x33F), Gt(: has 

in the stress at Y= x2 y x Thus in two dimensions GI( , X)
 

is proportional to the logarithm of the distance between observa­

tion and source points.
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(ii) The displacements GI(Z, .) and tractions on any 

horizontal plane are everywhere continuous except at Y2 = x 

Y3 =x3
 

(iii) Gl( , j) satisfies the boundary conditions. 

These three requirements imply that for the Green's function 

considered here, the reciprocal theorem holds: G XN = G (x ) 

Since we are interested in calculating displacements due
 

to a finite-dimensional strike slip fault in an elastic layer
 

over a viscoelastic half-space we must find the Green's function
 

for a strike slip point source. Let us consider the situation
 

in which a double-couple source at y3 is in the layer and attempt
 

to write down an approximate Green's function. The'approxi­

mation must satisfy conditions (i) - (iii) as well as possible.
 

For example, one can show that condition (ii) can be satisfied
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using any function whose y3 and x3 arguments appear only in
 

2 + 2 2the form (y3 - x3) , (Y3 x3) , (Y3± 2mH± x 3 ) , with the function 

occurring in the same term-by-term arrangement as the logarithms 

in equation (3). This suggests that we can apply the form of 

(3) to our three-dimensional problem.
 

We already know the exact analytic solution for the dis­

placements u 2 ( , ) from a double-couple force in an infinite
 

medium (Steketee 1958):
 

u 1 2 ( , ) -i 2 (l-ct)-GctR3 R25 

R3 

2 3oSI XX
u12 (&, y) - of (I-)- 6 _(4) 

3 , _ UodS X1 X2 (X3-Y3)

u12  - ir R
 

The double-couple source is located at (0, 0, y3) and the 

observation point is at . U dS is the elementary displacement 

dislocation corresponding to the double-couple force, a + 
X+ 2w"
 

and R 2 y) 2. Again the superscript indicates

1x + 2+ (xc3 Y3 

the displacement direction, and the subscripts correspond to 

the fact thatthe uk are derived by finding the horizontal
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shear stresses at x due to a point force at 7 along coordinate 

k. Using the fact that equation (3) represents horizontal dis­

placements due to horizontal forces, we can try the following
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as an approximate Green's functioA:
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where
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5 2%x 2 + (x 3 + 2rH-y3) 2
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x 2 +
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R=x 2 + x + (x 3 -2mH-v3)2 



where again pl is the layer rigidity and P2 is the half-space
 

rigidity.
 

This trial Green's function has a singularity at the pro­

per point; its contribution to displacement is continuous at
awl 2 

= H; and i ontribution to shearing stress, 1- 1, and nor­
3 ='wl .2 

mal stress, ? X 3 is continuous at x3 = H if X = which 
31 2x3 


we shall henceforth assume. However, it is evident that there
 

still exists a normal stress at x3 = 0, and thus the surface
 

is not stress-free. We can remedy this defect by adding to
 

each source and its image a term corresponding to the displace­

ments that result from superposing a normal stress to cancel
 

the normal stress mentioned above:
 

2 2 21UodS x2 .pl 1- 2i mX 2 Xl x2 X 

2Q,(x 1-4 (A+-r + xL(A+ B+) + -(A_+ -By)].r r mrl Pi +1P2 rr 7 r r 

for -3 = 0, source at (0, 0, y3 ) , Y3 <H (6) 
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2 2 2r x=l+x 2 

U dS x x 
Note that each term of the form o87 (A+ + 1B+) is the 

r , r 
Green's function for a strike slip point source at depth 2mH+ Y3 

in a homogeneous half-space for observation points at the free
 

surface x3 = 0 (Steketee 1958). Thus for observation points
 

x3 >0, gl2 (;" X) can be written out by substituting for each
 

Green's function for x3 = 0 the corresponding Green's function
 

for arbitrary x as found by Steketee (1958).
 

1
The surface x3 = 0 is now stress-free, but g12 ( ' ) and
 

its associated contribution to the stresses are no longer con­

tinuous at x3 = H. We are missing a set of terms which "fixes
 

up" g12(, ) and makes it smoothly continuous across the boun­

dary between layer and half-space. Since we are limited to
 



the observation of surface motion however, it is necessary only
 

to insure that this approximate solution is nearly equal to
 

the real solution for observation points at x3 = 0.
 

We shall postpone further discussion of the accuracy of
 

the approximate Green's function to a later section. 
Instead
 

we complete the development of the model by integrating (6)
 

over a rectangular fault surface and introducing viscoelastic
 

properties into the half-space.
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The Finite Fault
 

The solution for horizontal displacements due to a finite
 

fault can be found by integrating (6) over the area of the fault
 

according to the well-known Volterra relation (Steketee 1958):
 

u1k (Y) = fAu, k (,ynd( 7 
r.y = fault surface )ndS (7) 

where n is the outward normal to the fault surface and Aui 

is the displacement jump. Both a lower tilde and index nota­

tion are used to denote vectors and the summation convention 

is assumed. An upper carat denotes a unit vector. 

Note that the observation point is now located at 6, and 

the integral is performed over the variable g. Performing (7) 

over a rectangular strike slip fault of semilength L with top 

at depth d, bottom at depth D and with Au. = )0. = constant 

is particularly easy. The result can be taken from the litera­

ture (Chinnery 1961, 1963) using the coordinate system of figure 

3. For y3 = 0, x3 <H, the case of interest here,
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where
 

p = 3 q = x3-Y 3g3+y 

+P+ x3 +Y3 2mH q+ = x 3 - Y3 - 2mH 

+P- =x 3 -Y3 2mH q_ = 	 x 3 +y 3 - 2mH 

t = -Yl a = . 
X1 + 2 1 
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The notation 11 is taken from chinnery (1961, 1963) and 

has the meaning f(xl, x3) = f(+L, D) -f+L, d) - f -, D) 

+ f(-L, d). 



Introduction of Time Dependence
 

Having found the displacements due to a finite-dimensional
 

fault in an elastic layer of rigidity v, over an elastic half­

space of rigidity p2 ' we modify the solution to add Newtonian
 

viscous properties to the half-space. It is not our purpose
 

here to enter the debate upon the rheological properties of
 

the earth's consitutive material. We remark, however, that
 

a Newtonian flow law may be justified for the shallow visco­

elastic regions in the earth (McKenzie 1968) although there
 

is evidence for nonlinear rheology as well (Post & Griggs 1973;
 

Stocker & Ashby 1973). In addition, it has been shown that
 

under some conditions a Newtonian rheology producesflowistruc­

tures very similar to a rheology in which the strain rate depends
 

Upon the cube of the deviatoric stress (Parmentier et al. 1976).
 

Thus we conclude that the use of a Newtonian flow rheology for
 

our half-space is justified provided it is recognized that the
 

viscosity may be an "average" in the sense of Parmentier et
 

al. (1976).
 

It may also be that mineral rheology plays little role
 

in the stress relaxation process. Since the zone of brittle
 

fractura ends at a relatively shallow depth on the San Andreas
 

(Brace & Byerlee 1970), an alternative source of the viscous
 

properties of the- lower viscoelastic zone may be transient flow
 

of water in porous rock (e.g. Nur & Schultz 1973). Darcy's
 

law, which governs hydrogeologic flow, implies that the stress
 

relaxation process is essentially linear. Thus to a good
 



approximation, the half-space can be assumed to be a linear
 

viscoelastic solid.
 

To add viscous properties to the half-space, we use the
 

correspondence principle (Biot 1954; Lee 1955; Fung 1965) as
 

outlined in the introduction. This principle states that if
 

the elastic solution to a problem is known and the inertial
 

forces are negligible, the quasistatic solution for a linear
 

viscoelastic medium is obtained by replacing all time-dependent
 

quantities by their Laplace transforms and then taking the inverse
 

transform of the resulting expression. In the case of (6) or
 

(8), we replace P2 by 12 (s) and UoH(t) by Uo/s, where H(t)
 

is the Heaviside step function, t is time and s is the conju­

gate Laplace variable.
 

We choose the properties of the half-space to be those
 

of a Maxwell viscoelastic solid whose elastic constants are
 

the same as those of the layer. This choice of Maxwell pro­

perties is motivated by the observation that for times short
 

compared to a year the earth behaves elastically, while for
 

longer times permanent non-elastic deformations are observed,
 

for example ia areas of crustal rebound (McConnell 1965; Crittenden
 

1968; Peltie-r, J974) and in tectonically active fault zones
 

during recent geologic history.
 

The Maxwell solid is the simplest kind of medium to exhibit
 

this dual behavior. A Maxwell element is shown in figure 4;
 

If a constant displacement is suddenly applied to the free end,
 

the spring will immediately stretch. In the course of time,
 

the spring will gradually unstretch as the piston in the dashpot
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moves. The constitutive equation for a Maxwell solid is
 

9211 0 
ij + Ykk6 + -o-". -5t (Xekk6ij + 2Poei3) (10)
 

where a.. is the stress tensor, ei is the strain tensor, 6. 

is the Kronecker delta, po is a constant rigidity and n is the
 

viscosity. The constants X and y are 
 related to-compres­

sional stresses which are assumed not to relax.
 

Upon performing the Laplace transform on (10), 
we can set
 

joS joS
 
2 S + 2po/I §-+ 2/T 

( s )11i = o0 = n/110 

T is a characteristic time constant for the system. Since the
 

rigidity of the Maxwell medium has been chosen equal to that
 

of the layer, only the effective viscosity f remains unknown.
 

After insertion of (11) in (8) and (9) we must find the
 

inverse Laplace- transform L-1r of quantities such as
 

Io sg+2/_ 1 1 1 m (12) 

+ 2/+ 
s 

From Abramowitz and Stegun (1970) we find
 

L-lL 1k (- e-t 1 (t -) (13) 
T17TM s MI+ =n= 0 n 
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Upon insertion of (13) into (8) and (9) we get expressions
 

of the form
 

ul() UH(t)F (,)I+E{1-e-t/T n=0 tn _!"u)(A+M (V) +A m_ (V)1 _ m 

n2U°I(t)F2 ( {)Ll+ Z{l-et/T ()fl n (+} m_ ] 

2W o~)F' mn=O + M 

where the A(V and B(X,) can be found from (8) and (9) and
 

the F. (.9 are the uniform elastic half-space solutions.
 

Upon examination of (14) it is clear that the first response
 

of the system is entirely elastic. As time proceeds, succes­

sive terms under the summation on m become progressively more
 

important. In the limit t-> , the exponential dies away and
 

we get 

u l ( y) = U H(t)F I+Z(A (V)+Alb 0 + M -D 
(15)
 

u (y) - UoH(t)F 2 ( 1 + E(B (Y1 + (Y) 
2 a 0 m + 

Numerical tests indicate that only the first five terms need
 

be retained under -the sum in (14) for convergence accuracy within
 

1% for t <2T. Since Am+(,) and Bm+(X) have the same sign as 

FI (y) respectively F 2 ( ), we arrive at the conclusion that with 

the-viscoelascic model (14) the quasistatic stress relaxation 

tends to increase the displacements found immediately after 

the fracture. 

For a long fault which breaks entirely through the elastic
 



layer, the post-fracture viscoelastic displacements can be an
 

appreciable fraction of the initial movement (figures 5- 9).
 

Within ten kilometers of the fault shown, there is a relatively
 

small amount of post-fracture movement compared to the rupture­

induced displacements. Between approximately ten and one hun­

dred kilometers, the post-fracture displacements diminish slowly
 

with distance at any given time. At distances of more than
 

thirty kilometers from the fault, most of the total movement
 

is accounted for by viscoelastic effects rather than by the
 

initial elastic response. We thus obtain surface strains increasingly
 

concentrated near the rupture as time progresses.
 

Observations of strains localized near the San Andreas
 

fault following 1906 led Thatcher (1975a) to postulate his aseismic
 

sliding model, but as shown here it is also true that such a
 

btrain-distribution can equally well be explained by anelastic
 

adjustment. The important point is that whereas stable sliding
 

tends to alleviate overall strain buildup and thus increase
 

the time interval between shocks, viscoelastic adjustment has
 

the opposite effect of increasing the stress on the fault following
 

the earthquake and thus decreasing the waitihg time until the
 

next shock.
 

As another illustration, angle changes for the model tri­

angulation networks in figure 10 have been computed from equa­

tions (8), (9) and (14) and the results are shown in Table 1. 

The most important factor determining transient motion due to 

viscoelastic adjustment within each time interval At = T = n/o 

is the relationship of the elastic layer thickness H to the 
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fault plane height D- d. If H%,D- d, the amount of post-rupture
 

movement will be large; if H >> D- a, the motion will be small.
 



Accuracy of the Green's Function
 

To determine the accuracy of g12 j we can compare the sur­

face displacements computed from the approximate Green's function,
 

equation (6), with those obtained from a numerical integration
 

of the exact solution (Ben-Menahem & Singh 1968). Note the
 

error in equation (11-57) of Ben-Menahem and Singh (1968), which
 

is corrected in Jovannovich et al. (1974a). The integration
 

was performed using the IBM-supplied Scientific Subroutine Package-


In presenting the results of the surface displacement cal­

culations we adopt the Jovannovich et al. (1974b) convention
 

of U° = 1 km and dS = 1 km2 . The worst agreement between equa­

tion (6) and the exact solution is expected when the source
 

point is near the layer/half-space boundary, because the dis­

placements and stresses implicit in the approximate Green's
 

function are not continuous there. Tables 2 - 3 and figures
 

11 - 12 are examples of comparisons between exact and approxi­

mate Green's funcrions.
 

In figure 11 and table 2, the layer thickness has been
 

chosen equal to 10 km. Using fault parameters appropriate to
 

the San Andreas as in Rundle and Jackson (1976b), use was made
 

of Thatcher-'s (1974b) result that the fracture of the 1906 San
 

Francisco earthquake extended to a depth of 10 km. The elas­

tic layer was therefore constrained to be at least 10 km thick.
 

Since the fault plane extends from the surface to 10 km depth,
 

it is natural to check the approximate Green's function for
 

H = 10 km, since as stated above, the approximation is expected
 



to be olr3 c for Lhls case.
 

In figure 11 and table 2, the source depth is varied from
 

10 to 1 km in 1 km increments. The point of observation was
 

located at a radial distance of 10 km from the epicenter of
 

the source. The error is defined as I(approximate surface dis­

placement- exact surface displacement)/(approximate surface
 

displacement)}xlOO%. It is evident that the greatest errors
 

in theapproximate Green's function occur when the source is
 

near the layer/half-space boundary. Above and below a source
 

depth of about 5 km the difference between exact and approxi­

mate Green's functions has opposite sign. Upon integrating
 

the Green's function over the entire 10 km depth, the errors
 

tend to compensate in this case.
 

To estimate the error in the displacements from a finite,
 

-rectangular fault obtained using equation (6), we can sum the
 

entries in column 2 of table 2 and divide them by the sum of
 

the entries in column 3. The result of this calculation indi­

cates that the discrepancy in the displacements caused by using
 

(8), (9) and (.14) in place of the exact solution is small.
 

Figure 12 and table 3 illustrate the effect of a changing
 

elastic layer thickness H upon the surface displacements due
 

to a source fixed at 10 km depth. The point of observation
 

was again located at an epicentral distance of 10 km, while
 

H was varied from 10 to 30 km in 5 km increments. As shown,­

the error in the surface displacements decreases sharply as
 

the interface is removed to a greater depth. For thicknesses
 

H greater than 15 km, the error is never greater than 5% in
 



magnitude.
 

Note that equation (6) is essentially a perturbation expan-

I- 112
 

sion in the quantity I + P2 H about the homogeneous half-space
 

Green's function for y3 < H, x3<H, and is a similar expansion
 

multiplied by the constant 2P2/(l+112) 
for x3 <H, Y3 >H. From
 

the observation that successive terms represent more deeply
 

buried "sources" of the same strength, thus giving rise to smaller
 

contributions to the surface displacements, we can write the
 

series in the form
 

g12, Y = F 1 (, 1{l+ zmL ( , 1 +Bm, jI Y3 <H, x3<H 

(16)
 
12 2i m n
 

-r 11 F~5 ){l+ mEl v] >H, xjH(x [An, 

where FI( , ) is the Green's function for a source in a homo­

geneous half-space, and A and B are defined as in (6). Note
m m 

that Am(;, X) and Bm(;, X) are positive definite since they
 

are derived from terms under the summation in (6) which all
 

have the same sign as FIQ5 , , y) and Bm(i, ) are also). Am( ( 


bounded, and because lI < 1 for all physical earth models, both
 

series in (16) converge (e.g., Whittaker & ;atson 19 7, u. 11).
 

We can sho- that the representation (6) has the correct
 

limiting properties. For the case pi= 12" g12 and g12 reduce
 

to the Green's function for the homogeneous half-space. Also,
 

we know that integration of the solution for a point source
 

along a line gives rise to the solution for a line source, so
 

integration of the infinite series of point sources represen­

ted by (6) along a line parallel to the x, axis yields Rybicki's
 



/7
 

(1971) Green's function. Finally, as we let H go to infinity
 

in the upper of (6), the terms under the summation vanish, whereas
 

if H approaches zero in the lower of (6) we get
 

1 2m2 02li 1. 
lim gP2 )( + 2 P + 1i+ 

M71 (17) 

2vp2 1 F (17 

Pi +112 1 1 - P2 
1 + 112 

The fact that the solution to this problem can be repre­

sented fairly accurately as a rapidly converging series in the 

parameter g suggests a method for the evaluation of exact inte­

gral solutions for problems of this type. At present, the inte­

gration of the exact Green's function has been done numerically 

by approximating the denominator as a finite series of exponen­

tials (Ben-Menahem & Gillon 1970). Upon examination of the 

exact Green's function integral, equation 11-56 of Ben-Mehanem
 

and Singh (1968), we see that if we write
 

!-v
 

1+-X (18)t 
9 )i- +L +LI+L 

V 1 + HS T-- 2pL + 3g (1 -) 

we can expand the integrand in powers of C_ The convergence
 

properties of the series can be investigated and if (6) is an
 

indication, term-by-term integration can probably be carried
 

out. The advantage of this procedure is that it may well put
 

the integral in a form which is more amenable to analytic solution.
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We know in advance that the first term must be the Green's function
 

for the homogeneous half-space and thus we know its algebraic
 

representation (Steketee, 1958). In addition, the modelling
 

of an elastic layer over a viscoelastic half-space via the cor­

respondence principle is particularly easy due to the isolation
 

of the elastic constants in the factor . One can extend this
 

procedure to half-spaces of many layers by using multiple sums
 
11
 

of several parameters a- o where p0 is the rigidity of a 
0
 

particular reference layer.
 



Suxmarv 

We constructed an accurate analytic approximation to the
 

Green's function for a vertical strike-slip fault an an elastic
 

layer over an elastic half-space. To model the San Andreas
 

fault, we integrated the Green's function over a rectangular
 

surface and introduced linear viscoelasticity into the half­

space by means of the correspondence principle. Examples of
 

viscoelastic relaxation in the form of post-fracture surface
 

displacements and angle changes from a model triangulation net
 

were computed.
 

J.B. Rundle and D.D. Jackson
 

Department of Geophysics and Space Physics
 

University of California
 

Los Angeles, California 90024
 

Acknowledgements
 

This research was supported by NASA grant NSG-7002.
 



References
 

Abramowitz, M. & Stegun, I., Eds., 1970. Handbook of Mathematical 

Functions with Formulas, Graphs, and Eathematical Tables, 

U.S.G.P.O., Washington, D.C. 

Ben-Menahem, A. & Gillon, A., 1970. Crustal deformation by 

earthquakes and explosions, Bull. seism. Soc. Am., 4, 

193.
 

Ben-Menahem, A. & Singh, S., 1968. Multipolar elastic fields
 

in a layered halfrspace, Bull. seism. Soc. Am., ', 1519.
 

Biot, M., 1954. Theory of stress-strain relation in anisotropic
 

viscoelasticity and relaxation phenomena, J. appl. Phys.,
 

1385.
 

Brace, W. & Byerlee, J., 1970. California earthquakes: Why
 

only shallow focus?, Science, 4AJ, 1573.
 

Chinnery, M., 1961. The deformation of the ground around sur­

face faults, Bull. seism. Soc. Am., 1, 355.
 

Chinnery, M., 1963. The stress changes that accompany strike­

slip faulting-, Bull. seism. Soc. Am.,.IR, 921'
 

Chinnery, m. & Jovannovich, D., 1972. Effect of earth layering
 

on earthquake displacement fields, Bull. seism. Soc. Am.,
 

k,1629..
 

Courant, R. & 5_il ert, D., 1953. Methods of Mathematical Physics,
 

Interscience, New York.
 

Crittenden, M., 1963. Effective viscosity of the earth derived
 

from isostatic loading of Pleistocene Lake Bonneville,
 

J. Geophys. Res., U, 5517.
 



31
 

Fung, Y., 1965. 'Foundations of Solid Mechanics, Prentice-Hall,
 

Englewood Cliffs, New Jersey.
 

Ishii, H. & Takagi, A., 1967. Theoretical study on the crustal
 

movements Part II: The influence of horizontal discon­

tinuity, T~khoko Daigaku Sci. Reports Geophys., ser. 5,
 

Jovannovich, D., Husseini M. & Chinnery, M., 1974a. Elastic
 

dislocations in a layered half-space--I: Basic theory
 

and numerical methods, Geophys. J. R. astr. Soc., a, 205.
 

Jovannovich, D., Husseini, M. & Chinnery, M., 1974b. Elastic
 

dislocations in a layered half-space--Il: The point source,
 

Geophys. J. R. astr. Soc., ;K, 219.
 

Lee, E., 1955. Stress analysis in visco-elastic bodies, Quart.
 

J. appl. Math., 1U, 183.
 

McConnell, R., 1965. Isostatic ad3ustment in a layered earth,
 

J. geophys. Res., jQ, 5171.
 

McKenzie, D., 1968. The geophysical importance of high tem­

perature creep, in The History of the Earth's Crust, Phinney,
 

R., Ed., Princeton Univ. Press.
 

Meade, B., Ed., 1973. Reports on Geodetic Measurements of Crustal
 

Movement, 1906-71, U.S.G.P.O. Publ. No. 0317-00167, Rockville,
 

Maryland.
 

Nur, A. & Mavko, G., 1974. Postseismic viscoelastic rebound, 

Science, 13, 204. 

Nur, A. & Schultz, P., 1973. Fluid flow and faulting, 2: A
 

stiffness model for seismicity, Proc. Conf. Tectonic Problems
 

San Andreas Fault System, Nur, A. & Kovach, R., Eds., Stanford
 



Univ. Publ. Geol. Sci., ,J.
 

Parmentier, E., Turcotte, D. & Torrance, K., 1976. Studies
 

of finite amplitude non-Newtonian thermal convection with
 

application to convection in the earth's mantle, J. geophys.
 

Res., 8, 1839.
 

Peltier, W.R., 1974. The impulse response of a Maxwell earth,
 

Rev. geophys. space Phys., Z, 649.
 

Post, R. & Griggs, D., 1973. The earth's mantle: Evidence
 

of non-Newtonian flow, Science, , 1242.
 

Rundle, J. & Jackson, D., 1976a. A viscoelascic relaxation
 

model for post-seismic deformation from the San Francicco
 

earthquake of 1906, in preparation.
 

Rundle, J. & Jackson, D., 1976b. A viscoelastic model of the
 

San Andreas fault zone applied to the San Francisco earth­

- quake of 1906, Geophys. J. R. astr. Soc., in preparation.
 

Rybicki, K., 1971. The elastic residual field of a very long
 

strike-slip fault in the presence of a discontinuity, Bull.
 

seism. Soc. Am., k, 79.
 

Savage, J. & Burford, R., 1973. Geodetic determination of rela­

tive plata motion in central California, J. geophys. Res.,
 

Z 832.
 

Stocker, R. &-Ashby, M., 1973. On the rheology of the upper
 

mantle, Rev-. geophys. space Phys., },392.
 

Steketee-, Ur 1958. On Volterra's dislocations in a semi-infinite
 

elastic medium, Canadian J. Phys., Qk, 192.
 

Thatcher, W., 1974. Strain release mechanism of the 1906 San
 

Francisco earthquake, Science, ),%Q 1283.
 



Thatcher, W., 1975a. Strain accumulation and release mechanism
 

of the 1906 San Francisco earthquake, J. geophys. Res.,
 

QQ, 4862. 

Thatcher, W., 1975b. Strain accumulation on the northern San
 

Andreas fault zone since 1906, J. geophys. Res., QQ, 4873.
 

Whittaker, E. & Watson, G., 1927. A Course of Modern Analysis,
 

4th ed., Cambridge University Press.
 



Table 1. Comparison of the coseismic elastic and postseismic
 

viscoelastic angle changes for two different ruptures, each
 

in an elastic layer overlying a viscoelastic half-space (see
 

figure 10). For case I, the layer thickness is 20 km, the fault
 

length is 400 km, the displacement dislocation across the fault
 

face is 4 m and the fault has fractured the entire thickness
 

of the layer. For case II, the layer thickness is 5 km, the
 

fault length is 400 km, the displacement dislocation across
 

the fault face is 4 m and the fracture extends from the surface
 

to 3 km depth.
 

CASE I CASE II
 

Angle Coseismic Postseismic 
viscoelastic 

Coseismic Postseismic 
viscoelastic 

change 
(t = 2T) 

change 
(t = 2T) 

#- Isec) (sec) (sec) (sec)
 

1 --6.16 -1.83 -3.47 -1.10 

2 -13.4-5 -. 98 -9.84 -1.12 

3- 9.59 2.60 6.40 1.44 

4 3.56 -2.03 5.58 -1.97 

5 3_67 -1.71 4L50 -1.37 

6 --743 -3.75 -10.09 3.35 

7 -. 33 -.04 -.01 -. 02 

a .2_ -.13 .67 --.19 

9 -.07 .18 -.66 .22 

-
12.- 4.60 

1 1S.09- -5.85 57.86 -13.25 

12 -3.77 1.24 -10.86 2.70 

I -- -= -.47 10.55 

http:12.-4.60
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Table 2. See figure 11. In column 2 are the horizontal sur­

face displacements calculated from the approximate Green's function.
 

Column 3 is the displacements computed with the approximate
 

Greens' function minus the displacements computed by a numeri­

cal integration of the exact Green's function.
 

Source Approximate Displacement Error 
Depth Displacements Difference 

(km) (cm) (cm) (%) 

10 87.15 12.36 14.18 

9 91.47 11.99 13.11 

8 100.52 9.13 9.08 

7 114.20 5.60 4.90 

6 132.20 .60 .45 

5 153.52 -3.49 -2.27 

4 176.28 -7.37 -4.18 

3 197.35 -11.01 -5.58 

2 212.66 -15.01 -7.06 

1 217.80 -19.09 -8.77 

Totals 1483.15 -16.29 -1.1 
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Table 3. See figure 12. Columns 2 -4 are the same as in table 2.
 

Layer Approximate Displacement Error 
Thickness Displacement Difference 

(km) (cm) (cm) (%) 

10 87.15 12.47 14.31 

15 52.04 -.75 -1.44 

20 48.00 -2.37 -4.94 

25 47.14 -1.72 -3.65 
30 46.85 -1.18 -2.52 
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Figure Captions
 

Figure 1. 	 Coordinate system used in finding the displacements
 

due to a line dipole of force in the yl direction.
 

Figure 2. 	 Coordinate system used to find the displacements
 

due to a line dipole of force in the yl direction
 

for a medium consisting of an elastic layer over­

lying an elastic half-space.
 

Figure 3. 	 Coordinate system for the integration of the Green's
 

function for a strike slip point source. The rela­

tive displacement across the rectangular fault sur­

fact shown is indicated by the two parallel half­

arrows. After Chinnery, M., Bull. seism. Soc. Am.,
 

, p. 9,, 1963, copyrighted by the Seismological
 

Society of America.
 

Figure 4. A Maxwell element.
 

Figures 5-7. Surface displacements parallel to a rectangular
 

fault in an elastic layer over a viscoelastic half­

space calculated using the approximate Green's function.
 

The displacements were calculated along the hori­

zontal profile shown at the top of each figure where
 

the double arrows lie along the fault trace. The
 

Jayer thickness is 20 km and the fault fractured
 

the entire thickness of the later. The relative
 

displacement along the fault is 4 m.
 

Figures 8-9. Surface displacements perpendicular to a rectangular
 

fault in an 	elastic layer over a viscoelastic half-space
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All parameters are the same as for figures 5 - 7.
 

Figure 10. 	 Location of some illustrative model survey triangles
 

relative to a rectangular fault in an elastic layer
 

over a viscoelastic half-space (see Table 1). The
 

fault is indicated by the double arrows, and the
 

insert is a blow-up of the cross-hatched region.
 

All angle changes were computed using the approxi­

mate Green's function.
 

Figure 11. 	 Plot of the differences in the predicted horizon­

tal surface displacements due to using the approxi­

mate Green's function in place of a numerical integration
 

of the exact Green's function for a point source
 

in an elastic layer over an elastic half-space.
 

H is fixed at 10 km and the rigidity of the layer
 

is one-tenth the rigidity of the half-space. The
 

point of observation is at a radial epicentral dis­

tance of 10 km. See Table 2.
 

Figure 12. 	 Plot of the differences in the predicted horizon­

tal surface displacements due to using the approxi­

mate Green's function in place of a numerical integration
 

of the exact Green's function for a point source
 

in an- elastic layer over an elastic half-space.
 

The rigidity of the layer is one-tenth the rigidity
 

of the half-space and the point of observation is
 

at a radial epicentral distance of 10 km. The source
 

depth is fixed at 10 km. See Table 3.
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