General Disclaimer

One or more of the Following Statements may affect this Document

e This document has been reproduced from the best copy furnished by the
organizational source. It is being released in the interest of making available as
much information as possible.

e This document may contain data, which exceeds the sheet parameters. It was
furnished in this condition by the organizational source and is the best copy
available.

e This document may contain tone-on-tone or color graphs, charts and/or pictures,
which have been reproduced in black and white.

e This document is paginated as submitted by the original source.

e Portions of this document are not fully legible due to the historical nature of some
of the material. However, it is the best reproduction available from the original
submission.

Produced by the NASA Center for Aerospace Information (CASI)

ia et X dn e . g ’
X “- ;':_ ¢ 3 5 37y P,
'e .‘ & } . . - ‘
e (NASA-CR-1Q4769) A METHODOLOGY FOR

PRODUCING RELIABLE SOFTHARE, VOLUME 1 Final
Report (ucDonnell—Douglas Astronautics Co.)
228 p HC $3.."

CSCL (98

N76=29945

Unclas
G3/61 48521

OMPANY
ARNELL DOUGLAS ASTRONAUTICS &
MCDO

/

MCDONNELL DOUGLAS&-

CORPORATION

FINA!. REPORT
/7 A METHODOLOGY FOR PRODUCING
McDONNE,_ﬂ_f 9 RELIABLE SOFTWARE
BDOUGLAS VOLUME |
MARCH 1876 MDC G62i0
PRINCIPAL INVESTIGATOR: [T s B e P

OTHER CONTRIBUTORS:

APPROVED BY:

LEON G. STUCKI

PROJECT MANAGER
AUTOMATED VERIFICATION SYSTEMS

FAUL MORANDA
GARY FOSHEE
MARJORIE KIRCHOFF
ROGER OMRE

%ﬁw%ﬁﬂlw% '
JZNGMUNT JELINSK!

MANAGER
COMPUTER SCIENCES

MCDORNELL DOUGLAS ASTRONAUTICS COMPARY ~-WEST
5301 Bolsa Avenue, Huntingten Beach, CA 82647

et [S =i

.4

Lmmmn

f

.

Ricas

{
s

) N R

This report was prepared for Mr. Evmenios Damon, Mission Operations Computing
Division, NASA Goddard Space Flight Center under Contract Number NAS 5-20781.

Requests for further information or assistance will be welcomed by McDonnell

PREFACE

Douglas representatives:

L. G. Stucki, Study Manager
Huntington Beach, California
Telephone: T714-896-3TTh

M. W. Hogan, Contract Administrator
Huntington Beach, California
Telephone: T14-896-4856

F=3

T
.y
. CONTENLS
oW
T Volume I
X f‘ ;
; b
r Section 1 INTRODUCTION
1.1 Study Objective
L e 1.2 Study Recommendations
Tt 1.3 Methodology Overview
.y
: Section 2 TERMINOLOGY
Al Section 3 SOFTWARE MANAGEMENT TECHNIQUES
- 3.1 General
1 3.2 Software Documentation
- 3.3 Software Control
. 3.4 Software Development Organization
'l 3.5 Project Development Plan
Secfion 4 SOFTWARE VERIFICATION/VALIDATION TECHN1QUES
4.1 CGenersl
k.2 Requirements Analysis and Feedback
4.3 Code Analysis and Verification
4.4 Program Validation
4.5 Program Certification
k.6 Reliability Determination
Appendices
A See Volume II
B SOFTWARE MODELING
B.1 Summnary
B.2 Description of Models
B.3 Data and Adjustments
Bt Estimation of Parameters
B.5 GQuantitstive Comparisons of MPTF Estimates
B.6 Sensitivity of BEshimsbes

e -) ol A - . et st e i 1 ool st s - bt - e e ramdond’ s bra e s

Appendices

c

F
Volume II

Appendix A

PROGRAM TESTING

C.1 Introduction

C.2 Modularization
C.3 Manual Techniques
C.4 Automated Tools

STRUCTURED PROGRAMMING AND PROGRAM MANAGEMENT
TECHNIQUES

D.1 Introduction
b.2 Current Status of Structured Programming

PROVING PROGRAMS CORRECT
Introduction

Informal Proof Methods
Formel Program Proving

=
W N+

BIBLIOGRAPHY

AUTOMATED VERIFICATION TOOLS

A.1 Introduction

A.2 Descriptions of the Aubtomated Tools
Tested

A.3 Timing S5tatistics Obtained from
the Test Runs

A4 Computer Gemerated Output from
the Test Runs

A,5 Bummary of Test Resulis

A.6 Recommendations for the Use of
Automated Verification Tools by NASA

|

Yir=zed

| A
& ?7':»-:.!1

L~

resat

-

£
Srummiarrn 1

W A -»-»-_;Av!::.u.;u,,;

e B

i

s
T |

ol

R

o
r—

1
o f

%’_.
-

ey
RN

%

F
o

E3

Sectioﬁ 1
INTRODUCTION

1.1 STUDY OBJECTIVE

The problem of producing relisble software has been with us for a number

of years and yet until recently only portions of the problem have been
attacked. For example, automated tools for analyzing program structures
have been developed and loudly acclaimed by some while others promote

tools for automated test case generation. The use of a theoretical approach
to the problem has also ieen investigated but at no time has a comprehensive
view of the total problem heen taken. The purpose of this study is to
perform for NASA an investigabion into the ereas having an impact on
producing relisble software including eutomated verification tools, software
modeling, testing technigues, structured programming and management
techniques. This final report combains the results of this investigation,
analysis of each technigue, and the definition of & methodclogy for pro-
ducing relishle software.

Task I - Automated Verification Tools (Appendix A)

. Investigation was made into the existence, availability and
applicability of automated verification tools such as PET,
ATDG, FORTUNE, ete.

. A comparative analysis was mede and relative merits evaluated.
. Recommendations regarding development of new tools and modifi-
cations of the existing tools for NASA applications are

ineluded.

Task II - Software Modeling (Appendix B)

. Evaluation of the existing approaches to software modeling
was made. The practical spplicetion of statistical techniques
to software qualiby measurement wss assessed.

Correlation between programming structures and figure-of-merit

indexes is considered among the major recommendations for
future research.

-1

Task ITI - Program Testing {Appendix C)

. Testing techniques currently aveileble were evaluated.

. Problems of test case design wvere considered.

. Techniqués for test design and optimization in relation to
_ecost and software relisbility are recommended for future

research.

Task IV - Structured Programming (Appendix D)

. BState-of-the-art structured programming applications were
studied with specific consideration of higher level
languages suitebility to structured programming.

Task V - Program Management Techniques {Appendix D)

. Chief Programmer Technigues and Computer Program Management
Technigues were studied and comparative analyses are made.

Task VI - Proving Programs Correct (Appendix E)

. A review of literature on the techniques of Proving Program
Correctness was made. A glossary of terms with relevance
to Software Reliability was developed. Techniques which
may be applicable to Test Case Selection will be identified.

Final Report - Overview

This final report contains: an evaluation and assessment of the practic-
ability of each available technigue, a description of a methodology for

producing reliable software, suggestions for automating portions
of the methodology, and s comprenensive bibliography.

1.2

——t

B s €

L&

gy
RitEnwesAt

[F——

L Crn e [
| PR P

Erneane &

[RO

{ ;3
I
i

-

Lo

1 '
FA——

H] [T .3

I FE— . I fA——

1.2 STUDY RECOMMENDATIONS

In surveying the various tools and techniques currently being used or
developed for producing more relisble software, one quickly reasllzes

the need for an overall methodology. A great deal of work has been put

into various tools promising increased software relisbility. At the

same time a few well known individuals have been espousing the

belief that by applying certain menagement and organization concepts
programmers will produce error free programs. Despite these sometimes
inflated claims, both the tool builders and the organization advocates

have made positive contribubions towsrds achieving more relisbie

software systems. However, it is now quite eclear that an integrated method-
ology ineluding sound organizational concepts and procedures with complemen-
tary support from automated tools offers an improvement.

With this philosophy in mind, this final report attempts to present an
overall methodology for producing relisble software. Tools are incorporated
into this methodology at numerous points. A series of appendices contain

a significant amount of data on currenitly available tools and techniques.

The test tool survey contained in Appendix A is a "first". It is the

first time that an attempt has been made at compering a number of

currently available tools and providing the reader with a means of
examining the capabilities of all of the tools. A number of cbvicus
omissions can be observed due to the reluctance of some tool builders

to include their tools in such a survey. One very definite recommendation
of this study is to expand this survey to inciude edditional tools.

Ancther area suggesting more research is the development of more meaningful

measures for comparing the cost and performence associated with the use
various tools.

With respect to the types of tools currently svailable, it is strongly
recomended that static analyzer tools and dynamic execubion analyzer
toels be incorporated into a facility's general support software.
These tools should be made available for general use and in connection
with the suggested methodology contained in this report.

Two distinet areas of research mentioned in this report appear very promising
with regard to tools. Appendix C describes the use of an embedded assertion
language for bridging the gap between reguirements specification and the
functional testing of those specifications. This approach promises to

make & mejor impact on the actual programming process. Appendix C also
contains an interesting look into a promising means for rigidly examining
verious properiies of a progrem and thereafter being able to informally

prove the corresponding correctness of the selected properties. Additional
research in these areas can lead to more powerful teols in the future.

Software modeling is another reseavch area demanding additional effort.

In particular, the refinement of error date collection process, the assoc-
iation of the error data with the original source of the anomaly, and

the correlstion of the degree of testing applied to & module of software

and the number of errors associated with that module constitute ongoing
research topies.

e v e b e T—_ G

1.3 METHODOLOGY OVERVIEW

In most systems being developed today, the quality of the software is often
the limiting factor of the total system gualibty. Rigorous quality assurance
disciplines have been imposed on hardware for many years resulting in
highly reliable hardwere. These some disciplines imposed on the software
have not schieved relisbility of the software because, with the state-of-
the-art tools, software cannot be tested as rigorously as hardware.

Most often the end product is still less than satisfactory.

The problem is often the result of several factors:

. quality assuring activities are imposed late in the development
cycle

. quality assuring activities are treated as unrelated activities

. quality assuring activities are not always the first concern
of the software builder.

In the normal course of sofiware development, the initial requirements
analysis and development specifications are both incomplete and conflicting.
If the inadequacies are not discovered and corrected, they are incordorated
into the design. The poor design ig then implemented. in code. The problems
are not detected umtil the testing phase which reveals the need for changes
to ‘the detailed design which in turn may cause changes in the requirements.
This recognition of the problem late in the development cycle results in
software redesign that is often difficult to incorporate into existing work,
causing costly overruns,

Ideally, this iterative interaction of error detection and correction should
be confined to successive phases. When this is true, the goal of ensuring
the completeness of the requirements ig pursued during the design phase.

The requirements then should be completely and accurately defined and

under formal controls by the time testing begins.

The achievement of quality coftware can be promoted by the application of
a methodology that imposes gquality producing activities on the
development cyecle.

This methodology consists of three interdependent sets of technigues:

1) software production techniques
2) software verification/validation techniques
3} software maznagement techniques

Software production techniqu inelude such it :
b niques 1 h items as QR{G}NAL P A,GE 18
. ‘top down development oF POCR Qum
. structured programming
. uge of a progrem design language (PDL)
. use of tools such as compiler writers, meta-assemblers and
language preprocessors vhere applicable.

i-h

e

2
2.
K

.
[

]
|

.
J—

oy

HEZRRE

¥ s

frvmened

Oih B

S

[
!';f::t-‘a;-.-j

[apge

|

mhr—

=

3

=

==

Tl

Py
LRt |

=)

iy -
:: 3 154

P
|

3
e |

[s
¥

3

) ¥
vy g

S

&
¥

[y |
LRty

as:

Software verificatiDn/validation.techniquesAincludersﬁeh direct activities

. requlremmnts analysis and Ffeedback

. an assertion metho&ology for placing spec1f1cat10n checks within the code

. code verificastion using walk throughs, standards checkers,
execubion analyzers, flowpath analyzers and debugging aids.
. program valldatlon by module, acceptance and system 1ntegratlon

testing.

. program certification

Software manasgement technigques are the means by which the development is
ordered and controlled, and by which visibility is provided into the
status of progress and quality of the software development These

techniques include:

. configuration management
program library conbrol-
use of stringent documentation standards

However, the presence of these sctivities does not in itself assure that

quality will he achieved.

The decisions on when to begin an activity

and on the degree of the discipline with which it will be performed are
crucial. Decisions that shape the project have an increasing influence
on the development cycle 23 it progresses. When quality considerations
are delayed in the development cyele as shown in Figure 1-1, their

By the time coding and testing have started and
project members are concerned with produet quality, their efforts o
achieve that quality are ofben restricted by past decisions.

influence is limited.

Figure 1-2 shows the effect of ineluding quality considerations in the

" eriteria for the software decisions in 211 phases of development, so that

each phase contributes to the quality goal. BSince the development of a
software system is basically s human activity, it is imperative that
informstion about the deveopment is constantly and clearly fed back to the
developer and the user right from the beginning.

The immediaste imposition of standards to assure guality documentation
provides confidence that the intent of the documents is accurately
communicated to those who must rely on those documents.

Barly review and analysis of specifications allows eerly decisions on
redesign so that changes are preventive rather than curative. The test
and evaluation function begins with specification analysis and constantly
Early considerations of requirements testability
reduces likelihood of costly impacts in the later phases of development.

impacts all phases.

The early determination of requirements for production and verification
tools allows time for them to be procured (built, purchased or leased)

and checked out before they are needed.
at an early stage dlctate the data to be collecﬁed and applied durlng

development.

1-5

Religbility measurement deflnltlonb

_ QUALITY CONSIDERATIONS BEGIN -

B - sysmEM SOFTWARE | | PRELIMINARY | | DEmaTLED
vd | REQUIREMENTS | | REQUIREMWNTS DEGIGN || DESIGN
%5 B DI : IR S R

;2“”;. _f - : ~ CODE AWD DEBUG

SOFTWARE PRODUCTION TECHNIQUES
* BOTTOM-UP DEVELOPMENT
. NORMAT, PROGRAMMING METHODS
- DEVELOPMENT ‘TOOLS

. SOFTWARE VERIFICATION/

- VALIDATION TECHNIQUES
~REQUIREMENTS ANALYSIS AND FEEDEACK
~AUTOMATED VERIFICATION TOOLS

- - PROGRAI VERIFICATION/VALIDATION

o

. SOFTWARE MANAGEMENT TECHNIQUES
.- . CONFIGURATION MANAGEMENT
. PROGRAM LIBRARY CONTROL
' DOCUMENTATION STANDARDS CONTROL

-

Figure 1-1
EFFECT OF DELAYING QUALITY CONSIDERATIONS

LT

SO0FTWARE PRODUCTION TECHNIQUES
TOP-DOWN DEVELOPMENT
STRUCTURED PROGRAMMING
DEVELOPMENT TOOLS

SOFTWARE VERIFICATION/
VALIDATION TECHFIQUES
REQUIREMENTS ANALYSIS
. AND FEEDBACK
AUTOMATED VERIFICATION TOOLS
PROGRAM VERIFICATION/VALIDATION

SOFTWARE MANAGEMENT TECHNIQUES
CONFIGURATION MANAGEMENT
PROGRAM LIBRARY CONTROL
DOCUMENTATION STANDARDS CONTROL

QUALITY CONSIDERATIONS BEGIN

SYSTEM SOFTWARE '
REQUIRE~ REQUIRE~ PRELIM- DETAILED
MENTS MENTS INARY | DESIGN
DESLIGN

Figure 1-2

EFFECT OF EARLY QUALITY CONSIDERATIONS

PSS _—— = T

Configuration management and program library control processes instituted
early reduce confusion in the detailed design and coding phases and
allow development to progress in an orderly fashion.

The traditional approach to software quality assurance has been to have
the quality functions such as testing, configuration management and
program library control be performed by the software builder. There
are several inherent disadvantages to this spproach. The most obvious
disadvantages are the development priority structure of the builder,
which is different than the priorities of an independent evaluator, and
the use of personnel to whom the quelity assurance functions are of
secondary interest.

Independent evaluation and monitoring provides an unbiased and effectual
approach to software quality assurance. This assurance can be

provided by imposing a gquality producing methodology for controlling
and validating the software at every stage of its development.

The functions required to achieve reliable software must be viewed as
totally interrelated functions. The system cannot be used with confidence
unti. it is well tested. It cannot be well tested without a comprehensive
analysis of the requirments, The verification of requirements using

test tools cannot be performed adequately without well checked out tools
which must be identified in the reguirements stage. The testing also is
virtually meaningless without assurance of the integrity of the program
library, which 8epends to a large extent on the effectiveness of the
configuration menagement of the software. And finally, good documentation
is required to provide feedback, visibility and assurance that These
functions are effectively implemented.

The formulation of a methodology o produce reliable software Tor NASA

- Goddard considers the interrelationship of quality producing ‘unctions,

the decisiong that cause the imposition of these functions at the proper
time, and the enforcement of the standards and controls that maintain
the benefits of each function.

1-8

mn
L

)

S SN A Y Y Lo e cntes T

==

g3

e

=

¥t

=
g

A

HI

A

i

I
[S,

==

e 3

fla
BT

|

4 B

Section 2
TERMINOLOGY

Throughout the literature bearing on the subject of relizble software, there
is considersble disagreement on the meaning of several key terms. To
provide a cona’stent base for understanding this document, the following
definitions have been selected for these terms. Although the list may
appear to be elementary, it'is intended to eliminate some of the ambiguity

of meaning.

Software

Software quality

Software reliability

Verification

Validation

the computer progrems with their associated
dats bases, Jjob control language and documen-
tation.

the set of properties of the sofiware that
characterize how well it works, how easy it
is to use, and how easy it is to maintain.

(definition by Schick and Wolvertonl) "the
probability thait the applications program,
together with its supervisory program, data
bases, and computing enviroonment will perform
its intended functions at the time when those
funections are needed hy the customer®,

The process by which the set of specificabions
and/or axioms deseribing the nature of a problem
and its environmen® are checked for completeness,
consistency, and systemsticelly compared with
the resulting software representation.
Verification addreases functional correctness
and usually involves & greab desl of manual
eiTort. Automation of some of the compsrative
end analytical functions are currently being
researched.

The process of ingpecting software behavior

in the operationsl enviromment {i.e., hardware,
software, date sources, man-machine interface)
and determining that the software will in fact
perform its proper function. While verification
attenpts to build convineing arguments for the
"eorrect" representation of a problem, validation
addresses the questions: '

2-1

Debugging

Development testing

Unit testing

Module testing

Integration testing

Operational testing

Acceptance testing

Baseline testing

Program Proving

1) 1Is the software really solving the right problem?

2) From an operational point of view is the
software useable?

the process of finding and correcting errors that
are syntactic or structural in nature {not
specifically associated with the verificabtion and
validation of basic program functions) and
that prevent successful execution of the software.

confirmation by the programmer that a completed
software module performs as intended using a
trivial test cese. It is an informal test
carried out in the software configuration
currently heing developed.

generally synonomous with development testing.

confirmation that a completed module performs
as intended when subjected to a comprehensive
set of test cases in the software configuration
currently being developed.

confirmation that a total hardware/software system
performs as intended when the entire system
is executed in a test enviromment.

the process of validating the system by exercising
it for a given period of time in a user
environment, using test procedures designed to
exercise it comprehensively.

the testing performed with & set of test cases
designed to verify that the completed system
performs 1n accordancs with specified accepiance
criteria.

confirmation that a completed system continues
to meet the eritical requirements during
maintenance of the software. The test

cases used are designed to exercise all software
critical to the system performance,

The set of formsel mathemstical apd informal

quasi-mathematical technigues, often semi-automated,
for checking the consistency of program specifications,

axioms, and program code. Program proving is often
equated with verification in academic circles.

For purposes of this study, however, verification
will be defined to include program proving
technigques together with other less mathematically
rigorous techniques for checking consistency and
completeness.

22

=

&

]

Lo

=

[
| Cageans

et

L
g

et

e
L

-3

e

B34 i
e

g

s 2 ,.I

Fioney
e

Hi
A

Certificetion - the process of plecing an authoritative stamp of app-
roval on & software system. Certification

; implies that a software system has been

: subjected.to an adequate level of testing and
: ﬁi recommends its operablonal usage. Certification
[oamw _ : should include adequate verifieation and

i validation of the software glthough in current
: it , practice this is often not done.

IR

(ol :

é Refercnce

: B -1, G. J. Bchick, R. W. Wolverton Assessment of Software Reliability.. .
P Proceedings of German Operations Research Society, September 1972.

1
;
H
¢
i

3

o N

N .
: L

{ - o -

% } ,

S 70 I 2T
! .
1 '

2.3

) Ly

sy
& Ty

".w'-—»—,..j . "' L.——-— -) L“——-o-:_}'l I—W‘}

T | L

Section 3
SOFTWARE MAWAGEMENT TECHNIQUES

3.1 GENERAL

The effective management of software development is of primary importance in
producing reliable software. There are several techmigues that will provide
the controls that help gnarantee orderly and efficient development.

Most of these techniques are used in some form at NASA Goddard. This section
discusses enhancements of the technigues currently used that may offer

greater visibility and more reliability.

The Programmer's Reference Mamual provides standards and conventions for pro-
gramming and documentation to ensure consistency of the product. It provides
information to the programmer about the use of the system hardware and soft-
ware that is installation-neculiar, and includes the detailed use of procedures

that waintain contfol of configured libraries.

It also contains the procedures for de51gn1ng effectlve development tests fo
be performed by the programmer .

Conflguretlon management is- dlscussed in relation to NASA'S current procedures.
A technique for maintaining automstic configuration status is ‘offered using
tools that will allow traceabilibty of changes to the statement level. The
capabilities of this type of tool include those already existing in the up-
dating program used by NASA Goddard. The enhencements that provide the adgdi-
tional capabilities are described in debail in this section.

The establishment, updating, release, and-maintenance'of controlled libraries
are aifected by the techniques that affect configuration management. While
the program library control and configuration management are dlscussed separ-
ately, they are interdependent.

The d15025510n of the software development organlzatlon stresses the use of
two techniques. 1) independent analysis, review, testlng and evaluatlon,
and 2) ‘the. team approach to software developmenb.

The last paragraphs discuss some technlques that help in organlzlng and
measuring thé development of the project. The selection of tools and
techniques and the appropriate time to apply these tools and technigues
are part of esbablishing the goals for project development. 'These tools

_and techniques are used both in the software production end software veri-

fication/velidation areas.

3-1

3.2 SOFTVARE DOCUMENTATION

3.2.1 Programmer's Reference Manual

The prograumer's reference manual contains the information = programmer
needs ko know shout the environment in which he must work thet is faeility

oriented.

The purpose of this magual is to supplement information supplied

in vendor manuzls. The programmer's reference manual serves several functions.

l.

3.

It provides informaﬁion about the resources aveilable within the

" computer facility. These resources include the hardware configur-

abtion, the wtility librariez, and the computer room and scheduling
operations.

It contains the standards and conventions to be followed to insure
standardization and completeness of the finished software projects.
This includes programming stendards and conventions, and documenta-
tion standards.

It prescribes the procedures to be followed in using the working
and controlled libraries, and the procedures for installing new
and modified code in a controlled environment.

It describes the recommended tools, and techniques to be used in
checking out the code. This includes debugging aids, stetic and
dynamic analysis tools, and development test techniques.

NASA Goddard has published & software standards guide to be used by in-house
and contractor personnel using the IBM 360 facility. This dccument contains
some of the information that should be present in a programmer's reference

manual.

1.

This methodology recommends other information for inclusion.

Software Development Nobtebooks should bhe used and maintained by
the programmer and the librarian. This technique is discussed
in detail in Section 3.2.2.

Top-Down Development is @ design technique to be used for organizing
the development of =z system. It is discussed in debail in Appendix D.

Tools and techunicues are aveilable thaet will aid PORTRAN code to be
struetured. These tools and technigues are discussed in detail in
Appendix D.

The use of software production, testing, and documentation tools
should be included. Candidate tools are discussed in Appendix A.

“n

Y

o B |

5. The programmer's reference manual ghould contein a section out-
lining the procedures to be followed to insure that & meaningful
H? development test has been designed and performed. Development
! testing is discussed in detail in Section 4.3.1.

Lo 6, The development and maintenance of & wellw-controlled software

i system requires that the programmer understand how to effectively
use the working and controlled libraries containing the system
being developed or in operation. Program library control is
discussed in Section 3.3. .

T. This methodology recommends the team approach to program develop-
ment. The responsibilities of each member of the team and his
interfacing requirements should be included in the programmer’s
reference manual. The team approach to program development is
discussed in Appendix D.

*l

-
=

e

2

o

3.2.2 Software Development Notebooks

PR

The use of Software Development Notebooks forces attention to every aspect
of the development of software routines. The notebowt provides a guide
to and a record of specific programming activities ant is used to assist
in program documentation.

{artsnmd

The notebook concept hes bheen implemented at MDAC and TRW for the Site
Defense Program (DSP) software development with a great deal of success.
TRW calls the notebook "Unit Development Folder" (UDF).

d
i

H
—

being a collection point for all pertinent development snd test information.

It ensures that documentation is updated as part of the development activity.

B It serves as & tool to help.foresee impending difficulty in time to avoid

1} it. It helps in cobbaining meaningful estimates through direct invelvement

) of project personnel in scheduling their own work, in accomplishing con-
tinuous mor*toring and accurate reporting., in avoiding a proliferstion of

jq phantom problems described by Brooks?s and in meking effective use of

4

1
7 R. D. Williams describes the advantages of using their UDF as more than
}
Vo

time in updating plans or initiasting corrective action at a time when it
can do the most good.

3.2.2.1 Software Development Notebook Standards

]
[SS

F

A Software Development Notebook should comply with the following standards:

L—
.

Fach module developed requires a notebook.

. Initially, each notebook will be assigned to one programmer.

g id

L

. In late stages of program developmeni, more than one programmer
mgy have simultaneous responsibility for & notebook (module).

Eu.-u,s.v-!
»

A programmer mgy have simultaneous responsibility for more than
one notehook.

SO |

o 2]
&2"’""‘

3-3

s

. Changes to items 1-5 (see Figure 3~1) of & notebook at any time
requires suthorized approval.

. Chenges to all obther items in a software notebook afier the

roubine hag been placed in a controlled library reguires

guthorized approval.

3.2.2.2 Sofvware Development Notebocok Contents

Figure 3-1 shows the cover sheet of a sample software development notebook.

Due
Date

Date
Completed

Originator

Reviewer

1. Requirements Specification

‘2. Design Description

3. Funcitionel Flow Chart

4. Interface Description

5. Assumptions and Constraints

6. Module Code

T. Development Test Case
Descriptions

8. Review of Development Test
Cases

G. Test Case Resulis -

10. Detailled Flow Chart

11l. Updeted Design Description

12. Progrsm Library Control

13.Discrepancy Report File

1Y, S8ign-off Completed Routine

Figure 3-1. Development Notebook Cover Sheet

3.4

sy
At

N
-

et
[
s

s

rarey

= [

fd Lt

e

—3

&8

= fl'.:‘g

p— P— Fitmi | i ey | 2o tmons
E._.-..J | — ES—— $ ot ['o— Neanrr—. Pt

o

L.

i

Y
[Ira—

{:zm;j

é%%gmm

Table 3-L

DEVELOPMENT NOTEBOOK CONTENTS

Requirements Specification

Design Descripiion

Frunetional Flowchart

Interface Definition

Assumptions and Constraints

Module Code

Development Test Case
Deseriptions

This is the written material that de-
scribes the requirements on the
routine; it tells what the routine
shall do and how well it must do it.

This is an English language descrip-—
tion of how the routine shall perform.
It is a description of the design
that is being proposed to satisfy

the requirements specification of 1
above.

A flow diagram of the design described
in 2 above.

A list of all externally provided

inputs end all generated cutput destined

for use by other roubtines.

A description of how the routine is
invoked, how the ealled routines are
used, The timing constreints, estimated
core requirements and any unique con-
ditions or assumptions associated
with the routine.

The initial routine code {a listing)
which will be updated throughout the
development period and which will keep
pace with the code throughout its
development.

4 description of all development test
cases which are to be used to checkout
the rouwtine and the resulis that ean
be expected from these test cases.
Testing should be based upon both the
functional cepabilities list and the
requirements specification of 1

above. Expected test case resulis
will be included iz the folder in
advance of running tk tests.

3-5

Table 3—1
DEVELOPMENT NOTEBOOK CONTENTS (Continued)

8.

9.

10.

1L.

12.

13.

1k,

Code and Test Case Review

Test Case Results

Detailed Flow Diagram
Updating Design Description

Program Library Conbtrol

Discrepancy Report File

Sign-off Completed Routine

An engineering review (by someone other
than the developer) 4o determine

that the routine code will perform

a3 defined in 1 above and that the
proposed test cases do satisfactorily
demonstrete this capability. This
review is held in advance of actual
testing.

A compilation of all test case
results to demonstrate that the
routine is debugged and that routine
development testing is complete.

A listing of the debugged routine

is to be included.

One which thoroughly details the
delivered routine.

An updated/revised item 2 (corres-
ponding to item 10 above).

The point at which the completed code
is entered into the controlled
library. This is at the completion
of the development testing, after
the code and test case review.

Copies of every discrepancy report
that required modification of the
roubine, or its documentation. They
are added as they are resolved.

A formal acknowledgement that the
routine is accepted for installation.
For both new and modified systems,
this is after formal gualification
test, at the time the system is
released for operailon by Relezase
Control.

gttt

P

it PIETSE
-

o
b srsi

H
it reaad

£

,,.‘
[N

|

[P pn
I i

iy
|

L)

,

YAt i o At YR a5 W e fm e arn s a

ol

3

Wi
l’
i

£
Sy

r—
[

" o " 4

[N

e

i

3.2.2.3 Establishing, Maintaining and Using the Notebook

The procedure for preparing and using the notebook is as follows:

1.

2.

The routines sre assigned with & budget allocation and final
delivery date. The appropriate reviews are then alloeated.

Each routine assigned to a programmer/analyst has its own
notebook with & cover sheet. At the time of assignment
the progrsumer negotiates his final date. Any schedule
discrepaucies are resolved and The resalved final date

iz entered opposite the item on the notebook cover sheet,
"Updated Design Deseription" (see Figure 3-1).

The programmer is then required to plan his activity and
schedule the verious other items on the cover sheet. His
supervisors row have incrementsl visibility into all the
development steps of the software development activity.

The notebooks are always kept in one of two places, & Tile
in the programming office ares or the programmer's desk.

If on the programmer's desk, then they will be signed out
from the manager's file.

The notebooks will be available for review by authérized

personnel at any time that they are not in use by the
programmer .

The programmer has the responsibility to update the cover of
the notebook to reflect the current status of its contents.
The programming manager has the responsibility to review the
contente and approve the cover sheet.

3.3 BS0FTWARE CONTROL

Software control is achieved by the implementation of three interrelated
diseiplines.

1.

Configuration menagement which is the dsy-to~-dsy monitoring and
control of the computer program configuration items (CPCI's) of
which a system is composed. ‘These items include the computer
program and the associaled documentation,

Release Control which is the process of closing out and turning over
the software and related documentation. Software that is released
consists of the computer program (source and object code) and
supporting computer listings. The related documentetion consists

of the functional and detailed specifications and the User's
Manuels. Farh release establishes a new baseline for the product
against vhich future modifications are made.

3. Program library control which is the process of establishing and
maintaining a program library in which every statement is
known, docunmented and traceable to the justification for its
exigtence, It forms the basis for the configuration management
of the code, the testability of the code, and the assurance that
the integrity of released code is achieved.

The following paragraphs discuss these disciplines in reverse order.

3.3.1 Program Library Conbtrol

GSFC currently maintains three types of program libraries requiring control.

1. A permanent, distributable library containing all prograus
developed at GSFC.

2. On-line libraries conbaining source code, load modules, date bases,
ete., of operational on-line systems.

3. A source and document library setup for developing large pieces of
software.

The Tirst two libraries conbain only completed code already released. The
third library is establiished and used during development.

This methodology discusses the recommended system for program library contra
that builds upon the system currently used at GEFC. It is supported hy a
tool that performs the functioms that are performed by the utility in use

at GSFC to subomatically update and compile the programs, but in addition
maintains the configuration status of the software and provides traceability
of each statement back to the justification for its existence. One such
tool has been developed for the HQ Space and Missile Orgenizetion (SAMSO)

at Los Angeles and could be made available for use at GSFC.

=

3.3.1.1 Working Libraries and Controlled Libraries

During the development of a system, the necessibty to econtinually work with
existing bagelined code requires the co-existence of working and controlled
libraries. With the implementation of top-down development, this is true
even with systems for which the greatest part is still in the form of

dummy stubs.

The establishment of a controlled library consists of defining each routine,
macro, data base segment, ebe., as a configured item, assigning unique names
and configuration identifiers, initializing the release and modificaticn
number of the tesbed code, and creating a permanent, protected library.

Once the code is placed on the controlled library, it is estsblished asg
baselined. Master and critical copies of the baselined code are created.

3-8

g
i .

2l

=
)

=

TR

?
A

Lot e,

E

[g

ad

Lomerenn

PO

==
od

&

Leivoms 3

=l

==
K=

The use of the recommended update/compile program allows programmers to
easily create working libraries for the development and dabugging of
new program segments or modifications to existing program segments.

Selected parts of the baselined source may be copied, updated and stored
in a working library, either from TS50 or from card decks. The listing
provided by the update program should conbain the configuration status
information and identify the source of justification for the code (e.g.,
problem reports or design specs).

The programmer is forced to be aware of the version of the code with which
he is working. He must input the current configuration revision symbol
and is raturned an error message if it is inecorrect. This helps insure
that he is not updating a different set of code than he thinks he is.

A parallel copy of the baselined library is maintained by a central group
whose function is to mainbtain decks, memos, documentation, ebe., and serve

as the foeal point for informetion ghout the program status. This library
should be controlled to the exbent that all changes and additions must be
reviewed and approved before entry, documented both internally and externally,
the configuration status maintained, and indepth testing performed against

a known configuration.

The programmer's private working library is uncontrolled. The update pro-
gram allows him to easily creaite a new file for new code or to copy into
a8 working data set the code to be modified. He may then develop his code,
debug the affected routines, link the new routines to the parallel system,
perform development tests, and execuie against a benchmark test without
disturbing the basic system.

Control begins wvhen the new approved code is placed into the parallel
library.

At the point of meking a2 formal modification and release, the current pro-
cedure is to freeze the update in the paraliel library, test the frozen

system, and when accepted, the new library is renamed and placed into
operation.

I the changes are significant in number and/or complexity, it is recommended
that the new system be completely rebuilt at the time of the update freeze.
This means that the old system is copied to a new library, and all changes
(including new and deleted routines) are made at one time to this library.
This insures that every line of code in the new library is known, accounted
for, and justified. It removes ithe possibility of a change of code being
made that is undocumented or unjustified. The update program places all

of the changes for a mod into a mod packet and writes them into a file on
the end of the tape containing the updated scurce. This way., every change
making up a modification is permenently stored in a readily retrievable

form. In addition to the sdvantage of mazintsining this record for historical
purposes, it allows easy reconstruction of g change that must be backed

out if an error is found after the formal mod is made.

3-9

it e =

3.3.1.2 Re—lease Control

fhe release of a controlled system mpla.es 'hha.t it has been rigorously
tested, completely documented, its conflgura.tlon confirmed, all approvals
have heen obtained, and a master copy of the system (in both source and
object form) p'fa.ced in bond by a quality assurance. orgenization.

The release funct:n.on forma”izes the installation of & new or modified
system. Tt assures that the catalogued procedures are updated to reflect
the new release, “thereby minimizing the . n&dvertant use of a prior 1:Lbrary
when fubture changes are to be mede or tests are to be performed.

The release control function - is also concerned with protection of the
operational system. Release control persommel should be the only
persomel authorized to obbtain a master copy of the system from Q.A.
bond and restore the systew onllge.

A Deta Release Authorization is .:.ssued at cvhe time of release and. :.den't:l.-
fies the following:

1. Sequence number of release items

2., Mnemonic name of volume or documend number
3. Current revision muber

4., Security classification

. Volume nwiber, e.g., tape resl number

. Progrem identification number

. Next higher level of program

. Responsible signatures

=1 Oh\i

3.3.2 Configuration Management

Software configuration management is the day-to-day monitoring and control
of the computer program configurabtion items {CPCI's) of which the system
is composed. These items ineclude the computer programs and the associated
documentation.

The normal configuration management discipline is applied to the software.
This discipline consists of four functions:

. configuration identificatbis :

. configuration chenge control .
. configuration gtatus accounting

. configuration avdit

3.3.2.1 Configuration Idembification

Configuration identification is a system of computer program identification
numbers and document ldentification numbers that will identify all config-
urable items.

The configuration of a compuber program should be dccumented in the specifi-

cations. The required configuration is identified in the design spscifica-
tion, and the achieved configuration is identified in the post development
documentation.

3-10

Ak u amaane iiee e aaes b b s = bem L oy

t=3

2P

e

Eg

3

£3

e |

i

o

FmnC
g

==

| =2

I

S R B

i el

L

O

f B
et ke

s B inowts|

Identification of the configurable software items for use with {or without)
the update/compilation progrem consists of a comprehensive identification

scheme. 'The following example shows one proposed method for accomplishing

this goal:

Systen - A one to eight character name followed by a .
one character release number and one character
modification number.

Programs - A filename of one to eight characters defining
a file of one or more card decks.

A deckname of one to eight characters defining
a deck conteining a subroubtine, macro, data base,
ete.

A revision symbol of two characters beginning with
AL,

— Tdsgbings show the same configuraticon identifieca~
tion as the programs.

Documents - A one t0 eight character program document identifier
followed by a two character revision symbol.

Documents to be assigned configuration identification numbers include:

. Part I CPCI (Functional) Specifieation

. Part II CPCI (Detailed Design) Specification
. Interface Specification

» Software Development Notebooks

3.3.2.2 Configuration Change Conirol

Configuration Chenge Control applies to all changes to configured software
and documentetion after the configured items are initially released.

A1l proposed changes to approved baselines are assessed, reviewed, and
evaluated by the Chenge Control Board (CCB). The CCB is composed of
representatives of the Design Group.

Actions hy the CCB include verifying compliance with contractual require-
ments and assuring the identification., evaluabtion and considerstion of the
technical reasons for the change(s). The CCB guarantees that only those
changes for which a requirement exists, or which offer a significant
benefit to the program, are initiated. Members of the CCB determine the
impact that proposed changes will have in the areas of cost, produetion,
reliability, maictainability, producibility, logistieal support and
specifications.

3-11

e

IR
L |

Proposed changes are evalvated as they are proposed. The changes to be s
incorporated are recorded and collected together until the update ' -
freeze before the formal mod. At that time all inecorporated changes =i
% are submitted as a unit to the CCB for final approval. S
% . Proposed changes are initiated on a software problem report. The soft- Eﬁ
i ware modification report records the fix cr improvement that was made.)
i An engineering change proposal is used to formally submit the collected
% changes to the CCB for final approval. A specification change notice is o
; used to record changes to specifications. Eﬁ
! The CCB meets on a periodic basgis or when a major change or Iimprovement n
! must be evalueted. These meetings are supplemented with separate ﬁ&
' individual meetings for review and action on individual problems that i
: must be addressed.
g Minutes of CCB meetings contain the transsctlons and assigned action Ej
. items. They are not authorizations for changes, but are for historical
i and sdministrative purposes. o
; The problem reports being reviewad and any instruction for their disposi-- EL
i tion are attached to the minutes, signed by the CCB chairwman, and distri- ~
i buted to all CCB members plus any others affected by the decisions. EE
ob
; A3l proposed changes must be addressed by the CCB. The decision to implement
! or not implement the change is made and recorded. The responsibility 3
: for investigating any unresolved changes is assigned by the CCB to a f;
person wvho will obtain the information necessary for a decision to msade.)

Changes procedures apply to deocumentation as well as code.

Vg et

et T

3.3.2.3 Configuration Stabus Accounting

g.r, n:..:==.t

Configuration status accounting is the recording and reporting of the
status of the system's configuration. The purpose is to know exactly
what the current configuration is, and how it was achieved. 7]

Configuration status accounting includes reporting and recording: *

. the initial configuration identification A
. the proposed changes to the configuration &
. all approved changes to the configuration

i

| 7T
g As the initial configuration identification is updated, records are main- i%
E tained that provide traceabilibty of sof ware problems or improvements

A from their inception through the correetive action to their incorporation T
3 into the existing system. _ a0

Status accounting applies to all controlled program documentation, the
software development notebooks, and the code. Logs are maintsined on

the receipt, ildentification and disposition of all change forms. These
inecluade software problem reports, engineering change requests and
spseification change notices. : Ri%

3"'2—d 54y

o

L]

[G

-
|

"

H

-

R SR N

l

¢
Rt s

~— /£

e &3 £

B

Status reports are published periodically. The information js retrieved
automatically by report generators from the files maintained on a mass
storage volume.

Other files contain the:

. hisbory of &ll revisions and changes to each specification
. history and content of all problem reports

The status reporits contain:

. history and stabtus of specificaticn changes
. summary of the stabtus of all probiem reporis
acted upon by the CCB, including disposition
and schedule of change.
. stabus of any individual status report
« listing of the current computer program configuration

The above stabtus reports can be obtained in a number of formats using
various sorting criteria. This provides optimum visibility in any
desired area.

3.3.2.4 Configuration Audit
Configuration audit consists of

1. a series of reviews of the requirements, the design, and the
final beseline qualification, and

2. an aundit of the functional and physical configuration of the
system. ‘

The purpose of the specificetion reviews is to confirm the presence of the
information, clearly and accurately stated, necessary to develop the software
that meets the requirements. Any problems detected are documented and
presented for resoclution.

The reviews serve to systematically evaluate the developing system and

the end product in respect to its conformance with the regquirements.
Baselines are estabilished for the reguirements, the design and the
implemented code and documentation. The documentation is reviewed to
assure that it accurately describes the product. "

The audits assure that the configuration of the system is compliaant with
the requirements both functionally and physically.

3.4 SOFTWARE DEVELOPMENT ORGANIZATION

This methodology recommends two approaches to sofitware development
organization.

1. independent review, analysis and evaluation of the requirements
and design, and independent test and evaluation of the
completed product.

3-13

JROTRR

2. a team approach to software development.

The concept of the performance of verification/validation and control
functions (which include the verification/validation of the requirements

and the design) by persomnel who did not specify, design, or build the
system and who are specifically skilled in the areas of analysis and
-evaluation ig becoming more widely accepted. There are two major advantages.
One is the elimination of the logical bias inherent in having the designer/
implementer perform these functions. The cther is that the functions

are performed byvpersbnnel to whom this discipline is of primary interest
rather than secondary.

The concept of a heam approach to software development has been widely
discussed in the literature. This methodology offers a team approach
that may by necessity draw the team mewbers from warious organizations.

3.4.1 Independent Requirements Analysis

The review and analysis of the requirements specified at both the functional
level and the detailed design level by 2 group of ome or more analysts who
did not participate in the regquirements definition or generation is
recommended.

The review and analysis of specificationg are eritical functions. Initial
specifications often contain awmbiguities and are not always complete.

The independent analysts review the specification, talk to the requesting
organization to determine if the specification accurately states the
requirements, talk to the implementers (in-house or contractor personnel)
+to determine if their interpretation of the requirements is the same as
the requestor's interpretation, and act as coordinators to resolve any
inadeguacies and conflicts in the requirements.

Prompt feedback must have a high priority to assure that design chenges
can be made at the earliest possible stage of development.

The independent analysts review and analyze the specifications for

. useability
. complebteness

. clarity
. conbinuity
. uniformity

. traceability
. testability

The resuliss of the analysis are presented to the approval authority,
a8t preliminary design reviews and critical design reviews.

Requirements Analysis and Feedback is discussed in detail in Section b.1.

.-.-"'j

L
PO

e

N

r

.

[2

o

s

Fotmtn

5

o

5t

&

i

|

£
Lo

fmrc]

Fleue,

E.:‘m;;hl

ity
et Tk

o
£,

3

[Semmadd

Fhipni

o

L

f'.’..

et

E
¥

=

3

|

=
t

[——]

P et
o mo i

-

.:w:]
e ey

£

==
et d

Geonanc

-

=3

bt

=33

Eomrmo o

[e

o

3.4.2 Independent Test and Evaluation

The design and performance of test and evaluation functions by an independent
organization is recommended.

Tor & new system, the test engineers review the requirements of the
system and desizn asserted test criteria with accompanyiung test cases
that will demonstrate that the implemented system periorms as specified.

In the case of existing systems the independent test engineers review
the improvements and corrections to be incorporated in the modifications,
and design asserted test criteria with accompanying test cases that will
demonstrate that the modifications cause the system to perform according
+to0 the reguirements as well as demonstrate that the unmodified paris of
the system are not degracead.

Asseried test criteria are documented in the test plan while also being
placed within the respective programs using the embedded assertion
languege technigues described in Appendix C.

The test cases are executed on an informsl basis until the formal meod is
made, the discrepancies are recorded and given to the designers/programmers
for correction, the test dats is evalusbted to assure that the test
objectives are being met, and a formal test of the system is made. A

final test report "is prepared attesting to the extent to which the require-
ments are met as demonstrated by the test effort.

If certification is required, the test report is the basis for certification
by the independent test and evaluation group.

Testing, evaluation and certification are discussed in Section 4.3 and

bk,

3.4.3 Team Approach to Programming

In formulating a methodology Tor producing reliable software sericus consid-
eration shonld be given to the use of a team approach. BRather than recommend-
ing a specific approach, however, it is suggested that teams be tailored to
the size of a project and the operational environmeni svailable at the
developing locabtion. A degree of flexibility should be provided in estab-
lishing the exact make up of a programming team. Past experience has

shown that blind adherence to a reportedly "ideal" team orgenization can

be counter productive. Various tesm approsches have been advertised

widely in the literature. A discussion of sgeveral of these organizational
schemes is comtzined in Appendix D.

3-15

?__"_..-c.“‘_'r‘_“.’::‘::ﬂ-:«:rrzx b A e i .+ s e o e o 2 17

ML e ey K PE— = e e REe e A === K S o o S e e O @r BT ewEstt FuE Py CimB s s mr Je 80 @S .00 @ SigueeeesmmRre sy fEme oot eI TR T AR T S 8 =

3.5 PROJECT DEVELOPMENT PLAN

The development of & brand new system or the incorporation of a major
function into en existing system needs to be carefully planned. The
development plan should establish the goals of the project in terms of
its purpcse, and its function. It should define the methodology to be
used for the implementations, and the comtrols to which the development
is to be subjected.

3.5.1 Establishing Goals

In considering the development of a system with quality considerations
built in, it ls neceassary to understand the scope and purpose of the
total system at the very beginning. The top-down development of the
system structure allows early visibility of the entire system, and a
more accurate assessment of realistic performance and scheduling criteria
at the outset.

The performance criteria are stated as requirement sets that satisfy the
purpose of the system. The scheduling eriteria are stated as milestone
sets that satisfy delivery requirements. In general, the lack of early
guality-producing considerations will adversely impact the schedule,
since potential problems at the beginning become real problems later on,
requiring correction time that might have been avoided.

Therefore, the goals to be established are those ithat will cumulatively
result in a relisble system. Some of the major goals are:

. . Lo
1. produce a complete and consistent preliminary design that contains :

. major software functions which either directly correspond
to or can be easily traced to explieit software reguirements.

. a set of test eriteria whiech can be used in the formulation
of a comprehensive test plan for validating and verifying
the completed system.

. & complete picture of the overall structure of the software
systemn.

. enough deteil regerding the allocation of functional
processing requirements to designated software elements
to support a thorough and credible demonstration of design
feasibility and validity.
2. produce a detailed design that:

. is an exbension of the top-down design concepts incorporated
into the preliminary design.

. expands the test criteria to be associated with the validation
and verification of the resulting system.

3-16

t [TN | [ESEPE

oo s

[

[

e

Grraerad

e e
[,

e oy s -

. provides for a supervisory control routine for the
implementation of each functional capabilitye

. provides clear traceability back through the preliminary
design to the requirements and forward into the code
and as-built documentation.

3. define and systematically carry oubt a series of reviews

. designed to:

B . create mutual understanding of the requirements by
the requestor, the designer, the implementer, and the

B tester (design reviews).

. communicate the existence, evaluation and correction
- of problems or potential problems (CCB).

- . communicate the configuration status of the developing
system in relation to its specified configuration (CCB).

i .. confiym that the code that implements the system
will perform the functions required of it {walk through}.

i . assess the extent to which the tested system meets the
requirements specified for it (formal qualificetion review).

4, provide the designers, programmers, and testers with the aids
(in the form of tools, guidelines and stendards) that will help
them to achieve and verify gquality inthe product. Of particular
importance is the timely availebility of these sids.

‘5. BEstablish and maintain the controls that will preserve the
- integrity of the system at all stages of its development.

2 6. Motivate the personnel by:

. providing them with opportunities to be flexible and
L innovative within the bounds of the controls placed
upon the software development.

. involving them directly in the scheduling of their own work
as part of the Software Development Notebook concept.

There are @ number of other goals that could be defined, but they can be

classified into subsets of the above goals. For instance, the subject of
documentation is not directly addressed, bub is defined by the standards

in item 3, and is procedurized in the controls in item k.

In addition, the budget and wilestone goals are not addressed, as +their
- net effect on relisbility generally comes sbout indirectly by causing
pressure if estimates were not meaningful, or by avoiding pressures if
they were.

J e]

3-17

e
[-

3.5.2 Selection and Use of Aids

The selection of proper aids to be used during design, implementabtion and
testing is critical to achieving and maintaining quelity in large systems.
Even more crucial is their availebility at the time they are to be used.
Availsbility of tools and techniques includes adequate procedures for
their use. Tools that must be developed must be designed early encugh

to be built and thoroughly tested before they are used. Tools that are
procured must be instaelled and checked out in the enviromment im which
they are to bhe used.

The size and complexity of the system being developed, the hardware/soft-
ware support resources evailable, and the tradecff of value vs. cost
are all factors to be considered in the selection.

Some tools and technigues can bhe advantageously applied to almost any
systam. For example, the walk-through technigue is valuable even on
small "one~time-only" programs, the difference being a matter of degree.

For the more trivial programs, an hour spent by another programmer
informally reading the code may save several debugging runs, while on a
large complex system public presentation of the code may be the best
approach. Both are applications of the walk-through.

Obviously, some tools must be selected to appropriately fit the enviroament.

A machine or language-dependent tool must be eustomized, and even a
portable tool is more offen than not "almost" portable.

Probably the most important aid and the first one that should be available
is the programmer's reference manual. A comprehensive reference manuzl
containing "what every programmer should know" about the resources avail-
able to work with, the environment he must work within, the programming and

documentation standards he must comply with, and the guidelines for developing

good, standardized code. This manual is the authoritative source defining
the ground rules and conditions for developing the software.

- Other tools and techniques which are candidates for selecthion are:

. FORTRAN Struecturing preprocessor
. Documentation aids

. Checkout/debugging aids

. Updating aids

. Walk-throughs

. Desk Checking

« Standards Checking Tools

. Execution Analyzers .
. Path Analyzers

. Cross Reference Analyzers

. Test Data Generators

. Test Case Selectors

. Report Writers

. Performance Analyzers

R
L i
e

v B ot

,‘
fomresed

g

£
:

Lopostiig

—

S

L.

el

f
L

r —M‘.}
[SEEERE

¢
beneermed

&

-t =z i,

Individual tools are examined and theilr capabilities are presented in
Appendix A and Appendix C of the Final Report for this Study. The

appropriate point at which to apply these tools and techniques is dis-
cussed in Seetion 3.4.3.

In the on-going developuent of large systems that beke several years to
complete, the evalvation and selection of aids should be performed on a
periodic basis in order to take advantage of new technologies or to
supplement existing technologies with enhancements.

The GSFC computer configuration (the IBM series with TS8O capability)
coupled with the use of FORTRAN as the universal programming language
lends itself to the use of several general purpose tools that are

either portable or easily adaptable to the compuber center envivonment.
These tools are application independent, therefore scheduling of their
installation to meet a development schedule is not a prime consideration.

Other tools thait show promise are either designed for a different environ-
ment (i.e., language and/or machine) or are application-dependent.

These tools should be considered as candidates for development specifically
for use at GSFC.

3.5.3 When to Do What

The importance of timing is paramount in the development of software using
the built-in gquality concept. The decision to use certain techniques

and tools at a point that allows errors and faults to be prevented

rather than detected must be made very early in the development cycle.

The following set of charts show the points at which various quality
considerations should be imposed. The development cycle is shown as
the conventionsl series of steps shown in Pigure 3.1. While actual
development does not take place in such clearly delineated steps, the
phases serve to show the framework upon which decisions can he imposed.

3-19

RS Dy Aeegie STES SN TN

QUALITY CONSIDERATIONS BEGIN

o0
5,
vd 84
o2
()
® B .
%.’%3- PRELIMINARYf DETATLED | CODE & VER/VAL MATNTEN-
(=) [DESIGN DESIGN DEBUG ANCE
a‘,‘ SYSTEM SOFTWARE
ol REQUIRE- REQUIRE-
MENTS MENTS
SOFTWARE REQUIREMENT SPECIFICATION {
FUNCTIONAL DESIGN SPECIFICATION ;
}
T INTERFACE SPECIFICATION t
S)
SOFTWARE DEVELOPMENT NOTEBOOKS [
|
DETAILED DESICN SPECIFICATION {
!
TEST PLAN |
[
PROGRAMS AND DATA BASE 1
{
Figure 3.1
EFFECT OF FfTLY ~TALTTY JONSIDERATIONS
CONFIGURATION :'A’AGEMENT
3 R gr. g R B T £ &

£

g

iR s S o S ot oo S s S s S svsos S et N e N S B s o

QUALITY CIIUSTTERATIONS 3EGIH

—. S— m—— G— a— S—

vo RETTWINARY { DETAILED | CODE & VER/VAL |MATNTENANC
%, { DESTGN DESICHN DEBUG

[e5)

@

SYSTEM SCFTWARE
REQUIRE- REQUIRE-
- MENTS MENTS

IDENTIFY PROGRAM MODULES I

PLACE DUMMY PROCESSORS UNDER CONTROL H

T2-¢t

UFDATE DUMMY PROCESSCRS WITH CONTROLLED CODE 1

e FORMAT, BUILD OF SYSTEM POR TESTING l'——

RELEASE OF ACCEFTED SYSTEM l_—

l— UPDATE CONTROLLED CODE |

Figure 3.1 (continued)
REFFECT OF EARLY QUALITY CONSIDERATIONS
PROGRAM COWTROL LIBRARY

b

b GALITY CONSIDERATIONS BEGIN

S — S—— EARY (e AS——

PRELIMINARY DETAILED

p— _ DESIGN
SOFTWARE
REQUIRE-
MENTS REQUIRE.-
MENTS
DOCUMENTATION ATDS i f
TOPDOWN DEVELOPMENT
TECHNIQUE
TEST DATA GENERATOR i
PROGRAMMER'S REFERENCE MANUAL 1
W DEBUGGING ATDS f
no
N
SOFTWARE DEVELOPMENT NOTEBOOKS f
UPDATE /COMPILATION PROGRAM ?
STANDARDS CHECKER 1
EXROUTION ANALYZER i
WATK-THROUGHS & DiSK CHECKS r
AUTOMATED CONFIGURATION
- MANAGRMENT SYSTEM

SIMULATORS /MODELS %
PROGRAM LIBRARY CONTROL i
Figure 3.1 (continued)

EFFECT OF EARLY QUALITY CONSIDERATTONS
TOOL AND TECHNIQUE INTRODUCTION

poag [..“.__,...} PR Ly
ot ramnd Lezzr wms Contsmsed | S—— Ao rormmess,

[Sy | ot] LRSS | i 4 &) . i

E2-¢t

[Ere, | PRCRESY | [EEEv

[— | S—

QUALITY CONSIDERATIONS BEGIN

A Sl e weeyve AT

: PRELIMINARY { DETATLED CODE & VER /VAL MATINTEN-
SYSTEM : DESTIGN DESIGN DEBUG ANCE
REQUIRE- SOFIWARE
MENTS REQUIRE- o
MENTS
SYSTEM REQUIREMENTS
REVIEW (SRR)

 BOFIWARE DESIGN REVIEW (SDR)

PRELIMINARY DESIGH

- REVIEW (PDR)

CRITICAL, DESIGN REVIEW
(CDR)

CONFIGURATION REVIEW BOARD

PEYSICAL AND FUNCTIONAL
/CONFIGURATION AUDITS

TEST REVIEW BOARD

'DEVELOPMENT TEST REVIEW

INTEGRATION TEST REVIEW

. FORMAL QUALIFICATION TEST
REVIEW (FQR)

-1

v R

Figure 3.1 {continued)
EFFECT OF EARLY QUALITY CONSIDERATIONS
REVIEWS AND AUDITS

ol

-

FCA

QUALIT_’ CONSTDERATIONS BEGIN PCA
SRR SDR PDR CDR i 2 y
T T ¥y '
: (PRELIMINAR DETAILED |CODE & [..o AL MATNTEN-
; DESIGN DESIGN DEBUG ANCE
SYSTEM
SOFTWARE
REQUIRE- .
MENTS REQUIRE-
MENTS
PROJECT PLAN |
' -4
SYSTEM ANALYSIS i
B) l
L, TOOL DEVELOPMENT 4
N i
‘P- . .
REQUIREMENTS ANALYSIS i
|.
TEST PLAN ’ i
: |
TEST PROCEDURES ' I

PROGRAM ANALYSIS

FINAL, REPORT | I......,_.

Figure 3.1 (continued)
EFFECT OF EARLY QUALITY CONSIDERATIONS

L - OVERALL DZIVELOPMENT PROCESS
S B o (s T B CI B ek B PR TR CECT SR SIS SRS B SCET U <SS 0 S 58 N s s I 6

o

s O

i . References

|

1. R. D. Williams. Managing the Development of Reliable Software.
International Conference on Reliable Software, Los Angeles,
Californisa, April 1975.

|

=5 - -

i

£ -3

[l
=
fasd

bd

;] ' 3-25

A o . CaAL e A n L tore 4 ik 38 e s ki ke + L e Lt £ Ao A 5 101 e ek s k5 —Dm R e -

Breemed P

g

“

[T

g

e
B

R

o
[

3

Er==

=3

- I A R R e T

e ivn em v ek s i v vt e tlon i s i e i Arws e oy e s o

Section k4
SOFTWARE VERIFICATION/VALIDATION TECHNIQUES

h.,1 GCGENERAT

Phe verification and validation of software is the most difficult process
of software development, end therefore potentislly the most costly. The
cost depends largely upon the extent of reliability required of the
software. However, the application of some specific tools and technigqlLes
can inerease the probabilivy of detecting errors, reduce the time required
to detect and remove them, and help debect them at the earliest possible
point in the development cyecle. This can effectively reduce the cost of
achieving a required level of relisbility. The verification/validation
process begins with the analysis and verification of initial reguirements
and continues throughout the entire development cyele and into the operatiomal
state of the system.

This section deals with five aspecits of verification/validation:

. Requirements Analysis and Feedbeck
. Code Analysis and Verification

. Program Validation

. Program Certification

. Reliability Determinetion

e N0

The analysis of specifications and the formal and infermsl reviews of these
analyses are discussed in reletion to NASA Goddard's cwrrent procedures.

Code analysis and verification techniques and tools are aveilsble and can,
in many instances, be applied dirertly to the NASA Goddard environment.
These include both mapual and sutomsted methods of analyzing and verifying
the code.

Testing of the software is done in several phases. Bach is discussed,
with recommendation as to tools and techniques available 0 enhance the
process.

While certification is not & direct requirement of NASA Goddard, its
performance is discussed in relation to its positive effect on software
reliability. '

The need for assessing the relisbility of the software requirsd techniques
that are still in an experimental state. However, achieving a reasonsbly
accurate determination is possible. The most promising methods of
determining reliability are offered for consideration.

4,2 REQUIREMENTS ANALYSIS AND FEEDBACK

The most impcrtant aspect of designing systems with built-~in quality is
the early verification of requirements. Analysis of several large
systems shows That as requirements analysis and design time increases,
testing time decreases.

In general, a high percentage of errors are attributable to conceptual
errors. The early detection of these errors reduces or eliminates their
impact in later stages of development.

This section addresses the problem of assuring that the requirements
are adequately defined and stated, and that the design reflects the
requirements correctly.

This methodology recommends a series of reviews to assure that the intent
and the requirements are compatible and that the requestor, the deslgner
the implementer and the tester mutually understand them.

All analysis and review activities should whenever possible be performed

by an independent analysis group which may be either an internal or ouiside-
confractor group of analysts.

4.2.1 System Requirements Review (SRR)

The purpose of the System Requirements Review (SRR) is to assure that the
system requirements are feasible and that they are complete and unambiguous.
The review may ineclude the results of:

. mission analysis

. simulations of the gystem

. functional flow analysis

« preliminary requirements allocation
. system/cost effectiveness analysis

. trade-off studies

. integrated logistic supporit analysis
. system interface gtudies

. program risk analysis

. producibility analysis

. technical performance measurement planning
. integrated test plan

. data management plan

. configuration management plan

. engineering integration plan

. acceptance criteria generation

» system safety definition

Special attention is given to:
. risk factors, their identification and ranking as pointed up in

the gysbem/cost effectiveness analysis and technical performance
meagurement plan analysis, their avoidance/reduction and control

e
(i

3!
g

v d
o

(=4

E"-wg

[

a

3
Lrre]

[

il

ETHY

WL

| AR
g

(13
B rd

-y

i:.:z.ue.-;j

beremeel

FUS——

iovos SRS SOt

=

Biini et

- v I e e e e e St DREIE ey e 4 - et e R e e - ek

as indicated by analysis of trade-off studies, test planning,
hexrdware proofing, and technical performance messurement.

. significant trade-offs between stated system speciiication
requirements/constraints and resulting engineering requirements/
constraints.

. significant producibility considerations that are vizsible early
in the program, such as manpower loading and hardware availability.

For large systems, SRR's may be conducted for each operational and support
subsystemn depending on the nature and complexity of the program.

h.2,2 System Design Review (SDR)

The objective of this review is to evaluate the completeness, traceability,
correlation, optimization and the risk associated with the proposed

system design. It encompasses the total systems requirements, i.e.,
operations/maintenance/test/computer programs/facilities/personnel/and
procedures. A summary review of the items covered in the System
Requirements Review that produced the above definitions is included.

The end result of the review is the assurance of a mutual technical
understanding of the validity of the system specification and the
engineering/cost realism involved in producing the system. The
following items are to be achieved in the SDR.

1. Insure that the updated/completed system specificabizi is
adequate and cost effective in satisfying velidated
migssion requirements.

2. Insure that the allocated requirements represent a complete
and optimael synthesis of the system requirements.

3. Imsure that the technical progrem risks are identified, ranked,
avoided, and reduced through:

a. adequate trade-offs

b. a responsive test program

¢. subsystem/component hardware proofing

d. dmplementation of comprehensive engineering
diseiplines such as worst case analysis, failure mode
and effects analysis, reliability anslysis, and
standardization.

L. Identify how the final combinations of operations, maintenance, and
tests and ascceplability requirements have affected overall
Program conecepis.

5. Iasure that a techniecal understanding of the requirements has been
reached and jechnical direction is provided to the implementers.

43

The SDR re-addresses the items reviewed in the SRR, plus the following

items:

updated design requirements for operations/maintenance functions.

updated operations/maintenance reguirements for facilities,

updated requirments for operations/meintenance personnel
and training.

evaluation of

.

syastem design feasibility and system/cost effectiveness

capebility of the selected hardware/software configuration
to meet the requirements of the system specifications

allocabed inter~ and intra- syctem nbterface requirements

specific design concepts that ms, require development toward
advancing the siate-of-the-art.

the ability of requirements items to meet overall system
requirements and compatibility between regquirements
items and configuration item interfiaces.

relisbility trade studies

review of the specification of critical items to assure
their traceability/correlation to the validated mission/
support requirements.

review of all availab.e test documentation, including
subsystem and system test plans to assure that the
proposed test program satisfies the test requirements
specified in the system specification.

review of compubter programming reguirements including
. type of processing, such as on-line processing
off-line processing, parallel or mulbti-processing,
muttiprogramming, time sharing, etec.

. @ gross description of the size and operating
characteristics of all computer programs,
including data bases.

. & description of the requirements for gystem exer-
cising and identification of fuunctional requirements
{exercise configuration, conditions, missions,
frequencies, functional simulation, recording and
analysis) and identification of major elements
to implement the exercising capability.

Ly

@ e e a1 v - B e et v s o it s e

P—

PR

frome g PRSIV
[E—— 3 et

+

i

|

[

|

. identification of programsg required throughout
the system, such as operational programs,
diagnostic programs, test/debug programs,
simulation programs, exercise and analysis
programs and other support programs.

. identification of computer facility resources
needed to support the developing and operational
system.

k.2.3 Preliminary Design Review (PDR)

The preliminafy design review is a formal technical review of the basic
design approach. For large programs, & PDR is conducted for each
functionally related group of conliguration items. The PDR is the
most critical review of the software development review series. This
is the point where the conceptual design is accepted and the software
system is built upon it. Errors left undetected in the design are
often propagated throughout the other phases, causing grief in the
later stages.

The items reviewed in a software PDR include:

1. Computer program functiomal flow.
This information is completed to the level of flow charting
which identifies the allocation of computer program components
to functions and depicts the sequence of operation within
the system functional flow,.

2. BStorage Allocation Charts, describing the manner in which
available storage is allocated to individual computer
programs. Timing, sequencing requirements, and relevant
equipment constraints used in determining the allocation
are included.

3. (Control Functions Description containing a description of the
executive control and start/recovery features for the computer
progrem system. It includes the method of initiating system
coperation and features enabling recovery from system malfunction.

4, Structure and organization of the Data Base identifying data

types and characteristics, structure and layout, and allocation
of deta storage.

5. Standards and conventions to be used in generating and testing
the systen.

6. Test plans in relation to their ability to demonstrate that
the completed software system satisfies the requirements.

T. Configuration identification of major modules.

8. Interface definitions describing the relationships of software
system components, for assurance that a particular item does
not edversely impact or is not adversely impacted by other
system elements.

PDR's are conducted until the software system design is accepted as
satisfactory. No detailed design or coding is performed until the
preliminary design is complete.

4.2.h Critical Design Review (CDR) ks

The purpose of the Critical Design Review is to determine that the detail
design of the coenfiguration item under review satisfies the design require-
ments in the specification for the item, and to establish the exact inter-
face relationships between the configuration item and other related items.

The CDR for each configuration item is conducted prior to the release of
the design for production of the software, and the result of each CDR is
40 commit the design ‘to production.

For computer program configuration items, the CDR is a formal technical
review of the item design. The CDR is normally accomplished for the
purpose of establishing integrity of computer program design at the

level of flow charts or computer program logical design prior to coding
and testing. VWhen a given item is a complex aggregate of computer program
components, the CDR is sccomplished in increments during the development

process corresponding to periods at which components or groups of components

reach the completion of logical design. For less complex items, the CDR
is accomplished at & single review meeting.

The primary product of the CDR is formal identification of specific computer

programming documentation which will be released for coding and testing.
Documents to be reviewed include:

. Draft of a complete detail design specification for the computer
program configuration item under review.

. Supporting documentation describing results of analyses, testing,
ete.

. Documentation of allocated resources for the item

. Test requirements for the item including asserted program properties
(reviewed for completeness and technical adequacy).

. Test documentation required to support the test requirements, test
procedures in particular.

. Configuration documentation for each item,

4-6

|

=

e,
Fp

Y 1
g g

—

]

b e

[

| B

F=3

k.3 CODE ANALYSIS AND VERIFICATION

Attempts to eheck ecode for accuracy and efficiency have taken many forms.
Two manual technigues have been found effective in reducing errors when
applied systematically. There has also been a proliferstion of tools,
developed to & large extent on an experimental basis, that are designed
to enforce standardization of code and to aid in cherking it for incon-
sistencies, incompleteness, and other structural faults that may cause
problems later in the execution of the logie. They also help in debter-
mining efficiency of the code in many cases.

Except for the manual technique of "walk throughs", no currently available
tools address the function of & program. Some promising steps are now
being taken to address funetion in application—independent tools. One
such technique involving the use of an embedded assertion language with
accompanying tools is presented in Appendix C.

Tools that are application-dependent and/or enviromment-dependent must
be designed and built as needed.

h.3.1 Manual Techniques

The following two mznual code checking technigues should ve performed as
standard procedure:

a. At the completion of the coding of any module, and prior to
submittal for compilation, the application programmer shall:
(1) desk-check his module, following the procedures described
in 4.3.1.1 vntil no additional errors are discovered;

(2) update the flowehart of the module to reflect any coding
modifications; (3) review the module's flowchart with his
auxiliary programmer; (%) submit the module for desk-checking
by the auxiliary programmer; (5) repeat the above steps (1-4)
until no additional errors are discovered; (6) obtain the
auxilisry programmer's approvsl cor the module development form
(MDF ~ see 4.3.1.2).

b. Obtain an error-free progream compilation
¢. Update the program flowchart to reflect the valid cempilation.

d. Review the updated flowchari with the auxilisry programmer
and obtain his approval on the RDF.

e. Prepare sufficient module development test data, as described
in b.4.1,

f. Submit the module program design language (PDL), description or
flowchart to & group walk-through, as defined in section k.3.1.2.

g. Test the module with the test-date; review the resulits of each
test run with the auxiliary progremmer.

o7

2. e PEpERATEE T A TR AT AT R P e

h. After development testing has been satisfactorily completed,
s public presentation of the code will be conducted (see %.3.1.2).

4.3.1,1 Desk Checking Procedures

The sample procedure listed below illusirates a method which can be followed
in desk-checking & FORTRAN module:

1. Answer the following checklist questions:

Q.

Does the commentary block define the purpose, names asnd
definitions of &ll variables that are transmitied to,

andfor from, the routine; and contain version date,
programmer's name, references and any special considerations?

Does the commentary block immediately follow the subroutine
name?

Are there sufficient comments interspersed throughout the
code to explain the general logie flow?

Have embedded assertions been inclnded both as text in the
design documentation and as comments in the code for checking:

data integrity

entry/exit constraints
result velidity

local data constraints
loeal addressing constraints

Are declarsvives in the following order?

TYPE statements

DIMENSION statements
BLANK COMMON statements
Labelled COMMON statements
EQUIVALENCE statements
DATA statements

Are the declaratives blocked so they are easily resdable?
Do all floating point veriables begin with letters A-H or 0-Z?
Do all fixed point variables begin with letters I-N?

Do logical and complex variables begin with letters appropriate
to the function of the variable?

Do all variable and subroutine names suggest their function?

Bo 8l} variabhles in a Common block use the same name in
gvery subrouline in which it appears?

h-8

(LA
Fp——

.

b, 3

gy

Proerm g
[P S,

ooy

™

i

G-

e

—

o

P —
T |

HE

Lomemd

EAPISIAS B M

Gt

Are variables passed between subroutines by the use of
COMMON rather than by calling paramebers?

Do all COMMON blocks contain less than seven arguments?

Has EQUIVALENCE been used to identify specific locations
in COMMON block arrays?

Are all RETURNY statements, COTO statements and CALLS
end function ealls lahelled?

Is the normal RETURN statement labelled 999%
Are all exceptional RETURN statements labelled with a 99x?
Are all labels in ascending order?

Are all COMMON verisbles initislized in a BLOCK DATA
subroutine, and defined by COMMENT cards?

Are the variables in a COMMON block in the following length
order?

. COMPLEX%*16
. COMPLEX*8
. REAL*8

. REAL¥L

. LOGICAL

. INTEGER#2
. INTEGER¥2
. LOGICAL*1

Ave all continuation cards numbered in sequence in column 67

Do parentheses balance? Start from the left with 0 and add
1 for each parenthesis and subtract 1 for each right
parenthesis. The count should never become negative.

If parentheses balance, the count will end up to O.
However, this does not indicate correct grouping.

Do FORMAT statements follow the declaratives and precede
the executzble code?

Avre all FORMAT statements lebelled in the 99xx range in
ascending order?

Do the subroutines have less than 100 lines of code?

-9

2. Using the Program Design Language (PDL) description or subroutine
flowchart, manually follow the execution sequence of routine
logice. This entails:

a. Preparing sufficient test data to insure that each function
within the rouvtine will be exercised at least oncey

b. Manually record each change of program date, variables, counters,
and indexes (using the prepared test data to drive the
routine);

c. Verify that the program logic flow accurately reflects
the program requirements;

d. Correct all discovered errors and repeat the above process,
The desk check procedures can be greatly assisted by using a standards
checking tool. This type of toocl can check for standsrds violetions and
flag them for correction. One such tool iz described in more detail in
Section L,3.2.1.

4.3.1.2 Walk-throughs

Management shall divide the progremming staff into groups of three or more
programmer/analysts. Bach group constitutes & review group, which will
collectively review each group member's programs. There should be two
reviews during the development of each program developed by & group member:
(1) prior to development test, but after coding is complete; (2) subsequent
to development testing. These reviews are conducted to Ferret oubt program
logic errors and to insure that the program has been thoroughly tested.

Bach review is termed a "walk-through", where the application programmer
conducting the review explains his module to the other group members.

These reviews typiecally take the form of a viewgraph presentation of the
moduies PDL or flowchart, where the cognizent programmer traces the
logic flow (i.e., wlaking the other group members through the module
logie). The initial review is informal and made to programmers. The
public presentation after development test is formal and is mede to

the Design Group.

During each review, errors may be detected by the members of the review
group. Each error discovered will be recorded by the suxiliexy programmer
and serve as an action item list for the cognizant programmer. During
both reviews, the action items discovered will be recorded in the Medule
Development Form (MDF) (see Figure 4-1); prior to final approval of the
development testing completion for a particular routine, the review group
should insure that all action items have been corrected.

P

[P—
——

ey
w“

e
PRS-

£
R

ety
1

P P
| O ed

PIES—
r——

e
e R,

€ e

g

ee——y

i
e

i

MODULE NAME
r
o
HEAD PROGRAMMER BACK-UP PROGRAMMER
i
DATE CODING
r: DESK CHECK DESCRIPTION COMPLETED
i
é DATE DESK

CHECK COMPLETED

I

DATE WALK-

WALK-~THROUGH APPROVAL THROUGH APPRGOVED

e

¥
fI—

r }

DEVELOPMENT TEST DESCRIPTION

>
| S—

DATE DEV.
TEST COMPLETED

[

—=

' DATE WALK~
WALK-THROUGH APPROVAL THROUGH

APPROVED

H

COMMENTS

F—

Figure k-3
SAMPLE MODULE DEVELOPMENT FORM

—

]

h-11

ol H
HE—

o e . Rk

4.3.2 Automated Technigues

4.3.2.1 Standards Checkers

The use of & standards checking tool can be used to conplement the manual
desk checking technigues mentioned earlier. Two tools seem worthy of '
mentioning as examples. The first, PFORT Verifier, Bell Laboratories,
Murray Hill, New Jersey is a very userl tool for checking the portability
of FORTRAN programs. The second, Standards Auditor, Computer Software
Analysts, Ine., Los Angeles, California is & tool which was originally
built to check the coding standards for the Army's Site Defense Project
being built by MDAC and TRW.

The PFORT Verifier checks s FORTRAN source progrem for adherence to a
portable subset of ANS FORTRAN. Subprogram communication is checked
through common and argument lists. Debugging and documentation aids
inelude subprogram cross reference giving type, usage and attributes

of each identifier with a list of statements in which it occurs. Also
provided is a summary by subprogram listing argument attributes, common
blocks used, subprograms called, and the calling subprograms. PFORT
has been installed at a number of locations and is available from Bell
Labs. Appendix A contains sample output from the PFORT system.

Standards Auditor currently checks 38 coding standerds. It has a suppression

cepability that allows selection of any subset of these 38 standards.
Additional standards can be readily added.

It has been found that the most benefits s~crue from checking a small
core of standards which include statement loesbion, comments and module
size. Stendards Auditor is marketed as a program product by C54. A
program was supplied to CSA for analysis in ccnnection with this study,
however, no oubput was received for inclusion in this study report.

h.3.2.2 Execution Anslyzers

There are many execution analyzers that have been built on both a commercial

and experimental basis. Most are designed for FORTRAN code, with a
few commercial ones handling COBOL code.

The Boole and Babbage problem program evaluator (PPE) already in use at
GSFC, is language independent sinece it is applied to object code. Tools
such as the MeDonnell Doug.as Program Evaluator and Tester (PET), the
CAPEX FORTUNE, and the National Bureaun of Stendards Analyzer instrument
the FORTRAN source program,

PPE is g valuable tool for measuring the performance of an eXecubting
program. Its main adventage is that it resides in the same region as

the problem program being measured and can readily be applied 4o programs
during production runs. This helps to determine the performance of a
prograw in a real use enviromment while operating with actual rather than
test data. The execubing program is not modified in any way., therefore,
there is little chance of degrading the program's functional capability,
except where & timing function is involved.

h-12

Pt
P

e
B

)

¥ S

g
Enaes

A

S

{
E==

-

T

=

X The aisadvantaege ichevent in the use of PPE is the difficulty encountered
“ in interpreting the results.

' For a total picture of a program's efficiency, PPE is & good tool to use.
3 While other tools ean detail the fregueney of executlon of each stabement,
timing considerations are difficult to arrive at accurately.

A second tool is recommended <o supplemernt PPE at GSFC. This is the FORTRAN
analyzer, PET, produced by McTlonnell Douglas. -

E _..'s tool is designed around a preprocessor/postprocessor organization. The
=l preprocessor inserts software probes into the target code. The postprocessor
' analyzes the data collected by the probes, and writes several summary
E reports containing the results.

' Run time statisties includa:
3

i 1. +the number and percentage of the total of executable statements,
~ non-executable statements, and comments.

% 2. +the number of and percentage of all potential executable
ot statements that were executed one or more times.
i 3. +the number of and percentage of program branches tested.
§

L, +the number of times each branch was executed. This irneludes

- branch counts for logical and erithmetic IF conditions,
{j plus compubed and assigned GOTO's branching histories.

) 5. +the mmber and percentage of subroutine calls that were executed.
{; 6. +he nuwber of times each subroutine was called, and the names

of those subroutines that were never entered.

o
LE T. relative timing for subroutine executions
[3 8. the number of times each executable statement was executed.

!

9. the minismm and maximua values attained by an assigonment
statement variable or DO loop parameter.

: 10. the first and last values atbained by an assignment statement
variable or D0 loop parameter.

The data collected and reported by PET can be used to:

rems——— e
[T RS

cases.
. show untegted code
. develop test cases that exercise the eutire program

{} . show areas of high activity during execubtion of various test

13

While the application of PET to the code does not prove the correctness
of the glgorithms, it does allow the observation of the behavior of *the
algorithms with actual test data. Fubure plans include the incorporation
of an assertion capebility that will address the correctness of the
algorithms to some extent (see Appendix C).

The chief value of PET is its assistance in deriving adequate test data
for development testing. By showing that all of the code was tested
using valid test data, the credibility of a program's correct performance
is ephanced prior to the final walk through.

Other execubion analyzers have been built for FORTBAN on the CDC and
UNIVAC equipmeni, however, none of these tools are available on the
IBM 360/370 series computers (see Appendices A and C).

h.3.2.3 Cross Reference Analyuzer

As programs increase in size, the problem of naming conflicts increases.
This is particulsrly true when enhancements are made to existing programs.

A cross-reference analyzer creates glossaries verifying the consistency
of symbol naming and usage.

JOYCE is & tool produced by McDonnell Douglas which provides cross reflerence
lists for FORTRAN progrems. The symbols referenced include the names

of any referenced module or functions, any entry points, and all I/0

file references. The cross reference lists are also useful for finding
typographical errors in coding and for checking a program's logic flow.
Sample outputs are contained in Appendix A. As is the case with many

of the better tools examined in this survey, JOYCE is currently only
operational on CDC machines.

4.3.2.4 Path Analyzers

There have beev several sbtempts to develop a path analyzer that is easy
to use snd that is helpful in debugging and testing of code. However,
the path analyzers that are applied to source statements within a
module are awkwaril to use and reguire that the user have intimate
knowledge of the code and the function for which it was created. Their
use will become more significant when they are used as forerunners to
test date generators vwhich are still in the experimental stage.

Path analyzers at the subroutine level provide visibility over an entire
program in regard to subroutine entries.

The Automated Test Data Generator (ATDG) developed for NASA in Houston
by TRW is discussed in Appendix A.

ATDG is a path analyzer that is promising. However, it is written to
run on a UNIVAC 1110 computer. It is an interactive tool that requires
a high degree of user involvement, and an intimate knowledge of the code.
1} 1s complicated to use and since it is used only at specific points

in the development oi a program, programmers often do not want to take
the time to understand how it works. However, work continues in the
simplification of its use.

[P,

Pty hed
[[Ep———

[|

|

ot

3
H

Emmny

fa

1
£50Y

vy

[
[]

. !m.;-: ey ;
e R i b ot A €

1_
. -

=1

ey EE

L i

1

e

L3
I

o3

R

When ATDG is completed, it may be a candidate for conversion to the
IBM 360 configuration, particularly since it is already a NASA
sponsored product.

Another promising tool currently being developed by MDAC is DISSECT, a
symbolic evaluation system, used to analyze programs written in ANST
FORTRAN.

When a program path is executed by ruvoning the program on a given input,
the correctness of the path for that input can be determined by examining
the effects of the calculations carried out by the path. If the path is
executed "symbolically" rather tlan with actual data, it may be possible
to use & single execution to illustrate its correctness on a large subset
of the input domain rather than on just a single value, Symbolic =xecution
of a program is carried out by given dummy symbolie values rather then
actuel numeric (string, logical, ete.) values to all or some of the

input variables of the program. An expression in the program involving
variables with symbolic values is evaluated by substituting the current
symbolic values of the variables into the expression. The resulting
expression is then simplified algebraically. All cperabors having only
actual as opposed to symbolic operands are evaluated in the normal way.
The resulting expression is the symbolic value of the original expression.

The command file is bullt for a DISSECT analysis of a subject program and
is divided into a number of cazes. The program is analyzed for each case.
The system is used to examine desired program patis.

A program path is a possible flow of control through the program. A

path is feagible if at least one element of the program's input domain causes
that path to be executed. In general, a complete set of DISSECT cases

for a program should "cover'" the program in some sense. One approach is

to analyze each feasible path (up to some number of iterations of loops).
Complex programs having many paths can be divided into segments &

analyzed using separaie cases.

A great deal of interesting research remeins %o be done in connection with
using the DISSECT system to study techniques for examining program
correctness questions. Sample oubtput is contained in Appendix A and an
additional description of the system iz presented in Appendix C.

4,4 PROGRAM VALIDATTION

The systematic validation of a compuber program begins with the validation
of its design, and in theory ends with the formal qualification test.
However, in practice, validation extends into the maintenance phase and
ends with *he demise of the program.

Therefore, this methodology addresses several kinds of testing that span
the development peiriod and continues into the operational state.

It may be argued that development testing is not really a validation process

but it is included here as the testing that is the transition from the
debugging to formalized galidamion efforts. I%s importance is significant

415

becanse it assures that the debugging process is complete before the
code is integrated into a system for testing. This reduces the chance
of failures caused by structural errors, allowing concentration on the
detection of logical errors during testing.

The use of a formal qualification test against an exactly known configuration
provides & baseline for the system. Any discrepant behavior of the system

is documented. The decisions impacting system acceptance and disposition

of discrepancies can be made in a formal manner with adequate and visible
justification. The operational test provides a means of measuring the
systen's real time performence in the operational environment. This

testing determines if the uptime requirements are met over a pre-specified
period of time.

Baseline tests exercise the critical functions of a system to determine
the effect of changes. In particular, they are used to insure that the
critical functions have not been degraded. Baseline tests and benchmark
tests are couasidered synonomous in this context.

b 4.1 Development Testing

The purpose of the development vest is to provide some assurance that a
unit of code, generally a subroutine or group of subroutines that perform
a function, works as it was intended. This is accomplished by processing
a trivial but realistic test case.

The development test is designed and performed by the programmer who wrote
the code. He writes a test plan that describes the function of the code,
the data he intends to usge to demonstrate that code works properly, and
the results he expects from the executiom of the test.

The programmer discusses his test plan with his auxiliary programmer
and gets his concurrence.

Tr= development test should show that the program function is achieved,
and also that all of the code is exercised by the test data, so that an
unusual occurrence of data combinations will not result in unhappy sur-
prises later. The use of an execution analyzer such as PET will assist
greatly in achieving these goals, by automatically checking program
assertions and providing the statistics showing the behavior of the
program during execution using candidate test data.

The debugged routine(s) is linked to the basic system, the test case(s)
executed, and the results documented. When the intended results
are obtained, the program is ready for the formal walk through.

The test plan, test data, and the documented resuits are placed in the
software development notebook. The program is turned over to the
validation group for formal validation testing.

When development testing of new programs is complete, the code is placed

under release control and entered into the controlled library. If the
code consistz of modifications to routines already under release control,

L-16

PU
i

£,
e

ey

M :
[N

b

Losranead

I

the modifications are turned over to release control for entry into the
controlled library. The necessary configuration change information is
then confirmed by release control.:

In either case, once the development tested code has been placed in the
controlled library, it can only be changed by CCB approval and

corrected following relesse control procedures. This is true even before
the formal build of a system for qualification testing, in order to
always preserve the integrity of the system., Since other programmers
will be development testing their ccde using the constantly changing
parallel system, it is vital that the configuration be explicitly known
at all times. This prevents testing against a system whose configuration
is assumed, perhaps incorrectly.

h. k.2 The Development of Test Cases

The test program must be plammed early in the development cycle. BSystem
requirements must be analyzed for testability before the design of the
system can be succegsiully completed. The formulation of a test plan
must be based on & well stazted requirements document. If a requirement is
explieit, its testability can be readily ascertained. However, implicit
requirements must be considered alsc, and the identification of these
requirements and the determination of their testability often requires

a great deal of though and conscious effort.

The system test plan has as its goal the eveluation of the performance
of the system. Tts execution must provide positive answers to the
question "Will thz system do what it is supposed to do?" Since "what

it is supposed %o do" is specif? 1ly identified in the requirements
document, it is important to pla.e boundaries on the test plan o insure
that all specified requirements have been implemented, and that no
unspecified requirements have been implemented.

The system requirements provide the foundation for the selection of
test cases, Ultimately, the composite of all test cases, when successfully
executted, verify that the requirements of the system have been satisfied.

The process of test case selection begins with the groupings of requirements

by funetion. An example is shown in Figure U-2. For a specific require-

ment, cbjectives are defined and assertions formulated which explicitly

identify all the implications of that reguirement that are to be verified. %
As a result of specifying an objective, each requirement is clarified and

any weaknesses and ambiguities can be identified and resolved. This

process assures that each requirement is testable.

Test design begins by considering each objective and answering the following
questions regarding ib:

1. what are the oubpubts required to evaluate the performence?

2. what are the inputs?

*

3. how doeg the data need to be analyzed to verify the objectives?

4, what is the acceptance criteria upon which the pass/fail
decision is based?

Y
5. what is the software/hardware configuraﬁi%n required to test

the obhjective?

The answers to these questions form ‘the test requirements which when
implemented in a test program, will verify the system perfcermance.

When all of the objectives have been jdentified, a grouping of the
objectives is performed. The criteria for grouping may be predicated
upon the commonality of the software/hardware configuration and the
system inputs required to verify each objective. A group of objectives
define a test case.

At this point, the test cases are grouped together to form scenarios
that provide the input for a test (see Figure 4-2).

Test cases are grouped on the basis of the operational or chronological
relationships of the ippuits. With the scenarios defined, the detailed
procedures for the conduct of the test can be written.

4.5 PROGRAM CERTIFICATION

Certification of a system is the last step to be taken before acceptance

of the system. The purpose of certification is to provide confidence that

the system will work as expected with a specified degree of reliability.

The following definition of certification is given by R. C. WhiteB, and
containsg all of the elements that characterize certification.

"Certification is the act of authoritetively confirming that some
set of characteristics are compliant with a particular set of
requirements for these characteristics/capabilities.

This act may be further characterized by the following features:

. It is an official authoritative affirmation of the
compliancy relation's existence.

. It is issued by a recognized acceptable authority.
. It is comsequent to an affirmative compliancy decision.
« It may grant official acceptance.

. It has such force as to encourage, if not compel, acceptance.

. It has possible legal efficacy, as determined by the recognized
authority and the source of his responsibility for certification.

.

L Cmar

Foe o trinen
——ta

-
.

[S

"

| A
&-

I
dy

FUNCTION)

T
l* REQUIREMENTS

7 OBJECTIVES

TEST CASES

AN
e
\/

SCENARTOS

) 'r.e::aq

&

Test No. 1

ey
[UYSrrr ")

(o iing
[PR |

Figure 4-2. Test Design Process

h-19

- - et . e ———————— 11 v ; i ; Scgrenlae

T

Construed as an acht, certification is fundamentally "a single accomp-
lishment complete in itself and essentially unigue"”, in contrast to
the extended activity or range of activities, characteristic of
compliance determination. Thus, it is an existence-confirming {of the
compliency relation) act, rather than the existence-determination
activity of compliancy determination. The latter, to reiterate, is

a prerequisite for certification and cannot, therefore, in the interests -
of consistency, be denoted by the term certification'.

The bulleted points in this definition are of particular interest to this
methodology, since each represents the result of some quality-producing
gctivity or activities already described in this document.

The act of determining compliancy with the reguirement set is the resulf of o
on-going analysis of the test data culminating in a final review, the

Functional Qualification Review. The analyris and certification should be

performed by an independent agency with recognized capabilities to authori-

tatively confirm compliances. The acceptance of a system can then be

based upon explicit recognition of its capabilities and any discrepant .
behavior that may be deemed non-critical and within the realm of acceptability. o

k.5.1 Compliancy Determination .

If the technique of defining test objectives for every requirements is used

as described in Section 4.4 then it can be determined from the tests

results whether or not each characteristic or capability of the system

is compliant with a particular requirement of that characteristic or

capebility.

White maintains that the interpretation of compliancy is binary, i.e., -
the characteristic or capability either is or is not compliant. I% '
cannot be partially compliant unless the regquirement is decomposed into
diserete subrequirements which permit separase compliancy determinations.
Therefore, the completed system can be certified as compliant if all
requirements are satisfied, essentially forcing acceptance. However, if
the sysiem fails to conform with one or more requirements, then a negative 3
compliancy decision must be made and alternative action taken. This C
action may be to return the system for correction of problems, to)
accept the system without certification, to certify the subset of the
system requirements for which conformity was established, or to modify
or amend the requirements so that the compliancy decision is affirmetive.

The use of the test objective matrix described in Section L.h4 allows the
evaluator to check every requirement or subrequirement for compliancy i
by the inspection, analysis and evaluation of the test results. Since
ambiguous or incomplete requirements cause problems in defining test
objectives and subsequently in determining compliance, the analysis and
feedback of requirements in the initial stages of development not only
helps create a cleaner design and implementation of the system, but
permits the development of a test plan that will provide a clear
indication of requirement compliance.

L4-20

[T
[

ﬁ;
!

| SR
-4

o - -

oty

[N Y
. .

Fhmaiz g
. i

o etniay *

Compliancy determination is an on-going activity that spans the test
phase, The examination of reguirements may begin with the beginning

of the test plan design and continues throughout. The compliancy
determination for each reguirement may be made as testing progresses for
each subsystem. The final determination of compliancy for the entire
system is ba 'd on the cumulative determinations for every requirement.

The compliasncy decision, either affirmative or negative, is a unique
one-time process that is made at the Pormal Qualification Review following
the acceptance test or system test.

1.5.2 Formal Qualification Review

The objective of this review is to verify that the actual performance of
the system complies with the requirements as specified. This verificatioan
is based upon an analysis and eveluation of the test results.

The Formal Qualification Review examines the results of the analysis and
evaluation of the test data with relation to the corresponding requirement
set. The end result of the FQR is to determine the disposition of the
system (acceptance/rejection) based on the compliancy determination
factors. All discrepancies found in the testing are presented, and a
decision is made concerning their disposition, generally hased on their
eriticality.

The items presented are:

1. the test objective matrix showing the direct relationship
to the reguirements and the extent to which the system is
shown o comply with the requirements.

2. the test plans and procedures

3. a list of all successful functional tests

4. =a test report containing the analysis and evaeluation of
the test results.

5. discrepancies detected during the acceptance or system test
6. +the functional and physical configuration audit data confirming
the configuration of the system for which the test data

is verified.

T. & list of all completed manuals and hendbooks to be used with
the system.

8. an affirmative or negative compliancy decision with recommendations
for acceptance or rejection.

421

pp——

4,6 RELIABILITY DETERMINATION

The ability to assess the relizbility of the software has been a subject of
much controversy. Many in the past have considered the attachment of any
figure-of-merit to software as an impogsible task. Recent research efforts
have developed a number of interesiing models which have been applied with
varylng success to software. The key to applying these models involves the
availability of error data corresponding to a given piece of software.

Despite the fact that numerous individuals have recognized the need

to save error data for some time, remarkably little can be said about
software errors. A number of projects have introduced trouble reporting
schemes and reams of paper have been generated, however, practically no
analysis has been performed on the nature of these errors. O0Often the
information requested on the trouble reportg is of little value for such
analysis. 3

Based on the knowledge gained in develdping é number of predictive software
reliability models, McDonnell Douglas has designed a refined reporting form.
After examination of a number of NASA and DOD reporting forms the following
sample Software Malfunction Report (SMR) was produced (Figure k-3).

The software malfunction report (SMR) categorizes malfunctions into
six peneral claesses with specific malifunctions as a subset of the general
class. The six general classes are:

1. "A" Arithmetic
2. "p" Argument
T Logical

y, m"p Assignment
5. "g® System

6. "F" Data

Each general class containg varying numbers of specific error types. The
specific error types were added to highlight the type of error in each
general class. These specific error types are not fixed and they can

be deleted or expanded. The specific error types may undergo several
major changes until a large enough sample is obtained.

With the availability of the error data by general class and the
availability of timing statistics reflecting accumulated development
testing times, software reliability models will gain increased accuracy.

Assuming that software error data is gathered, one question still deserves

addressing nemely: how should the models be applied 4o the software
error data?

h22

-4

-

ADVANCE INFORMATION SYSTEMS
SOFTWARE MALFUNCTION REPORT

123456
REPORT NQ, DATE
PROGRAM NAME . CARD TYPE | |
8 9101112131415 16 17 181920212223 5
procaamto. [T T T 1T T T[] wmooueeto.{ [I T [[(11 onGinaToR
STAGE 2 - 2 - SEVERITY
cucekouT [) TesT aND evaLUATION [] iNTEGRATION] | user[] gh [
SCOPE OF £ERRORA 28 e 20 N 1 MEDIUM D34
seeciricarion | | pesion[] coomng[] inTecraTion{ | oTHeR[] tow []
GENERAL ERRCR TYPC

SPECIFIC ERROR
ARITHMETIC 35[] 1 COMPUTATION; 2 OVERFLOW; 3 SIGN: 4 SCALING: 5 ROUNDING; 6 QUANTITY

ARGUMENT 37[_ | 1¢LAG; 2 CONDITION; 3 LOOP; 4 PARITY; 5 INDEX REGISTER; 6 INSTRUCTION

LOGICAL R4 D 1 PROGRAM,; 2 PARAMETER; 3 SEQUENCE; 4 COUNTER; 5 INCONSISTENCY; 6 CODE; 7 REQUIREMENT

ASSIGNMENT ::9[] 1 ADDRESS: 2 ALLOCATION; 3 SUBROUTINE; 4 INTERRUPT; 5 INCOMPATIBLE; 6 ENABLE/DISABLE; 7 MOVE/SORT
SYSTEM 40 D 1INTEHMITTENT; 2 LINKAGE; 3MASKING; 4 SYSTEM STRUCTURE; 5§ TIMING; 6 PROCEDURE

DATA 41[7] 1 STOHE/SAVE; 2 CONTROL CARO: 3 FORMAT: 4 CELL: 5 OUTPUT: 6 INPUT

42 43444545 47

484950515253 54 R
. NUMEERQF!NSTHUCHONS[]:]:I:[]%] DOES IT USE STANDARD Eﬁ
wumpea oF instrucnons T T T T fog commections ves[] wo

SUBROUTINE
56 57 53 59
1S MODULE CALLABLE 8y ITSeLF vEs[] nNo[] DOES 1T USE OTHERMODULE ves[| no{]
60 61£2 8354 65 65 67 263 1071 727374257677
CARBUTER TINE TO PROGRAM MALT [TOTAL TI!.%E[:E:[:E:D ToraL TMEINSTAGEL L] 1 1 1]
DESCRIPTION AND CALSE OF MALFUNCTION
l_ .l I S 0 0 -
¢ i
|
1] " L
Figure L-3

SOFTWARE MALFUNCTION REPORY

e

As indicated in the Appendix B section on failure-rate models the initial
tegting of a program frequently does not correspond to the underlying
distributions characteristic of the ultimate, or steady-state testing
conditions. While this is so, it is still necessary to record the errors
found, whether or not the times of their occurence have any use in direct
analysis. As indieated in the selection of the "zero" time for the
models, there are good indications that an approximation to the total
number of errors in a program can be formed on the basis of the total
instruction count. When this count is known, an "apriori" error-per-
instruction factor can be applied and to form an approximate error content.
This then provides a means of setting a realistic limit to what may be
called the initial segment of testing. (In this way,the illustrative
application the "zero" time was chosen on the basis of the estimated

time of oeccurence of the half-total error).

In the absence of any apriori estimate of the total error content, for
whatever reason it cannot be obtained, it is well to record the times
of error occurrence. It is clearly of interest to establish a point in
testing where the number of errors per time unit(per CPU second, or

per calendar day) decreases. Generally when this occurs any of the
models which have been described in Appendix B can be employed to
obtain estimates of the total error count on the mean-time-to-failure.

In any of the models, this ultimate convergence insures that they can be
applied without regerd to the possible transient state of the testing from
which the data is obtained. The parameter estimates so obtained are

not as good in this case as compared to estimates obtained during the
steady state, but they will generally provide good guidance nonetheless.

L-2h

NN ez T et et i B e T i L i e o

e e b e

[IS—

[P
[N

R - e

See Volume II
A

Appendix A
AUTOMATED VERIFICATION TOOLS

S £ [1 B ([P B ek SR Ll S e

et = === | hanint

.m‘l.xll.- i "nar..HH:.. ﬂ..;\\.h;u k ﬂ{rk...fw) —;! \)w) H...s..;..q ML | w,‘ﬂw) B ny ..M.x.nn.t.“w AM......H,'.IH A

Cy

e I - |

]

P

S I

¥ d
[PENE—

I

A

e

¥ 7
| B

—

R A

S

[

[T

=1

N

Appendix B
SOFTWARE MODELING

B.1 SUMMARY

Five detection (Pailure) rate models for the software error process are compared,
The de-eutrophication model developed by Jeiinski and Moranda has a failure rate
which decreases by a constant amount upon the detection and removal of each error.
In the geometric de-eutrophication model developed by Moranda, the rate for the
"next" error stands in s fixed fractional ratic to its prior value (geometric
series}. In the geometric-Poisson model, also developed by Moranda, the average
number of errors found in a given time period stands in a fixed ratioc to the
average found in the preceding time period of equal length. The Shooman model
assumes the detection rste of the (group of) errors following a debugging interval
to be direetly proportional to the remnant error content. The Schick-Wolverton
model is a variation of the de-eutrophication process in which the detection rate
starts at zero after each error and inereases linearly until the next error with
the slope of the line decreasing after each detection with the magnitude of the
slope being directly proportional to the current error content.

A1l models are based on the assumpbion that the detection rate depends on the
number of errors remaining in the software peckage.

In this task, for purposes of illustration and comparison, the models are all
applied to the same data, consisting of a daily record of the number of errors
found in the debugging of a program and the CPU time used. Maximum likelihood
estimates of the total error conmtent, mean time to next error, and the degree
of testing completeness are developed from a small time segment of the dats and
estimates are compared where possible.

The estimates of ‘total error content sre compared to the itotal number eventually
found., ZEstimates of the MTTF are developed for local and remete time periods.

Finally, the variances/covariances of three of the models are developed.
B.2 DESCRIPTION OF MODELS

B.2.1 De-Futrophication Process (Description)

This model, developed by Jelinski and Moranda of MDAC, is based on the assumption
that the rate of detection of softwere anomalies (or errors) is proportional,

at any time, to the current error content in the software packsge, and thet all
vemnant errors are equally likely to cccur, This model is 1llustrated in Figure 1.
The initial debtection rate is given by N¢, where N is the initial error content,
and ¢ is the proportionality constant, but which clearly represents one "error's
worth" of contribution to the hazard or detection rate.

B-1

P

="}

s amrn s e e et e e T

1 178t s b ekt s o T T ot e B, s 3 e e - il o A L (T

INITIAL ERROR A : —L i -
STEPSIZE=
COMTENT £S N : _1‘_

NP l :

FAILURE RATE VERSUS TIME - TIME
Figure 1. De-Entrophication Process

A typical realization of such s process is depicted in Figure 2, where errors
are indicated by the S-functions shown, and the time between errors, which is,
in reality, random, is purposely indicated here as increasing steadily.

A

INCIDENCE OF) -
ERROR : :

) a . ' - TIME

Figure 2. Typical Realization.of the De~Eutrophication Process

The data for analysis consists of the sequence of times between errors:
Bs¥seesaky. The development of maximum likelihood estimgtes for the two para-
meters shown explieitly in Figure 1 is made in Section B,6.1.The essential facts
involved in this development are: +the uniform or constant conditionzl failvre
rate for the ith error implies an exponential distribution for the associated
time, %, with parameter, {¥-i+l)¢; =and the %'s are statigtlecally independant.

The application of the maximum likelihood technique produces the two equations:

B~2

TR
3

x| fonming f
=i oo P

Cie

o

Lommrnm

[

|
vl

1

[

i]

-

PR —— P
[Lw-.i | -

s N

-

g —gy -

Lo

L
[5

)

.

-

S

=

ks

n 1.._)_ = n - {1)
Ro(1
1.1 1 N1 I (i.1)%g
: T il
and | ‘ B | $ = n
. . E 3 -
Nr- o2, (3-1)X; (2}

where T is the total time I){i
i=1

Applicatcions of this model have been made o data sets obtained during the
development of two large-gcale real-time systems; one, the Navy Tactical Data
System and, the other an Apollo-reiated softwere package. These were reported
first in the original paper (Reference l)}; subsequently, updated information
was obtained. This new data permitted a comparison between the predictions,
which had previously been made and the realized data, in the form of Trouble
Reports generated during the development of the Navel Tactical Data System
during the forecast time periocd. The comparisons (three modules) are con-
tained in a second report [Beference 2]. Those comparisons showed a remsrkable
consistency between the predictions and the reslizations. In those applications,
time was measured in units of days (calendar).

B.2.2 Geometric De-BEubtrophication Process (Deseriphion)

A varistion of the de-eutrophbication process has been found useful. 1In this
form the detechion rate deereasses in a geometric progression on the occurrence
of each individual error; the times between errors are random instead of fixed,
the errors are treated individually instead of by groups. This is shown in
Figure 3.

A

Dk .

Dk

ok? - B o I

Figure 3. Geometric De-Eutrophication Process

B-3

The mathematical analysis for this model is given in Reference 2, The develop-
ment parallels that used in the original paper: the X are exponentially dis-
tributed with parsmeter Dki~l, the observations are independent and the likeli-

hood function is therefore the product of exponentisls, Maximizing the logaritim

of the likelihood produces the two eguations:

2 1
Zlk xi n+l
L 2 (3)
)
L
and
D=

- . (%)
Zkl"lxi

where k and D are described by Figure (3) and n is the number of intervels used.
A11 sums sre over the range 1 to n.

B.2.3 Geometric Poisson Model (Description)

The Geometric-Poisson Model is described by Moranda in Reference 2. The model
is shown in Pigure L. As indicated, the data is assumed to be reported only
periodicelly {by week or month). The detection rate is shown to decrease in a
geometric progression; each time interval, T, has & rate which is a fraction k
times the previous intervalis rate (0<k<l), and represents the Poisson parameter
for the initial collection interval.

-
Fag

Figure 4. Geometric-Poisson Model

B~k

FE ey

FISR—

B.2.4t Shooman Model {Description and Critigue)

The model described by Shooman initially in November 1971 was presented

in improved form in Janmary 1972 in s paper Jointly authored by

J, C. Dickson, J. L, Hesse, A. C, Kuentz and M. Shoomaen [References 3 and 4],
The same model and results were described in 1973 and 1975 by Shooman
[References L4 and 5].

In the Shooman development, the model is discussed in terms of the
factor

Y =K[Ep ~ g (t)]rp (5)
Ip
where: K is a constant "which can be estimated by the ratio of the number
of catastrophic errors detected to the total numbers of errors detected";
Ep is the total number of errors; Ip is the total mumber of instructions,

and e.(t) is the "normalized" number of errors which have been corrected

up to the (total) debugging time T3 and rp is the instruction processing
rate.

As will be later shown, there are several subtle points which must be
resolved before the Shooman model can bhe obtained., It is sufficient
here to note that the instruction count Ip does not enter into the
problem since the "normalization" required to form eg(t) eliminates it.
The parameter 1, which represents debugging time, does not enter the
analysis, nor do r, occur as & separate factor, it is obviously insepar-
sble from the factor K,

Thus, in its essence, the Shooman model sets up a direet proportion
between the detectlon rate y and the current error content,

In Shooman's original paper (Reference 3) when he sets out to find the
unknowas, Ep and K, the "constant error rate model" is employed, the
assumption being that the

eglt1) = pgr

To quote Shoomen, the velue of p, is "evaluated from previous data".
In the only illustrative computations which he carries out, the value
of p, is obtained by dividing the ares under a triangular-shaped

plot of error rate versus tilme, by the total test time,

Shooman then uses the total number of changes (the area under the plot
of error rate versus time) whish were observed during the entire test
period for the vaelue of ET' Coupling this with his assumption of a
constant error rate, it would seem that the model is completiz, but has
no predictive potential. Shooman uses 1t to compute the MITF versus
the debugging time, and illustretes the eventual unlimited negnitude
for the MPTF, OSince the MI'TF is the reciprocal of the factor vy in BEq. 5,
and gince as Tt lnereases, ec(T) increases, the factor y decreases, and
the reeiprocal (the MI'TF) increases (without limit)., This is not, by
any means, surprising, since the eg(r) tends to approach Ep/Ip, so

the denominator tends to zero,.

S

In the second preseatation Jjointly written by J. C. Dickson, J. L. Hesse,

A, C, Kiantz and M, Shoomsn, = much improved discussion iz made [Reference L],
In 1973 and 1975 Shooman essentially dlscussed the same model in the same
form given in the originsl paper [Reference 5 and 6]. He does hovever dis=
tinguish between a microscopic approach, in which individuel errors are
studied, and the macroscopic approach (in which class his model falls)

vhich treats bugs which are "lumped and treasted equally".

In the analysis of his macroscopic model he determines the unknowns K!
(the product of K and rp in his original formulation) and Ep by
solving the equations

o= L !

Xg Kt [_E;r_ ~ eolry)] (6) .
Ip

H2 = L

Egé K? [%E - ac(Ta) {7} X
I] '

where 1, and 1, are two debugging times with v <1, and ec(rl)< Ec(T5)3 g
X5, and Xg, are the number of software fallures "found during total i
activation—times" Hy, and Hs, respectively, '

BEach of these iwo expressions equate a "steady-siate" MITF, on the left %
side, cobtained by observing the error raie over s post-debugging interval -
(of duration 1) and the factorl/y(of Equation 5), which is the MPTF at

the end of the corresponding debugging time, This is referred to as s
the method of moments.

From the solution which is obtained: -
i
Ag, e des e (.
B, - I speds; e 11) - eo(15) €%
S -
28 -l . q
ith A
with s, = H A% —
i 3
!!
i
$E

B-6

S

c
Fo

b

it is clear that the Xg, and Xg, represent the number of fallures during
tests made after 1y and 12 units of debugging time and the Hj and Ho refer
to the "locally” cumulastive number of hours after the debugging times

T1 end 12 and not the total activation times, This is an important clari-
fication and changes the focus of guestlion of independence of measurements.
If these quantities were cumulative from the beginning (instead of

locally)} then the xg's are highly correleted, but if they are only locally
cumilative, then it can be seen that the independence question is now at
the microscopic level; the new question is whether the individual measure-
ments which make up any perticular xg are independent.

This couples with another question and there is & single answer to the two.
The other question is: do the individual error-separstion-~times all estimate
the MTTF in an unbiased way? The answer to both is the same: if there are

8 large number of inciplent errors in the package, then the process indeed,
resembles the "infinite number of failure-mskers" of hardware reliability.
and, for a short period after 73 (or to), the individusl measures of time-
between~errors are independent (the coin-flipping analogy) end are unbiased
estimates of MITF (1), Clearly, since the bagic assumption is that the

MITF is (inversely) proportional to the number of residual errors, the number
allowed for each xg must be smell, for only the Tirst error found is

striectly an unblased estimate of the MITF.

The xXg; and Xgp sre "the number of software failures" and as defined by
Shoomen are the number of unsurcessful runs {not errors) casused by a
software "failure", Ag, and Ag, are defined by formula above and clearly
represent the rate of f%ilure, and not the rate of error-occurrence, Thus,
at best, Shkooman is equating two different kinds of failure rate: on the
left his (approximate) rate is the number of failures per unit of operating
time, while on the right side the rate is the formula-derived number

of errors per unit of operating time.

It can be argued that Ep is not the number of errors in the program but

some kind of meagure of the number of incipient failures. Countering

this, however, is the faet that in Shooman's formuletion Ep is divided by

the total number of instructions I, implying that they were thought of
strictly in terms of coding errors, (In the applications which were made by
Jelinskl and Morands, it was necessary, because of & lack of Ffine-grained dats,
to analyze on the basis of "trouble days" instead of on error count, but

t?ere was not any consideration of program size in that analysis). [Reference
1l

As an important comment in this respeet, it is clesr from Equation T that
the number of instructions Ip is only a nuisance since it is tesken out

by the "normelization" of e, (13) and g, {15), which is required to
produce numerical values.

B-T

B.2.5 Schick-Wolverton Model (Deseription snd Critique)

George J, Schick and R, W, Wolverton, in September 1972, st Hamburg, Germsany,
presented & paper in which the de-eutrophication model wag described along
with a new model which uses the same notation but which describes an
entirely different failure rate.

The rationale of the de-eutrophication model, to quote from the original
paper, is: "the failure rate at any time is assumed to be proportional
to the current error contenl, of the tested program; the initial error
content is then denoted by W and the proportionality constant is denoted
by @, the failure rate drops to (N-1)f after the first error is detected
and so forth,"

Schick and Wolverton make the comment in their paper that: "there does
seem to be an inconsistency by admitting a decreasing failure rate yet

at the same time assuming {(rather than deriving) an exponential model.
Apperently, they interpret the failure rate of the Jelinski-Moranda model
as epplying to & single error rather than to the sequence of a2 number

of errors., This interpretation cannot be supported by either the analysis
of Jelingki-Morands in their paper or, by Schick-Wolverton's own analysis
of their own model as described in their paper,

To meke the point more clearly, an examination of the defining equation
is useful, In the model, the detection rate is given by

Z(ti) = @ [N-(i-l)]ti

where tj is "the cumulative time to the oceurrence of the ith error"., Under
that interpretation the variables employed in the likelihood function are
not independent. On the other hand if t; represents the time past the
occurrence of the (i-l1)st error, then the t: represents the same measurement
as the X; of the de-eutrophication model; this is the interpretation that
agrees with thelr analysis,

In a purely formel way the likelihood eguetions for solution are:

a 2
2n = ¥ [N-(i-1)]%; (8)
¢ i=1
and
n n 2
Z 2 =g & (9)
i=1 N=(i-1) 2 i-1

where the symbols are the same as those used in Equation 2 {(with Xi=ti).

B-8

© @

b

a=gm

-

s B

i i

:.E i 'g

PR
. f

PRRS—

E,3 DATA AND ADJUSTMENTS

Dafa which is relevant to software errors was obtained recentliy from

W. L. Wagoner [Reference 8]. This data, although not in a form which is
ideal for analysis by the three MDAC models since it consists of grouped
error counts, was analyzed to obtain estimates of the error content, The
unigue feature of the data is that the reference unit was CPU time {in
seconds).

By adjusting the date in the ways subsequently described it was possible to
obtain estimates for all MDAC-models. The results produced estimates
which were congistent among the models and accurately predicted the error
count which was eventually achieved on the basis of a very short interval
of data.

Becsuse of the grouping of the data it is very easy to obtain estimates from
the Shooman formulstion in either of two inkterpretations,

In order to complete the comparigon, the Schick-Wolverton model is also
employed in a formal way.

The date consists of a record of the errors vhich cccurred during the
debugging of & data-reduction program (called the F1l-D Program) consisting
of "approximately 3-k thousend" Fortran statements., The deta is reproduced
in part in Table I, The important feature of this is that CPU time is
available as a unit.

The three MDAC models describe failure-rates (or Poisson parameters) which
decrease with time, The first ¢lear cut evidence of a decreasing fallure
(found by dividing the errors detected by the CPU time on a daily basis)
gtarts on 1/19 after 5.24 vnits of CPU time has elapsed., The ratio om
1/16 is 1,54 while on 1/18 it is 10,06 errors per unit of CPU time, while
on the next three data-days the ratios are 2,0k, 1,31, and 1,10,

This corresponds qualitetively with other experience which hes been geined
on other data. There is usually e startup effect which is evident, There
are fairly clear reagons vwhy this should be so0 when calendar time is the
unit: early in testing there may not be a sufficient number of "working
perts" of the packsge to obtain significant error counts; as time goes

on these perts produce in total an increasing error count: finaelly the
agssumptions of the models mey be met,

Although the ssme reasons do noit necessarily apply to data based on CFU
time, some of the general effects seem to be indicated by the daia.

It should be said, however, thet experience also shows that the two de-
eutrophication models cen be spplied to any initisl segment of data. The
estimates for the error content will be initially very high (infinite for a
constant error rate) but will settle down to give good estimates even though
the first part of the data is not being well-modeled.

B-9

Errors
Date Detected
1/12 8
1/15 T
1/16 1
/17 B
1/18 16
1/19 18
/22 13
1/23 8
1./ 9
1/858 2
1/26 6
/27 - 3
1/29 3
1/30 2
1/31 3

Table I

DATA ON F11-D PROGRAM

Cum
Error

15
16
2h
ko
58
' 71‘
9
88
90
96
99
102
10k

107

B-10

T CRU

Time
0.5
0.6
0.65
1.90
1.59
8.83
9.9L
T.25
8.3k
3.86

13.11

3k,15

82.7
1.10

51.59

Cum.
CPU
Time

11
1.75
3.65
5.2k

1k .07

31.26
39.60
43,46
56,57
90.72
173.h
1?&.5
226,11

On the other hand, in order to apply the Geometric-Poisson Madel, much
greater care has to be taken, since there is much less data which can be em-
ployed for the estimates of the two unknowns,

ef

(a2
_:%j
it

g

The above reasons are all good reasons for choosing the zero time of the
anslysis to be the cumilative CPU time at the end of 1/18. But the way

in which that time was initially chosen is entirely different. It was
chogen initially by applying a universal "Programmers Poisson Parameter"’
of 1 error per 50 lines of instruetion, In order to eliminate the steartup
effects on a progrem with 4000 instructions and an estimated 80 errors, the
zero time chosen corresponded to the half-way error (40).

LR |
B - A

Gz
e

While the particular value chosen does not seem to cause any concern, bhe
use of the factor of 1/50 to obitain the & priori error content has caused
controversy. As originally stated the rule-of-thumb iz that there are
{on average) two errors per 100 instructions. This factor has been coserved
by F. Akiyasme on nine fairly large programs. [Reference 9] It also has
been noted by B, W, Boehm of TRW in a presentation at the 1974 AFIPS
: Conference: data from T, A, Thayer, et.al., taken from tests on five
I laerge scale progrems showed a remerkably consistent rate (22x10-3),[Reference 10]

Povams iy
» -4

P e
e

‘ Boelm in a personal communicaition, stresses the important fact that the
!' constant he reports is the ratio of errors (program bugs) to the number
of source instructions (vis & vis mechine or object instructions). But,
fortuitously or otherwise, this is exsctly the way the figure was employed
;' abov§ in estimating the half-error point (4000 Fortran instructions times
1/50).

!‘ Excepting the adjustment for the zero, the dabts is used as it stands for the
two de-eutrophication models., In order to apply the data to the Geometric-

Poisson Model, it is necesssry to further adjust it, Time intervals of

. equal size and the nmumber of errors per interval are required for this

} ‘ model, The choice for the length of the intervals is arbitrary (for
illustrative purposes); however, five of the six daily CPU times in the
time span 1/19 through 1/26 are about 10 seconds in length, so that it

[‘ is a convenient interval size for comparisons among the models.

In order to apply the data to this interval size, interpolations of cumula-
tive error versus cumulative time are required. As wilth the previous
anslyses, and for the reasons given there, the zero time for data corres-
ponds to a cumulative CPU time of 5.2k, The data after interpolation and
adjustment to the "new" zero, is shown in the first two columns of Table II,

i

B.k ESTIMATION OF PARAMETERS

vl B,k.1 De-Eutrophication Anslyeis

In the spplication of the de-eutrophication process the times between

- guccessive errors form the primary data, In the present case the daba
ere not recorded in that way. As an expediency the times within any given
- intervel are put equel to one another and have z value equel to the

_ quotient of the CPU time used on a glven dete, and the number of errors

ﬁ; found,

B-11

==

Intervel
CPU Time

Table IT’

. Adjusted Fll.D Datas

Number of

Errors

. Fitted

oalo'
10-’20 ‘
20-30
30-k0
40-50

50-60

19.53

12,83

10.93

T.52

4,58

1.37

20,35

13.75
9.28
6.27
k.23

2.86

B-12

i

=]

L
[

T
e

P et
P

The analysis is performed in this way on the errors recorded during two
days (1/19 and 1/22), Thus, the required data are:

X = Xp=ae= 18=.h906
and
X9 = %90

This dats produces the numerically substituted version of Equation 1
[Reference 1].

1
3 1 = 31
i=l N—zi-lj N—lquOTg

Sae -=x31$|761!'6

which produces an estimated residual error of 63,4 which, together with
the b0 "startup" errors, produces an estimate of 103.b Ffor the total error
count,

The estimate for ¢ is obtained by substitution into Equetion 2, of
Reference 2 and has the value 0,035,

If the same analysis is employed on the data for the three consecutive working
days 1/19, 1/22, 1/23, there are 8 additionel errors and the time between
them is taken to be equal, The additional data is:

The numeriecal equation to be solved is:

%9 =
1 = 39
i=1 §-(i-1) N-21,66513

vhich produces an epproximate solution of N=68.8, corresponding to an
estimsted total error content of 108.8.

The estimete of ¢ in the extended data case, can be computed to yield the
value, .032,

The above estimates which are based on just two (or three) day's data
yield estimates which "turn ocut" to be quite good. The program after
running seven additional days had uncovered a total of 10T errors.

While it is very unlikely that all errors have been found, the time
spacing of the latest errors recorded is very long, and the program has
8 "practical" error content of somevhere between 110 and 115, But it
should be pointed out thet the data employed In the prediction is only
1/10 {or 1/8) of the total observeticn time, making the result even more
noteworthy,

B-13

B, 4,2 Geometric De-Futrophication Analysis

The ssme data used in the preceding anelysis is employed with Equations 8
and 9 to praduce estimates of k and D [Reference 2].

Using the data for the first two days (1/19 snd 1/22) produces estimates;
k = .9735 and D = 2,998,

It is clear that this model cannot be used to estimate the total number
of errors; however, it is possible to determine the level of "purity"” after
n ohserved errors by evaluating k-,

The sstimated degree of "purification" after n errors heve been detected,
is given, generally, by the ratio Ro-Ry, where Rn and Ry are the initial
and final rates, In this Ro particular case, it is 1-k%,

For n=31 the degree of purification is 56,4%, The corresponding degree
for the de-eutrophication model is given, in general, by the ratio n/N,

and for the same date employed earlier this is 31/60.3 or about 51.4% (under

a different interpretation, where the initisl 40 errors are included in
both numerstor and denominator, the ratio 71/100,.3 = .708, could be used;
however, the former figure is clearly the proper one for comparison of the
estimates of the two models as they are spplied here),

B.,4t.3 Geometric Poisson Model

As a Pinal analysis of the same data, the Geometric-Poisson Model is
employed, The data required has been described in the preceding section
and consists of the entries in column 2 of Table II. Using these as
the ng, and substitubing into Equations 11 and 12 of Reference 2
produces the polynomiel equation:

6

2, 4433k ~3,1320k +1 688Tk~k=0,

which has & root k = ,6756,
The value of the Poisson parameter is found to be =20,348,
= 20,348,

Use of these two paremeters, produces the third column (labelad "Fitted")
of Table 1I.

By extrapolation (summing the infinite geometric series) the projected
total error count is 62,73, (or with the 40, which were "banked", a total
of 102,73), This appeers st first to be only a fair estimate, when it is
compared with an observed total of (at least) 6T. But it is important to
note once agein that the last time~point used in the analysis corresponds
o a modified CPU time of 60 seconds, while the 63rd (or 103rd) error
occurs after about 168 seconds of (modified) CPU time. With this secale
of reference, the estimate is remarkebly accurste, The model data can be
used to generate forecasts for each time period: for the 60-T0, T0-80,
80-90, intervels, they are 1,93, 1,31, and .88, respectively; while the
observed counts obtained by interpolation of the actusl data are .88, .88,
and .64, respectively.

B-1l

[

P

[BEEREN
.

3

[|

B e

y

[P

b

Bemeruny

S R

PR o

[S

£
e

ed R

r
e

e e b8 a1 e 5 v T b

o g 5 B pn s BT S e AL st (R RETE L DRIk e et oL LT e e e e e 2R AL o et S AT AR LR BT e L s b

g

= &

£
s

=

e
e

A

o F

x
b

B,4.4 Shooman Model

Tke Shooman Model does not regquire s decreasing faillure rate and the choice
of the time 73 1z arbitrary, However, in order to achieve some compatibility
with the two analyses made with the de-eutrophication models, the time

T, ig chosen to correspond to the fidueial time, 5,284 CPU-seconds, Choice
o% the time 15 is somewhat open, but to test the model thoroughly, several

choices for 1, are made, each of which will give an estimate of the
error content,

Column 3 of Teble I lists directly e (7). For the quantities xg; and H,,
we employ the narrower, and more proper, interpretation that they relate
only to a short time segment subsequent to 7j and 15, Thus associated

with 17, are the guantities xg; = 18, and Hy = 8.83, obtrined from columns
2 and 4 respectively,

Case I
T, = 5.2k, 1, = 14,07 (=3 times rl)
ac(Tl)=hU, ec(12)=58
b'] = 18 X = 13
51 Sp
Hl = 8.83 H2 = 9,9]4.
Thus
A = 2,039, A = 1,307
51 Sp

and substituting

ET = 25,663-58 = 32.337 = 90,22

This compares to 107 errors found,

Case II:
1 = 5,24 Te = 2k,0L
s(tl)=h0 3(12) = T1
xsl = 18 XSQ = §
Hl = 8,83 HE = T,25
A = 2,030 As = 1,103
1 e

B-15

(,5451) O - T1

T
it

Sl -1

107.54

This is almost exactly the number found when the same data was used in the

de~eutrophication model, and agrees with the ohserved number of errors

quite well,

Case III:
sc(rl) = 40
xsl = 18
Hl = 8,83
Thus
7\51 = 2,039
EIII = 122.8
Case IV:
T, = 5,24

sc(tl) = Lo

X, = 18
i
Hl = 8,83
Thus)‘sl = 2,039

B-16

[

8 I e, B SEG E h ¢

oo
Wb

Ed

Pl 1

K

o R sy |

| RS T

I

) T

e

vl

p————n

vy

B.4,5 8Sechick-Wolverton Model

The technigue requires solution of the equation

2
2 1 = Uy

z
I=1 =i+l L (Nl)6y 2

where all variables and perameters are previocusly defined with t;
replacing x;).

Using the same datia as employed above for the two de-eubtrophication models
the following are obtained:

3,
I t4° = 18(.4906)% + 13(,7646)2 =
i=1
= 11,932
pE-)e, " = B 2o (en)s®
i=l i=]

17

o 30
11,9328 - (§=l i} (.h906)° - (§=18

1) (.7646)2

11,9328 ~ 219,27

The estimated error content is the solution to

31 1 = (13.932) (31)
¥ FS9L 1L.9326-210.27

By trisl and error the solution is
H=141,5

Again since 40 errors are "banked", this corresponds to an estimate of 81.5

for the total error comntent. This does nol appear to f£it the error process
very well.

B.4.6 Summary of Error Estimetes

The results of all models are extremely encouraging when viewed in the large.
The "gestalt" which seems most important is that "nature" does indeed relate
residual errors to the MITF in an inverse way: all models are based on

this agsumption in one way or another and they all produce reasonable resultis.

B~LT

B.5 QUANTITATIVE COMPARISONS OF MITF ESTIMATES

As noted before the estimates of MITF at the end of test time provides a
"close-in" estimate., ALl models, except the Geometrie-Poisson, which is
based on several time intervels, can be comnared although they formulate
estimates of MITF in different ways. The comparison csn be made against
the realized MITF for the time {or times) conce.ned.

B,5,1l De-Eutrophication MITF Esgtimate

Using the estimstes for N = 63,4 and ¢ = ,035, the natural estimate for
MITF at the end of the two-day sample is the reciprocal of the hazard
rate, (N-n)d.
For the two day sample (using cum CPU time of Table 1)

MITF (24,01) = .88k (Actual Value ,906),
For the three day sample ending at CPU time 31.26, there results

MTTF (31.26) = 1.049 (Actual Value ,927)

B.5.2 Geometric De~-Butrophication MITF Estimabes

For this model the MIMF is the reciprocal of Dk where for the two-day
sample D = 2,998, k = ,9735 and

MTTF (24.01) = ,767
For the three day sample, D = 2,520, k = ,97kk and MTTF (31.26) = 1.091

B.5.3 Shooman Model MITF Estimate

For the two-day sample, with using Ep = 90.22, E(TE) = TL, C = ,0ko6,
MITF (24,01) = 1,283 (Actual Value ,906)

and for the three day sample
E, = 107.5k, elry) = 79, C = .0302
MITF (31.26)= 1,161 (Actual .927)

B,5.4 Summary of MITF Estimates

The following table provides comparison for the MFTF estimates.

B-18

X
o b
-

i

i)
P i

e

-

i
i.

Table 2
MITF ESTIMATE COMPARISON

CruU Geom.
Time De-But, De-Eut. Shooman Actuel
24,01 .884 16T 1.283 .906
(2.4%) {15,3%) (41,6%)
31.25 1,049 1,001 1.161 927
(13.5%) (17.7%) (28.1%)

The main entries show the estimete for the correspoading model, and in
the last column, the "actual" velue obtained by dividing the number of
errors by CPU time for the day Jjust beyond the test truncation tine,

In parenthesis are relative errors in percent,
B.6 SENSITIVITY OF ESTIMATES

A proper comparison of the models with respect to their robustness of their
estimates in the presence of changes in assumptions can best be done by
simulation. However, a very simple indication of the behaviour can be

found by employing properties of maximum likelihood estimates, In particular
the variance of the estimates can be approximated by means of an asymptotic
formula developed by R. A. Fischer, This formula and the separate analysis
for each model are given in the following sections.

B.6.1 De-Eutrophication Process

The analysis for this model is based on the following likelihood function:
L(Xl,Xe, ena ,Xn;N,d) =

1 lN-(i-1] exp {-¢ [N-(i-1}]X;} (10)

i=1

where ¢ and ¥ are the parsmeters previously defined and X; is the time
separation between the (i-1)st and ith error.

By partial differentiation of the logerithm of the likelihood function
the Maximum Likelihood Equations (MLE's) cen be formed. They are:

B-19

n n
3logL/aN = L 1 -z $X, = 0 (11)
i=1 Wo(i-1) i=1
and
n
dlogl/é¢ = a - I [¥-(1-1)]x; = 0 (12)
é i=1

The variability of the estimates becomes of Interest when an sttempt iz made
to compare different models, Obviously the comparisons of models must be
done on the basis of =sdditional factors and by repeated =muplicstions on
similer data, Nonetheless, other (unspecified) things being equel, the
model which provides the smaller variation (standard deviation) is preferred
to others,

Unfortunately, because of the implicit nature o the solution to the MLE's,
the probability distributien(s) (joint, or marginal) for N and ¢ caannot be
obtained, but this difficvlty can to a degree be circumvented,

The general properties of meximum likelihood estimates car be used in a
purely formel wey to derive some measure of the variebility in the estimates.
This point must be empkasized since it is manifest that the use of asymptotic
formulas {involving large sample sizes) on samples whicl are fundsmentally
limited to be finite (there can be no larger samples than there are errors)
can result only in caution-laden approximations. Nonetheless, the experiences
which heve beeu gained using the models seem to indicste that these epproxi-
mations for the verliances are generally much too high.

The basis for the development of the large sample estimates is 2 theorem
due to R. A. Fisher vwhich states that under certain "general conditions”,
which have to do with the boundedness of the first three derivatives of
the likelihood, the variance and coveriances of the estimetes are given by
the inverse of & metrix formed from the mathematicsal expectation of second
partial derivatives, Explicitly the matrix Ajj (which is to be inverted)
in tk= estimation of several parameters (i, PYLTRY n) hes the terms

Ay = -k | 2°log L | (13)
3, 50,

where 1, is the likelihood function and Gi and Gj are two of the
parameters, From Equations (11) and (12) sbove

32L = - 3 (1)

3 1
e i=l (Rm1t+1)2

Be20

et
Tt

i
%5
i

e IR

e

3

E".‘F‘.“r

B

comed

n
32, = 3L = - = X, (15)
EREE] 3PON i=1
‘ 3L = -n (16)
: i P2
; And since
' E(X;) = 1
iN-i+ljd
the matrix elements become:
43
AL,=Z 1 (17)
i=] (N—i+152
B (
A =4, = I 1 18)
1208 e A8
Ayp = o (19)
]
where for evaluation in practical situations, the values of N and ¢
(the estimates bzzed on the data) are used.
The 2x2 variance/coveriance matrix can be simply computed.
The determinant (dencted Det ;) of the A-matrix is
n 2
Det. = A _A_ . ~A = I 1 . n_ =T (20)
, 1l 1122 12A21 1=1 TE:E:TTE— EE-
where we have used the fact that "on the average",
! n
z 1 = T, the total observaiion time,
=l 8
Hence
Var (N) =n . _21 (21)
e Dety

B-21

4}
2
Var (#) = EZ [1] . (22)
i=1 Ne—i+l Det
1
Cavar (ﬁ,;) = - ‘ (23)
De‘bl

Since for a fixed sample size n, the solutions for N and ¢ by means of
Equations (11) and (12} depend only on the ratio R = E(i-1)Xj , it is
possible to tabulate solutions as well as the s

variance and covariance, This is illustrated by Taeble

11T which shows the values for a sample size n=26.

In order o tabulete the parameters for an arbitrary proecess it is necessary
that the scale for time be normslized. Since the total observation time,

T, is assumed recorded by the data collection process, it is a natural scele
factor to use, It must be pointed out however, that this time is a random
variable; although it is treated as if it were a constant, this is a purely
pregmatic interpretation., A reasonable interpretation which ean be made

is that the results vhich are recorded are conditional on the observed time.

Given the ratio R, the MLEs become

I
§=l 1 = n (2k)

Ne(i=1) N-R

and

gT = _n (25)
N<R
Equation (24) can be solved essentially by trial and error, Once N is
established the quantity #T can be obtained from Equation (25). The
quality ¢T is entered in column 3 of the table.

Lid
The variance of W can be obtained in the following wey:

B-22

L |

PRSI

re—
. f

et

PRSP}
.

Tahle IIT
n = 26
Error DEVg COVAR WITF
Ratio Content {PHI)T DEVN (Normed) (Normed) (Normed)
1k.0 51.19 . 6991, 35.88 .6883 -2k . 2005 L0568
1k,2 L6, 9L .Tohk2 27,74 .6907 -18.6666 .0601
b,k 43,62 .8899 22,0k ,6936 -1k ,7968 .0638
1.6 ko,95 .9866 17,87 .6966 -11,9618 L0678
14.8 38.18 1.08L42 14,75 .TOOL -9.8426 0722
15.0 36,98 1.1824 12,36 .7o41 -8,2155 ,0770
15.2 35,47 1,282k 10.%7 .7083 -6,9311 .0823
15.4 34,19 1.3836 8.95 .T129 ~5,9020 .0882
15.6 33,10 1,4857 T7.73 7181 ~5.0736 L0048
15.8 32.15 1.5808 6.72 .7235 -k ,3850 .1022
16.0 31.34 1.6953 5.88 ,7296 -3,8158 .1105
16.2 30,62 1.8027 5,17 .T7361 -3.3350 .1200
16,4 30,00 1.9121 L,56 ,Th32 -2.927h .1308
16.6 29,45 2,0236 L,05 .7508 ~2,5795 .1L33
16,8 28,96 2,1377 3.60 .7591 278k L1579
17.0 28.93 2,254 3.2 7681 -2,018% 1750
17.2 28..5 2.3737 2.87 .TT77 -1,7909 1956
17.4 27.62 2,h959 2,58 ,7883 -1.5935 .2205
17.6 271,52 2,6222 2.32 .7995 -1,4173 .2516
17.8 27.25 2,7519 2,08 .8119 -1.2630. 2912
18.0 27.01 2,886z 1.87 .82s51 -1.,1250 3436
18.2 26.80 3,02h7 1.69 ,8396 -1.0035 415k
18.4 26,61 3.1680 1.52 .8558 ~,896k ,5200

Calumn 1 is the ratio

Column 2 is the estimete for the total error content

E(i-1)X; / BX;

Column 3 is the normed-estimate for step size: in order to determine the

actual estimate of the step size, the entry in this columr should be divided

by the total observation time T,

Column 4 is the approximate stendard deviation of the estimate of the totel

error content,

Column 5 is the normed standerd deviation of the estimete of the step size:
in order to obtein the actual stendard deviation the entry in this column
should be divided by the total time T,

Column € is the normed covariance between N and ¢:

actusl estimated covariance the entry should be d

Column 7 is the normed MI'TF and in order to
entry should be multiplied by T,

B-23

in order to obtain the

ivided by T,

obtain the actual value the

by Equation (21)

Var(¥) = n (26)
Bﬁetl
but using the substitution
n
8, + 1% 1 (27)
2 im TWerE
the determinant of Equation (20) can be expressed as

or
¢2Detl = nS, - (éT)eq

ence the denominetor of Equation (26) can be evalusted using the estimates
T and N,

Hence

var(ff) = (28)

n
n82 — (g1r)2

The standard deviation ig the more useful measure and is obtained by teking
the square root of Var (N). This is entered in column 4 of the table,

The variance of BT is obbained in mwech the same way: Detl is evaluated,
g3 before, and with Sp as defined,

2
var(dr) = ™ S» = oF .
Det, 5, (32)- TZ
. o
= Splem) (29}

HSE - (?‘T)?

B-2L

-n

i

o

ke

N
"

e B

EE

.-
i
%

i,

The standard deviatiun of this guantity is computed and listed in column 5
of the table. As noted a footneie the standard deviation of ¢ is obbained
by dividing the column entry by T.

The covariance between N and 4T *s obtained by

Cover (N,dT) = - T = - (47)° (30)
e NN

Agein for the covariance between N and ¢, the entry in column 6 should be
divided by T,

The MITF of the "next" error is given by [(N-n)¢]—l and is estimated by
employing §i and 9§, The value entered iu the last column of the table
(for n=26) is [(§-26)@7]~1 and so must be multiplied by the user-found T.

While it is possible to formelly express the variance of the estimate
of the MTTF in terms of the variances and the covariance of the two
estimates this is a step which will not be taken as the cascede of
approximations is already too long.

In the next section where the model has estimates which have legitimate
asymptotic properties, the variance of the MIMPF-estimate is given.

B.6.2 Geometric De-Eutrophication Process

The analysis parallels that made for the De-Eutrophication Process.
T4 is important to note, however, that this process has an unlimited number
of errors. The likelikeod fuaction for the sample Xj,Xp,e..,X,, 1is
L= § ot oexp {-D&’ X,) (31)
i=]

and its logarithm is

n

logl = nlogd + %:1 1ogk1"1 -D %_ KMy, (32)

The MiE's are obtained by differentiation and reduce to the two equations

n
i

= 3
n o= I, KT (33)
D

and

1 % (i-l) =D § (i—l)ki'exi. (3%)
ki i=

B-25

D can be eliminated from both equations to leave & single equetion,

= 1 i = n¥l (35) Ny
Eki"lxi 2 -

%
Then using the solution, denoted k, the estimete for D is

D= n »
Af],
Lk Xi

The variance and covariances for this process are found by the procedure
described above. As noted, above, however, this process has an infinite number
of errors, and so the semple size can become large, and the asymptotie

formulas can he applied without apology.

Directly by differentiation

a%1 2 - (36)
"aDo? %?*f

n

2°logh = dlogh = - I (i-1)kPx, (37)
D3k 3kaD i=1
2 _ n n
Llegh = - L.k (-l pp () (s-e)d3 (38)
72, K2 A=l i=1 1
Since B(X.) = 1 , the associated A-matrix elements are
:L Sl ——
Dki-T
4. =n (39}
1L e
L, (1) =2 nlzel) (40)
A =4 =1 . (i-1) = 1_ n(n-1 0
12 7 M2l T e b 5 5
I z
Aoy = _%._ 3 &y (=) + g._é_ 15 (1-1)(3-2)
k K
> 2
=1 I (i.1)°=_1 n(n-1)(2n=1) (k1)
2 i=1 P

B-26

Bt i

U

aw
iy
L

il

Using Dets to represent the determinant of the A-mstrix, we obtain after
simple reduction:

2, 2
Det, = ; = n"(n"~1) (L2)
Dk 12

Thus the variances and covariances sre

Var D = D2 2(2n.1) (43)
ntn+lj

Var k = k° 12 (L)
n{ne-1)

Cover (B,f;) = Dk 6 (k5)

ntn+l§

In the limit these variances tend to zero, On the other hand, it will be
noted that the correlation coefficient between the estimates is quite
high (in absolute value):

o = -/ TED (46)
2 t2n—lj

which is in excess of 0,85.

The estimate for the MITF which has the character of the maximum likelihood
estimates is given by

My = __1
1))

where the subscript 2 denotes the estimate for the GDEM. The asymptotic
approximations can be employed in another reasonable approximation in
order to derive a measure of the varistion in the estimate of the MITF.
By differentistion taking the total differential and expectations it

is geen that (b7)
Ver M, = 1 Var(D} + 2n Covaer (D,k) + n® Var(x)
D2k2n D3k2n+l D2k2n+2

vhere, agein the estimates would be used as proxies for the (unknown)
parsmeters,

B-27

B.6.3 Ceometric~Poisson Model

From Equation 10 of Reference 2, the likelihood function i1s

m
L(n yngseeson) = B ()% expleand ™). 1
i=1 n,l
i
and
m n 1wl n
loglh = I ni(lcgk+(i-l)logk) - I Ak - L 1ogni!
i=1 i= i=1
Hence
2 m
27ogl = - LI n
352 2 1=l
2 2 = iw2
3710 = logh, = - & {i-1)k
EYERN SAdk i=1 .
m m
Plogh = L & (il - A5 (1-1)(1-2)k’
3.2 PREL i=

The variables n; are assumed by this model to be Poisson distributed,
and so

B(n;) = AT

Accordingly

A, =1 I k
1L Y

n .
5 (1102
i=1

A

It
r
)

21 12

2, i=3
A22 k

il

AR(i-1)

The variances and covariances are therefore

m .
Var % = A . I (inl)2k1—3
Det i=1

3

B-28

h8)

(49)

(50)

(51)

(z2)

(53)

(5h)

(55)

(56)

(57)

YT
H A

m
i
e

==

[
[Fndte

=

&=

B

1

pzmmi

P

Lo

-

H 1
[S—

-

ST}

i

L

[

B

3

-], m
Ver®= A . £ &t (58)
Det i=
3
AN m i=2
Covar {(A,k) = _1 I (4-1)k" (59)
Det3 i=l

B.6,4 Shooman Model

M. L, Shooman in Reference 5, gives the following expressions for the maximum
likelihood equations for the two parameters or Ep and C (originally K):

Led
c = L By *hp [Eq. 21 of Ref. 5]

% o- B, ()} H + Ep - (1) H (60)

o
Tp TIn

and

Qs>
i
=
'_,33
+
I\J’d

[Eq, 22 of Ref, 5]

By - By (1,) By - E,(rp) (61)
Ly Ip

where 1y and np, are "the number of runs used in testing for times Hy and Hp

respectively”. (This is incorrect; they should be the number of unsuccessful
runs &s will be shown herein),

Shooman refers to ancther of his papers for the justification and develogpuent,
unfortunately there is no discussion in the referenced peper with respect
to maximum likelihood estimation [Reference 5], In order to expedite the

discussion and further clarify the Shoomen Medel, the following analysis
is provided,

Fandamentsl to the anslysis is the assumption that the software error
genera ion is governed by = Poisgon polnt process whose intensity (failure
rete) is proporitional to the current namber of errors., For shori periods
of time, (Hy; and Hg, in the present Instance) the intensity factor can be
assumed to be proportional to the number of remnant errors, which in
Shooman's notation is

}‘1=C(ET_ - £ (Tl)
Ip

B-29

for the first period, and

Apg=¢C (fg_“ E, {z,))

T

The number of unsuccessful rung occurring in a time Hg is then given by the
Poigsson diastribution., Explieitly, the number of errors (or unsuccessful
runs or whatever rare event is being counted), ny, observed during Hsl,

is given by the Poisson law

-A
P(N=ny) = (MHg-)le
2

nll

H
1791 (62)

Thus for two runs of duration Hg and Hsa with observed numbers ¢f unsuccess-
ful runs n; and N, the likelihodd function is

A
n AH n - H
L=(pE) Te TR (g) Ze 2%
1 . 2 (63)
nl! n,!

The maximum likelihood equations obtained by differentiating the log-
likelihood are

dlogh = n, + n, - HR -— HR, = 0 (6L)

ac - .

C C

and

géogg = 0 + n, - %_ HSl C“%&HSQ c=20 (65)

T ITRl ITRE T

1
IT
replaced by H,

where Ri = [ET - Ec(rlills uged for convenlence, aud HS is now

B-30

grhosvny

R DV SUS T ARSI ISR ISP S pEppnpee SRR EE S SR

E-71

.
4

| renel
[F1

=

&
G

o

e
a-

Solving for C in each eguation preduces:

C =

and

Q>
n

nl-i-n2
R »
Hl Rl + H2' R2
L ol n
N ————— +
H_-L-IWI‘I2 —— -
1 Ba

(66)

(67)

“ -~
and where R, and C are the estimators of C and R; respectively. These are
the equatiolls Shoomen reports,

Following the same steps employed in the preceding anslyses with respect

to development of variances and covariances, the second partials sre taken,

= -(nl+n2) 1

o2
2
= =1 (H+H,) = 3 lo
T BEAC
= -~ M- 2
2 2
Ty Ry i

The expectation of n, is

ALH,
ii

A =

11

A =

12

22

Qe

A

21

M0

|

HiCRi' s0 that the A matrix slements are;
[H:L Rl+H2R2]

=1 (H+H,)

Ty

ml}_‘m
+

s

[

[
w I

B~31

(68)

(69)

(70}

(71)

(72)

(73)

Henee, from general reletions,

VarﬁT= i . L [8 R +H,,R)] (74)
Deth C
Var C 1 C H H ‘ (75)
ar C = +
=2 1 2
Det bl o
4 Ly Ry Ry,
Covar (E,’ﬁr)‘ ==l 1 (HE) (76)
De‘bh IT
and
2
Det) = io (BioBy + HyRp) o JHy + Hf - _:_% o (H +H,) (77)
T R R, T

In Reference 5, Shoomsn gives ‘the asymptotic reletions

.4 2
Var C ‘Pn C (Bg. 23 of Re?. §)

nytap

and (in our notation)

. 2 2 2
1 =» *Ti
Var ET ; I laﬂl ¢fta. 2k of Ref. 5)
anle + nRy"

These do not appear to be the same or similar bo the corresponding expressions
(T4) ana (75): If it is assumed that the second term in expression (76) is
mich smaller than the first term, and can ne ignored, then by substitution

Var 6 = ¢ _ (78)

HlRl + H2R2

If the exper .2d values for n, and n, are substibtubted into Lhe Shooman expression
these are geen %o be the samE, There isg ro need to have n large, as Shooman
implies in his fermulation, but it is necessary for the second term to be

S smell. : ' '

Gorrespondingly,r using the same s,'pprbximaftio:i for -Deth

(7o)

g

poiah |

P
£mow

T
BN
e
i

el

If C is replaced by its estimator given in Equation (66) above, this

becaomes
1 A . 2
& Ver B, ¥ IT"'c Rleﬁe (80)
e n1322+n2R12

This is somewhat similar to ‘the Shooman expression but differs in a very
interesting way: +the terms involving productis of n and R are "mixed",

i,e., one factor is at Ty and the other at Toe

There is an independent way of verifying expression (77). From the knowledge
of the Poisson-lew, it is true that the varlence of #; is equal to the

paremeter A Hy , so thab equation (65)can be used to obtain
l .

@ %-_ i t:wm 1

ki
ol

g
A

Var € = 1 -x[Var(nl) + Var (ne)]

[E,R, + HaRaja

i

(there is independence between n, and n2) and

{E s0
g Var C = C
gi HlRl+ H2R2

vwhich is equation (77).

Rp——
PO

There is no expliclt sclution for ET s0 that a similar validstion does
not seem possible.

m;; |
N S p—

E T

[e

i , B-33

=

REFERENCES }‘E
by

Y. Z, Jelinski, P, B, Moranda. Software Reliability Research, .
op. LEYPT, Statistical Computer Performance BEvalusibion, edited by i
Walter Freiberger, Academic Press, 1972,

2, P, Moranda. Predictioc. s of Software Reliability During Debugging. L
1975 Proceedings of the Anmual Rellability and Meintainability e
Symposiun, Jamery 1975, Washington D.C.

3, M. L, Shoomen. Prohsbilistic Models for Software Rellsbility Prediciions. hk

pp. 485.502, Statistical Computer Performance Eva.luatwn, edited by
Walter Freiberger, Academic Press 1972, =

4, 4, ¢, Dickson, J. L, Hesse, A, C, Kuenhtz, M. Shooman. Quantitative
Analysis of Software Reliabilibty. Proceedings of Annual Reliability —
and Meintainability Symposium, San Franciseco, 1972.

5, M, Shooman, Operational Testing szad Softwere Reliabllity During
Program Development, Record of IEEE Symposium Compu‘ber Software
Reliability, New York City, 1973,

=

£
B

6. M. Shooman, Software Relizbilitiy: Measurements and Models.
Proceedings of Annuel Reliability and Maintainability Symposium, .W
Washingbon, Dolo,.2575. =
7. G. J. Schick and R, W, Wolverton, Assessment of Soffiware Reliability, ”%
11lth Annual Meeting of German Operaitlons Regearch Society, Hamburg, ek
1972,

8. VW, L. Wagoner. The Finel Report on Software Reliability Measurement
Study. Aerospace Report No, TOR-00TY (4112)-l, August 1973.

9. ¥, Akiyame, An Example of Software System Debugging. TFroceedlngs
of IFIP Congress 1971, North Holland Fublishing Company, 1972,

10. T, A, Thayer, eb.al,,Softvare Reliability Study. TRW Interim o ‘
Technical Report on Contract F30602-74-(-0036 with Reme Alr Development. » i
Center, 25 June 19Th.

B3k e

Appendix ¢
m * PROGRAM THSTING
£ | |
' C.1 INTRODUCTION
LL : For the purposes of this study, program testing will be defir'ed as the

process of verifying that a selected self-conbtained unit of code (such as

0 & subrovtine) complles with the requirements againgt which it was

e designaed., These requirenents define the functions the code should perform,
the structure of the code within the unit and the environeent in which the

R code must operate, Program testing as we have ‘defined It does not inelude

the testing of relationzhips between units of code., It is based on complebe

knowledge of the inberusl structure of the unit, as opposed to the black box

. approach.,

il _ _

!if It is well-known thei complete testing is not feaslble even in the few
o cases vhere it is pussible, Therefore, the next best approsch is to test
g as complebely as pissible within the constraints of economics and value

?j— 3 received,

: Various tools and tegchniques have been devised to aid in program verification,
Q While none as yet can assure vhat the code performs corrsetly under all
conditions o whieh it mey be subjected, each adds to the prcbab:r.li‘by that

the code will perform its intended functions correctly at the time that
‘“§ it is called upon to do s0.
L
. A number of ‘bools have been built that support the testing funcbion and
- research continues in the development of techunolegies thet will result in
J new tools and in improvements of those alveady in existence, Some manual

’ techniques have been sdvanced which offer promise ag verificstion alds,
}Ti The tools and techniques with which this task is concerned are those thab
e sctually inberact with the code in some way as opposed to those that
Lo support testing in a peripheral fsshion o those that support sysbem
17 'besting from a functional shandpoin’c,

S This report dea.ls wi'*‘h ‘bhe. applicatnon of these toole and techniques
o b0 -the testing of progrems, he research being performed to lmprove the
| ? i technology, ‘and an evaluabionr of the: practicality of emch type of tool

Cor ‘Lechnique in today s scf‘bware development environmen‘h.
a2 Monmxmtemm | e
o The 'besting of prog:'ama using currently ave.ila'ble 'hDCils and. 'i'.echniquea
. generally reguires that ‘the total system be broken down into manageeble -

" ‘units, each of which can be considered s geparabe test objects Top~down
: __design ul'bima. e:l,y resu.lta in % se'i: of routines :t‘or each 1eve1 oi‘ c‘iecomposition-

N
1

Each routine (unit) is & test object to which the tools and techniques

can be applied., Intellectual manageability of the unit is one criteria for
egsbablishing the size of the unit of code, particulaerly for menual technlques
such as walk throughs and program proofs. A second criteria is the amount

of code that can be handled by some tools such &5 test case generators,

Other criteria mey be considered such as regquirements for single entry/single
exit units of code. In most instunces, limiting the size of the unit of

code to 100l statements or less provides s test object that is intellectually
menageable and can be handled by the test tools which are to be applied.

While modularizatiion is a design funciion, its importance in program testing
is so great that if not provided for in the design phese, it must be con-
sidered in the testing phase. Decomposition of programs, while generzlly
based on structure, must also take logical processes into considerstion.

C.3 MANUAL TECHNIQUES
Walk~throughs

The careful. reading of a program by someone other than the progrgmmer
with the objective of evaluating its correctness with respect to a
given specification has proved to be effective, as documented by
Weinbergl and BskerZ,

The person reading the program can debtect errors transparent to the
programmer, because he is mot psychologically biased by his identifle
cation with the program., The programmer who made the error will ofiten
consistently overlook it because he is reading the program from the
game point of view as when he wrobe it,

The process of cooperative program checking is called egoless programming
by Weinberg because it eliminates the ege identification the programmer
hes with the object of his crestion and sllows an imparilal evaluation.

The effectiveness of a welk~through is also a funchtion of the ease with
vhich the program can be understood. Since reading the program for
correctness is in effeect & mental proof of correctness, it is imperative
that the unit of code be smell enough to be understocd, The mental
execublon of the progrem differs from program proving in the degree of
formal ity ®

Walk-throughs can be performed &t various stages of coding depending

on the complexity of algoritim being implemented, In very complex code,
such ag that which must meet extremely tight efficlency requirements,

it may be adventageous to welk through the Jetailed design, the initial
implementation, and the finul refinement in order to assure understand-
ability and reduce the chence of implicit or hidden errors.

c-2

L

PR

“h

O

-4
P

P

heery

5 o
AT |

b——
———

Iss Program proving

b Program proving, both formal sud informal, is discussed in Appendix E.

- When program proving was first seriously edvanced as a candidate for
] automatlion, It wez thought that the difficulties inherent in this
. spproach to program verificetion could be overcome given the tine

X %o consider them properly, As lete ms 1972 in a report by Information
az Research Associates,d 1t was stated that "it seems possible that within
! the next two to five year period to bring this to & fairly respectable
atate of antomatic analysis". However, Lo date, the difficuliies

- have not beepn found to be surmountable, and it appesrs thet automatic
l‘ program proving still faces some formidable problems demsnding further
: research,

As s manual technigue, program proving can be considered from twe points
of view, The first is from the point of view of proving an algorithm
correct and can be performed during the design stage. The second is

N from the point of view of verifying the design representation in code

| and .s performed during the coding stage.

gr————
| I

5 For units of code conbtaining more than a few branches and/or lcops.
the managesblility of the proof becomes virtuslly impossible. Therefore,
while the theory behind program proving is vigble, ita use is not
” feasible wntil wnys are devised to more fully auvbomate the process
i in a workable fashion,

C.4 AUTOMATED TRCHNIQUES

! A variety of sutomsied tools to support program testing have been built, In
addition, a concerted effort is in progress to build tools with new capahil-
ities or to add improved ceapabilibtles to the tools now 1n existence, A
camprehensive evaluation of the software requires both statlie analysis to
evaluate structursl characteristics, and dynamic apalysis to evaluate
behavioral cheracteristics, While neither type verifies that the unit of
code performs the functions specified for ik, botk provide useful information
about the testability of the code.

An interesting concept should he mentioned here, however. The kernel of
functional. requirements verification is the dynamiec anelysis of code if it
can be debermined that the unit meebts the requirements defined by assertions
added to the code, This capability is proposed as an enhancement to MDAC's
PET4 program, and is discussed In greater detail later in this report.

An evaluation of the capabilities of various tools now in existence was

mede in the performance of this study snd is contained in Appendix A,

This task will consider the technology thet supports these tools as well

as others being developed in research projects,

|

Py
g

BEEE EeRd £

SNRTNY | O, o R et A R e 8 A i T SRt B e bt e s

Standards Checkers

The test object of standards checkers is the set of source statementz in

& self-contained uanit of code such as & subroutine or a procedure, They
check the L .atement set for conformence to predefined standards such as
adequate and consistent commentary, statement positioning relative to the
entire set (e.g, placing declaratives in a specified order, placing format
statements together before or after the esecutable code, or placing internal
procedures before executable code (in & procedure-oriented . language}, and
program length,

TR¥W's Code Audltors program cuwrrently checks for 38 programing constr&ints
in FORTRAN code,

Applied Data Remearch (ADR) has COBOL standards checking ecapability in thelr
Metacobol systenm,

Computer Software Analysts, Inc, (CSA)T markets & product called Standards
Avditor which is available for both FORTRAN snd COBOL source programs,

Bell's PFORT Verifiera checks FORTRAN code for conformity to ANSI standavds,

While it mey be argued that thece tools are not directly involved in program
teating, they impose ag orderlineas upon the progrsam that 1s designed to
elininate errors caused by haphazard program construction. This orderliness -
also contributes directly toward the propgram's understandability and maine
tainabirity.

Auntomatic Test Case Genersbion

The overview testing of sofiware has been called an art because the selection
of & set of test cases, that will adequately test & program with carefully
chogen input dataz to minimize the number of cases and maximize the value

of their application, requires a great desl of insight and cleverness,

The development of a methodology bto sutomsie this procesg removes it from
the realm of art and the implieit errors and omissions that are inherent,

Several systems are presently being developed to automsbically generate

test cases. L. Stucki, MDAC and W, Howden%y10,11,12 of the University of
California =t San Diego are developing a test case generator for MDAC under
contract o the National Bureau of Standards, R, Hoffmanl3,1%,15,16 of Tmy

in Houston is developing the Automibed Test Data Generabor for the NASA/Johnzon Space
Center in Houston, B, MillerlT,formerly of General Research Corporation,
designed a best déta generator for commercisl uge in their automated tool
collection called RXVP, L. Clerkel® of the University of Colorado is
developing sn automatic test case generator supported in psyt by an NSF grant,
All of the above support FORTRAN programs, snd are designed to generate

test data based on an examingbion of the syntex. Other types of test data
generators are in use, and are basically driven by input persmeters supplied
by the programmer, with no direct knowledge of the source epde being required.
This report will address the work by Hoffman, Howden, Glarke and Miller since
that work seens most applicadle to NASA needs. : '

4

tene

£

=13

F‘
B

£33

'The systems lz.sted. above are presently being developed to sutomatically
. generate best.data based oh gz anelysis of the code, This syntactic analysis
: .prov:.ﬁes cases thet depend upon the econtrol structure of the program, The code
is analyzed and the control structure identified based on the presence of
: pred:.cates. These predicates (logica.l decisions) cause transfers to various
. ‘pa.rts of ‘the progr’am, both forward and backward, and create the existence of
' & numbar of a.lterna:be pa.'bhﬂ through the code.

Ii‘ ‘the- branches c‘imta‘ted. By the pred:.caﬁ:es were 213 independent of each
- other,. an enormous: num'bgr of paths would be possible in a progrem, Looping,
in par'bicular has the grea.‘test ‘effect,

cheve.x, 111 reallty, the number of pa:bhs iy much smaller, particularly in a
. non-ltera.hive system, ‘because the branches tend to he dependent. Thet is,

éi . " ', ‘& branch teken on a true condition may eliminate not only the false branch
o bub an entire. sec’bion of a path including other branches that can only be
ﬁ © % reached if* the false condit:.on existed for the first branch.

. The goal of the test data generators developed to date is to exercise nok
P B only- &1l st&temenﬁs in.a program but slso all brenches (It is possgible
g - to exerc:.Ss. all s‘ha‘bemen'bs without having exercised all branches).

The systems 't:o he discussed in this report all begin by defining the control
ﬁ ' strmeture of the code; then they eliminete paths which cannot be executed,
g legving only the paths which can be iraversed using some input date to drive
-execubion down those paths,

WL

ﬁ: SR Semantic analysis is not addressed. It is up to the progremmer to determine
. if the cases generated to exevcige the code do in fact demonstrate that the
- code functions as it was intended,

2R The usefulness of aubomgtic test case generators lies in their sbility to
show that code as written can be reached when driven by some dsis within the
input domain, The extrapolation of this information to progrem correctness
within acceptable bounds is left to the programmer. The test case date

“can be:aznalyzed to determine relevance to the areas of interest, providing

i the base for the proper set of test cases regquired to adequetely exercise
the program for the purposes :mtended.

i-r { General Approaeh
Ll The McDonnell Douglas ap{:roach originaliy taken by Stucki and Howde ng"Lo’ll’lz
C o was to decompose a FORTRAN program into a finite number of standard classes
i1 of program pa:bhsg then 'bo sy to genera‘l:e g sel of tegt cases bthat causges
‘,wj one path from each cﬂaﬁxs to be tested.,
»1 The methodology ma.s d.:w:.d.ed. into five pheses,
L , , ..} ﬁ.nalvals o a. prugra.m and construction of descripblons of the
_ sta‘admﬂ. elaases of pa.ths. :
5y 2) construc’kmn of deucrinﬁions of the sets of input data that cause
foth R - the ‘different gtandard. classes of p&'bhs to be féllowed, These
T o - va.::’e implicrb descrip‘bionsn

3} Transformetion of the implicit descriptions into equivalent
explicit descriptions,

k} Construetion of expliclt deseriptions of subsets of the inpub
deta sets for which the third phase was unsble to construct
explicit descriptions,

5) Generation of input values that setisfy expliclt descriptions
by the applicetion of inequality solution techniques.

In testing a program it is necessery to chooge a finite set of paths that
could be tested from the potentially infinite number of paths possible
through the progrem, A boupdary-interior method was used for choosing the
paths. This method groups the paths through the program into & set of
classes. One path in each class is tested, by vhich it is assumed that if
a test is successful, all other paths in that class are considered correct.

The philosophy underlying the boundary-interior method is based on the
assumption that a "complete set of tests must test alternative paths through
the top level of a progrsm, albternative paths through loops and alternative
boundary tests of loops". A boundary test of & loop is a test which causes
the loop to be entered bub not itersted, An interior test causes a loop

to be entered and then itersted at least once,

The boundary-interior method separates pathe into separate classes if they
differ other then in traversals of loops. If two paths Py and Po are

the same except in traversals of loops they are placed in separsate

classes if

(i} one is a boundary and the other an interior test of a loop

(ii) they enter or leave a loop along different loop entrance
or loop exit branches,

(iii) +they are boundary tests of a loop snd follow different paths
through the loop.

(iv) +they are interior tests of a loop and follow different paths
through the loop on their first iteration on the loop.

Class descripi.ons consist of branch predicates, assignment statements,

I/0 statements and FOR-loops (to represent an arbitrary number of traversals
of a loop,) The complete set of class descriptions for a program can be
represented in the form of a description tree , in which the left-most

path describes the class of =211 paths which test the interior of the loop
in the program, and the other paths are boundary tesis.

The description tree is formed as the program is read with alternative
paths being consutrcted for each branch and each loop.

!

e ?
(hat et

fo]

"

[

!
sammarid

B s BT
o

T

e

U

AEmmmtap
e

SRl

JE——1

|

=

—t R
N

Wi
s

- B

Once the set of paths has been described, the methedology of phase two
constyucts implicit input data descriptions of the seks of data that cause
classes of paths to be folloved, The predicates and predlcate affecting
statements are extracted from class deseriptions, Oubput statements are
deleted and all input statements are replaced by assigmmeni statements in
which dwmmy verisbles represent the values in the input stresm (and the
program 'is agsumed to read the next walue in the stremm). Phase two

also deletes all assignment statements that do not affeet predicates,

This is done by reading backward from each predicate and constructing lists
of those variables that affect the predicates,

Phage three attemptis to transform implicit input data descriptions inte
explic:t'c descriptions, The aesignment statementg are evaluated by sub-
stituting the current symbolic values into the sta.ﬁement, which givee the
dependent varisble a current symbolic value., These values are then sub-
stituted when the yariables are encountered in predicates and relstions,
Any of thege stetements that do not affect the predicates are deleted.

The FOR=loops are ‘processed in basically the same way. If a 1oop is cloged
and does not change any veriable affecting pred:.cates it can be deleted,

Problems arise when array reference and FOR-loop indexes can only be deter-
mined at execution time; when values of veriables occurring inside a loop
are computed outside of the loop; when velues of varisbles oceurring outside
a loop are computed inside the loop; and when dis;]unetive and recurrence
statements oceur, In each of these cases the values of the assigned
varisbles must be classified as indetermina,te and cannot be deleted,

The evaluation is an iterative process, since statements in & loop mey not
be evaluatable until later processing, Once evaluated, re-evaluation of
prior statements may be possible.

Phese four completes the trensformation of impliecit deseriptions to explieit
deseriptions by choosing particular values of loop bounds and particular
terms in disjunctive statements, These values are a subset of a set of
values that satisfy the deseription.

At this point, feasibility of a description becomes an issue, A description
ig feasible if there are values in the input domain that satisfy the des-
criptions. Infeagible Jdeseriptions describe the empty subset of the input
domain, Assuming the partially explicit description is feasible, Phase four
attempts to choose loop bounds and disjunchive terms thet result in &
feasible subset description.

Phage five generates the test data, It divides the standard classes of paths
into three sets: those for which it can genere:be test data, those for
which it can determine infeasibility and 'bhosg for whieh it can do neither.

Phese five is an integrated collection of inequality solution techniques
and is based on & backbtrack search, This method can be applied to both
linear {Kuhn 1956} and non-linear (Ho'.ed.en 1972) systems.

The becktrack search starts with the lsst inequal::by a.nd. progresses up

through the path, solving éach inequelity in sequence. -If at any point,
& solution cannot be found that satisfies the constraints on the variable

o=

involved, the method backs up and attempts to change the solution to the
previous inequality. If it can, then the solution process proceeds, If
not, it backbtracks further in the attempt to find a sequence of solutions,
If it becks all the way, the system is unsolvable, If all the inequalities
in the path are solved, the system 1s solved.

This general methodology produces a large number of test cases because of
the boundery-interior approach to hendling loops. Hence more recent
research has been geared toward the selection of path segments of interest
in order to restrict the number of test cases to be generated. This allows
the examination of loops, specified sets of branches and/or loops without
bearing the overhead of generating data for paths of peripheral interest.

A commend langusge has been introduced to enable the user to select the
classes or subsebs of classes of paths. A feature was added to include the
identification of statements, loops and branches by number, allowing the
user to communicate more eagily with the system by naming peths and classes

of paths through a program, Obher features include user assertion capabilities

for stating desired logical conditions and for assisting in the symbolic
evaluebion process. The DISSECT system which is now belng experimented with
represents the latest work in this area,

McDonnell Douglas

Disseect System.

The DISSECT system can be used in different ways end can take on
different forms, depending on the capabilities which have been
implemented. In using the system the programmer begins by preparing
a number of cases, Each case deseribes an analysis to be carried out
by the system, In its simplest form, a case consists of:

(a) A procedure consisting of a sequence of commends which csuse
the selection from the program of a path, partial path or
‘get of paths or partial paths. A path is defined to be any
possible flow of eontrol through the program,

(b) A set of commends which directs the system to print oub:

(i) a system of predicates which describes the date that
causes the selected paths to be Tollowed; end
(ii) symbolic expressions which describe the cumulative
effects of the computations carried out by the
selected paths,

Several of the possible more complex features heve &lso been implemented.

The more complex features can be used to carry oub more sophisticated
program analyses, The current system will allow a user to conditionally
carry out path selection commands based on whether the selections will
cange the generation of inconsistent systems of predicates, to generate
and insert assertions into the selected paths, and to menually force
certain simplificetione of the predieaﬁeB and output for selected-paths.

An extended system would allow the user o combine systems of predicates,

symbolic output and assertions in verification conditiouns; to smolve

e . i . [b I

e b

&

T
o

&
[gt §

e

B ped el

o
;E

=3

wo
o

3

3

Ao

LRkt

e

"
s

i

[e

Uor g

/=

P
PA—

A

B i

40

2
>

=

B

S
[N

"5 e
Loy

B et

=1

|

systems of predicztes to genermbe test deba; and to prove correctness
by proving verification conditions, Attempits to antomabte those last
two features have not heen completely successful in specially designed
test data generatlon and proof of correctness systems and they axre

not plemmed for inelusici: in DISSECT,

In the following example the system is used to "reed" a program,
DISSECT can be used to help & user read a progrem by anslyzing the
program to see what computations are carried out by the program
along selected paths snd what data causes the peths to be geleched,

Bach case which is preapred for input to the DISSECT aystem can conbain

g section of text which describes in English the subdomein of the program
corresponding to the case and the actions carried out by the program

over the subdomair for the case, The DISSECT system can be used to
confirm that the selected paths corresponding to the case are applied

in the situations and carry out the actions specified in the text for
the case, In helping the user toc read a program, the system helps the
user to confirm that the program implements its speecifications,

Examgle

The program in Figure C-l is called FDIV, The program comes from the
IR Scientific Subroutine Package and ean e used to divide one
polynomial by another, The input to PDIV consists of two vectors

of polynomial coefficients of lengbh TDIMK and IDIMY where IDIMX-1
snd IDIMY.-) are the degrees of the polynomials.

It is not immedistely obvious from a casual reading of this progranm
that it carries out division of polynomisls, Most of the difficulty
is due te the langusge the progrsm is written in and the style of
programring, The progrem has been clearly designed to handle these
classes of input:

(1) Zero divisor: IDIMY = 0y
(1i) Divisor of higher degree than dividend: IDIMY »IDIMX; and
(iii) Divisor not of higher degree than dividend: IDIMY <IDIMX,

The actions taken by the program for the first two clesses of input
dre obvious. There is not need to construct DISSECT cases G0 anmlyze
the actions end program subdomsins for these classeg. A uvser might
gtill construct these cases in order to maintain, using DISSECT, a
document contsining the record of & complete examination of all of the
important cases covered by FDIV. If so, he might conatruet the cases
contained in Figure C-2 and Figure C-3, The case descriptions
contained in Figures C-2 and C=3 include the output from the systenm,
The user supplies the text description of the case and the DISSECT
commands which specify & sebt of peths and the cutput to be generated
for the patlhs. The gystem generates the systems of predicates

and the symbolic output for the paths. II a case involves the
specificatlion of more than one path or pertial pabth, the oubtput for
each path 1s grouped together under a SUBCASE hesding. The oulpus for
CASE 1 in Figure C=2 involves two subcases,

€9

1

10

20
30
ho
50
60

T0

80

90

Figure C-l

SUBROUTINE PDIV(P,IDIMP,X,IDIMX,Y,

IDIMY,TOL,IER)

DIMENSION P(1}, x{1),¥(1)
CALL PNORM (Y,IDIMY,TOL)
IF(IDIMY) 50,50,10
IDIMP=TDIMX-IDIMY+1
IF(IDIMP) 20,30,60
DIVISOR DEGREE TOO LARGE
IDIMP=0

IER=0

RETURN

ZERO DIVISOR

IER=1

GO TO ko

IDIMY=IDIMY~-1

T=IDIMP

II=I+IDIMX
P(1)=X(I1)/Y(IDIMY)
SUBTRACT MULTIPLE OF DIVISOR
DO 80 K=1,IDIMX

J=K-1+I
X(J)=x{7)~-P(I)#*¥(K)
CONTINUE

T=I-1

IF(I) 90,80,70

NORMALIZE REMAINDER POLYNOMIAL
CALL PNORM(X,IDIMX,TOL)
GO TO 30

END

« PDIV Program

C-10

Tk e e it A b bn o Sk nt At meiaben o 4 oe 4 e meem i e el = o i o s me sy o

W eNow o+

10

4
P ",

]

=3

i
i

il
-+

B sy

“Snprrreetein

[TR

CASE _: DIVISOR TOC LARGE

QUTPUT: PATH, PREDICATES.

PATHS: = DEFAULT SELECT ALL CONSISTENT;
5 SELECT .GT.;
7 SELECT .IE.;

SUBCASE 1.1:
PATH: 1-7, 9~11
PREDICATES: 5 IDIMY .GT. 0
SR _ 7 IDIMY-IDIMY+l .LT. O.
11 RETURN '

SUBCASE 1.2:
PATH: 17, 10, 11
PREDICATES : 5 IDIMY .GT. O
7 IDIMY-IDIMY+1 .EQ. O
11 RETURN

Figure C~2. CASE 1 -~ DIVISOR too large

CASE 2 ZERO DIVISOR

OUTPUT: PATH, PREDICATES. *
PATHS : . DEFAULT SELECT ALL CONSISTENT;
5 BELECT .EQ.3 -
PATH: 15, 13, 1k, 11,
PREDTCATES: 5 IDIMY .EQ. O
11 RETURN

e

Figure C-3. CASE 2 -~ Zero divisor

o

C-11.

Elrfa T2

TRTEE e

Programs to be enslyzed by DISSECT must heve sequence numbers or line
numbers, The text in the CASE section of CASE) describes the subset
of the input domain consisting of pairs of polynomisls where the
divisor is of larger degree than the dividend. The path selection
commands In the PATHS sectlon describe the set of paths which the user
claims to correspond to *his case., The 5 SELECT ,GT, command causes
the .GT, branch to be chosen in statement 5. The DEFAULT SELECT ALL
command tells the system what to do if it encounters a conditionsl
branching statement for which there is no associsted SELECT commend,
The command instructs the system to follow all branches which do not
cause the system of predicates associated with the path that follows

a branch to become incensistent, The system anslyzes the progrem and
produces the output in the SUBCASE sections. In more complicated cases
the output will be useful in debermining whether the program conforms
to the program specificebions in the CASE text descriptions.

The action taken by the program for peirs of polynomisls where the
divisor i1s of degree less than or equal to the degree of the dividend
is more obscure, The user may wish to confirm that the program works
correctly for this class of data by constructing cases for which:

the divisor and the dividend both have minimal degree --— degree onej
they both have the same non-minimsl degree, say degree 23 and the
divisor has smaller degree than the dividend, say divisor degree 2 and
dividend degree 3, TFigure (-4 contains the CASE corresponding to

the output for which the divisor and the divident both have degree 2. Fig-

ure -5 contains the CASE corresponding to the input for which the
divisor has degree 2 and the dividend degree 3. In bobh cases the user
has requested that the system print out the peth sequence numbers

and the symbolic sutput for the paths., The ASSIGN command allows the
user to give values fo variables in paths, The result of the ASSIGN
commands in CASE's 3 and U4 is to cause the varisble IDIMX and IDIMY

to be replaced with constants in the symbolic output for the CASES.

The LOOP commands in CASES 3 and 4 specify how many times a loop in

a path should be execubed, The command 25 SELECT ,GT., LE.; specifles
that the GT. brench in stabtement 25 should be followed during the
first iteration of the loop conbtaining the stetement esnd the .LE,
branch the second time,

The system also allows explicit conditional commands, The conditions in
these commends cen involve “loop counts", values of program variables,
and path attributes, Path attributes are cheracter strings which can

be attached to any program stetement, All paths which pass through

a statement having an abtribute acquire that atbtiribute.

The DISSECT system allows a user to isolate parts of his progrem and to
apply automatic program analysis tools that will help him o see what
circumstances: cause those parts of the program to be executed., He can
also apply analysis tools to see what computatlions are carried out by
different parts of the program and to compare those with progrem specifi-
cations, More complicated snalysis tools can be incorporated into
DISSECT to allow & user to ask for the autometic generation of test date,

the formation of verification conditions and the proof of program properties,

C-12

4

]

#

B
H
P

J——

+ PRI
o r—; [

Bt s

=3

Yot en

A

Z £

=

" e
%

4.

T

f

=

I s S

Lo

A

7]

| S———

T omamey
F

[R——

: L s [Sp—

==

= IR T, D RS T R SR i e e 4 A 2 L = S b

CASE 3: X AND Y HAVE SAME DEGREE « 2
QUTFUT PATH, OUTPUT (P,X)
PATHS: ASSIGN IDIMX = 33
ASSIGN IDIMY = 33
5 SELECT LGT.;
7 SELECT ,GT.;
20 LooP 2
25 SELECT ,LE.;

PATH: 1-7, 15-23, 20=23, 20, 24-28, 10, 11,
OUTFUT
ARFAY P3
P(1) = x(3)/%(3)
ARPAY X:
X(1) = x(1) ~ (x(3)/%(3)) * ¥(1)
x(2) = x(2) - (x(3)/¥(3)} * ¥(2)

i

FPigure C-k. CASE b4 - Equal Degrees

CASE ks X HAS GREATER DEGREE THAN Y - 3 AND 2,
OUTPUT: PATH, OUTFUT(P,X)
PATHS: ASSIGN,IDIMX = Ly . —
ASSIGN IDIMY = 33

5 SELECT ,GF.;

7 SELECT ,GT,;

20 LOOP 2

25 SELECT .GT., .LE.;

PATH: 1-7, 15-23, 20-23, 20, 2k, 25, 17-23,
20-23, 20, 2k.28, 10, 11,
OUTFUT:
ARRAY P
P(1) = (X(3) = {(x(&)/¥(3}) # ¥(2)}/¥(3)
P(2) = x(4)/¥(3)
ARRAY Xs
x(1) = (1) - ((x(3) - (X(b)/¥(3))
* ¥(2))/t(3)) * ¥(1)
x(2) = x(2) - (x(k)/1(3)) * ¥{1} - ((x(3)
- (x(8)/x(3)) * v(2))/¥(3)) * ¥(2)
x(3) = x(3) = (x(8)/x(3)) * (2}

Figure C~5. CASE 5 =~ Degree of divisor less than degree of dividend

C-13

et i v 8 s o R m a3 A A k. e R A - B0 R R AL A o Ve b

General. Research

MillerlT hag also developed a system that generates test cases for FORTRAN.
programs, The first step is the decomposition (if necessary) of the program
into & series of smaller segments that can be dealt with sepsrately. This
process decomposes the program gtruchture into segments with th property
that each has a single entry single exit,

Miller's approach is to construct a tree representation of the program by
automatically performing a series of reductions of the program directed graph,
This corresponds pretty much to Howden's reduetion of the program to a

state dlagram of the class descriptions.

Once the tree representation hes been constructed, the structure (program
control) is analyzed to determine the program execution patterns (paths).

This tool also uses the backbtracking method to comstruct test cases.,
However, a basic difference between it and Howéen's method is the handling
of loops and ‘the exbtent of processing performed dquring backtracking., ¥While
Howden derives his entire set of inegualities prior to the backiracking
process, Miller performs much of the derivetion during backbracking, Howden
attempts to handle loops as part of the system to be solved, while Miller
reduces loops te non-lberative flow.

The backiracking in Miller's system implements a set of rules that dictate
the actions taken by the backtracker as it traverses the statement sequence
in reverse order, The reduction of the program produces & set of simultaneous
non-linear inequalities imvolving only inpub~spece varisbles and constants,
These inequalities are now solved and the result is the test case,

In the case of iterative flow, manual intervention mesy be necesssry if a
valid test case set cannot be constructed by a single traverssl of the cyele,

The approach Lo coverage is to exercise each predicate in the program at

least once to each of its possible outcomes, but not necessarily in every
possible ceonoination,

The research at GRC in this ares concentrated on tradeoffs between segment
size and number, and in learning the effescts in execution time requirements
both in performing the computations and directing the beckiracker.

TRW
HoffmanlS’lh’ls’lG of TRW, Houston, is developing the Automastle Test Date
Generator (ATDG) for FORTRAN progrems. This tool is currently capable of
constructing paths through the unit of softwere and of ldentifying =
characteristic set of paths required to exercise all logical decisions.

The goal of ATDG is to exercise each transfer at least once using the
fewest number of cases,

Hoffman identifies all segments of a program by number, idenbifies all
possible logical transfers between the segments and then defines a path
through the software which is a chsin of transfers begimming st an entry
point and ending at an exit point of the unit of software.

C-14

ST

! i
imadard

8

,):'—‘-%1
&d

13
i

F::‘;::: tm

'(I.‘..;‘!.’.-‘-?}

.

oy

??:‘J "

-

|
w

i T2

s ey

JUS—|

ey
| S——

79

X

pE

e

' He accomp.L:.shes %he path de’cermination ‘ny conaﬁructmg a. dirwted gra.ph with
“each segment-of t.he program: represent.e&. as & node in “*the. gra.ph a,nd ench
10@1::9.1 transfer as & node cozmection, then performing a network’ ana.ly*is to
describe the paﬁchs, Transfers are the connectlons between two. segmen'bs and
& segment ends at a predlca:be wi'bh the next segment begmning wi’!:h the
asgociatbed e:-:eeu‘be.ble pa.x*i; of t.he clec:.aion ata:tement»

Unexécutable }_'_Jathb ‘are elimins.ted. using “the “:bnpuss:.‘ble pa.irs" techniq_ue,
This techmique ident.tfn.es impoasi‘ble pairs of tranafers, besed on data
constrainty that prevent a pair of transfers :f‘rcm b 2ing executed in the
game pass 'bhrough the soﬁmeo : o

;
A5
HH
:u
4
A
e
,‘
i

Freie

 SH
—

In the mgjorlty of cases, 'bhe pa.mrs are alwa.ya :ianoasmble,, Hoﬁéﬁver, ir
values of warisbles can be cha.nged. then it is necessary to qualify the
possibility of transferring.

Eossmee)

By
B =T

i

The application of the impossn.‘ble pairs 'teehnique to & short program
illustrated in (15) reduced the number of possible pabhs from 326l to 9.
This was further reduced to seven. To reduce the munber of paths required
to exercise all transfers, a connectivity matrix is generated represen“b:.ng
the direct trasnsfers in the software unit. 4 reachability maetrix im then
formed sllowing a look-shead capeabllity to debermine the best transfer to
gselect based on the number of transfers vhich can be subsequently executed.
Once execubed, a transfer is flagged and each new path contains the largsst
mumber of new transfers, This process conbinues until all transfers are
exercised, '

- e
ST

ST

Loy 7)

ATDG does not currently genewste data to exercise the paths., The work is
continuing and the expansion of the conmnectivity matrix concept is being
pursued, The basic difference between Hoffmen's approech and that taken by
Howden and Miller is the method of determining path construeciion. Hoffman
defines the paths based on the debla constrziobs, and diaplsys paths which
can be executed, Thig system ls intersctive with the user genersting the
tegt date which will exercise the path,

[

bl

Hoffmen's use of the software network analysis with the connectivity matrices
gllows the combination of the structural and logical charscteristics of the
unit to form = metrix defining executszble paths based on data constraints.

i Loops are considered to reguire one iteration the Pirst pass through the loop
bumping the index and the second pass allowed to fall throughe.

An obviour, advantage in the concept of connectivity matrices is the ability
% $0 handle units of code that ave complex., The size of the matrices increases
with the complexity of the program, but the network a.na..l.‘ysis and matrix
generatiuvn and processing remeins the same,

University of Colorsdo
L (Jll.f:'l.lﬂke'.j'8 of the University of Coloradc describes the system developed there
to generate test data for programs written in ANST FORTRAN., The system iz an

extension o the validation progeam, DAVELY, which perfo.me date flow apalysis,

C-15%

- e i AT e e s 3 m s m s NSt s [P T Wy S I

ORI AL BRI

Programs are decomposed into segments, and a directed graph is created de-
fining the possible paths, A data base is crested containing information
sbout the program units. This data is used during dete generstion,

The lexicel analysis performed ereates a list of tokens subsegquently trans-
lated to an intermediate code similsr to assembly langusge, This intermedlate
code in conjunetion with the directed graph is accessed by the test data
generator. An advantege %o this approach is that adaptation to a new

language would require a ftranslation to the Intermedizte code, with only
minor modifications necessary to creste a test generation system for the

ney language, Howden uses s similar technique.

This system addresses loops and subroubines calls, The user can designate
the path to be taken through the program, reguesting that loops be traversed
a specified number of times and that the path enter and exit specified
subroutines following & designated path. The control structure Dhlornks
defined by DAVE are numbered and stored in the data base. The paths are

then descrlibed by the user in terms of the subroutine nemes and block numbers.
Ms, Clarke offers the following example, A path is dezeribed by SUBL, 1,2,5,
suB2, 1,7,8, suBl, (6,7) $2, EOP,END, An enalysis of the path starts with
subprogram SUBL, Blocks 1, 2 and 5 are symbolically executed. A call to
subprogram SUB2 is encountered in bloek 5., Bloeks 1, T and 8 in SUBZ2 are
then executed, A return statement is caicountered in block 8 of SUB2 and
analysis returns to SUBL, block 5. The remaining code in block 5 is executed,
Then the loop formed by blocks 6 and T \s executed twice,

The analysis determines the feasibility of the path, If it is found to be
infeasible, the user is notified and anslysis of the path is terminated.
If the end of the path is encountered, the path is executable, therefore
feasible, and the test data that drove the execution down that path is
returned to the user,

Feasibility is determined by sttempting the symbolie execution of a path,
When a conditional branch is encountered a data constraint is generated.

Each constraint is then passed to an inequality solver ithel attempis to find
a solution to the set of constraeints and confirm that they are consistent,

If a solution exists, the sywbolic execution of the path continues., If they
are inconsistent, the user is notified and the path is considered infeasible,
Linear programming techniques sre used to solve the system, based on the
premise that a large proportion of programs have linear constraints (allowing
the use of the linear techniques) and non-linesrities will not limit the use
of the tools,

This system operates also in the static wmode, with e peth being initially
specified,

Since the capsbility of traversing loops creates the possibility of an
infinite number of paths, only a few of which mey bhe of interest, this

analysis program requires thai the path to be analyzed be specified by
the user.

c-16

WAL L.

1

ol

.

AL

[N

R

—_——

1BM
EFFIGY iz an interactive symbolic execubor developed by King, et.al.eo at IBM,

It is applied to programs written in a special subset of PL/I containing only
integer-valued veriables and vectors,

EFFIGY accephts one shtatement at a time, tullding & tree thet defines the
vaths through the program as it goes along. At each branch, the user
decides vhich path iz of interest and communicates this te the system which
then proceeds with the symbolic execution.

The pat generation proceeds in a8 Torwerd Teshion as opposed to the back-
trackinz methods used by Howden and Miller,

EFFIGY saves the state of the branches and allows restoration to particulsr
points so that sliternative paths can be explored later,

An interesting aspect of EFFICY is the capability to accept assertions during
the symbolic execution that allow comparilison of the correctness specificsation
t0o the data at a given point in the execublon.

The use of symbolic input date allows verification of the program over a
range of numeric data without examining esch specifiec possible input
within thet range, It represents ancther sttempt to prove tehi dats of
interest exists that will drive execution down a periicular path.

aAveomatbion of the process of exploring all paths of interest is being pursued
by the developers,

This system is limited in practical use, but gives added insight into the
concepts of symbolic execution as a tool in proving programs correct.

Stanford Research Instituﬁg

SELECT is a, system developed at Stanford Resesrch Institute by Boyer, Elspas,
and Levitt2d, It is also s symbolle executor, execubting the code in a forward
direction through the program, It is applied to programs that are written

in & langusge that resembles a subset of LISF, since thet was the langusge
used as input to the SRI program verifier which was used as pert of SELECT,

As the steatements are executed and branches are encountered, the path is
generated and stored as a conjunction of predicstes in a list, Variables
are kept in another list which is updated whenever an assignment statement
is encountered, Datas that will drive execution down the path is also
maintained and is derived by the execution of an inequality solver,

As each predicate is examined, the inequelity solver is called., It solves
linear and some non-linear inequalitles for both integer and real valued
variables, I# the inequality cannot be solved, the traversal of that path
is abandoned and is tagged as an impossible path,

Loops are addressed by SELECT as paths that are iterated n user—specified
nunbar of times,

C-17

AR
Lgtﬂ"»ﬁ..

e
t

s oy

for =
[R—

BELECT also offers the capability of accepting user-supplied assertions, They
can be used to determine the nmumerical value of the symbolic daba auring
execution, to constrain the input space bounds from which SELECT is to generate
test data, or to provide a specification of the intent of the program to
verify a given path,

T
S

-

et

P

Calls to subroutines are presently handled by substituting the subroutine
code into the program., This causes an explosion in the number of paths
and is & limitation. Work is being done to address subroutine calls by
characterizing them by input and output assertions, and replacing the calls
by these specifications, .

All test case generators currently described are experimental tools. The
various techniques employed in developing these tools represent attempts
to achieve a feasible testing aid., A1l require tobal knowledge of the
program structure as well as the intent, and all are severely limited in
the size of the program thet can be accepted,

The espability of DISSECT, SELECT and EFFIGY to accept assertions is an added
step towsrd proving the correctness of a program. It allows the programmer ;
to express his besbing requirements in some way that reflects the program's i
intent, and to compare this intent with the results of data derived by the
structural analysis of the program,

[Rrpe

S

Execution Anslyzers

HEN

iy e

General Overview

The basiec function of execubion analyzers is to gather run time statisties -
that ecen give =& prograumer insight into the behavior of this program,

Initial abtempbs to analyze program behavior were through the use of itrace
functions, While tracing indeed shows the order and state of execution, :
it is very costly in programs that sre not small, and particularly if loops i
gre involved, Tracing iz still a velushle debugging ald since it provides

for a display of the contents of cells of interest during execution, i

A number of effective execubion analyzers have heen developed to perform
dynamic analysis of the code through the use of external performance i]

mopnitoring techniques or with software probes ingerted into the source code,

Boole and Babbage's Problem Program Evaluator. (PPE)2? is an example of

a tool ‘that monitors execution performance externslly., PPE is linked to f}
the loasd module and causes execution to be interrupted periocdically, i3
recording the stete of the program's execution at each interrupt. The

information is complled and displayed grephically, While this technigue does 3
not disturb the test object code and is languasge independent heceuse it EJ

operates &t the object code level, it does not provide complete stetistics
about execubtion freguency, particulariy in tight loops,

The anslyzers that insert probes into the source code are language dependent.
Among the currently available tools developed for the analysis of FORTRAN N
programs are MDAC's Progrem Evaluator and Tester PET), TRW's Flow program i@

c-18 £

g T it TS N ™ B E

e

i
—

L

-

Emimad L]

ot

wﬁich is one of the toolz in their Prodiect Assurance Confidence Evaluator
System (PACE), CSA's QUALIFIER, GRC's RXVP, CAPEX's FORTUNE, and the NBS
Anslyzer, COBOL analyzers include ADR's Meta Cobol, NCI's aer1e5~J

. and CAPEX's COTUNE. MDAC has developed a system to analyze the executlon of

TACPOL/MOL programs for the Army at Fort Belvoir and is currently working
én a prototype PL/I analyzer, and GRC is developing a JOVIAL analyzer for RADU.

Several techniqpes have been used to accomplish 1nstrumentat10n of source code,
All are based upon the recognition of the program's control structure .
Entry points, exit p01nts, branches and loops must be recognized to determine

wheye the probes. should be inserted to give the desired results. Most of the

tools provide & caontrol 1anguage that allows the programmer to communicate
with the tool expressing his areas of interest, such as instrumenting only
gelected code segments and requesting optional statistics, The control
language may he transparenﬁ to the ecompiler (in the form of comments) or

may be implemented as additional verbs which must be removed after testing
is completed. :

In elther case, the source code, with any embedded control stetements is
passed through 8 preprocessor, The control statements direct the instru-
menting process {In most cases, default conditions sre used when no conbrol
statements are present), The preprocessor generates a modified version of
the source code that contains the instrumentation., The probes are either
ealls to subroubtires in which the statistics gathering tekes place or are
counters in the form of assignment statements that collect the statistics
in arrays and symbol tebles, The performance of the instrumented code is
degraded by the added code, but the functional results remain the same
{i.e, the program still does what it did before it was instrumented),

Descriptions of the individual tools along with performance statistics
for each were gathered during this study (see Appendix A).

ALl of these tools currently do not actuslly verify the program. Their
value lies in the insight they provide to the programmer sbout the behaviour
of the code in relstion to its structure. Dead code can be located,

impossible branches can be identified, and high wtilization code can be
isclated and optimized,

An initisl aﬁteﬁpt vo address the function as well as the structure of
the code was proposged by Stucki and Foshee" as an extension to PET, MDAC's

execution analyzer. A protobtype PL/I implementation is currently being
tested,

As PET is now implemented, it provides information about the veriabies in
the program ag it was executed; namely minimum and maximum values assigned
to the variables at each assignment and for each do-loop index variable,
and first and last velues for variables in each assigmment statement.

c-19

Current Regearch

Assertion Checking - General Philosophy

The assertion concepts for programming languages which are now being
developed constitute mejor extensions to our ability to carry out
"systemstic progremming”. These new assertion concepts will impact
all phases of the software life cycle from initial requirements and
Gesign phases down through certification, and maintenance iterations.
These assertion concepts are designed to encoursge the development
of algorithmic validatlon criteria as the implementation evolves
from the initial algorithm requirements and specifications down

0 the final program code,

The impaet of these assertions will be both psychological and real.
They will be "psychological’ in the sense that they are omnipresent.
Embedded as comments within the program code, they will be a positive
infiunence for increased understanding and awareness of how our
algorithms should behave and how we plan to insure that our slgorithms
do in actuality behave properly at a2ll times, The impact of the
assertions will be "real" in that they can be autometically checked
and monitored under dynamic pregram execution.

The agsertion capability will alléw programmers to verify to some
extent that the code performs properly within the constraints
defined by the assertions. Criticel parsmeters can be dynamicelly
checked or monitored for range, value, and order violations based
on the prescribed bounds of the assertions. Subscripts are checked
for range violations, and given subroutine parameters are checked
for change of value during execution of the subroutine.

The inclusion of specifications data In the program now begins to relste
the code to the requirements and is a significant advance toward
verifying the program, Module interfaces can be examined via the
calling parameter assertions, providing added confidence in the
integration of modules.

An important side effect of the assertion capability is the documenw
tation in the code of the critical requirements of the program by

the assertion statements, This enhances the understanding and
maintenance of the progrem at all levels of development and operation.

Application of these technigues and thelr associated tools offers a
positive step forwerd in the development of more reliable scftware
systems. This approach can be applied to existing programming
languages today via extensions to currently existing sutomated tools
like MDAC's PET system, The approach slso promises to impact future
language and language processor design.

C-20

r
A G

3

[
Lo

fiiad

fod

=2

o
¥

=)

=
4

g

e

/= B3 =

I,

. [

o /| T T

[

=

e B e

3

E .

Basgle Properties of Assertions

The premise upon which the assertion concepts is based 1s the need we
have for thinking through and thoroughly understanding the expected and
sctual behavior of algorithms, The emphasis will not be placed on
proving mathematical or loglcal properties of programs but rather on

an attempt to inerease our understending of the nature and behavior

of the algorithms we uge. It 1s openly acknowledged that some purists
(i,e,, London, Good, et.al,) may feel that we are taking a rather
informal approasch to the study of program properties. However, it should
be noted that the assertion language which will be developed contains
sufficlent power to serve as a vehicle for stating meny formel properties
of algorithms,20 Indeed, ot some future point in time a theorem

proving tool may well interface with our embedded assertion language.

The assertion language will address both our understanding of flow of
control and flow of data through algoritims. A hierarchy of assertion
cor3tructs will be defined to make their use more natural and convenient.
It should be noted, however, that one assertion construct is really
gufficient (i.e., & generslized local assertion).

CGeneralized lLocal Assertion

A generalized local assertion may be embedded in s comment at any point
within the executable ccde of & program where ancther executeble
statement may sppear, The local assertion is designed to enhance the
documentation of eritical algorithms throughout the entire life cycle
of the software., Dynamic execubion time checks can be activated at
selected points in time to ensure that the actual run-time environment
is consistent with the logical state specified in the assertion. This
dynamic assertion checking can be used to great benefit in debugging,
validation, certification, and maintenance of complex systems.

The format of the generalized local assertion is:

ASSERT LOCAL{extended-logicel-expression){optional-qualifiers]
[control~options]

The exact placement and treatment of the assertions will be tailored

to the existing language Ffacilities in currently defined languages.

In these currently avallable languages the assertions will be implemented
through specialized comments processed by a source code preprocessor.

Hew langunage development and future compilers for existing languages

may contain aptions for directly implementing the assertions.

Optional-ualifiers

In order to provide an existential and universal gualifier notion to
the generalized local assertion an optionsl looping capability is
defined: « s o FOR I IALL]l

SOVE 2[(variable—list) (set of ranges/values)]

WHERE

c-21

(quant1f1er-contrcll;ng—lngmca]'expr)
e.gs C ASSERT (X(I)== x(J)) FOR ALL (I,J). (1 8) WHERE" (I'1-— I)"
means: [¥I,J s.t, 1gI, J<81\ I # } x(l)aéx(;r)

Assertion Cbntrol Options

The total control alluded to above (i e., 1gnor1ng all assertlons by
treating them as comments) offers the user a binary choice as %o
whether or not to spply dynamic assertions during program -development,
hovwever, other levels of contrel are prov1ded withln the assertlon
language itself, .

The asgertion lsngusge 1tslef contains three. hmerarchmcal levels
of control-

1) instrumentation control -~ control of those sets of assertions
which will be instrumented at a given level of testing.

2) dynamic control -~ run-time control of those instrumented
agsertions which are 4o be dynamiclaly checked, and

3} +threshold control -~ user control when assertion violations
are ohserved,

Instrumentation control is provided by a LEVEL option. The syntax
of this optlon is:

v+ «LEVEL (preprocessor-control-expression)

The LEVEL option provides control informastion to the preprocessor telling
it which selts of assertions should be considered for dynamic analysis.
This level of control provides a means for testing selected software
Teatures &t various points within the software development cycle and

fits in well with the top down approach to program development. This
2lso allows a user to group sets of assertions together for various
types of dynamic checks.

Dynamic control is provided by a condition option., The syntax of this
option is:

« o «CONDITION (dynemic—control~expression)

The CONDITION option provides run~time control of the assertions which
have been built into the program. This option affects only those
assertions which have been amctuaslly instrumented, thus the CONDITION
option is of lower priority than the LEVEL option. It should alsc be
noted that the CONDITION option can be dynamically changed under
progrem control to activate or deactivate the assertion as often as
desired.,

C-22

s;—:.::’-:

sy

.

ET‘::.u."f—:vi

et)

|

e

[

Ll

b

£

;E

3

£

Y

]

[

el

gt e i

= B e

&5 E3

=

*
4
ke
y

=

5
i

e
B

3
e d

| . J“

B

s |
SR

)

= B3

]

Threshold control is provided by a LIMIT option., The syntax of this
option is:

v ¢ «LIMIT n[VIOLATIONS] {lﬁagg l]
EXIT [VIA] proc-name

The LIMIT option provides user control in the event of n violations of
the corresponding assertion. The user can specify that control being
transferred to & wrap-up procedure proc-name if the EXT1 phrase is
specified. Otherwise, the HALT phrase will simply terminate execution
and generated an assertion report automatically if n assertion vielations
are nucountered, Motivated by a need to make assertions sbout arrays

as well as sealaru, the following notation has been adopted.

Array Notation for Assertions

Two areas of concern immediately arise when discussing data arrays, namely,
array indices and array values. Thus, if one is monitoring program
behavior, it is not enough to monitor array values alone, since program
login is invariably concerned with where these values are stored within the
array .

The «2pproach is to generalize the assertion and monitor capabilities
to inelude data arrays. Array notation is as follows:

Assume an array of the form A(I ,12,1 ,...In). References to specific
subsets of array values or array indiées g¥fe indicated by A(Il,12,13,...
In), where I; is a subrange of I;. This notation is position

dependent; i.e., if Io is not referenced, its position must be indicated
by en asterisk (*), es in A (I3,%I5...I). The format of each I; is

%:1 where f<uc< Ii (see note below), Tf %=y %:p may be replaced by n,

as A(Rl:ul,uh,...). Thus for A(10,20) we might reference

A(5,10:15)
A(#*,3)
A(2=59*)
A(2:6,2:10)

Extended Logical Expressgions

Two types of extended local operations have initially been defined for
the assertion language. An array to scalar logical operation will be
allowed vtk its result being defined as 'true' if and only if atl
component to secalar operations are found to be true. An array to

array logical operation will be allowed for identically specified array
cross—sections with its result being defined to be true i¥ and nly if
each pairwise component operation yields a result of true.

Note: If the cheracter ':' (colon) is not available on a specific
machine, another suitable character can be sulistituted,.

Local Assertion Exsmples 2

A simple local assertion example is showm helow in a typical revort

format., The assertion simply indicates that at the point vhere it is inserted
into the source code we expect the value of the variable MOVE to he

less than 9. The report format indicates that this assertion was

checked 9 times. Violations were noted on the 6th and Tth executions

-t

of the assertion. It is furthermore noted that MOVE actually contained o
the value 9 on those two instances. A snapshot is taken of all
pertinent variable values associated with the violation when the -

trace mode is specified, L
St

EXECUTION
COUNT -1 SPECIFIC EXBCUTION DATA -
00045 C ASSERT LOCAL (MOVE LT, 9) LIMIT 10 9 AGSSERTION VIOLATIONS 2 &
EXEC NUMBER VARIABLE VALUE ™
6 MOVE 9 ok
T MOVE 9

It is also worth noting thet had we encountered 10 viclations we would
have halted execution at this point in the program.

Examples of the use of array cross-sections in extended logical expressions

include the following: f{assume an array A(10,20) has been defined) i

() ASSERT LoCAL {A(*,3) .LT. 10) =

LIMIT & VIOLATIONS ot

(b) ASSERT LOCAL{A(?:6,2:10) .NE, 0) o

(e¢) ASSERT LOCAL (A(¥,%) ,GT. 0) wu

In (2}, the value of each array element whose second subscript=3 is o

checked and reported as a violation if its value is not less than 10. b
Ten array values will be checked in all., Any number of assertion vioclations

within an array operation cmuse the operation to be counted as a single G

assertion violation, Thus, the LIMIT 6 VIOLATIONS is concerned with .
only the number of invalid operations not with the number of violations
within the array.

In (b), only array values within the specified subscript ranges are o
checked for an assertion violation. In (c) all array values are
checked for an assertion violation.

3

Specialized Local Assertions

A number of additional specialized local assertions are proposed to
facilitate the expression of user validation criteriaz, This extensible
attribute of the local assertion concept is illustrated by the
following constructs:

c-2h ~

¥
1

[el by

5
(.

| ASES S OO I DR S

i
s

{

L=3

ASSERT LOCAL VALUE[S] (variable-~list) (set-of-legal renges/values)
[control-options]

ASSERT LOCAL VALUE[S] (varieble-list) NOT (set-of-illegal ranges/values)

ASSERT LOCAL VALUE[S] (varisble-~list) INVARIANT...
ASSERT LOCAL SUBSCRIPT RANGE (list-of~array-specification.)...

ASSERT LOCAL ORDER (arraymcross~section}[ASCENDING l]
DESCENDING

All of these speclalized local assertions could be repluced by one or
more generalized local assertions, however, their existence facilitates
the graceful transition from program requirements and their sssociated

validaetion criteria to embedded program documentation in the evolving
code,

The first three constructs cause instrumentation to be generated at the
position vhere they occur, The latter two constructs specify thait

the next executable statement will respectively be checked to insure
that it does not alter the value of an invariant veriable (e.g.,

through side effects from subroutine or function ealls) or use subscripts
oubside the specified ranges,

The ASSERT ORDER stetement checks a sequence of array values as follows:
ASSERT LOCAL ORDER (A(*,3}) ASCENDING

For an array A(lO 20) the following assertion violation summary
illugtrates the type of information traced for a violation:

EXTCUTION
COUNT SPECIFIC EXECUTION DATA
229 ASSERTION VIOLATIONS L
EYEC NUMBER SEQUENCE SNAPSHOT VALUE
18 A(T7,3) 6
A{8,3) 100%
A(9,3) 8

The ASSERT VALUES statement checks varlable values against a specific
set of ranges/values, The ASSERT SUBSCRIPT RANGE stetement will

check sddressing on those arrays specified to ensure that only those
portions of the arrasy specifically selected are accessed. A subseguent
example will 1llustrate the usefulness of this concept later in this
paper. All of these lstter constructions will result in providing
similar traces te those already presented for oubt of bound conditions.

C-25

R AT I R R

The Coneept of a Global Assertion

Expending our notion Of assertions, we immediately identify the need
to expend to scope of application for our asserted program properties.
In an effort to sevoid requiring several similar locsel assertions within
a perticular program region, the concept of a global assertion has
been introduced., This iz a novel agpproach which promises to have a
significant impact on the way we design, iwmplement, and test software,

Global assertions will allow us to extend our capacity to inspect
certain behavioral patiterns for entire program modules, selected
regions of modules or module interfaces (entries snd/or exits).
Global assertions appear in the declarstion section of the
program module,

These globel assertions will have effect within the scope defined
(i.e¢y globally at all pertinent points, regionally over the named
region, collectively for all entries, and/or collectively for all
exits.)

The VALUES statement inspects each specified variable as its value
changes and reports . when: (oPticn 1) the new value iz not one

: of the specified legal ranges/values, or (option 2) the new value
assumes a specified illegal ranges/values, or {option 3) checks to
meke sure the values of the selected variables are preserved
(i,e,, no direct or externally caused changes sre permitted).

The ASSERT SUBSCRIPT RANGE stetement verifies that arrsy subseripts

E fall within a specified range whenever the array 's referenced during
program execution, It should be noted thet this sialement provides

a means of checking portions of arrays as well as normal upper and
lower bounds. For this reason, it is more powerful than the PL/I
type ON SUBSCRIFT RAWGE check,

Ingtrumentation will be inserted into the source program by the
prepru. essor to sccumulstbe the following statistics relative to
assertion violations:

4 (1) Identify the statement that ceaused the assertion violation.
: For that statement an execution count and violation

i execution counts identical to those obtzined for local

F assertions are reported,

| (2) The aetual value that caused the violation. This value
is linked to the statistics identified in (1) above.

c-26

I

P

) [SIFOna PYRTERe
Gmiraranad Fop——— N

[IR

Ll

[T—————

ez

pe

E au-aas!

gz

B

£

£

[
[zss

el

i |

Rt

|

B e

2

e
Yz

o)

*_ ooz
= o=

|

/= ==

Sk S |

=== E—1

102

103

Some FORTRAN examples follow:

20
21
oY
23
2k
a5
26

102
103

23k
235
236

300

QaOaQaoaaQ

L

DIMENSION A(10,20)

GLOBAL, TRACE 10 VIQLATIONS

ASSERT VALUES(I,J,K,L) (0:100)
ASBFRT VALUES(II,LL) (-10:10)
ASSERT VALUES (KK,NN) (2,4,6,8,10)
ASSERT SUBSCRIPT RANGE (A(¥,31))
ASSERT VALUES (X,Y,Z) INVARIANT

K=K+ 1
I = A(L,J) + LL

-

K = A(J,K) + I*100
IT = II + 2
NN = KK*(I-J)

o1l

CALL ROUTINEX(X,Y)

If asseftion viclations occurred in this example, the following

stabistics are indicative of what would be reporited by the Postprocessor:

Annotabed Program Listing Count

Execution
Specific Execution Data

K=K+ 1

1T = A(L,J) + LL

511 - ASSERTION VIOLATIONS
ASSERT (1,J,K,L) (0,100)
EXEC NUMBER VALUE
10 101

511 ASSERTION VIOLATIONS
ASSERT (II,LL)} (~10,10)
EXEC NUMBER VALUE
22 20
ASSERT SUBSCRIPT RANGE{A(#,3))
EXEC NUMEER VALUE
5 A(12,3)
105 A(1,L)

C-27

23h K = A{J,K) + I¥100

JL + 2

it

235 II

236 NN = (x*(I-J)

300 CALL ROUTINEX(X,Y)

Structural snd Static Anaslyzers

125

125

38

33

ASSERTION VIDLATIONS

ASSERT (I,J,K,L) (0,100)
EXEC NUMBER VALUE
52 101
53 102
ASSERT SUBSCRIPT RANGE(A(¥*,3))
EXEC NUMBER VALUE
52 A(5,b)
53 A(6,L)

ASSERTION VIOLATIONS
ASSERT VALUE (II,in) {~10,10)

EXEC NUMBER
50

VALUE
12

ASSERTION VIOLATIONS

ASSERT VALUES (KK,NN) (2,k,6,8, 10)

EXEC NUMBER
20

VALUE
T .

ASSERTION VIOLATIONS
ASSERT VALUES (X,Y,%Z) INVARIANT

30

: VALUE OF CALL PARM X
EXEC NUMBER BEFORE CALL AFTER CALL

«10

1

1l

=20

Structural analyzers ere tools that examine the program code; performing

an, analysis of the structure,
for this analysis., :

The analysis results in definition of the inbernal control structure

Execution of the code is not required

describing the paths through the program end can be depicted as a
directed graph., Other analyses can be performed based on the decomposition
of the structure into s tree representation.

Struetural analysis is performed by JOYCE(MDAC), RXVP{GRC)

and both BRNANL and DAVE (University of Colorado)

They sll are designed for anelysis of TORTRAN programs,

Hoffman's Automated Test Data Generator (ATDG) uses the structural analyzer.
component for PACE, Miller's Automsted Test Case Cenerstor uses the

structural analyzer component of RXVP,
the structural analyzer, DAVE,.

pacE(rr) 2"
These systems
211l provide an error finding capability at this level and in addition,
are the foundations of the test casge generstors developed by each organization,

Clarke's test case generator uses

The decomposition methodology is described
in the discussions of the respective test case generstors.,

-
A —"

[

L
| -]

oy

-

r- e

: r:':...«}—,]

r:==‘suvc4"|
[P

at:f:.z‘:‘.

r'vsasﬁﬁ’

sty
arm—

i

- \ {-«vu-_wa

S
(7

L &

i

[AN R W

[i

The snalysis of & program's structuré also provides a foundation for
various types of static analysis, partlcularly the rela$1onsh1ps ‘and
data flows within programs,

DAVE examines a program consisting of one or nose voutines, and checks
for a number of common errors not detected by compilers, Its philosophy

is based on two rules expected to be obeyed in the execution of a progrsm,
1) thet a veriable is not referenced unless previously defined, and 2)
that once defined, it is subgequently referenced, before bezng redefineu or
undefined, The prlnczple here is that many common programming errors caliie
these rules to be violated. Therefore, a sesrch For vioclation of the rulus
should reveal the errors of p9551b111ty for erxors thax cause the violaticus.

Among the errors thet can cause vialatlons &f the rules are uninitisalized

varisbles, misspelling of varimble names, unequal lengths of eorresponding
argument and parameter lists, and mismatched types and dimensions of '

argumentﬂ and parameters,

DAVE congbtructs a call graph whlch vepresents the relatlonships hetween
subprograms being called. The suhprograms that do not invoke other sub-
Drograms are called leaf subprograms and analysis of the ecode begins with
them,

In order to detect the rule violetions, it is necessary to know the usage
of every variable in every statement, {i.e., whether it-is used as input
or output for each case), Therefore, a seéarch of the subprograms is
conducted along the pathe defined by the structural snalysis, to look

for the rule violations. DAVE has addressed the problem of data passing
through ezlliing perameters and through COMMON, and provides information
about these variebles in terms of their 1nput/output classification,

Much of the anelysis performeﬂ by DAVE is not designed to identify specific
errors but to sense suspicious situstions where érrors commonly lurk,

and to pass warnings to the user who must then debtermine whether or not

sn error sctuslly exists, or whether the program can be improved.

The static analysis provided by RXVP provides much the seme capability, but
with added festures such as stabement classificabtion by type of statement,
number in each module and percentage of total (note that this is also a
capability of the execution anelyzers); & module cross reference table of
variables, the statements that reference them, and their type of usage;

and an array subscript check for indexing appropriste to the array definition.

TR¥'s PACE program incorporates some static analysis capabilities into its
structural analysis snd execution analysis program,

JOYCE is an sutomatic checkout and documentetion aid. It compiles tables
of symbols and cross references of symbol usage within each routine of a
program, These symbols inelude FORTRAN varieble nemes the names of any
referenced function or module, any entry points, and all I/0 flile
references, JOYCE permits the input of symbol descriptions as data. This
information mey describe or designate a varigble definition, a math symhnl,
flege for grouping related subsets, or subroutine usage informetion.

ORIGLNAL PAGE IS

OF POOR QUALFTY, o 22

) o Y, e e £ . . 1 - Al

The edited informetion may be combined to preoduce several combinations of
desceriptive reports.

The cross-reference lists are useful for verifying consistency of symbol

naming and usage, for finding typographical errors in coding and checking
a program's logic flow.

Subroutine flowlists aid in verifying the accuracy of the modules logic
flow::

It is impossible to separate the tools strictly by function, There is &
great deal of overlsp in the types of analysis performed by each Tool.
Seldom does & tool serve one function, therefore, it is diffieudt to
evalugte or even discuss them solely within one giwven category. For
example, MDAC's PET program, while basically classified as an execution
analyzer, also performs static analysis in the form of providing s syntachic
profile giving the statement types and mmber of each, Again, the syntectic
profile does not in itself identify specific errors, but provides information
useful in verifying thet certain properties of the program exist (e.gz.

ample commentary) or that certain violations do not exist {e.g. non-
standard statements),

Test File Managers and Generastbors

A test file generator differs from a test case generator in that it generates
data based solely on input paremeters specified by the programmer rather
than on any knowledge of the program, Its purpuse is not to try to prove
anything about a program but to relieve the programmer (or test personnel)

of the tedium of manually generabing large volumes of data,

Test file managers are tools that allow easy menipulation of test files
once they are generated.

These tools are commercially available for COBOL applications where they

are particularly useful in testing systems that are data base driven. Among
those gffered sre PRO/TEST (Synergetics)20, Series-J (NCI)27, and MetaCOBOL
(aDR)2G,

PRO/TEST is & set of three tools, the Test Data Generator, File PRocessor
and File Checker,

The test data generator generates data based on paremeters specified on

input cards. These parameters specify the file structure (record and

field definition), the data ranges, conditional operations such as generation
based on comparisons, and computational operations which derive data by
operslting on data from two data fields or one data field and a constant,
Random specification alweys causes generation of the same data from the sanme
parameters,

The PRO/TEST file processor provides the capability of coupling live date
with genersated data, sllowing selection and editing of records,

The File Checker metches the cutput of a program to the original record
design specifications to verlify that the format and the structure are correct,

Cc-30

an g

piese |

|impees S T

Lol

= —)
A—

o

r Y
L

[JR————

-
U

=

L

Series-J offers a test data generation capability by parameter specification
internally. It provides & Test Division in the code thet specifies the data

and its format. It then generates programs that will genersate the data from
tables within- the generated programs.

The test data generator generates data based on parameters specified on input
cards. These parameters specify the file structure {record and field
definition), the data ranges, conditional operations such as generation

based on comparisons, and computational operations which derive data by
operating on data from two data fields or one data field and & constant. Rundom
specificetion always causes generation of the same data from the same parameters.
The PRO/TEST File Processor provides the capability of coupling live data with
generated data, allowing selection and editing of records.

The File Checker matches the output of a program to the original record design
specifications to verify that the format and structure are correct.

The MetaCOBOL system includes a test data generator that also accepts inoui
paramever specifications, generating data as specified.

Other tools of this type include MDAC's random data generator which uses the
computer's internal clock as the seed for the random number generator, and

then builds a test data file within the bounds of input perameter specifications.
This tool generates numeric data as opposed to structural data generally

output by the COBOL data generators, and is curremntly used to test FORTRAN
programs.

TRW has two tools called ATC and RETEST that are test file managers for
FORTRAN systems. ATC provides the capability to store pre-defined test
cases in the data base, edit these test cases, and selectively execute the
test cases. It also assistis in the automatic comparison of test output
against previously generated output.

RETEST is a tool used to identify test cases required to reverify software
that was previously verified and to identify new cases vhere reguired because
of coding changes.

CSA offers commercially a tool named RETEST which is similar to TRW's RETEST.

Miscellaneous Tools

There are a number of other tools that can n#id in program testing. Most of
these are application dependent and must be redeveloped for every
application.

c-31

However, there are a few that provide valuable information and are not appli-
catbion-dependent, MDAC's JOYCE is an example,

Probably the most commonly used type of tool is e simulator. While there
are myriad simulstors in existence; the requirements upon them are usually
highly specialized. Therefore, there are not any generalized simulators

in common use., The two simulators offered commercially, SAM {ADR) and CASE
('"ESDATA) are management visibility tools rather than actual test tools,
and therefore will not be diseussed here.,

There are many types of tools which have a common concept behind their design
bhut which sre application dependent due to the need to use data specifically

unigue to the system being tested, These fools include data verifiers, event
loggers and their associmted deloggers, and performance analyzers.

There are several tools availeble whose utility is striectly in the debugging
area, While there is often o fine line between debugging and development
tegting, this study will not address those tools that can be defined as
debugging alds.

.

Conclusiong

This task surveyed many of the currently availeble program testing tools from
the viewpoint of philosophy azs opposed to performance which was addressed
in Task I (see Appendix A).

The application-independent tools in use at present do not verify that
the code in any way meets the specifications for which it was written. They
glve insight into the structure and behavior of the code. However, in
light of the gize and complexity of todey's computerized systems, any

sol that relieves the programmer and the tester of time-consuming,
tealus, gnd error-prone work is a valueble asset in the production of
reliable software, .

One new and very promising ares of research now belng explored addresses
technigues for using tools to check functional sttributes of programs.
Through the dynamic checking of asserted program properties testing tools

can provide valusble feedback on program complisnce with selected specifications.

As research continues it appears that the concept of proving that a program
reliably solves the problem that was intended will evenﬁually become &
reslity. In today's environment, where practicality is a prime issue, the
tools that can provide the most useful help to the user sre the standards
checkers, the execution analyzers (provided the language and machine
attributes match), the test data generators and managers, and the structural
anslyzers, Other tools such as test case generstors like DISSECT are

still in the experimental stage of development and will require more research

before they reach the stage of practicel usefulness.

c-32

Foo

e |

S

i

" RS TSl e T LT ek BTRECT e DL el R ST L DT L D Ry T

o S

v
IR RV

b2 3 o e g b T

gees

B o R e

|

[=
[SFeccrs

=
{ o

-~
ot

i

f I—

J

[

i

e

L vig;d

t:s ..r«-nJ

In surveying these tools, the most common complaint was the difficulty of
use. As nev tools are developed and old ones are upgraded, grester attention
to user orientation will help meke these tools more valuable, simply because
they will be used more.

C-33

1.

9.

10.

1i.

iz,

13.

REFERENCES

G. M, Weinberg, The Psychology of Computer Programming, Van Nostrand
Reinhold Company, New York 1971,

F. T, Baker, Chief Progremmer Team Management of Production Programming
I8M Systems Journal, Volume II, No, 1 (1972) pp. 56-T3.

Informetion Research Asscciates., Reliability Techniques for
Computer Executive Programs, Summary Report NAS8-2666-9,

L, G, Stucki, G, L, Foshee, New Assertion Concepts for Self-Metric
Software Validation., 1975 Internationsl Conference on Reliable
Software, Los Angeles, California, April 1975.

Code Auditor Requirements Specifications, TRW Systems Group, Working
paper,

The Age of Metacobol, Applied Data Research (ADR), Junuary 197k
Sales Brochure,

Standerds Auditor, Computer Software Analysis,Inc,, Sales Brochure.

Ryder, B. G. The FORTRAN Verifier: User's Guide, Bell Laboratories,
Computing Science Technical Report #12,

Howden, W, E, and J, Laub, Automatic Case Analysis of Programs, Computer
Science and Statistics Eight Annual Symposium on the Interface, Los
Angeles, California, February 1975.

W. E. Howden, DMethodology for the Automatic Generation of Program Test
Data., Technical Report #41, McDonnell Douglas, Februery 1974,

W, B, Howden, L., G, Stucki, Methodology for the Effective Test Case
Selection Final Report MDAC-W, MDCG-5301,

W. E., Howden, Proposal to Investigete a Methodology for Effective
Teat Case Selection. McDonnell Dougles Astronautics Company, March 1975.

R, H, Hoffman., Automated Verification System: Test Data Effectiveness

Measurement Subsystem User's Guide, NASA/JSC Internal Note No, Th-FM-L6,
June 197k,

c-3h

L)

g oy

P.:“
ot b e td

[S—_—

fad il

Znd

=

i;__

R |

i

¢ -

1k,

15.

16.

1T.

18,

19.

22,

23,

2h,

25

26,

27.

28.

R, H. Hoffmen, NASA/Johnson Space Center Approach to Automated Test
Data Generstion, Computer Science and Statistics Eighth Annual
Symposium on the Interface, Los Angeles, California, February 1975.

H.'E. Hoffmen., Advanced Techniques in the Generation of Connectivity
Matrices for Software Network Analysis. TRW Systems Group, working
paper.,

J. R. Brown, M, Lipow, Testing for Software Reliability. Computer
Science and Statistics Eighth Annual Symposium on the Interface,
Los Angelesg, California, February 1975.

B, P, Miller, Jr., R, A, Melton, Automated Generstion and Test Case
Datasets. Internationsl Conference on Reliable Software, Los Angeles,
Californie, April 1975,

L, Clarke, A System to Generate Test Data and Symbolically Execute
Programs. Report #CU-CS-060-T5, February 1975, Department of
Computer Science, University of Colorado, Boulder, Colorado.

L, J. Osterweil and L, D, Fosdick. Data Flow Analysis as an Aid in
Documentation, Assertion Generation, Validation and Error Detection.
Report SS{September 19Th), Department of Computer Science, University
of Colorado, Boulder, Colorado.

James C, king. A New Approach to Program Testing, 1975 International
Conference on Reliable Software, Los Angeles, Californis, April 1975.

Robert S. Boyer, Bernard Elspas, Karl N, Levitt, SELECT ~- A Formal
Systen for Testing and Debugging Programs by Symbolic Execution.
1975 Intermational Conference on Reliable Software, Los Angeles,
Californis April 1975.

Boole and Babbage, Inc., Product Description Documents

Sunnyvale, California. '

RXVP-] User's Guide, General Resmarch Corporation, February 1975.

J. R, Brown, Practicasl Applications of Automated Software Tools.
Preprint 21/3, 1972 Wescon Technical Papers, September 1972,

L. D, Fosdick, BRNANL, A FORTRAN Program to Identify Bssic Blocks
in FORTRAN Programs, Report #CU-CS-0LO-ThW, Department of Computer
Science, University of Colorado, Mareh 19Tk,

An Introduction to PRO/TEST, Synergetics Corporation

Series-~J Summary Descripbtion, National Computing Industries.

The Age of MetaCOBOL, Applied Data Research, 19Tk.

C-35

LR |

Appendix D
STRUCTURED PROGRAMMING AND PROGRAM MANAGEMENT TECHNIQUES

IE‘ D,1 INTRODUCTION TO STRUCTURED PROGRAMMING

The phrase "structured programming" probably had its origin in Dijkstral's
— "Notes on Structured Programming" which were privately circulated prior to
{f being published [Reference 1]. In these "Notes", Dijkstra's main concerns
are the problems of very large programs and the methods by which their
reliability can be improved, At least three major ideas are present.

3
: [3 1, There iz & need for some sort of & "demonstration of a program's
" correctness' to supplement the standard functions of desi
- code dnd test, o

;

2, Programs should be coded using only three types of control
structures,

3. Programs zhould be composed in a top-down manner utilizing
systematic design techniques,

Taken together, these ideas are revolubionary even though all three were
developed to some degree prior to Dijkstra's Notes. His major contribution
wag to bring these three diverse ldeas together with e convineing argument
that only in this manner could relisble software be developed.

I I N

[

Dijkstra apparently feels thaet there is a defielency in the standard cyele

: of design, code and test snd that some sort of "demonstration of a programs
1 correctness” should be included in this cycle in the “uture, He points

: out that program testing is an imperfect answer to the problem since
"Program testing can be used to show the presence of bugs, but never their
absence®, Thils ides of demonstrating program correctness is being seriously
considered in the more practical oriented segments of the computer industry
but to date it has been primarily a subject for reseéarch and development.

| —

i

In its pure form, the method of "demonstrating progrem correctness" which
has evolved, is very similar to the proof of a theorem in theoretical
mathematics. Both menuel and automated methods of performing such “program
proving" have been studied intensively, ' '

SNV S I

A pertinent question at the present stage of development is whether aome
form of useful demonstration of program correctness is possible short of
the very sophisticated technlques of program proving. For example, =
regsonably rigorous discussion of key facets of an algorithms' mathematical
and/or logical basis could easily be imposed as a minimum reguirement.

Such information is often available in a document describing the algorithm
development but ususlly this information does not impact the coding phase

3 N O

i

D-1

. A
’) e i:' =31 azna,

and more importently, does mot form the basis for any system testing.
Perhaps algorithm code should be designed not for maximum efficiency but
rather for maximum clarity of these key mathematical and/or logical bases,
The results of research in the program proving field suggest examples of
the types of things which should perhaps be emphasized in both coding and
testing.

Non-Trivial Loops

Some reassurance should be given that loops terminate properly under
all possible conditions, The parameters that control looping should
be identified and the exasct manner in which these parameters change

shonld be explicitly stated. Some reassurance should be given that

the loop will bhe executed the correct number of times,

Invariants

An invariasnt is a relation vhich is true at every iteration of s
loon. A clear and concise demonstration that a loop truly
accomplishes what it is designed to do is often most easily performed
by identifying an invariant associated with it. [Reference 2 demon—
strates the use of inveriants],

Decision Structures

Some reagsurance should be given that all possible alternatives have
been accounted for by some path in the decision structure. The
canditions under which a particular program path will be taken should
be expliecitly stated.

The key feature seems to be explicit identifiecation of key parameters and
relations. Once this hasg been accomplished, sutomated methods can be used
to verify that these assertions are wvalid. For example, software probes
can be inserted in the program to be tested to verify that loops are
executed the correct number of times, that inveriant relationships always
remain true, and that s deliberately designed series of tests exercise

al]l paths of a decision structure.

The idee that programs should be coded using only three types of control
structures probably dates to a paper which proves a theorem concerning
the flowcharts of proper programs, [Reference 3] (A program - or program
segment -~ is proper if it has a single entry point and a single exit point).
The theorem states in essence thaet the flowehart of every proper program
can be represented by an equivalent flowchart which is composed of only
three basic control structures (Figure 1). Dijkstra goes a step further
and suggests that only these three control siructures should be uszed.

[In Reference 4, he singles out the GOTO or unconditional branch instruc-—
tion as a partieularly common offender of this coding methodology).

In support of this suggestion, Dijkstra presents several compelling
arguments:

-2

(s

(1) The intellectual effort necessary to understand such a structured
e program is roughly proportional to its length (measured in some
loose sense), This is not true of unstructured programs whoge
couplexity often increases geometrically with length.

. (2) The SEQUENCE and IF-THEN-ELSE control structures can be under—
ad stood by enumerative reasoning and the DO-WHILE control
structure by mathematical induciion. Because "we know the
appropriate pattern of reasoning", the task of demonstrating a
progrem's correctness is made easier.

Boees Tt

(3) In such a structured program, the machine's "progress through
the computation is mepped on progress through the text in
the most straightforward manner," In other words, the program's
. execubtion sequence is more like the instruction seguence written
i on the listing than for a non-structured program,

F—

The third major idea in Dijkstra's "Notes" is the concept of what has come
Loy to be called top-down programming (Dijkstra called this Stepwise Program
Composition)}, As motivation for composing programs in this manner, Dijkstra
cites the problems of program modification and program manageability.

oy Other authors including Wirth have also discussed this topie extensively
[Reference 5].

o The bagic approach is to compose a program in minute steps, deciding at each
ool step as little as possible. As the problem amnalysis proceeds, so does the

. further refinement of the program, In such a stepwise approach, certain
aspects of the problem statement are ignored at the beginning. This
Judicious postponement of decisions and commitments results in decisions
being made at lower levels than perheps they otherwise might be. One

result of this is that program modifications can be made at these lower

more isolsted levels where their impact is less. More importantly, however,
such a program composition is eclaimed to result in a higher level of abstrac—
tion program. When a program has been built-up to an intermediate state of
refinement, what has been written down is a suitable "common zncestor"

for all possible programs which can be produced by further refinements.

In other words, the structure of the program is such as to anticipate its
adaptations and modifications. As Dijkstra puts it, "The similerity

between program modification and program composition is the similarity
between the decision to be changed end the decision still left open".

s The starting point of the program composition is a concise statement of

' all of the things which the program is expected to do (e,g., the highest
level progrem specifications). Thereafter, one proceeds by conceiving

a "computation" of "more primitive actions" that mccomplish the desired
net effect, If these more primitive actions belong to what Dijkstra

calls "The well understood repertoire" (e.g., they are computer executable
instructions) then one is done. Otherwvise, the process continues., At
least four things about this approach are desirable from e program menege-
ment point of wview.

[

.............«
| S

(1) The starting point is the program specification which provides
meximum msnagement visibility of the program development process
from inception,

The highest level requirements which are of prime Inkerest to
the program menagement and customer are addressed at program
inception whereas decisions on detailed specifications {which
are most subject to change) are delayed to the later ctages
of the development effort. This, of course, is the reverse
of the traditionsl "bottom-up" development effort.

(2) Much of the early stages of program design can be performed
via English language statements, Thus, early wversions of
the program will conslist largely of computer instruetions
mechanizing the highest levels of conbrcl structure and =
large number of English language statements (comments} which
decument 1n detail the decisions which have already heen made
and equally important, those still left open., ©Such a program
is self-documenting to a very high degree. Also, there should
be a very close correspondence uwetween the program comments and
the program speclfication document, '

(3) A running program is in existence virtuslly from program incep-
tion. Integration is accomplished by zdding refinements to
the existing program in the top~-down manner. Thus, integration
is a continuous process performed throughout the develcpment
cycle, This contrasts strongly with the usval bottom-up
developmnent process where integration is the last and often
a very traumatic step prior to final testing.

(4) Progrem testing is also a continuous process performed throughout
the development cycle. When refinements are added at any level,
the progren testing necessary to verify the reguirements
associated with these refinements is performed. There are three
potential benefits of this apprcach. First, the higher level
functional requirements are tested early in the development,

This should tend to provide early reagsurance to the customer
that his most lmportant reguirements are being met. Second,
testing at any level provides sn important additionsl test

of higher level code, Thus, the very important highest levels
of code are exhaustively tested since they are exercised to

zome dzgree by the testing performed at all lower levels,
Finally, the program itself acts as the "driver" for all testing.
The need for separate "driver programs" to perform unit tests

(as in the bottom-up approach) is eliminated.

Before the reader gets the impression that "top down programming” and relsted
design techniques are the answer to all the world's problems, one final
point should he emphasized. This is simply thet these design techniques

are very difficult, especially the Ffirst time they are applied. The
temptation to plunge into great detail in the "firm" srems rather than

meke hard decisions which are required in the "not so firm" areas must be
resisted. Also, making the "right" decision is quite diffieuit. Subseguent
developments may show clearly that a particular decision was wrong or

D-L

e

By

f""’“‘“'“]

~

Py

ooy

?, PN]

=

I] i

ﬁ:wr

P

-3 O

== =3

W=

that a perticular decision shewls have been deferred and that a decision on

g separate issue should have been made instesd. The capsbility o backup
and sbart sgain from g higher ievel must be present. The resulis of
"errors" are out in the open for all to see and as a result no stigma
shonld be stbached to the individual who makes a decision which turns out
to be wrong. In short, top down programming requires a tremendous change
in management practice.

Whether or not this change can be made smoothly is yet to be seen. Probably
the outstanding example of top down programming management is the IBM Chief
Programmer Team experiment discussed in Section 2.2.2, The published

accounts of this experiment elaim results which can only be called outstandinh.
Tempering all the enthusissm, however, is the strong probebility that the
personnel involved in this experiment were of the very highest caliber,

It remains to be seen if similar resulis can be sbtealined by a team of more
modest talents., Whet the Chief Programmer Team experiment may reslly be
gaving, is that outstanding personnel when highly motiveted will produce
outstanding results,

D-5

i . S —

& | St}
——

[

D.2 CURRENT STATUS OF STRUCTURED FROGRAMMING

.-.'-‘«j

D resrcorerar

Structured programming was originally intended as a collectlion of programming - B
disciplines which have in common ithe objective of producing reliable software. .
Over the years, thils collection of idess has fragmented and today each of p
the major ideas previcusly discussed has become an entity in itself, £y
The concept of a demonstration of program correctness has become an area

of active research but as yet lititle practical application. The concept

of a limited nuwmber of control structures has been accepted by a subsgtantial
pumber of people and today it i1z oftern this concept that pecple refer to

when they discuss "struetured programming”. Finally, the concept of top -
down progremming hes blossomed into & new softwsre menagement philosophy ! ;E
of which the IBM Chief Programmer Team is the best known example. o

Becasuse these ideas have developed along such separate paths, they are
discussed in detail in three separste sections., Since program proving ree
lies heavily on other aspects of "structured progremming" it is presented
last. 1

D.2,1 Structured Coding

The idea of coding a program using only a limited number of control structures
ig simplicity itself., Its theoretical basis is the theorem proved in the -
clagsic paper which states that any proper program segment can be

flowcharted uaing only three control structures (Figure 1) [Reference 3]. b
Of course, the feet that & program fan be so comnstructed is in no way a
valid remssgon that & program should be so consiructed. The erguments of

Dijkstre and others have been generally accepted as valid arguments that 1
coding should be restricted to a limited number of control structures, but i
the number and composition of such a set are subjects upon which there ot

is virtually no agreement,

The main problem stems from the fact that neither the IF-THEH-ELSE nor the i
DO-WHILE constructs are sufficiently general to satisfy & large number of
programmers who are required to write "real world" programs, The IF-THEN- T3
ELSE is not & general decision construct since it allows a choice between ;
only two alternatives, The "case" construct (Figure 2) is a more general

decision construct and the other construct shown in the figure is still a
more general, In a similar manner, the DO-WHILE is not a general loop i
construct primarily becsuse only a single exit from the loop is allowed, =7

A more general loop construct is illustrated in Figure 3.

A second practicsl objJection to the three control structure limitation &4
is the desired capability to exit from deeply nested code. There are

two types of desired capability slong these lines which are reslly quite o
diffevent, The first is an immediste exit to a specified locstlon in fﬁ
another subroutine. The first capability is easily mechenized with a
GOTO statement wherees the second is a much more difficult capability to ;
implement. o

Most major lenguages Implement a return to the lnvoking subroutine {proce-

dure) upen conclusion of the invoked subroutine {procedure) and no signi-. 01
ficant objection has arisen to ineluding this construet within the realm i
D-6 i

di

FR

e

of "structured programming"”, Many languages (e.w., FORTRAN) alsc implement
a return to the invoking subroutine from an interior point of the invoked
subroutine. Objections to this construct are almost as common as the
objections to the "GOTO"., Since no major langusge includes a more general
capability along these lines, the need for it is hard to justify. Some
limited capabllity along these general lines seems reasongble and is often
cited as justification for retaining use of the "GOTO" and the "Return".

In theory, code can be structured in any programming language. The

ease with which it can be performed, however, varies greatly from
language to langus.: In agsembly language, it is necessary to simulate
the basic control structures., If & macro facllity is available, this
can be done guite nicely by providing standard macros which mechanize
the IF-THEN~ELSE aud the DO-WHILE constructs,

Several higher level languuges have sufficient control structures to
structure coding without modifying the language in any way. (PL/I, ALGOL

. and COBOL are examples). BEven these languages, however, suffer from a

lack of generality of the constructs available snd/or a proliferation of
optional methods of writing what is in essence the same construct. The
FORTRAN language lacks an IF-TFRN.ELSE construct sc to structure code

in FORTRAN one must either ccastruct an I¥.THEN-ELSE type congtruet from
more primitive operations (i.c., t'.e FORTRAN IF, CONTINUE and GOTO
statements) or use some sort of ORTRAN language extension. A number of
such FORTRAN language extensions have been proposed and several are
operational. In these language extensions to "permit struetured programming
in FOR " & proliferation of control struct : has occurred. Figure b
presents a representative cross section of coni.os structures whieh have
heen proposed as extensions to FORTRAN,

Included is a flowchart of the construect, & typical "structured coding"
including indentation of the code for clarity and the construet as it

might be mechanized in pure FORTRAW. Table 1 presents a summary of several
existing systems which implement extensions to the FORTRAN language.

Pable 2 lists several characteristies which would be desirable features of such
& systen,

The control structures gilven in Figure b fall into 4 categories: decision
structures, single exit loops, two exit loops and multi-exit loops.

The inciusion of two exit and multi-exit loops probably requires some jusii-
fication. A two exit loop is a desirable solution to a very common programe-
ming problem; i.e., the processing loop in which one set of computations is
to be performed if e certain operation is successful and an entirely
different set of computations is to be performed if the operstion is unsuecesse
ful, Examples of this would be an iteration which either converged or

did not and & seerch which either turned up a match or 4id not. Situations
of this type can be handled by single exit loops; however, the coding is
often awkward, Similar situations exist for which multi-exit loops are
useful, These situations are not nearly so common. The primary justifi-
cabion for the mulii-exit loop is probebly that it presents no more diffi-
culty than the two exit loop. If one accepis two exit loops as & valid
control structure for producing structured code, it is difficult to conceive

D-7

B e e et

Frmaenin
PR

fpniroress §
e

any reason for excluding the multi-exit loop, Discussions of multi-exit
loop control structures are presented in References 6 and T. T

The number of control structures in each category and the diverse ways in
which each control structure mey be coded give scme indication of the
problems involved in standardizing the control structures for structured [y

coding, Some of the problems are (1) the concept of a block structure v
(2) how to express the ganeral decision control structure {Figure h,#hi (3) how to

express the simple loop structure, and (L) what is the role of index [§
variables, ig

The imposltion of a block structure is undoubtedly motivated by the modern
trend to block structured lepgnages. The reasons for this are rather
subtle and have to do with the efficient mechanization of certain advanced
festures {(e.g., recursive procedures and advanced dats structures such as
variable length strings, lists and stacks). The block structure is generally
considered to be more desirsble than the simpler subroutlne structure of
FORTRAN for the mechsnization of such features (The FORTRAN language |
does not include such features so the issue reslly never arises)., It :
remaine to be seen whether there is a net advantage in imposing some form of {
block structure on the FORTRAN language. There are, however, several !
1
3

-

Ty,

fa
&

grsaciy

{
L

AT

systems which include this eapability in some form.

-~

L.

The fourth control structure in Figure 4 is a very general decision control
gtructure thet appesrs in many structured coding systems., The literature,
however, includes at least three different ways of viewing this construct

(see the figure) whick are suprisingly different. The first viewpoint

imnoges a block struchure such that the code for each alternative is contained
within a separate block, The second viewpoint considers the construet to

be an extension of the TF-THEN-ELSE statement. The addition of an ORIF or
similar statement converts the IF-THEN-ELSE into a general decision structure.
The third viewpoint considers the construct as a generalization of the simple ==
CASE statement, The detalls of this generalization are discussed in the it
note appended to construct #3 of Figure h4. B

e g
arnd

L

ER |

Bmzme b

[

The single exit loop structure suffers from s proliferation of optional ‘
methods of writing code, There sre two main problems: (1) where to place L
the test for exit from the loop and (2) the role of index varisbles,

The DO-WHILE pleces the exit test at the beginning of the body of the loop

code, This is & more general construct than the DO~UNTIL (which places the EE
test st the end), since the hody of the loop can be bypassed (l.e., executed

zero times). The DO~UNTIL, however,often produces code which is easier

to understand., Yor example, the code DO LOOP UNTIL I=10 impacts the message ﬁﬁ
that the loop is to be executed tern times somewhat better than the code

DO LOOP WHILE I<ll, Because these loop constructs fix the point at which
the exit test is made, the loop control and termination test can be specified
through an index variable {e.g., the varieble I in the example code above),
This saves the programmer the trouble of writing the code for The loop
control paramebers and the termination test, More importantly, however,

this removes & possible source of coding error., These advantages must be
balanced sgainst the disadvantage of lack of generalilty and flexibility.
Construct #7 shows & more general loop in the sense that the exit test can

Eoed el e B

o
o
.o

be anywhere in the body of the loop, The price paid for this generality
is that the programmer must define his own loop control parameters and
inelude code for the termination test. This in turn introduces potential
sources of error,

Similar constructs 2re possible for multiwexit loops., TFor example, con~
structs #8 and #9 sre the two exit eguivelents of the DO~WHILE and the
DO=-UNTIL, Multi-exit loops, however, are sufficlently complicated that
the additional complexity introduced by requiring the programmer to code
loop control parameters and termination tests seems minor. The general
form of #10 would therefore seem more appropriste,

TABLE 1

SOME TbOLS FOR VSTRUCTURED PROGRAMMING IN FORTRAN"

Contreol Structures Index Other
Neme Organization {Figure 1) Variable Options Features Limitetions Status
IFTRAN General Research L, 5% Progremmer's Oper
1,6%% Responsibility
PREFOR IEM 1,5,6,7,8,9 Programmer's 3 oper
Resvonsibility ha,ld,be
MORTRAN Stanford Linear 1,5,6 Many forms of
Accelerator DO loop 8 Oper
Facility
"HRANSFOR | Boeing Computer
Services 1,2,3,4,5,6 ha bd Oper
o ooTR 1,2,4,5,6
& | STAPLE National Bureau b, T#
of Standards 1,5,6%# 4, b,ec,d
PSST McDonnell Douglas 4,7,10% Progremmer's
1,5,6,8,9,10%# Responsibility 1,2,5,6,7 Dev
#¥Directly Available Other Features
#¥Equivalent capability available) 1. Automatic listing indentation.
as a special case of a more gg 2, Preprocessor
general construct. 55 3. Compiler
5 ﬁ L, Block Structure
o a. BEGIN BLOCKS
c gg b. SELECT BLOCKS (similar to Case construet)
E & c. REPEAT™ BLOCKS (similar to DO loop)
E = d. EXIT BLOCK
& e. FXECUTE BLOCK (similar to Perform verb in COBOL)
5. TFree Form Input
— f. Accepts Pure FORTRAN .
7. Comments on exscutable statements
- o - 8. Source Macros .
(] Be £ 03 E0 i S g4 N S B B

TABLE 2 7
DESIRABLE CHARACTERISTICS OF STRUCTURED FROGRAMMING AIDS FOR FORTRAN

1. Easy to lesrn. A minimum number of additionel control structures. There seems

gl et ey BeEel

to be general agreement that at least two are required (e.g., an IP--THEN-ELSE

type construct and a loop structure which does not require statement numbers }.
o 2. Mechanized indentation of listings.

3. Free Form code input. In particular, should accept code in the indented form

{such as presented on the listing) but not require it.

T

F; 4, Wo change to the FORTRAN langusage - only additions. 1In particular, a pure FORTRAN
) program should pass through the preprocessor unchanged and execute properly.

h 5. Cepebility to include a comment on each statement for self-documentation purposes.

6. TFull user control of Listing Formet, delimiters, etc.

P |

N
oo

A——r—

3

e

i

-

3

ity

D-11

T

D.2.2 Program MﬂnaggmentAmechniques

D.2.2,1 Top Down Design Methodology

The basic idea of top down deaign was presented in Section 1,0, It was
pointed out that top down design showed great promise but alsc entailed
some risk gince signifiecant changes in management practice are required.
This section discusses several areas of regearch which are attempting to
develop guidelines and tools which may reduce the risk of implementing
such & menagement strategy.

The esgsence of top down programming is the division of a large program into

a number of smallzr sibprograms (these subprograms may be subroutines,
procedures, blocks, mgcros, ete., depending on the programming language belig
used). Dijkstra suggests that there are at least four ways of conceiving
subprograms.,

{1} Standard routines to be used as needed.
(2) Objects to be conceived by the user to reflect his analysis,
(3) A device for the reduction of program length,

(4) A means for rebuilding & given machire (computer) into a mo.
gultable one.

Herlan Mills discusses the distinction between (1) and {2) above [Reference 8].
"First, we meke a distinction between subprograms which are created for
structuring the system and subprograms which carry out common low level
processing funetions in many places of the system. The latter set of sub-
programs we isolate first, and append to the programming languasge itself,

just &s sine or exponentiel routines are regarded as part of FL/I or

FORTRAN. These subprograms sre documented snd considered as part of the
language deseripbion in which the programmers write the programming system".

Mills also discueses the importance of the subprogram as a means of reducing
program length. “Tmagine a one hundred page PL/I program written in "GO

TO" free code, Although it is highly structured, such & program is still
not very resdable, The extent of a major DO loop may be 50 to 60 pages,

or an IF-THEN-ELSE statement may take up 10 or 15 pages, There is simply
more than the eye can comfortably take in or the mind retain," Mill's
solution is to Impose a discipline on the top down process such that each
progran segoient is no larger than can be contained on & single page of
computer primtout.

Dijketre suggests that it is useful to view the subroutine as & means of
rebuilding a given machine (computer) into a more suiteble one., Starting

at the top with the mein program, Dijkstra chooses to view it as an entity in
itself independent of the lower level subprograms. He views the main
program as being executed by its own dedicated machine equipped with an
adequete instruction repertoire (i.e., each of the subprogram calls are
available on this hypothetical machine as primitive instructions). 1In

D-12

—

groim
[oe—-"

Rl B

actusl practice, of course, this machine will net exist (Dijkstra calls this
a virtual mechine), The remainder of the programming task Dijkstra sees
as programming the simulation of this "virtual" machine. The process

is continued in a top down manner resulting in & program arranged in
"1ayers" or "levels". Each program level is to be understood all by
itself, under the essumption of a suitable mechine to execute it, while
the function of each level is to simulate the mechine thet is assumed

to be avallable on the level immedistely above it,. "The fact that =
level contains "a bunch of programs" to be executed by some conceptual
mechine stresses the fact that the programs of this "buneh" are invited to
share the same primitives.,"

Dijkstra further elsborated on this procesg in Reference 9 when he presented
a concrete exsmple of his concept of "design by levels of abstraction".

The example was & multiprogramming operating system for a university
computer center (the "THE Operating System",) Di)kstra's team conceived
‘the system design as existing in several levels esch of which could be
understood by itself as an entity. The lower level mechanized some very
detailed, difficult and mechine dependent tasks (e.g., the real time

clock and the interrupt structure). Above this level, however, these
difficult concepts had in essence disappesred,. The very primitive operations
involved had been replaced by primitives on a "higher level of abstraction",
In this manner, the designers of the higher levels were freed from concern
with lower level details which were irrelevant to the higher level designs.

Barbara Liskow presented a design methodology which is based on structured
programming in genersl and on "levels of abstraction” in particular
[Reference 10]. An ebstraction is considered as expressing "what is

being done without speecifying how it is dome." A level is defined not

only by the abstraction which it supports but also by the rescurces it

uses to realize the abstraction, Each level has resources (e.g., I/0
devices, data) which it owns exclusively and which other levels are not
permitted to accegs., Each level is composed of a group of related functions
of which there are two kinds; internal and external. Internal functions are
used only within the level and cannot be referenced from other levels

of abstraction, External functions may be referenced (celled) only by
higher level functilons, Lower levels are not aware of the existence of
higher levels and therefore may not refer to them in any way.

Thus, the programmer is encouraged %o define subprograms for & variety
of purpogses (1) to "structure" his program, (2) o enhance clarity by
reducing the length of other subprograms, (3) to rebuild his programming
language into a language more suitable to his immediate needs and (L) to
mechanize the internal and external functionsg of “levels of abstrection”.
This process is more art than science and as Mills puts it, "“the
programmer must use & sense of proportion and importance in identifying
what is forest and what are the trees." Liskow presents & number of
guidelines which may be useful in placing this rather nebulous process
on a firmer basis [Reference 10],

D-13

{

C.A.,R, Hoare presents a theory of date structuring on the premise That

"I+ is necessary to introduce some convenient notation for expressing the
abstractions involved" [Reference 1]. An slgorithmic language is proposed
whose purpoge is to assist in the design, development and documentation
of & program. This lanpuage is distinet from the programming language
becauge "Some of the operabions, although very helpful in the design of
abstract programs masy be very inefficient when mechenized direetly on
todey's computers, An essential part of the program design process is

to eliminate such operations in the transition from an shstract to a
concrete program, The challenge of designing computers which can efficiently
implement ever larger subsehis of such a language mey of course, be taken
up in the future”,

The idea of a design lanpusage seperste and distinet from a progremming
language is certainly not new, For exesmple, the language of ordinary
algebra served this purpose for the FORTRAN programming language. The
important point here 1s that an abstrect problem solution should be developed
using powerful datae structures and operators pertinent to the problem

being solved, The mind should not be constrained by the limitations {often
severe) of the programming language being used. After the very difficult
problems of what a program segment is to accomplish have been solved, most
good programmers are quite adept at contriving an efficient method of
implementation,

D,2,2.2 Chief Programmer Teams

The IBM Chief Progrommer Team experiment is documented in Referemces 11 and
12 and the material In this section relies heavily on these references.

The experiment was the outgrowth of the work of Harlan Mills who has

studied the conventional large, undifferentisted and relatively inexperienced
team approach to programming projects and suggested that it might be
replaced by a smaller, functionally specialized, and highly skilled team
[Reference 13], The propossd organization is compared with & surgical team
in which the chief programmer is anslogous to the chief surgeon and is
supported by a team of specialists (as in a surgical team) whose members
assist the chief rather than write parts of the program independently.

Permanent members of s Chief Programmer Team are the Chief Programmer, the
Beckup Programmer and a Programming Librarian. The Chief Programmer is a
senior level programmer who is responsible for the detailed development

of & progremming system, The Baclup Programmer is also a senior level
programmer and works clogs-ly with the Chief Progrsmmer to design and produce
the system's key elements. The Backup Programmer has prime responsibility
for system testing and also assumes the responsibility of the Chief
Programmer should he leave the project. The Programming Librarian is re-
sponsible for maintenance snd operation of the Program Production Library
used to keep all system programs and data both internally in machine
readable form and externally in well organized, highly readable form.

The legal, finencial, administrative and reporting requirements are
coordinated by & Project Manager assigned to the team. Mso, a System
Analyst is assigned to the team to assist as needed, Thereafter, the
team is asugmented by additional progrsmmers who produce the remainder of
the code under the close supervision of the Chief and Backup Progremmer.

D-14

L R

(ST

LRy

PRI,

’ -
[

P

ey
!II:M-»J

=3

PR

1

B

[

4

Taaer e

=i

£

B}

T |
LS

=

. o
-

e |

L&
b

:

==
[

P,
[

H—

b

f
| S

—

)

Ll

8|

e

E:
J

o

oy

=5

The Chief Programmer Team is intended to solve two problers which are felt
to be responsible for the relatively low productivity of current programming

projects.

(1)

(2)

Production projects are usually staffed by relatively
inexperienced progremmers st the working level and by
more experienced progremmers at the higher management
levels. This results in several problems. First,

the inexperience at the working level results in less

than optimal design code and test., Second, the experienced
programmers who have the insight and knowledge to correct
this situation are in higher management positions where
the administrative workload prevents them from effectively
or economically performing any of the detailed work of
programming.

The Chief Programmer Team sttempts to reintroduce the
highly skilled programmer into the detailed production
process but free him from both the details of programming
trivie and the administrative workload.

In addition to normsl programming activities such as
design code and test, a programmer normally spends a great
deal of time with what are essentially purely clerical
duties, For example, he must maintain his decks and
listings, punch his own corrections, setup his runs and
write status reports.

The Chief Programmer Team attempts to free the programmer
from all these clericel duties through the facilitles of
the Program Broduction Library and the Programming
Librarian. The Program Production Librery includes hoth
machine and office procedures for performing the clerical
duties of a programming project,

The Program Produetion Library (PPL) comprises four perts;
‘the machine-readable internal library is a group of sub-—
libraries, each of vhich contain current project programming
data, These data may be source code, relocatable modules,
linkage-editing statements, object modules, job control
statements, or test information, The status of the

internal library is reflected in the human-readable exbternal
library binders that contain current listings of all library
members and archives consisting of recently superseded
listings. The machine procedures consist of standard computer
steps for such procedures as the followirg:

Updating libraries

Retrieving modules for compilations and storing results
Linkege editing of Jjobs anrd test runs

Backing up and restoring libraries

Producing library status listings

% ¥ ¥ % ¥

D-15

0ffice procedures are clerical rules used by librarians to
perforn the following duties:

Accepting directions merked in the external library
Using machine procedures

Filing updated gtatus listings in the externsl librery
Filing and replacing pages in the archives

- S

A progpammer using the PPL wcrks only with the externsl library.
Using standard comventions, he enters directly into the external
library binders the changes to be made or work %o be done, He
then gives these changes to the librarian. Labter he receives the
updated external library binders, which reflect the new status

of the internsl library. The external library is always current
and is organized to facilitate use by programmers, A chronological
history of recent runs contsined in the archive binders is retained
to asssist in disaster rscovery.

The programmers are thus freed from handling decks, Ffiling listings,
keypunching, and spending unnecessary time in the mochine area,

By combining standard machine procedures, standard office
procedures, and project libraries, the trained librarisns provide
8 versatile programming service thet allows & team to make more
effective use of its time,

The PPL also assists in improving productivity and quality by
providing visibility of the work, thereby allowing team members
to be awsre of the status of modules that they are integrating.
Such visibility also permits members to be certein of interface
requiremenis, The internal working language of a team are the
code and statements iu the libraries, rather than a separate
set of documents that lag behind actual status. Frogremmers
read each other's code in order to communicate definitioms,
interfaces, and details of operation. Only when & question
ariges that cannot be resolved by reading code is it necessary
to consult another programmer directly.

IBM selected the New York Times Information Bank as a project suitable for
testing the validity of the Chief Programmer Team principles. This is an
on-line system intended to replace the clipping file (morgue) used by the
Times to provide background information for articles being written,

The user views article abstracts selected by index terms and documents
parameters (e.g., date, section of the paper) until he hes identified those
articles most relevant to his immediate needs, The user mzy then view the
entire text of the articles selected or request thet s hard copy be made,
The heart of the system is the conversational subsystem and its asgociated
date base consisting of indexing data, abstracts and complete articles. The
full text of all articles is stored on microfiche end made available to the
system through four TV cameras contained in a microfiche retrieval device
called the RIBAR that was developed by FOTO-MEM, The rest of the data

base is stored on disk. Obther mejor system components are the Data lntry kdit
Subsystem, the File Maintenance Subsystem and five supporting subsystems.

D-16

s LI, TN D R T

S

I

oo

L

e ed

d

[SR

i wad

I

g

Table 3 summarlizes the software development tasks performed by the various
members of the Chief Programmer Team assigned to the project. The numbers
indicate the epproximate sequence in which these tasks were performed by the
various persgonnel, The order in which the tasks were performed was influenced
by the desire to achieve a "running system" at an early date and slso to achieve
sufficient capability to begin building files at an emrly date, Otherwise, &
top down approach was generally employed, As cen be seen, the integration and
test functions were integral parts of the development process.

Table 4 shows the staffing levels during the project. It is interesting

to note the large zmount of time charged by the senior personnel relative

to the more junior team members (one of the goals of the Chief Programmer

Team approach), This is certainly not typiecal of software development

projects in general but some question remaing as to whether +this is
characteristic of the Chief Programmer Team approach or whether it is due to
some special characteristies of the particular projeect. Also of interest is
the relmtively short time spent on the project hy most of the support personnel.
This would seem' to indicate that a highly flexible staffing policy may be
necessary to make the Chief Programmer Teem funcitlon well., Once again,
menagenent would seem to be the determining factor in the success or failure of
the Chief Programmer Team (to a much greater extent than in the traditional
software development process},

IBM has supplied several measures of programmer productivity and system
quelity achieved., Teble 5 summarizes the results of acceptance testing
and esrly operational experience with regard to errors encountered.

Tahle 6 summarizes the programmer productivity echieved in terms of source
lines of code produced per programmer day.

TABLE 3
IBM CHIEF PROGRAMMER TEAM EXPERIMENT-TASKS PERFORMED

TASKS IN APPROXTMATE CHRONCLOGICAL SEQUENCE

Prepare Detailed Functional Specifications

Develop Progrem Production Library (PPL) Procedures

Define System Externals

(**essages, Communications Log, Statisties Reports)

Design Various Subsystems and their Interfaces

Design File Maintenance Subsystem

E Prepare Test Plan for Pile Maintenance Subsystem

(e

Design Freliminary On-Line System

(Some Functions of Data Entry Subsystem and -
Conversational Subsystem)

Develop Syntax Directed Editor for Data Entry Subsystem

Program (1) Authorization File Subsystem
(2) Message File Subsystem
(3) Log/Statistics File Processing Subsystem
(4) Deferred Print Subsystem (Hsrd Copy)

Propram Statistics Reporting Subsystem

Design and Program Conversational Subsystem

Program Terminal Handling Package

Prepare Test Plans Tor Functional and Performance Testing

NOTE: Bumbers indicate the approximate sequence in which tasks
B v ,,u»jr'e 5:_-. jom Iy 4 M J‘V’ar.” ST DETINAN N Py RSN

L

e

g o *-‘w:u1

o -
H 1

I e s N S R Sttt SN UNNN Sy SURUIM S G S Sty R S Eed Eoeed ey gy B
TABLE b
IBM CHIEF PROGRAMMER TEAM EXPERIMENT
Staff Time ('fan Months) |
|
I
|
Work Tvme %
|
Chief Backup Analyst 1 2 3 L 5 Technician Manager Sec'y Total :
Reauirements 2.5 1.0 B.0 0.5 - - - - - - - 12.0
Analysis i
System L.o k.0 4.5 1.0. =~ - - - - - - 13.5
Design
. Unit design, 12.0 1.0 10.0 13.0 4.5 2.8 3.7 L.5 - - - 64.5
programming,
debugging and
¥ testing
}_l
\O
Documentation 2.0 2,0 4,5 1.5 0.2 0.2 0.3 0.3 - - - 11.0
Secretariel Co- - - - - - - - - - 7.0 T.0
= {
Librarian - - - - - - - - 5.5 - 2.0 T.5
YManager 3.5 2.0 ~ - - - - - - 11.0 - 16.5
TOTAL 2L.0 23.0 27.0 16,0 L, 7 3.0 h,0 4.8 5.5 11.0 8.0 132.0

£ el imive S e g Ak s i Ak

i
i
1
'

TABLE 5

"IBM CHIEF PROGRAMMER TEAM EXPERIMENT
ERRORS IDENTIFIED DURING ACCEPTANCE TESTING

FError Type#

FUNCTION"

SUBSYSTEM
File Maintenance m~}2,029 q_ ‘_0 0 0
Conversational 38,990 9 8 3 20
Data Entry Edit 13,h21 0 0 1
Other 18,884 0 0 0
TOTAL 83,324 9 8 L 21
FRRORS IDENTIFILD DURING QPERATION
S}
S S

SUBSYSTEM &
File Maintenance _. 2
Conversational 1 ———
Data Entry Edit L 16
Other - 4]
TOTAL 25
"INCORRECT FUNCTION" - refers to code which operated improperly.

"OMITTED FUNCTION" - refers to specifications not implemented.

"MISINTFRPRETED - refers to code which did not perform precisely the

functions specified.

D-20

PR
[

TABLE 6
IBM CHIEF PROGRAMMER TEAM EXPERIMENT - PROGRAMMER PRODUCTIVITY

i

g? Source lines per
- Organization programmer day
gé Unit design, programming, 65

debugging, and testing

i All professional Wt
B With librarian support 43
i

B Entire team 35

¥The first rowv includes work done on unit design, coding, debugging, and

acceptance testing. The second row summarizes professional work, vwhich
includes system design and documentetion, but not librerian support. The
third row includes all programming and librarian support. The last row
presents the productivity of the entire team on the completed system

(exeluding requirements analysis),

g
Erecta

1

[
| .

" -21
i | P

D.2.2.2 Computer Program Management Technigue (CPMT)

CPMT is a systematic discipline for managing the development, verification
and documentation of scientific and engineering computer programs. It
incorporgtes many of the design, coding and testing concepts which have

been developed through structured programming resesrch. It also incorporates
mach of the Chief Programmer Team management philosophy although specific
concepts have been modified scmewhalt to make them more compatible with the
aerospace sclentific-engineering environment.

CPMT defines personnel assignments in terms of functions. Thus, for a
small program, several functions may be performed by the same person

whereas for large programs a single function mey require several people,
The following functions are identified:

Requestor - defines the program requirement in order to solve some
specific problem.

Study Mansger ~ supervises the progrsm development and ensures
the implementation of CPMT procedures,

Principal Investigator - responsible for the program nmeeting the
tiechnical requirements,

Chief Programmer - responsible for the structural design of the
program and the coding of high level or control components.

Engineer/Programmer - responsible for coding, documentsbion and
testing.

Librarian -~ mainteins the progrem workbook, coordinates sll
documentation and compiles project statisties (i.e., actual
versus projected results),

CPMT identifies five phases of program development:

(1) Planning - A study plen is prepared defining the proposed method
of solution, potential problems, and schedule and cost estimates.

(2) Design - The structural design of the program is developed,
Test plans and acceptance criteria are also defined during this
phase,

(3) Development - The coding, subprograsm documentation and unit
testing of the program is performed in this phase,

(4) Program Test and Verificetion - The complete program is tested
during the phase and final documentgtion is prepared.

(5) Release - A Program Manual and a CPMT Study Report are released.
A document specifying baseline test cases is prepared, A
configuration control menesger for the program is assigned and
the program is released to the customer,

D-22

mm
L

e

!
1
k
#
J

BT e nd

[it e 5

| - - | TR SET | Wzt fmrsned

e

i

| RS

b b L

Ve v el e T AR

TR R S TR E T RS A R R e ST TR SR A RO PR e T T LA M T P R AT I TR AR R e e e e 2T A e e e o s e

CPMT documentation is designed for ease of preparation., Skeleton documents
are prepered as early as practical and details are added when they become
available. Freparation of finel reports is intended to be meinly an exercise
of putting the finishing touches on working documentation which already
exists, The clericel aspects of documentation are handled by the librarian

80 the programmer 1is freed to a large extent from document editing end
rewrites,

Mensgement reviews are held throughout the program development process with
formel reviews scheduled at the conclusion of each of the five phases
discussed above, Figure 5 indicates the relationships between personnel
funetions, program phases, formal reviews and the more important documenta-
tion requirements. CPMT procedures are deseribed in detall in a proprietary
document of MeDonnell Douglas Corporation [Reference 1k].

D-23

e-a

(a}

SEQUENCE

{b) (e}

IF-THEN-ELSE DO-WEILE

O

O O

FIGURE 1

THREE BASIC CONTROL STRUCTURES

' 1 £ 7 [] v 4 t t g e oy g o & ey £y P
PR [[Lt s PR [y] farr T e nm] ‘q":‘fw—} Lﬁw o St [PPSR

e v+ e e e+ < 2 R A b bt . kit b kb ook 8 e b 1 b s o kbl s e T

e e e e ————— s e

Nl e S [SRR [SR—— Lot [P

'THEN CODE

ELSE CODE

O

{a) IF-THEN-ELSE

(c) General CASE
Statenent

geg-a

P_-CODE P _-CODE sene

|-

St [N [brsrren A ey L

1

n. ~CODE

n,~-CODE eaws | n ~CODE

P -CODE
n

il

FIGURE 2

{(b) Simple CASE Statement

Exemple: P, is the statement "X=10"

P2 is the statement " X greater
than 10 and ¥ less than 100 "

Pn is the statement " X = 1000 %

IF-THEN~ELSE AND MORE GENERAL DECISION CONSTRUCTS

S

o

R]

i
RPN I

g

A CODE
nn

hiow e

B CODE B_ CODE
n

b, CODE

2 i

FIGURE 3

. Betobucsm gy

L2-a

A CODE

e 9 0@ nk CODL

B CODE CODE CODE
) nl n2 D
O
IF (P) IF {.NOT.{P)) GO TO & .
THEN A CODE gigg OF I
A CODE GO TO 8 n
ELSE a CONTINUE n, CODE
B CODE B CODE CASE n
g CONTINUE 2 %,
n, CODE
P
CASE nk ue
nk CODE
Gyl
TIGURE 4

IF (I.NE.n1) GO TO o
n, CODE

GO TO 8

CONTINUE

IF (I.NE.ne) GO T0 a
n, CODE

GO TO &

CONTINUE

1

2

CONTINUE
IF (I.NE.nk) GO TO 8
n, CODE
CONTINUE

SOME REPRESZNTATIVE CONSTRUCTS FOR STRUCTURED PROGRAMMING IN FORTRAN

CASE OF X IF (.NOT.(P:L)) GO TO ay

% g CASE (Pl} A, CODE
= A_ CODE '
§E #3 1 . GO TO .
=] g CABE (Pz) @, CONTINUE
o A, CODE IF (.NOT.(P,)} GO 70 «
= e~ 2 2 2
? % : A, CODE
el .
E 5 CASE (pn) GO TO o
. A_ CODE o, CONTINUE
ALY :
/ o, CONTINUE
- iF (.NOT.(PH)) GO TO &
4, CODE A, CODE cew A CODE A CODE

o CONTINUE

ge-a

Note: The CASE statement involves the choice of & particular path based on the value of a logical expression (P),

the simplest form of whiech is:
X R Y
where X and Y are variables (or expressions) and R is a relation.

In the simplest form of CASE statement (#2) the first two of these quantities are assumed to be the same for all

"_in

paths (e.g., X is the varisble I shown in the Figure, R is the reletion and 2 value of the variaeble Y is associated
with each path). A more general form of the CASE statement (#3) allows both R and Y (but not X) to vary fror path to
path, (E.g., this form allows taking the first path if X is less than £, the second path if X is greater than 10 and
the third path if ¥ is equal to 7.) The most general form of the CASL statement (#4) allows all three guantities

(X, R and ¥) to vary from path te vath,

T A T T P . S

é62-a

B CODE

SELECT BLOCK

(,)

Al CODE

o)
A, CODE

(»

neaa

()
n
A CODE
n
(.HOT.(Pn))

B CODE
ENDBIOCK

IF (Pl)

THEN
Al CODE

ORIF (P2)

THEN
Aa CODE

Oenes

RIF (Pn)

THEN
A CODE
n
ELSE
B CODE
EWDIF

SELECT ONE
CASE (Pl)
hnd
Al CODE
CASE (P2)

A2 CODE

CASE (Pn)
A_ CODE
n

CASE (.NOT.(Pn))

B CODE

cont'd)

kot

IF'(.NOT.(Pl))
A, CODE
GO TO B
CONTINUE

IF (.NOT.(PE)) Go

A2 CODE

GO TO B
CONTINUE

CONTINUE

Ir (.NOT.(Pn)) eo

A_ CODE
n

GO TO B
CONTINUE
B CODE
CORTINUE

g - o e SEART Tt I (e = = . 4§ - fe e ke & 4 Gamd 4t o oen

3

|

3

|
. |
DOWHILE (P) o CONTINUE f
- A CODE IF (.NOT.{(P)) GO TO B :
ENDDO A CODE .
GO TO o
g CONTINUE
#6 O
A CODE DO UNTIL (P) « CONTINUE
¥ A CODE A CODE |
b ENDDO IF (.NOT.{P)) GO TO «
CONTINUE ;
-
#7
A CODE REPEAT BLOCK DOWHILE (P) BEGINLOOP a CONTINUE
A CODE B CODE A CODE A CODE
EXIT BLOCK (P) or BEGINWHILE or EXIT IF (P) IF {.NOT.(P)) GO TO 8 :
B CODE A CODE B CODE B CODE
ENDEBLOCK LNDDO ENDLOOP 60 TO o
B CONTINUE

FIGURE & (cont'a)

]
|
i
/
?

st mad

el ECTY OETT) OO T T oY T oo gy o/ o om0 B Er-d fmemcg
#8 (? #9 Q
F A. CODE
P 1
¥ F
P
B, CODE
B, CODE
o S J
[¥1)
i 5
STARTSEARCH @ CONTINUE
VHILE (P) Ir (LNOT. (P)) GO 10 oy STARTSEARCH @ CONTINUE
A, CODE A. CODE UNTIL (P} A. CODE
L 1 A CODE 1
EXITIF {Q) IF {qQ) G0 TO oy 1 IF {.NOT.(P)) GO TO oy
B, CODE A, CODE ExiTIgoég) A, CODE
ORELSgODE GO TO o OREiSE IF (.NOT.(Q)) GO TO «
Ay o, CONTINUE & CODE B, CODE
FNDLOOP B, CODE 2
_ 2) GO TO B
B_ CODE ENDLOOP
o GO TO 8 o oE o, CONTINUE
ENDSEARCH @, CONTINUE » COD B, CODE
B, CODE ENDSEARCH 8 CONTINUE
8 CONTINUE

FIGURE 4 { cont'd)

ct~a

BEGINLOOP
Al CODE

EXITIF (Q)
THEN

Bl CODE

ENDIFEXIT

A2 CODE

EXITIF (Q)
THEN

52 CODE

ENDIFEXIT

AB CODE

ENDLOOP

CONTINUE

Al CODE

IF {.NOT.{P}) GO TO «
Bl CCDE
GO 70 B
CONTINUE

A2 CCDE

Ir (.N0T.(Q)) GO TO «
B, CODE

GO TO 5§

CONTINUE

1

2

A_ CODE

3
GO T0 a
CONTINUE

A
A. CODE B, CODE ' B, CODE

FIGURE L4 (cont'd)

#11

£E~a

4A_ CODE

Joud

Al CODE

n

!

vt e

A, CODE

]

A CODE
n

B CODE
n

BEGINLOOP

AO CODE

EXITIF (Pl)

THEN
El CCDE

ENDIFEXIT

Al CODE

EXITIF (Pe)

THEN

32 CODE

ENDIFEXIT
A, CODE

.wee)

EXITIF (P)
n

THEN
Bn CODE

ENDIFEXIT
An CODE

ENDLOOP

B

ny

CODE B

oD

FIGURE I (cont'd)

a CONTILUE

A, CODE

IF (.NOT.(Pl)) GO TO «
o

Bl ODE

GO TC B

CONTINUE

Al CODE

iF (.NOT.(PE)} GO TO o
B, CODE

GO TO B

CONTINUE

Fl
A2 CODE

1

2

IF (.NOT.{P_)) GO TO &
n n

B CODE

n

GO TO B

CORTINUE
An CODE

GO TO a
CORTINUE

TRAM
« | R: REQUESTER
REQUEST 7 | S: STUDY MANAGER
P: PRIN. INVESTIGATOR
C: CHIEF PROGRAMMER
E/P: ENG / PROGRAMMER
L: LIBRARIAN
A, —>| PLAWING |—)| DESIGN |~—)| DEVELOPEMENT | — PROGRR TEST
I LOPEME! %
(PHASE) ‘ ' VERIFICATION
¥
(73]
=
REVIEW COMPLETE COMPLETE P.C.E/ COMPLETE
ATTENDEES TEAM TEAM »CL,E/P,L TEAM
STUDY . STUDY
PLAT % (REVISED) —+> (REVISED) —% REPORT
PROGRAM (REVISED & _> (REVISED & % PROGRAM
TP
oumeur { ek 7 mxeaoed) EXPANDED) MANUAL
CODE —} CODE
FIGURE 5

CPMT PROCEDURE

__.é

___>

RELEASE

R,S,P,C

(RELEASED)

(RELEASED)

{RELEASED) -

FE,

i

Ty Bty
F oo PR

fiesy B

—

24

3.

9.

10.

1i,

iz,

13.

ik,

13,

REFERENCES
0. J. Dahl, E. W. Dijkstra, C.A,R, Hoare. Structured Programming (Book)
Acadenic Press 1972,

C.AR, Hoare. Proof of a Program: FIND, Comm. ACM, January 1971,
PP 39-145-

D. Bohm, G. Jacopini, ¥low Diagrams, Turing Machines and Langusges
with Only Two Formation Rules, Comm, ACM, May 1966, pp. 366-371.

E, W, Dijkstra. GOTO Statement Considered Harmful, Letter to the Editor,
Comm. ACM March 1968, pp. 1hT7-1L8,

Niklaus Wirth., Systematic Programming An Introduction (Beok) Prentice
Hell, 1973.

R. Evans. Multiple Exits from a Loop Using Neither GOTO nor Labels,
Short Communicekions -~ Comm, ACM Nov, 19Tk, page 650,

G. Bachmenn. Multiple Exits from a Loop Without the GOT0, Comm ACHM,
July 1973, pages Lu3~bkhk,

H, Mills, Structured Programming. IBM Federsl Systems Division
dated Qetober 1970,

E, W. Dijkstra. The Structure of the THE Multiprogramming System,

B, Liskow, A Design Methodology for Reliable Software Systenms.
Proe. FJCC 1972 peges 191199,

F, T, Baker, Chief Programmer Tesms., IBM Systems Journal, Vol. 11,
No, 1, 1972,

F, T, Baker. System GQuality Through Structured Programming,
Proc. FJCC (1972) pp. 339-343,

H. Mills, Chief Programmer Teems: Principles and Procedures.
IBY Federal System Division No, FSCT1-5108, June 1971.

Computer Program Manegement Technique (CPMT), McDonnell Douglas
Astronautics Compsny - West - Manual #T8.

P, Naur., Proof of Algorithms By Ceneral Snapshots. BIT 6 1966,
po. 310-316,

D-35 '

S e L

16, R, W, Floyd. Assigning Meanings to Programs, American Mathematical %
Society —- Mathemstical Aspects of Computer Seience, Vol. 19, 1967, 77]
pp. 19-32. g
1T. E. W. Dijkstra. A Constructive Approach to the Problem of Program o |
Correctness., BIT Vol. 8, No. 3, 1968, pp. 17h-186. t i

H
i
13
i
i

18. ¢.A.R., Hoare. An Axicmatic Basis for Computer Programming,
Comm, ACM, October 1969, pp. 576-583,

19. %. Manna, Properties of Programs and the First Order Predicate
Caleulus, J.ACM, April 1969, pp. 2hk-255,

20, B. Eispas, K. N, Levitt, R, J. Waldinger, A. VWeksman,

An Assessment of Techniques for Proving Programs Correct, ACHM Computing
Surveys, June 1972, pp. 97-14T7.

21, H. J. Nilsscon, Problem Solving Methods in Artificial Intelligence,
(Book) MeGraw-Hill, 1971.

S

£
=

1

o
T Mg

i

Bt

[-TONE

-7

[CEE R A I

foned

.]
e

Lot e

7
&

L

o

EE

[Sm——
. i

saars 3

P

Prasee,
O

=] B

Appendix E
PROVING PROGRAMS CORRECT

E.1 INTRODUCTION

The first serious notion that programs could and should be proved correct is
probably the pioneering work of Peter Naur (Reference 1} and Robert Floyd
(Reference 2). The methods propounded were quite similar and were developed
independently. Naur's method was based on what he called "general snapshots”
and was a rather informal (though rigorous) conception of a proof. Floyd's
approach was somewhat more formal and several concepts fundamental to the
modern formal proof methods are present in his paper. In particular 1) the
use of formal mathematical legic, 2) the idea of an 'abstract program' and

3) the idea of an "interpretation" of an sYstract program.

Program proving over the years has grown in two different directions which can
probably be best deseribed as formal and informal. Informal program proving

is most often encountered in the literature generally associated with structured
programming whereas formal program proving is usually encowntered in the litera-
ture on artificial intelligence. The informal methods have the disadvantage
that there are few underlying general principles and each problem presents a
separgte challenge. The advantage of the informal method is that the humen
"prover" may use any notation which fits the current problem and use any method
of proof suitable to the particuler problem at hand. The formal methods on the
cother hand have developed to the point where there is a guite solid methe-
matical basis. There are, however, two related and rather serious problems

with the formal methods at the present time.

The formal methods require that either a simple langusge (e.g., the first order
predicate calenlus)} or a complex language (e.s., second or higher order mathe-
matical logic) be used for the mechanics of the proof. If the simple language
is chosen there are rezsonably efficient proof methods available but one en~
counters extreme difficulty in Pformulating "real" problems because certain basiec
mathematical concepts (most notably the equality relation) are not eesily ex-—
pressed in this language. If the complex language is chosen, the formulation
problen is eased considerably but there are as yet no really satisfactory proof
methods available. Before a really practical application of the formal proof
methods can be made it is probable that greatly improved proof methods for
higher order logics will be required.

E.2 INFORMAL PROOF METHODS

The litergbure on informal proofs of programs consists almost entirely of sample
demonstrations for perticular algorithms. At least two different approaches

are identifiable: the constructive approach and the verification approach.

In the constructive approach (Dijkstra, Reference 3) an algorithm proof is
developed in a top down manner from the algorithm gpecifiecstions. The steps of
the algorithm proof are then converted to executable code in what is normally

a relatively trivial exercise. The result is an algorithm which has een "proved
correct” and then converied to executable code. It is important to note that it
is the algorithm not the code that has been proved correct.

i

In the verifiecation approach {Floyd, Reference 2) the executsble code is
assumed to exist. The algorithm proof steps referred to sbove either exist or
must be generated., Figure E-1 illustrates the verification problem given the
code in flow chart form and the algorithm proof steps in the form of state-
ments in mathematical logic (propositions).

‘ STAUT)

———————— nEdtAI=1AS=0

i-1
~~~~~~~~ neJ*ANIEJTAISA+1IAS= 21
i=1

-1 n
=R EJ TN R+ IAS= F g, be, S =] g
el =1

t-1
_________ ncdJtAiedtAISAAS = T g
=t

e —— e nEJTAIESYAIZRAS = T g,

11
i-1
REJ AIGEJITAZSIi s+ TIAS= X g
=1

Figure BE-l. Flowchart Illustrating Floyd's Method of Program Verification

E-2

can

g



The code between propositions Floyd cslls "cormands." On the flowechart, these
commands are connected by "arrows" representing the possible passages of control
between the commands. FEach cormmand (except START and HALT) has st least one '
"entrance" arrow (a;) and at least one "exit" arrow {bj). A "proposition" is

b assoclated with each of these arrows. Thus each command hes one or more entrance
propositions (P;) and one or more exit propositions (Qy). Using this terminology
w2 Floyd defines 2 verification as "a proof that for every command ¢ of the flow-

‘ chart, if control should enter the command by an entrance (ai) with P; true, then
control must leave the commend, if at all, by an exit (bs) with Qj true." The
entrance and exit propositions Floyd calls the "verification conditions" for a
command. These verification conditions are identical to the "algorithm proof
steps" generated in the constructive approach. Thus "verification” bridges the
gep between an algorithm proof and a proof of its representation in executable

o code,
&
As the remder has probebly determined, proving a program correct requires two
e very difficult steps: 1) determining "verification conditions" which faithfully
gi represent the desired algorithm, and 2) performing the proof required by the

above definition of a verification. Unfortunately the literature offers little
guidance except by specific example. One exception to this is Homre's concept

of invariants (References % and 5) which appears to offer solid foundations in an
aren where few exist.

Fabutoatts |

|

Invariants

k-

Hoare (Reference 4) defines an invariant as "a formula of logic which is in-~
tended to remain true throughout the execution of e program segment" (even
though the values of any verlable appearing in the formula may be changed by
the execution). One reason that inveriants are important is because they provide
a very useful insight into how a loop performs & desired function. To be used
i in this manner, an iavariant is reauired whosze meaning is essentially a speeifi-
. cation of what the loop is intended to accomplish. Formulation of the specifica-
tions of & program segment {e.g., a loop) in inveriant form is a step which
sometimes requires great ingenuvity. The basic ides, however, can be i1llustrated
by the simple example shown in Figure E-2, The key step is the expression of
the program specifications in invariant form. In this simple example this is
accomplished by replacing the parameter N (which is important only to a final
1 result) by the paremeter J (which has significance for all intermediate results).
b-d It should be noted that upon termination J = ¥ and the two specifications are

the same, The invariant form however, is true throughout execution of the loop
; especially at the points labeled @D @ 3 =and ® in Figure E-2. The non-
| invariant form is necessarily true only at point @ .

3
o4

e

l E-3



Problem: Find the maximum value of an arrsy A of dimension N.

equal to this value.

Program Segment Specification:

For a1l T such that (1SI5W) B2A[I]
For at lemst one I such that (1SISN) B = A[T]

Program Segment Specification ITn Invarisnt Form:

For a1l I such thet (151=0)  _ . BoA[I]
For at least one I such that {(1-I-F) B = alr1l
For Loop Termination J =N

Program:

B+4[1]
J+ 1

Set B

J +«J+L
IF (B<A[J]) THEN
B +A[J]

Flgure BE-2, Program Specificstion With Invariants

E-b

]

L

Ty |

oo

!



.
PRV

Pe——
e

¥ <aacienad
FO |

i)

Once the inveriant for a loop has been determined, the formal proof of loop
correctiess is straightforwsrd. The idea is to prove that the invariant is
true upon exit from the loop (i.e., at point @ in Figure E-2). This is
done by two steps vhich are:

(1) Prove the invariant is true before the loop is entered
(i.e., at point (D in Figure E-2).

(2} (a) assume the exit condition is not satisfied (i.e., HN)
(b) assume the invariant is true at point (@

(e) mentally execute the body of the loop once, i.e.,
(7 +J3+1; TF (B<A[J]) THEW B +A[J])

(d) prove that the invariant remsins true.
{i.e., that it is true at (B )

The sbove two steps and the principle of mathemsticsal induction are sufficient
to prove the desired result - nemely that the invariant is true upon exit

from the loop. Loop termination is proved separately and will establish that
upon exit J=N which mskes the invarient form of program specification identical
to the originel program speclfication.

E.3 FORMAL PROGRAM PROVING
Formal program proving attempts to overcome z very seriocus drawback of the in-
formal methods -~ i.e., the necessity of desling with each progrem on an indivi-
dual basis. To do this it is necessary to abstract the coneept of a program -
to identify the essential "structure" of a program and to eliminate the details
which are peculiar $o a certain representation of that rograw. The result is
a "program schema" or "abstract program" which is a sort of skeleton program
consisting solely of assignment stetements and branch statements. More speci-
fically an absiract program consists of the following:

(1) A vector of input varisbles X

{2) A vector of program variables y

(3) A vector of output variables z

() A vector of program constants a

(5) Assignment statements of the form

y+f (x, )
(6) Branch stetements consisting of a predicate (logicel expression)

Pi(x ,4) where elther of two peths are taken depending on the
truth of falsity of Pi(x,y).

BE-5




Actual input and output do not oceccur in an abstract program. Rather this is
handled by assignment statements (i.e., input is accomplished by assigning

a function of input varisbles to a vector of program variables, e.g., y+3 (x].
Similarly output is accomplished by assigning a function of input and program
variables to a vector of output varisbles (z+h(x,y}). Figure E-3 shows an
abstract program in flowchart form.

An "interpretation” of an abstract program specifies
(1) Specifie functions and predicates .
(2) Specific values for all program constants

(3) The domains of the input, program snd cutput variables. (Note
in particuler that values for input varishles are not assigned -
merely the domain - e.g., an input varisble mey be constrainted
to be a positive integer but its value is unspecified).

Under an "interpretation” an "abstract program” becomes an actual program capeble
of execution once the values of the input variasbles are specified. Thus an
"interpretation" forms the link between abstract programs and actusl executable
programs.

The theoretical basis for the formsl approach is due to Manna (Reference 6)

who showefl in essence that the verification of any abstract progrsm can be
converted into the proving of & theorem (usually) in the first order predicate
caleulus, The development which follows is based on Reference T and to & limited
extent assumes the resder is familisr with the predicate caleulus (Reference 8,
chapter 6 ig a reasonably straightforwerd development of the predicate ealculus
for the reader desiring more background). Before proceeding with the formalism
however, it 1s necessary to firm up some basic concepts.

Roughly speaking, a program may be said to be correct if its execution terminates
and it yields the desired final result. However, since both termination of
execution and attainment of a desired result usually depend on the input vector
(x), it is necessary to .atroduce a predicate ¢(x) representing these constraints.
Likewise, it is necessary to formalize the idea of "attaining the desired finsl
result" by introducing a predicate Y(x,z} which is true if and only if z is the
desired output for valid input Xx. Thus we may speak of a program being correct
with respect to the input predicate ¢{x) snd the output predicate ¥{x,z).

It has been found useful to define two types of program correciness primarily
because a proof of program termination is often (but not always) most easily
performed separate from the precof of correciness. Thus s program is said to be
correct with respect to input predicate ¢(x) and output predicate VYix,z) if it
yields the correct snswer (i.e., satisfies ¥(x,z)) and if it terminetes for all
valid input (i.e., input vectors x satisfying ¢(x)TT—'Alternatively, 8, program
is said to be partially correct with respect to input predicate ¢({x} and output
predicate Y{x,z} if it yields the correct answer when it terminates (for valid
input x). A proof of termination together with a proof of partial correctness
is of course egquivalent to a proof of correctness.

F-h




ony

P
At e

Eems,s

3

=Y
s

P
t

P
®

Y
b
<t

=

[
L

et |

=3

23

‘ START '

y+g(x)

Plx,y)

U*ﬂ;[x:y]

y"'éz [X, Ef]

B T T S s O R

z+h(x,y)

Figure E-3., An Abstract Program Flowchart

E-T




Manna's formalism assumes an abstract program to consist of a series of stahte- &
ments of the form

I: IF Pi(x,y)
T i
g"ﬁilx! g) il
GOTO Il T3
ELSE o
2
yef (x,y)

GOTO 12 .

where I Ilg IE are statement lsbels i

“

Pi(x.:f) in a predicate

6li'iX,yl;6ia [x,y4) are funetions

In the sbove stendard form, any of the go to statements mey be replaced by the
HALT command which indicates program terminetion. It is a relatively straight-
forward exercise to convert any abstract program to this standard form.

With each statement in the above standard form, Menna associates a "well formed
formula" in the predicate caleulus: ("well formed formula" is essentially a
statement expressed in mathematieal logic which is elther true or false depending
on the values of the variables contained in it).

Wi = v'.'f q_l(x:y)$>
IF Pi(x,y)

l{x,y))

THEN q_l (xséi
1

FLSE qie(x,ﬁie(x,y))

where Vy is read "for all y"
=3> means "implies"

and Pi(X.,y ) is the predicate associated with the ith statement of the abstract .-
program., :

Qi;qil;qiz are the "verification conditions" as defined by Floyd which
are associated with the i statement of the sbstract program.




ke
d .

EPPEE |
3

L———

]

A block disgram of the ith gtatement of the ahstract program is given in Figure
E-%, showing the "Floyd verification conditions." If one of the go to state-
ments is replaced by HALT, the corresponding verification condition is replaced
by the output predicate w(x z}.

The formalism continues by defining two additional well formed formules

T(x) = gr(x y)WA... W

Fi(x) = T(x) with the output predicate P(x,z) replaced by its
complement (i.e., “P{x,z)) wherever it appears.

In the sbove, A means logical "and"
 means logical "not"

Finally. the desired result is the two well formed formulas:

Wp[d),lb] = vx{cb(x) =7(x}}
wp[cp,w] = v, (olx) =T(x)}

These formulas form the basizs for Manna's two theorems (proved in Reference 6}:

Theorem 1: The program is pertially correct with respect to
¢ and ¥ if and only if wpiqb,w] is satisfiable
(i.e., is true under some "interpretation” of the
Floyd verification conditions).

Theorem 2: The program is correct with respect to ¢ and P
if and only if ¥ [¢,w] is unsatisfiable (i.e.,
is false under every "interpretation" of the
Floyd verification conditions).

Proving satisfiability (or unsatisfiability) of a well formed Pormula in the
predicate calculus is & very complex topie and is not discussed here. The
interested reader is referred to References T and B for an introduction to
the topic.




F
yef (x,0) 2
. yef. " (x,u)
i 1
b~ — gy (X,0) — — —a;, )
LABEL = I2 LAREL = Il

Figure E-L. I°® Statement of Abstract Frogrem for Mamna's Formalism

E-10

i
.



S

[atan

[
o

PR

P

-

auw

{3;\....'. ;j

P G

1.

REFERENCES

P. Naur, Proof of Algorithms by General Snapshots. BIT 6 1966,
PP. 310-316.

R, W. FPloyd. Assigning Meanings to Progrems. American Mathematical
Society -- Methematical Aspects of Computer Seience, Vol. 19, 1967,
ppo 19'—32 -

E. W, Dijkstra. A Constructive Approach to the Problem of Program
Correctness. BIT, Vol. 8, No. 3, 1968, pp. 1Th-186.

C.A.R. Hoare. Proof of a Program: FIND, Comm. ACM, January 1971,
pp. 39-L45.

C.A.R. Hoare. An 4xiomatic Basis for Computer Programming. COM ACM
October 1969, pp. 576-583.

Z. Manna. Properties of Programs and the Pirst Order Predicate
Calculus. J. ACM, April 1969, pp. 24h-255,

B. Elgpas, K. N. Levitt, R. J. Waldinger, A. Waksmen. An Assessment
of Techniques for Proving Programs Correct, ACM Computing Surveys,
June 1972, pp. 97-147.

N. J. Nilsson. Problem Solving Methods in Artificial Intelligence.
(Bock )} MeGraw Hill, 19T71.

E-11



e e R

Appendix F

BIBLIOGRAPHY

Adams, D. A,, "A Computational Model With Data FPlow Sequencing",
Stanford University, Computer Science Technigcel Reports CS-117,
December 1968,

Akiyams, F,, "An Example of Software System Debugging", Software
Engineering Department of Fujitsu Limited, Tokyo.

Allen, C. D., "The Application of Fermal Logic to Programs
and Programming”, IEM Systems Journal, Volume 10, FNo, 1, 1971,

Allen, C. D., "Derivetion of Axiomatic Definitions of Programming
Languages from Algorithmiec Definitions", Proceedings of the
Conference on Proving Assertions About Programs, Janusry 1972.

Amory, W., Clepp, J. A., "A Software Error Classification
Methodology", Mitre Corporation Report No, 2648, Volume VII,
June 1973, .

Ashvy, E, T., "The Gse of an Auxiliary Computer With s Graphie

Display as an On-line Debugging Aid", Naval Postgraduate School
Thesis, June 1971,

Asheroft, E. A., "Program Correctness Methods and Lenguage
Definition”, Proceedings of the ACM Conference on Proving
Assertions About Progrems, January 1972,

Asheroft, E. A., Manne, Z., "The Translation of GOTO Programs
to WHILE Programs"; Stanford University, Computer Science
Report No, CS-188, 1970,

Avizienis, A., "The Methodology of Fault-Tolerant Computing”,
Software Reliability Course, Engineering 819,59, October 19Tk.

Avizienis, A., "Fault-Tolerance and Fault-Intolerance:
Complementary Approaches to Reliable Computing", Internationel
Conference on Rellable Software, April 1975.



Bachman, C, W., "The Programmer as Navigator”, Communications
of the ACM, Volume 16, No. 11, November 1973.

Baird, G, N., "Program Debugging Using COBOL 'T4", 1975
National Computer Conference, May 1975.

Baker, F, T,, "System Quality Through Structured Programming",
AFIPS Conference Proceedings, Volume 41, Part I, 1972,

Baker, ¥. T., "Chief Programmer Team Management of Production
Programming", IBM Systems Journal, Volume II, Fo. 1, 1972.

Beker, F, T., "Struetured Programming in a Production Programming
Environment", Internaticnal Conference on Reliable Software,
April 1975.

Balzer, R. M., "EXDAMS - Extendable Debugging and Monitoring
System", The Rand Corporation, RM-57T72-ARPA, April 1969,

Belzer, R. M., "On the Future of Computer Program Specification
and Orgenization", Rend Corporation, Report R-622~-ARPA, AD 731
349, Aagust 1971,

Balzer, R, M., "PORTS-A Method for Dynemic Interprogram
Communication and Job Control", Proceedings AFiPS 1971, SJcc,
1972,

Balzer, R. M,, "Automatic Progremming", Institute Technical
Memorandum, USC/Informetion Sciences Institute, September 1673,

Balzer, R. M., "A Global View of Automatic Programming”,
Proceedings of the Third International Joint Conference
on Artificial Intelligence, Stanford Research Institute, 1973,

Balzer, R, M., "A Language-Independent Programmers Interface",
Proceedings - AFIPS 19Th NCC.

Bard, Y., "Performance Criteria and Measurement for & Time-Shering
System", IBM Systews Journal, Vol. 10, No. 3, 1971.

Barrett, M. R., "Test Data Generation”, U.S., Army Computer Systems
Support and Evaluation Command, Washington, D.C., March 1972,

Basiti, V. R., and Zelkowitz, M. V., "Compiler Generated Programming
Tools", Workshop on Currently Available Test Tools: Technology
and Experience, April 1975.

Basu, S. K., and Misra, J., "Proving Loop Programs", IEEE
Trangsactions on Software Engineering, Vol, SE-1, No. 1,
March 1975,

Bauer, F. L., "Software Engineering”, Proceedings of IFIP Congress
1971, and in Advenced Course on Software Engineering, New York:
Springer-Verlag, 1973. '

r-2




i
e«

[
. .

F IS )
.

£ ey

e

i

Bepjamin, R. I., Control of the Information System Development
Cycle, New York, Wiley, 1971.

Benson, J. P., "Structured Programming Techniques", IEEE
Symposium on Computer Software Reliability, Msy 1973,

Beyer, T., "Preproceésors and Programming Language Reform",
Computer Science and Statistiecs: 8th Annual Symposium
on the Interface, February 1975.

Beyer, T., "FLECS: User's Manual", University of Oregon
Edition, Department of Computer Science, University of Oregon,
January 1975.

Birman, A., "On Proving Correctness of Mieroprograems”, IEM
Journal, Volume 18, No. 3, May 197k,

Bleir, J., "Extendeble Non-Intersctive Debugging", Debugging
Techniques‘in Large Systems, Prentice-Hall, 1971,

Blevins, P. R., and Ramamoorthy, C. V., "A Classification end
Survey of Computer System Performance Evaluation Techriques”,
University of Texes at Austin, Electronies Research Center
Repori, April 1970,

Bloom, A. M., "The "ELSE" Must Go, Too", Datamation, Mey 1975.

Bloom, Si, MePheters, M, J., and Tsiang, S. H., "Software
Quality Control", IEEE Symposium on Computer Software Relisbility,
May 1973.

Bochmann, G. V., "Multiple Exits from a Loop Without the
GOTO", Communicetions of the ACM, July 1973.

Boehm, B. W., "Some Information Processing Implications of
Air Force Space Missions, 1970-1980", Rand Corporstion,
Rand Memo RM-6213~PR, January 1970,

Boehm, B, W., "Software and Its Impact: A Quantitative Assessment”,
Datawation, May 1973.

Boehm, B, W., McCleasn, R. K. and Urfrig, D. B., "Some Experience
With Auvtomated Aids to the Design of Large~Scale Reliable
Software", IEEE Transactions on Software Engineering, Volume SE-1,
No. 1, March 1975, and International Conference on Reliable
Software, April 1975.

Boehm, B, W., "The High Cost of Software", Practical Strategles
for Developing Lerge Software Systems, Addison-Wesley 1975.

Boehm, B, W., "Software Design end Structuring", Practical
Strategies for Developing Lerge Software Systems, Addison-Wesley
1975,

F-3



Boettcher, C. B., "Program Evaluator and Tester, CDC User's
Manual", McDonnell Douglas Automation Company, Doc. No.
M208507L4, 1974,

Bohm, C., and Jacopini, G., "Flow Diagrams, Turing Machines
and Langueges with only Two Formation Rules", Communications
of the ACM, Vol. 9, 1966,

Boyer, R. S., Elspag, B., Levitt, K, N,, "SELECT - A Formel
System for Testing and Debugging Programs by Symbolie
Execution", International Conference on Relieble Software,
April 1975.

Bratmen, H, and Court, T., "The Software Factory", Computer
May 1975, .
Bratman, H., "Automated Techniques for Project Management Control",
Practical Strategies for Developing Large Software Systems,
Addison-Wesley, 1975,

Bredt, T. H., "A Survey of Models for Parallel Computing",
Stanford University, Electroniecs T.ab Report TR-8, August 1970,

Bredt, T. H., and McClusky, E, J.,, "A Model for Paraliel
Computer Systems", Stanford University, Electronics Lgb
Remort TR=5, April 1970,

Breit,T.H.,"Anslysis of Operating System Interaction®,
Workshop on Currently Available Test Tools: Technology and
Experience, April 1975.

Bright, H. S., and Cole, I. J., "A Method of Testing Prograns
for Date Sensitivity", Program Test Methods, Prentice Hell, 1973,

Brinch Hansen, P., "The Purpose of Concurrent Pascal", Internsticnal
Conference on Reliable Software, April 1975,

Brooks, F, P., "Testing Computer Programs - Historical Perspective",
ACM Sigplan Computer Program Test Methods Symposium, University
of North Carolina, June 1972,

Brooks, ¥, P., "The Mythical Man-Month", Internaticnal Conference
cn Relisble Sof'tware, April 1975,

Brown, J. R., end Hoffman, R, H., "Automating Software Development,
A Survey of Techniques and Automated Tools", TRW, Mey 1972,

Brown, J. R., "Practical Apvlications of Automsied Software
Tools", Proceedings of Western Electronic Show and Convention
(WESCON)}, Los Angeles, California, September 1972,

Brown, J. R., DeSelvio, A, J., Helne, D, E., &nd Purdy, J. G.,
"Automated Software Quality Assurance: A Case Study of Three

Systems", ACM SIGPLAN Symposium on Computer Program Test Methods,
TRW Systems, 1972.

P~k



Womdaaimig
. .

Brown, J. R., Hoffmen, R, H., "Evaluating the Effectiveness
of Software Verification-Practicel Experience with an Automated
Tool," TRW Paper #316, FJCC, 1972,

Brown, J. R., DeSelvio, A. J., Heine, D. E., and Purdy, J. G.,
"Automated Software Quality Assurance”, Program Test Methods,
Prentice Hall, 1973,

Brown, J. R., "Improving Quality and Redueing Cost of
Aeronautical Systems Software Through Use of Automated
Tools", TRW Systems Group, Site Defense Program Office.

Brown, J. R., "Why Tools?", Computer Ssience and Statistice:
8th Annual Symposium on the Interfsce, February 1975,

Brown, J. R., and Lipow, M., "Testing for Softwere Rellability",
International Conference on Relisble Software, April 1975.

Brown, J. R., "Getting Better Software Cheaper and Quicker",
Practical Strategles for Developing Large Software Systems,
Addison-Wesley, 19T5.

Brown, P, J., "Levels of Langusge for Portable Software",
Communicetions of the ACM, Volume 15, No, 12, December 1972,

Buda, A, 0., Granovsky, A. A., and Ershov, A, P,, "Implementation
of the ALPHA-6 Programming System", Internstional Conference
on Reliable Software, April 1975,

Bucher, D.E.W., "Maintenance of the Computer Sciences
Teleprocessing System", International Conference on Reliable
Software, April 1975.

Buckley, Lte. F., "Verification of Software Programs",
Computers and Automation, Februery 19T1.

Buckley, F, J., "Software Testing - A Report from the Field",
IEEE Symposium on Computer Software Reliebililty, May 1973,

Buechler, J., "A Software Architecture for Sampling Monitors",
Workshop on Currently Availsble Test Tools: Techunology
and Experience, April 1975,

Bullen, R, H., Jr., "Software First Concepts”, MITRE Corporation
Report No, 2648, Volume III, June 1973,

Burge, W. H., "Combinatory Programwing and Combinatorial Anslysis",
IBM Journel, Volume 16, No., 5, September 1972.

Burkhavdt, W. H., "CGenersiing Test Programs frpm Syntax",
Computing, Volume 2, 1967,

Berlakoff, M., "Software Design and Verification System",
Workshop on Currently Available Test Tools: Technology and
Experience, April 1875.




Burstall, R. M., "Proving Properties of Progrems by Structural
Induetion", Computing Journal, Volume 12, No. 1, February 1969.

Burstsll, R. M., "Formal Description of Program Structure in
First Order Logic', Machine Intelligence 5, American
Elsevier, 1970.

Burstall, R. M., "An Algebraic Description of Programs with
Assertions, Veirification and Simulation", Proceedings of

the Conference on Proving Assertions About Programs, January
ig72.

Burstall, R. M., "Some Techniques for Proving Correctness of

Programs Which Alter Data Struectures", Machine Intelligence T,
Johr Wiley and Sons, 1972.

Bursﬁéll, R. M., and Darlington, J,, "Some Transformations for
Developing Recursive Programs", International Conference on
Reliable Software, April 1975,

Buxton, J. N., and Randell, B., "Software Engineering
Techniques", Scientifiec Affairs Division, NATO, Brussels,
Belgium, April 1970,

Buxton, J. N., "The Nature and Implications of Software
Engineering", The Fourth Generation, Infotech, Ltd.,
Berkshire, England, 19T1.

Buzen, J, P., Chen, P. P., and Goldberg, R. D., "Virtual Mschine
Techniques for Improving System Reliability", IEEE Symposium
on Computer Software Reliability, May 1973,

r—n

[i—

3 oo
&, oo d

g

[N |



Cadiou, J., M., and Manna, Z,, "Recursive Definitions of Partial
Functions and Their Computations”, Proceedings of the Conference
gn Proving Assertions About Programs, Japuary 1972,

> Caine, S, H.,, and Gordon, E. K., "PLL -~ A Tool for Software
Design”, 1975 National Computer Conference, May 1975.

Cantrell, H., "Improving Program Reliability Using COTUNE II",
Workshop on Currently Avalleble Test Tooils: Technology and
Experience, April 1975.

ity
PSS 1

o

Caplain, M., "Finding Inveriant Assertions for Proving Progrems",
Internztional Conference on Reliable Softwere, April 1975,

JERERERS
&

- Carey, L, J., "Software Quality Assurance - A Stabe of the Art
Report”, Wescon Technical Pepers, 1972,

P
-

. Carlson, G., "How to Save Money With Computer Monitoring",
i Proceedings 1972 ACM National Conference, New York, 1972,

Carpenter, L. C., and Tripp, L. L., "Softwere Design Validation
Tool?, International Conference on Reliable Software, April 1975,

H

Cerf, V. G., Fernapndez, E.'B., Gostelow, XK, P., and Volansky, S. A.,
"Formel Control Flow Properties of a Graph Model of Computations",
UCLA, Computer Science Report ENG-T178, December 19T1.

» Cerf, V. G., "™Multiprocessors, Semaphorese, and a Graph Model
§ of Computation", UCLA, Computer Science Report ENG-T223,
. April 1972,

[

& Cerf, V. G., and Estrin, G., "Measurement of Recursive Progrems",
L Proceedings of IFIP Congress Tl, Amsterdam: North-Hollan¢ 1972,

- Chandy, K, M., Brown, J. C., Dissly, C, W., and Uhrig, W. Re,
"Analytic Models for Rollback and Recovery Strategies in Data
Base Systems", IEEE Transsctions on Software Engineering,

. Volume SE-1, No. 1, March 1975.

Chandy, K. M., "A Survey of Analytic Models of Rollback and
Recovery Strategles", Computer, May 1975,

[ )
[

Chang, H. Y., Manning, E. G., end Metze, G.,, Fault Diagnosis
of Digital Systems, Wiley-Interszcience, 1.970.

]

Chegtham, T, E,, Jr., "On A Leboratory of the Study of Automatic
Prograzmming", ACM Conference on Proving Assertions About
Programs, 1972,

fotinsisd
.

Cheng, L. L., and Sulliven, J. E., "Case Studies in Software Design",
Mitre Corporation Report, MIR-287%, Volume I, June 197k,

=i

"
3

A

-7




Cheng, L. L., "Some Case Studies in Structured Programming",
MITRE Corporation Report No, MTR-2648, Vol. VI, June 1973,

Chiriea, L. M., and Martin, D. F., "An Approach to Compllier
Correctness", Interpational Conference on Software Reliability,
April 1975.

Cicu, A., Maiocchi, M,, Polille, R., Sardoni, A., "Orgenizing
Tests During Software Evolution", Internationsl Conference
on Reliable Software, April 1975,

Clapp, J. A., LaPadula, L, J,, "Engineering of Quelity
Software Systems", Mitre Corporation Report MTR-2648, Volume I,
June 1973.

Clapp, J« A., Sullivan, J, E., SIMON: Finding the Answers to
Software Development Problems, Mitre Corporation Report No.
MTR~ 152, May 19Tk,

Clark, L., "A System to Generate Test Data and Symbolically
Execute Programs', Report #CU-CS-060-T5, February 1975,
Depertment of Computer Sciences, University of Colorado,
Boulder, Colorado,

Clint, M., "Program Proving", Coroutines Acts -Information 2,
1973.

Clint, M., and Hoare, C.A.R., "Progrem Proving: Jumps and
Tunetions", Acta Informatica, Volume 1, No. 3, 1972.

Cody, J. W., "The Evaluation of Mathemstical Software",
Program Test Methods, Prentice Hall, 1973,

Cohen, J., and Zuckermen, C., "Two Languages for Estimating
Program Efficiency", Communications of the ACM Volume 17,
No. 6, June 19Tk,

Conrow, K., and Smith, R. G., "NEATER 2-~A PL/I Source
Statement Reformatter", Communications of the ACM, November 19T0.

Constable, R. L., "Constructive Mathematics and Automatic
Program Writers", Proceedings of IFIP Congress TL,
Amsterdam: North-Holland 1972,

Conwey, R., and Gries, D., An Introduction to Programming :
A Structured Approach Using PL/L end PL/C, Cambridge, Mass,,
Winthrop Publishers 1973.

Cooper, D. C., "Programs for Mechanical Program Verification"

University College of Swansea, Computer Science Memorandum FNo., 13,
July 1970.

Corrigan, A. E., "Results of an Experiment in the Application of
Software Quality Principles", Mitre Corporation Report, MTR-28TL,

I

Vol, III, June 19Tk, v D0

i




Coutinho, J. de S., "Software Relisbility Growth", IEEE
Symposium on Computer Software Reliability, May 1973.

Crocker, S., and Balzer, R., "The National Software Works:
A New Distribution System for Software Development Tools",
Workshop on Currently Availasble Test Tools: Technology
and FExperience, April 1975,

Culpepper, L. M., "A System for Relisble Engineering Software",
International Conference on Rellable Scftware, April 1975.

|
i

sty

£

F-9



Daly, D., "Overview of Performance Measurement Techniques,"”
' SIGCOSIM Newsletter, Mo. &6, Part II, April 19T71.

Devis, R.M., "Standards for Software - What is in the Future,”
presented at ADAPSO Software Section Management Conference,
Dallas, Texas, February 1972.

Davis, R.M., "Quality Software Can Change the Computer Industry,"
Program Test Methods, Prentice Hall, 1973.

de Balbine, G., "Using the FORTRAN Structuring Engine,"” Computer
Science and Statistics: 8th Annual Symposium on the Interface,
February 1975.

de Balbine, G., '"Tools for Modern FORTRAN Programming," Workshop
on Currently Available Test Tools: Technology and Experience,
April 1975.

de Balbine, G., "Better Manpower Utilization Using Automatic
Restructuring,” 193? Netional Computer Conference, May 1975.

Dennis, J.B., "The Design and Construction of Software Systems,”
Advanced Course on Software Engineering, New York: Springer-
Verlag, 1973. '

Dennis, J.B., "Concurrency in Softwere Systems," Advanced Course
on Software Engineering, New York: ©Springer-Verlag, 1973.

Dennis, J.B., "Modulerity," Advanced Course on Software Engineering,
New York: Springer-Verlsg, 1973.

DeRemer, F., Kron, H., "Programing-in-the-Large Versus Programming-

in-the-Small," International Conference on Reliable Software, April 1975.

DeRoze, B.C., "Software Reliability via the Specification - A
Quantitative Approach,” submitted to the Internaticnal Conference
for Reliable Software, 1975.

DeRoze, B.C., "Survey of Software Verification/Validation Technology,"
paper presented at ACM Conference, San Tiego, lQTh (viewgraphs alse).

Deutsch, L.P., "An Interactive Program Verifier," Ph.D., dissertation,
Department of Computer Scirence, University of California, Berkeley,

DeViot, A.R., "The PRO/TEST Library of Testing Software," Workshop on
Currently Available Test Tools: Technology and Experience, April 1975.

Dickson, J., Hesse, J., Kientz, A., Shooman, M., "Quantitative Analysis
of Software Reliability," 1972 Annual Reliability Symposium, IEEE,
Januery 1972.

Dijkstra, E.W., "Progremming Considered as a Human Activity," Pro-
ceedings of the IFIP Congress, 1965.

F-10

L ta




—

B freod ) i)

v

[N

Dijkstre, E.W., "GOTO Statement Considered Harmful," Communica-
tions of the ACM, Volume II, No. 3, March 1968,

Dijkstra, E.W., "A Construetive Approech to the Problem of
Progrem Correctness," BIT, Volume 8, No. 3, 1968.

Dijkstra, E.W., "The Structure of the "THE" - Multiprogramming
System," Communications of the ACM, Vol. 11, No. 5, May 1968.

Dijkstra, E.W., "Structured Programming," Software Engineering
Techniques, NATO Science Committee, 1969.

Dijkstra, E.W., "Notes on Structured Programming," Technische
Hogeschool Eindhaven (THE), 1969.

Di)kstra, E.W., "Concern for Correctness as a Guiding Principle
for Program Composition,"” The Fourth Generation, Infotech, ILtd.,
Berkshire, England, 19T1.

Dijkstra, E.W., "Guarded Commands, Non-determinancy and a Celculus

for the Derivation of Progrems",International Conference on
Reliable Software, April 1Y(5.

Dijkstra, E.W., "Correctness Concerns and, Among Other Things,

¥hy They are Resented," International Conference on Reliable
Software, April 1975.

F-11



Farly, J., "Toward an Understanding of Data Struectures,”
Communications of the ACM, Vol. 1L, No. 10, October 1971.

Edwards, N.P., "The Effect of Certain Modular Design Principles
on Testability," International Conference on Reliable Software,
April 1975.

Ehrman, J.R., "System Design, Machine Architecture, and Debugging,"
SIGPLAN Notices, Volume 7, No. 8, August 1972.

Ellingson, 0.E., "Computer Program and Chenge Contrel," IEEE
Symposium on Computer Software Reliability, May 1973.

Elmendorf, W.R., "Controlling the Functional Testing of an Operating
System," IEEE Transactions System Science and Cyberneties, 85C-5,
October 1969,

Elmendorf, W.R., "Disciplined Software Testing," Debugging Techniques
in Large Systems, Prentice-Hsll, 1971.

Elspas, B., Green, M.¥W., and Levitt, K.N., "Software Reliability
Computer,” (Computer Group News), January-February 1971.

Elspas, B., Green, M.W., Levitt, K.N., and Waldinger, R.J.,
"Research in Interactive Program Proving Techniques,” SRI Report
8398-II, Stanford Research Institute, Menlo Park, Ca., 1972.

Elspas, B., Levitt, K.N., Waldinger, R.J., and Waksman, A.,
"An Assessment of Techniques for Proving Program Correctness,”
Computing Surveys, Vol. 4, No. 2, June 1972.

Flspas, B., Levitt, M.¥., and Waldinger, R.J., "An Interactive
System for the Verification of Computer Programs,” Final Report,
SRI Project 1891, Stanford Research Institute, Menlo Park, Ca., 1973.

Elspas, B.,"The Semi-Automatic %eneration of Inductive Assertions
for Proving Progrem Correctness,” Interim Report, SRI Project
2686, Stanford Research Institute, Menlo Park, Ca., 19Th.

Endres, A., "An Analysis of Errors and Their Causes in System
Progrems," International Conference on Relimble Software, April 1975.

Engelman, C., "Towards an Analysis of the LISP Programming Langusge,”
Mitre Corporation Report No. 2648, Vol. IV, June 1973.

Fstep, J.G., "A Software Avellability and Relisbility Model,"
IEEE Symposium on Compuber Software Reliability, May 1973.

Evens, R.V., "Multiple Exits from a Loop Using Neither GOTO nor
Labels," Communications of the ACM, November 19TL.




Fairley, R.E., "An Experimentel Program Testing Facilityl, ¥ Workshop
on Currently Aveilable Test Tools: Technology and Experience,
April 1975. :

Feldman, J.A., "Toward Automatic Programming,” Software Engineering
Techniques, Seientific Affairs Division, NATO, Brussels, 1970,

Fleischer, R.J., "Effects of Management Philosophy on Saftware
Production,” Mitre Corporation Report MTR-2648, Vol. II, June 1973.

. Florentin, J.J., "Flow Annlysis for Program Correctness,"” University

of Waterloo, CSRR 2054 Research Report, 1970.

Floyd, R.W., "Nondeterministic Algori‘thms," Journal of the ACM,
Vol. 114 No. L, October 196T.

Floyd, R.W,, "Assigning Meanings to Programs,” Mathematical Aspecis
of Computer Seience, Vol. XIX, American Mathematical Soclety,
Providence, R.I., 1967.

Floyd, R.W., "Toward Interactive Design of Correct Programs,”
Proceedings of IFIP Congress Tl, Amsterdam: North-Holland, 1972,

Flynn, R.J., "On the Smallest Number of Program Modules Needed to
Duplicate Dynemic Independent Taterietions,” IEEE Symposiuwm on
Computer Software Reliability, May 1973.

Forsythe, A.B., "Adequacy and Validity of Staetisticsl Analysis,™
Computer Science and Statisties: Oth Annual Symposium on the
Interface, Febraury 1975. :

Fosdiek, L.D., "BRAWL, A FORTRAN Program to Identify Basic Blocks
in FORTRAN Programs," Report #CU-CS-040-Th, Dept. of Compuber
Seience, University of Colorado, March 19Th.

Fosdick, L.D., and Osterweil, L.J., "DAVE - A FORTRAN Program
- Analysis Bystem," Computer Science ard Statisties: &th Annuel

Symposium on the Interface, Pebrusry, 1975.

Fragole, J.R., and Spahn, J.F., "The Software Error Effects Analysise
A Qualitative Design Tool," IEEE Symposium on Computer Software
Reliebility, May 1673. .

. Freemen, P., "A Model for Functional Reasoning in Design," Pro-

ceedings, Second Irternational Joint Conference on Artificial
Intelligence, London, 18T71.

Freeman, P., "Functional Programming Testing and Machine Aids,
Progrem Test Methods, Prentice Hall, 1973,

Freeman, P., "Software Engineering Bibliography," Rough Draft, ICS
Department, University of California, Irvine, Ca., September, 19Tk,

Freeman, P., "Taward Improved Review of Software Designs,” 1975
National Computer Conference, May 1975,

Fujii, R.U., and Hartwick, R.D., "Dest Techniques for Large-Scele
Progrem," Logicon, Jenuary 19Th. "
: F-13

i

R a]



. Gaines, R. S., "cqmpiler Construction for De’bugging » Debugging
Ter:hm‘.ques in Large Systems, Prentice Hell, 19T1.

3 .o
Gannon; J. D., and Horning, J. J., "The Impact of Langusge
Design on the Production of Relizble Software, International
Conference on Relisble Software, April 1975. '

Garland, S. J., and Luckham, D. Ce, "Translating Reeursion
Schenes Into Program Schemes", Proceedings of the Conference
on Proving Assertions About Progrems, Jenuary 1972

General Regearch Corporation, "RXVP~1 User's Guid.e" ,
February 1975.

e

Gentleman, W, M., and Wichmann, B, A., "Fiming on Computers",
SIGARCH 2, October 1973.

Gerhart, S. L., "Knowledge About Programs: A Model and &
Case Study", International Conference on Relisble Sof‘hwe,
April 1975,

German, S. M., and Wegbreit, B., "A Synthes:.zer of Inductive
Assertions", IEEE Transactions on Softwere Eng:.neering,
Vol.. BE-l, No. 1, March 1975,

Gesche, C. M., ard Mitchell, J. G., .“On the Problem of Unif‘orm
References to Date Structures > Interna‘ciona.l Conferenee
on Rel lable Sof‘cme, April 1975,

‘Gitson, C. G., &nd Reiling, L. R,, "Verification Guidelines” »
TRYW SS-T1-0%, TRW Software beries, August 1971,

Gire.rcl E. ,' and :Raul‘t J. Cuy "A Progra.mming Technigue for
SOf‘BW&I‘E Relisbility", 1EEE Symposium on Computer Sofiware
Relisbility, Hay 1973.

Glassmen, B, A., sod Bonhem, G. P., "Automwating Software
Development', Workshop on Currently Available Test Tools:
Technology and Experience, April 1975,

Goldbverg, J., "Towsrd Better Software", Electronies, Vol, b4,
No, 19, September 1971.

Gomory ., R. #., "An Algorithm for Integer Solutions te Linear
Progrems", Recent Advances in Mathemstical Programming,
McGraw-Hill, N.Y,, 1963,

tood, D. T., "Tovard a Man-Machine System for Proving
ProEra.m Correctness”, Ph.D., dissertation, Dept, of
Computer Science, Universiby of Wisecmsin, Maﬂison,
Wisconsin, June 19'(0. : :

Good, D. I., "Developing Correct Softme,"?roceeding of
the Firs‘b Texas Conference on Gompu‘her Sys‘tems, June 3.972

F-1l

VS

it e A, B hm e e a1 Al AR DS dt <8 e e e b kv ik s WASRLESY e, PR - .- e

(2
{

T ?'-.‘Lfv.: ':‘-“ el :.:4»"

e

Fa=ii
E

i

o 5 s ‘a

ey

L:::m-l

[iwans
A

o

.

::::r.'*

Pt

f:'_ki‘«““ H

Fi'a:_'.'ll.




o

Gaod, D, I., and Raglumi, Le-Co, "Nucleus-A Languege of Provable
Programs", Program Test Methods, Prentice Hall, 1973.

Good. D. I,, "Provable Programs and Processors", National
Conmu er Conference, 19Th,

Good, D, I., "Provable Programming", Interne.tmnal Conference on Reliable
Softwere, April 1975,

Good, D. T., London, R, L. end Bledsce, W, W., "An Interactive
Program Verification System", IEEE Transections on Software
Engineering, Vol, BE=l, No. 1, March 1975, and International
Conference on Relisble Softw.re, April 1975.

Goodenough, J. B., and Eanes, R. 8,, "Program Testing and
Diagnosis Technology", SOFTECH Report to Frankford Arsensal,
April 1973.

—

™ Goodenough, J. B., and Gerhart, S. L., "Toward & Theory of

b Test Data Seleetion", International Conference on Reliable
Software, Arril 1975

LL Goodman, L. I., “Gomplexlty Measureq i‘or Programming Lengnages",

Mags. Institute of Technology, AD T29-001, Sepbember 19TL.

Coocdnight, J. H., "Validity Checking — How Far Should We Gof"
Computer Science and Stabistics:; 8th Annual Symposium on the
Interface, February 1975.

i Goos, G,, "Hierarchies", Advanced Course un Software Engineering
Kew Yorks Sprmger-Verlag, 1973,

it
i ‘ Goos, G,, "Language Characteristics”, Advanced Course on
Software Engineering, New York: Springer-Verlag, 1973,

=

Goos, G., "Docmmen’baticn"; Advanced Course on Software Engineering,
Wew York: Springer-Verlsg, 1973, —

oy

Gostelow, K..P., "Flow of Control, Resource Allccation and the
Proper Termination of Programs", UCLA Computer Science Report
ENG-T1T79, December 1971.

Gotlien, C. C,, snd MacEwen, G. H,, "System Evaluation Tools",
NATO Working Conference on Softrare Engineering, Brussels,
Belgium, NATG 19T70C.

g

Gotlieb, C. C, “Performance Messurement", Advanced Course on
Software Engineering, New York: Springer~Verlag, 1973,

Grabam, P, M., "Performance Prediction”, Advanced Course on
Software Engineering, New York: Springer-Verlag, 1973.

i

Graham, R. M., Clancy, G. J., Jr., 8nd DeVaney, D. D., "A
. Software Design and Evsluation System Communicetions of the
’ LCM, Februsry 1973. }

P15

i LT e




Green, E,, "What, How and When to Test", Workshop on Currently
Available Test Tools - Technology and Experience, April 1975.

Gries, D., "Programming by Inductzon s loformation Processing '
Letters, Vol. 1L, Bo. 3, Februsry 1572.

Grisbman, R., "The Debugging System — AIDS", Proceedings
of the 8JCC, 1970.

Grishman, R., "Criteris for a Debugging Language", Debugping
Technigues in Large Systens, Prentice-ﬁall,_ 1971

Gruenberger, F., "Program Testing gnd Validating", Compubing:
A First Course, 1968. E '

Gruenberger, Fy, "Program Testing: The Historical Perspective”,
Program Test Methods, Prentice Hall, 1973,

e

F-16

:‘2".—5‘{

Sl

4

E:::':‘.?’w

F.“ Pt "}

g

£

{«?—1 .P L '1

s B

Ry

3 -.rr:z!

=3




e

f-:jﬁ [rmm— |

JOPRRCISE

r—i 3

Ll

gl

Hetzel, ¥, O

tIa.i).l,. A.D., end Ryder, B.G., "The PFORT Verifier-Installation and
Maintenance," Bell Laboratories, Murray Hill, New Jersey.

Hell, A.D., and Ryder, B.G., "The PFORT Verifier,“ Computer Selence
and Statisties: 8th Annual Symposium on the Interface, Februsry
1975,

Haney, F.M., "Module Connection Analysis - A Tool for Scheduling
Software Debugging Activ:.t:.es," Proceedings of the FJCC, 1972.

Hanford, K.V., "Automatic Generation of Test Cases," TEM Systems
Journsl, No. 4, 197G, .

Hanseri, P.B., "Testing Muliiprogramming Systems," Software
Practice and Experience, April-June 1973.

Harper, W.L., Date Processing Documentation: Standards, Procedures
and Applications, Premtice-~Hall, 1973,

Hertwick, R.D., "Werification and Validation," Iogicon, Japuary 197L.

Hertwick, R.D,, Fujii, R.U.,"Addendum to Software Relisbility
Sample Verification and Validation Effort,” lLogicon, October 197Th.

Hecht, H., "The Scope of Software Reliability," Overview, Software
Reiiability Course, Engineering 819.5%, UCLA, October 19Th.

Hecht, H., "Economics of Reliability and Related Subjects,” Soft-
ware Relisbility Cowrse, Engineering 819.59, UCLA, October 197h.

Helms, H.J., "Evaluation in the Computing Center Enviromment,”
Advanced Course Software Engineering, New York: Springer—Verlag, 1973,

Henderson, P., and Snowdon, R., "An Experiment in Structured
Programming," BIT 12, 1972.

Henderson, P., "Finite State Modeling in Program Development,”
International Conference on Reliable Software, April 1975.

Henderson, V.D., "Progrem Validstion," Logicon, Imc., San Pedro,
Califcrnia, (Guess} 1970. g }

Hennell, M.A., "Experimental Test Bed for Numerical Software,"
Worksnop on Currently Availsble Tes®.Tools: .Technology and
Experience, April 1975. '

Hetzel, W.C., "Pr:r.nciples of Com'ou'ter Pxogram Testing,"” Program
Tc,st Methods, Prentice Hell, 1973.

vs TA Definitional Framework," and other Tliustraticns
for the Software Relisbility Céurse, Englneering 819.59, UCLA,
October 197k,

F-17




Hewitt, C.E., end Smith, B., "Towards a- Progiammz.ng Abprent:.nfe,"
IFEE Tra.nsactlons on Soi‘tware Engineering, Vol. SE~-1, No. 1
Mareh 1975.

k]

Hiil, T.D., "Paults in Functions in ATLGOL and FORTRAN," Cémputer
Journal, Vol. 14, August 1971,

Hoare, C.A.R., "An Axiomatic Approach to Computer Programming,”
Communication of the ACM, Vol. 12, Ho. 10, October 1969.

Hosre, C.A.R., "Proof of = Program FIND," Communicstions of ACM,
Vol. 1%, ¥o. 1, 1971.

Hpa.r,e_, C.A.R., "Proof of Correctness of Date Répresanﬁa‘bians,"
Acta Informaties 1, Springer ~Verlag, 1972,

Hoare, {.A.R., "Proof of a Structured Program: The Sieve of
Fretosthenes,” the Computer Journal, Vol. 15, No. %, 1972.

Hoa.re-:, C.A.R., "Tie Quality of Software," Software—-Practice and
_ Experience, Vol. 2, 1972.

Hoare, C.A4.R., "A Hote on the FOR Statement," BIT, Vol. 12, 1972,

Hoare, C.A.R., "Data Relisbility," International Conference on
Reliable Softwere, April 1975,

Hofﬁuan, R.H., YAntomated Verification System User's Cuide,"
TRW Note #72-FMT~8 Project Apollo, Task MSC/TRW A-527,
Jenuary 1972.

Hoffman, R.H., "Automated Verification System: Test Data
Effectiveness Measurement Subsystem User's Guide," TRY
Systems Group, for NASA Johnson Space Center, Houston, Texas 19Tk,

Hoffman, R.H., "HASA/Johnson Space Cenber Apprcs.c:h to Automa.te&.
Test Data Generation, " Computer Science and S'ta:t:.s'tws.. 8th Annual
S}'mposium on the Interface, February 1975.

Holland, J. C., "Acceptance Lestlng for Appllcatmns Pragrams,
Progrem Test Methods, Prentice Hall, 1973.

Holton, J.8., and Bryan, B., "Structured Top-Down Floweharting,
Datamstion, May 1975, | o ' '

Hoperoft, J., and Tarjan, R., "Efﬁcient Algoritlms for Graph
Menipuiation," Stanford Unviers.d:y Repor"l; No. STAN—CS—T:L-—-EDT,
AD T2 6169, March 197L, |

Hopwoody M.D., and Lockett, J., "Bxperience with the RAND Monitor/

Stlmula.t:cm," ¥orkshop on Gurrenfly Avai.la,‘ble Test Tc:no'! UL 'f‘ecbno"ogy

and Ebcperienee, April 19'(5. :

.

-18.

o
L Banr

it

PR

B A L TT A e

s T Rt e p R RS = Htee e e
LTIV RN O

2

=

ey

[chge
%5

3
vy |

=

gy

[y

£ 3 e

£

R

S |

o
' Samered |

Yoz

| Pyt wehvy e ety NN




E=—1

E

¥

e

==

forning, J.J., and Randell, B., "Structuring Complex Processes,”
IBM T.J. Watson Research Center, Report RC 2459, May 1969.

Horowitz, E., "FORTRAN, Can It Be Structured and Should It Be?",
Practical Strategles for Developing Large Software Systems,
Addison-Wesley, 1975.

Howerd, J.H., and Alexander, W.P., "Analyzing Sequences of Opera-

tions Performed by Programs," Program Test Methods, Prentice Hall,
1973.

Howden, W.E., ''I&ieeti‘md.oli.og;\_fr for the Automatic Generation of Program
Test Data,” McDonnell Douglas Technical Report #41, February 19Th.

Howden, W, C, "Proving Correctness by Testing,” November 19Tk,

Howden, W.E., "Methodology for the Generstion of Frogram Test Data,"
Resesrch Paper, McDonnell Douglas, May 1975,

Howden, W.E., Stucki, L.G., "Methodo}.ogy for the Effective Test Case
Selection," Final Report MDAC-W, MDC GS301.

Howden, W.E., Laub, J., "Automatic Case Analysis of Programs,"
Computer Stience and Statistics, 8th Armual Symposium on the
Interface, February 1975. '

Bowden, W.E., "Systems for Automating the Generation of Progrem

Test Data," Workshop on Currently Availsble Test Tools: Technology
and Fxperience, April 1975,

Hughes, K., Binns, d., Cooke, A., "Keeping in Tune," Dats
Processing, July-August 19Tk, » :

Fuil, T.B. Inright, W.H., and Sedgwich, A.E., "The Correctness
of Numerical Algorithms," Proceedings of the Conference on
Proving Assertions About Programs, Janusary 1972.

F-19

i i v ol B e kA7 Do a2 r < h T e




Information Research Associates, "Reliability Techniques for
Computer Executive Programs,” Summery Report NAS8-2666-9,

Ingells, D.H., "FETE--A FORTRAN Execution Time Estimator,"
Stenford University, Computer Science Report 204, i9T71.

Ingalls, D., "The Execution Time Profile as a Programming Tool,"
Compiler Optimization, R. Rustin (ed.), 2nd Courant Computer
Sclence Symposium, 1970, Prentice-Hall, 1972.

Itoh, D., and Izutani, T., "FADEBUG-I, A New Tool for Program
Debugging," IEEE Symposium on Computer Software Reliability,
May 1973. '

IEM, "HIPO: Design Aid and Documentation Tool," IBM Audio
Education Course Form No. SR20-0413,

IBM, "Chief Prograwmer Teams Principles and Procedures,”
IEM, Gaithersburg, Maryland, June 1971.

TRM, "Test IMS Utilities," Program Description/Operations
Marmegl, SH 20-1307-0.

IBM, "How %o Write Correct Programs end Know It," IBM,
Gaithersburg, Marylsnd, Februasry 1973.

Tkezaws, M.A., "AMPIC," Workshop on Currently Available Program
Pesting Tools: Technology and Experience, April 1975.

Infante, R., and Montanari, U., "Proving Structured Programs
Correct, Level by Level,” International Conference on Reliable
Software, April 107S. :

F-20

e e I

40 L

[ i=em

=

,’3

g

—n
1i
4
i

i
i
i
i
!

i
i
I
1




7

o

i
;E‘.
)

£ 3

=N

fir=

-

_HC-"._—-.‘:'
.

e

£
L-

G|

Fo7
g

=1

73

-y el

Jackson, M., and Swanwick, A.B., "Segmented-lLevel Programming,"
Computers and Automation, February 1969.

Jackson, R.S8., and Bravdica, S.A., "Sofiware Validation of the
Titan IIT C Digitel Flight Control System [":ilizing a2 Rybrid
Computer,” Proceedings of the TJCC, 19TL.

Jacobs, W., "A Structure for Systems that Plan Abstractly,”
Proceedings of the ATIPS, 1971 SJCC, 1971,

Jemes, E.B., and Partridge, D.P., "Adaptive Correction of Program
Statements,” Communications of the ACM, Vol. 16, No. 1, Jamary 1973.

Jelinski, Z., and Chung, G.S., "Generalized Events-Oriented
Simulation System (GESS), A Performance Fvaluation Tool,”
Proceedings of the Computer Performance Evaluation Users Group,
October 1972, Washingiton, B.C.

Jelinski, %., and Morenda, P., "Software Relisbility Resgearch,’
Statistical Computer Performance Evalustion, Academic Press, 1972.

+Jelinski, Z., and Moranda, P.B., "Applications of = Probebility Based

Model to A Code Reading Experiment,” IERFE Symposium on Computer
Software Reliability, M=y 1973.

Jelinski, Z., "Can Statistics Be Applied to Software Relisbility-
Historical Perspective,"” Computer Science and Statisties: 8th

Annual Symposium on the Interface, February 1073.

Jones, C.B., "Formal Development of Correct Algoritims: An Example
Based on Earley's Recognizer," Proceedings of the ACM Conference
on Proving Assertions About Programs, Januvery 19T2.

L]

, F-21 & ]




Kane, J.R., and Yau, S5.5., "Concurrent Softwere Fault Detection,"”

IEEE Transactions on Software Engineering, Vol. SE-1, No. 1, i3
March 1975.

Kaplan, D.M., "Proving Things About Progrems," Fourth Annusl —F
Princeton Conference on Information Sciences and Systems, May 1970, =
Karnes, R.E., and Carter, W.A., "Computer Design Verification Via Ti“:
Software Simulation," National Computer Conference, May 1975. Gk

Katz, S.M., and Mama, Z., "A Heuristic Approach ‘o Program
Veri‘fi_ca:bion,“ Proceedings IFCAI-T3, August 1973.

S SR

Katz, S., Manns, Z., "Tovards Automatic Debugging of Programs,
International Conference on Relisble Softwares, April 1975. :

Keezer, E.I., "Practical Experiences in Establishing Software
Quality Assuraunce,” IEEE Symposium on Computer Software Reliabiiity,
, May 1973.

Keirstead, R.E., and Pa.fker, D.B., "On the Feasibility of Formal
Certification," Program Test Methods, Prentice Hall, 1973.

Kernighan, B.W., and Plangher, P.J., "Programming Style for
Progremmers and Language Designers," IEEE Symposium on Computer
Software Reliability, Moy 1973.

Kimbleton, S.R., and Moore, C.G., "A Probabilistic Framework for
System Performance Ev&luation," Proceedings of the ACM SIGOPS
Workshop on System Performance Evaluation, 19TL.

=]

[
L%

Kimbleton, S.R., "The Role of Computer System Models in Per-
formance Bvaluation," Commmnications of the ACM, Vol. 15; No. T,
July 1972.

Foo
L=

Kimbleton, S.R., "A Heuristic Approach to Computer Systems
Performance Improvements, I-A Fast Performence Prediction Toeol," ry
National Computer Conference, May 1975. ' , i S

i

King, J.C., "A Program Verifier, Ph.D. dissertation, Carnegie- R
Mellon University, Pittsburgh, Pennsylvania, September 1969. g

King, J.C., "Proving Programs tc be Correct," IEEE Transactions _ S ]
and Computers, November 1971. _ _ - _ e

King, J.C., "A Verifying Compiler,” Debugging Techniques in
Large Sys’hems, Prentice Hall 1971.

. K{ng, J.C., and Floyd, R.W., MAn Interprata:bion Or:.en‘hed. Theorem
Prover Over Integers,"” Journal of Compuber mnd System Sciences,
Vol, 6, No. L, August 1972.

Lt

By £ otk et gt + a1 bt e 4 oo+ ek 1 e b astit e aee o man 1t 4 4 e e ers 8 mmtiet e § e ermmnan e &% e s e teeers e e 4

1]

Foop

B




£4%)

£

1

§:

A

ﬁ — P el

'K:Lng, N. J' .s esnng Conversatlonal Systems,“ De'nugglng Tech— '

King, J.C., "Abstract Machines and Softwarg Des:.gn," SIGPLAN , _ |
Hot* ces, Vol. 8, No..9, September 1973.

King, J.C., "A New Apnroach to Program Testing,” 1975 In't;er-—
national Com erence on Eelisble Software, April 1975.

niques in Large Systems, Prentice Hall, 19T1.

Kirf:hoff; M. K., and Ryan, R.H., "The Need %o Salvage Test Tobl'-
Technology," Workshop on Currently Available Program Testing : |
Togls: Technology and Exverience, April 1975. L o ' |

K‘J.rr:hcor;.9 M.X., and Fee, J.B., Soft.;are Development Sta.nda.rds
gnd Conventions Document, MeDonnell Douglas Astronzuties -
Company, June 197k.

Kling, R.E., “Towards = Pex'-'so'n-cénter:ea' Computer Technology,"
Proceedings of the ACM Nationel ConTerence, New York, 1973.

Knuth, D.E., Floyd, R.W., "Notes on Avoidinrz GOTO Statements,”

Stanford University, Computer Science Technieal Report gs-1k8,
Jenuery 1970..

¥nuth, D.E., "An Empirical Study of FORTRAN Programs," Stanford
Um.versity, Computer Science ’.L’echn:.ca.l Report CS—186 197.1.

Knuth, D. E., "A Review of Structured Programn:.np," Stanford.

- University, Computer Science Technical Report C5~371, June 1973,

Knuth D,E,, and Stevenson, F. R., "Ooptimal Measuremen‘h Points
for Program Frequency Counts,” BIT 13, .x.9’{..-.

" Xoffmen, E.B., and Blount, S.E., "Artificial Intelligence and

Automatiec Programming in CAI," Proceedings of the Third Inter-—-
national Joint Conference on Artificisl TIntelligence, Stanford
Regsearch Institute, 1973.

Kolence, K.W., "A Software View of Memsurement Tools,"
Datamation, Januery 1971.

Kolence, K.W., "Software Techm.ques,“ SIGCOSTM Nevsletter,
No. 8, Part 11, April 197L.

Kolence, X.W., "Software Physics and Computer Performance
Measurements," Proceedings 1972 AcM Na:tlcnal Conference,
New York, 1972.

Kolence, K.W., "Experiments and Measurements in Computing,”
1st Annual SIGME Symposivm on Measurement and Evaluation,
Hew York, 1973.

Kolence, K.W., "Software Physic_s," Datamstion, June 1975,

23




Kbpetz, H., "On the Connections Between Range of” Variahle and
Control Structure Testing," International Conference on Reliable
Software, April 1975.

Kossjaru, S.R., ﬁCofrecthéés 6f'Prbgrams - Writing Correct
Prograims,"” Concépts in Quality Software Desigin, NBS Technical
Note gh2, 1972,

Kosajaru, S.R., "Structured Programs," Concepts in Quality Softvare
Design, NBS Technieal Note 842, 1972. .

Kosajaru, S5.R., and Ledgard, H.F., "Perspectives on Quality
Software," Concepts in Quelity Software Design, NBS Technical
Note 8k2, 1972.

Kosajaru, S.R,, "Analysis of Structured Programs," Proceedings of
the Fifth Annual ACM Symposium on Theory of Computing, New York, 1973.

Kosy, Donald X., "Approaches to Tmproved Program Validation Through

Programming Langnage Design,"” Program Test Methods, Prentice Hall, 1973.

"Krause, XK.W., st.al., "Optimal Software Test Plannine Through Auto-

mated Network Analysis," IEEE Symposium on Computer Software
Reliability, May 1973. .

Kuhn, H.W., "Solvability and Consistency for Linear Eguations and
Tnequalities," American Mathematical Monthly, April 1956.

Kulsrud, H.E., "Extending the Interactive Debugging System~HELPER,"

Courant Computer Science Symposium 1 June 1970; Debugging Techniques
in Large Systems, Prentice-~Hall, 1971.

P-2h !

N " PSR I VU ST POV PRIV PR PRV SURec e PO S RSN S R

foid

]

i

| g

s

ind

2

o
B

$

[
e

(s |

-3

E o

Rl Frind

fomedl  premd ey



e
W

3

= =

T a———
e

. |
N}

[
£

g3

b it

La Pedula, L.J., "Software Relisbility Modeling and Measurement
Techniques,™ MTR 2648, Vol. VIII, The Mitre Corporation, Bedford,
Masz., 1973.

Larmouth, J., "Serious FORTRAN," Softwsre Prectice znd Experience,
Vol. 3, No. 2, April-June 1973.

lLarsen, G.H., "Software: A Qualitetive Assessment or the Man
in the Middle Speaks Back," Datemation, Wovember 1973.

Leventhal, M.S., "Verifying Frograms Which Operate on Data
Structures,” Internationsl Conference on Reliable Software,
April 1975.

Leavenworth, B.M., ed., "Control Structures in Programming
Languages,” SIGPLAN Notices, Vol. 7, Fo. 11, November 1972,

bteavenworth, K., "Modular Design of Computer Frograms,"
Date Manegement, July 197k,

Ledgard, H.F,, "The Case for Top-Down Programming," Concepts
in Quality Software Design, NBS Technical Note 8k2, 1972.

Ledgard, H.F., "Towards s Formalization for Quality Software,"
Concepts in Qua.lity Software Desmgn, NBS Technicel Note 842, 1972.

Ledgard, H.F., "The Case for Structured. Progremming," BIT,
Vol, 1k, 10Tk,

Lee, J.A.N., "The Definition and Validation of the Radix Sorting
Technigue,"” Proceedings of the Conference on Proving Assertions
About Programs, January 1972,

Lemoine, M., and Y. Rousselot, J., "A Tool fur | sbugging FORTRAN
Programs," Workshop on Currently Available Test Tools: Technology
and Experience, April 1875.

Lester, B.P., "Cost Analysis of Debugging Systems,' MIT Report
MAC-TR-90, AD T30 521, September 1971.

Iinden, T.A., "A Swmary of Progress Toward Proving Program
Correctness," Proceedings AFIPS 1972 FJCC, 1972.

Iipow, M., '"Maximum Likelihood Estimation of Parameters of Software
Time~to-Failure Distribution," TRW Systems Group 2260.1. 9-7313-15,
Revision 1, 1973.

Lipow, M., "Some Directed Greph Methods for Analyzing Compubter
Programs,” Computer Seience and Statistiecs: 8th Anmuel Symposium
on the Interface, February 1975.

Iiskov, B.H., and Towster, E., "The Proof of Correctness Approach
to Reliable Systems,” Mitre Corporation Report MTR~-2073, July 19T1.

F-25




Liskov, B.H., "A Design Methodology for Beliable Software Systems,”
Proceedings of Fall Joint Computer Conference, AFIPS, Vol. 31,
P&rt I, 1972- - '

Liskov, B.H., "Guidelines for the Design and Implementation of
Relisble Software Systems,” Mitre Corp., Report No. MTR-2345,
April 1972.

Liskov, B.H., and Zilles, S.N., "Specification Techniques for Data
Abgtractions,” IEEE Transactions on Software Engineering, Vol. SE-1,
Ho., 1, March 1975 and Internationzl. Conference on Reliable

Software, April 1975.

Tiskov, B.H., "Data Types and Program Correctness,” (position paper),
Netional Computer Conference, Msy 1075.

Iite, S., "Using & System Generator," Datamation, June 1975.

Littlewood, B., and Verrall, J.L., "A Bayesian Relisbility Growbh
Model for Computer Software,” IEEE Symposium on Computer Software

Relisbility, May 1973.

Littlewood, B., "A Reliability Model for Markov Structured Software,”
Internationzl Conference on Reliable Software, April 1975.

Littrell, R.F., "A Step Toward Quality Control in Computer
Programming: Understanding the Psychology of the Management of
Computer [ -ogrammers,"” Proceedings of the 1973 National Con-
ference, new York, 1973.

Llewvelyn and Wilkens, "The Testing of Computer Software,” Software
Engineering FATO Science Affairs Division, Brussels 39, Jamuary 1969,

London, R.L., "Biblingravhy on Proving the Correctness of Computer
Progrems, " University of Wisconsin Computer Seciences Dept., Techw
nicel Repovt #64, Madison, Wisconsin, Oetober 1969.

London, R.L., "Computer Programs Cen be Proved Correct,”
Theoretical Approaches to Problem Solving, Vol. 28, Lecture Notes
in Operations Research and Mathematical Systems, Springer-Verlag,
1970.

London, R.L., "Proof of Algoritims - A New Kind of Certification,"
Communications of the ACM, June 1970.

Iondon, R.L., "Proving Programs Correct: Some Techniques and
Examples,"” BIT, Vol. 10, No. 2, 1270.

ILondon, R.L., "Certification of Algorithm 245 Treesort 3: Proof

of Algorittms -~ A New ¥ind of Certification," Communicationsz of
the ACM, Vol. 13, 1970.

F-26

gz:-’r.'.:f]

f R |
apLinT=T

o

-sermcnd ]

ok

i

b=

y)
ey

B

“}

[
e




London, R.L., "Software Reliebility Through Proving Programs
Correct," International Symposium on Fault Tolerant Computing,
Maxrch 1O7i.

rt . London, R;L.,_“Correctness'of'a Compiler for a LISP Subset,”
; Proceedings of the ACM Conference on Proving Asseriions About

- Programs, January 1972.
Bg _ London, R.L., "Program Verification {correctness n@oofs}," _
. Software Relisbility Course, Engineering 819.59, UCLA, October 19Th.

London, R.L., "A View of Program Verification," International
Conference on Reliable Software, April 19750

=

-4F

Towe, T.C., "Automatic Segmentation of Cyclic Program Structures
Based on Conmectivity and Processor Timing," Communieations of
the ACM, Januery 1970.

K.
W

Ineas, H.C., Jr., "Synthetic Program Specifications for Per-
formance Evaluetion," Proceedings of 1972 ACM National Conference,
. 1972,

Iucena, C.d., {abstréct only), "4 Methodology for Pradueing Reliable
Software Systems," Proceedings of the 1973 ACM National Conference,

1973.

(R B

_pz:-.::

=3

FRun |

Imckham, D.C., Park, D.M.R., and Paterson, M.S., "On Formalized.
Computer Programs," Jouwrnsl of Computer and Systems Seciences,
June 1970.

i

ﬂmﬂ_ .

Lyneh, W.C., Lenger, J.W,, Schwartz, M.5., "Reliability Experience
with CHI/OS," Internmtionml Conference on Relisble Software,
April 1975.

M

H
Cirerzour

o Iyon, G.E., "Static Languege Analysis," FHational Buresu of Standards,

ﬂﬁ Technical Note T9T, 1973.

. Lyons, T., and Bruno, J., "An Interactive System for Program Verifi-

ﬂg cation,” Proceedings of the Symposium on Computers, Polytechnic

" Institute of Brooklyn, April 19T1l; also Princeton University,
Electrical Engineering Depariment, Report NWo. 91, May 1971.

oy |

Lo "T3 F"

F
¥r

=

5

-~

=

F27

pr—-—
- e’ §




[ )
H]
vt

MecWilliams, W. b}I., "ReIliability of Large Real-Time Control Software", .
IEEE Symposium on Computer Softwere Rellabllltv, Mey 1973. i

Madden, R. L., "Software Accounting and the Havdware Monitor:
Their Marrisge in Performance Analysis", Proceedings of the
1972 ACM Hational Conference, 1972, '

Memne, Z., "The Correctness of Programs", Journel of Compubter n
and System Sciences, Yol. 3, No. 2, May 1969.

Mamna, Z., "Mathematical Theory of Partisl Correctness",
Stanford Uaniversity, Computer Scilence Technical Report, 1970,

3|

frnremm

Manna, Z., and MeCarthy, J., "Properties of Programs and
Pa.rt:ml Function Logie", Machine Intelligence 5, Amern.can ‘ oF
Elsevier Publishing Company, 1970, ' ;

Menna, %,, and Pnuell, A., "Formalization of Froperties of o
Functional Progrems®, Journal of ACM, Vol. 17, No. 3, July 1970. ‘

Menna, Z., and Waldinger, R, J., "Tovard Automatic Program o
Synthesis", Communicstions of the ACM, Vol. 1k, No. 3, March 1571. iy

Menns, %., Ness, S,, and Vuilien, J., ¥Inductive Methods for-
Proving Properties of Programs", Procesdings of the Conference on
Proving Assert:.or.s About Programs, January 18972,

Marshell, J. J., "New Approackes to Documentation and Debugging . ~y
Date Processing, Vol. 1%, 1970. C i

Marting J. J., "Generaslized Structured Programming” , Proceedmga
of the 1974k National Computer Conference, 19'?'!«'r

MeClusky, E. J., Mest snd Diagnosis Procedures for Digi‘ha.l _
Networks", Computer, Vol. 4, No. 1, Januasry - February 1971. - -

McCracken, D. D., "International Confererce on Relisble Sof‘hware 2
Datamation, June 1975, N S

McGeachie, J. S., "Reliability of the Dartmouth Time Sharing .System o . =
IEEE Symposium on Compuber Software Rell a‘bility, May 1973, .:°

McGowen, C., "The Most Recent Error - Its Csuses and Gorz'ection ’ A
Proceedings on the Conference on Proving Assertions About Programs, -
Januery 1972, '

A

ge e
s

MeGowen, C. L.; Kelly, J. R., Top-Down Structured Programming
Techniques, Petrocelli/Charter New York 1975 .

cors)

e

f

McHenty, R, C., "Management Concepts for 'T‘op-Down Structured
Programm:.ng", IBM Corporabion, Fe‘bruary 1873.

gy
Empnoran




-

McKeeman., W. M., "On Preventing Programming Languages From
Interfering with Programming", IEEE Transactions on Seftware
Engineering, Vol. SE~L, No. 1, March 1975.

E=4

ie .

Eﬁ Melton, R. A., "Automatically Translating FORTRAN to IFTRAN",
Computer Science and Statisties: B8th Annual Symposium

v on the Interface, February 1975,

les

: Military Standard, "Technical Reviews snd Audits for Systems,
. Equipment and Computer Programs", Mil-Std-1521 (USAF},
jﬁ September 1972.

Millbrandt, W, W., and Rodriguez-Rosell, "An Intersctive Software
Engineering Tool for Memcry Mansgement snd User Program Evaluation",
Proceedings of the 1974 Nationsl Computer Conference 19Tk,

g—

1

Miller, E. ¥., Jr,, "IFTRANY-Exportable FORTRAN Extension for
Structured Programming", General Research Corporation,

==

Program Validatlon Resesrch Project,
ﬁg Miller, E. F., Jr., "Program Validation: The State-of-the-Art,
i

General Research Corporation, Santa Barbers, California,
August 19T2.

e

s
W

Miller; B. F,, Jr., "Extensions to FORTRAN end Structured Programuing -
An Experiment", General Research Corporation, RM-1608, March 1972.

Miller, E, F,, Jr., "Technology for Automated Verification Systems",
General Research Lorporation, Paper for Aeronsutical Systems
Software  Workshop, 1974,

&89

1t

i Milier, E, F., Jdr,, et.al., "Structurally Based Automatic Program
Testing", EASCON 'TL4, Washington, D. C., October 197k,

B

53 . Miller, E, P., Jr., "Powerd Automated Software Testing: Problems

and Payoffs", Computer Science and Stetisties: B8th Annual
Symposium on the Interfacz, Februury 1975, :

.

-,_.

frpe
o

Miller, E. F,, Jr., "RXVP: An Automated Verification Systen
— for FORT » Computer Science and Statistics: 8th Anpual
Symposium on the Interface, rebruary 1975, '

. Miller, E, P., Jr., Melton, R, A,, "Automsted Generstion of Teat
i Uuse Datasets", International Conference on Reliesble Software,
b - April 1975. ’

e ' Miller, E, Foy Jr., "Experience with RXVP in Verification and
E . Validation", Workshop on Currently Aveilable Test Tooleg:
Technology and Experience, April 1975,

Mills, H. D., "Chief Programmer Teams - Principles and Procedures",
Report FNo. FSC T1-5108, IBM Federal Systems Division, 1971,

s
4

gi

g5y o

F-29

o . o
’ oo f - s L wa . .~ R D s e .
a .4»3 N DR ) p - FUURC R N R A AP LR R DN e e e e L e sl e



Milis, H. D., "Top-Down Programming in Large Systems", Debugging
Techniques in Large Systems, Courant Computer Science Symposittm 1,
NYU {Bditor, R. Rustin), 1971,

Mille, H, D., "Mathematieal Foundations for Structured Programming",
FSC T2-6012, February 1972,

Mills, ‘H, D., "Reading Programs as a Managerial Actiwvity",
Working Paper, March 1972,

Miils, H. D., "On the Development of Large Relisble Progrsus",
May 1973,

Mills, H. D., "The Complexity of Programs", Program Test Methods,
Prentice Hall, 1973,

Mills, H, D., "The New Math of Compubter Programming", Communicetions
of the ACM, Jenvary 1975. '

Mills, H. D., "How to Write Correct Programs and Know It",
Internstionel Conference on Relisble Software, April 1875,

Mittwede, W, C., and Choste, K, P., “O;nera:[:ing System Validation
Testing", Comtre Corporation, AD T2k 71T, January 1971,

Morgen, H. L., "Spelling Correction on Systems Programs®,
Communicationz of the ACM, Februery 1970,

Morris, J. B., "Programming by Semantic Refinement", SIGPLAN Notices,
Vol, 8, No. 9, September 1973,

Mulock, R. B., "A Study of Software Reliablility at the Stanford
Linear Accelerator Center", Stanford University, August 1970,

Mulock, R. B,, "Software Reliability Engineering", Proceedings
of the Annusl Reliability and Maintainability Symposium,
January 1972,

Miyamoto, I,, "Softwere Relisbility in On-ILdin: Real Time
Enviromment", International Conference on Relisble Software,
april 1975.

Moranda, P, B., "Status Report on Software Reliebility Study
for 1971", IRAL* MDAC-West-02-I0T.

Moranda, P. B., and Jelinski, Z., "Softwsre Reliability

Predictions”, Paper submitted to Symposium on Software Relizbility,
April 1975,

Moranda, 2, E.,, "Predictions of Softwzre Relisbility During Dcougzing”

1975 Proceedingszs of the Annual Reliability and Mainteinsbility
Symposium, Jamwery 1975, Weshington, D, C.

30

et A e e ot s e s o s nrien i ke e w L i ol me i L et s -

-

1

rs_,...w.q
N |

o

punamany
[p—"

&
L
;
:

by
e
I

[




‘Moranda, P. B.,"Estimation of & Priori Software Reliability!, .t
; Computer Science and Statisties: Oth Annvel Symposium on the Inter-
l face, February 1975.

[ - Moulin, M., "Utilization du Systeme de Test et D'evslu=ztion de
L Programmes (STEP) Pour l= Mise un Point des Programmes',
Workshop on Currently Available Test Tools: Technology and
Experience, April 1975,

g TR

Myers, G, J,, "Composite Design: The Design of Modular Programs',
TROO,2406, IBM Systems Development Division, Poughkeepsie, NoY.,
Janusry 1973.

.

- F“'3l




S C

Naftaly, S.M., Cohen, M.C., "Test Data Generators and Debugging
Srstems - Workable Quality Control," Part I and II Data Processing
Digest, Vol. 18, Nos. 2 and 3, February - Harch 1972,

Nassi, Y., and Shneiderman, B., "Flowchart Technigues for
Structured Programming,” SIGFLAN. Notiees, Vol. 8, No. 8, Awgust 1973.

Naur, P., "Proof of Algorithms by CGeneral Snapshots,” BIT, Vol. &,
1966,

Naur, P., "An Etperiment on Program Development," BIT, Vel. 12, 1972.

Nealy, P.M., "On Program Control Structure,” Proceedings of the 1973
ACM National Conference, 1973.

Nz, 8.%W., "Mathematical Softwere Testing Activities," Preogram Test
Methods, Prentiee Hall, 1973.

i

1
-
[V

= g
3$
T
I3

J

oA,

pro




e BE

i§
18
)

—

L

1

JRpR—

}-IDSU
ho6.,

haT,

408,

409,

hio,

h11,

Ogdin, J.L., "Designing Reliable Software," Datamation, July 1972.

Ogdin, J.L., "Imnroving Software Relisbility," Detametion,

 January 19T3.

Oliver, P., "COBOL 'T4 ~ Contributions to Structured Programming,
Netional Computer Cunference, May 197k.

Orgass, R.J., "Some Results Concerning Proofs of Statements About
Progrems," Journal of Computer md Systems Sciences, Vol., 4, 19T70.

Osterweil, L.J., and Fosdiek, L.D., "Data Flow Analysis as an Aid
in Documentatlion, Assertion Generation, Velidastion and Error

Detection," Dept. of Uomputer Seience, University of Colorado,
September 19Tk,

Osterweil, L.J., Fosdiek, L.D., Automated Input/Cutput Variable
Clegzgification as an Ald to Validation of FORTRAYN Programs,
Report #CU-~-CS~-037-Th, Dept. of Computer Seience, University of
Colorasde, September 19Tk,

"Osterweil, L.J., Clarke, L., Smith, D.W., "A FORTRAN System for

Flexibie Creation and Accessing of Date Bases," Report #CU-CS052-Th,
Department of Computer Science, University of Colorzdo, August 19Thk.

F-33




L2

Paige, M.R., and Miller, E.F., "Ranking Priorities in Teé‘l‘.ing Computer
Programs,” Proceedings of Computer Systems Design Conference, Industrial
and Scientific Conference Menagement, Inc., Chicago, Illinois, 1972.

Paige, M.R,., and Hiller, E.F., "Methodology for Software Validation -
A Survey of the Literature," General Research Corporation RM-1549,
March 197, .
Prige, M.R., and Falkovich, B.E., "On Testing Programs," IEEE Symposium
on Computer Software Rellability, May 1973.

Park, D., "Fixpoint Induction and Proors of Program Properties,”
Machine Intelligence 5, American Elsevier Publishing Company, 19T0.

Parnes, D.L., "Information Distribution Aspécts of Design Methodology,"

Techales™ deport, Dept., of Computer Science, Carnegie-Mellon University,
Februezy 19TL.

Parnas, D.L., "4 Technique for Software Module Specification with
Example,”" Communications of ACM, Vol. 15, No. 5, May 1972.

Parnas, D.L., "Response to Detected Errors in Well-Structured Programs,"”
Technical Report, Dept. of Computer Science, Carnegie~Mellon University,
July 1972.

f
Pernas, D.L., "On the Criteria to be Used in Decomposing Systems into
Modules," Communications of ACM, December 1972.

Parnas, D.L., "Some Conclusions from sn Experiment in Software
Engineering Techniques,' Proceedings of the FJCC, 1972,

Parnas, D.L., Siewiorek, D.P., "Use of the Concept of Transperency
in the Design of Hierarchically Structured Systems," Technical Report,
Dept. of Computer Science, Carnegie-Mellon University, July 1872.

Parpas, D.L., "The Influence of Software Structure on Reliability,"
International Conference ci Helisble Software, April 1975.

Peters, L., "Managing the Transition to Structured Programming,™
Dgtamation, May 1975.

Pomeroy, J.W., "A Guide to Programming Tools and Technigues," IEM
Systems Journal, Vol. 11, No. 3, 1972,

Poole, P.C., and Waite, W.M., "Portability and Adaptability,"

Advanced Course on Software Engineering, New York: Springer-Verlag,
1973.

Poole, P.C., "Debugging and Testing," Advanced Course on Software
Engineering, Springer-Verlag, New York, 1973.

Popek, G.J., Kline, C.S., "A Verifiasble Protection System," Inter—
national Conference on Reliable Software, April 1075.

F-3h

-

e
[ AU

gt

[
o

s |

[

SR



Presser, L., "Structured Languages," (position paper), Natiomal
Computer Ccnference, May 1975.

Proceedings "Report of the Seventh Anmurl Data and Configuration
Management Workshop," Electronic Industries Association
Engineering Devartment, November 1973,

Prokop, J.5., "On Proving the Correctness of Computer Programs,"
Program Test Methods, Prentice Hall, 1973.

L)

oy

3

J:

 peapen

=
Borawre d

F-35

]

==

e 12 S



RADC, "Programming Support Library Program Specifieations,"
Structured Progremming Series, RADC Report, RADC-TR-TL-300, -
Vol. VI,

Ragland, L.C., "A Verified Program Verifier," Ph.D. Thesis,
University of Texas at Austin, June 1973.

Remamoorthy, C.V., "Discrete Systems Representation and Analysis
by Generating Functions of Abstract Graphs,” IFIP Congress
Symposium, New York, May 1965.

Ramemoorthy, G.V., and Chandy, K.M., "Optimization of Memory
Hierarchies in Multiprogrammed Systems,” Journal of the ACM,
Vol. 17, No. 3, July 1970.

Ramemoorthy, C.V., Meeker, R.E., Sr., Turner, J., "Design and
Construction of sn Automated Softwere FEvalustion System,” IEEE
Symposium on Computer Software Reliability, May 19%3.

Rememoorthy, C.V., and Ho, S.B.F., "Testing Large Software with
Automated Softwere Fvaluation Systems," IEEE Transactions on

- Software Fngineering, Vol. SE-1, No. 1, March 1975, and Inter-
national Conference on Reliable Software, April 1975.

Randell, B., "System Structure for Software Fault Tolerance,"
International Conference on Reliable Software, April 1975.

Rault, J.C., "Design Verification Techniques - A& Review,"
International Conference on Relisble Software, April 1975.

Rault, J.C., "Exteansion of Hardwere Fault Detection Models to
the Verification of Software,” Program Test Methods, Prentice
Hall, 19T73.

Reifer, D.J., "Interim Report on the Aids Inventory Project,!
Technology Division of the Aerospace Corporation, SAMS0-TR-T5-8,
1975.

Reifer, D,J., "Automated Aids for Relisble Software," International
Conference on Reliable Software, April 1975.

Rizza, J., and Hacker, D., "Quality Assurance Inspection and Test
Tools - An Application," Workshop on Currentiy Availsble Program
Testing Tools, Technology and Experience, April 1975.

Robinson, L., "Computer Systems Performance Evaluation (and
Bibliography), IBM, November 1972.

Robinson, L., Levitt, K.N., Neumsnn, P.G., Saxena, A.R.,
"On Attaining Reliable Software for a Secure Operating System,”
International Conference on Reliasble Software, April 1975.

1
A
¢

F-36

o




Rose, C.W,, "LOGOS and the Software Engineer," Proceedings of
the AFTPS 1972 FJCC, 1972.

Ross, D.T., Goodenough, J.B., and Irvine, C.A., "Software
Fngineering: Process, Prineiples and Goals," Computer, May 1975.

Rowe, L.A., Hopwood, M.D., Farber, D.J., "Software Methods for
Achieving Fail-Soft Behavior in the Distributed Computing System,"
IEEE Symposium on Computer Software Reliability, May 1973.

Royce, W.W., "Software Requirements Analysis: Sizing and Costing,"”
Prectical Strategies for Developing Large Software Systems, Addison
Wesley, 1975.

Rubey, R.J., and Dulaee, B., "Software Tools for Certifying Opera-
tional Flight Programs," Leogicon, Ine., 1972.

Rubay, R.J., "New Approaches for Scftware Validation," Waecon T2
Record, 1972.

Rubey, R.J., "Quantitative Aspectz of Software Validation," Inter-
national Conference on Rellable Software, April 1975.

Rustin, R., ed., Debugging Technigques in large Systems, Prentice-
Hall, 1971. '

Ryder, B.G., "The PFORT Verifier," Software Practice and Experience,”
Vol. 4, No. 4, October~December 19Th.

Ryder, B.G., "The PFORT Verifier Users Cuide,” Computing Science
Technicsl Report #12, Bell Laboratories, Murray Hill, Hew Jersey.

F~-37




Sedowski, W.L., and Lozier, D.W., "A Unified Standards Approach
to Algorithm Testing,” Progrem Test Methods, Prentice-Hall, 1973,

Sande, G., "Program Execution Profiles," Computer Seience and
Statisties: 8th Annual Symposium on the Interface, February 1975.

Saxenz., A.R., Bredt, T.H., "A Structured Specification of a
Hierarchical Operating System,” Internmational Conference on
Reliable Software, April 1975.

- Scherr, A.L., "Developing and Testing a Large Frogramming System,
0S/360 Time Share Option," Program Test Methods, Prentice Hall, 1973.

Schick, G.J., and Wolverton, R.W., “Assessment of Software Relisbility,"

Proceedings of German Operations Research Society, September 1972.

Schlender, P., "Anplieation of Disciplined Software Testing," Debugging
Techniques in Lar«e Systems, Prentice-Hall, 1971.

Sehmid, H.A., "On the Use of Interactive Progremming Systems as a Tool
for Structured Program Testing and Development,'” Workshop on Currently
Available Test Tools: Technology and Experience, April 1975.

Schneidewind, N.F., "Analysis of Frror Processes in Computer Sofiware,”
International Conference on Reliable Software, April 1975.

Schwartz, J.T., "An Overview of Bugs," Debugging Techniques in Large
Systems, Prentice Hall, 19T1.

Seegmilier, G., "Definition of Systiems,” Software Engineerinz, HATO
Science Committee, April 19T70.

Severance, D.G., and Merten, A.G., "Performance Fvaluation of File
Organizations Through Modelling," Proceedings of the 1972 ACHM
National Conference, 1972,

L]
Shneiderman, B., "Experimental Testing in Programming Languages,
Stylistic Considerations and Design Technigues," National Computer
Conference, May 1975.

Shooman, M.L., "Probability Models for Software Reliability Prediction,"”

Statistical Computer Performance Evaluation, Academic Press, 1972.

Shooman, M.L., "An Introduction to Software Reliability," IEEE
Symposium on Compubter Softwere Relisbility, May 1973.

Shooman, M.L., "Operational Testing and Software Reliability
Egtimation During Program Development ' IEEE Symposium on Computer
Software Reliadility, May 1973. ‘

Shooman, M.L., "Software Relisbility: Measurement and Models,"

Annual Relisbility and Maintainability Symposium, Washington, D.C.,
1975.

F-38

I s . NI N e s s w  ae PO S SR

-

o
~—

Gh

S
Lok J

P
=X



Bed  fowmd | e

[

!

==

Wihg T e RS B

Shooman, M.L., Bolsky, M.I., "Types, Distribution and Test and
Correction Times Ffor Programming Frrors," International Conference
on Reliable Software, April 1975.

Sintzoff, M., "Caleulating Profiles of Programs by Valuations on
Specific Models," Proceedings of the Conference on Proving Assertions
About Programs, January 19T72.

Sintzoff, M., Van Lansweerde, A., "Constructing Correct and Efficient
Concurrent Programs," International Conference on Relisble Software,
April 1975.

Sites, R., "Clean Termination of Computer Programs,” Ph.D. dissertstionm,
Stenford University, Stanford, California, June 19Tk,

Slcane, N.J.A., "On Finding the Paths Through A Fatwork," Bell System

‘Technieal Journzl, Vol. 51, February 1972,

Smith, R.W., "Measurement of Segment Relationship Execution Frequency,”
TRYW System (#72-4912.30-31), March 1972.

'Snowden, R.A., "Systems for the Preparation and Validastion of Structured

Programs," Program Test Methods, Prentice Hall, 1973,

Standard Date Corporation, "SIMBUG, Integrated Symbolic Debugging
System User Guide," 197k,

Standick, T.A., "Extensibility in Programming Language Design,"
{position paper), Nationsl Computer Conference, May 1975.

Steele, S.A., "Experience with Software Testing Tools for Real Time
Sensor Control System,"” Workshop on Currently Availsble
Test Tools: Technology and Experience, April 1975.

Stevens, W.P., Meyers, G.J., and Constantine,L.L., "Struectured Design,”
TBM Systems Journal, Vol. 13, No. 2, 19Tk,

Stillman, R.B., "FORTRAN Analysis by Simple Transforms,” Computer
Seience and Statisties: 08th Annual Symposium on the Interface,
Pebruary 1975.

Strachey, C.. "The Interaction of Software Engineering and Machine
Structure," The Fourth Generation Infotech, Ltd., 19T1.

Stueki, L.G., "A Prototype Autcmetic Program Testing Tool," FJCC,
December 1972,

Stuekl, L.G., "Automatic Generation of Self-Metriec Software," IEEE
Symposium on Computer Software Reliability, Msy 1973.

Stueki, L.G., and Svegel, N.P., "Software Automated Verification
System Study," MDAC-W Report MDC-G5103, January 197k,

F-39



- —— —— - SRR eSS

Stueki, L.G., "Automated Tools and Techniques Assisting in Software
Develoyment, A Pragmatic Approach to Software Reliability,"
MDAC-V Paper, April 19Th.

Stueki, L.G., "Tools - Lessons Leerned - New Strategies," Computer
Science and Statisties: 8th Annual Symposium on the Interface,
February 1975.

Stueki, L.G., "Statistical Avproaches for Programmers to Applicatlon
Software Verification," Computer Secience and Statisties: 0B8th Annual
Symposium on the Interface, February 1975.

Stueki, L., Foshee, G., "New Assertion Concepts for Self-Metric
Software Validation," Internstional Conference on Reliable Software,
April 1975.

Sudakow, R., "Software Reliability, The Develomment Cycle,"
Logicon, October 1974,

Suliivan, J.E., "Measuring the Complexity of Cemputer Software,"
Mitre Corporation Report No. MTR 2648, Vol. V, November 1973.

Sullivan, J.E., "Extending PL/I for Structured Programming,”
Mitre Corporation Report No. MTR 2353, March 1972.

Supnik, R.M., "Debugging Under Simulation,” Courant Computer Science
Symposium 1, June 1970; Debugging Technligues in ILargz Systems,
Prentice~Hall, 19T71.

Suzuki, N., "Verifying Programs by Algebraic and Logical Reduetion,"
International Conferem:.® on Relisble Software, April 1975.

F-ke

-l

i
B

1 L..i....,} prie

e d

PEErees




.

o

=

=3 B

P
&

|

et

Tatmen, J.C., "Achieving Proper Program Documentation,"” Journal
of System Manegement, Vol. 22, No. 11, November 19T1.

Taylor, S.M., "Loops in Computer Prozrams,” Biologlcal Computer
Laboratory Report 4,3, University of I1linois, October 1970.

Teitelman, W., "Automated Progrsmming - The Prograumer's Assistant,”
Proceedings APIPS 1972 FJCC, 192.

Tenny, T., "Structured Programming in FORTRAN," Detemztion, July 19Th.

Thayer, T., "Understanding Software Througb Empirical Reliebility
Analysis," National Computer Conference, May 19T75.

Topor, R.W., "Interactive Program Verification Using Virtusl Progrems,"

Ph.D. Digsertation, Department of Artificiel Intelligence, University
of Bdinburgh, Edinburgh, Scotland, December 1973.

Treuboth, H., "Guidelines for Documentation of the Secientifie
Software Systems," IEEE Symposium on Cemputer Software Reliability,
Mey 1973.

Trivedi, A.K.. Shooman, M.L.. "A Many State Markow Mcdel for the

Estimation end Prediction of Computer Software Performance Para-
meters," International (onference on Reliable Software, April 1975.

F-41

[ESNENSY R




Univac 90/70, "Program Test System," Hardware ané Software Facts
and Figures, Sperry Rand, 1973. ' ‘ :

3

0
B
e SRR A

5

DS

C.
=

G
ok

[
[iaie

=3

e |
53

3

R e L LN

gue

F-h2




RS BEE  BaW e D e e

Ce e B

ity

£33 &3

=3

=

==

|

[ o |
LR

W

==

l'.

e

-

e

Van Noot, T.J., "System Testing - Taboo Subject," Detamation,
December 15, 1971.

Ver Hoef, E,¥W,, "Autemetic Program Segmentation Based on Boolean
Connectivity," Proceedings of the 8JCC, 1971.

Von Henke, F.¥., and Luckham, D,C., "A Methodolopgy for Verifying
Programs,” International Conference on Relisble Software,
April 1975. '

Vyssotsky, V.A., "Common Sense in Designing Testable Software,"
Program Tect Methods, Prentice Hall, 19T2.

Vyssotsky, V.A., "Large Scele Relisgble Software: Recent Experience
at Bell Labs," Internationsl Conference on Reliszble Software,
April 1975,

F-L3

Dl




Wagner, R.A., "Order-n Correction for Regular Languages, '
Comunicetions of the ACM, Veol. 1T, No. 5, May 19Th.

Wagoner, W.L., "The Final Report on a Software Reliability
Measurement Study,” Report #TOR-00TL (b1ig)-1, Aerospece
Corporation, El Segundo, California, 19?3.

Waldbsum, G., "Evaluating Compubing System Changes by Means of
Regression Models,” lst Annual SIGME Symposium on Measurements
and Evaluetion, 19T73.

Walker, A.W.., "An Interasctive Graphical Debugging System,”
AD T28 Til, Naval Postgraduste School, June 1971.

Walter, K.G., Schaen, S5.I., Ogden, W.F,, Rounds, W.C.,
Shumway, D.G., Schaeffer, D.D., Biba, X.J., Bradshaw, F,T,,
Ames, S.R., end Gilligan, J.M., "Structured Specification
of g Seciurity Kernel," Internstional Conference on Relisble
Software, April 1275.

Walters, J.A., "Computer Aided Test Systems,"” Bendix Corporation,
BDX 613 275, December 1970,

Wasserman, A.X., "Issues in Programming Design ~ An Overview,"
(position paper), Netiomal Computer Confersnce, May 1975.

Weghbreit, B., "Multirle Evalustions in s Extensible Programming
System,” Proceedings of the AFIPS 1972 FJCC, 19T72.

Wegbreit, B., "The Synthesis of Loop Predicates,” Communications
of the ACM, Vol. 16, No. 2, February 197h.

Weinberg, G.M., The Psychology of Computer FProgramming, New York:
Van Nogtrand Reinhold, 1971.

Weinberg, G.M., "The Psychology of Improved Programming Performance,"
Datamation, November 19T72.

Weissman, L., and Stacey, G.M., "An Interface System for Improving
Reliability of Software Systems," IEEE Symposium on Computer
Software Reliability, May 19T73.

Wheeler, D.J., "The Limits of Complexity of Compubter Systems,”
Proceedings of IFIP Congress Tl, Amsterdam: WNorth Holland, 1972.

White, J.R., and Presser, L., "A Tool for Enforcing System Structure,”
Proceedings of the 1973 ACM National Conference, 1973.

Whitten, D.E., 2nd deMaine, P.A.D., "A Mechine and Configuration

Independent FORTRAN: Portzble FORTRAN (PFORTRAN)," IEEE Trene
sactions on Software Engineering, Vol. SE-l, No. 1. March 1975.

F-lih

£y

; .’_';,'.:.:TZ}

F."'.

T con
Lfv:"-'"—rj .

Faii

e

&

B

r
o=

3

e R AP b ek e

B

L

[
| ot

i S e s e

b b e A




£

B3

=3

[

R N S I

==

&=
e

E:-? Y

==

-]

[ epan |

B

|

Willisms, R.D., "Managing the Development of Relisble Software,"
International Conference on Reliable Software, April 1975.

williamson, O0.L., Dorris, ¢.G., Hybert, A.J., and Btraight, W.E.,
"A Softwere Relisbility Program,” Federal ¥lectrie Corporation, 1970.

Wirth, N., "Program Development by Stepwise Refinement," Communi-
cations of the ACM, Vol. 1k, No. 4, April 1971.

Wirth, N., "An Assessment of the Programming Language Pascal,”
International Conference on Reliable Softwrre, April 1975.

Wolverton, R.W., "The Cost of Developing Large Scale Softwars,"
Practiecal Strategies for Develoring Large Software Systems,
Addison-Wesley, 1975.

Wong, P.J., "Application of Decision Theory to the Testing of
large Systems,” IEEE Transactions on Aerospace snd Electronie
Systems, March 1971.

Writtenbrook, W.K., "Testing & PL/I Structured Program,” IBM,

* TR 5k4,.0b1, Decewber 1GT73.

Wulf, W.A., "Programming Without the GOTO0," Informastion
Processing Tl, North Holland Publishing Company, Scftware 1972,

Wulf, W.A., "A Case Against the GOTO," Proceedingzs of the ACM
Wational Conference, 1972,

Wulf, W.A., "ALPHARD: Toward a language to Support Structured

Programs," Carnegie-Mellon University, Pittsburgh, Penn.
April 197k,

Wulf, W.A., "Relisble Hardware - Software Architeeture." Inter-
national Conference on Reliable Software, April 1975.

. F-45



g_— - —— e mren g EREEE . ik - SRm o mEmmm T

Yeu, S.8., and Cheung, R.C., "Design of Seif-Checking Softwasre,”
Internationsal Conference on Reliable Software, April I0T5.

Yelowitz, L., "A Symmetric Top Down Structired Approsch to
Computer Program/Project Development,” IBM, ¥SC 73-5001L, IBM 1973,

Youngberg, E.P., "A Software Testing Control System,” Frogram Test
Methods, Prentice Hall, 1973.

Yourdon, E., "Making the Move to Structured Programming,"”
Datsmation, June 1975.

Yourdon, E., "Symposium on Structured Programming in COBOL,"
Datametion, June 1975.

#2
Lo



By  EEWE

Zahn, C.T., Jr., "Structured Control in Progremming Langueges,"
(position paper), Nmtional Computer Conference, May 1975.

el

1 Ed

£

g B Bar

<

irer o

{‘} F-L7




