
General Disclaimer

One or more of the Following Statements may affect this Document

 This document has been reproduced from the best copy furnished by the

organizational source. It is being released in the interest of making available as

much information as possible.

 This document may contain data, which exceeds the sheet parameters. It was

furnished in this condition by the organizational source and is the best copy

available.

 This document may contain tone-on-tone or color graphs, charts and/or pictures,

which have been reproduced in black and white.

 This document is paginated as submitted by the original source.

 Portions of this document are not fully legible due to the historical nature of some

of the material. However, it is the best reproduction available from the original

submission.

Produced by the NASA Center for Aerospace Information (CASI)

NAd"A K!,

E01.
L N AS A

•
-CR-144769)	 A -METHODOLOGY Foa

^^
PRODUCING RELIABLE' SOFTWA.RE,

VOLUM E I Final N76-29945
RLPOrt (McDonnell-Douglas Astronautic s Co.)228 p HC

CSCL C98	 unclas
G3/61 44527

A WTHO

M{`001VIVEL-9- n0aucN&A.#5 As- "k;ptJA RJYJ <1-11; 40C>/"0=pAmv

^	 MC[70ri1,^E[.,L ^dD^lGL^	 ^_

CORNUNAYJO)W

t

^J

i^

f^!'ClDONleIL^L tZ
I^+U[fC:LA3 •

FINAt. REPORT
A METHODOLOGY FOR PRO©WNG

RELIABLE SOFTWARE

VOLUMEI

{MARCH i976	 141DC 062 10

r•

OTHER CONTRIBUTORS:
AUL MORAwpA
GARYSOSHEE
MARJORIE KIRCHOFF

► `	 ROGER WORE

APPROVED BY':
YGMUN	 I1VSKI

IVIANAGER

COMPUTER SCIENCES

1

PRINCIPAL INVESTIGATOR:

LEON G. STUCK!

PROJECT MANAGER
AUTOMATED VERIFICATION SYSTEMS

WChI70Pd? tZA.1- IlDIOVaLAS A-ST-MaNAril7"14--lIq C0M§:0APdV-,W1FlJjr

5301 Bolsa Avenue, Huntington Beach, CA 9264 7

a
R
Q
[l
D

[l

PREFACE

This report was prepared for Mr. Evmenios Damon, Mission Operations Computing

Division, NASA Goddard Space Flight Center under Contract Number NAS 5-20781.

Requests for further information or assistance will be welcomed by McDonnell

Douglas representatives:

L. G. Stucki, StuOy Manager

Huntington Beach, California

;i
^E

^j CONTEN'T'S
m

75 Volume I

Section 1 INTRODUCTION

1.1	 Study Objective
1.2	 Study Recommendations	 '.
1.3	 Methodology Overview

Section 2 TERMINOLOGY	 ,.

Section 3 SOFTWARE MANAGEMENT TECHNIQUES

3.1	 General
'' 3.2	 Software Documentation

3.3	 Software Control
3.4	 Software Development Organization
3.5	 Project Development Plan

Section 4 SOFTWARE VERIFICATION/VALIDATION - ECHNIQt1ES

4.1	 General
4. 2 	 Requirements Analysis and Feedback
4.3	 Code Analysis and Verification
4.4	 Program Validation
4.5	 Program Certification
4.6	 Reliability Determination	 1

Appendices

A	 See Volume ll

B	 SOFTWARE MODELING

B.1	 Summary
B.2	 Description of Models 	 j>

3 B.3	 Data and Adjuatments	 t>'
B.4	 Estimation of Parameters
B.5	 Quantitative Compaxisons of MTTF Estimates
B.6	 Sensitivity of Estimates

w

:I

- -^!. ^._ _... _

Appendices

C

D

E

P

Volume II

Appendix A

4

i

ii
u

PROGRAM TESTING *c

C.1	 Introduction "f
C.2	 Modularizatiou
C.3 	 Manual. Techniques 1:

CA Automated Tools
M

STRUCTURED PROGRAMMING AND PROGRAM MANAGEMENT
TECHNIQUES

D.1	 Introduction r
D.2	 Current Status of Structured Programming Lg

j-L

'ROVING PROGRAMS CORRECT ^r

E.1	 Introduction
E.2	 informal. Proof Methods
E.3	 Formal Program Proving ;µ

BIBLIOGRAPHY

AUTOMATED VERIFICATION POOLS 	 i

A.l Introduction	 f
A.2 Descriptions of the Automatedl Tools

Tested
A.3 Timing Statistics Obtained from

the Test Runs
A.4 Computer Generated Output from

the Test Runs
A.5 Summary of Test Results
A.6 Recommendations for the Use of

Automated Verification Tools by NASA	 r}
q

I3

n 	 j

^	

gi

p

1	 V

f

1-1

I

E

Section 1

INTRODUCTION

1.1 STUDY OBJECTIVE

The problem of producing reliable software has been with us for a number
of years and yet until recently only portions of the problem have been

6i

	

	 attacked. For example, automated tools for analyzing program structures
have been developed and loudly acclaimed by some while others promote
tools for automated test case generation. The use of a theoretical approach
to the problem has also i^een investigated but at no time has a comprehensive
view of the total problem been taken. The purpose of this study is to
perform for NASA an investigation into the areas having an impact on
producing reliable software including automated verification tools, software
modeling, testing techniques, structured programming and management
techniques. This final report contains the results of this investigation,
analysis of each technique, and the definition of a methodology for pro-
ducing reliable software.

1	 Task I - Automated Verification Tools (Appendix A)

Investigation was made into the existence, availability and
applicability of automated verification cools such as PET,
ATDG, FORTME, etc.

4W

. A comparative analysis was made and relative merits evaluated.

Recommendations regarding development of new tools and modifi-
cations of the existing tools for NASA applications are
included.

Task II _ Software Modeling__(Appendix B)

Evaluation of the existing approaches to software modeling
was made. The practical application of statistical 'techniques
to software quality measurement was assessed.

Correlation between programming structures and figure-of-merit
indexes is considered among the major recommendations for
future research.

l-2 LI

t

i

i	 }

F

}

i

}	 j

h	 ^

_r

`	 Task III. - Pro am Testing (A eud,ix. C)

Testing techniques currently available were eva.,-luated.

Problems of test case design were considered.
k

Techniques for test design and optimization in relation to
cost and software reliability are recommended for future
research.

Task TV -- Structures_ Programming (AUendix D)

State-of-the-art structured programming applications were
studied with specific consideration of higher level
languages suitability to structured programming.

Task V - Program Management Techniques (Appendix D)

Chief Programmer Techniques and Computer Program Management
Techniques were studied and comparative analyses are made.

Task VI - Proving Program5_Cprrect (Appendix E)

i	 . A review of literature on the techniques of Proving Program
orrectness was made. A glossary of terms with relevance
to Software Reliability was developed. Techniques which
may be applicable to Test Case Selection will be identified.

Final R{ port - Overview

This final report contains: an evaluation and assessment of the practic-
ability of each available technique, a description of a methodology for
producing reliable software., suggestions for automating portions
of the methodology, and a comprenensive bibliography.

}

L .i'	 ^	 p

^kb.

t

1

i

i
r	 1

j

E

j	 3
1	 .,

a

j	

1.2 STUDY RECOMMENDATIONS

In surveying the various tools and techniques currently being used or
developed for producing more reliable software, one quickly realizes
the need for an overall methodology. A great deal of work has been put

' t
	

into various tools promising increased software reliability. At the
same time a few well known individuals have been espousing the
belief that by applying certain management and organization, concepts
programmers will produce error free programs. Despite these sometimes

_	 inflated claims, both the tool builders and the organization advocates
1 have made positive contributions towards achieving more reliable

q	 software systems. However, it is now quite clear that an integrated method-

94;..!	 ology including sound organizational concepts and procedures with complemen-
t .	terry support from automated tools offers an improvement.

With this philosophy in mind, this final report attempts to present an
overall methodology for producing reliable software. fools are incorporated
into this methodology at numerous points. A series of appendices contain
a significant amount of data on currently available tools and techniques.

The test tool survey contained in Appendix A is a "first". It is the
first time that an attempt has been made at comparing a number of
currently available tools and providing the reader with a means of
examining the capabilities of all of the tools. A number of obvious
omissions can be observed due to the reluctance of some tool builders
to include their tools in such a survey. One very definite recommendation
of this study is to expand this survey to include additional tools.
Another area suggesting more research is the development of more meaningful
measures for comparing the cost and performance associated with the use
various tools.

With respect to the types of tools currently available, it is strongly
recommended that static analyzer tools and dynamic execution analyzer
tools be incorporated into a facility's general support software.
These tools should be made available for general use and in connection
with the suggested methodology contained in this report.

Two distinct areas of research mentioned in this report appear very promising
with regard to tools. Appendix C describes the use of an embedded assertion
language for bridging the gap between requirements specification and the
functional testing of those specifications. This approach promises to
make a major impact on the actual programming process. Appendix C also
contains an interesting look into a promising means for rigidly examining
various properties of a program and thereafter being able to informally
prove the correspoadinZ _orrectness of the selected properties. Additional
research in these a.:eas can lead to more powerful tools in the future.

Software modeling is another research area demanding additional effort.
In particular, the refinement of error data collection process, the assoc-
iation of the error data with the original source of the anomaly, and
the correlation of the degree of testing applied to a module of software
and the number of errors associated with that module constitute ongoing
research topics.

1-11

r

-1

nn

u:a

i

I

4 I

1!

1.3	 METHODOLOGY OVERVIEW

In most systems being developed today, the quality of the software is often
the limiting factor of the total system duality. 	 Rigorous quality assurance E':
disciplines have been imposed on hardware for many years resulting in
highly reliable hardware. 	 These same disciplines imposed on the software
have not achieved reliability of the software because, with the state--of- a

the-art tools, software cannot be tested as rigorously as hardware. I
Most often the end product is still less than satisfactory.

The problem is often the result of several factors: ;E

quality assuring activities are imposed late in the development u„
cycle F	 a

quality assuring activities are treated as unrelated activities
L' V

quality assuring activities are not always the first concern 4`
of the software builder.

In the normal course of software development, the initial requirements
analysis and development specifications are both incomplete and conflicting.
If the inadequacies are not discovered and corrected, they are incoraorated
into the design. The poor design is then implemented. in code. The problems
are not detected until the testing phase which reveals the need for changes
to the detailed design which in turn may cause changes in the requirements.
This recognition of the problem late in the development cycle results in
software redesign that is often difficult to incorporate into existing work,
causing costly overruns.

Ideally, this iterative interaction of error detection and correction should
be confined to successive phases. When this is true, the goal of ensuring
the completeness of the requirements is pursued during the design phase.
The requirements then should be completely and accurately defined and
under formal controls by the time testing begins.

The achievement of quality r^-`'ftware can be promoted by the application of
a methodology that imposes quality producing activities on the
development cycle.

This methodology consists of three interdependent sets of techniques:

1) software production techniques
2) software verification/validation techniques
3) software management techniques

3

1-4

I

top down development	 or gOUA
,11

structured programming'
use of a program design language (PAL)	 r`
use of tools such as compiler writers, meta-assemblers and	 f:^ ?
language preprocessors where applicable.

Software production techniques include such items as:
SAGE 18LOGN.

I	 l	 I	 I	 I	 1	 i

Software verification /validation.techniques include such direct activities
as:

requirements analysis and feedback
an assertion methodology for placing specification checks.within the code

	

r..	 code verification using walk throughs, standards checkers,.
execution analyzers, flowpath analyzers and debugging aids.
program validation by module, acceptance and system integration
testing.
program certification

Software management techniques are the means by which the development is
ordered and controlled, and by which visibility is provided into the
status of progress and quality of the software development. These
techniques include:

-configuration management

	

y	 . program library control
. use of stringent documentation standards

However, the presence of these activities does not in itself assure that
quality will be achieved. The decisions on when to begin an activity
and on the degree of the discipline with which it will be performed are
crucial. Decisions that shape the project have an increasing influence
on the development cycle as it progresses. When quality considerations
are delayed in the development cycle as shown in Figure 1-1, their
influence is limited. By the time coding and testing have started and
project members are concerned with product quality, their efforts to
achieve that quality are often restricted by past decisions.

Figure 1-2 shows the effect of including quality considerations in the
criteria for the software decisions in all phases of development, so that
each phase contributes to the quality goal. Since the development of a
software system is basically a human activity, it is imperative that
information about the deveopment is constantly and clearly fed hack to the
developer and the user right from the beginning.

The immediate imposition of standards to assure quality documentation
provides confidence that the intent of the documents is accurately
communicated to those who must rely on those documents.

Early review and analysis of specifications allows early decisions on
redesign so that changes are preventive rather than curative. The test
and evaluation function begins with specification analysis and constantly
impacts all phases. Early considerations of requirements testability
reduces likelihood of costly impacts in the later phases of development.

The early determination of requirements for production and verification
tools allows time for them, to be -procured (built, purchased or leased)
and checked out before they are needed. Reliability measurement definitions
at an early stage. dictate the data to be collected and applied during'
development.

1--5

SYSTEM	 SOFTWARE
REQUIRE-- REQUIRE-
MENTS	 MENTS

PP,ELIM- DETAILED
INARY	 DESIGN
DESIGN

CODE (VER/VAL NAINTEN-
AND	 ANCE
DEBUG

SOFTWARE PRODUCTION TECHNIQUES
TOP--DOWN DEVELOPMENT
STRUCTURED PROGRAMMING
DEVELOPMENT TOOLS

SOFTWAARE VERIFICATION/
VALIDATION TECHNIQUES

j'	 RDQUT.REMENTS ANALYSIS
AND.FEEDBACK

AUTOMATED VERIFICATION TOOLS
PROGRAM VERIFICATION/VALIDATION

SOFTWARE MANAGEMENT TECHNIQUES
CON:rIGURATION MANAGE14ENT
PROGRAM LIBRARY CONTROL
DOCUMENTATION STANDARDS CONTROL

D7b

D
Fld	 Figure 1-2
p	 EFFECT OF EARLY QUALITY CONSIDERATIONS

h _i

7

Configuration management and program library control processes instituted
early reduce confusion in the detailed design and coding phases and -.
allow development to progress in an orderly fashion.

The traditional approach to software quality assurance has been to have
the duality functions such as testing, configuration, management and

`	 program library control be performed by the software builder. 	 There a

are several inherent disadvantages to this approach. 	 The most obvious
.I,	 disadvantages are the development priority structure of the builder,

which is different than the priorities of an independent evaluator, and
the use of personnel to whom the quality assurance functions are of
secondary interest.

Independent evaluation and monitoring provides an unbiased and effectual
approach to software quality assurance. 	 This assurance can be

is	 provided by imposing a quality producing methodology for controlling w
and validating the software at every stage of its development. .

The functions required to achieve reliable software must be viewed as
totally interrelated functions.	 The system cannot be used with confidence -j

unti.. it is well tested. 	 It cannot be well tested without a comprehensive
analysis of the requirments.	 The verification of requirements using
test tools cannot be performed adequately without well checked out tools
which must be identified in the requirements stage. 	 The testing also is
virtually meaningless without assurance of the integrity of the program
library, which depends to a large extent on the effectiveness of the
configuration management of the software. 	 And finally, good documentation :!
is required to provide feedback, visibility and assurance that these
functions are effectively implemented.

The formulation of a methodology to produce reliable software for NASA
Goddard considers the interrelationship of quality producing functions,
the decisions that cause the imposition of these functions at the proper
time, and the enforcement of the standards and controls that maintain
the benefits of each function.

j;

h

£i

7

v fi	 ii^

1

w	 ..	 Y^
_

I

I

;f.

	

a	 Section 2	 {

TERMINOLOGY

;l

Throughout the literature bearing on the subject of reliable software, there

	

s' t•5	 is considerable disagreement on the meaning of several key terms. "'o 	 =t
provide a cons'.stent base for understanding this document, the following
definitions have been selected for these terms. Although the list may
appear to be elementary, it'is intended to eliminate some of the ambiguity
of meaning.

	

t	 Software	 -	 the computer programs with their associated

t

	

;, {	 Software quality

Software reliability --

s
t

..l

Verification	 -

i
I

Validation

2-1

data bases, job control language and documen-
tation.

the set of properties of the software that
characterize how well it works, how easy it
is to use, and how easy it is to maintain. f=.

(definition by Schick and Wolvertonl} "the
probability that the applications program,
together with its supervisory program, data .?
bases, and computing environment will perform
its intended functions at the time when those j

functions are needed by the customer".

The process by which the set of specifications
and/or axioms describing the nature of a problem
and its environment are checked for completeness,
consistency, and systematically compared with
the resulting software representation.
Verification addresses functional correctness
and usually involves a great deal of manual
effort.	 Automation of some of the comparative
and analytical functions are currently being
researched.

The process of inspecting software behavior
in the operational environment (i.e., hardware,
software, data sources, mast-machine interface)
and determining that the software will in fact
perform its proper function. 	 While verification
attempts to build convincing arguments for the
"correct" representation of a problem, validation
addresses the questions:

a..

s!s
	

D;

•	 ^7

{

V' W

I	 _L____ I	 I	 1	 l __	 i	 I

1) Is the software really solving the right problem?

2) From an operational point of view is the
software useable?

Debugging;	 -	 the process of finding and correcting errors that
are syntactic or structural in nature (not
specifically associated with the verification and
validation of basic program functions; and
that prevent successful execution of the software.

Development testing -	 confirmation by the programmer that a completed
software module performs as intended using a
trivial test case. It is an informal test
carried out in the software configuration
currently being developed.

Unit testing	 -	 generally synonomous with development testing.

Module testing	 -	 confirmation that a completed module performs
as intended when subjected to a comprehensive
set of test cases in the software configuration
currently being developed.

Integration testing 	 confirmation that a total hardware/software system
performs as intended when the entire system
is executQd in a test environment.

Operational testing -	 the process of validating the system by exercising
it for a given period of time in a user
environment, using test procedures designed to
exercise it comprehensively.

Acceptance testing --	 the testing performed with a set of test cases
designed to verify that the completed system
performs in accordance with specified acceptance
criteria.

77

•F

Baseline testing	 -	 confirmation that a completed system continues
to meet the critical requirements during
maintenance of the software. The test
cases used are designed to exercise all software
critical to the system performance.

Program Proving	 -	 The set of formal mathematical and informal
quasi-mathematical techniques, often semi--automated,
for checking the consistency of program specifications,
axioms, and program code. Program proving is often
equated with verification in academic circles.
For purposes of this study, however, verification
will be defined to include program proving
techniques together with other less mathematically
rigorous techniques for checking consistency and
com2leteness.

2­2
	 I

^.

z ^

^..

^r 	;

..w w

\ /

\ Certifica ion

} ^ ^

»

). .	 ..

/\(
Reference.

\ (l/	 G, J. Se»
\	 \ . P oca it

^"\ ^
\	

»

/ (
^: a
^^(

<\{
..:.	 §

.y \

\\{

\	 ^\

_^^ ^	 ©

-	 \

^ ^ ^`^

^^	
<<

»

:: «»^^« ° © :a «?«^°

i	 I	 I	 1__ I	 I_:

Section 3

SOFTWARE MANAGEMENT TECHNIQUES

3,1 GENERAL

The effective management of software development is of primary importance in
producing reliable software. There are several techniques that Xill provide
the controls that help guarantee orderly and efficient development.

Most of these techniques are used in some form at NASA Goddard. This.section
discusses enhancements of the techniques currently used that may offer
greater visibility and more reliability.

The Programmer's Reference Manual provides standards and conventions for pro-
gramming and documentation to ensure consistency of the product. It provides
information to the programmer about the use of the system hardware and soft-
ware that is installation-n-culiar,.and includes the detailed use of procedures
that maintain control of configured libraries.

It also contains the procedures for designing effective development tests to
be performed by the programmer.

Configuration management is discussed in relation to NASA's current procedures.
A technique for maintaining automatic configuration status is 'offered using
tools that 'vill allow trapeability of changes to the statement level. The
capabilities 'of this tpe of tool include those already existing in the up-
dating program used by NASA Goddard. The enhancements that provide the addi-
tional capabilities are described in detail in this section.

The establishment, updating, release, and maintenance of controlled libraries
are affected by the techniques that affect configuration management. While
the program library control and configu^ation'management-are discussed separ-
ately, they are interdependent.

The discussion of the software development organization stresses the use of
two techniques: 1)'independent analysis, review, testing and evaluations
and 2). the.team approach to software development.

The last paragraphs discuss some techniques that help in organizing and'
measuring •the development of the project.. The selection of tools and
techniques and the appropriate time to apply these tools and techniques
are part of establishing the goals for project development. These tools
and techniques are used both in the software production and software veri-
ficatioa/validation areas.

3=1

1
3.2 SOFTWARE DOCUMENTATION

3.2.1 Programmer's Reference Manual

The programmer's reference manual contains the information a programmer
needs to know about the environment in which he must work that is facility
oriented. The purpose of this ma,4ual is to supplement information supplied
in vendor manuals. The programmer's reference manual serves several functions.

1. It provides information about the resources available within the
computer facility. These resources include the hardware configur-
ation, the utility libraries, and the computer room and scheduling
operations.,

2. It contains the standards and conventions to be followed to insure
standardization and completeness of the finished software projects.
This includes programming standards and conventions, and documents-
tion standards. L

3. It prescribes the procedures to be followed in using the working
and controlled libraries, and the procedures for installing new
and modified code in a controlled environment.

4. It describes the recommended tools, and techniques to be used in
checking	 ut the code.	 This includes debuggingg	 gging aids, static and Mfg
dynamic analysis tools, and development test techniques.

NASA Goddard has published a software standards guide to be used by in-house
and contractor personnel using the IBM 360 facility.	 This d^current contains
some of the information that should be present in a programmer's reference
manual. This methodology recommends other information for inclusion. j

^a

1. Software Development Notebooks should be used and maintained by
the programmer and the librarian. 	 This technique is discussed'
in detail in Section 3.2.2.

2. Top--Down Development is a design technique to be used for organizing^
-the development of a system. It is discussed in detail in Appendix D.

3. Tools and technicues are available that will aid. FORTRAN code to be 	 ^w
structured. These tools - and techniques are discussed in detail in
Appendix D.	 LJ

4. The use of software production, testing, and documentation tools
should be included. Candidate tools are discussed in Appendix A.

11.
3-2	

1

1!

r

It"

Pi

5. The programmer's reference manual should contain a section out-
lining the procedures to be followed to insure that a meaningful
development test has been designed and performed. Development
testing is discussed in detail in Section 4.3.1.

6. The development and maintenance of a well-controlled software
system requires that the programmer understand how to effectively
use the working and controlled libraries containing the system
being developed or in operation. Program library control is
discussed in Section 3.3.

7. This methodology recommends the team approach to program develop-
ment. The responsibilities of each member of the team and his
interfacing requirements should be included in the programmer's
reference manual. The team approach to program development is
discussed in Appendix D.

3.2.2 Software Development Notebooks

The use of Software Development Notebooks forces attcation to every aspect
of the development of software routines. The notebocOL provides a guide
to and a record of specific programming activities ank is used to assist
in program documentation.

The notebook concept has been implemented at MAC and TRW for the Site
Defense Program (DSP) software development with a great deal of success.
TRW calls the notebook "Unit Development Folder" (UDF).

R. D. Williams describes the advantages of using their UDF as more than
being a collection point for all pertinent development and test information.
It ensures that documentation is updated as part of the development activity.
It serves as a tool to help foresee impending difficulty in time to avoid
it. It helps in obtaining meaningful estimates through direct involvement
of project personnel in scheduling their own work, in accomplishing con-
tinuous mor'to3ring and accurate reporting, in avoiding a proliferation of
phantom problems described by Brooks 5 , and in making ef'f'ective use of
time in updating plans or initiating corrective action at a time when it
can do the most good.

3.2.2.1 Software Development Notebook Standards

A Software Development Notebook should comply with the following standards:

• Each module developed requires a notebook.

• Initially, each notebook will be assigned to one programmer.

• In late stages of program development, more than one programmer
may have simultaneous responsibility for a notebook (module).

• A programmer may have simultaneous responsibility for more than
one notebook.

S:	
3-3

Changes to items 1-5 (see Figure 3-1) of a notebook at any time
• requires authorized approval.

• Changes to all other items in a software notebook after the
routine has been placed in a controlled library requires
authorized approval.

3.2.2.2 Software Development Notebook Contents

Figure 3-1 shows the cover sheet of a sample software development notebook.

Due	 Date
Date	 Completed	 Originator Reviewe7

1.	 Requirements Specification

26	 Design Description

3.	 Functional Flora Chart

4.	 Interface Description

5.	 Assumptions and Constraints

6.	 Module Code

7.	 Development Test Case
Descriptions

I 8.	 Review of Development Test
Cases

i9.	 Test Case Results

10. Detailed Flow Chart

11. Updated Design Description

12. Program Library Control

13.Di.screpancy Report File

14. Sign-off Completed Routine

Figure 3-1. Develoume

3-5

1.	 Requirements Specification this is the written material that de--
scribes the requirements on the
routine; it tells what the routine
shall do and how well it must do it.

k

2.	 Design Description This is an English language descrip-
tion of how the routine shall perform.
It is a description of the design
that is being proposed to satisfy
the requirements specification of 1

r above.

3.	 P ,uctional Flowchart A flow diagram of the design described
in 2 above.

4.	 Interface Definition A list of all externally provided
inputs and all generated output destined
for use by other routines.

^Û̂̂ 5.	 Assumptions and Constraints A description of how the routine is
invoked, how the called routines are
used, the timing constraints, estimated
core requirements and any unique con-
ditions or assumptions associated
with the routine.

6.	 Module Code The initial routine code (a _listing)
which will be updated throughout the
development period and which will keep
pace with the code throughout its
development.

7. Development Test Case	 A description of all development test
Descriptions	 cases which are to be used to checkout

the routine and the results that can
be expected from these test cases.
Testing should be based upon both the
functional capabilities list and the
requirements specification of 1
above. Expected test case results
will be included in the folder in
advance of running tk tests.

1

ij
:.3

[1

t

1	 y

t	 f

Table 3-1
r

DEVELOPMENT NOTEBOOK CONTENTS (Continued)

An engineering review (by someone other ^g8.	 Code and Test Case Review
than the developer) to determine k._y
that the routine code will perform
as defined in 1 above and that the
proposed test cases do satisfactorily a	 j
demonstrate this capability.	 This
review is held in advance of actual }
testing. '1

33 ^

9.	 Test Case Results A compilation of all test case
results to demonstrate that the j
routine is debugged and that routine
development testing is complete. i
A listing of the debugged routine
is to be included, i

10. Detailed Flow Diagram One which thoroughly details the
i

delivered routine.
:..^

11. Updating Design. Description An updated/revised item 2 (corres-
ponding to item 10 above). r1

i

12. Program Library Control The point at which the completed code
is entered into the controlled
library.	 This is at the completion
of the development testing, after i
the code and test case review.

13. Discrepancy Report File Copies of every discrepancy report :!
that required modification of the
routine, or its documentation. 	 They
are added as they are resolved.

14. Sign-off Completed Routine A formal acknowledgement that the
F

routine is accepted for installation.
For both new and modified systems,
this is after formal qualification
test, at the time the system is

released for operation by Release :.{
Control.

3-6

f

3.2.2.3 Establishing, Maintaining and Using the Notebook
K.*I

The procedure for preparing and using the notebook is as follows:

1. The routines are assigned with a budget allocation and final
delivery date.	 The appropriate reviews are then allocated.

2_ Each routine assigned to a programmer/analyst has its own
notebook with a cover sheet. 	 At the time of assignment
the programmer negotiates his final date.	 Any schedule
discrepa,iicies are resolved and the resolved final date
is entered opposite the item on the notebook cover sheet,
"Updated Design Description" (see Figure 3-1).

3. The programmer is then required to plan his activity and !.
schedule the various other items on the cover sheet. 	 His
supervisors now have incremental visibility into all the
development steps of the software development activity.

i	 4. The notebooks are always kept in one of two	 laces	 a fileY	 P	 p
in the programming office area or the programmer's desk.

' If on the programmer's desk, then they will be signed out s	 s
from the manager's file.

5. The notebooks will be available for review by authorized
' personnel at any time that they are not in use by the

. programmer.

b. The programmer has the responsibility to update the cover of
the notebook to reflect the current status of its contents.
The programming manager has the responsibility to review the

jcontents and approve the cover sheet.

3.3	 SOFTWARE CONTROL
j

Software control is achieved by the implementation of three interrelated
j	 disciplines.

1. Configuration management which is the -day-to-day monitoring and
control of the computer program configuration items (CPCI's) of

j which a system is composed. 	 These items include the computer

t
program and the associated documentation.

2. Release Control which is the process of closing out and turning over
v` the software and related documentation. 	 So,ftwaxe that is released

consists of the computer program (source and object code) and
supporting computer listings.	 The related documentation consists
of the functional and detailed specifications and the User's
Manuals.	 Each release establishes a new baseline for the product
against which future modifications are made.

3i.

r!A

3-7

J	

^^' !

ri

1-	I	 _J	 I	 l __ i_

3. Program library control which is the process of establishing and
maintaining a program library in which every statement is
known, documented and traceable to the justification for its
existence. zt forms the basis for the configuration management
of the code, the testability of the code, and the assurance that
the integrity of released code is achieved.

The following paragraphs discuss these disciplines in reverse order.

3.3.1 Program Library Control

GSFC currently maintains three types of program libraries requiring control.

1. A permanent, distributable library containing all programs
developed at GSFC.

2. On--line libraries containing source code, load modules, data bases,
etc., of operational on-lane systems.

3. A source and document library setup for developing large pieces of
software.

The first two libraries contain, only completed code already released. The
third library is established and used during development.

This methodology discusses the recommended system for program library control
that builds upon the system currently used at GSFC. It is supported by a
tool that performs the functions that are performed by the utility in use
at GSFC to automatically update and compile the programs,.but in addition
maintains the configuration status of the software and provides traceability
of each statement back to the justification for its existence. One such
tool has been developed for the HQ Space and Missile Organization. (SAMSO)
at Los Angeles and could be made available for use at GSFC.

3.3.1.1 Working Libraries and Controlled Libraries

During the development of a system, the necessity to continually work with
existing baselined code requires the co-existence of working and controlled
libraries. With the implementation of top-down development, this as true
even with systems for which the greatest part is stall in the form of
dummy stubs.

The establishment of a controlled library consists of defining each routine,
macro, data base segment, etc., as a configured item, assigning unique names
and configuration identifiers, initializing the release and modification
number of the tested code, and creating a permanent, protected library.
Once the code is placed on the controlled library, it is established as
baselined. Master and critical copies of the baselined code are created.

E
;E

3.-S

At

A1}.

The use of the recommended update/compile program allows programmers to
easily create working libraries for the development and debugging of
new program segments or modifications to existing program segments.

f

^- Selected parts of the baselined.source may be copied, updated and stored
in a working library, either from TS4. or from card decks. 	 The listing

-- provided by the update program should contain the configuration status
information and identify the source of justification for the code (e.g.,

F problem reports or design specs).

The programmer is Forced to be aware of the version of the code with which
he is working. 	 He must input the current configuration revision symbol
and is r.Aurned an error message if it is incorrect. 	 This helps insure
that he is not updating a different set of code than he thinks he is.

A parallel copy of the base_lined library is maintained by a central group
r whose z''un.ction is to maintain decks, memos, documentation, etc., and serve

as the focal point for information about the program status.	 This library
should be controlled to the extent that all changes and additions must be
reviewed and approved before entry, documented both internally and externally, 	 j
the configuration status maintained, and indepth testing performed against
a known configuration.

The programmer's private working library is uncontrolled.	 The update pro-
gram allows him to easily create a new file for new code or to copy into
a Working data set the code to be modified. 	 He may then develop his code,
debug the affected routines, link the new routines to the parallel system,
perform development tests, and execute against a benchmark test without

-i - disturbing the basic system.	 -'

Control begins when the new approved code is placed into the parallel
library.

At the point of making a formal modification and release, the current pro-
cedure is to freeze the update in the parallel library, test the frozen

+'
Fi

system, and when accepted, the new library is renamed and placed into
ii operation.

If the changes are significant in number and/or complexity, it is recommended
that the new system be completely rebuilt at the time of the update freeze.
This means that the old system is copied to a new library, and all changes
(including new and deleted routines) are made at one time to this library.
This insures that every line of code in the new library is known, accounted
for, and justified.	 It removes the possibility of a change of code being
made that is undocumented or unjustified. 	 The update program places all

i of the changes for a mod into a mod packet and writes them into a file on
the end of the tape containing the updated source. 	 This way, every change
making up a modification is permanently stored in a readily retrievable
form.	 In addition to the advantage of maintaining this record for historical
purposes, it allows easy reconstruction of a, change that must be backed
out if an error is found after the formal mod is made.

i
E

3--9

Ai

3-

3.3.1.2	 Release Control
Fr

The release of a controlled system implies that it has been rigorously
„̀k tested, completely documented, its configuration confirmed, all approvals

have been obtained, and a master copy of . the system (in both source and
object form) placed in. bond by a quality assurance organization. t,

The release function forma`_izes the installation of a new or modified
system.	 It assures. that the catalogued procedures. are updated t o reflect.

j the new release, thereby minimizing the '.nadvertant use of a prior library
_± when future changes are to be made or tests . are to be performed.

' The release control Lanction is.. also concerned- . with.proteetion.of the
operational; system. 	 Release control personnel should. be the only
personnel authorized to obtain a master copy of the system from Q.A.
bond and restore the syste% onli-pe.

A Data Release Authorization is	 ssued at the time of release and identi-
S fies the following:

1.	 Sequence number of release items
L^

2.	 Mnemonic name of volume or document number `,	 r
3.	 Current revision number
4.	 Security classification
5.	 Volume nutaber, e.g., tape reel. number
6.	 Program identification number
7.	 Next higher level of program L
8.	 Responsible signatures

' 3.3.2	 Configuration Management

Software configuration management is the day to-day . monitoring and control
of the computer program configuration items (CPCI's) of which the system
is composed.	 These items include the computer programs and the associated
documentation.

The normal configuration management discipline is applied to the software.
This discipline consists of four functions:

configuration identificati,
configuration change control
configuration status accounting
configuration audit

t
3.3.2.1 Configuration Identification	 ' J

Configuration identification is a system of computer program, identification 	 3
numbers and document identification numbers that will identify all config-
urable items.

The configuration of a computer program should be documented in the specifi-
cations. The required configuration is idert -4i.fied in the design specifica-
tion, and the achieved configuration is identified in the post development 	 y
documentation.

it
3-10

I±

Identification of the configurable software items for use with (or without)
471

y

the update/compilation program consists of a comprehensive identification
IT scheme.	 The following example shows one proposed method for accomplishing

this goal:

System	 - A one to eight character name followed by a
one character release number and one character
modification number.

'- Programs	 - A filename of one to eight characters defining
a file of one or more card decks.

A deckname of one to eight characters defining
a deck containing a subroutine, macro, data base,
etc.

A revision symbol of two characters beginning with
AA.

Listings show the same configuration idectifica--
'J Lion as the programs.

Documents -	 A one to eight character program document identifier
followed by a two character revision symbol.

Documents to be assigned configuration identification numbers include:

• Part I CPCI (Functional) Specification
• Part II CPCI (Detailed Design) Specification
• Interface Specification
• Software Development Notebooks

3.3.2.2 Configuration Change Control

Configuration Change Control applies to alI changes to configured software
and documentation after the configured items are initially released.

All proposed changes to approved baselines are assessed, reviewed, and
evaluated by the Change Control Board (CCB). The CCB is composed of
representatives of the Design Group..

Actions by the CCB include verifying compliance with contractual require-
ments and assuring the identification, evaluation and consideration of the
technical reasons for the change(s). The CCB guarantees that only those
changes for which a requirement exists, or which offer a significant
benefit -to the program, are initiated. Members of the CCB determine the
impact that proposed changes will have in the areas of cost, production,
reliability, maintainability, producibility, logistical support and
specifications.

1

3-11

Proposed changes are evaluated as they are proposed. 	 The changes to be
incorporated are recorded and collected together until the update t
freeze before the formal mod.	 At that time all incorporated changes t,.
are submitted as a unit to the CCB for final approval. .:

Iy

Proposed changes are initiated on a software problem report. 	 The soft-
ware modification report records the fix cr improvement that was made.;:
An engineering change proposal is used to formally submit the collected
changes to the CCB for final. approval.. 	 A specification change notice is #':g
used to record changes to specifications. =^"

The CCB meets on a periodic basis or when a major change or improvement
must be evaluated. 	 These meetings are supplemented with separate
individual meetings for review and action on individual problems that
must be addressed.

Minutes of CCB meetings contain the transactions and assigned action F
items.	 They are not authorizations for changes, but are for historical
and administrative purposes. rn

^j

The problem reports being reviewed and any instruction for their disposi-
tion are attached to the minutes, signed by the CCB chairman, and distri-
buted to all CCB members plus any others affected by the decisions. 	

A^

All proposed changes must be addressed by the CCB. The decision to implement
or not implement the change is made and recorded. The responsibility
for investigating any unresolved changes is assigned by the CCB to a
person who will obtain the information necessary for a decision to made.

Changes procedures apply to documentation as well as code.

3.3.2.3 Configuration Status Accounting

Configuration status accounting is the recording and reporting of the
status of the system's configuration. The purpose is to know exactly
what the current configuration is, and how it was achieved.

Configuration status accounting includes reporting and recording:

the initial configuration identification
the proposed changes to the configuration
all approved changes to the configuration

As the initial configuration identification is updated, records are main-.;
twined that provide traceability of sof:ware problems or improvements

'	 from -their inception through the corrective action to their incorporation 	 "T'into the existing system,	 f

Status accounting applies to all controlled program documentation, the
software development notebooks, and the code. Logs are maintained on	 r 3
the receipt, identification and disposition of all change forms. These
inclade software problem reports, engineering change requests and
sp:.:cification change notices.

	

Is>i4	 t ^

3-12	 }

Eil

'`L

p

Fjj'
F]

G

c

u

Status reports are published periodically. The information is retrieved
automatically by report generators from the files maintained on a mess
storage volume.

Other files contain the:

history of all revisions and changes to each specification
history and content of all problem reports

The status reports contain:

history and status of specificaticn changes
summary of the status of all problem reports 	 i
acted upon by the CCB, :including disposition
and schedule of change.
status of any individual status report
listing of the current computer program. configuration

The above status reports can be obtained in a number of formats using
various sorting criteria. This provides optimum visibility in any
desired area.

3.3.2.4 Configuration Audit

Configuration audit consists of

1. a series of reviews of the requirements, the design, and the
final baseline qualification, and

2. an audit of the functional and physical configuration of the
system.

The purpose of the specification reviews is to confirm the presence of the
information, clearly and accurately stated, necessary to develop the software
that meets the requirements. Any problems detected are documented and
presented for resolution.

The reviews serve to systematically evaluate the developing system and
the end product in respect to its conformance with the requirements.
Baselines are estabilished for the requirements, the design and the
implemented code and documentation. The documentation is reviewed to
assure that it accurately describes the product.

The audits assure that the configuration of the system is compliant with
the requirements both functionally and physically.

3. 11 SOFTWARE DEVELOPMENT ORGANIZATION

This methodology recommends two approaches to software development
organization.

1. independent review, analysis and evaluation of the requirements
and design., and independent test and evaluation of the
completed product.

0
0
0

3-13

'	 1 1

tI

t	 A

_r

E

fir. •j!	

{
_ " 1

'.J

Ww

a
F

a

2. a team approach to software development.

The concept of the performance of -verification/validation and control
functions (which include the verification/validation of the requirements
and the design) by personnel who did not specify, design, or build the
system and who are specifically skilled in the areas of analysis and
evaluation is becoming more widely accepted. There are two major advantages.
One is the elimination of the logical bias inherent in having the designer/
implementer perform these functions. The other is that the functions
are performed by personnel to whom this discipline is of primary interest
rather than secondary.

The concept of a team approach to software development has been widely
discussed in the literature. This methodology offers a team approach
that may by necessity drax the team members from vaainus organizations.

3.4,1 Independent Requirements Analysis

The review and analysis of the requirements specified at buth the .functional
level and the detailed design level by a group of one or more analysts who
did not participate in the requirements definition or generation is
recommended.

The review and analysis of specifications are critical functions. Initial
specifications often contain ambiguities and are not always complete.

The independent analysts review the specification, talk to the requesting
organization to determine if the specification accurately states the

€	 requirements, -talk to the implementers (in--house or contractor personnel)
}	 to determine if their interpretation of the requirements is the same as
I	 the requestor's interpretation, and act as coordinators to resolve any

inadequacies and conflicts in the requirements.

Prompt feedback must have a high priority to assure that design changes
can be made at the earliest possible stage of development.

The independent analysts review and analyze the specifications for

useability
completeness

clarity
continuity
uniformity
traceability
testability

The results of the analysis are presented to the approval authority,
at preliminary design reviews and critical design, reviews.

Requirements Analysis and Feedback is discussed in detail in Section 4.1.

I'

^u

1.J	 7

3-14

^r

3.4.2 Independent Vest and Evaluation

The design and performance of test and evaluation functions by an independent
organization is recommended.

For a new system,, the test engineers review the requirements of the
system and design asserted test criteria with accompanying test cases
that will demonstrate that the implemented system performs as specified.

In the case of existing systems the independent test engineers review
the improvements and corrections to be incorporated in the modifications,
and design asserted test criteria with accompanying test cases that will
demonstrate that the modifications cause the system to perform according
to the requirements as well as demonstrate that the unmodified parts of
the system are not degrade d.

Asserted test criteria are documented in the test plan while also being
placed within the respective programs using the embedded assertion
language techniques described in Appendix C.

^ 	 The test cases are executed on an informal basis until the formal mod is
made, the discrepancies are recorded and given to the designers/programmers

fU	 for correction, the test data is evaluated to assure that the test
f	 objectives are being met, and a formal test of the system is made. A

final test report-is prepared attesting to the extent to which the require-

,	
meats are met'as demonstrated by the test effort.

^f
if certification is required, the test report is the basis for certification
by the independent test and evaluation group.

Testing, evaluation and certification are discussed in Section 4.3 and
4.4.

3.4.3 Teat Approach to Programming

in formulating a methodology for producing reliable software serious consid-
eration should be given to the use of a team approach. Rather than recommend-
ing a specific approach, however, it is suggested that teams be tailored to

--r	 the size of a project and the operational environment available at the
developing location. A degree of flexibility should be provided in estab-
lishing the exact make up of a programming team. Past experience has
shovm that blind adherence to a reportedly "ideal" team organization can
be counter productive. Various team approaches have been advertised
widely in the literature. A discussion of several of these organizational
schemes is contained in Appendix D.

i

^E

I;,

3-15

I	 i_	 I	 I	 '	 i

^n

ti

4.

4'G

I	 3.5 PROJECT DEVELOPMENT PLAN

j	 The development of a brand new system or the incorporation of a major
function into an existing system needs to be carefully planned. The

i	
development plan should establish the goals of the project in terms of
its purpose, and its function. It should define the methodology to be
used for the implementations, and the controls to which the development	 r
is to be subjected.

3.5.1 Establishing Goals	 _.

In considering the development of a system with quality conside-rations
built in, it is necessary to understand the scope and purpose of the
total system at the very beginning. The top-down development of the
system structure allows early visibility of the entire system, and a
more accurate assessment of realistic performance and scheduling criteria	 ri

at the outset.	 e

The performance criteria are stated as requirement sets that satisfy the
purpose of the system. The scheduling criteria are stated as milestone
sets that satisfy delivery requirements. In general, the lack of early
quality-producing considerations will adversely impact the schedule,
since potential problems at the beginning become real problems later on,
requiring correction time that might have been avoided. 	 •3

Therefore, the goals to be established are those that will cumulatively
result in a reliable system. Some of the major goals are:

1. produce a complete and consistent preliminary design that contains l:

• major software functions which either directly correspond
to or can be easily traced to explicit software requirements.

• a set of test criteria which can be used in the formulation
of a comprehensive test plan for validating and verifying
the completed system.

a complete picture of the overall structure of the software
system.

enough detail regarding the allocation of functional
processing requirements to designated software elements
to support a thorough and credible demonstration of design
feasibility and validity.

2. produce a detailed design that:

. is an exten:,ion of the top-down design concepts incorporated
into the preliminary design.

. expands the test criteria to be associated with the validation
and verification of the resulting system.

3-16

provides for a supervisory control routine for the
implementation of each functional capability,

provides clear traceability back through the preliminary
design to the requirements and forward into the code
and as-built documentation.

3. define and systematically carry out a series of reviews
designed to:

create mutual understanding of the requirements by
the requestor, the designer, the implementer, and the
tester (design reviews).

communicate the existence, evaluation and correction
of problems or potential. problems (CCB).

communicate the configuration status of the developing
system in relation to its specified configuration (CCB).

confirm that the code that implements the system
will perform the functions required of it (walk through).

assess the extent to which the tested system meets the
requirements specified for it (formal qualification review).

4. provide the designers, programmers, and testers with the aids
(in the form of tools, guidelines and standards) that will help
them to achieve and verify quality inthe product. Of particular
importance is the timely availability of these aids.

5. Establish and maintain the controls that will preserve the
integrity of the system at all stages of its development.

6. Motivate the personnel by:

providing them with opportunities to be flexible and
innovative within the bounds of the controls placed
upon the software development.

involving them directly in the scheduling of their own work
as part of the Software Development Notebook concept.

There are a number of other goals that could be defined, but they can be
classified into subsets of the above goals. For instance, the subject of
documentation is not directly addressed, but is defined by the standards
in item 3, and is procedurized in the controls in item 4.

In addition, the budget and milestone goals are not addressed, as their
net effect on reliability generally comes about indirectly by causing
pressure if estimates were not meaningful, or by avoiding pressures if
they were.

1i

3-17

3.5.2 Selection and Use of Aids

The selection ofro er aids to be used during des ign, implementation andp p	 g	 ng ^ p
testing is critical to achieving and maintaining quality in large systems.
Even more crucial is their availability at the time they are to be used.
Availability of tools and techniques -includes adequate procedures for
their use. Tools that must be developed must be designed early enough
to be built and thoroughly tested before they are used. Tools that are
procured must be installed and checked out in the environment in which
they are to be used.

The size and complexity of the system being developed, the hardware/soft-
ware support resources available, and the tradeoff of value vs. cost
are all factors to be considered in the selection. 	 `J

Some tools and techniques can be advantageously applied to almost any
systhap. For example, the walk-through technique is valuable even on 	 i_;
small "one-time-only" programs, the difference being a matter of degree.

For the more tribal programs, an hour spent by another programmer
informally reading the code may save several debugging runs, while on a
large complex system public presentation of the code may be the best
approach. Both are applications of the walk-through.

Obviously, some tools must be selected to ap propriately fit the environment.
A machine or language-dependent tool must be customized, and even a
portable tool is more often than not "almost" portable.

Probably the most important aid and the first one that should be available
is the programmer's reference manual. 	 A comprehensive reference manual
containing "what every programmer should know" about the resources avail-
able to work with, the environment he must work within, the programming and
documentation standards he must comply with, and the guidelines for developing
good, standardized code. 	 This manual is the authoritative source defining
the ground rules and conditions for developing the software.

Other tools and techniques which are candidates for selection are: + 1

FORTRAN Structuring preprocessor
Documentation aids
Checkout/debugging aids
Updating aids

.	 Walk-throughs

.	 Desk Checking

i	 Standards Checking Tools
.	 Execution Analyzers r

i	 Path Analyzers 4
Cross Reference Analyzers

f	 'Pest Data Generators
r_^

Test Case Selectors

A-Report Writers
^^	 Perfoxmmance Analyzers

4

'^ r

^.i

.^	 I	 I__ _ l	 I -- l	 l	 1

i

^i
f

r-j1

1

n ^.

U,

0
z

;7

^d

1

e

Jk_ .

Individual tools are examined and their capabilities are presented in
Appendix A and Appendix C of the Final Report for this Study. The
appropriate point at which to apply these tools and techniques is dis-
cussed in Section 3.4.3.

In the on--going development of large systems that -bake several years to
complete, the evaluation, and selection of aids ,should be rcrformed on a
periodic basis in order to take advantage of new technologies or to
supplement existing technologies with enhancements.

The GSFC computer configuration (the IBM series with TSO capability)
coupled with the use of FORTRAN as the universal programming :Language
lends itself to the use of several general purpose tools that are
either portable or easily adaptable to the computer center environment.
These tools are application independent, therefore scheduling of their
installation to meet a development schedule is not a prime consideration.

Other tools that show promise are either designed for a different environ-
ment (i.e., language and/or machine) or are application-dependent.
These tools should be considered as candidates for development specifically
for use at GSFC.

3.5.3 When to Do What

The importance of timing is paramount in the development of software using
the built-in quality concept. The decision to use certain techniques
and tools at a point that allows errors and faults to be prevented
rather than detected must be made very early in the development cycle.

The following set of charts show the points at which various quality
considerations should be imposed. The development cycle is shown as
the conventional series of steps shown in Figure 3.1. While actual
development does not take place in sue
phases serve to show,- the framework upe

Y

C)
	

QUALITY CONSIDERATIONS BEGIN

© s
O

LIMINARY DETAILED	 CODE &	 VERNAL	 W INTEN--
DESIGN	 DESIGN	 DEBUG	 ANCE

SYSTEM	 SOFTWARE
REQUIRE- REQUIRE-
MENTS	 MENTS

SOFTWARE REQUIREMENT SPECIFICATION

FUNCTIONAL DESIGN SPECIFICATION

1	 INTERFACE SPECIFICATIONN

SOFTWARE DEVELOPMENT NOTEBOOKS

DETAILED DESIGN SPECIFICATION

TEST PLAN	 I

--

p^	 d TALITY C'='I=ER 'IONS BEGIN

p	 IMINARY DETAILED CODE &	 VER/VAL MAINTENANC
DESIGN	 DESIGN	 DEBUG

SYSTEM	 SOFTWARE
3	 REQUIRE-	 REQUIRE-

'	 MENTS	 MENTS

IDENTIFY PROGRAM MODULES

U.3	 PLACE DUMMY PROCESSORS UNDER CONTROL
i

UPDATE DUMMY PROCESSORS WITH CONTROLLED CODE

a•FOrZMAL BUILD OF SYSTEM FOR TESTIDIG

RELEASE OF ACCEPTED SYSTEM

UPDATE CONTROLLED CODE

Figure 3.1 (continued)
EFFECT OF EARLY QUALITY CONSIDERATIONS

PROGRAM CONTROL LIBRARY

DETAILED
DESIGN

CODE &
DEBUG

VER/VALMAINTEN-
I ANCE

1-
yALITY CONSIDERATIONS BEGIN

SYSTEM
REQUIRE-
RENTS

DOGUMENTATION KIDS

TOPDOWN DEVELOPMENT
TECHNIQUE

TEST DATA GENERATOR

PROGRAMMER'S REFERENCE jAIIUMAEL

ja DEBUGGING AIDS

"Iro
SOFTWARE DEVELOPMENT NOTEBOOKS

UPDATE/COMPILATION PROGRAM

STANDARDS CHECKER

EXECUTION ANALYZER

WALK-THROUGHS & D0K CHECKS

AUTOMATED CONFIGURATION
MAMEMENT SYSTIM

IGN
SOFTWARE
REQUIRE-
MENTS

I

PROGRAM LIBRARY CONTROL

Figure 3.1 (continued)
EFFECT OF EARLY QUALITY CONSIDERATIONS
TOOL AND TECHNIQUE INTRODUCTION

I	 j	 J

QUALITY CONSIDERATIONS BEGIN

PRELIMINARY DETAILED	 CODE &	 VER/VAL	 MAINTEN-

SYSTEM	 DESIGN	 DESIGN	 DEBUG	 ANCE

REQUIRE- SOFTWARE
MENTS	 REQUIRE-

MENTS

SYSTEM REQUIREMENTS
REVIEW (SRR)	 ;f

SOFTWARE DESIGN REVIEW (SDR)

PRELIMINARY DESIGN
REVIEW (PDR) F_
CRITICAL DESIGN REVIEW

w (CDR)
N

CONFIGURATION REVIEW BOARD

PHYSICAL AND FUNCTIONAL	 '---^
CONFIGURATION AUDIT'S

TEST REVIEW BOARD

DEVELOPMENT 'TEST REVIEW

INTEGRATION 'PEST REVIMT

FORMAL QUALIFICATION TEST
REVIEW (FQR)

Figure 3.1 (continued)
EFFECT OF EARLY QUALITY CONSIDERATIONS

REVIEWS AND AUDIT'S

FCA
.. QUALITY CONSIDERATIONS BEGIN PCA

FQR
SRi-i	 SDR FDR	 CDR

PRELIMINAR	 DETAILED	 CODE &
VER/VAL

MAINTEN-
DESIGN DESIGN	 DEBUG ANCE

SYSTEM SOFTWARE
REQUIRE-

REQUIRE-
MENTS MENTS

PROJECT PLAN.

SYSTEM ANALYSIS i

w TOOL DEVELOPMENT

ro

REQUXREMENTS ANALYSIS
r

}	 TEST PLAN

F}{	 TEST PROCEDURES
^k!

PROGRAM ANALYSIS r--

FINAL REPORT

Figure 3.1 (continued)
EFFECT OF EARLY QUALITY CONSIDERATIONS

OVERALL DEVELOPMENT PROCESS
}': }	 l _ _._..^	 k

i
e.	 In—J e	 _	 _I '-1	 C - .'7i	 ..	 IC	 .-,	 i.. "'.	 ^*	 _..	 ^,_	 -	 IC-..a	 y

References

R. D. Williams. Managing the.Development of Reliable Software.
International Conference nn Reliable. Software, Los Angeles,
California, April 1975.

i

l

3-25
	 i

i

Section 4
SOFTWARE VERIFICATION/VALIDATION TECHNIQUES

is

t	
'

4.1	 GENERAL, j

The verification and validation of software is the most difficult process
of software development, and therefore potentially the most costly. 	 The
coat depends largely upon the extent of reliability required of the

.; software.	 However, the application of some specific tools and techniques
can increase the probabili-Gy of detecting errors, reduce the time required
to detect and remove them, and help detect them at the earliest possible
point in the development cycle. 	 This can effectively reduce the cost of
achieving a required level of reliability. 	 The verification/validation

^-- process begins with the analysis and verification of initial requirements
and continues throughout the entire development cycle and into the operational

` state of the system.

r^
11 This section deals with five aspects of verification/validation:
L

1.	 Requirements Analysis and Feedback
2.	 Code Analysis and Verification
3.	 Program Validation
4.	 Program Certificatioa

F> 5.	 Reliability Determination

The analysis of specifications and the formal and informal reviews of these
a

analyses are discussed in relation to NASA Goddard's current procedures. }

Code analysis and verification techniques and tools are available and ran,
in many instances, be applied dire^tly to the NASA Goddard environment.
These include both manual and automated methods of analyzing and verifying
the code.

Testing of the software is done in several phases. 	 Each is discussed,
with recommendation as to tools and techniques available to enhance the
process.

While certification is not a direct requirement of NASA Goddard, its
performance is discussed in relation to its posi •Live effect on software
reliability.

" The need for assessing the reliability of the software required techniques
that are stall in an experimental state.	 However, achieving a reasonably
accurate determination is possible. 	 The most promising methods of

z determining reliability are offered for consideration.

f	 J

4-.1

ti^

^u

C: U

,,

l! ^i

f

}

^x
i'

t,:

w^

s

rf

4.2 REQUIREMENTS ANALYSIS AND FEEDBACK

The most impertant aspect of designing systems with built-in quality is 	 `?
the early verification of requirements. Analysis of several large
systems shows -shat as requirements analysis and design time increases,
testing time decreases.

In general, a high percentage of errors are attributable to conceptual 	 u

errors. The early detection of these errors reduces or eliminates their 	 #
impact in later stages of development.

This section addresses the problem of assuring that the requirements
are adequately defined and stated, and that the design reflects the
requirements correctly.

This methodology recommends a series of reviews to assure that the intent
and the requirements are compatible and that the requestor, the designer
the implementer and the tester mutually understand them.

All analysis and review activities should whenever possible be performed
by an independent analysis group which may be either an internal or outside-
contractor group of analysts.

4.2.1 Zstem-Requirements Review (SRR)

The purpose of the System Requirements Review (SRR) is to assure that the
system requirements are feasible and that they are complete and unambiguous.
The review may include the results of:

• mission analysis
• simulations of the system

functional flow analysis
• preliminary requirements allocation
• system/cost effectiveness analysis

•trade--off studies
• integrated logistic support analysis

system interface studies
program risk analysis
producibility analysis
technical performance measurement planning
integrated test plan
data management plan
configuration management plan
engineering integration plan
acceptance criteria generation
system safety definition

Special attention is given to:

risk factors, their identification and ranking as pointed up in
the system/cost effectiveness analysis and technical performance
measurement plan analysis, their avoidance/reduction and control

4-2

a

s9
s

i

^i

f

as indir:ated by analysis of trade-off studies, test planning,
	

rl

a--	 hardware proofing, and technical performance measurement.

" s	significant trade-offs between stated system specification
requirements/constraints and resulting engineering requirements/
constraints.

significant producibility considerations that are vic}.ble early
in the program, such as manpower loading and hardware availability.

For Large systems, SRR°s may be conducted for each operational and support
subsystem depending on the nature and complexity of the program.

-{	 4.2.2 ,System Design Review (SDR)

The objective of this review is to evaluate the completeness, traceability,
correlation., optimization and the risk associated with the proposed
system design. It encompasses the total systems requirements, i.e.,
operations/maintenance/test,/computer programs/facilities/personnel/and
procedures. A summary review of the items covered in the System
Requirements Review that produced the above definitions is included.

The end result of the review is the assurance of a mutual technical
understanding of the validity of the system specification and the
engineering/cost realism involved in producing the system. The
following items are to be achieved in the SDR.

I. Insure that the updated/ completed system specificati-.1 is
adequate and cost effective in satisfying validated
mission requirements.

r
d

2. Insure that the allocated requirements represent a complete
and optimal synthesis of the system requirements.

3. Insure that the technical program risks are identified, ranked,
avoided, and reduced through: 	 3

s

a. adequate trade-offs
b. a responsive test program x

c. subsystem/component hardware proofing
d. implementation of comprehensive engineering

disciplines such as worst case analysis, failure mode
and effects analysis, reliability analysis, and
standardization.

^+. Identify how the final combinations of operations, maintenance, and
tests and acceptability requirements have affected overall
program concepts.

5. Insure that a technical understanding of the requirements has been
reached and technical direction is provided to the implementers.

11_3

i

L.

-_t	 1

The SDR re-addresses the items reviewed in the SRR, plus the following
	 i

items:

1. updated design requirements for operations/maintenance functions.

2. updated operations /maintenance requirements for facilities.

3. updated requirments for operations/maintenance personnel
and training.

4. evaluation of

a. system design feasibility and system/cost effectiveness

b. capability of the selected hardware/software configuration
to meet the requirements of the system specifications

F
c. allocated inter- and intra- system nterface requirements

d. specific design concepts that ms. require development toward
advancing the state-of-the-art.

e. the ability of requirements items to meet overall system
requirements and compatibility between requirements
items and configuration item interfaces.

f. reliability trade studies

g. review of the specification of critical items to assure
their traceability/correlation to the validated mission/

j	 support requirements.
i

h. review of all availab-e test documentation, including

E
subsystem and systez test plans to assure that the
proposed test program satisfies the test requirements
specified in the system specification.

i. review of computer programming requirements including
type of processing, such as on-line processing
off-line processing, parallel or multi-processing,
multiprogramming, time sharing, etc.

a gross description of the size and operating
characteristics of all computer programs,
including data bases.

a description of the requirements for system exer-
cising and identification of functional requirements
(exercise configuration, conditions, missions,
frequencies, functional simulation, recording and
analysis) and identification of major elements
to implement the exercising capability.

4-4

I

_^.	 I	 J	 J	 I	 I	 _!	 i

identification of programs required throughout
the system, such as operational programs,
diagnostic programs, test/debug programs,
simulation programs, exercise and analysis
programs and other support programs.

i

	

	 identification of computer facility resources
needed to support the developing and operational
system.

o. 4.2.3 Prelimin	 Design Review (PDR)

The preliminary design review is a formal technical review of the basic
design approach. For large programs, a PAR is conducted for each

	

`	 functionally related group of configuration items. The PDR is the
most critical review of the software development review series. This
is the point where the conceptual design is accepted and the software
system is built upon it. Errors left undetected in the design are
often propagated throughout the other phases, causing grief in the
later stages.

The items reviewed in a software PDR include:

1. Computer program functional flow.
This information is completed to the level of flow charting
which identifies the allocation of computer program components
to functions and depicts the sequence of operation within
the system functional flow.

2. Storage Allocation Charts, describing the manner in which
available storage is allocated to individual computer
programs. Timing, sequencing requirements, and relevant
equipment constraints used in determining the allocation
are included.

3. Control Functions Description containing a description of the

	

1	 executive control and start/recovery features for the computer
program system. It includes the method of initiating system
operation and features enabling recovery from system malfunction.

r.
4. Structure slid organization of the Data Base identifying data

types and characteristics, structure and layout, and allocation
of data storage.

5. Standards and conventions to be used in generating and testing
the system.

6. Test plans in relation to their ability to demonstrate that
the completed software system satisfies the requirements.

7. Configuration identification of major modules.

UJ

	

l	 4-5

8. Interface definitions describing the relationships of software
system components, for assurance that a particular item does
not adversely impact or is not adversely impacted by other
system elements.

PDR's are conducted until the software system design is accepted as
satisfactory. No detailed design or coding is performed until the
preliminary design is complete.

4.2.4 Critical Design Review (CDR)

The purpose of the Critical Design Review is to determine that the detail
design of the configuration item under review satisfies the design require- 	 _x

menus in the specification for the item, and to establish the exact inter-
face relationships between the configuration item and other related items.

The CDR for each configuration item is conducted prior to the release of
the design for production of the software, and the result of each CDR is
to commit the design to production.

^i

For computer program configuration items, the CDR is a formal technical	 a,^
review of the item design. The CDR is normally accomplished for the
purpose of establishing integrity of computer program design at the	 ;3
level of flow charts or computer program logical design prior to coding	 }
and testing. When a given item is a complex aggregate of computer program
components, the CDR is accomplished in increments during the development
process corresponding to periods at which components or groups of components
reach the completion of logical design. For less complex items, the CDR	 w
is accomplished at a single review meeting.

The primary product of the CDR is formal identification of specific computer 	 .
programming documentation which will be released for coding and testing.

Documents to be reviewed include:

Draft of a complete detail design specification for the computer
program configuration item under review.

Supporting documentation describing results of analyses, testing,
etc.

Documentation of allocated resources for the item

Pest requirements for the item including asserted program properties
(reviewed for completeness and technical adequacy).

Test documentation required to support the test requirements, test
procedures in particular.

. Configuration documentation for each item.

a

4-6

u

;j

r-

rr^

i

4.3 CODE ANALYSIS AND VERIFICATION

Attempts to check code for accuracy and efficiency have taken many forms.
Two manual techniques have been found effective in reducing errors when
applied systematically. There has also been a proliferation of tools,
developed to a large extent on an experimental basis, that are designed
to enforce standardization of code and to aid in checking it for incon-
sistencies, incompleteness, and other structural faults that may cause
problems later in the execution of the logic. They also help in deter-
mining efficiency of the code in many cases.

Except for the manual technique of "walk throughs", no currently available
tools address the function of a program. Some promising steps are now
being taken to address function, in application--independent tools. One
such technique involving the use of an embedded assertion language with
accompanying tools is presented in Appendix C.

Tools that are application-dependent and/or environment-dependent must
be designed and built as needed.

4.3.1 Manual Technique s

The following two manual code checking techniques should be performed as
standard procedure:

a. At the completion of the coding of any module, and prior to
submittal for compilation, the application programmer shall:
(1) desk-check his module, following the procedures described
in 4.3.1.1 until no additional errors are discovered;
(2) update the flowchart of the module to reflect any coding
modifications; (3) review the module's flowchart with his
auxiliary programmer; (4) submit the module for desk-checking
by the auxiliary programmer; (5) repeat the above steps (1-4)
until no additional errors are discovered; (6) obtain the
auxiliary programmer's approves. crth the module development form
(MDF - see 4.3.1.2).

b. Obtain an error-free program compilation

c. Update the program flowchart to reflect the valid ccmpilation.

d. Review the updated flowchart with the auxiliary programmer
and obtain his approval on the RDF.

e. Prepare sufficient module development test data, as described
in 4.4.1.

.,	 f. Submit the module program design language (PDL), description or
flowchart to a group walk--through, as defined in section 4.3.1.2.

i

g. Test the module with the test-data; review the results of Each
test run with the auxiliary programmer.

I	 u-7

i

i

-o

i

r

jl

j^

I#

's=

h. After development testing has been satisfactorily completed,
a public presentation of the code will be conducted (see 4.3.1.2).

4.3.1.1 Desk Checking Procedures

The sample procedure listed below illustrates a method which can be followed
in desk--checking a FORTRAN module:

1. Answer the following checklist questions:

a. Does the commentary block define the purpose, names and
definitions of all variables that are transmitted to,
and/or from, the routine; and contain version date,
programmer's name, references and any special considerations?

b. Does the commentary block immediately follow the subroutine
name?

c. Are there sufficient comments interspersed throughout the
code to explain the general, logic flow?

d. Have embedded assertions been included both as text, in the
design documentation and as comments in the code for checking:

data integrity
entry/exit constraints
result validity
local data constraints
local addressing constraints

e. Are declaratives in the following order?

TYPE statements
DIMENSION statements
BLANK COMMON statements
Labelled CON14ON statements

EQUIVALENCE statements
DATA statements

f. Are the declaratives blocked so they are easily readable?

g. Do all floating point variables begin with letters A-H or 0-Z?

h. Do all fixed point variables begin with letters I-N?

i. Do logical and complex variables begin with letters appropriate
to the function of the variable?

J. Do all variable and subroutine names suggest their function?

k. Do all variables in a Common block use the same name in
every subroutine in which it appears?

4- °

t

j

S ^	 •i

i

W,d

`" s

I	 I.	 _-L	 I	 1	 i

1. Are variables passed between subroutines by the use of
COMMON rather than by calling parameters?

m. Do all COMMON blocks contain less than seven arguments?

n. Has EQUIVALENCE been used to identify specific locations
in COMMON block arrays?

o. Are all RETURN statements, GOTO statements and CALLS
and function calls 1tL'.)e:.1ed?

p. Is the normal RETURN statement labelled 999?

q.	 Are all exceptional RETURN statements labelled with a 99x?

r.	 Are all labels in ascending order?

s.	 Are all COMMON variables initialized in a BLOCK DATA
subroutine, and defined by COMMENT cards?

t.	 Are the variables in a COMMON black in the following length
order?

COMPLEX*l6
COMPLEX*8
REAL*8
REAL*4
LOGICAL
INTEGER*2
INTEGER*2
LOGICAL*1

u. Are all continuation cards numbered in sequence in column 6?

v. Do parentheses balance? Start from the left with 0 and add
1 for each parenthesis and subtract 1 for each right
parenthesis. The count should never become negative.
If parentheses balance, the count will end up to 0.
However, this does not indicate correct grouping.

w. Do FORMAT statements follow the declaratives and precede
the executable code?

x. Are all FORMAT statements labelled in the 99xx range in
ascending order?

y. Do the subroutines have less than -100 lines of code?

4-9

i.f
L.J

2. Using the Program Design Language (PDL) description or subroutine
flowchart, manually follow the execution sequence of routine
logic. This entails:

a. Preparing sufficient test data to insure that each function
within the routine will be exercised at least once; 	 j

b. Manually record each change of program data, variables, counters,
and indexes (using the prepared test data to drive the
routine);

c. Verify that the program logic flow accurately reflects
the program req-^iirements;

d. Correct all discovered errors and repeat the above process.

The desk check procedures can be greatly assisted by using a standards
checking tool. This type of tool can check for standards violations and
flag them for correction. One such tool is described in more detail in
Section 4.3.2.1.

4.3.1.2 Walk-throuRhs

Management shall divide the programming staff into groups of three or more 	 °•
programmer/analysts. Each group constitutes a review group, which will
collectively review each group member's programs. There should be two
reviews during the development of each program developed by a group member:
(1) prior to development test, but after coding is complete; (2) subsequent
to development testing. These reviews are conducted to ferret out program
logic errors and to insure that the program has been thoroughly tested. 	 f

Each review is termed a "walk--through", where the application programmer
conducting the review explains his module to the other group members.

^l

These reviews typically take the form of a viewgraph presentation of the
modules PDL or flowchart, where the cognizant programmer traces the
logic flow (i.e., wlaking the other group members through the module
logic). The initial review is informal and made to programmers. The
public presentation after development test is formal and is made to 	 -^
the design Group.

During each review, errors may be detected by the members of the review
group. Each error discovered will be recorded by the auxiliaxy programmer
and serve as an action item list for the cognizant programmer. During 	 z
both reviews, the action items discovered will be recorded in the Module
Development Form (MDR') (see Figure 4-1); prior to final approval of the
development testing completion for a particular routine, the review group	 Vf

should insure that all action items have been corrected.
a

4-lo

^yi

DATE CODING
COMPLETED

I DESK CHECK DESCRIPTION

DAVE DESK
CHECK COMPLETED

WALK-THROUGH APPROVAL
DATE WALK-
THROUGH APPROVED

DATE DEV.
TEST COMPLETED

DATE WALK--
THROUGH

DEVELOPMENT TEST DESCRIPTION

WALK-THROUGH APPROVAL

COMMENTS

Figure 4-1
SAMPLE MODULE DEVELOPMENT FORM

4--1:.

ri

Ill

rl

MODULE NAME

HEAD PROGR.919M	 BACK-UP PROGRAMMER

I

i_

i

1

^y	 1

E
5i

S	

j

JI!

4.3.2 Automated Techniques_

4.3.2.1 Standards Checkers

The use of a standards checking tool can be used to complement the manual
desk checking techniques mentioned earlier. Two tools seem worthy of
mentioning as examples. The first, PFORT Verifier, Bell Laboratories,
Murray Hill, New Jersey is a very useful tool for checking the portability
of FORTRAN programs. The second, Standards Auditor, Computer Software
Analysts, Inc., Los Angeles, California is a tool which was originally
built to check the coding standards for the Army's Site Defense Project
being built by MDAC and TRW.

The PFORT Verifier checks a FORTRAN source program for adherence to a
portable subset of ANS FORTRAN. Subprogram communication is checked
through common and argument lists. Debugging and documentation aids
include subprogram cross reference giving type, usage and attributes
of each identifier with a list of statements in which it occurs. Also
provided is a summary by subprogram listing argument attributes, common
blocks used, subprograms called, and the calling subprograms. PFORT
has been i.nstalled at a number of locations and is available from Bell
Labs. Appendix A contains sample output from the PFORT system..

Standards Auditor currently checks 38 coding standards. It has a suppression
capability that allows selection of any subset of these 38 standards.
Additional standards can be readily added.

It has been found that the most benefits a ,,true from checking a small
core of standards which include statement location, comments and module
size. Standards Auditor is marketed as a program product by CSA. A
pxog ram was supplied to CSA for analysis in connection with this study,
however, no output was received for inclusion in this study report.

4.3.2.2 Execution Analyzers

There are many execution analyzers that have been built on both a commercial
and experimental basis. Most are designed for FORTRAN code, with a 	

z

few commercial ones handling COBOL code.
s

The Boole and Babbage problem program evaluator (PPE) already in use at
GSFC, is language independent since it is applied to object code. Tools
such as the McDonnell Doug^as Program Evaluator and Tester (PET), the	 ^+
CAPER FOPTUNE, and the National Bureau of Standards Analyzer instrument
the FORTRAN source program.

PPE is a valuable tool for measuring the performance of an executing
program. Its main advantage is that it resides in the same region as
the problem program being measured and can readily be applied to programs	 ti
during production runs. This helps to determine the performance of a
program in a real, use environment while operating with actual rather than
test data. The executing program is not modified in any way, therefore,.
there is little chance of degrading the program's functional capability,
except where a timing function is involved.	 ,^

z
The disadvantage inherent in the use of PPE is the difficulty encountered

+ 	 in interpreting the results.
^t

For a total picture of a program's efficiency, PPE is a good tool to use.
While other tools can detail the frequency of execution of each statement,
timing considerations are difficult to arrive at accurately.

A second tool is recommended ac supplement PPE at GSFC. This is the FORTRAN
analyzer, PET, produced by Mc.:?onuell Douglas.

tool is designed arow.Ld a preprocessor/post -processor organization. The
preprocessor inserts soft7tare probes into the target code. The postprocessor
analyzes the data collected by the probes, and writes several summary
reports containing the results.

Run time statistics includa:

1. the number and percentage of the total of executable statements,
non-executable statements, and comments.

2. the number of and percentage of all potential executable
U	 statements that were executed one or more times.

	

t	 3. the number of and percentage of program branches tested.

]
4. the number of times each branch was executed. This includes

branch counts for logical and arithmetic IF conditions,
plus computed and assigned COTO's branching histories.

ttt	
5. the number and percentage of subroutine calls that were executed.

6. the number of times each subroutine was called, and the names
of those subroutines that were never entered.

7. relative timing for subroutine executions

8. the number of times each executable statement was executed.
_	 r

i 9. the minimum and maxim values attained by an assignment
statement variable or DO loop parameter.

t`	 10. the first and last values attained by an assignment statement
'	 variable or DO loop parameter.
1

The data collected and reported by PET can be used to.:

ff
	 ,

IE	 i ^iY

show areas of high activity during execution of various test
cases.
show untested code
develop.test cases that exercise the entire program

4-13

J_	 I	 1

While the application of PET to the code does not prove the correctness
of the algorithms, it does allow the observation of the behavior of•the
algorithm's with actual test data.. Future plans include the incorporation
of an assertion capability that will address the correctness of the
algorithms to some extent (see Appendix C). 	 L,

The chief value.of PET is its assistance in deriving adequate test data
for development testing. 	 By showing that all of the code was tested
using valid test data, the credibility of a program's correct performance

. is enhanced prior to the final walk through. 1

Other execution analyzers have been built for FORTRAN on the CDC and
UNIVAC equipment, however, none of these tools are available on the
IBM 360/370 series computers (see Appendices A and C).

4. 3.2.3	 Cross Reference Analyzer

^. As programs increase in size., the problem of naming conflicts increases.
This is particularly true when enhancements are made to existing programs.

A cross-reference analyzer creates glossaries verifying the consistency
of symbol naming and usage.

JOYCE is a tool produced by McDonnell Douglas which provides cross reference T
lists for FORTRAN programs. 	 The symbols referenced include the names
of any referenced module or functions, any entry points, and all I/O

_ file references.	 The cross reference lists are also useful for finding
typographical errors in coding and for checking a program's logic flow.

4 Sample outputs are contained in Appendix A. 	 As is the case with many
. of the better tools examined in this survey, JOYCE is currently only

operational on CDC machines.

4. 3.2. 4 Path Analyzers
E

There have been several attempts to developa path analyzer that is easy
- to use and that is helpful in debugging and testing of code. 	 However,

N.

the path analyzers that are applied to source statements within a aT
module are awkwarito use and require that the user have intimate
knowledge of the Lode and the function for which it was created. 	 Their t.i

use will become more significant when they are used as forerunners to
test data generators which are still in the experimental stage.

k; Path analyzers at the subroutine level provide visibility over an entire
program in regard to subroutine entries, r

is

The Automated Test Data Generator (ATDG) developed for NASA in Houston
by TRW is discussed in Appendix A. s

ATDG is a path analyzer that is promising. 	 However, it is written to^'
.r

run on a UNIVAC 1110 computer. 	 It is an interactive tool that requires
a high degree of user involvement, and an intimate knowledge of the code. Y"
IL is complicated to use and since it is used only at specific points

°I in the development of a program, programmers often do not want to take
' the time to understand how it works. 	 However, work continues in the ^.

simplification of its use.

4-14

jijj.

I
When ATDG is completed, it may be a candidate for conversion to the
IBM 360 configuration, particularly since it is already a NASA
sponsored product.

AnotherP romising tool currently being developed by MDAC is DISSECT, a
symbolic evaluation system, used to analyze programs written in ANSI
FORTRAN.

When a program path is executed by running the program on a given input,
the correctness of the path for that input can be determined by examinin4
the effects of the calculations carried out by the path. If the path is
executed "symbolically" rather t'_.an with actual data, it may be possible
to use a single execution to illustrate its correctness on a large subset
of the input domain rather than on just a single value. Symbolic execution
of aro ram is carried out b givenp g	 y	 dummy symbolic values rather thP.n
actual numeric (string, logical, etc.) values to all or some of the
input variables of the program. An expression in the program involving

e	 variables with symbolic values is evaluated by substituting the current
symbolic values of the variables into the expression. The resulting
expression is then simplified algebraically. All operators having only
actual as opposed to symbolic operands are evaluated in the normal ay.
The resulting expression is the symbolic value of the original expression.

The command file is built for a DISSECT analysis of a subject program and
is divided into a number of cases. The program is analyzed for each case.
The system is used to examine desired program pati:s.

.	 A program path is a possible flow of control through the program. A
path is feasible if at least one element of the program's input domain causes
that path to be executed. in general, a complete set of DISSECT cases
for a program should "cover" the program in some sense. One approach is
to analyze each feasible path (up to some number of iterations of loops).
Complex programs having many paths can be divided into segments F
analyzed using separate cases.

A great deal of interesting research remains to be done in connection with
-using the DISSECT system to study techniques for examining program
correctness questions. Sample output is contained in Appendix A and an
additional description of the system is presented in Appendix C.

4.4 PROGRAM uLIDATION

¢	 The systematic validation of a computer program begins with the validation
of its design, and in theory ends with the formal qualification test.
However, in practice, validation extends into the maintenance phase and
ends with the demise of the program.

Therefore, this methodology addresses several kinds of testing that spar_
the development pe g°iod and continues into the operational state.

1	 It may be argued that development testing is not really a validation process
but it is included here as the testing that is the transition from the

f^
debugging to formalized validation efforts. Its importance is significant

4-15

t

^Y

I	 I	 I	 i

i
Ij

because it assures that the debugging process is complete before the
code is integrated into a system for testing. This reduces the chance
of failures caused by st:^.•uctural errors, allowing concentration on the 	 i
detection of logical errors during testing.

The use of a formal qualification test against an exactly known configuration
provides a baseline for the system. Any discrepant behavior of the system
is documented. The decisions impacting system, acceptance and disposition
of discrepancies can be made in a formal manner with adequate and visible
justification. The operational test provides a means of measuring the
system's real time performance in the operational environment. This 	 t j

testing determines if the uptime requirements are met over a pre-specified
period of time.	 7

Baseline tests exercise the critical functions of a system to determine
the effect of changes. In particular, they are used to insure that the
critical functions have not been degraded. Baseline tests and benchmark
tests are considered synonomous in this context.

4.4.1 Development Testing

The purpose of the development test is to provide some assurance that a
unit of code, generally a subroutine or group of subroutines that perform
a function, works as it was intended. This is accomplished by processing
a trivial, but realistic test case.

The development test is designed and performed by the programmer who wrote
the code. He writes a test plan that describes the function of the code,
the data he intends to use to demonstrate that code works properly, and
the results he expects from the executi,-)n of the test.

The programmer discusses his test plan t^'.th his auxiliary programmer
and gets his concurrence.

T1, e development test should show that the program function is achieved,	 -1
and also that all of the code is exercised by the test data, so that an
unusual occurrence of data combinations will not result in unhappy sur-
prises later. The use of an execution analyzer such as PET will assist
greatly in achieving these goals, by automatically checking program
assertions and providing the statistics showing the behavior of the
program during execution using candidate test data.

The debugged routine(s) is linked to the basic system, the test case(s)
executed, and the results documented. When the intended results
are obtained, the program is ready for the formal walk through.

i

The test plan, test data, and the documented results are placed in the
software development notebook. The program is turned over to the
validation group for formal validation testing.

e b

When development testing of new programs is complete, the code is placed
under release control_ and entered into the controlled library. If the 	 £
code consists of modifications to routines already under release control,

a

4-lb

t

Y

I

Fill'

f

IE

I	 i	 I.	 J	 I	 l
1

the modifications are turned over to release control for entry into the
controlled library. The necessary configuration change information is
then confirmed by release control.

In either case, once the development tested code has been placed in the
controlled library, it can only be changed by CCB approval and
corrected following release control procedures. This is true even before
the formal build of a system for qualification testing, in order to
always preserve the integrity of the system. Since other programmers
will be development testing their cede using the constantly changing
parallel system, it is vital that the configuration be explicitly known
at all times. This prevents testing against a system whose configuration
is assumed, perhaps incorrectly.

4.4.2 The Development of Test Cases

The test program must be planned early in the development cycle. System
requirements must be analyzed for testability before the design of the
system can be successfully completed. The formulation of a test plan
must be based on a well stated requirements document. If a requirement is
explicit, its testability can be readily ascertained. However, implicit
requirements must be considered also, and the identification of these
requirements and the determination of their testability often requires
a great deal of though and conscious effort.

The system test plan has as its goal the evaluation of the performance
of the system. Its execution must provide positive answers to the
question "Will thz system do what it is supposed to do?" Since "what
it is supposed to do" is speciV fly identified in the requirements
document, it is important to pla-e boundarixas on the test plan to insure
that all specified requirements have been implemented, and that no
unspecified requirements have been implemented.

The system requirements provide the foundation for the selection of
test cases. Ultimately, the composite of all test cases, when successfully
executed, verify that the requirements of the system have been satisfied.

The process of test case selection begins with the groupings of requirements
by function. An example is shmm in figure 4-2. For a specific require-
ment, objectives are defined and assertions formulated which explicitly

U	 identify all the implications of that requirement that are to be verified.
€

	

	 As a result of specifying an objective, each requirement is clarified and
any weaknesses and ambiguities can be identified and resolved. This
process assures that each requirement is testable.

Test design begins by considering each objective and answering the following
questions regarding it:

1. w'nat are the outputs required to evaluate the performance?

2. what are the inputs?
A.

I	 I	 i	 I	 I	 i

i

t

'	 }	 1t

	

1t1	 !
4 ^

3. how does the data need to be analyzed to verify the objectives?

4. what is the acceptance criteria upon which the pass/fail
decision is based?

5. what is the software/hardware configuration required to test
the objective?	 -?

The answers to these questions form the test requirements which when
implemented in a test program, will verify the system performance.

When all of the objectives have been identified, a grouping of the
objectives is performed. 	 The criteria for grouping may be predicated

'	 upon the commonality of the software/hardware configuration and the r;
system inputs required to verify each objective. 	 A group of objectives j
define a test case.

At this point, the test cases are grouped together to form scenarios
that provide the input for a test (see Figure 4-2).

Test cases are grouped on the basis of the operational or chronological
relationships of the inputs.	 With the scenarios defined, the detailed
procedures for the conduct of the test can be written.

4.5	 PROGRAM CERTIFICATION

Certification of a system is the last step to be taken before acceptance
of the system.	 The purpose of certification is to provide confidence that
the system will work as expected with a specified degree of reliability.

The following definition of certification is given by R. C. White 3 , and
contains all of the elements that characterize certification.

"Certification is the act of authoritatively confirming that some
set of characteristics are compliant with a particular set of
requirements for these characteristics/capabilities. q

This act may be further characterized by the following features:
a

It is an official authoritative affirmation of the .5	 i
.:ompliancy relation' s existence.

It is issued by a recognized acceptable authority.

It is consequent to an affirmative compliancy decision.

It may grant official acceptance.
i

u.1	 +;

It has such force as to encourage, if not compel, acceptance. -•	 '
r-

•	
It has possible legal efficacy, as determined by the recognized
authority and the source of his responsibility for certification.

} is

OBJECTIVES

FUNCTION

REQUIREMENTS

a

i

VEST CASES

Construed as an act, certification is fundamentally "a single accomp-
lishment complete in itself and essentially unique", in contrast to
the extended activity or range of activities, characteristic of
compliance determination. Thus, it is an existence-confirming (of the
compliancy relation) act, rather than the existence-determination
activity of compliancy determination. The latter, to reiterate, is
a prerequisite for certification and cannot, therefore, in the interests
of consistency, be denoted by the term certification".

The bulleted points in this definition are of particular interest to this
methodology, since each represents the result of some quality-producing
activity or activities already described in this document.

The act of determining compliancy with the requirement set is the result of
on-going analysis of the test data culminating in a final review, the
Functional Qualification Review. The analysis and certification should be
performed by an independent agency with recognized capabilities to authori-
tatively confirm compliances. The acceptance of a system can then be
based upon explicit recognition of its capabilities and any discrepant
behavior that may be deemed non-critical and within the realm of acceptability.

4.5.1 Compliancy Determination

If the technique of defining test objectives for every requirements is used
as described in Section 4.4 then it can be determined from the tests
results whether or not each characteristic or capability of the system
is compliant with a particular requirement of that characteristic or
capability.

White maintains that the interpretation of compliancy is binary, i.e.,
the characteristic or capability either is or is not compliant. It
cannot be partially compliant unless the requirement is decomposed into
discrete subrequirements which permit separate compliancy determinations.
Therefore, the completed system can be certified as compliant if all
requirements are satisfied, essentially forcing acceptance. However, if
the system fails to conform with one or more requirements, then a negative
compliancy decision must be made and alternative action taken. This
action may be to return the system for correction of problems, to
accept the system without certification, to certify the subset of the
system requirements for which conformity was established, or to modify
or amend the requirements so that the compliancy decision is affirmative.

The use of the test objective matrix described in Section 4.4 allows the
evaluator to check every requirement or subrequirement for compliancy
by the inspection, analysis and evaluation of the test results. Since
ambiguous or incomplete requirements cause problems in defining test
objectives and subsequently in determining compliance, the analysis and
feedback of requirements in the initial stages of development not only
helps create a cleaner design and implementation of the system, but
permits the development of a test plan that will provide a clear
indication of requirement compliance.

4-20
.	 rj

I	 I	 I

T I

Compliancy determination is an on--going activity that spans the test
phase.	 The examination of requirements may begin with the beginning
of the test plan design and continues throughout.	 The compliancy
determination for each requirement may be made as testing progresses for
each subsystem.	 The final determination of compliancy for the entire
system is ba	 d on the cumulative determinations for every requirement.

The compliancy decision, either affirmative or negative, is a unique
one-time process that is made at the Formal Qualification Review following

E; the acceptance test or system test.
^S n

4.5.2	 Formal Qualification Review,

u The objective of this review is to verify that the actual performance of
the system complies with the requirements as specified. 	 This verification

7- is based upon an analysis and evaluation of the test results.

The Formal Qualification Review examii.nes the results of the analysis and
evaluation of the test data with relation to the corresponding requirement

?? set.	 The end result of the FQR is to determine the disposition of the
.. system (acceptance/rejection) based on the compliancy determination

. factors.	 All discrepancies round in the testing are presented, and a
decision is made concerning their disposition, generally based on their

u criticality.

The items presented are:
1

• 1.	 the test objective matrix showing the direct relationship
to the requirements and the extent to which the system is
shorn to comply with the requirements.

2.	 the test plans and procedures

' 3.	 a list of all successfu-1 functional tests

4.	 a test report containing the analysis and evaluation of
gg'
L.

the test results.

5.	 discrepancies detected during the acceptance or system test
,i

6.	 the functional and physical configuration audit data confirming
the configuration of the system for which the test data
is verified.

7.	 a list of all completed manuals and handbooks to be used with
- the system.

8. an affirmative or negative compliancy decision with recommendations
for acceptance or rejection.

4- 21

r

î
 r

l

4.6 RELIABILITY DETERMINATION

The ability to assess the reliability of the software has been a subject of
much controversy. Many in the past have considered the attachment of any
figure-of-merit to software as an impossible task. Recent research efforts
have developed a number of interesting models which have been applied with
varying success to software. The key to applying these models involves the
availability of error data corresponding to a given piece of software.

Despite the fact that numerous individuals have recognized the need
to save error data for some time, remarkably little can be said about
software errors. A number of projects have introduced trouble reporting
schemes and reams of paper have been generated, however, practically no

i^

	

	 analysis has been performed on the nature of these errors. Often the
information requested on the trouble report is of little value for such
analysis.

Based on the knowledge gained in developing a number of predictive software
reliability models, McDonnell Douglas has designed a refined reporting form.
After examination of a number of NASA and DOD reporting forms the following
sample Software Malfunction Report (SMR) was produced (Figure 4-3).

The software malfunction report (SMR) categorizes malfunctions into
six general classes with specific malfunctions as a subset of the general
class. The six general classes are:

1. "An	Arithmetic
2. "B"	 Argument
3. "C"	 Logical
4. "D"	 Assignment
5. "Et'	 System
6. "F"	 Data

Each general class contains varying numbers of specific error types. The
specific error types were added to highlight the type of error in each
general class. These specific error types are not fixed and they can 	 ;{
be deleted or expanded. The specific error types may undergo several
major changes until a large enough sample is obtained.

With the availability of the error data by general class and the
availability of timing statistics reflecting accumulated development

i	 testing times, software reliability models will gain increased accuracy. 	 }

Assuming that software error data is gathered, one gaestion still deserves
addressing namely: how should the models be ai;plied to the software
error data?

sa

1

i

tot

O

I
N

ADVANCE INFORMATION SYSTEMS
SOFTWARE MALFUNCTION REPORT

REPORT 1140.
PROGnAIA NAME

	

8 9 101112 13 1415	 16 171819 20 212223
PROGRAM I.D. I I I I I I T M MODULE I.D. I I I I I I M ORIGINATOR

STAGE	 24	 25	 26 	 27	
SEVERITY

	

CHECKOUT q TEST AND EVALUATION q INTEGRATION q USER q 	
HIGH q 33

SCOPE OF ERROR 78	 29	 30	 31	 32	
MEDIUM q 34

	

SPECIFICATION q DESIGN q CODING q INTEGRATION q OTHCR q 	 LOW	 q 35

GENERAL ERROR TYPE	 SPECIFIC ERROR

ARITHMETIC 36 q 1 COMPUTATION; 2 OVERFLOW; 3 SIGN; 4 SCALING; 5 ROUNDING; 6 QUANTI TY

ARGUMENT 37 [1 1 FLAG; 2CONDITION; 3 LOOP; 4 PARITY; 5 INDEX REGISTER; 6INSTRUCTION

LOGICAL	 33 q 1 PROGRAM; 2 PARAMETER; 3 SEQUENCE; 4 COUNTER; 5 INCONSISTENCY; 6 CODE; 7 REQUIREMENT

ASSIGNME NT 39 q .1 ADDRESS; 2 ALLOCATION; 3SUBROUTINE; 4 INTERRUPT; 5 INCOMPATIBLE; 6 ENABLE /D ISA BLE, 7 MOVE/SORT

SYSTEM	 40 q 1 INTERMITTENT; 2 LINKAGE; 3 MASKING; 4 SYSTEM STRUCTURE; 5 TIMING; 6 PROCEDURE

DATA	 41 q 1 STOREISAVE; 2 CONTROL CARD: 3 FORMAT. 4 CELL: 5 OUTPUT; 6 INPUT

4243647
NUMBER OF INSTRUCTIONS 48 49 50 5152

	YESIJ
3 DOES IT USE STANDARD 	1541	 8NUMBER OF INSIIIOCi10NS	

l^.! FOR CORRECTION S 	 SUBROUTINE	 NO

	

56	 57	 58	 59
IS MODULE C A LLASt E BY ITSELF YFS q NO[]	 DOES IT USE OTHER MODULE YES q NO[]

6̂-0-76̂ 16216-3-^̂ -̂1 0̂5̂ 	65 6 7rolmi471	 7273747ri7F77
COMPUTEv T1 \'C TO PQOGRAIVt HALT L_I^_I	 TOTAL Timm.	TOTAL TIME IN STAGE r I	 E

Figure 4--3
SOFTWARE MALFUNCTION REPORT

] 2 3 ^ 5 B
DATE ^q

CARD TYPE q
7

I	 -

I	 I	 I	 I	 I

As indicated in the Appendix B section on failure-rate models the initial
testing of a program frequently does not corr:,spond to the underlying
distributions characteristic of the ultimate, or steady-state testing
conditions. While this is so, it is still necessary to record the errors
found, whether or not the times of their occurence have any use in direct
analysis. As indicated in the selection, of the "zero" time for the
models, there are good indications that an approximation to the total
number of errors in a program can be formed on the basis of the total
instruction count. When this count is known, an "apriori" error-per-
instruction factor can be applied and to form an approximate error content.
This then provides a means of setting a realistic limit to what may be
called the initial segment of testing. (In this way,the illustrative
application the "zero" time was chosen on the basis of the estimated
time of occurence of the half-total error).

In the absence of any apriori estimate of the total error content, for
whatever reason it cannot be obtained, it is well to record the times
of error occurrence. It is clearly of interest to establish a point in
testing where the number of errors per time unit(per CPU second, or
per calendar day) decreases. Generally when this occurs any of the
models which have been described in Appendix B can be employed to
obtain estimates of the total error count on the mean-time--to-failure.

:•i

In any of the models, this ultimate convergence insures that they can be
applied without regard to the possible transient state of the testing from
which the data is obtained. Thep arameter estimates so obtained are
not as good in this case as compared to estimates obtained during the
steady state, but they will generally provide good guidance nonetheless.

it

k-24

. t

R-1
	

3

t

Appendix B

SOFTWARE MODELING

B. 1 S[tMhYAMY

Five detection (failure) rate models for the software error process are compared.
The de-eutrophication model developed by Jelinski and Moranda has a failure rate
which decreases by a constant amount upon the detection and removal of each error.
In the geometric de--eutrophication model developed by Moranda, the rate for the
"next" error stands in a fixed fractional ratio to its prior value (geometric
series). In the geometric-Poisson model, also developed by Moranda, the average
number of errors found in a given time period stands in a fixed ratio to the
average found in the preceding time period of equal. length. The Shooman model
assumes the detection rate of the (group of) errors following a debugging interval
to be directly proportional to the remnant error content. The Schick-Wolverton
model is a variation of the de-eutrophication process in which the detection rate
starts at zero after each error and increases linearly until the next error with
the slope of the line decreasing after each detection with the magnitude of the
slope being directly proportional to the current error content.

All models are based on the assumption that the detection rate depends on the
number of errors remaining in the software package.

In this task, for purposes of illustration and comparison, the models are all
applied to the same data, consisting of a daily record of the number of errors
found in the debugging of a program and the CPU time used. Maximum likelihood
estimates of the total. error content, mean time to next error, and the degree
of testing completeness are developed from a small time segment of the data and
estimates are compared where possible.

The estimates of total error content are compared to the total number eventually
found. Estimates of the MTl.TF are developed for local and remote time periods.

Finally, the variances /covariances of three of the models are developed.

B.2 DESCRIPTION OF MODELS

B.2.1 De--Butrophication Process (Description)

This model, developed by Jelinski. and Moranda of MDAC, is based on the assumption
that the rate of detection of software anomalies (or errors) is proportional,
at any time, to the current error content in the software package, and that all
remnant errors are equally likely to occur. This model is illustrated in Figure 1.
The initial detection rate is given by N^, where N is the initial error content,
and ^ is the proportionality constant, but which clearly represents one "error's
worth" of contribution to the hazard or detection rate.

B»l,

E

INITIAL ERROR	 STEP S IZE
COW ENT IS N

?4

N	 7

FAILURE RATE VERSUS TItIE	 TIME l

Figure 1. De--Eatrophication Process
I3	

^W	
a

_—a

A typical realization of such a process is depicted in Figure 2, where errors
are indicated by the 6-functions shown, and the time between errors, which is, 	 u

in reality, random, is purposely indicated here as increasing steadily.
T

-	 j
INC I D04CE OF
ERROR	 "u

TIME
'-e

	Figure 2. Typical Realization-of the De-Eutrophica.tion Process 	 T

The data for analysis consists of the sequence of times between errors: 	 --L
Xi, X2 ,. .. ,Y,,. The development of maximum likelihood estimates for the two para-
meters shown explicitly in Figure 1 is made in Section B.6d"l.The essential .facts
involved in this development are: the uniform or constant conditional fa,ill=re
rate for the ith error implies an exponential distribution for the associated;
time, Xi, with parameter, (N--i+l)^; and the Xi's are statistically independent. 	 uv

The application of the maximum likelihood technique produces the two equations:

n	 1	 R	 n	 (1)

V-1 E (i-1)Xi

aril	 =	 n

NT- iEl (i_l)x^	 (2)

where T is the total time E x.
i=l I

Applications of this model have been made to data sets obtained during the
development of two large-scale real-time systems; one, the Navy Tactical Data
System and, the other an Apollo--related software package. These were reported
first in the original paper (Reference 1); subsequently, updated information
was obtained. This new data permitted a com?3arison between the predictions,
which had previously been. made and the realized data, in the form of 'Trouble
Reports generated during the development of the Naval Tactical Data System
during the forecast time period. The comparisons (three modules) are con-
tained in a second report (reference 91, Those comparisons showed a remarkable
consistency between the predictions and the realizations. In those applications,
time was measured in units of days (calendar).

B.2.2 Geometric De-ESatrophicati.on Process (Description)

A variation of the de-eutrophication process has been found useful.. In this
form the detection rate decreases in a geometric progression on the occurrence
of each individual error; the times between errors are random instead of fixed,
the errors are treated individually instead of by groups. This is shown in
Figure 3.

D

"s	 Dk

Dk2

Dk2

T1

i	 'Figure 3. Geometric De--Eatrophication Process

s.-3

Tz	
T3

T	 2T	 . 3T	 4T

^k

Xk

Xk

The mathematical analysis for this model is given in Reference 2, The develop-
ment parallels that used in the original paper: the Xi are exponentially dis-
tributed with parameter Dki-1, the observations are independent and the likeli-
hood function is therefore the product of exponential .s. Maximizing the logarithm
of the likelihood produces the two equations:

jik1Xi	 _ n+1
(3)Ik1 X-	

2
1

and

D =	 n	 ()

iii-lXi

where k and D are described by Figure (3) and n is the number of intervals used.
All sums are over the range l to n.

B.2.3 Geometric Poisson Model. (Description}

The Geometric-Poisson Model is described by Moranda. in Reference 2. The model
is shown in Figure 4. As indicated, the data is assumed to be reported only
periodically (by week or month). The detection rate is shown to decrease in a
geometric progression; each time interval, T, has a rate which is a fraction k
times the previous interval l s rate (0<k<l), and represents the Poisson parameter
for the initial collection interval.

Figure 4. Geometric -Poisson Model

B-4 :A

B.2.4 Shooman Model (Descr^ption and Critique)

The model described by Shooman initially in November 1971 was presented
in improved form in January 1972 in a paper jointly authored by
J. C. ' Dickson, J. L. Hesse, A. C. Kuent z and M. Shooman [References 3 and 4].
The same model and results were described in 1973 and 1975 by Shooman
[References 4 and 51.

In the Shooman development, the model is discussed in terms of the
Factor

Y = K[ET - EC (T)lrp
	

(5)

IT

where: K is a constant "which can be estimated by the ratio of the number
of catastrophic errors detected to the total numbers of errors detected";
ET is the total number of errors; IT is the total number of instructions,
and ec(T) is the "normalized" number of errors which have been corrected
up to the (total) debugging time T; and rp is the instruction processing
rate.

As will be later shown, there are several subtle points which must be
resolved before the Shooman model car_ be obtained. I, is sufficient

-	 here to note that the instruction count IT does not enter into the
problem since the "normalization" required to form EC(T) eliminates it.
The parameter T, which represents debugging time, does not enter the
analysis, nor do r occur as a separate factor, it is obviously insepar-
able from the factor K.

Thus, in its essence, the Shooman model sets up a direct proportion
between the detection rate y and the current error content.

In Shooman's original paper (Reference 3) when he sets out to find the
l unknovns, ET and K, the ° fconstant error rate model" is employed, the

assumption being that the

EC(T) _ pos

I

To quote Shooman, the value of p	 is "evaluated from previous data".
In the only illustrative comput.Eions which he carries out, the value
of p o is obtained by dividing the area under a triangalar-shaped
plot of error rate versus time, by the total test time.

a

Shooman then uses the total number of changes (the area under the plot
of error rate versus time) which were observed during the entire test
period for the value of ET .	 Coupling this with his assumption of a

j	 -- constant error rate, it would seem that the model is complete, but has
no predictive potential. 	 Shooman uses it to compute the MTTF versus
the debugging time, and illustrates the eventual unlimited n&gnitude
for the MTTF.	 Since the MTTF is the reciprocal of the factor y in Eq. 5,
and since as T increases, EC (T) increases, the factor y decreases, and

'I.tl the reciprocal (the MTTF) increases (without Limit). 	 This is not, by
any means, surprising, since the £C(T) tends to approach ET/IT, so
the denominator tends to zero.

^n
B-5

^i

J

L13

3

i
d a

3

^^	 I	 ^	 ^	 I	 1	 ^	 i	 r

E

In the second presentation ,jointly written by J. C. Dickson, J. L. Hesse,
A. C. Mentz and M. Shooman, a much improved discussion is made [Reference 41.
In 1973 and 1975 Shooman essentially discussed the same model in the same
form given in the original. paper [Reference 5 and 61. He does however dis-
tinguish between a microscopic approach, in which individual errors are
studied, and the macroscopic approach (in which class his model falls)
which treats bugs which are "lumped and treated equally".

In the analysis of his macroscopic model he determines the unknowns K=
(the product of K and rp in his Original formulation) and ET by
solving the equations

H1	 --	 1
	 _T

U	
xs1	

K' Fad -- ec(TI)	 (5)

H2 =	 1

xs 	g+	 _ sc(T2) 	 (7)
2	

[!Z2

xs and xs2 are the number of software failures "found during total
where T1 and T2 are two debugging times with

TI<T2
and sc (T1)< Ec(T2);

activation times" Hl, and H 2 , respectively.

Each of these two expressions equate a "steady -state" MTTF, on the left	
:iside, obtained by observing the error rate over a post-debugging interval

(of duration T) and the factor l/y(of Equation 5), which is the MTTF at
the end of the corresponding 	 debugging time. This is referred to as
the method of moments.

From the solution which is obtained:

ET	 IT [XS2' Xs 1 Ec(T1) - ec(T2)

A a °1
s2 s1 -1	

T

s{	 with A	 H
AS.

?^au.^

7
E.

B-6

,. ^w

iI

it is clear that the xs l and x 5 represent the number of failures duringtests made after Tl and T2 units of debugging time and the HI and H2 refer
to the "locally" cumulative number of hours after the debugging times
T1 and T2 and not the total activation times. This is an important clari-
fication and changes the focus of question of independence of measurements.
If these quantities were cumulative from the beginning (instead of
locally) then the xs's are highly correlated, but if they are only locally
cumulative, then it can be seen that the independence question is now at
the microscopic level; the new question is whether the individual measure-
ments which make up any particular xs are independent.

This couples with another question and there is a. single answer to the two.
The other question is: do the individual error-separation-times all estimate

I the MTTF in an unbiased way? The answer to both is the same: if there are
a large number of incipient errors in the package, then the process indeed,
resembles the "infinite number of failure-makers" of hardware reliability,

1	 and, for a short period after r1 (or T2), the individual measures of time-
between-errors are independent (the coin-flipping analogy) and are unbiased
estimates of MTTF H. Clearly, since the basic assumption is that the
MTTF is (inversely) proportional to the number of residual errors, the number
allowed for each xs must be small, for only the first error found is
strictly an unbiased estimate of the MTTF.

,	 The xsl and xs2 are "the number of software failures" and as defined by
Shooman are the number of unsuccessful. runs (not errors) caused by a

a	 software "failure". as and As 2 are defined by formula above and clearly
j,	 represent the rate of failure, and not the rate of error-occurrence. Thus,

at best, Shooman is equating two different kinds of failure rate: on the
.left his (approximate) rate is the number of failures per unit of operating
time, while on the right side the rate is the formula-derived number
of errors per unit of operating time.

It can be argued that ET is not the number of errors in the program but
some kind of measure of the number of incipient failures. Countering
this, however, is the fact that in Shooman's formulation ET is divided by
the total number of instructions IT$ implying that they were thought of
strictly in terms of coding errors. (In the applications which were made by
Jelinski and Moranda, it was necessary, because of a lack of fine-grained data,
to analyze on the basis of "trouble days" instead of on error count, but
there was not any consideration of program size in that analysis). [Reference
1].

As an important comment in this respect, it is clear from Equation 7 that
the number of instructions IT is only a nuisance since it is taken out
by the "normalization" of c c (TI) and c c (T2), which is required to
produce numerical. values.

F^

^A

^^	 B,.7

t•

t

B-$

I	 i	 I	 I	 I

B.2.5 Schick Wolverton Model (Description and Critique)

George J. Schick and R. W. Wolverton, in September 1972, at Hamburg, Germany,
presented a paper in which the de-eutrophication model was described along
with a new model which uses the same notation but which describes an
entirely different failure rate.

The rationLUe of the de-eutrophication. model, to quote from the original
paper, is: "the failure rate at any time is assumed to be proportional
to the current error content of the tested program; the initial error
content is then denoted by N and the proportionality constant is denoted
by 0, the failure rate drops to (N-1)0 after the first error is detected
and so forth."

Schick and Wolverton make the comment in their paper that: "there does
seem to be an inconsistency by admitting a decreasing failure rate yet
at the same time assuming (rather than deriving) an exponential model".
Apparently, they interpret the failure rate o f the Jelinski-Moranda model
as applying to a single error rather than to the sequence of a number
of errors. This interpretation cannot be supported by either the analysis
of Jelinski-Moranda in their paper or, by Schick-Wolverton's own analysis
of their own model as described in their paper.

To make the point more clearly, an examination of the defining equation
is useful. In the model., the detection rate is given by

z(t i) = 0 IN-(i--i)]ti

where ti is "the cumulative time to the occurrence of the ith error". Under
that interpretation the variables employed in the likelihood function are
not independent. On the other hand if t i represents the time past the
occurrence of the (i-1)st error, then the t i represents the same measurement
as the Xi of the de-eutrophication model; this is the interpretation that
agrees with their analysis.

In a purely formal way the likelihood equations for solution are:

2n = £	 jN-(i-1)]ti2
T	 i=1

and

n	 n
l	 = ^S £ t^2

2 i-1

where the symbols are the same as those used in Equation 2 (with Xi--ti).

(S)

(9)

;^ n

k

ti

1
T

^a

a

a.

3
i

B.3 DATA AND ADJUSTMENTS

Data which is relevant to software errors was obtained recently from
W, L. Wagoner [Reference 8]. This data, although not in a form which is
ideal for analysis by the three YVIDAC models since it consists of grouped
error counts, was analyzed to obtain estimates of the error content. The
unique feature of the data i s that the reference unit was CPU time (in
seconds).

By adjusting the data in the ways subsequently described it was possible to
obtain estimates for all MDA.C-models. The results produced estimates
which were consistent among the models and accurately predicted the error
count which was eventually achieved on the basis of a very short interval
of data.

Because of the grouping of the data it is very easy to obtain estimates from
the Sbooman formulation in either of two interpretations.

In order to complete the compari--on, the Schick-Wolverton model is also
employed in a formal way.

The data consists of a record of the errors which occurred during the
debugging of a data-reduction program (called the Fll-D Program) consisting
of "approximately 3-4 thousand" Fortran statements. The data is reproduced
in part in Table 1. The important feature of this is that CPU time is
available as a unit.

The three MDAC models describe failure-rates (or Poisson parameters) which
decrease with time. The first clear cut evidence of a decreasing failure
(round by dividing the errors detected by the CPU time on a ddily basis)
starts on 1/19 after 5.24 units of CPU time has elapsed. The ratio on
1/16 is 1.54 while on 1/18 it is 10.06 errors per unit of CPU time, while
on the next three data-days the ratios are 2.04, 1.31, and 1.10.

This corresponds qualitatively with other experience which has been gained
on other data. There is usually a startup effect which is evident. There
are fairly clear reasons why this should be so when calendar time is the
unit: early in testing there may not be a sufficient number of "working
parts" of the package to obtain significant error counts; as time goes
on these parts produce in total an increasing error cv=t; finally the
assumptions of the models may be met.

Although the same reasons do not necessarily apply to data rased on CPU
time, some of the general effects seem to be indicated by the data.

It should be said, however, that experience also shows that the two de-
eutrophication models can be applied to any initial segment of data. The
estimates for the error content will be initially very high (infinite for a
constant error rate) but will settle down to give good estimates even though
the first part of the data is not being well-modeled.

i

B-9
z.

J

Table I

DATA ON F11--D PROGRAM

t

Errors Cam
Date Detected Error

1/12 $ 8

1/15 7 15

1116 1 16

1/17 8 24

1/18 16 4o

1119 18 58

1 f 22 13 71

1/23 8 79

,,<<a 9 88

1/25 2 90

1/26 6 96

1127 3 99

1/29 3 102

1130 2 1O4

1/31 3 107

CPU
Time

0.5

0.6

0.65

1.90

1.59

8.83

9.94

7.25

8.34

3.86

13.3.1

34.15

82.7

1.10

51.59

\,_,
W 	 B-10

On the other hand, in order to apply the Geometric Poisson Model, much
greater care has to be taken, since there is much less data which can be em-
ployed for the estimates of the two unknowns.

The above reasons are all good reasons for choosing the zero time of the
analysis to be the cumulative CPU time at the end of 1/18. But the way
in which that time was initially chosen is entirely different. It was
chosen initially by applying a universal "Progratmmers Poisson Parameter"
of 1 error per 50 lines of instruction. In order to eliminate the startup
effects on a program with 4000 instructions and an estimated 80 errors, the
zero time chosen corresponded to the half-'way error (40).

Whale the particular value chosen does not seem to cause any concern, the
use of the factor of 1/50 to obtain the a/	 priori error content has caused
controversy. As originally stated the rule-of-thumb is that there are

j	 (on average) two errors per 100 instructions. This factor has been observed
by F. Akiyama on nine fairly large programs. [Reference 91 It also has
been noted by B. W. Boehm of TRW in a presentation at the 1974 Ann
Conference: data from T. A, Thayer, et.al ., taken from tests on five
large scale programs showed a remarkably consistent rate (22xlo-3).[Reference 101

Boehm in a personal, communication, stresses the important fact that the
constant he reports is the ratio of errors (program bugs) to the number
of source instructions (via a via machine or object instructions). But,
fortuitously or otherwise, this is exactly the way the figure vas employed
above in estimating the half-error point (4000 Fortran instructions tames
1/50).

Excepting the adjustment for the zero, the data is used as it stands for the
two de-eutrophication models. In order to apply the data to the Geometric-
Poisson Model, it is necessary to further adjust it. Time intervals of
equal size and the number of errors per interval are required for this
model. The choice for the length of the intervals is arbitrary (for
illustrative purposes); however, five of the six daily CPU times in the
time span 1/19 through 1/26 are about 10 seconds in length, so that it
is a conlrenient interval size for comparisons among the models.

In order to apply the data to this interval size, interpolations of cumula-
tive error versus cumulative time are required. As with the previous
analyses, and for the reasons given there, the zero time for data corres-
ponds to a cumulative CPU time of 5.24. The data after interpolation and
adjustment to the "new" zero, is shown in the first two columns of Table II.

B.4 ESTIMATION OF PARAmTERS

B.4.1 De Eutrophwcation AnalZei::..

In the application of the de-eutrophication process the tames between
successive errors form the primary data. In the present case the data
are not recorded in that way. As an expediency the times within any given
interval are put equal to one another and have a value equal to the
quotient of the CPU time used on a given date, and the number of errors
found.

B-11

i

^. Table II'

- Adjusted P11 -D Date

Interval Number of

CPU Time Errors Fitted

0-I0 19.53 20.35

I0-20 12.83 I3.75

20-3€ I0.93 9.28

34-40 7.52 6.2l

40-50 4.58 4.23

50-6o I.3T 2.86

The analysis is performed in this way on the errors recorded during two
days (1/19 and 1/22). Thus, the required data are:

X1 = X2-...-x18=.4906

and

X19 = X20 =...=X31=.7646

This data produces the numerically substituted version of Equation 1
[Reference 11.

11	 1	 =	 31
i=1 N-71717 	 N-1 .707

which produces an estimated residual error of 63.4 which, together with
the 40 "startup" errors, produces an estimate of 103.4 for the total error
count.

The estimate for 0 is obtained by substitution into Equation 2, of
Reference 2 and has the value 0.035.

If the same analysis is employed on the data for the three consecutive working
days 1/19, 1/22, 1/23, there are 8 additional errors and the time between
them is taken to be equal. The additional data is:

X32=X33=,.,X39=1 go65

The numerical, equation to be solved is:

1	 -- _ 39
i=1 N-7--M--2-1-.-66N513

which produces an approximate solution of N=68.8, corresponding to an
estimated total error content of 108.8.

The estimate of 0 in the extended data case, can be computed to yield the
value, .032.

The above estimates which are based on just two (or three) day's data
yield estimates which "turn out" to be quite good. The program after
running seven additional days had uncovered a. total. of 107 errors.
While it is very unlikely that all errors have been found, the time
spacing of the latest errors recorded is very long, and the program has
a "practical" error content of somewhere between 110 and 115. But it
should be pointed out that the data employed in the prediction is only
1/10 (or 1/8) of the total observation times making the result even more
noteworthy.

B--13

1

:a 5

^r

w.:

4

u

b-Y

_a

-^ r

^`	 R

n^

^a

a

}

k^

i	 -

s	 i

if
B.4.2 Geometric De-Sutra hication. 8PAlYsis

The same data used in the preceding analysis is employed with Equations 8
and 9 to produce estimates of k and D (Reference 21.

Using the data for the first two days (1119 and 1/22) produces estimates;
k = .9735 and D = 2,998.

It is clear that this model cannot be used to estimate the total number
of errors; however, it is possible to determine the level. of "purity" after
n observed errors by evaluating kn.

The estimated degree of "purification" after n errors have been detected,
is given, generally, by the ratio R_oEfo where Rc and Rf are the initial
and final rates. In this	 RO particular case, it is 1-kn.
For n=31 the degree of purification is 56.4%. The corresponding degree
for the de-eutrophication model is given, in general, by the ratio n/N,
and for the same data employed earlier this is 31/60.3 or about 51.4% (under
a different interpretation, where the initial 40 errors are included in
both numerator and denominator, the ratio 71/100.3 = .708, could be used;
however, the former figure is clearly the proper one for comparison of the
estimates of the two models as they are applied here).

B.4.3 Geometric Poisson Model.

As a final analysis of the same data, the Geometric-Poisson Model is
employed, The data required has been described in the preceding section
and consists of the entries in column 2 of Table II. Using these as
the ni, and substituting into Equations 11 and 12 of Reference 2
produces the polynomial equation:

2.4433k7-3.1320k6+1,6887k--k=0,

which has a root k = . 6756.

The value of the Poisson parameter is found to be =20.3+8.

= 20.348.

Use of these two parameters, produces the third column (labeled "Fitted")
of Table II.

By extrapolation (summing the infinite geometric series) the projected
total error count is 62.73, (or with the 40 2 which were "banked", a total
of 102.73). This appears at First to be only a fair estimate, when it is
compared with an observed total of (at least) 67. But it is important to
note once again that the Last time-point used in the analysis corresponds
to a modified CPU time of 60 seconds, while the 63rd (or 103rd) error
occurs after about 168 seconds of (modified) CPU time. With this scale
of reference, the estimate is remarkably accurate. The model data can be
used to generate forecasts for each time period: for the 60-70, 70--80,
80-90, intervals, they are 1.93, 1.31, and .88, respectively; while the
observed counts obtained by interpolation of the actual data a3re .88, .88,
and .64, respectively.

B-14

BAA Shooman Model

The Shooman Model does not require a decreasing failure rate and the choice
of the time Tl is arbitrary. However, in order to achieve some compatibility
with the two analyses made with the de-eutrophication models, the time
T is chosen to correspond to the fiducial tune, 5.24 CPU-seconds. Choice
oI the time T2 is somewhat open $ but to test the model thoroughly, several
choices for T2 are made, each of which will give an estimate of the
error content.

Column 3 of Table I lists directly s c (T). For the quantities xs i and Hi,
we employ the narrower, and more proper, interpretation that they relate
only to a short time segment subsequent to Tl and 7r2. Thus associated.
with T , are 'he quantities xsl = 18, and Hl = 8.83, obtained from columns
2 and respectively.

Case I;

Tl = 5.24 4 T2 = 14 ,07 (=3 times Tl)

Ec (T1) =40,	 Ec(T2) =58

x
sl

= 18	 x	 13
5^

H1 = 8.83	 H2 = 9,94

Thus

	

As1 = 2.039,	 x s2 = 1,307

and substituting

= 25.66358 = 32.337 = 90.22

	

3. l5	 .3

This compares to 107 errors found.

Case II:

Tl - 5.24

s(ll) "0

xsl = 18

H1 = 8.83

As = 2.039
l

T2 = 24,Ol

s(T2) = 71

x	 -- 8
s2

H2 = 7.25

As = 1,103
2

^t	 -1

ET	 (.541) 4o — 71

-541 - 1

107-54

This is almost exactly the number found when the same data ems used in the
de-eutrophication model, and agrees with the observed number of errors
quite 'well.

Case III:

T	 5.24 T2 	 31.26

40 e (T	 79
c	 2

3-8 X	 9

2

H 8.83 H	 8.34

Thus

A 2,039 A	 1.079s
1

s
2

ET	 122.8

Case IV:

5,24
2	

39.60

(T) = 4o EC (T2)	 88

X	 j.8 x	 2$i
3. 2

Hl.	 8,83 H	 3.86

Thus	 S,	 2.039 A.518
s
2

ET	 io4.358

B-A

l

a B.4.5	 Schick-Wolverton Model

The technique requires solution of the equatiozx

n	 nEt 2
Wi=1	 N=i*1	 E(N-i+l tit

'Where all variables and parameters are previously defined Frith ti
replacing xi) .

I	 r Using the same data as employed above for the two de-eutropnication models
the following are obtained:

E	 ti	 =	 18(.4906)	 + 13(.7646)

-- 11, 932
4,	

` 1	 2£(N-i+l)ti2 -- N	 tit-1)ti

.1 17	 2	 30	 2
1, 932N - (. ii)	 (. x+906)	

^- (iW18 i)=l	 .7646)

= 11 .932N	 219.27--

_.	 z
1

The estimated error content is the solution to

31	 1	 _ (11.932) (31)

c -1	 N-i^'1	 11.932N-219 .27

By trial and error the solution is

N - 11.5

Again since 40 errors are "banked", this corresponds to an estimate of 81.5

a for the total error, content.	 This does not appear to fit the error process
y very well.

9
B.4.6	 Summary of Error Estimates

`-^ The results of all models are extremely encouraging when viewed in the large.
The "gestalt" which seems most important is that "nature' does indeed relate
residual errors to the MTTF in an inverse 'ray: 	 all models are based on
this assumption in one 'Way or another and they all produce reasonable results.

Lli

f

L'

B-17

i

As noted before the estimates of MTTF at the end of test time provides a
"close--in" estimate. All models, except the Geometric-Poisson, which is 	 ob
based on several time intervals, can be coca-)ared although they formulate
estimates of MTTF in different ways. The comparison can be made against
the realized MTTF for the time (or times) conce.:ned. 	 4U

B.5.1 De-Eutrophication MTTF Estimate

Using the estimates for N = 63.4 and _ .035, the natural estimate for
MTTF at the end of the two-day sample is the reciprocal of the hazard
rate, (N-n)o.

:; u

For the two day sample (using r.am CPU time of Table 1)

MTTF (24.01) = .884	 (Actual Value .906). 	 xp

For the three day sample ending at CPU time 31.26„ there results

MTTF (31.26) = 1.049	 (Actual Value .927)	 'u

B.5.2 Geometric De-Eutrophication MTTF Estimates

For this model the MTTF is the reciprocal of Dkn where for the two-day	 wa
sample D = 2.998, k = . 9735 and

MTTF (24.Ol) = . 767

For the three day sample, D = 2.520, k = . 9744 and MTTF (31.26) :- 1.091

B.5.3 Shooman Model MTTF Estimate

For the two-day sample, with using ET = 90.22, E(T 2) 71, C = .01+06,

MTTF (24.01) = 1.283	 (Actual Value .906)

and for the three day sample

ET = 107.54, E(T2) = 79, C = .0302

MTTF (31,26)= 1.161	 (Actual .927)

B.5.4 Summary of 14TTF Estimates

The following table provides comparison for the MTTF estimates-

r.

r

r
r

i

Table 2

MTTF ESTIMATE COMPARISON

CPT	 Geom.
Time	 De-Eut.	 De-Lut.	 Shooman	 Actual

24.01	 .884	 .767	 1.283	 .906
(2.4%)	 (15 .3}	 (41.6%)

31,25	 1.0+9	 1.091	 1.161	 .927
(13.5%)	 (17.7%)	 (28.1%)

The main entries show the estimate for the corresponding model, and in
the last column, the "actual" value obtained by dividing the number of
errors by CPU time for the day just beyond the test truncation time.

In parenthesis are relative errors in percent.

B.6 SENSITIVITY OF ESTIMATES

A proper comparison of the models with respect to their robustness of their
estimates in the presence of changes in assumptions can best be done by
simulation. However, a very simple indication of the behaviour can be
found by employing properties of maximum likelihood estimates. In particular
the variance of the estimates can be approximated by means of an asymptotic
formula developed by R. A. Fischer. This formula and the separate analysis
for each model are given in the following sections.

8.6.1 De-Eutrophication Proces s

The analysis for this model is based on the following likelihood function:

L(Xl,X22.64,Xn;1':0)

ff ^[N-(i-1J exp f-0 [N-(i-l)]Xi} 	 (10)

i=1

where 0 and N are the parameters previously defined and X i is the time
separation between the (i--1)st and ith error.

By partial differentiation of the logarithm of the likelihood function
the Maximum Likelihood Equations (MLE's) can be formed. They are:

ma	 B-19

4

ijrr

tia

r

i^

i

r

^L

n	 n
alogL /are 	 =	 E	 1	 — Z	 ox, = 0	 (11)

i=1

and

alogL/ao	 =	 n - E	 [N-(i-l)]xi = 0	 (12)

0	 i=1

The variability of the estimates becomes of interest when an attempt is made
to compare different models. Obviously the comparisons of models must be
done on the basis of additional factors and by repeated auplications on
similar data. Nonetheless, other (unspecified) things being equal, the
model which provides the smaller variation (standard deviation) is preferred
to others.

Unfortunately, because of the implicit nature o" the solution to the MLE's,
the probability distribution(s) (joint, or marginal) for N and 0 cannot be
obtained, butt,, this difficulty can to a degree be circumvented.

The general properties of maximum likelihood estimates can be used in a
purely formal way to derive some measure of the variability in the estimates.
This point must be emphasized since it is manifest that the use of asymptotic
formulas (involving large sample sizes) on samples whic., are fundzzmentally
limited to be finite (there can be no larger samples than there are errors)
can result only in caution--laden approximations. Nonetheless, the experiences
which have bees: gained using the models seem to indicate that these approxi-
mations for the variances are generally much too high.

The basis for the development of the large sample estimates is a theorem
due to F. A. Fisher which states that under certain "general conditions}°p
which have to do with the boundedness of the first three derivatives of
the likelihood, the variance and covariances of the estimates are given by
the inverse of a matrix formed from -the mathematical expectation of second
partial derivatives. Explicitly the matrix Ai3 (which is to be inverted)
if, th? estimation of several parameters (l¢ 2,98.q n) has the terms

f

r
t

Ai j - -E	 a 2log L
BeiBej

where L is the likelihood function and 0. and
parameters. From Equations (11) and (12)1above

a2L = - Z	 1
aN2	 i=1TRE—ITYP

(13)

01 are two of the

{l^)

t
1
IT

o

13-20 =hi -. x

2 2Z,	 =	 a 2L	 =	 -	 E	 Xi

iS W

aN DT	 a 8N

] 3 2L	 - n

And since

E(X.) -	 1

the matrix elements become:
n

All =	 E	 1
i=1	 N-i+l

n

Alt _ A21 i=l	 N-147

A22

where for evaluation in practical situations, the values of N and}
(the estimates based on the data) are used.

The 2x2 variance/covariance matrix can be simply computed.

The determinant (denoted Det 1) of the A-matrix is

n	 2

'	 -
Det	 nA=	 2A	 w	 1	 -T

1	 13.A2	 1.2'21.	 i =1	 N-^^l

where we have used the fact that "on the average",

' n
E	 1	 = T, the total observation time.
1--1	 (t-9.'F 30

,
Hence

Var (N) = n a	 3

7'2 	 Det,

B-21

{ 3.5)

(16)

{ 3.7)

{1$)

(19)

(2D)

(21)

A

n	 2

Var	 11	 1	 (22)
i=l	 N--^ 	 Detl

Oovar (N,O) = _ T	 (23)
Detl

Sin+ie for a fixed sample size n, the solutions for N and 0 by means of
Equations (11) and (12) depend only on the ratio R = E(i--l')Xi , it is
possible to tabulate solutions as well as the 	 Mi
variance and covariance, This is illustrated by Table
III which shows the values for a sample size n =26.

In order to tabulate the parameters for an arbitrary process it is necessary
that the scale for time be normalized. Since the total observation time,
T. is assumed recorded by the data collection process, it is a natural scale
factor to use, It must be pointed out however, that this time is a random
variable; although it is treated as if it were a constant, this is a purely
pragmatic interpretation. A reasonable interpretation which can be made
is that the results which are recorded are conditional, on the observed time.

Given the ratio R, the MLEs become

n

i=1	
1	 =	 n
	 (24)

and

^T =	 n	 (25)
N-R

Equation (24) can be solved essentially by trial and error. Once N is
established the quantity OT can be obtained from Equation (25). The
quality OT is entered in column 3 of the table.

A
The variance of N can be obtained in the following way:

^e

^o

D-22 i

t

Table III

n=26

q

e	 f

}

f

i

1

t	 _

i

Error DEVO COVAR 14 TF
$atio Content (PHI)T DE" (Nonmed) (wormed) (Nonmed)

14.o 51.19 .6991 35.88 .6883 -24.2005 .0568
14.2 46.94 .T942 2T.74 .6907 -18.6666 .o6ol
14.4 43.62 .8899 22.o4 .6936 -14.7968 .0638
14.6 40.95 .9866 17.87 .6966 -11.9618 .o678
14.8 38.78 1.0842 14.75 .7001 -9.8426 .0722
15.0 36.98 1.1824; 12.36 .7041 -8.2155 .0770
15.2 35.47 1.2824 10.47 .7083 -6.9311 .0823
15.4 34.19 1.3836 8.95 .7129 -5.9020 .0882
15.6 33.10 1.4857 7.73 .7181 -5.0736 .o946
15.8 32.15 1.5898 6.72 .7235 -4.3850 .1022
16.o 31.34 1.6953 5.88 .7296 -3.8158 .1105
16.2 30.62 1.8027 5.17 .7361	 - -3.3350 .1200
16 4 4 30.00 1.9121 4.56 .7432 -2.9274 .1308
16.6 29.45 2.0236 4.05 .7508 -2.5795 .1433
16.8 28.96 2.1377 3.60 .7591 .2784 .1579
17.0 28.53 2.2541 3.21 .7681 -2.018c .1750
17.2 28.=•5 2.3737 2.87 .7777 -1.7909 .1956
17.4 27.62 2.4959 2.58 .7883 -1.5935 .2205
17.6 27.52 2.6222 2.32 .7995 -1.4173 .2516
17.8 27.25 2.7519 2.08 .8119 -1.2630. .2912
18 0 27 M 2 8862 1 8 8	. 7	 251	 -.1.1250	 .3436
18.2	 26.80	 3.0247	 1.69	 .8396	 -1.0035	 .4154
18.4	 26.61	 3.168o	 1.52	 .8556	 -.8964	 .5200

i

Column 1 is the ratio	 E(i-1)Xi / EXi

Column 2 is the estimate for the total error content	 I
i

Column 3 is the normed-estimate for step size: in order to determine the
actual estimate of the step size, the entry in this columP should be divided
by the total observation time T.

i
Column 4 is the approximate standard deviation of the estimate of the total
error content.

Column 5 is the normed standard deviation of theestimate of thb step size:
in order to obtain the actual standard deviation the entry in this column
should be divided by the total time T.

Column 6 is the normed covariance between N and ¢: in order to obtain the	 _!
actual estimated covariance the entry should be divided by T. 	 j

Column 7 is the normed MPTF and in order to obtain the actual value the 	
I

entry should be multiplied by T.

.j

i

a

,

B-23

bty Equation (21)

Var (N) =	 n,
etl

but using the substitution
n

ill ,r E	 1
i=l ZN-_i+l

the determinant of Equation (20) can be expressed as

Detl = nS2 - T2

7—

or

i

02Detl = nS 2 - (OT)2.,

O
enee the denominator of Equation (26) can be evaluated using the estimates
T and N.

Hence

Var(N) =	 n	 (28)
nS - T 2

The standard deviation i the more useful measure and is obtained by taking
the square root of Var (). This is entered in column 4 of the table.

The variance of ;T is obtained in much the same 'Fray: Dat l is evaluated,
as before, and with S2 as defined,

2
Var(;T) = T2 S2	 -	 S2T

Detl 	S2 r n21- T
` 02

W S2(^T)2	
(29)

nS2 - ' T

I

i

The standard deviation of this quantity is computed and listed in column 5
of the table. As noted a footnote the standard deviation of 0 is obtained
by dividing the column entry by T.

The covariance between N and OT ; a obtained by

Covar (NAT) = .-	 T2	 ^ ..2
Det^^

...
	n82

WT)

O^	

(30)

Again for the covariance between N and ¢, the entry in column 6 should be
divided by T.

The MUTT' of the "next' error is given by [(N-n)q5]
-1

 and is estimated by
employing 91 and ^, The value entered in the .cast column of the table
(for n-26) is [(R-26)$T] -1 and so must be multip3J ed by the user-found T.

While it is possible to formally express the variance of the estimate
of the MTTF in terms of the variances and the covariance of the two
estimates this is a step which will not be taken as the cascade of
approximations is already too long.

In the next section where the model has estimates which have legitimate
asymptotic properties, the variance of the MTTF-estimate is given.

B.6.2 Geometric De-Eutrophication Process-	 a

The analysis parallels that made for the De-Eutrophication Process.
is is important to note, however, that this process has an unlimited number
of errors. The likelih od function for the sample Xl9X2,...,Xn , is

L = n Dk
i-1

exp {-Dki-1X	

!S	

; 31)
i=l

and its logarithm is

logL = nlogD + Z
i=l

logk
1-1

 -D E ki	 i

The MLE's are obtained by differentiation and reduce to the two equations
n	 _

n - i=l
ki

i	 (33)
D

and

1 g	 (i-l) = D n	 (i-1)ki-2X1	 (34)

k

B-25

(32)

I

i

I
r

uU

S

y

z 6	

rJ

D can be eliminated from both equations to leaves a single equation.

n

i=1
k^

- i = n+l	 (35)

	

Eki--X. 	 2

w
Then using the solution, denoted k, the eW mate for D is

D =	 n	 .

E2i-lXi

The variance and covaria,nces for this process are found by the procedure
described aboveo As noted, above, however, this process has an infinite number
of errors, and so the sample size can become large, and the asymptotic
formulas can be applied without apology.

Directly by differentiation

a2 lo	 w - n	 (36).. a	 D`1
11

n

a2lo	 = a2lT o	 - - E {i-z)kz-2xi 	 (37)
Oak	 WD 	 i=1

2zva	 °'=	 l2
3=l

(i..1
)— DZ=1

(i-
1)(i_2)h^..3X i
	 (38)

a^	 k

Since E(Xi)	 1 , the associated A-matrix elements are
D k.. i

A

	

	 n	 (39)
D7

n

Al2 x'21 	 1	 f=l {i--I) = l n(n-1	 (4o)
Dk	 Dk 2

n	 n
A22 -	 ill (i-1) + 1 i

ll (1-1) (1-2)

	

k2	 k2

	

I.	 E	 (i-1) 2	 1	 n(n-1)(2n-1)	 (41)
k2 i=1	

6k

H-26

3

j

1	 ^

	

Det2 = I	 n2(n2-1)

	

D
2
k
2
	 12

Var D = D2 2(2n-1)
n 7n+l

Var k = k2	12
n n

A A

Covar (D,k) = -Dk 6
n n+l

Thus the variances and covariances are

P	 -- 3 n x
2 2n-1

which is in excess of 0.85.

^
1

a

Using Det2 to represent the determinant of the A-matrix, we obtain after
simple reduction:

In the limit these variances tend to zero. On the other hand, it will be
noted that the correlation coefficient between the estimates is quite 	 {
high (in absolute value):

The estimate for the MTTF which has the character of the maximum likelihood
estimates is given by

1

M2 = AAnl

Dk

where the subscript 2 denotes the estimate for the GDEM. The asymptotic
approximations can be employed in another reasonable approximation in
order to derive a measure of the variation in the estimate of the MmTF.
By differentiation taking the total differential and expectations it
is seen that	 (47)

Var M2 = 2 ^ Var (D) +	 2n	 Covar (Dak) +	 U	 Var(k)
D2k2n	 D3k2n+1	 D2k2n+2

where, again the estimates would be used as proxies for the (unknown)
parameters.

B.6.3	 Geometric Poisson Model i-'

From Equation 10 of Reference 2. the likelihood function is
fm

L(nl ,n2 9 *01 , a	 =	 II	 (Aki-') ni exp (-J^ki`l) . l (48)
i=1	 ni*l

and
nn

logL	 =	 E	 ni (logA+(i-l)logk) -	 E	 Ake-1 - E	 logni 1 (49)

Hence
m

a 2 log -].	 E	 ni (50)
s:

O X2	 X2 i=l

m
a 2 0a =	 2. IogL	 -- - E	 (3-l)k'-2 (51)

$210 	 XE	 U-1)(i--2)g^ -3 (r-2)
ak2	

k2	
i=l	 ^_l

The variables ni are assumed by this model to be Poisson distributed, }^

and so

E(n.)	
- Xki-1 (53)

Accordingly

All - 1	 E-	 It -1 (54)

ni-2
All - Al2 =	 E	 (i-1)

i=1

A22 = AE(i-1) 2k1'`3 (56)

The variances and covariances are therefore

n	 2-x 3
Var A	 -	 X	 E	 (i-l) (57)____	 ,

t	 Det3-1
v

a:

B-28

a

I_	 I	 I	 I	 l_	 1

Var k	 A
	

(58)
4	 Det3	 3 =1

Covar 6,1)= l	 E (:t-l)ki-2	 (59)
Det i=1I	 3

D.6,4 Shooman Model
i'

M. L. Shooman in Reference 5, gives the following expressions for the maximum

T'	 likelihood equations for the two parameters or ET and C (originally K):

_	 n1 +n2

1!
- EC (-Cl)	 Hl +	 .. EC (*r2)	 H2

:^Er	
r^

n	 ^:1	 1	 + 2	 [Eq,. 22 of Ref. 51
Hl+H2	

(61)_ ^.
EC (rl)	 ^ _ Ec('2)

-[IT iT

where ni and n2 are "the number of runs used in testing for times Hl and H2
respectively".	 (This is incorrect; they should be the number of unsuccessful 	 `j
runs as will be shown herein).

_ t Shooman refers to another of his papers for the justification and develop:sent,

i unfortunately there is no discussion in the referenced paper with respect
to maximum likelihood estimation [Reference 51.	 In order to expedite the
discussion and further clarify the Shoomen Model, the fallowing analysis
is provided.

Fundamental to the analysis is the assumption that the software error
{ genera ion is governed by a Poisson point process whose intensity (failure

LI rate) is proportional to the current number of errors. 	 For short period:
of time 	 (Hsl and iis2 in the present instance) the intensity :Factor can be
assumed to be proportional, to the number of remnant errors, vhich in	

r

Shooman's natation is

C (ET	 .. SC (T1)

IE.

L

IT

E

B--29

r	 R`J

[Eq. 21 of Ref. 51

(6a)

V =

i

f

9
:s

7

a

f

i
for the first period, and

A2 WC (ET-.EC (T2}}

YT

a..The number of unsuccessful runs occurring in a time Hs is then given by the	 j

Poisson distribution. Explicitly, the number of errors (or unsuccessful
runs or Whatever rare event is being counted), nl, observed during HSI ,	 1
is given by the Poisson law

i
P(N=nl)	 (X1HS-)nl e _A

IH I	
(62)	 F

I	
nll

i
Thus for two runs of duration HS and HS with observed numbers of unsuccess--
ful runs n.,and n21 the likelihad function is

L = (l H) nl e ^1HS1 	 (A2HS)n2

e - 2HS2

l	 2	 (63)	
's

ni l	 n2I

1

The maximum likelihood equations obtained by differenti ating the log--	 s
likelihood are y

a

alo/ r = nl { n2 .. glRl	 - H2R2 = C	 (64)
ac	

c
i

and

al- ogv- = nl	 + n2	 -a 1 H C-1 H c= 0	 (65)	 s
E	 BET	 xTRI	

x2.
	 TT 1	 2

where Ri = [E' -- EC (rl } is used for convenience, and HS is now	 j

T	 r,

s	 replaced by H

B-30	 F

Solving for C in each equation produces:
!7

C =

	

	
n1+n2	

(66)

Hl Rl H2 R2

and

u,	 C	 i	 nl	 n2	 (67 }HI+H2

	

R],	 R2

and where R. and C are the estimators of C and Ri respectively. These are

	

the equations Shooman reports. 	 1

Following the same steps employed in the preceding analyses with respect
to development of variances and covariances, the second partials are taken.

a_	

a210(nl+n2} 1	 (68)
ace	

C2
w:

;j	 8210	 = -1	 (I^Z^-H2 }	 x210	 (69)

v.x	 aCBET	 1T	 8E,^8C

a2110 LL - --	
nl	

--	 n2	 (70)
a	

1T 2 R 1	 1T2R

The expectation of n is

XiHi = HiCRV so that the A matrix elements are:

All 1 (Hl Rl+H2R2]	 (71)
C

Al2 = A21 1 (Hl+H2)	
(72)

xT

A22 = C 2	 Hl + H2	(73)
^T R2 R2

R--31

Hence, from general relations,

A
Var ET

1 	 [H1	 RI + H2 "2] 4(7)
Det4

Var C	 I	 C 2 +	 "2 (75)

Det4

[Hl

2]
^	 '`

Covar	 1	 1 (HI-	 +R2) (TO TDet4	 'T
and

Det 4	 2 III-Ri	 H2-R2	 H, + H2
2

1 2 (H,+H2) (TV

'IT
Ul[1-2 IT

In Reference 5. Shooman gives the asymptotic relations

0	 2Var C	 +	 C (Eq. 23 of Ref. 5)n	 nift, 7'r

and (in our notation)

Var EV	 I1,%'.21, 2
(Eq. 24 of Ref. 5)n

2	 2
112,	 + n2R2

7T

These do not appear to be the same or similar to the corresponding expressions
(74) and ^75

)
If it is assumed that the second term in expression (76) is

much smaller than the first Berm, and can ve ignored, then by substitution
A

Var C
nu	

C	 (78)

"I"I "' HP-R2

If the expw—ed values for n I and n 2 are substituted into the Shooman expression
these are seen to be the name, There is no heed to have n large, as Shooman
implies in his formulation, but it is necessary for the second term to be
small.

Correspondingly, using the same approximation for 1) et4

Val.	 2	
MYr!	 IT	 1121.

22

B-32

I 1 21

^ 21

^t

F ^^

,a
s

3	 7 B-33

z.
I	 I	 l_	 t

If C is replaced by its estimator given in Equation (66) above, this
becomes

ra
r1	 2Is

Var E	 X `'C R1 2
T T

Al	 n1R22"n2R12

This is somewhat similar to the Shooman e,Tression but differs in a very
interesting way: the terms involving products of n and R are "mixed",
i.e., one factor is at zl , and the other at 72'

There is an independent way of verifying expression (77). From the knowledge
of the Poisson-lav, it is true that the variance of M1 is equal to the
parameter 11HS , so that equa:tion(Wcan be used to obtain,1

Var C -	 1	 _X[Vax(nl) + Var (n2)]

[HlRI + H0212

(there is independence between nl and n2) and
so

Var C=

	

	 C
H1R1 ^ H2R2

which is equation (77).

There is no explicit solution for ET so that a similar validation does
not seem possible.

($C)

u }'

^i

r,-^

wA

I's
1^ y

^^	 I
ii

s

i

Ti

u+l

B- _Y

I	 l_- -. I_	 l	 l _ _ t __ _I.
r^

13

I

REFERENCES

1. Z. Jelinski, P. B. Moranda. Software Reliability Research,
pp. 4(4ff, Statistical Computer Performance Evaluation, edited by
Walter Freiberger, Academic Press, 1972.

2. P. Moranda. Predicti .s of Software Reliability During Debugging.
1975 Proceedings of the Annual Reliability and Maintainability
Symposium, January 1975, Washington D.C,

3. M. L. Shooman. Probabilistic Models for Software Reliability Predictions.
pp. 485.502, Statistical Computer Performance Evaluation $ edited by
Walter Freiberger, Academic Press 1972,

4. J, C. Dickson, J. L, Hesse, A. C. Kaentz, M, Shooman, Quantitative
Analysis of Software Reliability, Proceedings of Anneal Reliability
and Maintainability Symposium, San Francisco, 1972.

I
5. M. Shooman, Operational Testing and Software Reliability During

I	 Program Development, Record of IEEE Symposium Computer Software
Reliability, Nev York City, 1973,

6. M. Shooman, Software Reliabi.l.il;y; Measurements and Models,,
t	 Proceedings of Annual. ReliabiUty and Maintainability Symposium,
f	 Washington,, D.C.,,IrI 5.
i

7. G. J. Schick and R. W, Wolvertong Assessment of Software Reliability,
llth Annual. Meeting of German Operations Research Society, Hamburg,
1972.

8. W, L. Wagoner, The Final. Report on Software Reliability Measurement
Study. Aerospace Report No. TOR-0074 t4ll2)-1, August 1973,	 's

9. F. Aki.yama. Ari Example of Software System Debugging. Proceedings
of IFIP Congress 1971, North Holland Publishing Company, 1972,	 E

10. T. A. Thayer, et,al.,Softvare Reliability Study, TRIT Interim 	 F̂.
Technical Report on Contract P30602-74-C-0036 with game Air Development
Center, 25 June 1974.

it

jl

Y,

i

1

`

5

Appendix C

PROGRAM TESTING

C.l INTRODUCI`SON

For the purposes of -obis study, program testing will be defined as the
process: of -verifying than e, selectclel-eontsinea vsE 	 'off .ode	 such as :.
a subroutine) complies with the requirements against which it was
designed®	 These requirements define the functions the code should. performs
the structure of the code within the unit and the environeent in which. the

„ code must. operate,	 Program testing as -ire Faire defined it does not include
the testing of relatiorzahips between units of code. 	 it is 'based on complete

1a knowledge of the internal structure of the unit, as opposed to the black box
approach,

It is we7ll-known that complete 'besting is not feasible even in the few
cases where lt.is p l,5ssible",,	 Therefore, the next best approach is to test
as completely as -';asibl e within the constraints of economics and value

k received. ^^	 ^^

Various tools= and techniques have been devised to aid in program verification.,
mile. none. as yet can assure that the code performs correctly under all
conditions to which it may be subjected,, each adds to the probability that
the code will perform its intended functions correctly at the time that

IPM it Is called upon to do so, i

A number of tools have been built that support the testing function and
research continues in the development of technologies that vi l result in
new tools and in improvemern,s of those already in existence. 	 Some manual
techniques hsve been advanced v*bi.ch offer promise as verification aids.

The tools and techniques with -which this task is concerned are those that
a,c'bually interact with the code in some way as opposed to those that

i r support testing in &.peripheral fashion or those that support system
testing from a functional standpoint,

This report deals with the. application of these tools and techniquesp
-^ rograms"tbe research being performed to improve theto the testing of programs"

.

technology, arnd an revaluation ofthe"pra.ctice3ity of each type of tool
'` ar technique :-izx today4 s"softie . deve],opzuent. ^envnnxdcnt o

` C.2 MOPUIABTZATIOrr

The tesing: tsf' prog^ am	 using cxentl.	 aural able tools and #,ehriques
genera11y requires that: .the .total: . : system be broken down- into m=ageabl+e

" izn3ts, each of which can, be oons^idered a,: separaite test .object.	 Top -do*,^ !

' design	 telyult3	 results in a get of routines fox edch level of: decompis ition.

.^ i

i	 I	 i	 I	 I	 I	 I

I.

Each routine (unit) is a test object to which the tools and techniques
can be applied. Intellectual manageability of the unit is one criteria for
establishing the size of the unit of code 9 particularly for manual techniques	 -°manual
such as walk throughs and program proofs. A second criteria is the amount 4A
of code that can be handled by some tools such as test case generators.
Other criteria may be considered such as requirements for single entryfsingle
exit units of code. In most instances, limiting the size of the unit of 	 Y^
code to 1001 statements or less provides a test object that is intellectually

'	 manageable and can be handled by the test tools which are to be apTAied.

While modularization is a design function, its importance in program testing 	 :a
is so great that if not provided for in the design phase, it must be con-
sidered in the testing phase. Decomposition of programs, while generally
based on structure, must also take Logical processes into consideration.

C.3 MMUAL TECHNIQUES

Walk-throughs.

The careful reading of a program by someone other than the programmer
with the objective of evaluating its correctness with respect to a	 u_
given specification has proved to be effective, as documented by
Weinbergl and Daker2.

The person reading the program can detect errors transparent to the	 ^.

prograrrmcer 9 because he is nab psychologically biased by his identifi-
cation with the program, The programmer who made the error will often
consistently overlook it because he is reading the program from the
same point of view as when he wrote it,
The process of cooperative program checking is called egoless programming
by Weinberg because it eliminates the egC. identification the programmer
has with the object of his creation and allows an impartial. evaluation. 	 -^

The effectiveness of a walk-through is also a function of the ease with
which the program can be understood. Since reading the program for
correctness is in effect a mental proof of correctness, it is imperative x
that the unit of code be small enough to be understood. The mental
execution of the program differs from program proving in the degree of
formality.	 "t

w A

'Jal.k-throughs can be performed at various stages of coding depending
on the complexity of algorkbbra being implemented, In very complex code,
such as that which must meet extremely tight efficiency requirements,
it may be advantageous to walk through the retailed design, the initial
implementation, and the final refinement in order to assure understand-
ability and reduce the chance of implicit, or hidden errors.

i

C-3

Program proving

Program proving, both formal and informal, is discussed in Appendix E.

When program proving was first seriously advanced as a candidate for
automation, it was thought that the difficulties inherent in this
approach to program verification could be overcome given the time
to consider them. properly. As late an 1972 in a report by Information
Research Associates, it was stated that "it seems possible that within
the next two to five year period to bring this to a fairy* respectable
state of automatic analysis". However,, to date, the difficulties
have not been found to be surmountable, and it appears that automatic
program proving still faces some formidable problems demanding further
research,

As a manual technique, program proving can be considered from two points
of view. The first is from the point of vier of proving an algorithm
correct and can be performed during the design stage. The second is

r	 from the point of view of verifying the design representation in code
and is performed during the coding stage.

For units of code containing more than a. few branches and/or loops,
the manageability of the proof becomes virtually impossible„ Therefore,
while the theory behind program proving is viable its use is not`y	 p ^ p	 g	 ^

feasible until -rays are devised to more frilly automate the process
in a workable fashion.

CA AUTOMATED TECHNIQUES

A variety of automated tools to support program testing have been built, In
addition, a concerted effort is in progress to build tools with new capabil-
ities or to add improved capabilities to the tools no-r in existence. A
comprehensive evaluation of the software requires both static analysis to
evaluate structural characteristics, and dynamic analysis to evaluate
behavioral characteristics, While neither type verifies that the unit of
code performs the functions specified for its both provide useful information
about the testability of the code.

An interesting concept should be mentioned here, however. The kernel of
functional. requirements verification is the dynamic analysis of code if it
can be determined that the unit meets the requirements defined by assertions
added to the code, This capability is pro posed as an enhancement to MDAC's
PET4 program,, and is discussed in greater detail later in this report.
An evaluation of the capabilities of various tools now in existence was
made in the performance of this study and is contained in Appendix A,
This task will consider the technology that supports these tools as well
as others being developed in research projects.

Standards Checkers
All

The test object of standards checkers is the set of source statements in
a self-contained unit of code such as a subroutine or a procedure,. They	 k
check the L.atement get for conformance to predefined stendards'such as
adequate and consistent commentary- statement positioning relative to the:^
entire set (.eog, placing declaratives in a specified order, placing format
statements together before or after the executable code, or placing internal
procedures before executable code (in a procedure--oriented language), and
program length.

TRW's Cade A.uditor 5 program currently checks for 38 programming constraints
in FORMAN code.

Applied Data Research (ADR) 6 has COBOL standards checking capability in their
Metacobol system.

Computer Software Analysts, Ina, (CSA) 7 markets a product called Standards
Auditor which is available for both FORTRAN and COBOL source programs.

Bell's PFORT Verifier checks FORTRAN code for conformity to ANSI standards.

While it may be argued that these tools are not directly involved in pr.og am
testing, they impose an orderliness upon the program that is designed to
eliiiainate errors caused by haphazard program construction, This orderliness
also contributes directly toward the program's understandability and main-
tainabsiity.

Automatic Test Case Generation

The overview testing of software has been called an art 'because the selection
of a set of test cases, that will adequately test a program with carefully
chosen input data to minimize the number of cases and me inize the value
of their application, requires a great deal of insight and cleverness.
The development of a methodology to automate this process removes it from
the realm of art and the implicit errors and omissions that are inherent.

Several systems are presently being developed to automatically generate
test cases. L. Stucki, MUAC and W. Howden9o lO91412 of the University of
California. at San Diego are developing a test case generator for NtDAC under
contract to the National Bureau of Standards. R. Hof gmmml3,14 s l.5,16 of TRW
in Houston is developing the Autonuited Test Data Generator for the NASA/Johnson Space
Center in Houston, B. Mi 3lerl i,,fa .-merl.y of General Research Corporation,
designed a test data generator for commercial use in their automated tool
collection called RX'U, L. Clarke18 of the University of Colorado. is
developing an automatic test case generator supported it part by an NSF grant,,,
All of the above support FORTRAN programs, and are designed to generate -
-test data based on an examination of the syntax, Other types of test 'data
generators are in use, and are basically driven by input parametexs' supplied
by the programmer, with no direct knovIedge of the source code being required.
This report will address the work by Hoffman, Howden, Clarke and Miller since
that -work seems roost applicable to . NASA needs.

1	 #	 F

c-4
	

}II

t

J,

H
ii

^I

i^

fF

E i 	

ddtt
i?

1

L

l

'. I

The systems listed above are presently being developed to automatically
generatetest :data based on an analysis of the code. This symtactic analysis
provides cages that depend ,upon the control structure of the program. The code
is analyzed and the control .structure identified based on the presence of
predicates,, These predicates (logical decisions) cause transfers to various
pants of.. the progrsam9 both forvard. and backward, and create the existence of
a number of alternate paths trough the code.

If. the 'branches ; dictated by the predicates were all independent of each
other,. an enormous, number of paths would be possible in a program. Looping,
in -part aul.ari has the greatest effect.

How ever o an real. ty, .the number . of paths is much sraller, particularly in a
I	 " non-itera#ye syste .m,.because the branches tend to be dependent. That is,

abranch,-talken.on a true condition may eliminate not only the false branch
j but an entire, section of a path including other branches that can only be1 re

achsd if the false condition existed for the first branch.

The goal of the test data generators developed to date is to exercise not
w	 only all statements in . a .program but also all branchesbranches (It is possible

to exercise all statements vithout having exercised all branches).

The systems to be discussed in this report all begin by defining the control.
structure of the code .then they eliminate paths which cannot be executed,
lea-ting only the paths vhi:ch can be traversed using some input data to drive
execution down these pains¢

Semantic analysis is not addressed. It is up to the programmer to determine
if the cases generated to exercise the code do in fact demonstrate that the
code functions as it vas intended..

The usefulness of automatic test case generators lies in their ability to
show that code as vritten,cAnbe reached when driven by some data within the
input domain, The extrapolation of this information to program correctness
Within acceptable bounds is left to. the programmer. The test case data
can 'be analyzed:to determine relevance to the areas of interest, providing
the base for the proper Bet of test cases required to adequately exercise
the program for the purposes intended.

General Aimroach

The McDonnell. Douglas app roa,oh, originally taken by Stucki and Howden9910$11,12
was to decompose a VOTHAN program into a finite number of standard classes
of program paths, thegr'ta tx7 to generate a set of test cases that causes
one path from each clfa^s to be tasted.

r,.y

c=s

	

^:	 1

	

? s:	q

LD._

P	 I

= i 5:

L E7

^n

1

3) Transformation of the implicit descriptions into equivalent
explicit descriptions.

4) Construction of explicit descriptions of subsets of the input
data sets for which the third phase was unable to construct
explicit descriptions,

5) Generation of input ;slues that satisfy explicit descriptions
by the application of inequality solution techniques.

In testing a program it is necessary to choose a finite set of paths that
could be tested from the potentially infinite number of paths possible
through the program. A boundary-interior method was used for choosing the
paths. This method groups the paths through the program into a set of
classes. One path in each class is tested, by which it is assumed that if
a test is successful, all other paths in that class are considered correct.

The philosophy underlying the boundary-interior method is based on the
assumption that a "complete set of tests must test alternative paths through
the top level of a program, alternative paths through loops and alternative
boundary tests of loops". A boundary test of a loop is a test which causes
the loop to be entered but not iterated. An interior test causes a loop
to be entered and then iterated at least once.

The boundary-interior method separates paths into separate classes if they
differ other than in traversals of loops. If two paths Pl and P2 are
the same except in traversals of loops they are placed in separate
classes if

(i) one is a boundary and the other an anterior test of a loop

(ii) they enter or leave a loop along different loop entrance
or .loop exit branches,

(iii) they are boundary tests of a loop and follow different paths
through the loop.

(iv) they are interior tests of a loop and follow different paths
through the loop on their First iteration on the loop.

Class descript ons consist of branch predicates, assignment statements.
1/0 statements and FOR-loops (to represent an arbitrary number of traversals
of a loop.) The complete set of class descriptions for a program can be
represented in the form of a description tree , in which the leftmost
path describes the class of all paths which test the interior of the loop
in the program, and the other paths are boundary tests.

The description tree is formed as the program is read with alternative
paths being consutrcted for each branch and each loop.

`s

f

	

^'	 a

	

_	 a

3	
3

i

	

3	 ^	 i

F	 j

i

R

4 ^l

uy

C-6

%	 __	 I	 I	 L	 I 1_	 Y	 _.	 i

i

Once the set of paths has been described, the methodology of phase two
constructs implicit input data descriptions of the sets of data that cause

1 classes of paths to be followed. The predicates and predicate affecting
statements are extracted from class descriptions. Output statements are
deleted and all input statements are replaced by assignment statements in

17

	

	 which dummy variables represent the values in the input stream (and the
program Is assumed to read the next value in the stream). Phase two
also deletes all assignment statements that do not affect predicates.
This is done by reading backward from each predicate and constructing lists
of those variables that affect the predicates,

Phase three attempts to transform implicit input data descriptions into
e: pplicit descriptions. 	 The assignment statements are evaluated by sub-

,.I stituting the current symbolic values into the statement, which gives the
dependent variable a current symbolic value, 	 These values are then sub-
stituted when the variables are encountered in predicates and relations.
Any of these statements that do not affect the predicates are deleted.
The FOR-loops are processed in basically the same tray, 	 If a loop is closed
and does not change any variable affecting predicates it can be deleted.

Problems arise when array reference and FOR-loo 	 indexes txi only	 r-y'	 ^	 a..	 y be deter-♦
mined at execution time,- When values of variables occurring inside a. loop
are computed outside of the loop; when values of variables occurring outside
a loop are computed inside the loop; and Nhen disjunctive and recurrence
statements occur.	 In each of these cases the values of the assigned
variables must be classified as indeterminate anal cannot be deleted.

J The evaluation is an iterative process,, since statements in a loop may not
be evaluatable until later processing. Once evaluated, re-evaluation of
prior statements may be possible.

Phase four completes the transformation of implicit descriptions to explicit
descriptions by choosing particular values of loop bounds and particular
terms in disjunctive statements. 	 These values are a subset of a set of
values that satisfy the description.

At this point, feasibility of a description becomes an issue. 	 A description
is feasible if there are values in the input domain that satisfy the des-

} criptions.	 Infeasible descriptions describe the empty subset of the input
domain.	 Assuming the partially explicit description is feasible, Phase four 	 j
attempts to choose loop 'hounds and disjunctive terms that result in a
feasible subset description.

L1 Phase five generates the test data,	 It divides the standard classes of paths
into three sets:	 those for which it can generate test data, these for
which it can determine infeasibility and those for which it can do neither.

Phase five is an integrated collection of inequality solution techniques
and is based on a backtrack search.	 This method can be applied to both
linear (Kuhn 1956) and non.-linear (Hoyden 19'2) systems.

The backtrack search starts with the last inequality and progresses. up
through the path, solving each inequality in sequence. -If at any point,
a solution cannot be found that satisfies the constraints on the variable

C-7

Aii _

1

r7
r

z

f

k,

I^L^

w

lr^d

77

iLl

i

z

L-W

s

#I

I :s

involved, the method backs up and attempts to change the solution to the
previous inequality. If it can, then the solution process proceeds. If
not, it backtracks further in the attempt to find 'a sequence of solutions.
If it backs all the way, the system is unsolvable. If all the inequalities
in the path are solved, the system is solved.

This general methodology produces a large number of test cases because of
the boundary-interior approach to handling loops. Hence more recent
research has been geared toward the selection of path segments of interest
in order to restrict the number of test cases to be generated, This allows
the examination of loops, specified sets of branches and/or loops without
bearing the overhead of generating data for paths of peripheral. interest.
A command language has been introduced to enable the user to select the
classes or subsets of classes of paths. A feature was added to include the
identification of statements, loops and branches by number, allowing the
user to communicate more easily with the system by naming paths and classes
of paths through a program. Other features include user assertion capabilities
for stating desired logical conditions and for assisting in the symbolic
evaluation process. The DISSECT system which is now being experimented with
represents the latest work in this area.

McDonnell Douglas

Dissect System.

The DISSECT system can be used in different gays and can take on
different forms, depending on the capabilities which have been
implemented. In-using the system the programmer begins by preparing
a number of cases. Each case describes an analysis to be carried out
by the system:. In its simplest form, a case consists of:

(a) A procedure consisting of a sequence of commands which cause
the selection, from the program of a path, partial path or
set of paths or partial paths. A path is defined to be any
possible flow of control through the program.

(b) A set of commands which directs the system to print outs

(i) a system of predicates which describes the data that
causes the selected paths to be followed; and

(ii) symbolic a cessions which describe the cumulative
effects of the computations carried out by the
selected paths.

Several of the possible more complex features have also been implemented.
The more complex features can be used to carry out more sophisticated
Program analyses. The current system will allow a user to conditionally'
carry out path selection commands based on Whether the selections will
cause the generation of inconsistent systems of predicates, to generate
and insert assertions into the selected paths, and to manually force
certain simplifications of the predicates and output for selected paths.
An.extended system -would allow the user to combine sy stems of predicates,
symbolic output and assertions in verification conditions; to solve

C--^3

s.i
"I

JI

i

systems of predicates to generate test data; and to prove correctness
by proving verification conditions. Attempts to automate those last
two features have not been completely successful in specially designed
test data generation and proof of correctness systems and they are
not planned for inclusioa^ in DISSECT.

In the following example the system is used to "read" a program.
DISSECT can be used to help a user read a program, by analyzing the
program to see ghat computations are carried out by the program
along selected paths and what data causes the paths to be selected.

Each case -which is preapred for input to the DISSECT system can contain
a sectim of text -which describes in English the subdomain of the program
corresponding to the case and the actions carried out by the program
over the subdomain for the case. The DISSECT system can be used to
confirm that the selected paths corresponding to the case are applied
in the situations and carry out the actions specified in the text for
the case, In helping the user to read a prog-am, the system helps the
user to confirm that the program implements its specifications.

Ex̂ MRle

The program in Figure C-1 is called PDIV, The program comes from the
i! Scientific Subroutine Package and can be used to divide one
polynomial by another. The input to PDIV consists of tvo vectors
of polynomial coefficients of length IDIMX and IDIMY where IDIMI--1
and IDIMY-1 are the degrees of the polynomials.

It is not immediately obvious from a casual reading of this program
that it carries out division of polynomials. Most of the difficulty
is due to the language the program is written in and the style of
programming. The program has been clearly designed to handle these
classes of input:

(i) Zero divisor: IDIMY = 0;
(ii.) Divisor of higher degree than dividend: IDIMY >IDIMX; and	 i
(iii) Divisor not of higher degree than dividend: IDIMY <IDpa,

The actions taken by the grogram for the first two classes of input
are obvious. There is not need to construct DISSECT cases to analyze
the actions and program subdomains for these classes. A user might
still construct these cases in order to maintain, using DISSECT, a
document containing the record of a, complete examination of all of the
important cases covered by PDIV. If so, he might construct the cases
contained in Figure C-2 and Figure C--3. The case descriptions
contained in Figures C-2 and C-3 include the output from the system.
The user supplies the text description of the case and the DISSECT
commands Vhich specify a set of paths and the output to be generated
for the paths. The system generates the systems of predicates
and the symbolic output for the paths. If a cage involves the
specification of more than one path or partial path, the output for
each path is grouped together under a SUBCASE heading, The output for
CASE 1 in Figure C-2 involves two subcases. 	 E

C-9

i
:sp^

•	 j

SUBROUTINE PDIV(P O IDIMP,X,IDIMX,Y, 1
IIDIMY, TOL, IM) 2
DIMENSION P(1), X(1),X(1) 3
CALL PNORM (Y,IDIMY,TOL) 4
IF(IDIMY)	 50,50,10 5 ^.

10 ID IMP=IDIMX--TD=+l 6
IF(IDIMP) 20:30,60 7

C	 DIVISOR DEGREE TOO LARGE 8
20 IDIMP=O 9
30 IER=O i0
40 RETURN 11 i

C	 ZERO DIVISOR 12
50 IER=1 13

GO TO 40 14
60 IDIMX=IDIMY-1 15

I=IDIMP 16
70 II=I+IDIMX 17

P(I)=X(II)/Y(IDIMY) 18
C	 SUBTRACT MULTIPLE OF DIVISOR 19

DO 8o K=1,IDIMX 20
J=K-1+I 21
X(i)=X(J) P(I)*Y(IC) 22

80 CONTINUE 23
I=x-1 24
IF(I) 90,80,70 25 _..,

C	 NORMALIZE REMAINDER POLYNOMIAL 26
90 CALL PNORM(X,IDIMX,TOL) 27

GO TO 30 28
END 29

Figure C-1.	 PDIV Program _s

f

c..i

C-10

tj

CASE _:	 DIVISOR TOO LARGE
j OUTPUT:	 PATH, PREDICATES.

s^

PATHS:	 DEFAULT SELECT Mu CONSISTENT;
5.	 SELECT	 . GT .
7	 SELECT	 .LE.; 1

SUBCASE.1.1:
q - PATH:	 1-7, 9--11

PREDICkTE$:	 5	 IDIMY . GT.	 0 .
7	 IDIMY--TDIM +l	 . LT.	 0. {
11 RETURN

r	 3

SUSCASE 102:

'.. PAT$:
	

1-7 '. 10, 13-
PREDICATES:	 5	 IDIMY .GT.	 0

7	 IDIMY-IDIMI+l	 .EQ.	 ('
11 RETURN

¢

Figure C-2.	 CASE 1 -- DIVISOR -boo large

CASE 2	 ZERO DIVISOF
` OUTPUT:	 PATH, PREDICATES.

t

k PATHS:	 DEFAULT SELECT ALL CONSISTENT;
5	 SELECT	 •EQ.;

J

PATH:	 1-5, 13, 14, 11. J'

^.I PREDICATES:	 5	 IDIMY	 .EQ.	 0 i

11 RETURN

Figure C-3.	 CASE 2 ---. Zero divisor

Wny

CCC

•

k2

I!	 i

F
i^

f
C-11

4	 ^ J

s^

4

Programs to be analyzed by DISSECT must have sequence numbers or lane
numbers. The text in the CASE section of CASE l describes the subset
of the input domain consisting of pairs of polynomials where the
divisor is of larger degree than the dividend. The path selection
commands in the PATHS section describe the set of paths which the user
claims to correspond to -his case. The 5 SELECT . GT. command causes
the .GT. branch to be chosen in statement 5. The DEFAULT SELECT ALL
command tells the system what to do if it encounters a conditional

.F	 branching statement for which there is no associated SELECT command,
The command instructs the system to follow all branches which do not
cause the system,of predicates associated with the path that follows
a branch to become inconsistent. The system analyzes the program and
produces the output is the SUDCASE sections, In more complicated cases
the output will be usefal in determining whether the program conforms
to the program specifications in the CASE text descriptions.

The action taken by the program for pairs of polynomials where the
divisor is of degree less than or equal to the degree of the dividend
is more obscure. The user may wish to confirm that the program works
correctly for this class of data by constructing cases for which:
the divisor and the dividend both have minimal degree -4 degree one;
they both have the same non-minimal degree, say degree 2; and the
divisor has smaller degree than the dividend, say divisor degree 2 and
dividend degree 3. Figure C-4 contains the CASE corresponding to
the output for which the divisor and the divident moth have degree 2. Fig-
ure C--5 contains the CASE corresponding to the input for which the
divisor has degree 2 and the dividend degree 3. In both cases the user
has requested that the system print out the path sequence numbers
and the symbolic output for the paths. The ASSIGN command allows the
user to give values to variables in paths. The result of the ASSIGN
commands in CASE's 3 and 4 is to cause the variable ID11a and IDIMY
to be replaced with constants in the symbolic output for the CASES.

The LOOP commands in CASES 3 and 4 specify how many times a loop in
a path should be executed. The command 25 SELECT .GT., .LE.; specifies
that the ,GT. branch in statement 25 should be followed during the
first iteration of the loop containing the statement and the .LE.
branch the second time.

The system also allows explicit conditional commands. The conditions in
:	 these commands can involve t°loop counts", values of program variables

and path attributes, Path attributes are character strings which can
be attached to any program statement. All paths which pass through
a statement having an attribute acquire that attribute.

The DISSECT system allows a user to isolate parts of his program and to
apply automatic program analysis tools that will help him to see what
circumstances cause those parts of the program to be executed. He can
also apply analysis tools to see what computations are carried out by
different parts of the program and to compare those with program specifi-
cations. More complicated analysis tools can be incorporated into
DISSECT to allow a user to ask for the automatic generation of test data,
the formation of verification conditions and the proof of program properties.

i

i

t^.

:s

C-12

CASE 3:	 X AND Y HAVE SAME DEGREE 	 2
OUTPUT;	 PATR9, OUTPUT (P,X)

7 PATHS:	 ASSIGN IDIM = 3;
;^ ASSIGN IDIMY = 3;

5	 SELECT	 . GT . ;
7	 • GT . ,

p	 '
J.20	 OO	 2;LOOP

25	 SELECT	 .LE.;

,^ PATH;	 Z-7 ^ 15--23, 20-23 9 20 t 24-28, 10, 11.
^tw OUTPUT:

i

AR^cAY ^':
P(l) = X(3)/Y(3)

.f ARPAY x:
X(1) = X{1) - (X(3)/Y(3)) * Y(l)

E111

X(2) = X(2) - (x(3)/Y(3)) * Y(2)

Figure C-4.	 CASE 4 W— Equal Degrees

F1,
CASE 4:	 X HAS GREATER DEGREE THAN Y v 3 ANA 2.

i OUTPUT: PATHo OUTPUT(P9X)
PATHS: ASSIGN,IDIMX = 4;

'
ASSIGN ID

I
I

^

MY = 3;
v	 - 5 SMXCT	 .ITT . 9

7 SELECT	 •GT,;
20 LOOP	 2;
25 SELECT	 •fiT. 9 •LE.

F

PATH: 179 15-23 9 20-23, 20, 24, 25, 17-23,
20-23, 20 9 24--25, 10, 11.

OUTPUT:
A.,RRAY P:

P(l) = (X(3) o (X(4)/Y(3))	 Y(2))/Y(3)
P(2) = X(4)/Y(3)

ARRAY Xo
X(1) = X(l) -- ((X(3)	 {X()/Y(3))

Y(2))/Y(3))	 Y(Z)
'

X(2) ^ X(2) - (X(4)/Y(3)) * Y(1) M ((X(3)
_'. -- (X(4)/Y(3)) * Y(2))/Y(3)) * Y(2)

r X(3)
_
-- x (3) m (x(4)/Y(3))	 Y(2)

 ^^sn degree of dividendFigure Cw5. CASE 5 ®-^ Degree of divisor less

i

e	 x

r

3

1

3
Cp

I
1

iSGeneral Research
A

Miller17 has also developed a system that generates test cases for FORTRAN.
programs.	 The first step is the decomposition (if necessary) of the program. ^.
into a series of smaller segments that can be dealt -vi.th separately.	 This
process decomposes the program structure into segments with tho property
that each has a single entry single exit. {

Miller's approach is to construct a tree representation of the program by
automatically performing a series of reductions of the program directed graph.
This corresponds pretty much to Howden t s reduction of the program to a
state diagram of the class descriptions.

Once the tree representation has been constructed, the structure (program
control_) is analyzed to determine the program execution patterns (paths).

This tool also uses the backtracking method to construct test cases.
However, a basic, difference between It and Howden's method is the handling
of loops and the extent of processing performed during backtracking. While
Howden derives his entire set of inequalities prior to the backtracking
process, Miller performs much of the derivation during backtracking Howdeaa
attempts to handle loops as part of the system to be solved, while Miller 	

F

reduces loops to non-iterative flow.

The backtracking in Miller's system implements a set of rules that dictate
the actions taken by the backtracker as it traverses the statement sequence 	

q

in reverse order. The reduction of the program produces a set of simultaimous	 j
non-linear inequalities involving only input-space variables and constants.
These inequalities are new solved and the result is the test case.

In the case of iterative flow, manual intervention may be necessary if a
valid test case set cannot be constructed by a single traversal of the cycle.

The approach to coverage is to exercise each predicate in the program at
least once to each of its possible outcomes, but not necessarily in every
possible combination.

The research at GRC in this area concentrated on tradeoffs between segment 	 i
size and number, and in learning the effects in execution time requirements
both in performing the computations and directing the backtracker,

t 	 I 	 l

1	 ^
1

i

i

^	 i

TRIP

Hoffman 13,14,15,16 of TRW, Houston, is developing the Automatic Test Data
Generator (ATDG) for FORTRAN prop,Tams. This tool is currently capable of
constructing paths through the snit of software and of identifying a
characteristic set of paths required to exercise all logical. decisions.

The goal of ATDG is to exercise each transfer at least once using the
fewest number of cases.

Hoffman identifies all segments of a program by number, identifies all
possible logical transfers between the segments and then defines a path
through the software which is a chain of transfers beginning at an entry
point and ending at an exit point of the unit of software.

C_14

1 .0	 He accomplishes the path determination day , constructing a,''directed graph with
each segment of ; -she program reps seated as €s node, in the: grapy and ' each
l.oocal transfer as a node connection, then performing a network analysis toE

y	 describe the paths.	 Tr	 sfor,s' are. the cennections:bet ieexz txo segments and
i	 s segment ends at. a. predicate with the next segment . beginning: : with. the

associated executable pa ft of the Aecision statement.
i Unexecut-able paths are eliminated using tie.impossible g*irs" technique,

t	 This technique Identifies impossi ble pairs of transfers, 'based on data
constraints that prev^t `& pair of transfers from boring executed in the
same pass through the software,,

In the z ,,Oori,ty of cases p the pairs are always impossible.	 Ho^rever	 if
E values of -variables can be changed' then it is necessary to qualify the

;f '	 possibility of transferring.

The application o' the 	impossible pairs technique to a , shoxt program
., '^	 illustrated in(115)reduced the number of possible paths from 3264 to 9.

This was further reduced to seven.. 	 To reduce the nxuaber of paths required
to exercise all transfers, a conzaectivizy ivati:rs generatedrepresenting
the direct transfers in the softie unit.	 A reachability matrix is them_

formed allowing a look-ahead oapa,bility to determine the best transfer to
select based on the number of transfers. which can be subsequently executed.
Once executed, a transfer is flagged and each new path c=hains the largest

.,	 number of now transfers, 	 This process continues until. all transfers are
exercised.

3j	 ATDG doers not currently generate data to exercise the paths.	 The work is
continuing and the expansion of the connectivity matrix concept is being

!	 pursued,.	 The basic difference between Hoffman's approach and that taken by
Howden !and Miller is the method of determining path construction. 	 Hoffman

{	 defines the paths based on the data constLxLnts, and displays paths which
s	 t	 can be executed. 	 This system Is interactive with the user generating the

test data which will exercise the path.

'E	 Hoffmsn!s use of the software network analysis with the connectivity matrices
allows the combination of the structural and logical characteristics of the
unit to form a matrix defining executable paths based on data constraints.

"	 Troops are considered to require one iteration the first pass through the loop
bumping the index and the second pass allowed to Nall through#

An obviour, advantage in the concept of connectivity matrices is the ability
to handle units of code that are complex. 	 The size of the matrices increases
with the complexity of the program, but the network analysis and matrix
generatiun and processing remains the same.

Universilbv of Colorado

L, Clw ke18 of the University of Colorado describes the system developed there
to generate: test data for programs written in ANSI FORTRM. The. system is an
extension, to the validation program, DAVEI9, which perfo%ms data flow analysis.

C-l5

i

Programs arA decomposed into segments., and a directed graph is created de-
fining the possible paths.	 A data base is crested containing information
about the program units.	 This data is used during data generation.

K The lexical analysis performed creates a list of tokens subsequently trans-
lated to an intermediate code similar to assembly language. 	 This intermediate
code in conjunction with the directed graph is accessed by the test datar generator.	 An advantage to this approach is that adaptation to a new
language would require a translation to the intermediate code, with only
minor modifications necessary to create a test generation system for the
new language.	 Howden uses a similar technique.

Y'

This system addresses loops and subroutines calls. 	 The user can designate F. ;

the path to be taken through the program, requesting that loops be traversed
a specified number of times and that the path enter and exit specified
subroutines following a designated path. 	 The control structure blocks
defined by DAVE are numbered and stored in the data base.	 The paths are
then described by the user in terms of the subroutine names and block numbers.
Ms. Clarke offers the following example. 	 A path is described by SUBI :' 1,2,5,
SUB2, 1,7,8, sun, (6,7)2, EOP rEI3D.	 An analysis of the path starts with `' a
subprogram SUB1.	 Blacks 1, 2 and 5 are symbolically executed. 	 A call to
subprogram SUB2 is encountered in block 5.	 Blacks is 7 and 8 in SUB2 are
then executed.	 A. return statement is encountered in block 8 of SUB2 and
analysis returns to SUBls block 5.	 The remaining code in block 5 is executed..
Then the loop farmed by blocks 6 and 7 .%a executed twice. 'J

The analysis determines the feasibility of the path. If it is found to be
infeasible, the user is notified and analysis of the path is terminated.
If the end of the path is encountered, the path is executable, therefore
feasible, and the test data that drove the execution down that path is
returned to the user.

Feasibility is determined by attempting the symbolic execution of a path.
When a conditional branch is encountered a data constraint is generated.
Each constraint is then passed to an inequality solver that attempts to rind
a solution to the set of constraints and confirm that they are consistent.
If a solution exists, the symbolic execution of the path continues. If they
are inconsistent, the user is notified and the path is considered infeasible.
Linear programming techniques are used to solve the system, based on the
premise that a large proportion of programs have linear constraints (allowing	 r,.
the use of the linear techniques) and non7linearities will not limit the use
of the tools.

This system operates also in the static mode, with a path being initially
specified.

Since the capability of traversing loops creates the possibility of an 	 ;±
infinite number of paths, only a, few of which may be of interest, this
analysis program requires that the path to be analyzed be specified by
the user.	 :,

raeo

tam

c-16
r

m:

t

r^
IM

EFFIGY is an interactive symbolic executor developed by King, et,al. SC at IBM.
It is applied to programs mitten in a special subset of PL/l containing only
integer valued variables and vectors.

EFFIGY accepts one statement at a time,, building a tree that definers the
paths through the program as it goes &.long. 	 At each branch,, the user
decides which path is of interest and communicates this to the systera which
them proceeds with the symbolic execution.

[-.a The pat'2 generation proceeds in a forward fashion as opposed to the back
tracking methods used by Howden and Miller.

EFFIGY sages the state of the branches and allows restoration to particular
points so that alternative paths can be explored later.

An interesting aspect of EFFIGY is the capability to accept assertions during
the symbolic execution that allow comparison of the correctness specification
to the data at a given point in the execution.

The use of symbolic input data allows verification of the program over a
range of numeric data without examining each specific possible inpiit
within that range, 	 It represents another attempt to prove taht data of
interest exists that will drive execution down a particular path.

_ auL_-nation of the process of exploring all paths of interest is being pursued
by the developers,

This system is limited in practical use,, but gives added insight into the
'- concepts of symbolic execution as a tool in proving programs correct.

Stanford Research Institute

SELECT is a system developed at Stanford Research Institute by Boyer, Elspas$
and Levitt2j.	 It is also a symbolic executor, executing the code in a forward
direction through the program,	 It is applied to programs that are written
in a language that resembles a subset of LISP, since that was the language
used as input to the SRI program verifier which was used as part of SELECT.

As the statements are executed and branches are encountered, the path is
F

generated and stored as a conjunction of predicates in a list.	 Variables
are kept in another list which is updated whenever an assignment statement

_ is encountered. 	 Data that will drive executions down the path is also
maintained and is derived by the execution of an inequality solver. !

As each predicate is examined, the inequality solver is called. 	 It solves
! linear and some non-linear Inequalities for both integer and real valued

variables.	 If the inequality cannot be solved, the traversal of that path
is abandoned and is tagged as an impossible path.

i Loops are addressed by SELECT as paths that are iterated a user-specified
number of times.

r

C--17

r

E	 i

^	 3

i)p

SELECT also offers the capability of accepting user-supplied assertions.	 They
can be used to determine the numerical value of the symbolic data during
execution, to constrain the input space bounds from which SELECT is to generate

3	 test data, or to provide a specification of the intent of the progran to
verify a given path.

w.^Calls to subroutines are presently handled by substituting the subroutine
code into the program..	 This causes an explosion in the number of paths
and is a limitation. 	 Work is being done to address subroutine calls by
characterizing them by input and output assertions, and replacing the calls !
by these specifications.

i

'	 All test case generators currently described are experimental. tools. 	 The
various techniques employed in developing these tools represent attempts
to achieve a feasible testing aid.	 All require total knowledge of the
program structure as well as the intent, and all are severely limited in
the size of the program that can be accepted.

The capability of DISSECT, SELECT and MIGY to accept assertions is an added
step toward proving the correctness of a program. It allows the programmer
to express his testing requirements in some way that reflects the programts
intent, and to compare this intent with the results of data derived by the
structural analysis of the program.

Execution Analyzers

General Overview

The basic function of execution analyzers is to gather run time statistics
that can give a programmer insight into the behavior of this program.

Initial attempts to analyze program behavior were through the use of trace
functions. While tracing indeed shows the order and state of execution,
it is very costly in programs that are not small, and particularly if Loops
are involved. Tracing is still. a valuable debugging aid since it provides
for a display of the contents of cells of interest during execution.

A number of effective execution analyzers have been developed to perform
dynamic analysis of the code through the use of external performance
monitoring techniques or with software probes inserted into the source code.

Poole and Babbage ts Problem Program Evaluator. 	(i'PE)22 is an example of
a tool that monitors execution performance externally. PPE is linked to
the load module and causes execution to be interrupted periodically,
recording the state of the program's execution at each interrupt. The
information is compiled and displayed graphically. While this technique does
not disturb the test object code and is language independent 'because it
operates at the object code level, it does not provide complete statistics
about execution frequency, particularly in tight loops.

The analyzers that insert probes into the source code are language dependent.
Among the currently available tools developed fir the analysis of FORTRAN
programs are MDAC's Program Evaluator and Tester PET), TRW's Flo g program

C-18

L _.=	 I

I
which is one of the tools in their Product Assurance Confidence Evaluator
System (PACE), CSA's R,UALIFIER, GRC ' s RXVP, CAPER ! s FORTUNE, and the NBS
Analyzer.	 COBOL analyzers include ADR's Meta Cobol, NCI's Series-3,
and CAPEV s 00	 HE.	 NDAC has developed a system to analyze the execution of
T.A;CPOL/MOL programs for the Army at Fort Belvoir and is currently working,
an a, prototype PL/1 analyzer, and GRC is developing a JOVIAL analyzer for RADC.

Several techniques have been used to accomplish instrumentation of source code.
All are based upon the recognition of the program's control structure .

' Entry points, exit points, branches and loops must be recognized to determine
where the probes should be inserted.to gave the desired results. 	 Most of the
tools provide 6. control-Ian ' age that allows the programmer to communicate
with the tool expressing his areas of interesty such as instrumenting only

' selected code segments and requesting optional statistics.	 The control
Language may be transparent to the compiler (in the form of comments) or
may be implemented as additional verbs which must be removed after testing

i" is completed.

In either case, the source code, with any embedded control statements is
passed through a preprocessor. The control, statements direct the instru-
menting process (in most cases, default conditions are used 'when no control
statements are present). The preprocessor generates a modified version of
the source code that contains the instrumentation. The probes are either
calls to subroutines in Which the statistics gathering takes place or are
counters in the form of assignment statements that collect the statistics
in arrays and symbol tables. The performance of the instrumented code is
degraded by the added code, but the functional results remain the same
(i.e, the program stall does what it did before it was instrumented).

Descriptions of the individual tools along with performance statistics
for each 'sere gathered during this study (see Appendix A).

All of these tools currently do not actually verify the program. Their
I^f# 	value lies in the insight they provide to the programmer about the behaviour

of the code in relation to its structure. Dead code can be located,
_

	

	 impossible branches can be identified, and high utilization code can be
isolated and optimized.

An initial. attempt ^,o address the function as well as the structure of
the code was proposed by Stucki and Foshee 4 as an extension to PET, MDAC's
execution analyzer. A prototype PL/I implementation is currently being
tested.

As PET is now implemented, it provides information about the variables in
the program as it was executed; namely minimum and maximum values assigned
to the Variables . at each assignment and for each do-Loop index variable,
and first and last values for variables in each assignment statement.

C-.19

Current Research

Assertion CheaUn q;	 General Philosophy

The assertion concepts for programming languages which are now being
developed constitute major extensions to our ability to carry out
"systematic programming".	 These new assertion concepts will impact
all phases of the software life cycle from initial requirements and
design phases down through certification, and maintenance iterations.
These assertion concepts are designed to encourage the development
of algorithmic validation criteria as the implementation evolves
frjm the initial algorithm requirements and specifications down
co the final program code.

The impact
of

these assertions will be both psychological and real.
They will be "psychological" in the sense that they are omnipresent.
Embedded as comments within the program code, they will be a positive
influence for increased understanding and awareness of how our
algorithms should behave and how we plan to insure that our algorithms
do in actuality behave properly at all times.	 The impact of the
asserti ons will be "real" in that they can be automatically checked
and monitored under dynamic program execution.

The assertion capability will allbw programmers to verify to some
extent that the code performs properly within the constraints
defined by the assertions. 	 Critical parameters can be dynamically
checked or monitored for range, value, and order violations based
on the prescribed bounds of the assertions. 	 Subscripts are checked
for range violations, and given subroutine parameters are checked
for change of value during execution of the subroutine.

The inclusion of specifications data in the program now begins to relate
the code to the requirements and is a significant advance toward
verifying the program. 	 Module interfaces can be examined via the
calling parameter assertions, providing added confidence in the
integration of modules.

An important side effect of the assertion capability is the documen-
tation in the code of the critical requirements of the program by
the assertion statements,	 This enhances the understanding and
maintenance of the program at allevels of development and operation.

l L J

Application.of these techniques and their assoc i ated tools offers a
positive step forward in the development of more reliable software
systems.	 This approach can be applied to existing programming
languages today via extensions to currently existing automated tools
like NDAC's PET system,	 The approach also promises to impact future
language and language processor design.

C-20

Basic Properties of Assertions

Thepremise upon which the assertion concepts is based is the need weP
have for thinking through and thoroughly understanding the expected and
actual behavior of algorithms. 	 The emphasis will not be placed on

_y proving mathematical or logical properties of programs but rather on
an attempt to increase our understanding of the nature and behavior
of the algorithms we use. 	 It is openly acknowledged that some purists
(i.e., London, Good, et.al .) may feel that we are taking a rather
informal approach to the study of program properties.	 However, it show!d

' be noted that the assertion language which will be developed contains
sufficient power to serve as a vehicle for stating Many formal properties

,x of algorithms. 20	Indeed, at some future point in time a theorem
proving tool may well interface with our embedded assertion language.

The assertion language will address both our understanding of flow of
control and flow of data through algorithms. 	 A hierarchy of assertion
cor;tructs will be defined to make their use more natural and convenient.}

i It should be noted, however, that one assertion construct is really
SSS sufficient (i.e., a generalized local assertion).

Generalized Local Assertion

A generalized local assertion may be embedded in a comment at any point
within the executable code of a program where another executable
statement may appear.	 The local assertion is designed to enhance the
documentation of critical algorithms throughout the entire life cycle
of the software. 	 Dynamic execution time checks can be activated at
selected points in time to ensure that the actual run-time environment
is consistent with the logical state specified in the assertion.	 This
dynamic assertion checking can be used to great benefit in debugging,
validation, certification, and maintenance of complex systems.

The format of the generalized local assertion is:

ASSERT LOCAL(extended-logical-expression)[optional--qualifiers]
[control-options]

The exact placement and treatment of the assertions will be tailored
tEv1 to the existing language facilities in currently defined languages.

In these currently available languages the assertions will be implemented
through specialized comments processed by a source code preprocessor.

E, New language development and -future compilers for existing languages
may contain options for directly implementing the assertions.

^^ O^tional^Qualifiers

In order to provide an existential and universal qualifier notion to
the generalized local assertion an optional loopi?tg capability is

defined:	 ..,FOR
IL^SO

n[(variable list) (set of ranges/values)]
l

} WHERE

C-2l
1

E
E

f1	 S '

I!	 f ^

(quantifier-controlling-log:.cal.•-expr)
e.g, C ASSERT (X(l)-7= X(J)) FOH ALL (I,J). (1. 8) WEETRE . (I-r= 'J):

means: Clfi,J s..b 11<I,. J<'8A 2 #	 x(x) XfJ)

Assertion Control Options

'	 The total control alluded to above (i.e., igrioring all assertions by
treating them as comments) offers the user a binary choice as to
whether or not to apply'dy ynamic assertions :during program development,
however, other levels of control are provided within the assertion
language itself.

The assertion language itslef contains three-hierarchical levels
of control;

1) instrumentation control. -- control of those sets of assertions
which will be instrumented at a given level of testing.

2) dynamic control -- run-time control of those instrumented
assertions which are to be dynamiclal.y checked, and

3) threshold control - user control when assertion violations
are observed.

Instrumentation control is provided by a LEVEL option. The syntax
of this option. is:

,,.LEVEL (preprocessor-control-expression)

The LEVEL option provides control information to the preprocessor telling
it which sets of assertions should be considered for dynamic analysis.
This level of control provides a means for testing selected software
features at various points within the software development cycle and
fits in well with the top down approach to program. development. This
also allows a user to group sets of assertions together for various
types of dynamic checks.

Dynamic control is provided by a condition option. The syntax of this
option is:

...CONDITION(dynamic-control-expression)

The CONDITION option provides rurx-time control of the assertions which
have been built into the program. This option affects only those
assertions which have been actually instrumented, thus the CONDITION
option is of lower priority than the LEVEL option. It should also be
noted that the CONDITION option can be dynamically changed under
program control to activate or deactivate the assertion as often as
desired.

C-22

J-1

4^+	 i

i

e^
4 s•

i

:^	 I

1

^	 a

a

F•-9	 ^

3	 ^

i

i

S

:V

ji

:r	 ^

Threshold control is provided by a LIMIT option. 	 The syntax of this
option is:

...LIMIT n[VIOLATIONS] [[[HALT
EE	 IYIA1 prod-name l

r The LIMIT option provides user control in the event of n violations of
the corresponding assertion.	 The user can specify that control being
transferred to a wrap-up procedure proc-name if the B'XI`P phrase is
specified.	 Otherwise, the HALT phrase will simply terminate execution

' and generated an assertion report automatically if n assertion vielations
are encountered.	 Motivated by a need to make assertions about arrays

w as well as scalar.}, the following notation has been adopted.

Array Notation for Assertions

Two areas of concern immediately arise when discussing data arrays, namely,y ,
array indices and array values.	 Thus, if one is monitoring 	 program
behavior, it is not enough to monitor array values alone, since program
login is invariably concerned with where these values are stored within the

f arras .

The approach is to generalize the assertion and monitor capabilities
to include data arrays; Array notation is as follows:

Assume an array of the form A (I1 ,I2' 1 ,... In). Referenbes to specific
subsets of array values or array indAes are indicated by A(I1,I2,13,...
In), where 1i is a subrange of Ii. This notation is position
dependent; i.e., if 12 is not referenced, its position must be indicated
by an asterisk (*), as in A (I1,JI3...ln). The format of each I i is
R:p where R<ji< I i (see note below). If lZ=u Q:p may be replaced by U,
as A(dZ, : u1,114,...). Thus for A(10,20) we might reference

A(5:10:15)
A(*,3)
A(2:5,*)
A(2:622:10)

Extended Loaical Expressions

Two types of extended local operations have initially been defir:ed for
the assertion language. An array to scalar logical operation wi-'l be
allowed -T ;th its result being defined as 'true' if and only if aril
component to scalar operations are found to be true. An arra y to
array logical operation will be allowed for identically ,pacified array
cross--sections with its result being defined to be true if' and only if
each pairwise component operation yields a result of true.

Note: If the character ':' (colon) is not available on a specitic
machine, another suitable character can be su:ffstituted.

0 ^ ^ ^@o	 C-23

Focal Assertion Examples

A simple local assertion example is shown below in a typical report
format. The assertion simply indicates that at the point where it is inserted
into the source code we expect the value of the variable NOWS to be
less than 9. The report format indicates that this asse rtion was
checked 9 times. Violations were noted on the 6th and 7th executions
of the assertion. It is furthermore noted that MOVE actually contained
the value 9 on those two instances. A snapshot is taken of all
pertinent variable values associated with the violation when the
trace mode is specified.

EXECUTION
COUNT I	 :iPECIF'IC EXECUTION DATA

00045 C ASSERT LOCAL (MOVE .LT. 9) LIMIT 10 9 ASSEl3TION VIOLATIONS	 2

EXEC NUMBER VARIABLE VALUE
6	 MOVE	 9
7	 MOVE	 9

It is also worth noting that had we encountered 10 violations we would
have halted execution at this point in the program.

Examples of the use of array cross-sections in extended logical expressions
include the following. (assume an array A(10,20) has been defined)

(a) ASSERT LOCAL (A(*,3) .LT. 10)
LIMIT 6 VIOLATlon

(b) ASSERT LOCAL(A(2.6,2:10) .NE. O)

(c) ASSERT LOCAL (A(*,*) .GT. 0)

In (a), the value of each array element whose second subscript=3 is
checked and reported as a violation if its value is not less than 10.
Ten array values will be checked in all. Any number of assertion violations
within an array operation cause the operation to be counted as a single
assertion violation. Thus, the LIMIT 6 VIOLATIONS is concerned with
only the number of invalid operations not with the number of violations
within the array.

In (b), only array values within the specified subscript ranges are
checked for an assertion violation. In (c) all array values are
checked for an assertion violation.

Specialized Local Assertions

A number of additional specialized local assertions are pro posed to
facilitate the expression of user validation criteria. This extensible
attribute of the local assertion concept is illustrated by the
following constructs:

C--24

1i 1	 I
LJ1 ,

_ 1

f

.t	 _.i	 I .	 _ I	 I	 i
i'

:.	 q

T'

ASSERT LOCAL VALUE[S] (variable--list) (set-of-legal ranges/values)
[control-options]

ASSERT LOCAL VALUE[S] (variable-last) NOT (set-of-illegal ranges/values)..,

ASSERT LOCAL VALUE[S] (variable-list) INVARIANT...

ASSERT LOCAL SUBSCRIPT RANGE (list-of-array-specification..)...

arraLOCALASSERT	 ORDER (-cross-s ect ion) ASCENDING ...-11' 	 ^	 Y

I I DESCENDING

Rl

N.1

All of these specialized local assertions could be replaced by one or
more generalized local assertions, however, their existence facilitates
the graceful transition from program requirements and their associated
validation criteria to embedded program documentation in the evolving
code.

The first three constructs cause instrumentation to be generated at the
position where they occur. The latter two constructs specify that
the next executable statement will respectively be checked to insure
that it does not alter the value of an invariant variable (e.g., '
through side effects from subroutine or function calls) or use subscripts
outside the specified ranges.

The ASSERT ORDER statement checks a sequence of array values as follows:

ASSERT LOCAL ORDER (A(*,3)) ASCENDING

For as array A(10,20), the following assertion violation summary
illustrates the type of information traced for a violation:

0 EXECUTION
COUNT	 SPECIFIC EXECUTION DATA

229	 ASSERTION `IIOLATIONS	 l
EXEC NUMBER SEQUENCE SNAPSHOT VALUE

A	 A(7,3)	 5
A(8,3)	 100'

A(9,3)	 8

The ASSERT VALUES statement checks variable values against a specific
set of ranges/values. The ASSERT SUBSCRIPT RANGE statement will
check addressing on those arrays specified to ensure ths. •t only those
portions of the array specifically selected are accessed. A subsequent
example will illustrate the usefulness of this concept later in this
paper. All of these Latter constructions will result in providing
similar traces to those already presented for out of bound conditions.

c-25

{

The Conceof a Global Assertion

Expanding our notion of assertions, we immediately identify the need
to expand to scope of application for our asserted program properties.
In an effort to avoid requiring several similar local assertions within
a particular program region, the concept of a global. asseL°.ion has
been introduced. This is a novel approach which promises to have a
significant impact on the way we design, implement, and test software.

Global assertions will allow us to exttnd our capacity to inspect
certain behavioral patterns for entire program modules, selected
regions of .;nodules or module interfaces (entries and/or exits).
Global assertions. appear in the Oeclaration section of the
program module.

These global assertions will have effect within the scope defined
(i.e., globally at all pertinent points, regionally over the named
region, collectively for all entries, and/or collectively for all
exits.)

The VALUES statement inspects each specified variable as its value
changes and reports when: (option 1) the new value is not one
of the specified legal ranges/values, or (option 2) the new value
assumes a specified illegal ranges/values, or (option 3) checks to
make sure the values of the selected variables are preserved
(i.e,, no direct or externally caused changes are permitted).

The ASSERT SUBSCRIPT RANGE statement verifies that array subscripts
fall within a specified range whenever the array -s referenced during
program. execution. It should be noted that this s-4aILement provides
a means of checking portions of ar.-rays as well as normal upper and
lower bounds. For -this reason, it is more powerful than the PL/I
type ON SUBSCRIPT RANGE check.

Instrumentation will be inserted into the source program by the
preprL..essor to accumulate the following statistics relative to
assertion violations;

C-26

J

f

.y f =3

L'

(1) Identify the statement that caused the assertion violation.
For that statement an execution count and violation
execution counts identical to those obtained for local
assertions are reported.

(2) The actual value that caused the violation. This value
is linked to the statistics identified in (1) above.

II = A(L,J) + LL 511

Some FORTRAN examples follow:

20
R

DIMENSION A(10,20)
21 C GLOBAL TRACE 10 VIOLATIONS
22 C ASSERT VALUES(I,J,K,L)	 (0:100)
23 C ASSERT VALUES(II,LL) (-10:10)
24 C ASSERT VALUES (KK,NN)	 (2,4,6,8,10)
25 C ASSERT SUBSCRIPT RANGE (A(*,31))
26 C ASSERT VALUES (X,Y,Z) INVARIANT

f

102 K=K+1
103 II = A(L,J) + LL

f

231 K	 A(J,K) + I*100
235 I1=II+2
236 NN = KK*(I-J)

300 CALL ROUTINEX(X,Y)

If assertion violations occurred in this example, the following
statistics are indicative of what would be .reported by the Postprocessor:

Execution
Annotated Program Listi a Count	 Specific Execution Data

K = K'+ 1	 511	 ASSERTION VIOLATIONS	 1
ASSERT (I,J,K,L) (0,100)

EXEC NUMBER	 VALUE
10	 101

ASSERTION VIOLATIONS	 3
ASSERT (II,LL) (-10,10)

EXEC NUMBER	 VALUB
22	 20

ASSERT SUBSCRIPT R11GE(A(*,3))
EXEC MIBER VALUE

5	 A(12,3)
105	 A(1,4)

C-27

g

^n

I

234	 K M A(3,K) + 1'100	 125	 ASSERTION VIOLATIONS	 4 j
ASSERT (I 0 3,K,L)	 (0,100)

EXEC NUMBER	 VALUE
52	 101
53	 102

ASSERT SUBSCRIPT RANGE(A(*,3))

EXEC NUMBER	 VALUE ^
52	 A(5g4)
53	 A(6,4)

235	 11 w 11 + 2	 125	 ASSERTION VIOLATIONS	 1
ASSERT VALUE (II,L") (-101,10)

EXEC NUMBER	 VALUE
50	 12

i

236	 NN = (X* (I-J)	 38	 ASSERTION VIOLATIONS 	 1 x--
ASSERT VALUES (KK,NN) (2x456,8410)

EXEC IRMER	 VALUE
20	 7

300	 CALL ROUTINEX(X =Y)	 53	 ASSERTION VIOLATIONS	 1 L1
ASSERT VALUES (X,Y,Z) INVARIANT

VALUE OF CALL PARM X
EXEC NUMBER BEFORE CALL 	 AFTER CALL {

30	 10	 «20

Structural and _Static Analyzers---

Structural analyzers are tools that examine the program code, performing
an:,analysis of the structure,	 Execution of the code is not regzlred k^^
for this analysis.

The analysis results in definition of the internal control structure
describing the paths through the program and can be depicted as a
directed graph.	 Other analyses can be performed based on the decomposition
of the structure into a tree representation.

P
^4

Structural, analysis is performed by dOYCE(MDAC), RXVP(GRC) 23 g	 PACE(TRW) 2h	#

j

and both BRNAHL and DA'V'E (University of Colorado) -19 ,25 . 	 These systems
all provide an error finding capability at this level, and in addition,

^<are the fo"dations of the test case generators developed by each organization,
They all are designed for analysis of FORTRAN programs. ^ }

Hoffman's Automated Tess: Data Generator (ATDG) uses the structural analyzer
component for PACE.	 Miller s s Automated Test Case Generator uses the
structural analyzer component of RXVP. 	 Clarke 's test case generator uses
the structural analyzer, DAAVE.. The decomposition methodology is described
in the discussions of the respective test case generators.

C-28

DAVE examines a program consisting of one or mare routines, and checks

fil
for a number of common errors not detected by compilers. Its philosophy
is based on two rules expected to be obeyed in the execution of a program,
1) that a,variable is not referenced unless previously defined, and 2)
that once defined, it is subsequently referenced, before being redefines: or
undefined. Thi! principle here is that many common: programming errors cau, ie
these rules to be violated. Therefore, a search for violation of the ruDis
should reveal the errors or possibility for errors. that cause the viol.aticns.

Among the errors. that . can cause violations of the :rules are uni:nztialized
variables, misspell ng of variable names, unequal lengths of corresponding
argument and parameter lists, and mismatched types and dimensions of
arguments and parameters.

DAVE constructs a call: graph,vhich represents the relationships between
subprograms being called, The subprograms that do not invoke other sub-
programs are called leaf subprograms and analysis of the code begins with
them,

In order to detect the rule violations, it is necessary to know the usage
of every variable in every statement, (i.e, whether it is used as input
or output for each case). Therefore, a search of the subprograms is
conducted along the paths defined by the structural analysis, to Look
for the rule violations. DAB has addressed the problem of data passing
through calling parameters and through COMMON, and provides information
about these variables in germs of their input/output classification.

Much of the analysis performed by DAVE is not designed to identify specific
errors but to sense suspicious. situations where errors commonly lurk,
and to pass warnings to the user who must then determine whether or not
an error actually exists, or whether the program can be improved.

The static analysis provided by RXVP provides much the same capability, but
with added features such as statement classification by type of statement,
number in each modulo and percentage of •total. (note that this is also a
capability of the execution analyzers); a module cross reference table of
variables, the statements that reference theme and their type of usage;
and an array subscript check for indexing appropriate to the array definition.

TRW's PAGE program incorporates some static analysis capabilities into its
structural. analysis and execution analysis program.

JOYCE is an automatic checkout and documentation. aid. It compiles tables
of symbols and, cross references of symbol usage within each routine of a
program. These symbols. include FORTRAN variable names the names of any
referenced function or module, any entry points, and all I/4 file
references. JOYCE permits the input of symbol descriptions as data, This
information may describe or designate a variable definition, a math
flags for grouping related ' subsets, or subroutine usage information.

ORIGMAL PAGE IS 	 C-29
OF POOR QUALR

{j5 Fi

{

iE

.1

i	 E

' r

^m$F

1

4	 ^	 r

LA

The edited information may be combined to produce several combinations of
descriptive reports.

The cross-reference Lists are useful for verifying consistency of symbol
naming and visage, for finding typographical errors in coding; and checking
a program's logic flow.

Subroutine flowlists aid in verifying the accuracy of the modules logic
flow.

It is impossible to separate the tools strictly by function. There is a
great deal of overlap in the types of analysis performed by each tool.
Seldom does a tool serve one function, therefore, it is difficult to 	 1
evaluate or even discuss them solely within one given category. For
example, MDAC's PET program, while basically classified as an execution
analyzer, also performs static analysis in the form of providing a syntactic
profile giving the statement types and number of each. Again, the syntactic
profile does not in itself identify specific errors, but provides information
useful in verifying that certain properties of the program exist (e.g.
ample commentary) or that certain violations do not exist (e.g. non--

standard statements),	 i..

Test File Managers and Generators

A test file generator differs from a test case generator in that it generates
data based solely on input parameters specified by the programmer rather
than on any knowledge of the program. Its purpose is not to try to prove	 s
anything about a program but to relieve the programer (or test personnel)
of the tedium of manually generating large volumes of data,

Test file managers are tools that allow easy manipulation of test files
once they are generated,

-1
These tools are commercially available for COBOL applications where they
are particularly useful in testing system that are data base driven. Among
those offered are PRO/TEST (Synergeties) 2b , Series-JT (NCI) 2Z , and MetaCOBOL
(ADR)2$.	 ' {

PRO/TEST is a set of three tools, the Test Data Generator, File PRocessor
and File Checker,

The test data generator generates data based on parameters specified on
input cards. These parameters specify the file structure (record and
field definition), the data ranges, conditional operations such as generation
based on comparisons, and computational operations which derive data by 	 v
operating on data from two data fields or one data field and a constant.
Random specification always causes generation of the sate data from the same 	 Ai
parameters,

The PRA/TEST file processor provides the capability of coupling live data 	 "^ F
with generated data, allowing selection and editing of records.

The File Checker matches the output of a program to the original record
design specifications to verify that the format and the structure are correct.

v^

F'

C-3O

r

I
I	 i_	 _I	 1	 I	 I	 i_

$eries-J offers a test data generation capability by parameter specification
internally. It provides a Test Division in the code that specifies the data
and its format. It then generates programs that will generate the data from
tables within-the generated programs.

The test data generator generates data based an parameters specified on input
cards. These parameters specify the file structure (record and field
definition), the data ranges, conditional operations such as generation
based on comparisons, and computational operations which derive data by
operating on data from two data fields or one data field and a constant. Random
specification always causes generation of the same data from the same parameters.

The PRO/TEST File processor provides the capability of coupling Live data with
generated data, allowing selection and editing; of records.

The File Checker matches the output of a program to the Original record design
specifications to verify that the format and structure are correct.

The MetaCOBOL system includes a test data generator that also accepts input
parameter specifications, generating data as specified.

Other tools of this type include MDAC's random data generator which uses the
computer's internal clock as the seed for the random number generator, and
then builds a test data file within the bounds of input parameter specifications.
This tool generates numeric data as opposed to structural data generally
output by the COBOL data generators, and is currently used to test FORTRAN
programs.

TRW has two tools called ATC and RETEST that are test file managers for
FORTRAN systems. ATC provides the capability to store pre-defined test
cases in the data base, edit these test cases, and selectively execute the
test cases. It also assists in the automatic comparison of test output
against previously generated output.

RETEST is a tool used to identify test cases required to reverify software
that was previously verified and to identify new cases where required because
of coding changes.

CSA offers commercially a tool named RETEST which is similar to TRW's RETEST.

Miscellaneous Tools

There are a number of other tools that can aid in program testing. Most of
these are application dependent and must be redeveloped for every
application.

r.y

i

C-31

1 J

However, there are a few that provide valuable information and are not appli-
cation-dependent. MDAC's JOYCE is an example.

Probably the most commonly used type of tool is a simulator. While there
are myriad simulators in existence, the requirements upon them are usually
highly specialized. Therefore, there are not any generalized simulators 	 T"
in common use. The two simulators offered commercially, SAM (ADR) and CASE
(TESDATA) are management visibility tools rather than actual test tools,
and therefore will not be discussed here.

There are many types of tools which have a common concept behind their design 	 E;
but which are application dependent due to the need to use data specifically
unique to the system being tested. These tools include data verifiers, event 	 i
loggers and their associated defoggers, and performance analyzers.

There are several tools available whose utility is strictly in the debugging
area. While there is often e. fine lane between debugging and development
testing, this study will not address those tools that can be defined as
debugging aids.	 T

Conclusions

This task surveyed many of the currently available program testing tools from
the viewpoint of philosophy as opposed to performance which was addressed
in Task I (see Appendix A) .

7
The application-independent tools in use at present do not verify that
the code in any way meets the specifications for which it was written. They
give insight into the structure and behavior of the code. However, in 	 r
light of the size and complexity of today's computerized systems, any
tUol that relieves the programmer and the tester of tine-consuming,
tedius, and error prone work is a valuable asset in the production of
reliable software..

4

One new and very promising area of research now being explored addresses
techniques for using tools to check functional attributes of programs.
Through the dynamic checking of asserted program properties testing tools
can provide valuable feedback on program compliance with selected specifications.

As research nontinues it appears that the concept of proving that a program
reliably solves the problem that was intended will eventually become a
reality. In today's environment, where practicality is a prime issue, the
tools that can provide the mast useful help to the user are the standards
checkers, the execution analyzers (provided the language and machine
attributes match), the test data generators and managers, and the structural
analyzers. Other tools such as test case generators like DISSECT are
still in the experimental stage of development and will require more research
before they reach the stage of practical. usefulness.

4	

7

1
1	

1

}

F

9

^	

7
k .^

C-32

........

In surveying these tools, the most common complaint was the difficulty of
use.	 As near 	 are developed and old ones are upgraded, greater attention
to user orientation will help make these tools more valuable, simply because
they will be used more,

ice.

^

 ,

A

iE

ti'

^

i

Pill

FF.
	 C-33

t

i	 1

	

<t	 i
.; D

3

i

	

F	 _

.v e

^. p

REFERENCES

1. G. M. Weinberg. The Psychology of Computer Programming, Van Nostrand
Reinhold Company, New York 1971.

2. F. T. Baker. Chief Programmer Team Management of Production Programming
IBM Systems Journal,, Volume II, No. 1 (1972) pp. 56-73.

3. Information Research Associates. Reliability Techniques for
Computer Executive Programs, Summary Report NAS8-2666-9.

4. L. G. Stucki, G. L. Foshee, New Assertion Concepts for Self--Metric
Software Validation. 1975 International Conference on Reliable
Software, Los Angeles, California, April 1975.

5. Code Auditor Requirements Specifications, TRW Systems Group, Working
paper,

6. The Age of Metacobol, Applied Data Research (ADR), January 1974
Sales Brochure.

7. Standards Auditor, Computer Software Analysis,Inc., Sales Brochure.

8. Ryder, B. G. The FORTRAN Verifier: Use r's Guide, Bell Laboratories,
Computing Science Technical Report #12.

9. Hovden, W. E. and J. Laub. Automatic Case Analysis of Programs, Computer
Science and Statistics Eight Annual Symposium on the Interface, Los
Angeles, California, February 1975.

10, W. E. Howden. Methodology for the Automatic Generation of Program Test
Data, Technical Report #41, McDonnell Douglas, February 1974.

11. W, E, Howden, L. G. Stucki * Methodology for the Effective Test Case
Selection Final Report MDAC-W, MDCG-5301,

12. W. E. Howden. Proposal to Investigate a Methodology for Effective
Test Case Selection. McDonnell Douglas Astronautics Company, March 1975.

13, R, H. Hoffman. Automated Verification System: Test Data Effectiveness
Measurement Subsystem User's Guide, NASA/JSC Internal Note No. 74-Ft4-46,
June 1974.

4

A

- u

C-34

LL.^

r
I

14. R. H. Hoffman. NASA/Johnson Space Center Approach to Automated Test
Data Generation. Computer Science and Statistics Eighth Annual
Symposium on the Interface, Los Angeles, California, February 1975.

15. W. E. Hoffman. Advanced Techniques in the Generation of Connectivity
Matrices for Software Network Analysis. TRW Systems Groups, working;
paper.

16. J. R. Brown, M. Lipow. Testing for Software Reliability. Computer
Science and Statistics Eighth Annual Symposium on the Interface,
Los Angeles, California, February 1975.

17. E. F. Miller, Jr., R. A, Melton. Automated Generation and Test Case
Datasets. International Conference on Reliable Software, Los Angeles,
California, April 1975.

L1:J

18. L. Clarke, A System: to Generate Test Data and Symbolically Execute
Programs. Report #CU-CS--060--75, February 1975, Department of

i Computer Science, University of Colorado, Boulder, Colorado.

	

_	 19. L. J. Osterwei.l. and L, D. Fosdick. Data Flow Analysis as an Aid in
Documentation, Assertion Generation, Validation and Error Detection.

	

W^	 Report SS(September 1974), Department of Computer Science, University
of Colorado, Boulder, Colorado.

	

u	 20, James C..King, A New Approach to Program Testing. 1975 International
Conference on Reliable Software, Las Angeles, California, April 1975.

21. Robert S. Boyer, Bernard Elspas, Karl N. Levitt, SELECT --- A Formal
System for Testing and Debugging Programs by Symbolic Execution.
1975 International Conference on Reliable Software, Los Angeles,
California April 1975.

22. Boole and Babbage, Inc., Product Description Documents
Sunnyvale, California.

23, RXVP-1 User's Guide, General Research Corporation, February 1975.

24. J. R. Brown, Practical Applications of Automated Software Tools.
Preprint 21/8, 1972 Wescon Technical Papers, September 1972-

25. L. D. Fosdick. BRNANL, A FORTRAN Program to Identify Basic Blocks
in FORTRAN Programs, Report #CU-CS--040-74, Department of Computer
Science, University of Colorado, March 1974.

26. An Introduction to PRO/TEST, Synergetics Corporation

27, Series-J Summary Description, National Computing Industries.

i^

	

28. The Age of MebaCOBOL, Applied Data R esearch, 1974.

,i
	

C-35

Appendix D

STRUCTURED PROGRAMING AND PROGRAM MANAGEMENT TECHNIQUES

IN
	 D.1 INTRODUCTION TO STRUCTURED PROGRAMMING

The phrase "structuredrogrammin I probably had its origin in Dijkstra l sP	 git%otes on Structured Programming" which were privately circulated prior to
being published [Reference 11. In these "Notes" ., Diftstra l s main concerns
are the problems of very large programs and the methods by which their
reliability can be improved, At least three major ideas are present,

1. There is a need for some sort of a "demonstration of a program's
correctness" to supplement the standard, functions of design
code and test.

2. Programs should be coded using only three types of control
structures.

3, Programs should be composed in a tope-down manner utili zing
systematic design techniques.

Taken together, these ide as are revolutionary even though all three were.
developed to some degree prior to Dijkstra v e Notes. His major contribution
was to bring these three diverse ideas together with a convincing argument
that only in this manner could reliable software be developed.

Dijkstra apparently feels that there is a deficiency in the standard cycle
ofdesign, code and test and that some sort of "demonstration of a programs
cor2lectnessit should be included in this cycle in the 77uture. He points
out that program testing is an imperfect answer to the problem since
"Program testing can be used to show the presence of bugs, but never their
absence". This idea of demonstrating program correctness is being seriously
considered in the more practical oriented segments of the computer industry
but to date it has been primarily a subject for research and development.

In its pure form, the method of "demonstrating program correctness" which
has evolved, is very similar to the proof of a theorem in.theoretical
mathematics. Both manual and automated methods of performing such "p . rogram
proving" have been studied intensively.

A pertinent question at the present stage of development is whether some
form

of
useful demonstration of program correctness is possible short of

the very sophisticated techniques of program proving. For example", a
reasonably rigorous discussion of key facets of an algorithms' mathematical
and/or logical basis could easily be :L--posed as a minimum requirement,
Such information is often available in a document deseribing the algorithm
development but usually this information does-not impact the coding pbsse

D-1

and more importantly, does not form the basis for any system testing.
Perhaps algorithm code should be designed not for maximum efficiency but
rather for maximum clarity of these key mathematical and/or logical bases.
The results of research in the program proving field suggest examples of
the types of things which should perhaps be emphasized in both coding and
testing.

Non Trivial Loops

Some reassurance should be given that loops terminate properly under
all. passible conditions. The parameters that control looping should
be identified and the exact manner in which these parameters change
should be explicitly stated. Some reassurance should be given that
the loop will be executed the correct number of tames.

Invariants

An invariant is a relation which is true at every iteration of a
loop. A clear and concise demonstration that a loop truly
accomplishes what it is designed to do is often most easily performed
by identifying an invariant associated with it. [Reference 2 demon-
strates the use of invariants].

Decision Structures

Some reassurance should be given that all possible alternatives have
been accounted for by some path in the decision structure. The
conditions under which a particular program path will be taken should
be explicitly stated.

The key feature seems to be.explicit identification of key parameters and
relations. Once this has been accomplished, automated methods can be used
to verify that these assertions are valid. For example, software probes
can be inserted in the program to be tested to verify that loops are
executed the correct number of times, that invariant relationships always
remain true, and that a deliberately designed series of tests exercise
all paths of a decision structure.

The idea that programs should be coded using only three types of control
structures probably dates to a paper which proves a theorem concerning
the flowcharts of proper programs. [Reference 31 (A program - or program
segment -- is proper if it has a single entry point and a single exit point).
The theorem states in essence that the flowchart of every proper program
can be represented by an equivalent flowchart which is composed of only
three basic control structures (Figure 1). Diftstra goes a step further
and suggests that only these three control structures should be used.
[In Reference. 4, he singles out the GOTO or unconditional branch instruc-
tion as a particularly common offender of this ^,oding methodology).
In support of this suggestion, Di^kstra presents several compelling
argu3m.ents

I	 '

^ i

:iJ

D-2
i..

l_	 I.	 I	 I	 I	 i	 I

(1) The intellectual effort necessary to understand such a structured
program is roughly proportional to its length (measured in some
loose sense). This is not true of unstructured programs whose
complexity often increases geometrically with length.

(2) The SEQUENCE and IF-THEN-ELSE control structures can be under-
stood by enumerative reasoning and the DO WHILE control
structure by mathematical induc lvion. Because "we know the
appropriate pattern of reasoning", the task of demonstrating a
program's correctness is made easier.

(3) In such a structured program, the machine's "progress through
the computation is mapped on progress through the text in
the most straightforward manner." In other words, the program's
execution sequence is more like the instruction sequence written
on the listing than for a non-structured program.

The third major idea in Dijkstra's "Notes" is the concept of what has come
to be called top-down programmin;6 (Dijkstra called this Stepwise Program
Composition). As motivation for composing programs in this manner, Dijkstra
cites the problems of program modification and program manageability.
Other authors including Wirth have also discussed this topic extensively
[Reference 51.

The basic approach is to compose a program in minute steps, deciding at each
step as little as possible. As the problem analysis proceeds, so does the
further refinement of the program. In such a stepwise approach, certain
aspects of the problem statement are ignored at the beginning. This
Judicious postponement of decisions and commitments results in decisions
being made at lower levels than perhaps they otherwise might be. One
result of this is that program modifications can be made at these lower
more isolated levels where their impact is less. More importantly, however,
such a program composition is claimed to result in a higher level of abstrac-
tion program. When a program has been built-up to an intermediate state of
refinement, what has been written down is a suitable "common ancestor"
for all possible programs which can be produced by further refinements.
In other words, the structure of the program is such as to anticipate its
adaptations and modifications. As Dijkstra puts it, "The similarity
between program modification and program composition is the similarity
between the decision to be changed and the decision still left open".

The starting point of the program composition is a concise statement of
all of the things which the program is expected to do (e.g,, the highest
level program specifications). Thereafter, one proceeds by conceiving
a it 	 of "more primitive actions" that accomplish the desired
net effect. If these more primitive actions belong to what Dijkstra
calls "The well understood repertoire" (e.g., they are computer executable
instructions) then one is done. Otherwise, the process continues. At
least four things about this approach are desirable from a program manage-
ment point of view.

D-3

(1) The starting point is the program specification which provides
maximum management visibility of the program development process
from inception.

The highest level requirements which are of prime interest to
the program management and customer are addressed at program
inception whereas decisions on detailed specifications (which
axe most subject to change) are delayed to the later stages
of the development effort. This, of course, is the reverse
of the traditional "bottom-up" development effort.

(2) Much of the early stages of program design can be performed
via English language statements. Thus, early versions of
the program will consist Largely of computer instructions
mechanizing the highest levels of control structure and a
large number of English language statements (comments) which
document in detail the decisions which have already been made
and equally important, those still left open, Such a program
is self-documenting to a very high degree. Also, there should
be a very close correspondence between the program comments and
the program specification document.

(3) A running program is in existence virtually from program incep-
tion. Integration is accomplished by adding refinements to
the existing program in the top.-down manner. Thus, integration
is a continuous process performed throughout the development
cycle. This contrasts strongly with the usual bottom-up
development process where integration is the Last and often
a very traumatic step prior to final testing.

(4) Program testing is also a continuous process performed throughout
the development cycle, When refinements are added at any level,
the program testing necessary to verify the requirements
associated with these refinements is performed. There are three
potential benefits of this approach. First, the higher level
functional requirements are tested early in the development.
This should tend to provide early reassurance to the customer
that his most important requirements are being met. Second,
testing at any level provides an important additional test
of higher level code. Thus, the very important highest levels
of code are exhaustively tested since they are exercised to
some degree by the testing performed at all lower levels.
Final-ly, the program itself acts as the "driver ` for all testing.
The need for separate "driver programs" to perform unit tests
(as in the bottom-up approach) Is eliminated.

Before the reader gets the impression that "top down programming" and related
design techniques are the answer to all the vorld's problems, one final
point should be emphasized. This is simply that these design techniques
are very difficult, especially the first time they are applied. The
temptation to plunge into great detail in the "firm." areas rather than
make hard decisions which are required in the "not so firm'' areas must be
resisted. Also, making the "right" decision is quite difficult. Subsequent
developments may show clearly that a particular decision was wrong or

Liu

1

i

,J I

I

^^ a

}

i

3

D--4

c 1	 ...

i
i

Y

;i

that a particular decision shw.. d have been deferred and that a decision on
a separate issue should have been made instead. The capability to backup 	 ^s
and start again from a higher level must be present. The results of
"errors" are out in the open for all to see and as a result no stigma
should be attached to the individual who makes a decision which turns out 	 j

to to wrong. In short, trip down programming requires a. tremendous change 	 3
in management practice.	 j

Whether or not this change can be made smoothly is yet to be seen. Probably
the outstanding example of top down programming management is the IBM Chief
Programmer Team experiment discussed in Section. 2,2.2, The published
accou-ats of this experiment claim results which can only be called outstandinh.
Tempering all the enthusiasm, however, is the strong probability that the
personnel involved in this experiment were of the very highest caliber.
It remains to be seen if similar results can be attained by a team of more
modest talents. What the Chief Programer Teats experiment may really be
saving, is that outstanding personnel when highly motivated will produce
outstanding results,

[I

11

F!,

Lw,T, I
I	

D-5

Rif

i

A

D.2 CURRENT STATUS OF STRUCTURED PROGRAMMING	 -j
i'

Structured programming was originally intended as a collection of programming 	 #
disciplines which have in common the objeotivu of producing reliable software.
Over the years, this collection of ideas has fragmented and today each of
the major ideas previously discussed has 'become an entity in itself.	 ^•^
The concept of a, demonstration of program correctness has 'become an area 	 }
of active research but as yet little practical application. The concept
of a limited number of control structures has been accepted by a substantial 	 ^
number of people and today it is often this concept that people refer to 	 F
when they discuss "structured programming". Finally, the concept of top	 r

L	 down programming has blossomed into a new software management philosophy
of which the IBM Chief Programmer Team is the best known example.

Because these ideas have developed along such separate paths, they are 	 T=
discussed in detail in three separate sections. Since program proving re-
lies heavily on other aspects of "structured programming" it is presented
last.

r^
D.2.1 Structured Coding

The idea of coding a program using only a limited number of control structures
-z

is simplicity itself.	 Its theoretical basis is the theorem proved in the .L

classic paper which states that any proper program segment can be
flowcharted using only three control structures (Figure l) [Reference 31.
Of course, the fact that a program fan be so constructed is in no way a w
valid reason that a program should be so constructed. 	 The arguments of
Dijkstra and others have been generally accepted as valid arguments that -
coding should be restricted to a limited number of control structures, but
the number and composition of such a set are subjects upon which there
is virtually no agreement. r p

The main problem stems from the fact that neither the IF-THEN-ELSE nor the
DO-WHILE constricts are sufficiently general to satisfy a large number of
programmers who are required to write "real world" programs. 	 The IF-THEN-
ELSE is not a general decision construct since it allows a choice 'between
only two alternatives.	 The "case" construct (Figure 2) is a more general
decision construct and the other construct shown in the figure is still a
more general.	 In a similar manner, the DO---MILE is not a general loop
construct primarily because only a single exit from the loop is allowed.
A more general loop construct is illustrated in figure 3.

A second practical objection to the three control structure limitation
et

^-a
is the desired capability to exit from deeply nested code. 	 There are
two types of desired capability along these lines which are really quite
different.	 The first is an immediate exit to a specified location in
another subroutine.	 The :First capability is easily mechanized with a
GOTO statement whereas the second is a much more difficult capability to ^.
implement.

^L

Most major languages implement a return to the invoking subroutine (proce-
dure) upon conclusion of the invoked subroutine (procedure) and no signi, 	 M
ficant objection has arisen to including this construct within the realm

D-5

i

J3
1
r

S

of "structuredro rammin ". Man languages (e. b., FORTRAN) also implement	
E

p g	 g	 Y	 <<
a return to the invoking subroutine from an interior point of the invoked
subroutine. Objections to this construct are almost as common, as the
objections to the "GOTO". Since no major Language includes a more general
capability along these lines, the need for it is hard to justify. Some
limited capability along these general lines seems reasonable and is often

Fn cited as justification for retaining use of the "GOTO" and the "Return".

In theory, code can be structured in any programming language. The
ease with which it can be performed, however, varies greatly from

!	 language to lan ui:.L	 In assembly Language, it is necessary to simulate
the basic control structures. If a Macro facility is available, this
can be done quite nicely by providing standard macros which mechanize
the IF-THEN-ELSE a.ud the DO-WHILE constructs.

Several higher level languages have sufficient control structures to
structure coding without modifying the language in any way. (PL/I, ALGOL
and COBOL are ex$mples). Even these languages, however, suffer from a
lack of generality of the constructs available and/or a proliferation of
optional methods of writing what is in essence the same construct. The
FORTRAN language Lacks an IF-TF'4'N-.ELSE construct so to structure code
in FORTRAN one must either ccastru:.t an IF-THEN-ELSE type construct from
more primitive operations 	 the FORTRAN IF, CONTINUE and GOTO
statements) or use some sort of -O1?TRAN language extension. A number of
such FORTRAN language extensions have been proposed and several are
operational. In these language extensions to "permit structured programming
in FORTRAN", a proliferation of control struct- 	 t has occurred. Figure 4
presents a representative cross section of con -L.v-L structures which have
been proposed as extensions to FORTRAN.

Included is a flowchart of the construct, a typical "structured coding"
including indentation of the code for clarity and the construct as it
might be mechanized in pure FORTRAN. Table 1 presents a summary of several
existing systems which implement extensions to the FORTRAN Language.
Table 2 lists several, characteristics which would be desirable features of such
a system.

.:	 The control structures given in Figure 4 fall into 4 categories: decision
structures, single exit loops, two exit loops and multi--exit Loops.

T-

The inclusion of two exit and multi-exit loops probably requires some justi-
fication. A two exit loop is a desirable solution to a very common program-
ming problem; i.e., the processing loop in which one set of computations is

`	 to be performed if a certain operation is successful and an entirely
different set of computations is to be performed if the operation is unsuccess-
f-al. Examples of this would be an iteration which either converged or
did not and a search which either turned up a match or did not. Situations
of this type can be handled by single exit loops; however, the coding is
often awkward. Similar situations exist for which multi-exit Loops are
useful. These situations are not nearly so common. The primary Justifi-
cation for the multi-exit loop is probably that it presents no more diffi-
culty than the two exit loop. If one accepts two exit loops as a valid

ra,	 control structure for producing structured code, it is difficult to conceive
f

Y: a

D-7

_ J - 1 _ 1 _ 1.	 1-- 1
it	 r

i

any reason for excluding the multi-exit loop. Discussions of multi-exit
loop control structures are presented in References $ and 7.

The number of control structures in each category and the diverse ways in
which each control structure may be coded give some indication of the
problems involved in standardizing the control structures for structured
coding. Some of the problems are (l) the concept of a block structure
(2) how to express the general decision control structure [Figure f3,//)I 	 how to
express the simple loop structure, and (4) ghat is the role of index
variables.

The imposition of a block structure is undoubtedly motivated by the modern
trend to block structured languages. The reasons for this are rather
subtle and have to do with the efficient mechanization of certain advanced
features (e.g., recursive procedures and advanced data structures such as
variable length strings, lists and stacks). The block structure is generally
considered to be more desirable than the simpler subroutine structure of
FORTRAN for the mechanization of such features (The FORTRAN language
does not include such features so the issue really never arises). It
remains to be seen whether there is a net advantage in imposing some form of
block structure on the FORTRAN language, There are, however, several
systems which include this • capability in some form..

The fourth control structure in Figure 4 is a very general decision control
structure that appears in many structured coding systems. The literature,
however, includrs at least three different ways of viewing this construct
(see the figure) which are suprisingly different. The first viewpoint
imposes a block structure such that the code for each alternative is contained
within a separate block. The second viewpoint considers the construct to
be an extension of the IF=THEN-ELSE statement. The addition of an ORIF or
similar statement converts the IF--THEN-ELSE into a general decision structure.
The third viewpoint considers the construct as a generalization of the simple
CASE statement. The details of this generalization are discussed in the
note appended to construct #3 of Figure 4.

The single exit loop structure suffers from a proliferation of optional
methods of writing code. There are two main problems: (1) where to place
the test for exit from the loop and (2) the role of index variables,
The DO--WHILE places the exit test at the beginning of the body of the loop
code. This is a more general construct than the DO-UNTIL (which places the
test at the end), since the body of the loop can be bypassed (i.e., executed
zero tunes). The DO-UNTIL, however,often produces code which is easier
to understand. For example, the code DO LOOP UNTIL I=10 impacts the message
that the loop is to be executed ten times somewhat better than the code
DO LOOP WHILE I<11. Because these loop constructs fix the point at which
the exit test is made, the loop control and termination test can be specified
through an index variable (e.g., the variable I in the example code above).
This saves the programmer the trouble of writing the code for the loop
control parameters and the termination test. More importantly, however,

this removes a possible source of coding error. These advantages must be
balanced against the disadvantage of lack of generality and ,'lexi.bil.ity.
Construct #7 shows a more general loop in the sense that the exit test can

-,ff

I

E^

--,

1 k	
{

t

isea^

_	 3

E

1

t
i

D-8

be anywhere in the body of the loop. The price paid for this generality
is that the programmer must define his own loop control parameters and
include code for the termination test. This in turn introduces potential
sources of error.

Similar construets are possible for multi-exit loops. For example, con-
structs #S and #9 are the two exit equivalents of the DO--WHILE and the
DO-UNTIL. Multi-exit loops, however, are sufficiently complicated that
the additional complexity introduced by requiring the programmer to code

"f	 loop control parameters and termination tests seems minor. The general.
Iy form of #10 would therefore seem more appropriate.

E

i

Name Organization
Control Structures

(Figure 4)
Index

variable 2ptions
Other

Features Limitations Status

IFTRP11 General Research 4,5* Programmer's Oper
1,6** I Responsibility

PREFOR IBM 1., 516,7,8,9 Programmer's 3 OperF.esponsibili :ty 4a.4d,4e

MORTRAN Stanford Linear 1	 1,5,6 Many forms of {
Accelerator DO loop 8 Oiler
Facility

'°^-	 SFOR Boeing Computer
i

Services 1925394,51 6 4a,4d Oiler

. - TF 122,41596

STAPLE National Bureau 4,7*
of Standards 1,5,6** 4a,b,c,d

PSST McDonnell. Douglas 4,7,10* Programmer's
1 ,5,6,8,9,10** Responsibility 1,2,5,6,7 Dev

0

TABLE '1

SOME TOOLS FOR 14STRUCTURED PROGP.A.PHING IN FOR119AN"

*Directly Available Other Features

**Equivalent capability available
1. Automatic listing indentation.

as a special case of a more 10 2. Preprocessor
general construct, 3. Compiler

4. Block Structure

IV
a.	 BtJIN BLOCKS

SELECT BLOCKS (similar to Case construct)
c.	 REPEAT BLOCKS (similar to DO loop)--^
d.	 '—EKIT BLOCK
e.	 7—XECUTE BLOCK (similar to Perform verb in COBOL)

5. Free Form Input
6. Accepts Pure FORTRAN
7. Comments on executable statements

Source Macros	 --
1	 r	 r: r r	 qq	 _ A	 r	 r	 q	 ff	 F.	 f

6. Full user control of Listing Format, delimiters, etc.

I	 TABLE 2

DESIRABLE CHARACTERISTICS OF STRUCTURED PROGRAMING AIDS FOR FORTRAN

1. Easy to learn. A minimum number of additional control structures. There seems

to be general agreement that at least two axe required (e.g., an IF-THEN-ELSE

7'	 type construct and a loop structure which does not require statement numb ers).

2. Mechanized indentation of listings.

3. Free Form code input. In particular, should accept code in the indented form

(such as presented on the listing) but not require it.

No change to the FORTRAN language only additions. In particular, a pure FORTRAN

program should pass through the preprocessor unchanged and execute properly.

5. Capability to include a comment on each statement for self-documentation purposes.

D-11

l	 - __ I 	I	 __i	 { _	 I

D,2.2 Pro am Management.Techniques

D.2.2.1 mop Down Design Methodology	 }

The basic idea of top down design was presented in Section 1.0. It was
pointed out that top down design showed great promise but also entailed	 F
some risk since significant changes in management practice are required.
This section discusses several areas of research which are attempting to 	 s,

develop guidelines and tools which may reduce the risk of implementing
such a management strategy.	 r

i
The essence of top down programming is the division of a large program into
a number of amalI ea: subprograms (these subprograms may be subroutines,
procedures, blocks, macros, etc., depending on the programming language beiltg
used). Difkstra suggests that there are at least four ways of conceiving
subprograms.

(1) Standard routines to be used as needed.

(2) Objects to be conceived by the user to reflect his analysis.
i

(3) A device for the reduction of program length,

(4) A means for rebwilding a given machine (computer) into a mo.
suitable one.

Harlan Mills discusses the distinction between (l) and (2) above [Reference 81.
"First, we make a distinction between subprograms which are created for
structuring the system and subprograms which carry out common low level
processing functions in many places of the.system. The latter set of sub-
program s we isolate first, and append to the programming language itself,
just as sine or exponential routines are regarded as part of PL/I or
FORTRAN. These subprograms are documented and considered as part of the
language description in which the programmers write the programming system".

Mills also discusses the importance of the subprogram as a means of reducing
program length. "Imagine a one hundred page PL/I program written in "GO
TO" free code. Although it is highly structured, such a program is still
not very readable. The extent of a major DO loop may be 50 to 60 pages,
or an IF THM -ELSE statement may take up 10 or 15 pages. There is simply 	 Y
more than the eye can comfortably take in or the mind retain," Mill's
solution is to impose a, discipline on the top down process such that each
prograia segment is no larger than can be contained on a single page of
computer printout.

Dijkstra suggests that it is useful to view the subroutine as a means of
rebuilding a; given machine (computer) into a more suitable one. Starting 	 71

1
at the 'top with the maim program, Dijkstra chooses to view it as an entity in
itself independent of the lower level subprograms. He views the main
program as being executed by its own dedicated machine equipped with an 	 -^
adequate instruction repertoire (i.e., each of the subprogram calls are
available on this hypothetical machine as primitive instructions). in

D--22

I

t

actual practice, of course, this machine will not exist (Dijkstra calls this
a virtual machine).	 The remainder of the programming task Di3kstra sees.
as programming the simulation of this "virtual" machine. 	 The process
is continued in a top down manner resulting in a program arranged in
"layers" or "levels'. 	 Each program level is to be understood all by
itself, under the assumption of a suitable machine to execute tt, while

.T
^

the a'`anction of each level is to simulate the machine that is assumed
to be available on the level immediately above it., "The fact that a
level contains "a bunch of programs" -to be executed by some conceptual
machine stresses the fact that the programs of this "bunch" are invited to
share the same primitives."

D ijkstra further elaborated on this process in Reference 9 when he presented
a concrete example of his concept of "design by levels of abstraction's.
The example was a multiprogramming operating system for a university
computer center (the "THE Operating System".) 	 Dijkstra ' s team conceived
the system design as existing in several levels each of which could be

_ understood by itself as an entity. 	 The lower level mechanized some very
r , detailed, difficult and machine dependent tasks (e.g., the real time

clock and the interrupt structure).	 Above this level, however, these
difficult concepts had in essence disappeared.. The very primitive operations
involved had been replaced by primitives on a "higher level of abstraction".
In this manner, the designers of the higher levels were freed from concern

. with loner level details which were irrelevant to the higher Level designs.

Barbara Liskow presented a design methodology which is based on structured
programming in general and on "levels of abstraction" in particular
[Reference 10).	 An abstraction is considered as expressing "what is
being done without specifying how it is done." 	 A level is defined notr
only by the abstraction which it supports but also by the resources it
uses to realize the abstraction.	 Each level has resources (e.g., 1/0
devices, data) which it owns exclusively and which other levels are not

^^' permitted to access.	 Each level is composed of a group of related functions
of which there are two kinds; internal and external.	 Internal functions are
used only within the level and cannot be referenced from other levels
of abstraction. 	 External functions may be referenced (called) only by
higher level functions.	 Lower levels are not aware of the existence of
higher levels and therefore may not refer to theca in any way.

Thus, the programmer is encouraged to define subprograms for a variety
of purposes (1) to "structure" his program, (2) to enhance clarity by
reducing the length of other subprograms, (3) to rebuild his programming
language into a language more suitable to his immediate needs and (4) to
mechanize the internal and external functions of "levels of abstraction".
This process is more art than science and as Mills puts it, "'.the
programmer must use a sense of proportion and importance in identifying
what is forest and what are the trees." Liskow presents a number of
guidelines which may be useful in placing this rather nebulous process
on a firmer basis [Reference 101.

D-13

T

-IJ
	

L	 ;

C.A.R. Hoare presents a theory of data structuring on the premise that 	 K
"It is necessary to introduce some convenient notation for expressing the
abstractions involved" [Reference 11. An algorithmic Language is proposed	 --
whose purpose is to assist in the design, development and documentation
of a program. This language is distinct from the programming language
because "Some of the operations, although very helpful in the design of
abstract programs may be very inefficient when mechanized directly on 	 r

today's computers. An essential part of the program design process is
to eliminate such operations in the transition from an abstract to a
concrete program.. The challenge of designing computers which can efficiently
implement ever larger subsets of such a language may of course, be taken
up in the future".	 a'

The idea of a design language separate and distinct from a programming
language is certainly not near. For example, the language of ordinary
algebra served this purpose for the FORTRAN programming language. The
important point here is that an abstract problem solution should be developed 	

r

using powerful data structures and operators pertinent to the problem. 	 ^.f
being solved. The mind should not be constrained by the limitations (often
severe) of the programming language being used. After the very difficult
problems of ghat a program segment is to accomplish have been solved, most
good programmers are quite adept at contriving an efficient method of
implementation.

D.2.2.2 Chief Programmer Teams

The IBM Chief Programmer Team experiment is documented in References 11 and
12 and the material in this section relies heavily on these references.
The experiment was the outgrowth of the work of Harlan Mi1Ls who has
studied the conventional large,'undifferentiated and relatively inexperienced
team approach to programming projects and suggested that it might be
replaced by a smaller, functionally specialized, and highly skilled team
[Reference 131.	 The proposed organization is compared with a surgical team .A
in which the chief programmer is analogous to the chief surgeon and is
supported by a team of specialists (as in a surgical team) whose members ^•
assist the chief rather than write parts of the program independently.

Permanent members of a Chief Programmer Team are the Chief Programmer, the i!
Backup Programmer and a Programming Librarian.	 The Chief Programmer is a
senior level programmer who is responsible for the detailed development
of a programming system.	 The Backup Programmer is also a senior level i
programmer and works clo^-Iy with the Chief Programmer to design and produce
the system's key elements. 	 The Backup Programmer has prime responsibility
for system testing and also assumes the responsibility of the Chief
Programmer should he leave the project.	 The Programming Librarian is re-
sponsible for maintenance and operation of the Program Production Library
used to keep all system programs and data both internally in machine j

readable form and externally in well organized, highly readable form. i	 a
The legal, financial, administrative and reporting requirements are
coordinated by a Project Manager assigned to the team. 	 Also, a System
Analyst is assigned to the team to assist as needed. 	 Thereafter, the
team is augmented by additional programmers who produce the remainder of

s	
the code under the close supervision of the Chief and Backup Programmer. w

D-14

i

-

The Chief Programmer Team is intended to solve two problem which are felt
to be responsible for the relatively low productivity of current programming

ai
Projects.

(1)	 Production projects are usually staffed by relatively
. inexperienced programmers at the working level and by

more experienced programmers at the higher management
levels.	 This results in several problems. 	 First,
the inexperience at the working level results in less
than optimal design code and test. 	 Second, the experienced
programmers who have the insight and knowledge to correct
this situation are in higher management positions where
the administrative workload prevents them from effectively

^J or economically performing any of the detailed work of
programming.

ij The Chief Programmer Team attempts to reintroduce the
highly skilled programmer into the detailed production
process but free hint from both the details of programming
trivia and the administrative workload. 	 y

(2)	 In addition to normal programming activities such as
design code and test, a programmer normally spends a great
deal of time with what are essentially purely clerical
duties.	 For example, he must maintain his decks and
listings, punch his own corrections, setup his runs and

jf write status reports.

The Chief Programmer Team attempts to free the programmer
from all these clerical duties through the facilities of

-1
d the Program Aroduction Library and the Programming

Librarian.	 The Program Production Library includes both
machine and office procedures for performing the clerical
duties of a programming project.

' The Program Produetio_n Library (PPL) comprises four parts-,
the machine-readable internal library is a group of sub- _J
libraries, each of which contain current project programming 	 {
data.	 These data may be source code, relocatable modules,

{ linkage-editing statements, object modules, job control
statements, or test information.	 The status of the
internal library is reflected in the human--readable external

F library binders that contain current listings of all library
- members and archives consisting of recently superseded

listings,	 The machine procedures consist of standard computer
,._ steps for such procedures as the following:

^- Updating libraries
*	 Retrieving modules for compilations and storing results

T' *	 Linkage editing of jobs ar„d test runs
*	 Backing up and restoring libraries	 j

Producing library status listings	 a

1

^' D-15

f

t r

^___I	 I	 l._ I	 I	 !	 r
k i

Wy

"f

Office procedures are clerical rules used by librarians to 	
^r

perform the following duties:

Accepting directions marked in the external library
Using machine procedures
Filing updated status listings in the external library
Filing and replacing pages in the archives ^u

A programmer using the PPL works only with the external library.
Using standard conventions, he enters directly into the external

"library binders the changes to be made or work to be done,	 He !'
then gives these changes to the librarian.	 Later he receives the
updated external library binders, which reflect the new status

Tj	 r

of the internal library.	 The external library is always current
and is organized to facilitate use by programmers. 	 A chronological
history of recent runs contained in the archive binders is retained
to assist in disaster recovery.

J
L• , k

The programers are thus freed from handling decks, filing listings, .^
keypunching, and spending unnecessary time in the machine area.

By combining standard machine procedures, standard office
procedures, and project libraries, the trained librarians provide y'
a versatile programming service that allows a team to make more
effective use of its time.

The PPL also assists in improving productivity and quality by
providing visibility of the work, thereby allowing team members
to be aware of the status of modules that they are integrating.
Such visibility also permits members to be certain of interface
requirements.	 The internal working language of a team are the is
code and statements in the libraries, rather than a separate
set of documents that lag behind actual status. 	 Programmers
read each other's code in order to'communicate definitions,
interfaces, and details of operation.	 Only when a question
arises that cannot be resolved by reading code is it necessary F^
to consult another programmer directly. .'

IBM selected the New York Times Information Bank as a project suitable for
testing the validity of the Chief Programmer Team principles.	 This is an
on—line system intended to replace the clipping file (morgue) used by the
Times to provide background information for articles being written.
The user views article abstracts selected by index terms and documents
parameters (e.g., date, section of the paper) until he has identified those
articles most relevant to his immediate needs. 	 The user may then view the
entire text of the articles selected or request that a hard copy be made.
The heart of the system is the conversational subsystem and its associated
data base consisting of indexing data, abstracts and complete articles. 	 The
full text of all articles is stored on microfiche and made available to the
system through four TV cameras contained in a microfiche retrieval device
cared the RISAR that was developed by FOTO--MEM. 	 The rest of the data `.
base is stored on disk.	 Other major system components are the Data Entry Edit
Subsystem, the File Maintenance Subsystem and five supporting subsystems. ^

i

D-16

D-17

Table 3 summarizes the software development tasks performed by the various
members of the Chief Programmer Team assigned to the project. The numbers
indicate the approximate sequence in which these tasks were performed by the
various personnel. The order in which the tasks were performed was influenced
by the desire to achieve a "running system" at an early date and also to achieve
sufficient capability to begin building files at an early date. Otherwise, a
top down approach was generally employed. As can be seen, the integration and
test functions were integral parts of the development process.

Table 4 shows the staffing levels during the project. It is interesting
to note the large amount of time charged by the senior personnel relative
to the more junior team members (one of the goals of the Chief Programmer
Team approach). This is certainly not typical of software development
projects in general but some question remains as to whether this is
characteristic of the Chief Programmer Team approach or whether it is due to
some special characteristics of the particular project. Also of interest is
the relatively short time spent on the project by most of the support personnel.
This would seem• to indicate that a highly flexible staffing policy may be
necessary to make the Chief Programmer Team function well. Once again,
management would seem to be the determining factor in the success or failure of
the Chief Programmer Team (to a much greater extent than in the traditional
software development process).

IBM has supplied several measures of programmer productivity and system
quality achieved. Table S summarizes the results of acceptance testing
and early operational experience with regard to errors encountered.
Table 6 summarizes the programmer productivity achieved in terms of source
lines of code produced per programer day.

TABLE 3
f

I3} i CHIEF PROGRA-WRI t TEAM E$PFRr4EJ?'-TASKS PERFORMED

TASKS IN APPROXIMATE CHRONOLOGICAL SEQUENCE	 4 ^^ 	 ô 4 	 04 R	 ^/ ^ ^ ^	 .^ / ^C. .off

Prepare Detailed Functional. Specifications 1 1

Develop Program Production Library (PPL) Procedures l s

Define System Externals
Nessages, Communications Log, Statistics Reports)

I
2 j

Design Various Subsystems and their Interfaces 2 2

Design File Maintenance Subsystem ^	 3 3

aPrepare Test Plan for File Maintenance Subsystem

Design Preliminary On-Line System 1 i
(Some Functions of Data Entry Subsystem and 3
Conversational. Subsystem)

Develop Syntax Directed Editor for Data Entry Subsystem !	 1
I

I	 IW
Program	 (1) Authorization File Subsystem

f

(2)	 Message File Subsystem

(3)	 Log/Statistics File Processing Subsystem I ^r—

(4)	 Deferred Print Subsystem (Hard Copy)

Program Statistics Reporting Subsystem € 1

fDesign and Program Conversational Subsystem « 5 5 (1 l	 I

P-agram Terminal Handling Package 1

Prepare Tes t Plans for Functional and Performance Testing

AT OTE:	 Numbers indicate the approximate sequence in which tasks.,y	 ^ _:^:	 r e ^	 ^`02't1`	^''' ^Y	 +^	
r^,,,re	 .'•-^.	 UCH" . r^ iln e?t ..,._ .	 y	 ... -,	 ,-. w , f

Work '.'.me

Chief Backup Analyst 1 2 3 4 5	 Technician Tanager	 Sec'v

Requirements 2.5 1.0 8.0 0.5 -- -- - -	 _ _	 -
Analysis

System 4.0 4.0 4.5 1.0. - - - _

Design

Unit design, 12.0 14.0 10.0 13.0 4.5 2.8 3.7 4 .5	 - -	 -
prograauaing ,
debugging and

tj tes -ingr

Documentation 2.0 2.0 4.5 1.5 0.2 0.2 0.3 0.3	 -- -	 -

Secretarial - - -- -- - - - -	 - -	 7.0

Librarian - - - - -- - -- -	 5.5 -	 2.0

Manager 3.5 2.0 -- _ _ _ _ -	 _ 11.0	 -

TOTAL 24.o 23.0 27.0 16.0 4.7 3.0 h.o 4.8	 5.5 11.0	 9.0

Dotal

12.0

1.3.5

64.5

11.0

7.0

7.5

1.6.5

132.0

t

TABLE 5

IR14 CHIEF PROGRAMMER TEAM E3WERICMENT

ERRORS IDENTIFIED DURING ACCEPTANCE TEOPING

T^rror Type*

File Maintenance	 12,029

Conversational	 -	 38,990-

Data Entry Edit ^
	

13,421

Other - -	 -	 18,884-

0

9-

0 0 0_8
3 20

0 0 1 1

TO 0 0 0

TOTAL	 83,32 4 9 8 4 21

IMHORS IDENTIFIED DURII+IG OPLEATION

Pxror Type*
i

SUBSYSTEM	 ^°
A4

$`^,

's

F
i

a f

i

ii

File Maintenance --	12,029 1 0

Conversational	 _	 38,990 4 3

DataEntry Edit	 13,421— 8 5

Other	 18,88+ 0

1 3

0

$TOTAL --. _	 _J 	 83,324

0 7

3 1h

0 0

25

"INCORRECT FUNCTION" - refers to code which operated improperly.

"OMITTE) FUNCTION" - refers to specifications not implemented.

"MISINTERPRETED	 -- refers to code ,^rhich did not perform precisely the

FUNCTION"	 functions specified.

D--20

IBM CHIEF PROGRPMIER TEAM EXPERIMENT - PROGRAMER .PRODUCTIVITY

TABLE, 6

am

Source lines per
Oraanization	 programmer day

Unit design, programing,	 65

debugging, and testing

All professional
	

47

With librarian support
	

43

35

*The first row includes work done an unit design, coding, debugging, and
acceptance testing. The second row summarizes professional work, which
includes system design and documentation, but not librarian support. The
third row includes allprograming and librarian support. The last row
presents the productivity of the entire team on the comDleted system
(excluding requirements analysis).

^u

D-21

D.2.2.2 Computer Program Management Technique (CPMT)

CPMT is a systematic discipline for managing the development,verification
and documentation of scientific and engineering computer programs. It
incorporates many of the design, coding and testing concepts which have
been developed through structured programming research. It also incorporates
much of the Chief Programmer Team :management philosophy although specific
concepts have been modified somewhat to make them more compatible with the
aerospace scientific-engineering environment.

CPMT defines personnel assignments in terms of functions. Thus, for a
small program, several functions may be performed by the same person
whereas for large programs a single function may require several people.
The following functions are identified:

Requeator - defines the program requirement in order to solve some
specific problem.

Study Manager - supervises the program development and ensures
the implementation of CPMT procedures.

Principal Investigator - responsible for the program meeting the
technical requirements.

Chief Programmer - responsible for the structural design of the
program and the coding of high level or control components.

Engineer/Programmer - responsible for coding, documentation and
testing.

Librarian - maintains the program workbook, coordinates all
documentation and compiles project statistics (i.e., actual
versus projected results).

s
CP14T identifies five phases of program development:

{l) Planning - A study plan is prepared defining the proposed method
of solution s potential problems, and schedule and cost estimates.

(2) Design - The structural design of the program is developed.
Vest plans and acceptance criteria are also defined during this
phase.

(3) Development - The coding, subprogram documentation and unit
testing of the piogram is performed in this phase.

(4) Program Test and Verification - The complete program is tested
during the phase and final documentation is prepared.

(5) Release -- A Program Manual and a CPMT Study Report are released.
A document specifying baseline test cases is prepared. 	 A
configuration control manager for the program is assigned and

'. the program is released to the cuotomer.

F
i^

D»22

I	 _I	 l_	 l	 1	 1.	 i	 I

CPMT documentation is designed for ease of preparation. Skeleton documents
are prepared as early as practical and details are added when they become
available. Preparation of final reports is intended to be mainly an exercise
of putting the finishing touches on working documentation which already
exists. The clerical aspects of documentation are handled by the librarian
so the programmer is freed to a large extent from document editing and
rewrites.

Management reviews are held throughout the program development process with
formal reviews scheduled at the conclusion of each of the five phases
discussed above. Figure 5 indicates the relationships between personnel
functions, program phases, formal reviev's and the more important documenta

-tion requirements. CPMT procedures are described in detail in a proprietary
'e	document of McDonnell Douglas Corporation [Reference 141.

C.
U

^G

LA
h

D-2 3

^!b

(a)	
(b)	 (c)

SEQUENCE	 I F-TiMN--ELSE	 DO-WHILE

E;

}

jF
T THEN CODE I -

nl-CODE

n2

as

nk.

: s	 nk CODE

^i

n^ CODE

(a) IF-THEN-ELSE (b) Simple CASE Statement

a
N	 (c)	 General CASE

Statement

X ^--- —
UCH THAT

Example: P1 is the statement " X = 10

2s P	 is
2

the statement " X greater
°	 ^-^'} L1, than 10 and X less than 100

g. ' '-f
tte P	 is the .statement " X = looa

A,
CV
	 N n

PI--CODE P2 CODE
P

	CODE

r

FIGURE 2

t IF-THEN-ELSE AND MORE GENERAL DECISION CONSTRUCTS

I_^
	

i	 J	 L- 1^ ^ t.l	
(

o	

i	 --. 1 1.^	 r	
7
"77	 1

##1

S
P

F

B CODE

A CODE

#2

n1

I

nk
n2

IF (P) IF (.P10T.(P)) GO TO a

n1 CODE n2 CODE .	 •	 rk CODE

IF (I.NE.n) GO TO aCASE OF ITHEN A CODE 1	 1d
A CODE GO TO CASE n1

n1 CODE
ELSE a CONTINUE n	 CODE1

B CODE GO TO 5

BCODNUE
CASE n2 ax	 CONTINUE

n	 CODE
IF (I.NE.n2) GO TO a^

2
n2 CODE

GO TO a
CASE

nk
az	 CONTINUE

nk CODE
iE

aksx CONTINUE
IF (I . NE. nk) GO TO S--W._

nk CODE

B	 CONTINUE	 'E

FIGURE ^+

SOME REPRESMATIVE CONSTRUCTS FOR STRUCTURED PROGRAMi 11k :v 1?i r'ORTRAN

CASE OF X IF (.NOT.(Pl}) GO TO a
CASE (P,)

Al CODS'
Al CODE GO TO an

CASE (g2) a CONTINUE
A2 CODE IF (.NOT.(P2)) GO TO a2

A2 CODE

CASE (P)
GO TO an

CONTINUE
A CODE

a2
n .

CLn-1
CONTINUE
IF (.NOT.(Pn)} GO TO an

A	 CODE
n

a CONTINUE
n

0
i

A3
03

F

t
t

y

t

Note: The CASE statement involves the choice of a particular path based on the value of a logical expression (P),

the simplest form of which is:

X R Y

where X and Y are variables (or expressions) and R is a relation.

In the simplest form of CASE statement (#/2) the first two of these quantities are assumed to be the same for all

paths (e.g., X is the variable I shown in the Figure, R is the relation "=" and a value of the variable Y is associated

with each path). A more general form of the CASE statement (#F3) allows both R and Y (but not X) to vary fro g Aa.th to

path. Mg., this form allows taking the first path if X is less than 6, the second path if X is greater than lO and
the third path if X is e qual to 7.) The most general forr,. of the CASE. statement (# fit) allows all three quantities

(X, R and Y) to vary from path to path.

EIGu'RE 4 (cont' d

3

a
a

f

}
i

SELECT BLOCK

(PI)
AI CODE

(P2)

A2 CODE

(P .)

n A CODE
n

 n))

r CODE
ENDBLOCK

w

^^	 A:""';.r;^	 ^, -^	 ^ ^	 i	 ^	 ^_.	 ^^	 1.__...x•1	 ^.... _.	 m:..., ^	 ,,	 ^ ^—^1	 5;::..^;^

IF (PI) SELECT ONE
CASE (PI)THEN

AI CODE AI CODE

ORIF (P2) CASE (P2)

THEN A2 CODE
A2 CODE

or	 or
• e

' CASE (Pn }
Or^IF

(P}n A	 CODE
m

AN CODE
CASE (.NOT.(Pn))

n
B CODEELSE

B CODE
2-M IF

FIGURE -, (coat' a)

IF (.NOT.(PI)) GO TO ct

AI CODE

GO TO B

CE	 CONTINUE

IF (.NOT . (P2)) GO TO cx

A2 CODE

GO TO 8
a2 CONTINUE

•	 .j

CL	 CONTINUE
n^1 IF (.NOT . (Pn)} Cv^ M an

A CODEn-^,-

GO TO B
can CONTINUE

B CODE
K	 COt: T I:%'L1E

L L

DOWHILE (P)	 n CONTINUE
A CODE	 IF (.NOT.(P)) GO TO ^3

E1,TDD0	 A CODE

GO TO a

DO b'13TT:i. (P)	 a CONTINUE

A CODE	 A CODE
ENDDO	 IF (.NOT.(P)) GO TO a

CONTINUE

RVPEAi BLOCK DO THILE (P) BEGINLOOP a	 CONTINUE
A CODE B CODE A CODE A CODE

EXIT BLOCK (P) or	 BEGINWHILE or	 EXIT IF (P) IF (.NOT.(P)) GO TO
E, CODE A CODE B CODE B CODE

Eli--BLOCK LNDDO ENDLOOP GO ' TO a

L

1/5

#6

iw0

#7

4

l
W

^^ 3	 ^^	 ^_.-.-.	
^A	

^ ^^	 Lr^	 ...-.-, ^	 i.,... _J	 [_ ^	 i--- J	 : ..^I	 :-:--3	 ^--•---4	 ^_ :-^	 lid .""^ 	 ^	 -

STARTSF..ARCH a	 CONTINUE

WHILE (P) IF (.NOT. (P)) GO TO al

AI CODE AI CODE

FXITIF (Q) IF (Q) GO TO a2
Bx CODE A2 CODE

ORELSE GO TO a
A2 CODE a	 CONTINUE

E:d: LOOP B2 CODE

B2
CODS.

GO TO B
ENDS EARCH a	 CONTINUE

2 BI CODE

CONTINUE

STARTSEARCH
UNTIL (P)
AI CODE

EXITIF (Q)
B1 CODE

ORELSE
A2 CODE

EIVDLOOP
B„ CODE

EI DSEARCH

a CONTINUE
AZ CODE

IF (.NOT.(P)) GO TO aI

A2 CODE

IF (.NOT.(Q)) GO TO a

BI CODE

GO TO S
a CONTINUE

B2 CODE

CONTINUE

rIGL'RE 4 (cont'd)

BEGINLOOP a	 CONTINUE
A, CODE Al CODE

EXITIF (Q) IF (.NOT.(P)) GO TO a1
THEN

BI CODE B	 CODE
3.

ENDIFEXIT GQ TO B

A2 CODE a	 CONTINUE
A2 CODE

EXITIF(Q) IF (.NOT.(Q)) GO TO a2

B2 CODE B2 CODE

ENDIFEXIT GO TO s
A	 CODE a	 CONTINUE

2
ENDLrOOP A3 CODE

GO TO a

5	 CONTINUE

lk

#t10

tv

w
.v

a

FIGURE u (cont' d)

.:	 ^_.:-....>.,. ^f	 ...,.	 ^.1	 q^,.:_...	 ! 	 p:...-.-.j	 E• ..: ...}	 1.-.-. .. ^.^	 e., :..	 a	 r..	 ^	 r.-.	 .^	 r	 .,.	 .	 -	 ..	 -	 ^	 s	 ..^	 o	 . 	 a. ,..	 .	 t 	 -..	 r-..:	 r

'ir	 te1) lr- 1.1y UT. kr	 J	 uu Tu aI

THEN BI CODE
B	 CODEI GO TO B

ENDIFEXIT al	 CONTINUE
AI CODE►I CODE

:TIF (P2) IF (. NOm— . (P 2)) GO TO a2

THEN B2 COD:
B	 CODE2 GO TO B

ENDIFEXIT a2	 CORTINUE
►2 CODE A2 CODE

:TIF	 (P	 } IF (.NOT.(F }) GO TO a
n F	 +'

THEN B	 CODE
B	 CODE

n
n Go To a

EIMIFEXIT a	 CONTINUE
L	 CODE

n	
A	 CODE

n n
)LOOP GO TO a

B	 CONTINUE

d
w
w

2'lUUMB 4 kconz,ai

t

L. ter____

CODE	 ----)	 (RELEASED)CODE

t

FRAM

REQUEST
R: REQUESTER
S: STUDY MANAGER
P: PRIM. INVESTIGATOR
C: CHIEF PROGRAMMER
E/P; ENG / PpOGRAMIER

TASKPROGRAM TEST

(PHASE)	
PL0NING	 ---^	 DESIGN	 DEVELOPE?M4T	 &	 RELEASE

VERIFICATION

a	 '
w

REVIEW COMPLETE	 COMPLETE	 COMPLETE
ATTENDEES	 TEAM	 TEAM	 P,C,E/PsL	 TEAM	

B.,S,P,C

STUDY
PLAN

OUTPUT	 WORKBOOK

--^ (REVISED) (REVISED) -----^

(REVISED &
WAI T̂DED)

(REVISED &
EY?Ai'LED)

STUDY
REPORT	

(RELEASED)

PROGRAM
MANUAL	

(RELEASED)

FIGURE, 7

CP14T PROCEDURE

8. H. Mills.	 Structured Programming.	 IBM Federal Systems Division
dated October 1970.

9. E. W. DiJkstra.	 The Structure of the THE Multiprogramming System.
4. Comm. ACM. May 1968, pp. 341-346.

10. B. Liskow,	 A Design Metbcdology for Reliable Software Systems.
Proc. FJCC 1972 pages 191-199.

11. F. T. Baker,,	 Chief Programmer Teams. 	 IIM Systems Journal, Vol. 11,
No. 1, 1972.

d

12. F. T. Baker.	 System Qualit.	 Through Structured Programing,
Proc. FJCC (1972) pp. 339-3^3.

13. H. Mills.	 Chief Programmer Teams:	 Principles and Procedures.
IBM Federal System Division No. PSC71-5108, June 1971.

14, Computer Program Management Technique (CPMT), McDonnell Douglas
Astronautics Company - 	 West - Manual #78.

15, P, Naar.	 Proof of Algorithms By General Snapshots. 	 BIT 6 1966,
pp. 310-316.

D-35

,'	 J	 I	 I	 I	 i

REFERENCES

1. 0. J. Dahl, E. W. Dijkstra, C.A.R. Hoare.	 Structured Programming (Book)
Academic Press 1972.

2, C.A.R. Hoare.	 Proof of a Program:	 FIND.	 Comm. ACM, January 1971,
pp. 3 9-45.

3. D. Bohm, G. Jacopini,	 Flow Diagrams, Turing Machines and Languages
with Only Two Formation Rules. 	 Comm. ACM, May 1966, pp. 366-371.

4. E. W. Dijkstra.	 GOTO Statement Considered Harmful. 	 Letter to the Editor,
Comm. ACM March 1968, pp. 147-148.

5. Niklaus Wirth.	 Systematic Programming An Introduction (Book) Prentice
Hall, 1973.

6. R. Evans.	 Multiple Exits from a Loop Using Neither GOTO nor Labels.
Short Communications - Comm, ACM Nov, 1974, page 650.

7. G. Bachmann.	 Multiple Exits from a Loop Without the GOTO.	 Comm ACM,
Jul 	 1973	 - Yes 443-444

+f

16. R. W. Floyd. Assigning Meanings to Programcs. American Mathematical
Society -- Mathematical Aspects of Computer Science, Vol. 19, 1967,
pp. 19-32.

17. B. W. Diftstra. A Constructive Approach to the Problem. of Program
Correctness.. BIT Vol.. 8, No. 3, 1968, pp . 174-186.

18. C.A.R. Hoare. An Axiomatic Basis for Computer Programming.
Comm. ACM, October 1969, pp . 576-583.

19. Z. Manna, Properties of Programs and the First Order Predicate
Calculus, J.ACM, April. 1969 9 pp. 244-255.

20. B. Rlspes, K. N. Levitt, R. J. Waldinger, A. Waksman.
An Assessment of Techniques for Proving Programs Correct. ACM Computing
Surveys, June 1972, pp. 97--147.

21, N. J. Nilsson, Problem Solving Methods in ,Artificial Intelligence.
(Book) McGraw-Hill, 1971.

t

(#	

5

L ^i
f

i l

`?rI

ii, 1l

1?

'F

^yt

h

#n 0

7

Ib.l!

rr.

w^
y'

Et.11

°P7F

T
u

7

j:

r

nn
17

^i	 I

I	 I	 I	 I	 I

Appendix E

PROVING PROGRAMS CORRECT

E.1 INTRODUCTION

The first serious notion that programs could and should be proved correct is
probably the pioneering work of Peter Naur (Reference 1) and Robert Floyd
(Reference 2). The methods propounded were quite similar and were developed
independently. Naur's method was based on what he called "general snapshots"
and was a rather informal (though rigorous) conception of a proof. Floyd's
approach was somewhat more formal and several concepts fundamental to the
modern formal proof methods are present in his paper. In particular 1) the
use of formal mathematical logic, 2) the idea of an "abstract program" and
3) the idea of an "interpretation" of an abstract program.

Program proving over the years has grown in two different directions which can
probably be best described as formal and informal. Informal program proving
is most often encountered in the literature generally associated with structured
programming whereas formal program proving is usually encountered in the litera-
ture on artificial intelligence. The informal methods have the disadvantage
that there are few underlying general principles and each problem presents a
separate challenge. The advantage of the informal method is that the human
"prover" may use any notation which fits the current problem and use any method
of proof suitable to the particular problem at hand. The formal methods on the
other hand have developed to the point where there is a quite solid mathe-
matical basis. There are, however, two related and rather serious problems
with the formal methods at the present time.

The formal methods require that either a simple language (e.g., the first order
predicate calculus) or a complex language (e.r,., second or higher order mathe-
matical logic) be used for the mechanics of the proof. If the simple language
is chosen there are reasonably efficient proof methods available but one en-
counters extreme difficulty in formulating "real" problems because certain basic
mathematical concepts (most notably the equality relation) are not easily ex-
pressed in this language. If the complex language is chosen, the formulation
problem is eased considerably but there are as yet no really satisfactory proof
methods available. Before a really practical application of the formal proof
methods can be made it is probable that greatly improved proof methods for
higher order logics will be required.

E.2 INFORMAL PROOF METHODS

The literature on informal proofs of programs consists almost entirely of sample
demonstrations for particular algorithms. At least two different approaches
are identifiable: the constructive approach and the verification approach.
In the constructive approach (Dijkstra, Reference 3) an algorithm proof is
developed in a top down manner from the algorithm specifications. The stets of
the algorithm proof are then converted to executable code in what is normally
a relatively trivial exercise. The result is an algorithm which has been "nrJved
correct" and then converted to executable code. It is important to mote that it,
is the algorithm not the code that has been proved correct.

I

E-1

I	 I	 L_	 1	 I	 I_-!

In the verification approach (Floyd, Reference 2) the executable code is
assumed to exist. The algorithm proof steps referred to above either exist or
must be generated. Figure E-1 illustrates the verification problem given the
code in flow chart form and the algorithm proof steps in the form of state-
ments in mathematical logic (propositions).

START

-- — — — — -- -- — n E J + (J is the set of positiv e integers)

i	 1

----	 -n Ed f- A i ^ 1

S^0

.	
j	

nEJ+Ai- 1AS-0

..., -----nEJ+ AiEJ+ A'i sn+1AS- Ea,
wt

I] n?	 Yes
i-1	 n

-----nEJ_"A	 n + I A S	 i.e.,S=^a^

HALT

---------nEJ+AiEJ+Ai 5nA9 r Laf

nEJ + /\iE 1 + Ai; nAS°

i .- i •^- 1	 , - ^

-- ------nEJ*A1E_J+A2 i!;n4-IA - a,
1-^

Figure E--1. Flowchart Illustrating Floyd's Method of Program Verification

4

a i

m^

;; s

d

^w

E-2 {

.... _ s..,

The code between propositions Floyd call s "commands." On the flowchart, these
commands are connected b "arrows" r epresenting t1je possible passages of controly	 p	 nB	 Fo	 ^
between the commands. .each command (except START and HALT) has at least one
"'entrance" arrow (ai) and at least one "exit" arrow (b j) . A "proposition" is
associated with each of these arrows. Thus each command has one or more entrance
propositions (Pi) and one or more exit propositions (Qj). Using this terminology
Floyd defines a verification as "a proof that for every command c of the flout
chart, if control should enter the command by an entrance (ai) with Pi true, then

`	 control must leave the command, if at all, by an exit (b) with Qj true." The
entrance and exit propositions Floyd calls the "verification conditions" for a
command. These verification conditions are identical to the "algorithm proof
steps" generated in the constructive approach. Thus "verification" bridges the
gap between an algorithm proof and a proof of its representation in executable
code.

As the reader has probably determined, proving a program correct requires two
very difficult steps: 1) determining "verification, conditions" which faithfully

`y	 represent the desired algorithm, and 2) performing the proof required by the
above definition of a verification. Unfortunately the literature offers little
guidance except by specific example. One exception to this is Hoare ' s concept

jof invariants (References 4 and 5) which appears to offer solid foundations in an
u.e	 area where few exist.

Tnvo.ri a.r+.o

Hoare (Reference 4) defines an invariant as "a formula of logic which is in-
tended to remain true throughout the execution of a program segment" (even
though the values of any variable appearing in the formula may be changed by
the execution). One reason that invariants are important is because they provide
a very useful insight into how a loop performs a desired. function. To be used
in this manner, an invariant is required whose meaning is essentially a specifi-
cation of what the loop is intended to accomplish. Formulation of the specifica-
tions of a program segment (e.g., a loop) in invariant form is a step which
sometimes requires great ingenuity. The basic idea, however, can be illustrated
by the simple example shown in Figure E-2. The key step is the expression of
the program specifications in invariant fora. In•this simple example this is
accomplished by replacing the parameter N (which is important only to a final
result) by the parameter J (which has significance for all intermediate results).
It should be noted that upon termination J = N and the two specifications are
the same. The invariant form however, is true throughout execution of the loop
especially at the points labeled (D O Q and Q in Figure E»2. The non-
invariant form is necessarily true only at point 9 .

(I	 E-3

t
^v

^^ i

Figure E-2. Program Specification With Invariants

E-4

Problem: Find the maximum value of an array A of dimension N. Set B
equal to this value.

Proarram. Seament Suecifi.cati,on:

For all I such that {1^I^N) B4[1]
For at least one I such that (1^1'N) 	 B = AM

Program Se went Specification In Invariant Form:

For all I such that (1^1^J)	 < 4	 BSA[I]
For at least one I such that (1- -.T)B = A[11
For hoop 'Termination J = N

Program;

F

J

ti=

i

F̂rFEE

il...L

;i

T-.

F

i
L.

Once the invariant for a loop has been determined, the formal proof of loop
correctness is straightforward. The idea is to prove that the invariant is
true upon exit from the loop (i.e., at point a in Figure E-2). This is
done by two steps which are:

(1) Prove the invariant is true before the loop is entered
(i.e., at point (D in Figure E-2).

(2) (a) assume the exit condition is not satisfied (i.e., J< N)

(b) assume the invariant is true at point Q

(a) mentally execute the body of the loop once, i.e.,

(J 4-Jfl; IF (B<AIJ)) THEN B i-A(JI)

(d) prove that the invariant remains true.

(i.e., that it is true at (3))

The above two steps and the principle of mathematical induction are sufficient
to prove the desired result - namely that the invariant is true upon exit
from the loop. Loop tenaination is proved separately and will establish that
upon exit J=ri which makes the invariant form of program specification identical
to the original program specification.

E.3 FORMAL PROGRAM PROVING

Formal grogram proving attempts to overcome a very serious drawback of the in-
formal methods - i.e., the necessity of dealing with each program on an indivi-
dual basis. To do this it is necessary to abstract the concept of a program -
to identify the essential "structure" of a program and to eliminate the details
which are peculiar to a certain representation of that program. The result is
a "program schema" or "abstract program" which is a sort of skeleton program
consisting solely of assignment statements and branch statements. More speci-
fically an abstract program consists of the following:

(1) A vector of input variables x

(2) A vector of program variables y

(3) A vector of output variables z

(4) A vector of program constants a

(5) Assignment statements of the form

y4-6 (x,N)

(6) Branch statements consisting of a predicate (logical expression)
P (X, q) where either of two paths are taken depending on the
truth of falsity of Pi(X,y).

E-5

.E
Actual. input and output do not occur in an abstract program. Rather this is 	 u
handled by assignment statements (i.e., input is accomplished by assigning
a function of input variables to a vector of program variables, e.g., y+q (x).

Similarly output is accomplished by assigning a function of input and program
variables to a vector of output variables (z,4-h. (x, y)). Figure E-3 shows an
abstract program in Flowchart form.

k

An "interpretation" of an abstract program specifies:

(1) Specific functions and predicates

(2) Specific values for all program constants

(3) The domains of the input, program and output variables. (Note
in particular that values for input variables are not assigned -
merely the domain - e.g., an input variable may be constrainted
to be a positive integer but its value is unspecified).

Under an "interpretation" an "abstract program" becomes an actual program capable
of execution once the values of the input variables are specified. Thus an 	 °E
"interpretation" forms the link between abstract programs and actual executable
programs.

The theoretical basis for the formal approach is due to Manna (Reference 6)

who showed in essence that the verification of any abstract program can be
converted into the proving of a theorem (usually) in the first order predicate
calculus. The development which follows is based on Reference 7 and to a lim'i'ted
extent assumes the reader is familiar with the predicate calculus (Reference 8,

chapter 6 is a reasonably straightforward development of the predicate calculus
for the reader desiring more background). Before proceeding with the formalism
however, it is necessary to firm up some basic concepts.

Roughly speaking, a program, may be said to be correct if its execution terminates
and it yields the desired final result. However, since both termination of
execution and attainment of a desired result usually depnnd on the input vector
(x), it is necessary to ..ntroduce a predicate f(x) representing these constraints.
Likewise, it is necessary to formalize the idea of "attaining the desired final
result" by introducing a predicate ^(x,z) which is true if and only if z is the 	 r,
desired output for valid input X. Thus we may speak of a program being correct
with respect to the input predicate ^(x) and the output predicate *(x,z).

It has been found useful to define two types of program correctness primarily
because a proof of program termination is often (but not always) most easily
performed separate from the proof of correctness. Thus a program is said to be
correct with respect to input predicate O(x) and output predicate qI(x,Z) if it
yields the correct answer (i.e., satisfies *(x,z))and if it terminates for all
valid input (i.e., input vectors x satisfying ^(xff. Alternatively, a program
is said to be partially correct with respect to input predicate f(x) and output C1L

predicate I► (x,z) if it yields the correct answer when it terminates (for valid 	 x
input x). A proof of termination together with a proof of partial correctness
is of course equivalent to a proof of correctness.

v Y

{
•c ;

f
i

r. n

1+.—r.

e	 I	 L_ 1_

T

z-t-h (x, y)

Figure Ev-.3. An Abstract Program Flowchart

E

Manna's formalism assumes an abstract program to consist of a series of state-
merits of the form

I:
	

IF Pi(x,y)

THEN
Y4-61 (X, y)

COTO Il

ELSE

COTO 12

where	 I; Il ; 22 are statement labels

(^' o !f) in a Predicnte

^^ (X : y) 3 ^i2
(x, y) are functions

In the above standard form, any of the go to statements may be replaced by the
HALT command which indicates program termination. It is a relatively straight-
forward exercise to convert any abstract program to this standard form.

With each statement in the above standard form, Manna associates a "well formed
formula" in the predicate calculus: ("well formed formula" is essentially a
statement expressed in mathematical logic which is either true or false depending
on the values of the variables contained in it).

Wi = V q,(X,y)=>

IF Pi(X,u)	 3

THEN g3 (X,Iil(x,y))
x

ELSE qi (X,6i2(x,y))
2

where V is read "for all y"	 Y

=> means "implies'!

and Pi (X,y) is the predicate associated with the i th statement of the abstract 	 -
program.

Qi ,gil' gd2 are the "verification conditions" as defined by Floyd which
are associated with the i statement of the abstract program.

i
E-s

i	 I	 1	 I	 l	 I
	

I

f

'e

)

R

A block diagram of the ith statement of the abstract program is given in Figure
E-4, showing the "Floyd verification conditions." If one of the go to state-
ments is replaced by HUT, the correspondia,g verification condition is replaced
by the output predicate ^(X, Z) .

The formalism continues by defining two additional well formed formulas

T(x) = g1 (x,y)AwlA... W;

T(X) = T(x) with the output predicate ^(x,z) replaced by its
complement (i.e., `-+ (X,Z)) wherever it appears.

In the above, A means logical "and"
`, means logical "not"

Finally, the desired result is the two well formed formulas:

Vx{^(X) =>T(x)T

Wp[m] = VX{^W => (W I
These formulas form the basis for Manna's two theorems (proved in Deference 6):

Theorem l: The program is partially correct with respect to
^ and ^ if and only if Wp[^,*] is satisfiable
(i.e., is true under some "interpretation" of the
Floyd verification conditions).

Theorem 2: The program is correct with respect to 0 and
if and only if Wp [^,t] is unsatisfiable (i.e.,
is false under every "interpretation" of the
Floyd verification conditions).

Proving satisfiability (or unsatisfiability) of a well formed formula in the
predicate calculus is a very complex topic and is not discussed here. The
interested reader is referred to References 7 and 8 for an introduction to
the topic.

E-9

k.
i

__._
gil(X,V)

{J	

y

J	 f

IARW, = T

LABEL = I2	 LABEL = 11

Figure E--4. Ith Statement of Abstraet Program for Manna's Formalism

E-l0

REFERENCES

1. P. Naur. Proof of Algorithms by General. Snapshots. BIT 6 1966,
pp. 310-316.

2. R. W. Floyd. Assigning Meanings to Programs. American Mathematical
Society -- Mathematical Aspects of Computer Science, Vol. 19, 1967,
pp. 19-32.

3. E. W. Di,jkstra. A Constructive Approach to the Problem of Program
Correctness. BIT, Vol. 8, No. 3, 1968, pp. 174-186.

4. C.A.R. Hoare. Proof of a Program: FIND. Comm. ACM, January 1971,
pp . 39-45.

5. C.A.R. Hoare. An Axiomatic Basis for Computer Programming. COM ACM
October 1969, pp. 576-583.

6. Z. Manna. Properties of Programs and the First Order Predicate
Calculus. J. ACM, April 1969, pp. 244-255.

7. B. Elspas, K. N. Levitt, R. J. Waldinger, A. Waksman. An Assessment
of Techniques for Proving Programs Correct. ACM Computing Surveys,
June 1972, pp. 97-147.

8. N. J. Nilsson. Problem Solving Methods in Artificial Intelligence.
(Book) McGraw Hill, 1971.

E-11

^f
f	 +EI

	
`

Appendix F

BIBLIOGRAPHY

Adams, D. A., "A Computational Model With Data Flow Sequencing",
Stanford University, Computer Science Technical Reports CS-117,
December 1968.

	

' 	 Akiyama, F., "An Example of Software System Debugging", Software
Engineering Department of Fujitsu Limited, Tokyo.

Allen, C. D., "The Application of Fcrmal Logic to Programs
and Programming", IBM Systems Journal, Volume 10, No. 1, 1971.

i
Allen, C. D., "Derivation of Axiomatic Definitions of Programming
Languages from Algorithmic Definitions", Proceedings of the
Conference on Proving Assertions About Programs, January 1972.

Amory, W., Clapp, J. A., "A Software Error Classification
Methodology", Mitre Corporation Report No. 2648, Volume VII,
June 1973.

Ashby, E. T., "The Lse of an Auxiliary Computer With a Graphic
Display as an On--line Debugging Aid", Naval Postgraduate School
Thesis, June 1971.

Ashcroft, E. A., "Program Correctness Methods and Language
Definition", Proceedings of the ACM Conference on Proving

	

"	 Assertions About Programs, January 1972,

Ashcroft, E. A., Manna, Z., "The Translation of GOTO Programs
to WHILE Programs", Stanford University, Computer Science
Report No. CS-188, 1970.

Avizienis, A., "The Methodology of Fault-Tolerant Computing",
Software Reliability Course, Engineering 819.59, October 1974.

Aviz.ienis, A., "Fault-Tolerance and Fault-Intolerance:
Complementary Approaches to Reliable Computing", International
Conference on Reliable Software, April 1975.

F-1

Bachman, C. W., "The Programmer as Navigator", Communications
of the ACM, Volume 16, No. 11, November 1973.

Baird, G. N., "Program Debugging Using COBOL '74", 1975
National Computer Conference, May 1975.

Baker, F. T., "System Quality Through Structured Programming".
AFIPS Conference Proceedings, Volume 41, Part I, 1972.

Baker, F. T., "Chief Programer Team Management of Production
Programming", IBM Systems Journal, Volume II, No. 1, 1972.

Baker, F. T., "Structured Programming in a Production. Programming
Environment", International Conference on Reliable Software,
April 1975.

Balzer, R. M., "E MAMS - Extendable Debugging and Monitoring
System", The Rand Corporation, RM 5772-ARPA, April 1969.

Balzer, R. M., "On the Future of Computer Program Specification
and Organization", Rand Corporation, Report R-622r-ARPA, AD 731
349•, Aagust 1971.

Balzer, R. M., "PORTS-A Method for Dynamic Interprogram
Communication and Job Control.", Proceedings AFIPS 1971 9 SJCC,
1972.

Balzer, R. M., "Automatic Programming", Institute Technical
Memorandum, USC/Information Sciences Institute, September 1973,

Balzer, R. M., "A Global View of Automatic Programming",
Proceedings of the Third International Joint Conference
on Artificial Intelligence, Stanford Research Institute, 1973.

Balzer, R. M., "A Language-Independent Programmers Interface",
Proceedings - AFIPS 197+ NCC.

Bard, Y., "Performance Criteria and Measurement for a Time-Sharing
System", IBM Systems Journal, Vol. 10, No. 3, 1971,

Barrett, M. R., "Test Data Generation", U.S. Army Computer Systems
Support and Evaluation Comand, Washington, D.C., March 1972.

Bashi, V. R., and Zelkowitz, M. V., "Compiler Generated Programming
Tools", Workshop on Currently Available Test Tools: Technology
and Experience, April 1975.

Basu, S. K., and Misra, J., "Proving Loop Programs", IEEE
Transactions on Software Engineering, Vol. SE-1, No. 1,
March 1975.

Bauer, F. L., "Software Engineering", Proceedings of IFIP Congress
1971, and in Advanced Course on Software Engineering, New York:
Springer-Verlag, 1973.

Benjamin, R. I., Control of the Information System Development
Cycle, New York, Wiley, 1971.

Benson, J. F., "Structured Programming Techniques", IEEE
Symposium on Computer Software Reliability, May 1973,

1 Beyer, T., "Preprocessors and Programming Language Reform",
Computer Science and Statistics: 	 8th Annual Symposium

`f-
on the Interface, February 1975..

Beyer, T., "F'LECS:	 User's Manual", University of Oregon
-^ Edition, Department of Computer Science, University of Oregon,

January 1975.
C`L

Birman, A., "On Proving Correctness of Microprogrsms", IBM
Journal, Volume 18, No. 3 1 May 1974,

Blair, J., "Extendable Non-Interactive Debugging", Debugging
Techniques in Large Systems, Prentice-Hall, 1971.

Blevins, P. R., and Ramamoorthy, C. V., "A Classification and
Survey of Computer System Performance Evaluation Techniques",
University of Texas at Austin, Electronics Research Center
Report, April 1970.

Bloom, A. M., "The "ELSE" Must Go, Too", Datamation, May 1975.

Bloom, Si,, 	 McPheters, M. J., and Tsiang, S. H., "Software
Quality Control", IEEE Symposium on Computer Software Reliability,
May 1973,

Bochmann, G. V., "Multiple Exits from a Loop Without the
GOTO", Communications of the ACM, July 1973.

Boehm, B. W., "Some Information Processing Implications of
Air Force Space Missions, 1970-1980", Rand Corporation,

•• Rand Memo RM-6213--PR, January 1970,

Boehm, B. W., "Software and Its Impact. A Quantitative Assessment%
Datamation, May 1973.

Boehm, B. W., McClean, R. K. and Urfrig, D. B., "Some Experience
With Automated Aids to the Design of Large--Scale Reliable
Software", IEEE Transactions on Software Engineering, Volume SE-1,
No. 1, March 1975, and International Conference on Reliable
Software, April 1975.

Boehm, B. W., "The High Cost of Software", Practical Strategies
for Developing Large Software Systems, Addison-Wesley 1975•

y_	
Boehm, B. W., "Software Design and Structuring", Practical
Strategies for Developing Large Software Systems, Addison-Wesley
1975.

F-3

Aw

Boettcher, C. B., "Program L47aluator and Tester, CDC User's
Manual", McDonnell Douglas Automation Company, Doc. No.
M2085074, 1974.

Bohm, C., and Jacopini, G., "Flow Diagrams, curing Machines
and Languages with only Two Formation Rules", Communications
of the ACM, Vol. 9, 1966.

-Boyer, R. S., Elspas, B., Levitt, K, X,, "SELECT - A Formal.
System for Testing and Debugging Programs by Symbolic
Execution", International Conference on Reliable Software,
April 1975.

Bratman, H, and Court, T., "The Software Factory", Computer
May 1975.

Bratman, H., "Automated Techniques for Project Management Control',
Practical Strategies for Developing Large Software Systems,
Addison-Wesley, 1975.

Bredt, T. H., "A Survey of Models for Parallel, Computing",
Stanford University, Electronics 'jab Report TR-8, August 1970,

Bredt, T. H., and McClusky, E. J., "A Model for Parallel
Computer Systems", Stanford University, Electronics Lab
Report TR-5, April 1970.

Bredt,T.H.,"Analysis of Operating System Interaction",,
Workshop on Currently Available Test Tools: Technology and
Experience, April 1975.

Bright, H. S., and Cole, I. J., "A Method of Testing Programs
for Data Sensitivity", Program Test Methods, Prentice Hall, 1973,

Brinch Hansen, P., "The Purpose of Concurrent Pascal", International
Conference on Reliable Software, April 1975•

Brooks, F. P., "Testing Computer Programs - Historical Perspective",
ACM Sigplan Computer Program Test Methods Symposium, University
of Forth Carolina, June 1972,

Brooks, F. P., "The Mythical Man-Month", International Conference
on Reliable Software, April 1975.

Brown, J. R., and Hoffman., R. H., "Automating Software Development,
A Survey of Techniques and Automated Tools", TRW, May 1972,

Brown, J. R., "Practical Applications of Automated Software
Tools", Proceedings of Western Electronic Show and Convention
(WESCON), Los Angeles, California, September 197'2.

Brown, J. R., DeSalvio, A. J., Heine, D. E., and Purdy, J. G.,
"Automated Software Quality Assurance: A Case Study of Three
Systems", ACM SIGPLAN Symposium on Computer Program Test Methods,
TRW Systems, 1972.

F--4

Brown, J. R., Hoffman, E. H., "Evaluating the Effectiveness
of Software Verification--Practical. Experience with an Automated
Tool," TRW Paper #f316, F'JCC, 1972.

Brown, J. R., DeSal.vio, A. J., Heine, D. E., and Purdy, J, G.,
"Automated Software Quality Assurance", Program Test Methods,
Prentice Hall, 1973.

an

Brown, J. R., "Improving Quality and Reducing Cost of
.k Aeronautical Systems Software Through Use of Automated

"Tools TRW Systems Group, Site Defense Pro^.	 ^	 Y	 P9	 gram Office.

Brown, J. R., "Why Tools?", Computer Science and Statistics-.
8th Annual. Symposium on the Interface, February 19T5,

Brown, J. R., and Lipow, M., "Testing for Software Reliability",
International Conference on Reliable Software, April 1975.

Brown, J. R., "Getting Better Software Cheaper akid Quicker",
Practical Strategies for Developing Large Software Systems,
Addison-Wesley, 1975.

Brown, P. J,, "Levels of Language for Portable Software",
Communications of the ACM, Volume 15, No. 12, December 19T2.

Buda, A. 0., Granovsky, A. A., and Ershov, A. P., "Implementation
of the ALPHA-6 Programming System", International Conference
on Reliable Software, April 1975.

Bucher, D.E.W., "Maintenance of the Computer Sciences
Teleprocessing System", International Conference on Reliable
Software, April 1975.

j	 Buckley, Ltc. F., "Verification of Software Programs",
Computers and Automation, February 1971.

Buckley, F. J., "Software Testing - A Report from the Field",
IEEE Symposium on Computer Software Reliability, May 1973,

Buechler, J., "A Software Architecture for Sampling Monitors",
{	 Workshop on Currently Available Test Toolss Technology

and Experience, April 1975.

Bullen, R. H., Jr., "Software First Concepts", MITRE Corporation
Report No, 2648, Volume III, June 1973,

Burge, W. H., "Combinatory Programing and Combinatorial Analysis.",
IBM Journal, Volume 16, No. 5, September 1972.

"	 Burkhardt, W. H., "Generating Test Programs from Syntax",
Computing, Volume 2, 1967.

Berlakoff, M., "Software Design and Verification System.",
Workshop on Currently Available Test Tools: Technology and
txperi.ence, April 1975.

L^

F-5

I	 I	 i	 I	 I	 ',

Burstall, R. M., "Proving Properties of Programs by Structaaral
Induction", Computing Journal, Volume 12, No. 1, February 1969.

Burstall, R. M., "Formal Description of Program Structure in
First Order Logic '% Machine Intelligence ,5, American.
Elsevier, 1970 ,

Burstall, R. H., "An Algebraic Description of programs with
Assertions, Ve;:ification and Simulation", Proceedings of
the Conferenee on Proving Assertions About Programs, January
1972.

Burstall., R. M., "Some Techniques for Proving Correctness of
Programs Which Alter Data Structures", Machine Intelligence 7,
John Wiley and Sons, 1972.

Burstall, H. M., and Darlington, J,, "Some Transformations for
Developing Recursive Programs", International Conference on
Reliable Software, April 1975.

Buxton, J. N,, and Randell, B., "Software Engineering
Techniques", Scientific Affairs Divisions NATO, Brussels,
Belgium, April 1970.

Buxton, J. N., "The Nature and Implications of Software
Engineering", The Fourth Generation, Infotech, Ltd.,
Berkshire, England, 1971..

Buzen, J. P., Chen, P. P., and Goldberg, R. D., "Virtual Machine
Techniques for Improving System Reliability", IEEE Symposium
on Computer Software Reliability, May 1973.

{

._s

4

v^

^y

r i

F-6

1

I++

l;

a

i

.	 4

-MEOW

7

L

:2, 011.. ­ I,.:^.

t

Cadiou, J. M., and Manna, Z., ''Recursive Definitions of Partial
Functions and Their Computations", Proceedings of the Conference
on Proving Assertions About Programs, Japuary 1972.

Caine, S. H., and Gordon, E. K., "PLL - A Tool for Software
Design", 1975 National, Computer Conference, May 1975.

Cantrell, H., "Improving Program Reliability Using COTUNE II",
Workshop on Currently ,Available Test T<.9ols: 	 Technology and
Experience, April 1975.

f Caplain, M., "Finding InvExiant Assertions for Proving Programs",
s:b International Conference on Reliable Software, April 1975.

Carey,, L. J., "Soft-rare Quality Assurance -- A State of the Art
Report", Wescon Teahnical. Papers, 1972.

Carlson„ G., "How to Save Money With Computer Monitoring",)
Proceedings 1972 ACM National Conference, New York, 1972.

Carpenter, L. C., and Tripp, L. L., "Software Design Validation

^i

Tool's, International Conference on Reliable Software, April 1975.
a.,

Cerf, V. G., Fernandez, E.-B., Gostelow, K. P., and Volansky, S. A.,
"Formal Control. Flow Properties-of a Graph Model of Computations",
UCLA, Computer Science Report EKG-7178, December 1971.

Cerf, V. G., "Multiprocessors, Semaphorese, and a Gra ph Model
of Computation 91 , UCLA, Computer Science Report EKG-7223,
April 1972.

Cerf, V. G., and Estrin, G., "Measurement of Recursive Programs",
Proceedings of IFIP Congress 71, Amsterdam:	 North-Hollane 1972.

Chandy, K. M., Brown, J. C., Dissly, C. W., and Uhrig, W. R.,
"Analytic Models for Rollback and Recovery Strategies in Data
Base Systems", IEEE Transactions on Software Engineering,
Volume SE-1, No. 1, March 1575.

,Ia-:	 Chandy, K. M., rr A Survef of Analytic Models of Rollback and
Recovery Strategies", Computer, May 1975.

b^	 Chang, H. Y., Manning, E. G., and Metze, G., Fault Diagnosis
of Digital Systems, Wiley Interscience, 1970.

Cheatham, T. E., Jr., "On A Laboratory of the Study of Automatic
Programming", ACM Conference on Proving Assertions About
Programs, 1972.

: y	 Cheng, L. L., and Sullivan, J. E., "Case Studies in Software Design",
Mitre Corporation Report, MTR- 2874, Volume I. June 197+.

1.i	 y

I

Cheng, L. L., "Some Case Studies in Structured Programming",
MITRE Corporation Report No. MTR-2648, Vol. VI, June 1973.

Chirica, L. M., and Martin, D. F., "An Approach to Compiler
Correctness", International Conference on Software Reliability,
April 1975.	 t

• E

Cicu s A., Maiocchi, M,, Polillo, R., Sardoni, A., "Organizing
Tests During Software Evolution", International Conference
On Reliable Software, April 1975,

Clapp, J. A., LaPadula, L. J., "Engineering of Quality
Software Systems", Mitre Corporation Report M'TR- 26+8, Volume I,
June 1973.

Clapp, J. A., Sullivan, J. E.,SIMON: Finding the Answers to
Software Development Problems, Mitre Corporation Report No.	 •
MTR- 152, May 1974.

Clark, L., "A System to Generate Test Data and Symbolically
Execute Programs", Report #CU-CS-060-75, February 19759
Department of Computer Sciences, University of Colorado,
Boulder, Colorado.

Clint, M., "Program Proving", Coroutines Acta•Informati.on 2,
1973.

Clint, M., and Hoare, C.A.R., "Program Proving: Jumps and
Functions", Acta Informatica, Volume 1, No. 3, 1972.

Cody, J. W., "The Evaluation of Mathematical Software",
Program Test Methods, Prentice Hall, 1973.

Cohen, J., and Zuckerman, C., "Two Languages for Estimating
Program Efficiency", Communications of the ACM Volume 17Y
No. 6, June 1974.

r 3

Conrow, K., and Smith, R. G., "NEATER 2--A PL/I Source
Statement Reformatter", Communications of the ACM, November 1970.

Constable, R. L. "Constructive Mathematics and Automatic
Program Writers '°, proceedings of IFIP Congress 71,
Amsterdam: North-Holland 1972.	 i

Conway, R., and Gr?es, D., An Introduction to Programming
i	 A Structured Approach Using PL/l and 1°L/C, Cambridge, Mass.,

Winthrop Publishers 1973.

Cooper, D. C., "Programs for Mechanical Program Verification"
University College of Swansea, Computer Science Memorandum No. 13, 	 v,

July 1970.

Corrigan, A. E., " Results of an Experiment in the Application of
Software Quality PrincipXes 11 , Mitre Corporation Report, M'TH-287 ,,
Vol. III, June 1974. 	 v i

F-8

.^	 I	 _ I	 I	 I	 '; _	 i

i

s	 Coutinho, J. de S., "Software Reliability Growth", IEEE
Symposium on Computer Software Reliability, May 19T3.

LLt
	 Crocker, S., and Balzer, R., "The National Software Works:

A New Distribution System for Software Development Tools",
Workshop on Currently Available Test Tools: Technology
and Experience, April 19T5.

Culpepper, L. M., "A System for Reliable Engineering Software",
International. Conference on Reliable Software, April 1975.

f
t

^u

F-9

Daly, D., "Overview of Performance Measurement Techniques,"
SIGCOSIM Newsletter, Teo. S, Part II, April 1971.

Davis, R.M., "Standards for Software - What is in the Future,"
presented e. ADAPSO Software Section Management Conference,
Dallas, Texas, February 1972.

Davis, R.M., "Quality Software Can Change the Computer Industry,"
Program Test Methods, Prentice Hall, 1973.

de Balbine, G., "Using the FORTRAN Structuring Engine," Computer
Science and Statistics: 8th Annual Symposium on the Interface, ..a
February 1975.

- r

de Balbine, G., "Tools for Modern FORTRAN Programming," Workshop
on Currently Available Test Tools: Technology and Experience,
April 1975.

de Balbine, G., "Better Manpower utilization Using Automatic	 ..
Restructuring," 1975 National Computer Conference, May 1975.

Dennis, J.B., "The Design and Construction of Software Systems,"
Advanced Course on Software Engineering, New York: Springer-
Verlag, 1973.

Dennis, J.B., "C,oncurrency in Software Systems," Advanced Course
on Software Engineering, New York: Springer-Verlag, 1973.

Dennis, J.B., "Modularity," Advanced Course on Software Engineering,
New York: Springer-Verlag, 1973.

DeRemer, F., Kron, H., "Programming-in-the-Large Versus Programming-
in-the-Small," International Conference on Reliable Software, April 1975•

DeRoze, B.C., "Software Reliability via the Specification - A
Quantitative Approach," submitted to the International Conference
for Reliable Software, 1975.

DeRoze, B.C., "Survey of Software Verification/Validation Technology,"
paper presented at ACM Conference, San Diego, 197+ (viewgra-phs also).

Deutsch, L.P., "An Interactive Program Verifier," Ph.D., dissertation,
Department of Computer Science, University of California, Berkeley, 	

nb

Calif., May 1973.

DeViot, A.R., "The PRO/TEST Library of Testing Software," Workshop on 	 zc

Currently Available Test Tools: Technology and Experience, April 1975.

Dickson, J., Hesse, J., Kientz, A., Shooman, M., "Quantitative Analysis 	 ^v
of Software Reliability," 1972 Annual Reliability Symposium, IEEE,
January 1972 •

Dijkstra, E.W., "Programming Considered as a Human Activity," Pro- 	
_>

ceedings of the IFIP Congress, 1965,

F-10	 3

y

r
	

f	 ^

Dijkstra, E.W., "GOTO Statement Considered Harmful.," Communica-
tions of the AC14, Volume IS, No. 3, March 1968.

Dijkstra, E.W., "A Constructive Ap proach to the Problem of
Program Correctness," BIT, Volume 8, No. 3, 1968.

Dijkstra, E.W., "The Structure of the "THE" - tiultiprogramming
System," Communications of the ACM, Vol. 11, No. 5, May 1968.

Dijkstra, E.W., "Structured Programming," Software Engineering
Techniques, NATO Science Committee, 1969.

Dijkstra, E.W., "Notes on Structured Programming," Techni.sche
Hogeschool Eindhaven (THE), 1969.

Dijkstra, E.W., "Concern for Correctness as a Guiding Principle
for Program Composition," The Fourth Generation, Infotech, Ltd.,
Berkshire, England, 1971.

Dijkstra, E.W., "Guarded Commands, Non-determinancy and a Calculus
for the Derivation of Programs",International Conference on
Reliable Software, April 19 0 .

Dijkstra, E.W., "Correctness Concerns and, Among Other Things,
Why They are Resented," International Conference on Reliable
Software, April 1975•

F-11

Early, J., "Toward an Understanding of Data Structures,"
Communications of the ACM, Vol. 14, 17o. 10, October 1971.

Edwards, N.P., "The Effect of Certain Modular Design Principles
on Testability," International Conference on Reliable Software,
April 1975.

Ehrman, J.R., "System Design, Machine Architecture, and Debugging,"
SIGPLAN Notices, Volume 7, No. 8, August 1972.

Ellingson, O.E., "Computer Program and Change Control," IEEE
Symposium on Computer Software Reliability, May 1973.

Elmendorf, W.R., "Controlling the Functional, Testing of an Operating
System," IEEE Transactions System Science and Cybernetics, SSC--5,
October 1969.

EhI mendorf, W.R., "Disciplined Software Testing," Debugging Techniques
in Large Systems, Prentice--Hall, 1971.

Elspas, B., Green, M.W., and Levitt, K.N., "Software Reliability 	 -
Computer," (Computer Group News), January-February 1971.

Elspas, B., Green, M.W., Levitt, K.N., and Waldinger, R.J.,
"Research in Interactive Program Proving Techniques," SRI Report
8398.11, Stanford Research Institute, Menlo Park, Ca., 1972.	 -•

Elspas, B., Levitt, K.N., Waldinger, R.J., and Waksman, A.,
if Assessment of Techniques for Proving Program Correctness," 	 -.
Computing Surveys, Vol. 4, No. 2, June 1972.

Elspas, B., Levitt, M.W., and Waldinger, R.J., "An Interactive
System for the Verification of Computer Programs," Final Report,
SRI Project 1891, Stanford Research Institute, Menlo Park, Ca., 1973.

Elspas, B.,"The Semi-Automatic *eneration of Inductive Assertions
for Proving Program Correctness," Interim Report, SRI Project
2686, Stanford Research Institute, Menlo Perk, Ca.., 1974.

Endres, A., "An Analysis of Errors and Their Causes in System
Programs," International Conference on Reliable Software, A pril 1975•

Engelman, C., "Towards an Analysis of the LISP Programming Language,"
Mitre Corporation Report No. 2648, Vol. TV, June 1973.

Estep, J.G., "A Software Availability and Reliability Model,"
IEEE Symposium, on Computer Software Reliability, May 1973.

Evans, R.V., "Multiple Faits from a Loop Using Neither GOTO nor
Labels," Communications of the ACM, November 1974.

Y

F-12

I^

LE^

Fa,irl.ey, R.E., ".An Experimental. Program Testing; Facility," Workshop
on Currently Available Test Tools:	 Technology and Experience,
April 19T5

Feldman, J.A., "Toward Automatic Programming," Software Engineering '^

`1k Techniques, Scientific Affairs Division, NATO, Brussels, 1970.

Fldi,scher, R.J., "Effects of Management Philosophy on Soft-tare
Production," Mitre Corporation Report MTR-2618, vol. ii, June 19T3. 5`

Florentin, J.J., "Flog Analysis for Program Correctness," University
of Waterloo, CSRR 2054 Research Report, 1970.

Floyd, R.W., "Nondeterministie Algorithms," Journal of the ACM,
- vol. lh , No. 4, October 1967.

Floyd, R.W., "Assigning Meanings to Programs," Mathematical Aspects
of Computer Science, Vol. XIX, American Mathematical Society,

' Providence, R.I., 1967.
a

Floyd, R.W., "Toward interactive Design of Correct Programs," ?,j
Proceedings of iFiP Congress T1, Amsterdam: North-Holland, 1972•

I
Flynn, R.J., "On the Smallest Number of Program ?Modules Needed to
Duplicate Dynamic Independent Tnterictions," 1EE'E Symposium on
Computer Softvare Reliability, May 19T3.

Forsythe, A.B., "Adequacy and Validity of Statistical. Analysis,"
Computer Science and Statistics:	 8th Annual Symposium on the :`a

_. Interface, February 19T5.

Fosdick, L.D., "BRAWL, A FORTRAN Program to Identify Basic Blocks
a► in FORTRAN Programs,	 Report ##CU-ACS-040-T4, Dept. of Computer

Science, University of Colorado, March 19T4..

Fosdick, L.D., and Osterwei.l, L.J., "DAVE - A FORTRAN Program
Analysis System," Computer Sciefic'.e and Statistics: 8th Annual
Symposium on the Interface, February,, 19"f5•

Freeman, P., "A 3Model. for Functional Reasoning in Design, 1° Pro-

ceedings, Second Trternational. Joint Conference on Artificial.
Intelligence, London, 19T1.

Freeman, P., "Functional Programming, Testing and Machine Aids,"
Program Test Methods, Prentice Hall, 19T3.

Freeman, P., "Software Engineering Bibliography," Rough Draft, ICS
Department, University of California, Irvine, Ca.., September, .19T4.

Freeman, P., "'Toward Improved Review of Software Deslgna," 150T5
National Computer Conference, May 1975.

Fuji.i, R.U., and Hartwick, R.D., "`Test Techniques foz Large-Scale
^Proam," Logicon, January 1.9TC	 t

Fragola, J.R., and Spahn, J.F., "The Soft y re Error Effects Analysis:
A Qualitative Design Tool," IEEE Symposium on Computer Software
Reliability, May 19T3.

F-13

u.

I

f

i
Tj

i

P

z

w

t

P F. -T4

Gaines, R. S., "Compiler Construction for Debugging", Debugging
Techniques in Large Systems, Prentice Hall, 1971.	 ^7

Gannon, J. D. , and Horning, J. J., ".The Impact of Language
Design on the Production of Reliable Software 1°, Interna:'tiDn.a1
Conference an Reliable Software, April 1975.

Garland, S. J., and Luckham, D. Co. "Translating Recursion
Schemes Into Program.Schemes", Proceedings of the Conference
on Proving Assertions About Programs, January 1972,

Genera. Research Corporation_ , "RXVP.-1 User ' s Guider'.,
February 1975

Gentleman,, W. M., and Wichmann, T, A., "Timing on Cipmputers".
SIGARCH 2, October 1973.

Gerhart, S. L.,, "Knowledge About Programs .: A . Model and a
Case Study", International Conference on Reli.ab .le Softv&re,
April 1975,
German, S. M., and Wegbreit, 3., "A Synthesizer of 'Inductive
Assertions", IEEE Transactions on Software Engineering,
Vol. SE-1, No. 1, March 1975,

Gesche, ' C . M. , ard. Mitchell, J. G. , "On the Problem of Uniform
References to Data Structures°'., International Conference
on Reliable. Software, April 1975.

Gibson, C. G., and. Railing, L, R,; "Verification Guidelines".,
TRW SS-71-04, TRW Software Series, August 1971,

Girarri, E., snd RatL7.t, J. C.; "A Yrogra^mming Technique. for
Software Reliabilityl i , IEEE Symigosium an Computer Soft--sre
Reliability, May 3.973.

Glassman, B. A., rand. Bonham,_ Cr. P. $ "Automating Softvare
Development", Workshop an Currently Available Test Tools
Technology and Experience,. April 1975..

Goldberg, J., "Toward Better Software", Electronics,, Vol, 44,
No lo, September 1971,

Gom.ory, R, E., "An Algoritbin for Integer Salut lions to Linear
Progress", Recent Advances in Mathematical Programming,
McGraw-Hill, N.Y, , 1963.

Good, D. I., "Toward a Man-Machine System for Proving
Program Correctness"; Ph.Ds, disserta.tian, Dept, of
Computer Science, University of Wisconsin, Madison,
Wisconsin, June 1970..

V

Good, D. 1., "Developing Correct Softwares"PJrogreding of	 4
the First Texas Conference on Computer Systems, --Tune :1972,.

u

r--1

Ir s

r	 ...	 _	 _	 ,.,.	 -	 ..	 ._		 _	 _......	 ,,.	 S.

'Good,: D. I., and Raglund, L.. C., "Rucleus-A Language of Provable
Programs", Program Test Methods, Prentice Hall, 1973.

Goon, D. I., "Provable Programs and processors", National
Computer Conferenceo 1974.

a

Good, D. Ie, "Provable Programming", International Conference on Reliable
Softweare, April 19T5.i'
Good., 1)	 1:. •, Landon,. R. L, and Bledsoe, W. W., "An Interactive
Program Verification System", IEEE Transactions on Software
Engineering	 Vol, BE-1, No. 1, Mach 1975, and International
Conference on Reliable Soft ,%-re, April 3-975,

Goodenough, J. B., and Eanes, R. S., "Program Testing and
Diagnosis Technology", SOFTECH Report ^to Frankford A:-senal,

i, April 1973 .3.
a

Goodenough, J. B., mad Gerhart, S. L. 	 "Toward a Theory of
Test Data, Selection", International Conference on Reliable
Software, April 1975.

' Goodman, L. I., "Complexity Medsures for Programming Languages
Mass. Institute of Techno" ogy, AD 729.003_, September 1971. E	 ^

Goodnight, J. JI. , "Validity Checking - Row Far Should We - Go?" 9
Computer Science and Statistics: 	 Sth Annual Symposium on the
Interface, February 1975.

UI Gocas	 G	 "Hierarchies"	 Advanced Course va Software Engineer ing,	 .,	 s
t	 '

Nev York:	 SpringerVerlag, 1973.

Giros, G. , "Language Characteristics". Advanced Course on
Software Engineerin,g A Nev York:	 SpringerVerl.ag, 1973.

',! Goss, G., "Documentation", Advanced Course on Software Engineering* ^
x$ew York:	 Springer -- Terls.g, 2.973. 	 —.. t

57 Goste7_ow, K..P., "Flow of Control, Resource Allocation and the
?roper Termination of Programs", UCLA Computer Science Report
ERG-7179, December_ 1971.

fli Gotlieb,. C. C . , and MacEwen, G. H., "System FIvaluation Tools" I	 ;: k	 :	 1
NATO Working Conference on Sofv:rare Engineering, Brussels,
Belgium, INATC 1970.

Gotlieb, C. C, "Performance Measurement", Advanced. Course on
Software Engineering, New York; Springer-Verlag, 1973.

Graham, P. M., "Performance Prediction", Advanced Course on.
Software Engineering, Nev York: Springer Vexlag, 1973.

.,
Graham, R. M., Clancy, G. J., Jr., and Devaney, D. beg "A
Soft-ware Design and Rvaluev on System", Communications of the
ACM, February 1973,

F-15

F.

'

Green	 E., "What,, Row and When to Test" , Workshop on Currently

n
,

Available Test, Tools - Technology and Fxpprience, April 1975.

Gries, D., "Frogriumming by Induction", Information Processing
Letters, Vol. I., ,No, 3, February 1972,

} Grishman, R., "The= Debugging System - AIDS". Proceedings
of the SJOC, 1970.

Grishman, R., "Cri:teria, for a Debiigging Language", De%ugging
^sTechni.gues in Large Systems., Prentice-Hall, 1971.

Gruenberger, F`. , "Program 'Testing .=d Ve-L?dating" g Computing:
A First Course, 1968..

1
^i

• Greenberger, P:, "Program 'Testing: 	 The	 Historical Perspective'' m I.

Program Test Methods, Prentice Hall, 1973e

f

{0

i
j

S

`:	 3

:'j

I

fI

t
1

`E

'

I	 -

#S

E

Hall, A.D., and Ryder, B.C., 14The PFORT Verifier--Installation and
Maintenance," Bell Laboratories, Murray Hill, New Jersey.

Hall,. A.D., and Ryder, R.G., "The PFORT Verifier," Computer Science
and Statistics:	 8th Annual Symposi= on the Interface, February
1.9t.

Haney, F *14. g "Module Connection Analysis - A Tool for Scheduling
Software Debugging Activities, lf Proceedings of the FJCC ^ 1912.

Hanford, R.V., "Automatic Generation of Test Cases," IBM Systems
Journal, No. 4, 1.9 o

i

Hansen, P. B. s "Testing Mu'?tiprcagra ming S-yst ems , tf Softinse
E Practice and Ltperienee, April-June 1973.

Harper, W.L., Data Proces sing Documentation: Standards, Procedures
,.^ and Applications, Prentice Hall, 19i3.

Hartwi.ck,, R.D. , "Verification and Validation," Logicon, January 19T4.

^t Hart-^ick, R.D., Fujii, R.U.,"Addendum to Software Reliability
Sample Verification and Validation Effort," Logicon, October 19T4.

Hecht,. H., "The Scope of Software Reliability," Overview, Software

^e
Reliability Course, Engineering 819 .59, UCLA,, October 19T4 . j

s

Hecht, H., "Economics of Reliability and Related Subjects," Soft-
ware Reliability Cmir- se, Engineering 819.59, UCLA, October 19T4.

3

Helms, H.J. , "Evaluation in th, ! Computing Center Enviroznexzt,'°
Advancea Course Software Engineering, New York: S pringer Verlag, 19T3.

Henderson., P,, and Snovdon, R., "An Experiment in Structure.
Progxa=ing," BIT 12, 1972.

,

;. Henderson., P. , "Finite State Modeling in Program Development,"
'

#^ '^

International Conference on Reliable Software, April .19T5- a

1Henderson, V.D., "Program Validation, " Logicon, Inc., San Pedro, I	
-	 3

California, (GUESS) 1.970 •
I	 a

}

'r Hennell, M.A.,	 Experikental Vest Bed. for lfumericzC, Software,

a	 Workshop on Currently Available Te _.Tools. 	 Technology and
Experience, April 1975.

f Hetzel, W.C., "Principles of Computer Program Testing," Program.
Test Methods, Prentice Hall, 19T3=

Hetzel W.. C..	 "A Definitional Framework," and other IllustrsticnE
for the Software Reliability Course,; Engineering 819 .59, UCI^A, f

F October i9T4. .

{

F-17

G

Hewitt, C.E., and Smith, B., "Towards a. Programming Apprentice, '1
IEEE Transactions on Software Engineering, Vol. SE-1, No. 1,

i;

March 1975.

Hill, I . D .! 	 Functions"Faults in. in ALGOL. and FORTRAN, 	 Canputer
^

Journal, Vol. 14, .August 19711.
r?

-3

Hoare, C.A.R., "An Axiomatic Approach to Computer Progrem mir47,,
;g

Communication of the ACM, Vol. 12, 310. 10, October 1969.

Hoare, C.A.R., "Proof of a Program: FIND," Comnuaniceoions of ACM, ,.
Vol. 14, No. 1, 1971..

y

Hoare, C.A.R., "Proof of Correctness of Data Representat:tOnS,!'
Acta. Informatica. 1, Springer -Verlag, 1972.

L.^S	 s

Hoare, C.A.R., "Proof of a Structured Program: The Sieve of
Bratosthenes," the Computer Journal, Vol.. 15, No. 4, 1972.

Hoare; C.A.R., 1PTi a Quality of Softvaare, 1 ° Software--Practice and
Experience, Vol.. 2, 1972. 4

Hoare, C.A.P.., "A Note on the FOR Statement," BIT, Vol.. 12, 1972.

Hoare 	 "Data. Reliability," International Conference on
Reliable Softvare, April 3.975.

Hoffman, R.H., 'Automated Verification System User's Guide," ^I
TRW Nate #72-FMT-8 Project Apollo, Task MSC/TRW A-527, s
January 1972.

Hoffman, R.H. , "Automate
d
 Verification System: Test Data

^K'fectiveaness Measurement Subsystem User's Guide," THAI `a	 d
Systems Group, for NASA Johanson Space Center, Houston, Texas 19T4.

Hoffman, R.H., " 11yASA/Johnson Space Center Approach to Automated
Test Data Generation," Computer Science and Statistics: 8th Annual

;Symposium on the Interface, February 1975. 7

Holland, J.G,, "Acceptance Testing for Applications Programs,"
Program Test Methods, Prentice Hall, 197341

1103.ton, J.B. , and:-7 cyan, B., "Structured Top-Do, rm Flowcharti.ng,
Datamatioan, MEay 1975.

Hopcawrsft 9 J., and Tax's alt, R . , "Efficient Algorithms for Graph
Mani-DUIEti.an;" Stanford Uzsvi.ersity Report No. STAN-CS 71:µ2l3.'1,
ALA 'P2 M9, March 3:971.. 	 ^'
Hopxrgod,: Ma ll.., and Lockett,. J. "Experience vith the RLND Monitor/
Stimulator," Workshop on Currently klai:la'ble Test Tools'. Technology'

r
and Experience, April 1975•

LVI

r'

Horning, J.J., and Rand.el_l, B., "Structuring Complex Processes,,"
133M T.J. Watson Research Center, Report RC 2 59, May 1969.

Horowitz, E., "FORTRAN, Can It Be Structured and Should It Be?",
Practical Strategies for Developing Large Software Systems,
Addison-Wesley, 19T5.

Howard, J.H., and Alexander, W.P., "Analyzing Sequences of Opera-
tions Performed by Programs," Program Test Methods, Prentice Hall,
1.9'3.

Hovden, W.E., "Methodology for the Automatic Generation. of Program
Test Bata.," McDonnell Douglas Technical Report #411, February 197 .

Howden, W e C. "Proving Correctness by Testing," November 1974.

Howd.en, W.E., "Methodology for the Generation of Program Test Data,"
Research Paper, McDonnell Douglas, May 197'5.

Howden., W.E., Stucki, D.G., "Methodology for the Effective Test Case
Selection," Final Report, MDAC-W, MDC G5305,

Bowden, W.E., Laub, J., "Automatic Case Analysis of Programs,er
Com-juter Science ana Statistics, 8th Annual Sy possum on -the
Interface, February 1975.

1 .

"Systemsflowden, T.E.,	 for Automating the Generation of Program
`lest Data,," Workshop on Currently Available Vest Tools:	 Technology
and. Experience, April. 1975.

Hughes ; K., Banns, J., Cooke, A., "Keeping in Tune," Data
Processing, July-August 1974.

r ; Hull, T.E. ,,Eight, W.H. , and Sed rich, A.E. 	 "The Correctness
of Numerical Algorithms," proceedings of the Conference on
Proving Assertions About Programs, January 1972.

i'

F:20

f

:s
S-^^r

j

Information Research Associates, "Reliability Techniques for
Computer F.-ecutive Programs,' Summary Report NAS8-2666-9.

Ingalls, D.H., "FETE- A FORTRA17 Execution Time Estimator,"
Stanford University, Computer Science Report 204, 1971.

Ingalls, D., "The Execution Time Profile as a Programming.Took.,"
Commil.er Optimization, R. Rustin (ed.), 2nd Courant Computer
Science Symposium, 1970, Prentice-Hall, 1972•

Itoh, D., and Izutani, T., "FADEBUG--I, A New Tool for Program
Debugging," IEEE Symposium on Computer Softirare Reliability,
May 1973.
133M, "HIPfl: Design Aid and Documentation Tool.," IBM Audio
Education Course Form, No. SR20- 9413.

113m, "Chief Programmer Teams Principles and Procedures,"
IBM, Gaithersburg," 	 Maryland, June 1971.

IBM, "Test IMS Utilities," Program Description/Operations
Manual, SH 2O--1307-0.

IBM, "How to Write Correct Programs and Know It," IM,
Gaithersburg, Maryland, February 1973

Ikezawa, M.A., "AMPIC," Workshop on Currently Available Program
Testing Tools: Technology and Experience,. April 19`5.

Infante, R., and Montanari, U., "Proving Structured Programs
Correct, Level by Level," International Conference on Reliable
Software, April 1975.

7,

T?
Ij

.7

w

P-21

i

3

I	 I	 __I	 I__	 I	 L_	 r	 I

Jackson, M. , , and 5vanwick, A.B. , "Segmented-Leve3 Programming,"
Computers and Alitoma.tion, February 1969.

Jackson, R.S., and Bravdica, S.A., „Software Validation of the
Titan III C Digital Flight Control System Utilizing a 1^ybrid
Computer," Proceedings of the FJCC, 1971.

Jacobs, W., "A Structure for Systems that Plan Abstractly,"
Proceedings of the AFIPS, 1971 SJCC, 1971.

James, E.B., and Partridge, D.P., "Adaptive Correction of Program
Statements," Communications of the ACM, Vol. 15, No. 1, January 1973.

Jelinski, Z., and Chung, G.S., "Generalized Events-Oriented.
Simulation System (LESS), A Performance Evaluation Tool,"
Proceedings of the Computer Performance Evaluation Users Group,
October 1972, Washington, D.G.

Jelinski, Z., and Moranda, P., "Software Reliability Research,s'
Statistical Computer Performance Evaluation, Academic Press, 1972.

• Jelinski, Z., and Moranda, P.B., "Applications of a Probability Based
Model to A Code Reading Experiment," IEEE Symposium. on Computer

W	 Software Reliability, May 1973.

Jelinski, Z., "Can Statistics Be Applied to Software Reliability-
Historical Perspective," Computer Science and Statistics: 8th
Annual Symposium on the Interface, February 1975.

Jones, C.B., "Formal Development of Correct Algorithms: An Example
Based on Earley's Recognizer," Proceedings of the AC14 Conference
on Proving Assertions About Programs, January 1972.

r=

I}
i

f^.
f	 :,

.1,

Kane, J.R., and Yau, S.S., "Concurrent Software Fault Detection,"
IEEE Transactions on Software Digirneering, Vol.. SE--1, No. l.,
March 1975.	 3

Kaplan, A.M., "Proving Things About Programs," Fourth Annual
Princeton Conference on Information Sciences and Systems, May 1970.	 `y

'	 Karnes, R.E., and Carter, W.A., "Computer Design Verification Via; ' 	I
Software Simulation," National. Computer Conference, I-lay 1975.

a	 `,

Katz, S.M., and Manna,_ Z., "A Heuristic Approach to Program	 7
4

Verification," Proceedings IFCA173, August 1973.

Katz., S, , Manna, Z . . , "Tarards Automatic Debugging of Frograzias," 	 I; ._, . .

International Conference on Reliable Software, Argil 1975.^I

Keezer, E.I.,."Practical Experiences in Establishing Software
Quality Assurance,". IEEE Symposium on Computer Software Reliability, 	 ^I
May labs

Keirstead, R.E., and Parker, D.B., "On. the Feasibility of Formal
Certification," Program Test Methods, Prentice Hall, 19739

r

{	 Kernighan, B.W., and Plaugher, P.J., "Programming Style for 	 -r
Programmers and language Designers," IEEE Symposium on Computix
Software :Reliability, May 1973.

Kimbleton, S.R., said Moore, C.C., "A Probabilistic Framer ,*ork for
System Performance Evaluation," Proceedings of the ACM SI:GOPS
Workshop on System Performance Evaluation * 1971.

Kimbleton, S.R., "The Role of Computes System Models in Per--
formsnce Evaluation," Communications of the ACM, Vol.. 15, No. T,
Juy 1972.	 ...

Kimbl:eton, S.R., "A Heuristic Approach to Computer Systems 	
r:	

4
Performance Improvements, S A Fast Performance Prediction Tool,

p^
:t	 National Computer Conference, May 1975.	 3

King, J'. C., "A Program.Verifier, Ph.D. dissertation, Carnegie--
s^	 Mellon University, Pittsburgh, Pennsylvania, September 1969.

P^

x,	
King, J.C., "Proving Programs to be Correct," IEEE Transactions 	 ^r

t and Computers, I'Tovember 197.,. 	 ~^

i	 King, J.G., "A Verifying Compiler," Debugging Techniques in	 `y
Large Systems, Prentice Hall, 1971.

i	 King, J.C. , and Floyd, R.W. , "An Interpretation Oriented Theorem
j	 Prover Over Integers," Journal. of Computer and System Sciences,
'	 Vol. 6	No ,. ^ .i	 August 1972-

I	 i'

-

fit	 ry
i	 -	 F-S2

tt

	 s

King, J.C., "Abstract Machines and Software Design," SIGPLAN
Notices, Vol. 8,.No..9, September 1973.,

King, J.C., "A New Approach to Program Testing," 1975 Inter-
national. Conference on Reliable Software, April. 1975.

King, N&J., " esting .Conversati.onal: Systems," Debugging Tech
nioues in Large Systems, Prentice Hall, 1371.

Kirchoff, M.K., and Ryan, R.H .4.,. "The Need to Sal-rage Test Tool
Technology," Workshop or, Currently Available Program Testing
Tools technology and Experience, April: 1975 •

Kirchoff, M.K., and Fee, J.B.,.Softimxe Development Standards:.
and Conventions Document, McDonnell Douglas Astronautics.
Company, June 1974.

Kling, R.E., "Towards a Person--Centered Computer Technology,"
Proceedings of the ACM National Conference, New York, 1973.

Knuth, D.E., Floyd, R..W., "Notes on Avoiding GOTO.Statements..."
Stanford University, Computer Science Technical. Report as_l43,
January 197x•

Knuth, D.E., "An Empirical Study of FORTRAN Programs," Stanford
University, Computer Science Technical. Report CS-186 1, 1971..

Knuth, D.E., I A Review of Structured Programing," Stanford.
University, Computer Science Technical Report CS-371, June 1973

Knuth, D.E., and Stevenson, ran., "OntimaZ Measurement Points
for Program Frequency Counts," BIT 13, 91973.

Koffman, E.B., and Blount, S.E., "Artificial Intelligence and
Automatic Programming i

.
n CA1," Proceedings of the Third Inter-

national Joint Conference on Artificial Intelligence, Stanford
Research Institute, 1973.

d

Kolence, K.W., "A Soft-ware fiev of Measurement Tools,'!
Datamation, January 1971.

Kolence, K.W., "Software Techniques," SIGCOS3.H Newsletter,.
No. 8, Part 11, April. 1971.

Kolence, K.W., "Software Physics and Computer Performance
Measurements," Proceedings 1972 ACM National Conference.
Nev York, 1972.

Kolence, K.W., "Experiments and Measurements in Computing,"
Ist Annual SIGME . Symposium on Measurement. .and Evaluation.
Nev York, 1973.

Kolence, K.W., "Software Physics," Datamsxti.on, June 1975.

F=-23

F'--24	'

Kopetz, H., "On the Connections Between Range of-Variable and
Control Structure Testing," International Conference on Reliable L^
Software, April 19Y5.

S .R.C	 eci ess of	 -Kosa^aru,	 R. ,	 orr._ un	 Programs	 Writing Correct
Programs," Concepts in quality Software Design, NBS Technical LL
Note 842, 1972-

Kosajaru, S.R., "Structured Programs," Concepts in Quality Software ^^ e
Design, 19BS Technical Note 842, 1972.

Kosajaru., S.R., and Ledgard, H.F., "Perspectives on Quality `^ f
Software.." Concepts in Quality Software Design, NBS Technical.
Note 8 1 2, 1972.

Kosa^asu., S.R., "Analysis of Structured Programs," Proceedings of L
the Fifth Annual ACM Symposium on Theory of Computing, New York, 1973.

Kosy, Donald K., "Approaches to Improved Program Validation Through
Programming Language Design," Program Test Methods, Prentice Hall, 1973.

Krause, K.W. 5 eu.610, "Optimal Software Test Planning; Through Auto-
mated Network Analysis," IEEE Symposium on Computer Software)
:Iteliabi.l.ity, May 1973. ^„,.

KLftn, H.W.	 ' Solvability and Consistency for Linear Equations and, Litt

Inequalities," American Ma-t+hematical Monthly, April 1956.

Kulsrud, H.E., "fttending the Interactive Debugging System--WLPER,"
Courant Computer Science Symposium 1 Jane 1970; Debugging Techniques
in Large Systems, Prentice--Hall, 1971.

I	 La Padula, L.J., "Software Reliability Modeling and Measurement
Techniques," MTR 26481) Vol. VIII, The Mitre Coeparation, Bedford,
Mass., 1973•

Larmouth, J., "Serious FORTRAN," Software Practice and Experience,
Vol. 3, No. 2, April-June 1973.

Larsen, G.H., "Software: A Qualitative Assessment or the Man
in the Middle Speaks Back," Datamation, November 1973.

Laventhal, M.S., "Verifying Programs Which Operate.on Data
Structures," International Conference on Reliable Software,
April 1975•

Leavenworth, B.M., ed., "Control Structures in Programming
Languages," SIGPLAN Notices, Vol. 7, loo. 11, November 1972.

Leavenworth, K., "Modular Design of Computer Programs,"
Data Management, July 1974.

Ledgard, H.F., "The Case for Top Down: Programming," Concepts
in Quality Software Design, NBS Technical. Note 842, 1972.

Ledgard, H.F.,_ "Towards a Formalization for Quality Software,"
Concepts in Quality Software Design, NBS Technical Note 842, 1972.

Ledgard, H.F., "The Case for Structured Programming," BIT,
Vol. 14, 1974.

Lee, J.A.N-. "The Definition and Validation of the Radix Sorting
Technique," Proceedings of the Conference on Proving Assertions
About Programs, January 1972.

Lemoine, M., and Y. Rousselot, J., "A Tool for :ebugging FORTRAN
Programs," Workshop on Currently Available Test Tools: Technology,
and Experience, April 1975.

Lester.^, E.P., "Cost Analysis of Debugging Systems," MIT Report
MAC--TR-90, AD 730 5Z1, September 1971.

Linden, T.A., "A Summary of Progress Toward Proving Program
Correctness," Proceedings AFIPS 1972 FJCC, 1972.

Lipow, M., "Maximum Likelihood Estimation of Parameters of Software
Time-to-Failure Distribution," TRW Systems Group 2260.1.9-73B-15,
Revision 1, 1973•

Lipow, M., "Some Directed Graph Methods for Analyzing Computer
Programs," Computer Science and Statistics: 8th Annual Symposium
on the Interface, February 1975.

Liskov, B.H., and Towster, E., "The Proof of Correctness Approach
to Reliable Systems," Mitre Corporation Report MTR- 2073., July 1971.

l

5
F--25

a	
J ^;4'-

z= Fd

;i 7fi

f^
c:_-ff

^n

^n

Frye

at a

b+^

Liskov, B.H., "A Design Methodology for Reliable Software Systems,"	 =4(
Proceedings of Fall. Joint Computer Conference, AFiPS, Vol. 41,
Part 1, 1972.

Liskov, B.H., "Guidelines for the Design and Im plementation of
d

Reliable Software- Systems, ,' Mitre Corp., Report No. MTR0345,
April 1972.	 is r

Liskov, B.H., and Zilles, S.N., "Specification Techniques for Data
Abstractions," IEEE Transactions on Software Engineering, Vol. SEMI.,
No; 1, March. 1975 and International Conference on Reliable
Software, April. 1975.

Liskov, B.H., ''Data Types and Program Correctness," (position paper),
`	 National. Computer Conference, May 1975.

Lite, S., "Using a System Generator," Datamation, June 1975.

Littl.ewood, B., and Verrall, J.L. , ' 4A Bayesian Reliability Growth
Model. for Computer Software," IEEE Symposium on Computer Software
Reliability, May 1973.

Littlewood, B., "A Reliability Model. for Markov Structured Software, it

International Conference on Reliable Software, April 1975.

Littrell., R.F., "A Step Toward Quality Control in Computer
Programmi ng : Understanding the Psychology of the Management of
Computer I •ogrammers," Proceedings of the 1973 National. Con-
ference, iyev York, 1973.

L1evelyn mad Wilkens, "The Testing of Computer Software," Software
Engineering NATO Science Affairs Division, Brussels 39, January 1969,

Landon, R.L., "Bibliogra phy an Proving the Correctness of Computer
Programs," University of Wisconsin Computer Sciences Dept., Tech-
nical Report #64, Madison, Wisconsin, October 1969.

London, R.L., "Computer Programs Can be Proved Correct,'t
Theoretical Approaches to Problem Solving, Vol. 28, Lecture Notes
in Operations Research and Mathematical. Systems, Springer Verlag,
1970.

London; R.L., "Proof of Algorithms - A Vkv Kind of Certification,"
Communications of the ACM, June 1970.

London, R.L., "Proving Programs Correct: Some Techniques and
Examples," BIT, Vol.. 10, Igo. 2, 1970.

London, R.L., "Certification of Algorithm 245 Treesaxt 3: Proof
of Algorithms -- A New Kind of Certification," Communications of
the ACM, Vol. 13, 1970.

a
F-26

E
ti	 r

i

1

LL,

London, R.L., "Software Reliability Through Proving; Programs
Correct," International Symposium on Fault Tolerant.Computing,
March 19TI.

Lont,_n, R.L., "Correctness of .a Compiler for a LISP Subset,s'
Proceedings of the ACT Conference on Proving Assertions About
Programs, January 1972.

London, R.L., "Program Verification (correctness proofs),"
Software Reliability Course, Engineering 819.59, UCLA, October 1974.

London, R.L., "A View of Program. Verification," International
Conference on-Reliable Software, April 1975;'.

Love, T,C., "Automatic Segmentation of Cyclic'Program Structures
Based on Connectivity and Processor `riming," Communications of
the ACM, January 19TQ.

Lucas, H,C., Jr., "Synthetic Program Spec_fications for Per-
formance Evaluation, t` Proceedings of 1972 ACM National Conference,

,1972.

Lucena, C.J., (abstract only), "A Methodology for Ps-oducing Reliable
Software Systems," Proceedings of the 1973 ACM National Conference,
1973.

Luckham, L.C., Park, D.M.R., and Paterson, M.S., "On Fomalized-
Computer Programs," Journal of Computer and Systems Sciences,
June 1970.

Lynch, W.C., Larger, J.W., Schwartz, M.S., "Reliability Experience
with CBI/OS," International Conference on Reliable Software,
April 1975.

Lyon, G.E., "Static Language Analysis," National Bureau of Standards,
Technical Note 797, 1973.

Lyons, T., and Bruno, J., "An Interactive System for Program Verifi-
cation," Proceedings of the Symposium on Computers, Polytechnic
Institute of Brooklyn, April 1971; also Princeton University,
II.ectrieal Ragineering Department, Report No. 91, May 1971.

F-27

j

e
A

—

1jaeWilliams, W. H,, "Reliability of Large Real-Time Control Software"
1BEE Symposium on Computer Software Reliability, May 1973,

Madden, R. L., "Software Accounting ana the Hardware Monitor:
Their Marriage in Performance Analysis", Proceedings of the
1972 ACM National Conference, 1972,' i

Manna., Z., "The Correctness of Programs", Journal of Computer
and System- Sciences, Vol. 3, No. 2g may 1969.

Manna., Z., "Mathematical Theory of Partial Co;rrectness%

I
Stanford University, Computer Science Technical deport, 1970,

Manna, Z., and McCarthy, J., "Properties of Programs and
Partial Function Logic", Machine intelligence 5, American
Elsevier Publishing Company, 19749,

Manna, Z., and Pnueli, A., "Formalization. of Properties of
Functional Programs", Journal. of ACM, Vol. 17, 14o. 3, July 1970.

L1 L

Manna, Z., and Waldinger, R. J., "Toward Automatic Program
i^

F

Synthesis", Communications of the ACNE, Vol. 14, No. 3, March 1971..

Manna, Z., Ness, S., and Vuillen, J., "Inductive Methods for-
, Proving Properties of Programs", Proceedings of the Conference on

Proving Assertions About Programs, January 1972,

4
Marshall, J. J., "Nev Approaches to Documentation and Debugging",

A	 -i

Data Processing, Vol.. 14, 1970 , = ;",_^

Margin, J. J., "Generalized Structured Programming", Proceedings -_
f of the 1974 National Computer Conference, 1974.

MaClusky, E. J., "Test and Diagnosis Procedures for Digital.
i

Networks", Computer, Vol. 4, No. 1, January - Pebruary 1971.

McCracken, D. D., "International Coffererice oar Reliable Software'
Y.3iJ F

4
Datam tion, June 1975,

McGeachie, J. S., "Reliability of the Dartmouth Time Shari fig, System's, k

IEEE Symposium. on Computer Software Reliability, May 1973.

McGoven, C., "The Most Recent: Error -- its Causes and Correction' Q , u y
Proceedings on the Conference on Proving Assertions About Programs,
January 1972.

McGowen, C. L., Kelly, J. R., Top-Donn Strdetured Programming }
Techniques, Petroce7.li/Charter New York 1975,,

EE

McHenry, R, C., "Management Concepts for Tap-Down Structurecl
Programming", IBM Corporation, February 1973.

f

F-28 Jli
or	 .	

.u.e

McKeeman . W. Me, "On Preventing Programming Languages From
Interfering with Programming", IEEE Transactions on Soft ware
Engineering, Vol. SE-1. No.. 1, March 1975.

Melton, R. A., "Automatically Translating FORTRAN -to IFTRAN"e
Computer Science and Statistics: 8th Annual Sympos.Lum 	 t
on the Interface, February 1975,

Military Standard, "Technical Reviews and Audits for Systems,
Equipment and Computer Programs", Mil-Std--1521 (USAF), 	 ;•:a
September 1972.

Millbrandt, W. W., and Rodriguez-Rosell, "An Interactive Software
Engineering Tool for Memory Management and User Program Evaluation",
Proceedings of the 1974 National Computer Conferenne 1974.

	^-	 Miller, E. F., Jr., "IFTR.ANX.-Exportable FORTRAN Extension for
Structu: ed Progra wing", General Research Corporation,
Program Validation Research Project,

	

r	 Miller, E. r., Jr., "Program Validation: The State-of-the-Art,
General Research Corporation, Santa Barbara, California,
August 1972.

Miller s E. F., Jr., "Extensions to FORTRAN and Structured Programming
An Experiment", General Research Corporation, RM-160$, March 1972.

Miller, E. F., Jr., "Technology , for Automated Verification Systems",
General Research Corporation,, Paper for Aeronautical. Systems
Software - Workshop, 19T4.

Miller, E..F., Jr., et.al ., "Structurally Based Automatic Program
Testing", EASCON '74, Washington, D.C., October 19T40.

j	 - Miller, E. F., Jr., "Toward Automated Software Testing: 	 Problems
and Payoffs", Computer Science and Statistics:	 8th Annum.
Symposium on the Interface, February 19T5.

Miller, E. F., Jr., "RIMTP:	 An ,Automated.- Verifi .cati. on System
,., for FORTRAN", Computer Science and Statistics: 	 8th Annual

Symposium on the Interface, February 1975.	 -

Miller, E. F., Jr., Melton, R. A., "Automated Generation of Test
^. Case Datasets", International Conference on Rel iable Software,,

April 19T58

Miller, E. F., Jr., "Experience with RXVP in Verification and
Validation", Workshop on Currently Available Test Tools:
Technology and Experience, April 1975,

Mills, H. D,, "Chief Prograumzer'Teams - Principles and Procedures",
Report No. FSC 71-5108, IBM Federal Systems Division, 1971.

y
}

F-29

s

(Mills, H e D., "Top-Down Programming in Large Systems", Debugging
Techniques in Large Systems, Courant Computer Science Symposium 1,

?	 NYU (Editor, R. Dustin), 1971.
w.

Mills, H. D., "Mathematical Foundations for Structured Programming",
x	 PSC 72-6012, February 1972.

T€

Mills, -H, D., "Reading Programs as a Managerial, Activity",
Working Paper, March 1972.

Mills, H. D., "On the Development of Large Reliable Programs".
May 1973.

r^

^Mills	 H e D .	 "The Complexity of Programs",,	 ,	 p	 yProgram Test Methods, i	 -
Prentice Hall, 19739

Mills, H. D., "The New math of Computer Programming", Communications
Of the ACM, January 1975.

Mills, H. D., "Hov to Write Correct Programs and Knorr It",
International Conference on Reliable Software, April 1975.

i

Mittwede, W. C., and Choate, K. P., "Ope-rating System Validation
Testing", Comtre Corporation, AD 724 717, January 1971.

Morgan, He L., "Spelling Correction on Systems Programs',
Communications of the ACM, February 1970, 1

Morris, J. Be, "Programming by Semantic Refinement", SIC-PLAN Notices, -1

Vol. 8, No. 9, September 1973. ILL	 .3

Mulock, R. Be, "A Study of Software Reliability at the Stanford
Linear Accelerator Center", Stanford University, august 197Q.

Mulock, R. B., "Software Reliability Engineering", Proceedings
of the Annual Reliability and Maintainability Symposium,
January 1972,

Miyamoto, I., "Software Reliability in On Lines. Real Time r	 ^
Environment"	 International Conference on Reliable Software, '

{^
April 1975.

Moranda, P. B. , "Status Report on Software Reliability Study
for 397? S', IRAN•	 MAC-West-02-I07. Lj

Moranda, P. Be,, and Jelinski, Z., "Software Reliability
Predictions", Paper submitted to Symposium on Software Reliability,
April 1975,,

Moranda,, L). B e , "Predictions of Software Reliability During Dcflugging9t*
1975 Proceedings of the Annual. Reliability and Maintainability
Symposium, January 1975, WT shingtou, D, C, --

. 4	 1

F-30

Myers v G. J. , "Composite Design: The Design of Modular Programs",
TR00.24o6, IBM Systems Development Division., Poughkeepsie, N*Y• l,

January 1973.

I

^,

Moranda v P. B. ,"Estimation of a. Priori Software Reliability."*
Computer Science and Statistics: tits', Annual Symposiiun on the Inter-
face, February 1975 t

4.	 ^l^M̂oulin,Ni, $ "Utilization du Sysi^eme de Test et D ev -̂ ..^uation de
Programmes (STEP) Four 1a Mise un Point cues Progra.=es",
Workshop on Currently Available Test Tools: Technology and
Experience, April 1975.

g

i

9

i
e.

'i

1

e

4

dd

fl

0

iJ

A

i

^
i

- 	 I

1	 ^I	 -

-,	 a

Naftaly, S.M., Cohen, M.C., "Test Data Generators and Debugging
Systems - Workable Quality Control," Part I and IT Data Processing
Digest, Vol. 18, Nos. 2 and 3, February - March 1972.	 ki

Nassi, I., and Shneiderman, B., "Flowchart Technique s for
i	 Structured Programming," SIGPLAN ., Notices, Vol. 8, No. 8, August 1973»

Navr, P;, "Proof of Ugorithms by General. Snapshots," 33IT, Vol. 6,
1966. U i 	 1

Naur, P., "An Fxperiment on Program Development," BIT, 'Vol. 12, 1972.
j

Neely, P.M., "On Program Control Structure," Proceedings of the 1973
AGE National Conference, 1973.	 a

Nathematical Software Testing Activities," Program Test 	 j
Methods, Prentice Hall, 1973.

jj

I

1

Fyn	 [

I

 ̀ .Il

I

cwt

1

l

^F

4

i

t

{

ii

iN	 i	 1
i

it	
e^

e 	i

1-32
4;	 ;	 1

11

i.is

t!
F-33

fl

I

D Ogdin, J.L. 	 "Designing Reliable Software," Datsmation, July 1972.
@

4o6, "ImprovingDgdirk, J.L.,	 Software Reliability," Datama,tion,
January 1973.

07, Oliver, P., "COBOL '74 M Contributions to Structured Progranming,2 'r
National. Computer Conference, May 19T4.

408. Orgass , R.J., "Some Results Concerning Proms of Statements About
Programs," Journal of Computer ead Systems Sciences, Vol. 4, 1970.

{ 409. Osterwasl, L.J., and Fosdick, L.D., "Data Flog Analysis as an Aid.
in Documentation, Assertion Generation, Validation and & ror
Detection," Dept. of Computer Science, University of Colorado,
September 1974.

41o. Oster6xeil, L.J., Fosdick, L.D. , Automated Input/Output Variable
,. Classification as an Aid to Validation of FORTMN Programs,

Report #CU--CS-03774, Dept. of Computer Science, University of
Colorado, September 19T4.

1 4n. Osterweil, L.J., Clarke, L., Smith, D.W., "A FORTRAN.System for
Flexible Creation and Accessing of Data Bases," Report #CU-CS052 74,
Department of Computer Science, University of Colorado, August 1974.

L.s

3

E	 ?

3

J

A

r

Paige, M.R., and Miller, E.F., ' rRankin{^ Priorities in Testing Computer
Programs," Proceedings of Computer S.ysteids Design Conference, Industrial
and Scientific Conference Management, Inc., Chicago, Illinois, 1972.

Paige, M.R., and Miller, E.F., "Metho4ology for Software Validation -
A Survey of the Literature," General Research Corporation Rtd- 1549,
March 197.

Paige, M.R., and Bal.kovich, E.E.,)[On Testing Programs," IEEE Symposium
on Computer Software Reliability, May 1973.

Park, D., "Fixpoint Induction and Proofs of Pr.ogram. Properties,"
Machine Intelligence 5, American Elsevier Publishing Company, 197x.

Parnas, D.L., "Information Distribution Aspects of Design Methodology,"
Tecisa cs' iteport, Dept. of Computer Science, Carnegie Mellon University,
Februp;ey 1971.

Parnas, D.L., ' rk Technique for Software Module Specification with
Example," Communications of ACM, Vol. 15, No. 5, May 1972.

Parnas, D.L., "Response to Detected Errors ^n Well-Structured Programs,"
Technical Report, Dept. of Com puter Science, Carnegie-Mellon University,
July 1972.

Parnas, D.L., "On the Criteria to be Used-in Decomposing Systems into
Modules," Communications of ACM, December 1972.

Parnas, D.L., ''Some Conclusions from an Experiment in Software
Engineering Techniques," Proceedings of the FJCC, 1972.

Parnas, D.L., Si.ewiorek, D.P., "Use of the Concept of Transparency
in the Design of Hierarchically Structured Systems," Technical Report,
Dept. of Computer Science, Carnegie--Mellon University, July 1972.

Parnas, D.L., "The Influence of Software Structure on Reliability,"
International. Conference ca Reliable Software, April 1975•

Peters, L., ''Managing the Transition to Structured Programming,"
Datamation, May 1975.

Pomeroy, J.W., "A Guide to Programming Tools and Techniques," IBM
Systems Journal, Vol. 11, No. 3, 1972.

Poole, P.C., and Waite, W.M., "Portability and Adaptability,"
Advanced Course on Software Engineering, Nev York: Springer Verl.ag,
1973.

Poole, P.C., "Debugging and Testing," Advanced Course on Soft y re
Engineering, Springer Verlag, New York, 1973.

Popek, G.J., Kline, C.S., "A Verifiable Prot°ection System, ,' Inter-
national Conference on Reliable Software, April 1975.

uJ

w^	
I^

r7

i

I

L.Y	 F

i

t

5

n

V'L

T

a

r

RADC, "Programming Support Library Program Specifications,"
Structured Programming Series, R0C Report, RADC-TR-74-300, .
Vol. VI.

Ragland, L.C., "A Verified Program Verifier," Ph.D. Thesis,
^	 3

University of Texas at Austin, June 1973.

C.V	 "Discrete Systems Representation and Analysis_	 Ramamoorthy,	 .,
by Generating Functions of Abstract Graphs," IFIP Congress
Symposium, New York, May 1965."

Ramamoorthy, C.V., and Chandy, K.M., "Optimization of Memoir "A i
Hierarchies in Multiprogrammed Systems," .journal of the ACM,
Vol. 17, No. 3, July 1970.

Ramamoorthy, C.V., Meeker, R.E., Sr., Turner, J. 	 "Design and
Construction of an Automated Software Rtiraluation System," IEEE
Symposium on Computer Software Reliability, May 1973.

Ramamoorthy, C.V., and Ho, S.B.F., "Testing Large Software with =-^
Automated Software Evaluation Systems," IEEE Transactions on
Software Engineering, Vol. SE--1, No. 1, March 1975, and Inter--
national Conference on Reliable Software, April 1975.

Randell, B., "System Structure for Software Fault Tolerance,"
International. Conference on Reliable Software, April 1975.

Rault, J.C., "Design Verification Techniques - A Review,,,
International Conference on Reliable Software, April 1975.	

a
Rault, J.C., "Exteiasion of Hardware Fault Detection Models to
the Verification of Software," Program Test Methods, Prentice
Hall, 1973.	 ^.

Reifer, D.J., "Interim Report on, the Aids Inventory Project,"
Technology Division of the Aerospace Corporation, SAMSO-TR-75-8,
1975•

Reifer, D.J., "Automated Aids for Reliable Software," International 	 ^^
Conference on Reliable Software, April 1975•

Rizza, J., and Hacker, D., "Quality Assurance Inspection and Test
Tools - Are Application," Workshop on Currently Available Program
Testing Tools, Technology and Experience, April 1975•

Robinson, L., „Computer Systems Performance Evaluation (and
Bibliography), IBM, November 1972.

Robinson, L., Levitt, K.N., Neumann, P.G., Saxena, A.R.,
"On Attaining Reliable Software for a Secure O perating; Systent, :r

International Conference on Reliable Software, April 1975.

•	 f
I

i

F-36

;J

Ryder, B.G., "The PFORT Verifier Users
Technical Report #12, Bell Laboratories

V

Dose, C.W., t'LOGOS and the Software Engineer, ` Proceedings of
the AFI]PS 1972 FJCC, 1972.

Ross, D.T., Goodenough, J.B., and Irvine, C.A., "Software
Engineering: Process, Principles and Goals," Computer, May 1975.

Rowe, L.A., Hopwood, M.D., Farber, D.J., "Software Methods for
Achieving Fail--Soft Behavior in the Distributed Computing System,"
IEEE Symposium on Computer Software Reliability, May 1923.

Royce, W.W., "Software Requirements Analysis: Sizing and Costing,"
Practical Strategies for Developing Large Software Systems, Addison
Wesley, 1975.

Rubey, R.J., and Dulac, B., „Software Tools for Certifying Opera-
tional Flight Programs,," Logicon, Inc . , 19T2-

Rubey, R.J., "New Approaches for Software Validation," Na.econ 72
Record, 1972.

v
Rubey, R.J., "Quantitative Aspects of Software Validation," Irrber-
national. Conference on Reliable Software, April 1975.

Bustin, R., ed., Debugging Techni ques in Large Systems, Prentice-
Hall, 1971.

Ryder, B.G., "The PFORT Verifier," Software Practice and Experience,'
Vol. 4, No. 4, October--December 197+.

F-37

i

Sadowski, W.L., and Lazier, D.W.., "A Unified Stan(lards'Approach
to Algorithm Testing," Program Test Methods, Prentice-Hall, 1973.

Sande, G., "Program Execution Profiles," Computer Science and
Statistics: 8th Annual Symposium on the Interface, February 1975.

Saxena, A.R., Bredt, T.H., "A Structured Specification of a
Hierarchical Operating System," International Conference on
Reliable Software, April 1975.

Scherr, A.L., "Developing and Testing a Large Programming System,
OS1360 Tine Share Option," Frog- am Test Methods, Prentice Hall, 1973.

Schick, G.J., and Wolverton, R.W., "Assessment of Software Reliability,a'
Proceedings of German Operations Research Society, September 1972.

Schlender, P., "tpplication of Disciplined Software Testing," Debugging
Techniques in Lame Systems, Prentice-Hall, 1971.

Schmid, H.A., "On the Use of Interactive Programming Systems as a Tool
for Structured Program Testing and Development," Workshop on Currently
Available Test Tools: Technology and Experience, April 1975.

Schneidevind, N.F., "Analysis of Error 'Processes in Computer Software,"
International Conference on Reliable Software, April 1975.

Schwartz, J.T., "An Overview of Bugs," Debugging Techniques in Large
Systems, Prentice Hall, 1973..

Seegmuller, G., "Definition of Sys -ems," Software Engineering, NATO
Science Committee, April 1970.

Severance, D.G., and Merten, A.G., "Performance Evaluation of File
Organizations Through Modelling," Proceedings of the 1972 ACM
-National Conference, 1972,

Shneiderman, B., "Experimental Testing in Progrwmni.ng Languages,
Stylistic Considerations and Design Techniques," National Computer
Conference, May 1975.

Shooman, M.L., "Probability Models for Software Reliability Predictions"
Statistical Computer Performance Bral.uation, Academic Press, 19T2.

C	 Shooman, M.L., "An Introduction to Software Reliability," I:EER
Symposium on Computer Software Reliability, May 1973..

Shooman, M.L., "Operationp.1 Testing and Software Reliability
Estimation During Program. Development," IEEE Symposium on Computer
Software Reliability, May 1973.

Shooman, M.L., "Software Reliability: Measurement and Models,"
Annual_ Reliability and Maintainability Symposium, Washington, D.C.,
1975.

-i

4

4

^a	 1

tii 9

^u

n

U

i'

u is

^m

t

9
L !i

^a

s,

t

-_t

F-38

l

Shooman, M.L., Bolsky, M.I., "Types, Distribution and Test and
Correction Tames for Programming Errors," International Conference
on Reliable Software, April 1975.

Sintzoff, M., "CeZculating Profiles of Programs by Valuations on
Specific Models," Proceedings of the Conference on Proving; Assertions
About Programs, January 1972.

Sintxoff, M., Van Lansweerde, A., "Constructing Correct and Efficient
Concurrent Programs," International Conference on Reliable Software,

`

April 1975•

Sites, R., "Clean Termination of Computer Programs," Ph.D. dissertation,
Stanford University, Stanford, California, June 1974.

Sloane, N.J.A., "On Finding the Paths Through A Notvork," Bell System
• Techna.cal Journal, Vol. 51, February 1972.

Smith, R.W., "Measurement of Segment Relationship Execution Frequency,"
TRW System (#72-4912.30-31), March 1972.

Snowden, R.A., "Systems for the Preparation and Validation of Structured
Programs," Programs. Test Methods, Prentice Hall, 1973,

Standard Data Corporation, "S3^+iBLTG, Integrated Symbolic Debugging
System User Guide," 1974.

Standick, T.A., "Extensibility in Programming Language Design,"
f	 (position paper), National Computer Conference, May 1975.

Steele, S.A., "Experience with Software Testing Tools for Real. Time
Sensor Control. System," Workshop on Currently Available
Test	 Tools: Technology and Experience, April 1975.

Stevens, W.P., Meyers, G.J., and Constantine, L.L., "Structured Design,'?
IBM Systems Journal, Vol. 13, No. S, 1974.U.

^.

	

	 Stillman, R.B., "FORTRAN Analysis by Simple Transforms," Computer
Science and Statistics: 8th Annual Symposium on the Interface,

u '	 February 1975,

Strachey, C., "The Interaction of Software Engineering and Machine
Structur&," The Fourth Generation Infotech, Ltd., 1971.

Stucki, L.G., "A Prototype Automatic Program Testing Tool.," FJCC,
December 1972.

Stucki, L.G., "Automatic Generation of Self-Metric Software," IEEE
Symposium on Computer Software Reliability, May 1973.

Stucki, L.G., and Svegel., N.P., "Software Automated Verification
System Study," MDAC W Report MDC--G5103, January 1974.

s

^i

F'-39

o J

^a

G.

MGM

^1

{

ri

L

1`—T`
r^y

jp}!

i
.:Fn

StuaYi, L.G., "Automated Tools and Techniques Assisting in Software
Development, A Pragmatic .Approach to Software Reliability,"
MDAC-W Pa per, April 1974.

Stuc1d , L.G,, "Tools - Lessons Learned New Strategies," Computer
Science and Statistics: 8th Annual Symposium on 'he Interface,
February 1975•

Stucki, L.G., "Statistical Auproaches for Programers to Application
Software Verification," Computer Science and Statistics: Sth Annual
Symposium on the Interface, February 1975.

Stucki, L., Foshee, G., "New Assertion Concepts for Self-Metric
Software Validation," International Conference on Reliable Software,
April 1975.

Sudakow, R., "Software Reliability, The Development Cycle,"
Logicon, October 1974.

Sullivan, J'.E., "Measuring the Complexity of Computer Software,"
Mitre Corporation Report No. MTR 264$, Vol. V, November 1973.

Sullivan, J.E., "Extending PL/I for Structured Programming,"
Litre Corporation Report No. MTR 2353, March 1972.

Supnik, R.M., "Debugging Under Simulation," Courant Computer Science
Symposium 1, .Tune 1970; Debugging Teehzaiques in Large Systems,
Prentice--Ball, 1971.

Suzuki, N., "Verifying Programs by Algebraic and Logical Reduction,"
International Conferen" ,,^ on Reliable Software, April 1975.

is

E

ti.

^r

u

ty

^r

b

v1

1

batmen,.J..C., "Achieving Proper Program Documentation," Journal

f
of System Management, Vol. 22, Pio. 11, November 1971.

t

Taylor, S.14., "Looms in Computer Programs," Biological Computer
f' Laboratory Report	 .3 	 University of Illinois, October 1.970.
Fxa

Teitelman, W., "Automated Programs np 	 The Program er°s Assistant,"
Proceedings AFTFS 1972 FJCC, 19;2.

u Tenny, T., "Structured Programming in FOR`.l'R N," Datamation, July 1974.

Thayer, T., "Understanding Software Through Empirical 'Reliability
Analysis," National Computes Conference, May 19T5.

Topor, R.W., 1 Interactive Program Verification Using Virtual Programs,'?
=

l it Ph.D. Dissertation, Department of Artificial Intelligence, University a
of Edinburgh, Edinburgh, Scotland, December 1973.

Trauboth, H., "Guidelines for Documentation of the Scientifica
Software Systems," IEEE Symposium on Computer Software Reliability,
May 1973.

Trivedi, A.K., Shooman,'M.L... "A Many State Markow Model for the
Estimation and Prediction of ComDnter Software Performance Para-

17 meters," International Conference on Reliable Software, April 1975. !
.t

C

LJ
aj}

F-4l

0

Univac 90/70, "Pr6gram Test System," Hardware and Software.Facts
and Figures, Sperry Rand, 1973.

CA

Ll

iiii

77

Van Noot , T.J.,' System Testing -- Taboo SubJect," Datemation,
i

December 15, 1:9T1.

Ver HOef, E.W. , "Automatic Program Segmentation Based on Boolean
Connectivity," Proceedings	 the SJCC, 19TI.of

Von Henke,F . W . , and Luckham., D.C. , "A Methodology for Verifying
Programs,	 International Conference on Reliable Software,

_ April 19750

1
-

Vyssotsky, V.A., "Common Sense in Designing Testable Software,'
1	 s

Program TeEt Methods, Prentice Hall, 3472.

Vyssotsky, V.A., "Large Scale Reliable Loft.re:	 Recent Experience
at Bell Labs," International Conference on Reliable Software,
April 1975. a

1

.

7

i

-	 i

9

r

i^

1^ 3
Z

' 	 Y

1

tl

}
{{
7W

'.1

L^

.1111^,:

1

r^

^^

f

i1

yl

1

.'

.

'	

fSs

F-43

t

1	 I j

^r

pp

JR I

• r

Wagner, R.A., "Order-•n Correction for Regular Languages,`
i

Communications of the ACM, Vol. 17, Tdo. 5, May 197+.

Wagoner, W.L., "The Final Report on a Soft-ware Reliability
kMeasurement Study," Report #TOR -OOT4 (+112)-1, Aerospace ta)

Corporation, E1 Segundo, California, 1973.
`=

i

Waldbaum, G.,° 1Ev'aluating Computing System Changes by Means of
t

Regression Models," 1st Annual SIGME Symposium on Measurements i
and E`valuation, 1973. i

srWalker, A.W., "An Interactive Graphical Debugging System, ^^	 f

AD 7. 28 711, Naval postgraduate School, June 1971.

Walter, K.G., Schaen, S.T., Ogden, W.F., Rounds, T.C.,
Shumway, D.G., Schaeffer, D.D., Biba, K.J., Bradshav, F.t,,
.Ames, S.R., and Gilligan, J.M., "Structured Speeification.
of a Security Kernel," Internet-tonal Conference on Reliable ;!
Software, April 1975.

Walters, J.A., "Computer Aided Test Systems," Bendix Corporation, 1
BDX 613 275, December 1974.

Wasserman, A.S., "Issues in Programming Design - An Overview,"
(position paper), National Computer Conference, May 1975. L

Wegbreit, B., "Multiple Evaluations in a Extensible Programming .,l
System," Proceedings of the AFIPS 1972 FJCC, 1972.

Wegbreit, B., "The Synthesis of Loop Predicates," Communications
of the ACM, Vol. 16, No. 2, February 19Th -

Weinberg, G.M., The Psychology of Computer Programming, Near York:
Van Nostrand Reinhold, 1971. 77

Weinberg, G.M. , "The Psychology of Improved ProgrammJ rag Performance,"
^L

Datamation, November 1972. T
Weissman, L., and Stacey, G.M., "An Interface System for Improving
Reliability of Software Systems," IEEE Symposium on Computer
Software Reliability, May 1973.

Wheeler, D.J., "The Limits of Complexity of Computer Systems,"
Proceedings of IFIP Congress 71, Amsterdam.:	 North Holland, 1972 * 7

White, J.R., and Presser, L., "A Tool for Enforcing System Structure,"
Proceedings of the 19T3 ACM National. Conference, 1973. ^,	 3

Whitten, D.E., and de-Maine, P.A.D., "A Machine and Configuration.
Independent FORTRAN: Portable FORTRAN (PFORTRAN)," IEEE Tran-
sactions on Software Engineering, Vol. 5E--1, No. 1, March 1975•

F
y

CT''

4 jF	 I

F--44

Williams, R.D., "Managing the Development of Reliable Software,"
-International Conference on Reliable Software, April 1975.

Williamson, O.L., Dorris, G.G., 'Rybert, A.J., and Straight,	 W.E.,
s . "A Software Reliability Program," Federal Electric Corporation, 1970.

"Program Development by Stepwise Refinement," Cmmuni-Wirth, N.,
cations of the ACM, Vol. 14, No. 4, Apri3. 19'(1.

Wirth, N., "An Assessment of the Programming language Pascal,"
International Conference on Reliable Software, April 19T5.

Wolverton, R.W., "The Cost of Develo ping Large Scale Software,"
Practical Strategies for Developing Large Software Systems,
Addison-Wesley, 1975.

"ApplicationWong, P.J.,	 of Decision Theory to the Testing of
Large Systems," IM Transactions on Aerospace and Electronic
Systems, March 1971.

Writtenbrook, W.K., Testing a PLII Structured Program, M14,
• TR 54.041, Deember 1973.

Iftaf, W.A., "Programming Without the GOTO," Information
Processing 71, North Holland Publishing Company, Software 1972.

-Wulf, W.A., "A Case Against the GOTO," Proceedings of the ACM
National Conference, 1972.

Wulf, W.A., "ALPHM: Toward a Language to Support Structured
Programs," Carnegie-Mellon University, Pittsburgh, Penn.
April 1974.

Wulf, W.A., "Reliable Hardware - Software Architecture," Inter-
nevional Conference an Reliable Software, April 1975.

f

q

F-45

Nu, S.S., and Cheung, R.C., "Design of Self-Checking Software,''
International Conference on Reliable Software, April 1975

Yelowitz, L., 1'A S,y=etric Top Dagn Structured Approach to
Compater Program/Project Development," IBM, FSC T3--5001, IBM 19T3.3.

Youngberg, E.P., "A Software Testing Control EYystem, 17 Program Test
Methods, Prentice Hall, 1973.

Yourdon, E.; 17Making the More W Structured Programming,''
Datamation, June 1975.

Yourdon, E., 17Symposium on Structured Programming in COBOL,',
Latam.ation, June 19T5•

1

F,46

Zahn, C.T., Jr., "Structured Control. in Programming Languages,"
(position paper), National. Computer Conference, May 1975.

