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SECTION I 

SUMMARY 

The overall objective of this study was to identify and evaluate 
subsonic-transport, turbofan-engine, design and technology features for low 
energy consumption; thereby assisting in the guidance of future technology 
work directed toward improved aircraft energy consumption. 

A. Current Engines 

Task I of this study analyzed features for reduced energy consumption 
on the CF6 family of engines. A series of features for which significant 
technology development would be required were identified as well as more 
straightforward design improvements, some of which have already been 
included in General Electric plans for the CF6 engines. 

)~ 

The specific feat1lres considered were as follows: 

1. Technology Dependent Features; 2 to 3% sfc Potential 

• Improved fan aerodynamics 

• Composite fan blades and frame 

• New compressor casing coating* 

• Self-acting seals in midsump 

• Advanced, directionally solidified, turbine-blade material 

• ( ) 
;, 

High pressure turbine HPT clearance control 

• Ceramic HPT shrouds* 

2. Mixed-Flow, Composite Nacelle; 3 to 3-1/2% Installed Cruise sfc 
Potential (Results generated under Douglas/GE contract to NASA­
Langley) 

3. Other Design Improvements; 1-1/2 to 2% sfc Potential 

• Improved, turbine-blade material 

• Improved HPT shroud design and material* 

Will contribute to improved performance retention. 



Although the total installed sfc improvement indicated is 7 to 8%, each 
item must be judged on its own merits considering payoff, technical risk 
and cost. 

• Low expansion, compressor-casing material 

• Cycle trimming 

The long-duct, mixed-flow, composite, nacelle design showed the largest 
potential for improved cruise sfc, approximately 3 to 3-1/2%. Other features 
totaled about 4% sfc potential, with varying degrees of difficulty involved. 

The potential advantage of each feature (from a fuel-usage standpoint) 
was determined, and the i.mpact upon aircraft economics estimated for DC-IO 
type aircraft. All the features showed potential for reducing fuel usage, 
but the impact upon aircraft economics varied. In many cases there was an 
adverse impact upon aircraft economics for fixed-payload aircraft, partieu­
larly on a retrofit basis. However, most of the features provided an 
improvement in aircraft economics when evaluated on a growth-aircraft 
basis, where the aircraft could take advantage of an engine sfc or weight 
improvement by means of a fuselage stretch to increase design payload. 

B. Advanced Engines 

Task II of this study involved the investigation of cycle parameters 
and design features for new turbofan engines. An initial service date of 
1985 was specified in order to delineate the level of technology to be con­
sidered. Advanced technology aircraft, designed for transcontinental and 
intercontinental ranges with a cruise Mach No. of 0.80, were used for this 
evaluation. As a result of the study of cycle variations, the parameters 
listed below were selected for the preliminary design of a specific engine 
in Task III. The selection was made assuming advanced engine technology, 
compatible with the year the engine is scheduled to enter service, and 
involved a balance of energy consumption, aircraft economics, and growth 
potent.ial. 

• Turbine inlet temperatu.re 

• Cycle pressure ratio 

• Fan pressure ratio 

• Bypass ratio 

• Exhaust 

1427° C (2600-° F) at takeoff/ 
1327° C (2420° F) at max. cruise 

38:1 at altitude design point 

1.7 at altitude design point 

7 

Hixed 

Advanced technology and design features evaluated from an energy con­
sumption and aircraft economics standpoint in Task II are summarized belm.;r: 
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• Component aerodynamics improvement for compact engine design 

• Composite fan blades and frame 

~ Clearance control; core compressor and turbine 

• Ceramics for hot, static, flowpath parts 

• Advanced turbine-blade materials and cooling 

• Long-duct, mixed exhaust 

• Integrated composite nacelle 

• Low noise features 

Each of the items listed offered an advantage in energy consumption and, 
with the exception of very advari'.~ed. turbine-blade materials and cooling, 
aircraft economics. The features with payoff were then incorporated in the 
Task III design, while some of the more speculative items (such as ceramic 
turbine vanes) were reserved for later growth of the engine. 

Task III of this study involved the refined analysis, or preliminary 
design, of the advanced engine selected. In order to illustrate the magni­
tude of improvement achievable with a new engine incorporating advanced 
technology, comparisons were made with the CF6-50C engine; believed to be a 
good representative of a current high bypass engine in terms of technology 
and performance. An improvement in installed sfc (including nacelle drag) 
of just over 10% was estimated in this study. It must be emphasized that 
this included the effect of advanced technology in terms of component 
performance, cooling, and materials technology. A reduction in installed 
weight of 12% below tht of the CF6-50C, scaled to the same take-off thrust, 
was indicated. Since the advanced-engine ratings were set to provide 
relatively higher cruise thrust than the CF6-50C, the weight reduction was 
24% when compared at the same cruise thrust. It was also estimated that 
the advanced engine, plus nacelle, would have a production cost comparable 
to a scaled CF6-S0C at the same point in the production run. The design 
selected involved a relatively small number of parts, which should con­
tribute to low maintenance costs. The cycle and design parameters were 
selected so that 20 to 25% growth could be obtained in later versions of 
the engine. 

The effect of the above i.nstalled-engine improvements was estimated 
for the advanced reference aircraft utilized in the study. Approximately 
13% improvement in fuel usage, and 6% improvement in DOC (Direct Operating 
Cost) were obtained for the transcontinental trijet. The corresponding 
numbers for the intercontinental quadjet were 17% and 10%, respectively. 

The advanced Task III engine was projected to meet the noise goal of 
FAR Part 36 (1969) minus 10 EPNdB for the reference aircraft (defined in 
Task II) utilizing the advanced, noise-reduction technology identified in 

I 
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this study. The proposed 1981 EPA (Environmental Protection Agency) 
emissions requirements will require advanced combustor-technology features, 
but no acceptable approach to meeting the Nitrogen Oxides (NOx ) requirement 
has yet been identified. 

Task IV of the study addressed the technology required to achieve the 
improvements in energy consumption identified. In order to achieve these 
improvements in energy consumption, and improvements in aircraft economics, 
technology advancement in all areas of the propulsion system is required. 

4 



SECTION II 

INTRODUCTION 

NASA initiated studies of advanced, subsonic-transport-system tech­
nologies in 1970 as part of the Advanced Transport Technologies program 
(ATT). References 1 and 2 report the results of studies carried out by 
General Electric under contract to NASA-Lewis. In these studies, the 
emphasis was placed on cruise at high subsonic speeds, to take advantage of 
supercritical aircraft-wing technology, and on lower noise. An advanced 
technology engine from the ATT studies was used in one portion of the 
Douglas/General Electric acoustic composit~ aacelle study reported in 
Reference 3. 

After completion of the ATT contract effort, General Electric continued 
in-house studies with the emphasis placed on engine technology to improve 
aircraft economics thru improved installed sfc, weight, and cost. Engines 
under study at that time were used as the basis for two NASA studies directed 
at evaluating the benefits of composites and advanced materials (References 
4 and 5). The benefits analysis approach utilized in Task II of the study 
covered in this report was an extension of that used in Reference 5. 

As a result of the recently escalated concern for diminishing petroleum­
based energy supplies, NASA sponsored the study reported herein. The title 
initials of the contract, "Study of Turbofan Engines Designed for Low 
Energy Consumption," were employed to produce the acronym "STEDLEC" referred 
to in various portions of this report for identification. 

The purpose of t;,e study was to identify and evaluate subsonic-transport, 
turbofan design and tel'.hnology features for reduced energy consumption. 
The study consisted of Lhe following tasks: 

Task I 

Task II 

Task III 

Task IV 

Low energy consumption features for the CF6 family of high 
bypass turbofan engines. 

Low energy cu:,_umption cycle and technology features for 
a new engine with 1985 introduction into service. 

Refined analysis for a selected :985 turbofan design. 

Technology recommendations. 

The advanced engines, involved in Tasks II Qnd III, were evolutionary 
from the original ATT studies and follow-on General Ele~tric in-house studies. 
The emphasis was placed upon reduced energy consumption, and the cruise 
Mach number set at 0.8 for a balance between energy cons'lmption and accept­
ability to the airlines. General Electric also continued to place emphasis 

5 
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on achieving a substantial improvement in aircraft economics, since it was 
felt this would be mandatory to justify development of a new engine. The 
technology level for the advanced engine was established, in accordance 
with the contract Statement-of-Work, to be consistent with introduction 
into service in 1985. The study was also structured to place about 25% of 
the contract effort on the identification and evaluation of features for 
improved energy consumption applicable to the CF6 engine family (Task I). 

6 



S:CCTION III 

TASK I - CURRENT ENGINES 

A. Approach 

The CF6 family of engines was selected for Task I because it is the 
General Electric commercial-transport engine family now in service and 
production. Various versions of the engine are expected to remain in pro­
duction for many years, thereby providing the opportunity to incorporate 
features for reduced energy consumption. 

The opportunities for reduced energy consumption of CF6-6 and CF6-50 
engines were surveyed first. A selection of the most promising features 
was made and categorized as to whether technology-dependent, or more 
straightforward design changes. The effects of the specific design features 
on engine characteristics (including sfc, weight, first cost and replace-­
ment costs) were then estimated. Suitability for retrofit in existing 
engines was also assessed. 

An evaluation procedure was selected for the CF6-6 engine in a DC-IO-
10 type airplane, and the CF6--50 engine in a DC-IO-30 type airplane. The 
effects of the various design features were then evaluated in terms of fuel 
usage and aircraft econoruics on a new engine basis, with and without aircraft 
redesign to increase payload, and on a retrofit basis. 

B. CF6 Engine Description 

The major cycle and design characteristics of the two CF6 engine 
models are summarized in Table I. A cross section of the CF6-6 engine is 
shown in Figure 1, and the CF6-50 engine in Figure 2. The engines utilize 
the same fan. The higher t.hrust CF6-50 engine was evolved from the CF6-6 
engine by adding two boost(~r stages to increase the core engine flow. In 
addition, two stages were removed at the rear of the compressor, and the 
flow path in the combustor and high pressure turbine was modified for the 
higher volume flow. One less fan turbine stage was required because of the 
lower bypass ratio of the CF6-50. 

C. Features for Improved Energy Consumption 

The features selected for evaluation in this study are listed in 
Tables II and III. The applicability to the two CF6 models, and the suit­
ability for retrofit, arE! shown on the right side of each table. These 
features were divided into those requiring technology development (Table 
II) and into the more straightforward design improvements (Table III). 
Table IV presents a list of features considered, but not pursued. This 
does not necessarily mean that the features in Table IV were not practical, 
but only that it was necessary to limit the study to those with the greatest 
promise for reduced energy consumption. 

7 
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Table I. CF6 Engine Description. 

Thrust, N (lb) 

Fan Diameter - m (in.) 

Bypass Ratio 

Fan Pressure Ratio - Cruise 

Overall Pressure Ratio - Cruise 

Turbine Temperature - Takeoff 
Hot Day 

Staging - Fan 

- Boosters 

- HP Compressor 

- HP Turbine 

- LP Turbine 

Installation 

Reversers 

CF6-6D 

178,000 (40,000) 

2.195 (86.4) 

5.8 

1.67 

28 

1316° C (2400° F) Class 

1 

1 

16 

2 

5 

Separate Flow 
Short Duct 

2 

CF6-50C* 

227,000 (51,000) 

2.195 (86.4) 

4.2 

1.71 

31 

1316° C (2400° F) Class 

1 

3 

14 

2 

4 

Separate Flow 
Short Duct 

2 

*Initial1y rated at 218,000 N (49,000 lb). Growth model quoted at 240,000 N (54,000 1b) 

~"'", 



Figure 1 . The General Electric CF6-6 Engine Cross Section . 
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Figure 2. The General Electric CF6-50 Engine Cross Section . 
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Table II. Features Selected Requiring Technology Development. 

Area of Applicable to 
Component Change Improvement CF6-6 CF6-50 

Fan Blades Modified Aerodynamics Efficiency X X 

Fan Blades Composites \veight, Cost, X X 
and Safety 

Fan Frame Composites Weight and X X 
Cost 

Compressor Casing New Coating Clearances, X X 
Deterioration 

B Sump and CDP Seals Redesign for Hydrodynamic Leakage X X 
Seals 

I HPT Blades Ni76XB Material Cooling X X 

HPT Shrouds NiCrAly Material Clearances, X X 
Deterioration 

HPT Casing Redesign for Clearance Clearances, X X 
Control Deterioration 

Nacelle Long Duct Mixed Flow with Installed X X 
Composites Cruise, sfc, 

No.ise 

Suitable 
for 

Retrofit 

X 

No 

No 

X 

No 

Later 

X 

No 

? 

-- _ ... -
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Component 

HPT Blades 

HPT Stage I Shrouds 

LPT Design 

Core Jet Nozzle 

Variable Stator 
Schedule 

Rear Compressor. 
Casing 

Table III. Features Selected Requiring Design Improvements . 

Area of Applicable to 
Ch8.nge Improvement CF6-6 CF6-50 

R125 Material Cooling X X 
Cooling Redesign Cooling X 

Film Cooling Cooling X X 

Saw Cut Segments Clearances X X 

Stage 1 Blade - Incidence Angle Efficiency X 

Bolt Covers - Interstage Seal Windage X X 
Supports 

Redesign Seal Under Stage 1 Vane Efficiency X 

Fill Honeycomb Over Tip Shrouds Efficiency X X 

Add Seal Tooth to Tip Shrouds Efficiency X X 

Blacken Cowl Above LPT Clear8nces X 

Increase Area sfc at Cruise X 

Close Stators at Cruise sfc at Cruise X 

Low Expansion Material Clearances ? X 

I 

Suitable 
for 

Retrofit 

X 

X 

X 
X 

X 

X 

? 

X 

X 

X 

? I 

i 

? 
I 
I 

-50 I 
only 
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Table IV. Features Considered But Not Pursued. 

Component 

Compressor Casing 

Compressor Rotor 

Combustor 

Combustor and Control 

HPT Vanes 

Turbine Blades 

Fan Jet Nozzle 

Control and Fuel 
System 

Parasitic Flow System 

Diagnostics 

Change 

Heating/Cooling Methods 

R95 Material 

New Swirler Dome 

Lower Quality 
Fuel Capability 

MA754 Material 

Redesign Blades for 
Nonconstant Work 

Two-Position 

Lower Flight Idle Power 

Add Shut-Off Valves 

Add System 

Possible Area 
of Improvement 

Clearances 

Weight 

Idle Efficiency 

Cooling Life 

Efficiency 

Cruise sfc 

Descent Fuel 

Idle sfc 

Identify 
Deterioration 

Limiting Factors 

Practical Design Not 
Identified 

Small Reduction 

Emissions Dominate 
Small Savings 

Impact Upon Engine 
Life and Reliability 
No Net Saving in Energy 

Cost of Advanced Materials 
(May Be Needed For Growth) 

Advantage Not Clear For 
Lightly Loaded Design 

Major Redesign For Small 
Gain 

Questionable Improvement 

Complicated - Small Saving 

Improvement Not Identified 



D. Evaluation Procedure 

The evaluation procedure involved General Electric calculations of the 
effects of engine changes on DC-lO type aircraft fuel usage and economics. 
The reference aircraft characteristics are presented in Table V and break­
downs of the DOC's are illustrated in Figure 3, along with the significant 
assumptions. 

Three methods of evaluation were used for; incorporating improvement 
features, new engines for fixed and growth aircraft, and retrofit into 
existing engines while the engines are the shop (Table V). Mission trade 
factors for changes in engine parameters were calculated and the results 
are tabulated in Table VI, for the DC-lO-lO, and in Table VII for the DC-
10-30. Note the large difference in the trade factors between fixed- and 
variable-payload aircraft, especially for engine weight changes. The 
variable-payload factors shown are quoted on a per-seat basis and therefore 
offer a significantly greater reduction in fuel consumption, or DOC, because 
of the increased number of seats. 

The procedure consisted of first determining the effects of incorporat­
ing a given design feature into the engine, then taking the following 
factors into account. 

14 

1) sfc: The direct effect of a component performance improvement 
was determined at constant thrust (exception was mixed flow). 
For new engines the secondary effect of reduced cooling, allowl~d 
by the lower turbine temperature resulting from component perfor­
mance improvement, was taken into amount. 

2) Weight: Estimated directly. 

3) Engine Price Change: For new engines, estimates of manufacturing 
cost change and the nonrecurring costs of the design change were 
reflected in an engine price change, using typical pricing methods. 
Each model of the engine was treated separately for each eva1.uation 
approach. For the retrofit cases, an equivalent price change was 
determined, which reflected the price of a new part relative to 
the estimated value of the scrapped part (again including nonr.ecur­
ring costs of the design change). 

4) Maintenance Costs: Account was taken for the change in parts 
price and the estimated replacement rates for the part in question. 
For the retrofit cases, an estimate of the improvement in main­
tenance costs associated with the lower turbine temperatures, 
related to component performance improvement (constant thrust), 
was included. 



I-' 
CJl 

Table V. Evaluation Procedure. 

r-- Aircraft and Missions 

Alternate Means of Evaluation 

Engine 
Aircraft 
Design TOGW 
Design Range 
Fuel Cost 
Price Level 
No. of PAX 

CF6-6 
DC-IO-IO 
195,000 kg (430,000 Ib) 
5560 km (3000 nmi) 
$71!m3 ($.27/gal nmi) 
1974 
270 

Aircraft in Service - Retrofit when Engines in the Shop 

New Aircraft - Fixed Payload 

CF6-50 
DC-10-30 
252,000 kg (555,000 Ib) 
10,190 km (5500 nmi) 
$106.7/m3 ($.40/gal) 
1974 
270 

Growth Aircraft - Variable Payload by Fuselage Stretch - Includes Associated 
Penalties for Longer Fuselage 

- Improvement Quoted on Per-Seat Basis 

- Constant Design Range 

Trade Factors Used To Determine Effects of Engine Changes on Fuel Usage and Aircraft Eco;).omics 
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Direct Operating Cost Breakdown (DOC) 

DC-10-10 (Domestic) 
Range = 1,300 km (700 nmi) 
Load Factor ~ 55% 
DOC == 2.33 $/l,m (4.31 $/nmi) 
DOC = 0.77 ?/Seat/km (1.43 ~/Seat/nmi) 
Fuel at 71.0 S/m3 ($0.27/gallon) 

Fuel 29,; 

Airframe 

DC-IO-30 (International) 
Range = 3,700 km (2,0'00 nmi) 
Load Factor = 55% 
DOC = 2.65 $/km (4.91 $/nmi) 
DOC = 0.92~/Seat/km (1.70 ~/Seat/nmi) 
Fuel at 106.0 $/m3 ($0.40/gallon) 

Fuel 44% 

Figure 3:. Direct Operating Cost Breakdown, DC-IO. 
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Table VI. Mission Trade Factors, DC-IO-IO. 

DC-10-10 - 1300 kID (700 nmi) - 55% Load Fact6r 

Effect on Fuel Usage Effect on DOC Effect on RDI* 
Fixed Variable Fixed Variable Fixed Variable 

Engine Change Payload !,ayload Payload Payload Payload Payload 

+1% sfc +1.1% +2.0% -PJ.30% +1.2% -0.047% -0.35% 

+45.4 kg (+ 100 lb) Weight/Engine +0.04% +0.25% +0.01% +0.22% -0.002% -o.on: 
("'0.8% Installed Engine Weight) 

+ $10,000 Initial Price/Engine - - +0.05% +0.05% -0.032% -0.032% 

+ $10,000 Replacement Parts - _. +0.05% +0.05% -0.008% -0.008% 
Price/Engine 
(During Life of Engine) 

Fixed Payload - Improvements in Range Approximately Same As Improvements in Fuel Usage 

Variable Payload - One Row of Seats Requires 2.8% Improvement in sfc 

*% ROI is Djfference Between ROI's (11% ROI - 10% ROI = 6ROI of 1%) 

Table VII. Mission Trade Factors, DC-IO-30. 

DC-10-30 - 3700 kID (2000 nmi) - 55% Load Factor 

Effect on Fuel Usage Effect on DOC Effect on ROI 
Fixed Variable Fixed Variable Fixed Variable 

Engine Change Payload Payload Payload Payload Payload Payload 

+1% sfc +1.1% +2.2% +0.48% +1.6% -0.10% -0.57% 

-1-45.4 kg (+ 100 Ib) Weight/Engine +0.05% +0.24% +0.02% +0.22% -0.005% -0.09% 

+ $10,000 Initial Price/Engine - - +0.035% +0.035% -0.024% -0.024% 

+ $10,000 Replacement Parts Price/ - - +0.035% +0.035% -0.008% -0.008% 
Engine 

Fixed Payload - Improvements in Range Approximately Same as Improvements in Fuel Usage 
, 
Variable Payload - One Row of Seats Requires 2.2% Improvement in sfc 
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The effects of a given design feature on aircraft fuel usage, DOC, and 
ROI (Return on Investment) were then determined by applying the trade 
factors, listed in Tables VI and VII, to the estimated changes in the four 
engine characteristics described above. 

E. Effects of Design Features on Engine and Aircraft Characteristics 

The results of evaluation of selected engine design features are sum­
marized in Table VIII thru XII. The estimated effects upon engine sfc, 
aircraft fuel usage, and ROI are shown for each feature. Note that minus 
is good for changes in sfc, fuel usage, and DOC, while plus is good for 
ROI. Table VIII lists the estimates for those features which are of a type 
that could be considered for retrofit in existing CF6-6 or CF6-50 engines. 
Table IX presents the effects of the more straightforward design improvements 
on new CF6-6 engines, and Table X lists the effects on new CF6-50 engines. 
The results are ShO~l for both fixed and growth (variable-payload) aircraft. 
Table XI lists the k'ffects of technology-dependent features on new CF6-6 
engines, and Table XII lists the effects on new CF6-50 engines. Again, 
both fixed and growth aircraft were considered. 

F. Discussion of Results 

1. Retrofit Features 

The items deemed suitable for retrofit included both design-improvement 
items and technology-dependent items which are described below. The results 
for the retrofit cases, listed in Table VIII, differ from those for all-new 
engines because the evaluation procedure was selected as being appropriate 
for the retrofit situation. In general, the magnitude of the retrofit 
improvements, for a given design change, were less than those for new 
engines in fixed aircraft. Many of the fuel-saving, retrofit features show 
no advantage in aircraft economics (when evaluated on an ROI basis) since 
the initial cost to the airlines was weighted heavily in the ROI procedure. 
On this basis, the cases with significant economic benefit were R125 blades 
(CF6-50 only), the redesigned HPT shroud, a new compressor casing coating, 
and the NiCrAly HPT shroud lining. 

2. Design Improvements 

Design improvement items are those which involved changes to the 
engine design, and appropriate proof testing, but did not require signifi­
cant technology development effort to decide whether the change should be 
undertaken. However, the cost of making the change, and the payoff which 
was expected, were significant factors in making a decision for their use. 
Note that certain of the features listed are currently planned for future 
models of the CF6 engine. 
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1) R125 Blades: The substitution of R125 blade material in both HPT 
stages in place of R80 material now used. 



'fable VIII. Evaluatior. Summary: Retrofit Possibilities. 

~.% 8 Fuel Usage - % 8 DOC - % 8 ROI - % 
Design Change CF6-6_ CF6-50 CF6-6 CF6-50' CF6-6 C~'6-50 CF6-6 CF6-50 

R125 HPT Blade', -0.2 -0.6 -0.22 -0.69 +0.19 -0.21 -0.11 +0.01 

HPT Shroud* -0.3 -0.25 -0.34 -0.27 '·0.12 -0.09 +0.01 +0.015 

LPT Changes -0.4 -0.5 -0.41 -0.54 +0.02 -0.12 -0.065 -0.02 

Core Jet Nozzle Area Change -0.2 -0.22 -0.06 -0.005 

Variable fitator 
Schedule ··0.25 -0.27 0 -0.03 

Low Expansion 
Compressor Casing -0.15 -0.19 -0.07 +0.005 

Improved Fan Aerodynamics -0.25 -0.25 -0.27 -0.28 +0.09 -0.03 -0.09 -0.04 

New Compressor 
Casing Coating* -0.3 -0.2 -0.31 -0.21 -0.22 -0.11 +0.03 +0.02 

NiC'cAly HPT Shrouds* -0,2 -0.15 -0.20 -0.16 -0.08 -0.07 +0.01 +0.01 

*Includes Reduced Deterioration Effect 
. 

Table IX. Evaluation Summary; Design Improvements (CF6-6, New Engines). 

~'i,n Chon" 

8 Fuel Usage - % 8 DOC - % I 8 ROI - ~, 

8 sfc Fixed Variable Fixed Variable Fixed Variable 
% Payload Payload Payload Payload Payload Payload 

R125 HPT Blades -0.35 -0.36 -0.65 +0.27 -0.02 -0.10 0 

HPT Shrouds* -0.4 -0.44 -0.79 -0.02 -0.38 -0.005 +0.11 

LPT Changes -0.5 -0.60 -1. 08 -0.10 -0.59 0 +0.16 

Variable Stator Schedule -0.25 -0.27 -0.49 -0.05 -0.27 0 +0.07 

*Includes Reduced Deterioration Effect 

Table X. Evaluation Summary; Design Improvements (CF6-50, New Engines). 

8 Fuel Usage - % 
fj sfc Fixed Variable 

Design Change % PaYload Payload 

R125 HPT Blades -0.9 -1.05 -2.03 

HPT Shroud* -0.3 -0.34 -0.66 

LPT Changes -0.55 -0.64 -1. 25 

Core Jet Nozzle Area Change -0,2 -0.22 -0.44 

Low Expansion Compressor Casing -0.25 -0.28 -0.55 

r----, 
*Includes Reduced Deterioration Effect 

8 DOC - % fj ROI - % 
Fixed Variable Fixed 
PaYload PaYload PaYload 

-0.28 -1. 35 +0.035 

-0.09 -0.44 +0.015 

-0.18 -0.84 +0.02 

-0.09 -0.28 +0.015 

-0.11 -0.40 +0.02 

ORIGJNAL PAGE IS 
OF POOR QUALITY 

Variable 
Payload 

+0.47 

+0.16 

+0.29 

+0.08 

+0.14 
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Table XI. Evaluation Summary; Technology-Dependent Features (CF6-6, 
New Engines). 

6 Fuel. Usage - % 6 DOC - % 6 ROI - % 
6 sfc Fixed Variable Fixed Variable Fixed Variable 

Design ChanKe % Payload Payload Payload Payload Payload Payload 

Improved Fan Aerodynamics -0.25 -0.27 -0.49 -0.05 -0.27 -0.005 +0.07 

Composite Blades 
-0.3% Efficiency +0.4 +0.32 +0.04 -0.31 -0.56 +0.11 +0.21 
+1.0% Efficiency -0.4 -0.55 -1.53 -0.55 -1.54 +0.15 +0.48 

Composite Frame 0 -0.14 -0.86 -0.16 -0.88 +0.08 +0.32 

New Compressor Casing Coating* -0.4 -0.46 -0.8? -0.11 -0.48 +0.01 +0.14 

Hydrodynamic Seals -0.75 -0.82 -1.47 +0.38 -0.29 ··0.065 +0.16 

Ni76 HPT Blades -0.45 -0.48 -0.86 +0.72 +0.33 -0.24 -0.11 

NiCrAly HPT Shrouds* -0.2 -0.24 -0.43 -0.05 -0.25 0 +0.07 

HPT Clearance Control* -0.3 -0.33 -0.59 -0.02 -0.29 -0.015 +0.07 

Mixed-Flow, Composite Nacelle -3.0 -3.3 -5.9 -0.46 -3.1 -0.13 +0.77 

*Includes Reduced Deterioration Effect 

Table XII. Evaluation Summary; Technology-Dependent Features (CF6-50, 
New Engines). 

6 Fuel Usage - % 6 DOC - % 6 ROI - % 
6 sfc Fixed Variable Fixed Variable Fixed Variable 

Design Change - % Payload Payload Payload P.lyload Payload Payload 

Improved Fan Aerodynamics -0.25 -0.28 -0.55 -0.11 -0.40 +0.015 +0.13 

Composite Blades 
-0.3% Efficiency +0.4 +0.30 +0.16 -0.15 -0.29 +0.08 +0.14 
+1.0% Efficiency -0.4 -0.60 -1.58 -0.53 -1. 59 +0.16 +0.59 

Compbsite Frame 0 -0.17 , -0.82 -0.19 -0.88 +0.10 +0.38 

New Compressor Casing Coating* -0.3 -0.31 -0.61 -0.13 -0.45 +0.025 +0.16 

Hydrodynamic Seals -0.5 -0.50 -1.09 +0.10 +0.48 -0.02 +0.22 

Ni76 }IPT Blades (versus R125) -0.55 -0.62 -1.20 +0.13 -0.50 -0.09 +0.17 

NiCrAly Shrouds'\ ··0.2 -0.19 -0.37 -0.08 -0.27 +0.015 +0.09 

HPT Clearance Control* -,0.4 -0.45 -0.87 -0.16 -0.62 -0.025 +0.21 

Mixed-Flow, Composite Nacelle -3.5% -3.9 -7.6 -1.47 -5.5 +0.21 +1.85 

;'Includes Reduced Deterioration Effect 

/ 



2) HPT Shrouds: Design changes to the shrouds to improve cooling 
and reduce mechanical distortion in service. 

3) LPT Changes: A series of design changes to improve LPT efficiency. 
They were grouped because they involve the same engine component 
and all, lOr a portion, might be accomplished at the same time. 

4) Cycle Tr:Lmming: The variable stator schedule and core jet nozzle 
changes were directed at improving cruise sfc, but also resulted 
in cycle operation changes at other conditions. 

5) Low-Expansion, Compressor Casing: A new rear casing material to 
allow closer steady-state running clearances. It tended to be 
between. the design-improvement and technology-dependant cate­
gories because the material characteristics were not completely 
defined. 

The design improvement features for new CF6-6 engines did not show a 
payoff from an ROI standpoint for fixed aircraft, as presented in Table IX. 
On a growth aircraft basis, however, the economic situation was better; 
but the advantages were less than those available £0"):" the CF6-.50 engine. 
The reason was the smaller production run expected for the CF6-6 model of 
the engine, which increased the impact of the nonrecurring costs, 

The design improvement features for new CF6-50 engines all showed an 
economic adva.ntage for fixed aircraft, as presented in. Table X. On a 
growth-aircraft basis, the advantages were quite large and, for that reason. 
are already under consideration for growth versions of the CF6-50 engine. 

3. 1.echnology-Dependent Features 

The technology-dependent items for the CF6-6 varied in their payoff, 
as listed in Table XI. On a fixed-aircraft basis, there was an economic 
penalty in many cases. On a variable-payload basis, however, all features 
(with the exception of Ni76 blades) showed a payoff. 

For the CF6-50 engine the magnitudes of advantages achieved tended to 
be larger, as presented in Table XII. All features, except the hydrodynamic 
seals and Ni76 blades showed an economic payoff on a fixed-aircraft basis. 
Significant adva.ntage was shown for all features on a growth-aircraft 
basis. 

The features, listed in Tables XI and XII, require various degrees of 
technology development. The follm"ing are comments on each category of 
feature considered. 
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1) Fan Efficiency: the CF6 fan has been pushed to tip speeds and 
specific flows higher than its original design point. The CF6-50 
fan corrected tip speed is greater than 427 m/sec (1400 fps) at 
altitude flight conditions, about 4% higher than its design 
value. It was estimated that a redesign of the outer portion of 
the fan blade could provide at least a 0.5% improvement in fan 
bypass stream efficiency in the operating range of interest. The 
redesign would involve a new blade shape with increased camber in 
the tip section. 

2) Composites: The use of composites can improve fuel usage thru a 
saving in weight. A reduction of 8% of the total engine weight 
was estimated for a redesign of the CF6 engine using composites 
in the fan blade and frame (almost one-half of the estimated 
reduction is in the frame). The effect of a composite fan blade 
design on sfc was uncertain at that time and the feature was, 
therefore, evaluated with both a small loss and an improvement in 
fan bypass stream efficiency. The composite frame was expected 
to have no effect upon sfc. There was, however, a significant 
manufacturing cost saving projected for the use of composites in 
both the fan blades and frame. It must be noted that the feasi­
bility of composite fan blades, from the bird-strike standpoint, 
has not been clearly established. Future design changes necessary 
to provide bird-ingestion capability may affect the evaluation of 
benefits for composite blades. 

3) Compressor Clearance Control: One approach considered for com­
pressor clearance control was the utilization of a low expansion 
material, such as INCa 903, in the casing. An improvement of 
0.4% efficiency was estimated because of the closer steady-state 
clearances that could be obtained with the better: transient 
thermal match of the compressor casing and rotor. 

4) Self-Acting Seals: A redesign of the CF6 midsu.mp to incorporcate 
self-acting (or hydrodynamic) seals in place of 1abrinth seals 
was evaluated to provide a reduction in the high pressure leakage 
of 0.5%. In the case of the main compressor discharge pressure 
seal, the current speed of 228.6 m/sec (750 ft/sec) will require 
an advance in the state-of-the-art for hydrodynamic seals. 

5) Advanced Turbine Blade Material: An improved, directionally 
solidified Ni base alloy (GE designation Ni76XB) has been identi­
fied with 24 0 C (75 0 F) higher metal temperature capability than 
the best currently available alloy (Rene 125). This allowed a 
reduction in cooling flow of 0.6% for the same engine rating. 
Note that use of R125 material is listed under the design improve­
ment category, the present CF6 material is Rene 80. 



6) Turbine Clearance Control: In the high pressure turbine, a 
shroud coating material with increased erosion resistance (NiCrAly) 
was utilized and estimated to allow 0.2% better turbine efficiency, 
on the average, including reduced deterioration. It was also 
belip.ved possible to redesign the HPT case to improve thermal 
matching. A potential improvement of 0.3 to 0.6% efficiency was 
estimated, but a specific design to achieve the improvement was 
not carried out in this study due to the magnitude of effort 
required. 

7) Long-Duct, Mixed-Flow" Composite Nacelle: The concept of ml..Xl..ng 
the exhaust of a turbofan engine has the potential for improving 
sfc, since a single exhaust jet at a uniform velocity has a 
higher propulsive efficiency than two jets at different velocities 
(the situation in a normal separate-flow cycle). A low loss 
mixer design with high mixing effectiveness (Tlmix) is required to 
achieve the sfc improvement. Estimates made in the study were 
based, in part, upon scale-model testing of mixed exhaust systems. 

The characteristics of a new nacelle for the CF6-S0 engine were deter­
mined in a recent Douglas/General Electric study conducted under contract 
to NASA-Langley (Reference 3)i The results are summarized in Table XIII 
and were used in the STEDLEC study. Estimates for the factors affecting 
fuel usage and economics were made for the CF6-6 engine on a consistent 
basis. Note that no significant change was required to either model of the 
CF6 engine to incorporate a new nacelle, although the new nacelle itself 
represents a major change to the propulsion system installation. 

The primary advantage of the mixed-flow cycle was an estimated 3 to 3-
1/2% improvement (for the CF6-6 and CF6-50 respectively at 80% cruise power 
setting) in installed sfc, a portion of which was the lower drag of the 
long-duct nacelle. There was also an estimated reduction in noise. With 
the use of composites in the cold section of the nacelle, there was no 
weight penalty for adding the long duct. The net effect was an improvement 
in fuel usage ranging from 3.3%, for the CF6-6 in a fixed-payload aircraft, 
to 7.6% for the CF6-50 in a variable-payload aircraft. 

The alternate nacelle approaches for the CF6-S0 engine are illustrated 
in Figure 4, again using data from Reference 3. Compared to the current 
design, it was estimated that the mixed-flow nacelle with partial composites 
could be designed for the same nacelle weight. Also shown are the relative 
weights for a new long-duct, metal nacelle; and a nacelle making maximum 
use of composites. A separate-flow nacelle, redesigned in metal or com­
posites (without a turbine reverser), is also possible and was estimated to 
provide the improvements presented in the lower-right portion of Figure 4. 

Note the estimated benefits presented in Table XIII, and Figure 4, 
assumed advancements in rtoise suppression and nacelle design technology 
and, for that reason, Task I results did not represent a direct mixed­
versus separate-flow comparison. This question is, however, addressed in 
Task lIon a consistent technology basis. 
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Table XIII. Advantages of New Mixed-Flow Nacelle for CF6-S0 Versus Current Nacelle. 

Installed sfc Improvement 3-1/2% at Normal Cruise I 

Installed Thrust +5% at Max. Climb and Max. CrUiSe} Constant 
Turbine 

+1% at Takeoff Temperature 

Noise Reduction 4 EPNdB at Takeoff } l<ith 
Noise 

2 to 3-1/2 EPNdB at Approach Technology 

Reverse Thrust 42% Current Nacelle with Core Reverser 
(Nominal Static 18% Separate Flow Hithout Core Reverser 
Value) 30-35% Mixed Flow with Aerodynamic Spoiler Effect 

Nac.elle Weight Composite Version - No Change 

181 kg (+400 Ib) for New Metal Design _J 
---- ---- ---- .-----~. ----.------ -------------- - -----
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G. _Summary of Results - Task I 

A series of design changes for the CF6 family of engines, many requir­
ing technology development, were evaluated in terms of their potential for 
reducing energy consumption and impact upon aircraft economics. The engine 
cost implication of the various changes, as well as the direct sfc and 
weight effects, were included in the evaluation. A summation of the advan­
tages estimated in this Task is presented in Figure 5. It should be empha­
sized that the improvements presented are estimates. Experience has shown 
that not all improvements are achievable, and only a portion of the totals 
presented in Figure 5 should be counted on. 

The mixed-flow, composite nacelle provided the largest potential for 
reduced energy consumption and improved aircraft economics. The estimated 
improvements were 3.9% fuel usage and 1.5% DOC for the CF6-s0 powered air­
craft with fixed payload. 

Other features requiring technology development ~vere estimated to 
provide the following gains (again for the CF6-s0 engine in a fixed-payload 
aircraft) : 

Design Cha,nge .6.Fuel Usage .6.DOC 

Improved Fan Blade Design -0.3% -0.1% 

Composite Fan Blades +0.3 to -0.6% -0.1 to -0.5% 
(range depends upon efficiency level achieved) 

Composite Frame --0.2% -0.2% 

New Compressor Casing Coating* -0.3% -0.1% 

Hydrodynamic Seals -0.5% -0.1% 

Ni76 HPT Blades (versus R12s) -0.6% +0.1% 

MCrAly HPT Shroud Lining1' -0.2% -0.1% 

HPT Clearance Control* -0.4% -0.2% 

All of the above require technology development to achieve the magni­
tude of gains indicated, and it must be pointed out that the degree of suc­
cess in each case is subject to some uncertainty. The technology-dependent 
items vary in the amount of development required and the chance of meeting 
predicted characteristics. For example, composite fan blades and hydro­
dynamic seals are in the high risk category, while the improved HPT shroud 
material can almost be put in the design improvement category. 

)'; 

Improves performance retention. 
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SECTION IV 

TASK II - NEW ENGINES 

A. Approach 

The design of future turbofan engines, for entry into service in the 
1985 time period, was studied to make choices on cycle and technology fea­
tures. During the Task II effort, variations in turbine inlet temperature, 
overall pressure ratio, fan pressure ratio, bypass ratio, installation type, 
and the application of advanced materials and design concepts were studied 
for payoff in an advanced turbofan engine. 

A reference design was identified based on in-house studies prior to the 
start of the STEDLEC study. The key features of the advanced turbofan, used 
as reference in Task II, are listed in Tables XIV and XV. A mixed-flow 
installation with takeoff cycle parameters of 1538° (2800° F) turbine rotor 
inlet temperature (T41)' 38:1 overall cycle pressure ratio, and a bypass 
ratio of 8.1 at MN 0.8, 10,670 m (35,000 ft) Max. Climb was selected based on 
previous studies. 

The effect of each cycle variation, or advanced technology feature, on 
sfc, weight, initial cost. and maintenance cost was estimated in the frame­
work of the reference engine. Those features which showed potential for 
improvement in energy consumption were considered. The effects of each 
feature were then determined in terms of aircraft fuel usage and economics. 
The Task II effort was organized into a series of relatively independent 
studies by comparing each feature with a reference design involving current, 
or nearer-term technology, as summarized in Table XVI. 

B. Evaluation Procedure 

A 5560 km (3000 nmi)/200-passenger domestic trijet and a 10,190 km (5500 
nmi)/200-passenger intercontinental quadjet were designed using advanced 
aerodynamics and structural weights consistent with the aircraft presented in 
Reference 6. The trijet field length was specified at 2600 m (8500 ft) for 
study (high lift devices used at takeoff). The aircraft design study, of 
Reference 6, specified a slightly shorter field length of 2400 m (8000 ft). 
Key data are given in Tables XVII and XVIII for the two .aircraft. The base­
line aircraft were "flovm" over full-design and average-range/55% load-factor 
missions. The average-range/55% load-factor mission is more important in 
considering aricraft economics and total fuel consumed by the aircraft fleet. 

Direct operating cost (DOC) was calculated using the ATA (American 
Transport Association) formula modified by General Electric engine main­
tenance factors. In the General Electric modification, reverser maintenance 
was identified as a separate item, and engine maintenance labor and material 
reflected General Electric experience. The detailed formula differences from 
ATA are given in Table XIX. The indirect operating costs were calculated 
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Table XIV. Reference Task II Advanced Engine, Design Size. 

Altitude/Mach No. 0/0 0.8/10,670 m (35,000 ft) 

Rating Takeoff Max. Climb Max. Cruise 

Day, Std + 0 C (0 F) 15 (27) 10 (18) 10 (18) 

Fu, N (lb) 172,600 (38,800) 43,800 (9,850) 40,700 (9,150) 

Overall Pressure Ratio 32 38 36 

T4l - hot day, 0 C (0 F) 1538 (2800) 1470 (2680) 1427 (2600) 

Ide/a; kg/sec (lb/sec) 590 (1300) 653.2 (1440) 639 (1410) 

Fan Pressure Ratio 1. 51 1. 65 1. 61 

Fan uT/IS, m/sec (ft/sec) 442 (1450) 487.7 (1600) 476 (1560) 

Booster Pressure Ratio 2.45 2,75 2.65 

Core Compresl50r Pressure Ratio 12.7 14 13.7 

Core Airflow, WIS/a kg/sec (lb/sec) 29.5 (65) 31. 8 (70) 31. 3 (69) 

Mixed Flow, 75% mixer effectiveness 

Table XV. Baseline Task II Advanced Engine Design Features. 

Fan Tip Diameter, m (in.) 

Fan Radius Ratio 

Fan Design 

No. of Boosters 

No. of Core Compressor Stages 

Core Compressor Radius Ratio (r/r) 

Combustor Type 

No. HPT Turbine Stages 

Cooling 

No. of LPT Stages 

2 
Avg. LPT Work Coeff. gJ6h/2Up 

Exhaust 

Nozzles 

Length (Flange to Flange), m (in.) 

()RIGINAL PAGE IS 
OF POOR QUALITY 

2.15 (84.5) 

0.38 

Unshrouded Composite 

3 

9 

0.68 

Double Dome, Low Emissions 

1 

Advanced Film 
Bore-Entry Supply 

5 + OGV (2-3 cooled) 

1.8 

Mixed 

Fixed Convergent-Divergent 

2.5654 (101) 

29 



30 

Table XVI. Low Energy-Consumption Study; Features for Task II Evaluation. 

Item 

1 

2 

3 

4 

6 

7 

8 

9 

10 

11 

12 

13 

14 

Feature 

T4l' Cycle Pressure Ratio and 
Turbine Technology 

Fan Pressure Ratio Optimization 

Mixed Flow 

High Tip Speed Composite Fan 

Compressor Clearance Control 

HPT Clearance Control 

Bore-Entry Cooling for HPT 

Ceramic HPT and LPT Vanes 
and HPT Shrouds 

Eutectic Turbine Blades 
(HPT and LPT) 

Advanced Film/Impingement 
Cooling in HPT BLade 

Integrated Composite 
Nacelle and Thin Inlet 
and Pylon Accessories 

Lower Source-Noise 
LP Turbine 

Inlet Bulk-Absorber Treatment 

Composite Fan Frame 

Reference for Comparison 

Baseline Engine Cycle 

Baseline engine and installation 

Separate-flow installation 

Tip-Shrouded Ti Fan with Advanced Aerodynamics 
and Midspan Ti ~vithout Advanced Aerodynamics 

Current design approach applied to ba.seline 
engine 

Current design approach applied to baseline 
engine 

Compressor-Discharge Air for HPT Cooling 

Metal Vanes 
Current Shroud Design 

Nickel-base, Directionally Solidified, 
Casting Alloy 

Current film cooling 

Metal nacelle with conventional inlet 
and bottom-mounted accessories 

Conventional LP turbine with 
exhaust suppression 

Honeycomb sandwich suppression lining 
in inlet 

Metal Fan Frame 



Table XVII. Baseline Aircraft. 

Trijet Quadjet 

Design Range, km (nmi) 5560 (3000) 10,190 (5500) 

Average Mission Range, km (nmi) 1300 (700) 3700 (2000) 

Design Payload No. of Pass. 200 200 

Cruise Altitude, m (ft) 10,670 (35,000) 10,670 (35,000) 

Cruise Mach Number 0.80 0.80 

Design Field Length, m (ft) 2600 (8500) 2600 (8500) 

TOGH, kg (lb) 101,000 (223,000) 145,000 (320,000) 

SLS Takeoff FnlEngine N (lb) 89,000 (20,000) 93,000 (21,000) 
! 

Hing Aspect Ratio 12 12 

Cruise CL, average 0.50 0.55 

'Cruise LID, average 17 18 

Takeoff CL, average 2.75 2.75 

Table XVIII. Base Aircraft Design Weight Distribution. 

Design Range, km (nmi) 

No. Passengers 

TOGW, kg (lb) 

SLS Takeoff FnlEngine, N (1b) 

Total Structural, kg (1b) 

Total Pow~rp1ant, kg (lb) 

Operating Equipment, kg (lb) 

Operating Height, Empty, kg (lb) 

Fuel Burned 

Reserve Fuel 

Design Payload 

Domestic Trijet 

5560 (3000) 

200 

101,200 (223,000) 

88,960 (20,000) 

40,950 (90,280) 

5620 (12,400) 

10,200 (22,500) 

56,800 (125,200) 

21,100 (46,500) 

4550 (10,030) 

18,600 (41,000) 

International Quadjet 

10,190 (5500) 

20(' 

145,100 (319,800) 

93,400 (21,000) 

51,200 (112,900) 

7920 (17,460) 

11,570 (25,500) 

70,700 (155,840) 

47,300 (104,290) 

7570 (16,680) 

19,500 (43,000) 
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Engine Labor 

Engine Material 

Reverser Labor 

Reverser Material 

i 

Table XIX. Engine Maintenance Formulae. 

GE Modification 

-6 (0.55 + 2 x 10 Fn) $/Fl hr 

+ (0.45 + 2 x 10-6 Fn) $/Fl Cycle 

25 x 10-6 CE $/Fl hr 

+ 10 x 10-6 CE $/Fl Cycle 

0.24 $/Fl hr 

+ (0.24 $/Fl Cycle 

5 x 10-2 Cr $/Fl hr 

+ 5 x 10-6 Cr $/Fl Cycle 

Fn = SLS T/O Thrust, Ib 
CE = Engine Cost, $ 
CR = Reverser Cost, $ 
Fl = Flight 
hr = Hour 

ATA (1967) 

(2.4 + 1.08 x 10-4 Fn) h/Fl Hr 

+ (1.2 + 1.2 x 10-4 Fn) $/Fl Cycle 

25 x 10-6 CE $/Fl hr 

+ 20 x 10-6 CE $/Fl Cycle 

---

'.---

---

! ---
I 

, 

i 

I 
---- ----- -------- ~- ~ 
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using the methods of R. F. Stoessel (Reference 7). The ROI was" calculated 
using a discounted cash flow method. 

Typical data for /the aircraft/missions are listed in Table XX. The DOC 
breakdown for th~ two 'average missions is given in Figure 6 in order to 
illustrate the contribution of the propulsion system to direct operating 
cost. Increments in powerplant sfc, weight, initial price, parts price, 
installation price, mainenance cost, and [light hours were taken individually 
for E:.uLh aircraft/mission. The fuel con81lmed, and the economic factors, were 
recalculated to obtain mission trade factors on each powerplant variable. 
The resulting mission trade factors for tne part-range/55% load factor, 
representing an average mission, are given in Table XXI as they ,.;rere used in 
Task II. The mission trade factors for full range/full payload did not 
differ greatly. Mission trade factors for other fuel costs were used in a 
few instances to test the sensitivity of the study results to fuel costs. 
The mission trade factors for other ranges and fuel costs are presented in 
Table XXII. 

The advanced technology feature was defined, in each case, in sufficient 
detail to permit an estimate of the sfc, weight, initial price and mainten­
ance costs in order to determine the total effect of its implementation in 
the baseline engine. 

The resulting change in wei~ht, sfc, and cost factors were then scaled into 
the engine size appropriate to the mission under consideration. These challges 
were used with the mission trade factors to obtain the potential fuel and DOC 
savings. The scaling exponents and key procedural assumptions used are 
summarized in Table XXIII. 

C. Baseline Engine and Installation 

A baseline propulsion system was defined, at the beginning of the study, 
in order to provide data for the baseline aircraft design and mission anal­
yses described under Evaluation Procedure. At the outset of Task II, this 
engine eycle and the technology employed was believed to be a reasonable 
selection for the 1985 advanced turbofan. In some cases, the results of Task 
II changed the parameters selected for use in the Task III engine. The key 
cycle and design parameters for the baseline Task II engine are given in 
Tables XIV and XV. Compared to current high bypass engines with a maximum 
takeoff turbine inlet temperature of 1316° C (2400° F) and 32:1 overall pres­
sure ratio at maximum climb, the baseline engine was selected with 1538° C 
(2800° F) at takeoff and 38:1 at maximum climb conditions. It featured a 
compact core compressor driven by a single-stage, high-pressure turbine. The 
fan was a composite, high tip speed, advanced aerodynamic design driven by an 
advanced, highly loaded, five-stage, low-pressure turbine. 

The baselin(~ Task II installation, illustrated in Figure 7, was a long­
duct/mixed-flow type with a thin inlet for lower drag. The installation 
incorporated accessories in the pylon, employed extensive use of composites, 
and utilized noise treatment aimed at FAR 36 minus 10 EPNdB. The benefit of 
each element of the installation design was evaluated in the Task II study 
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Table XX. Baseline Aircraft Fuel and Economic Data. 

I Design Range, km (nmi) 

Range, km (nmi) 

Block Speed, m/sec (mph) 

Passengers - Design 

Load Factor, % 

Fuel Cost, $/m3 (¢/gal) 

Fuel, kg (lb) 

DOC - $/km ($/nmi) 

- ¢/Seat-km (¢/Seat-mi) 

Fuel/Pass. km, kg/Passenger-km 
(mi, IbiPassenger mil 

Fuel/Aircraft-Year, Millions kg/Year 
nlillions 1b/Year) 

Trijet 

5560 (3000) 

1300 (700) 

180.7 (351) 

200 

55 

79 (30) 

Quadjet 

10,190 (5500) 

10,190 (5500) 

227.5 (443) 

200 

100 

119 (45) 

Quadjet 

10,190 (5500) 

3700 (2000) 

213.6 (415) 

200 

55 

119 (45) 

5780 (11,640) 1 47,310 (104,300)116,012 (35,300) 

1. 76 (3.26) 

0.88 (1.63) 

0.037 (0.15) 

44.5 (20.2) 

1.94 (3.60) 

0.97 (1.80) 

0.023 (0.095) 

82.0 (37.2) 

2.06 (3.82) 

1.03 (1.91) 

0.039 (0.16) 

65.5 (29.7) 
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Domestic Trijet 
Range = 1,300 km (700 nmi) 
Load Factor = 55% 
DOC = 1.76 $/km (3.26 $/nmi) 
DOC = 0.79 9/Seat/km (1.46 9/Seat/nmi) 
Fuel at $79/m3 (SO. 3D/gallon) 

Airframe 
Depreciation and 

Insurance 
30% Fuel 2 tl% 

Engine Depreciation 
and Insurance 

4% 

International Quadjet 
Range = 3,700 km (2,000 nmj) 
Load Factor = 55% 
DOC = 2.06 $/km (3.82 S/nmi) 
DOC = 1. 03 9/Seat/km (1,91 9/SeRt/nmi) 
Fuel at S1l9/m3 ($0. 45/gallon) 

Airframe 
Depreciation and 

Insurance 27% 

Fuel 32% 

Crew 17% 

Figure 6. DOC Bl'eakdown, Trijet and Quadjet. 

4% 
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Table XXI. Mission Trade Factors, Average Mission. 

Trij et Quadj et 

Range, km (nmi) 1300 (700) 3700 (2000) 

Load Factor, % 55 55 

Fuel Cost, $/m3 (~/gal) 79 (30) 119 (45) 

Aircraft Aircraft Aircraft Aircraft 
Change (per engine) t:, DOC, % t:, Fuel Used t:, DOC, % t:, Fuel Used 

1% sfc +0.39 +1.09 +0.71 +1.44 

45.36 kg (100 Ib) Engine 
or Installation +0.17 +0.26 +0.22 +0.31 

$10,000 Engine Initial Price +0.073 --- +0.060 ---

$10,000 Engine Parts Price +0.070 --- +0.065 ---

$10,000 Installation Price +0.073 --- +0.060 ---

$1.0 Maint. Cost/Flight hr. +0.23 I --- +0.24 ---
'----~- --- . __ .- - -
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No. Engines 

Design Range, 
km (nmi) 

Mission Range, 
km (nmi) 

Load Factor, % 

Fuel Cost, 
S/m3 (~/gal) 

Li% 

+l% sfc 

45.36 kg 
(+100 Ib) Engine 
or Installation 

+$10,000 Engine 
Initial Price 

+$10,000 Engine 
Parts Price 

+$10,000 Instal-
lation Price 

+$1.0 }laint. 
Labor Costl 
Flight hr 

Table XXII. Mission Trade Factors. 

3 

5560 (3000) 

1300 (700) 

55 

79 (30) 

DOC l~f TOGW ROI DOC 

0.39 1.09 0.47 0.11 0.44 

0.17 0.26 0.32 0.061 0.17 

0.73 - - 0.045 0.068 

0.070 - - 0.011 0.065 

0.073 - - 0.045 0.068 

0.23 - - 0.080 0.47 

DOC - Direct Operating Cost 
Wf - Fuel Used 
TOG1~ - Takeoff Gross Weight 
ROI - Return on Investment 

3 

5560 (3000) 

1300 (700) 

55 

106 (40) 

Wf TOGH 

1.09 0.47 

0.26 0.32 

- -

- -

- -

- -

3 

5560 (3000) 

5560 (3000) 

100 

106 (40) 

ROI DOC "'f TOGH ROI 

0.13 0.56 1.22 0.48 0.30 

0.058 0.17 0.22 0.34 0.16 

0.044 0.059 - - 0.18 

0.012 0.066 - - 0.015 

0.044 0.059 - - 0.18 

0.082 0.55 - - 0.12 

4 4 

6480 (3500) 10190 (5500) 

3700 (2000) 10190 (:500) 

55 100 

119 (45) 119 (45) 

DOC l<lf TOGW ROI DOC Wf TOGW ROI 

0.71 1.44 0.87 0.25 0.80 1.56 0.87 0.41 

0.22 0.31 0.39 0.902 0.23 0.32 0.39 0.17 

0.060 - - 0.037 0.055 - - 0.11 

0.065 - - 0.014 0.064 - - 0.012 

0.060 - - 0.037 0.055 - - 0.11 

0.24 - - 0.12 0.54 - - 0.10 
- ---



Table XXIII. Evaluation Procedure. 

Constant Payload and Range, Variable Gross Weight. 

Baseline Alc 5,560 km (3000 nmi) 1200 PAX Trijet 
10,190 km (5500 nmi) 1200 PAX Quadjet 

Mission Trade Factors for Engine Changes Detel~ined. 

Baseline Engine Pressure Ratio 1.65 Fan, Mixed Flow with Advanced Teehnology. 

Effects of Changes in Installed Engine Characteristics Determined for Each 
Engine Variation Studied. 

Effects of Engine Price Related to Production Cost - 1974 $. 

Individual Parts Replacement Rates Considered for Engine Maintenance Costs. 

Engines Scaled to Thrust Required by Baseline Aircraft. 

Engine Scaling Exponents, Weight - 1.25, Price - 0.55 

Installation Scaling Exponents, Weight - 1.1, Price - 0.80 
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and the results are discussed in Section G. Figure 8 illustrates the base­
line installation compared to a CF6-50 DC-IO installation. 

The selection of turbine inlet temperature, cycle pressure ratio, and 
turbine technology level were considered together in the evaluation because 
of the interrelation in setting the turbine cooling flow requirements. 

The fan pressure ratio was held constant for that portion of the cycle 
study at a baseline value of 1.65 at the maximum climb design point. That 
effectively held engine specific thrust and propulsive efficiency constant. 
In the studies described in Section E, the fan pressure ratio WClS varied 
while core engine parameters were held constant. Bypass ratio \"as allm"ed to 
vary in both portions of the study. 

Both a current level and an advanced level of cooling technology was 
defined for the purpose of that study. The pertinent material and cooling 
technology selections are tabulated in Table XXIV. Allowable turbine blade 
and vane temperatures were set at each technology level [or equal design life 
based on mission turbine-inlet temperatures, blade stress levels, and con­
sideration of the turbine aerodynamic design. Takeoff turbine inlet tem­
peratures were varied between 1316 0 C (2400° F) and 1649° C (3000 0 F) for the 
advanced technology case, while the current technology considered only the 
range of 1316° C (2400° F) to 1427° C (2600° F). Overall cycle pressure 
ratios, at the altitude maximum cl imb design point, were varied bet\"een 25: 1 
and L15:1. 

Cooling flm" extraction locations (compressor stage number) were set by 
the pressure requirements in each engine. The cooling flow for the low 
pressure turbine was removed at the compressor casing, and the HP blade flow 
was bled at the compressor hub and introduced into the turbine through a 
bore-entry system. Using consistent turbine cooling flow calculation pro-· 
cedures, the cooling flOl"s for the HPT and LPT were estimated as illustrated 
in Figure 9. The cooling flow requirements of the multistage 1PT became an 
overriding falCtor at the higher turbine inlet temperatures considered. 

The resulting sfc trends associated with turbine temperature are illus­
trated in Figure 10 for cycles with constant fan pressure ratio and with 
exhaust systems matched for mixed flow. Weight and engine price trends were 
prepared for the range of engines and are presented in Figure 11. Those 
trends \"ere not smooth versus cycle pressure ratio because of two opposing 
trends involving changes in the number of stages. The core components got 
smaller and lighter as precompression was added, but weight increased due to 
more booster stages on the low speed spool. At 1538° C (2800° F) takeoff 
T41, the two effects canceled between 38:1 and 45:1 overall pressure ratio 
and resulted in no weight difference. The effect of higher turbine tem­
peratures, at constant cycle pressure ratio, resulted in a smaller core size 
for a given fan pressure ratio. Hence, a weight and cost reduction for a 
given level of materials and cooling technology \Vas realized. 
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Table XXIV. Cycle Selection Study Technology Definitions. 

Current (1)* Advanced (2) 

I Techno logy Material Cooling Material J Cooling 

HPT Vane 

HPT Band 

HPT Blade 

HPT Shroud 

LPT Vane 

LPT Blade 

* 

Nickel-Base, Thorium­
Stabilized Alloy 

Oxidation-resistant, 
Nickel-Base Alloy 

Nickel-Base Casting 

Cooled Porous Design 

Cobalt-Base, High Temp 
Alloy 

Current Nickel Base 

Current Film 

Impingement film 

Current film 

Current film 

Convection 

Ceramic 

Nickel-Base Alloy 
with very high 
oxidation resistance 

Nickel-Base Casting, 
DIrectionally 
Solidified 

Ceramic 

Ceramic 

'Convection modified 
for ceramic 

Impingement and 
film 

Impingement-film 
cooling 

None 

Nickel-Base Casting, I Improved convection 
Directionally 
Solidified 

Representative of FlO) and Transport Derivatives thereof -
More Advanced Than CF6. i 
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Cycle Pressure Ratio 

Region of 
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Takeoff T41 , 0 C 
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1300 

Takeoff T 0 F 
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Low Pressure Turbine 
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1,PT IV IIJ is Total ~hargeabl~ 
Cooligg Plow which Includes 
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Figure 9. Cycle Selection Study; Turbine Cooling Flow Trends. 
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The advanced technology cores were smaller and lighter than current 
technology cores for the same cycle conditions, however, the price was 
approximately the same because of the use of higher-cost, advanced turbine 
materials. The cooling flow penalties for higher turbine temperature would 
have increased, if current cooling technology had been employed, and the 
minimum sfc for a given cycle pressure would have been poorer than for the 
advanced technology (and also would have occurred at a lower T4l). The 
engine weights were also greater, because a larger core was required for a 
given thrust. The engine prices were almost the same because the lower-cost 
turbine balances the effect of the larger core size. 

The reSUlting DOC and fuel-usage trends are presented in Figure 12 and 
Figure 13 for the 5560 km (3000 nmi) trijet on the 1300 km (700 nmi) , 55% 
load-factor mission. A takeoff turbine inlet temperature of 1427° C 
(2600° F) provided minimum fuel consumption with a very small DOC penalty. A 
higher cycle pressure ratio of 45:1 (maximum climb at altitude) achieved up 
to a 1% improvement in DOC and fuel usage over the baseline level of 38~1 at 
1538° C (2800° F) takeoff turbine inlet temperature. Similar trends were 
obtained for the 10,190 km (5500 nmi) quadjet presented in Figure 14 and 
Figure 15 for the 3700 km (2000 nmi) mission and 55% load factor. The effect 
of advanced turbine technology versus current turbine technology was a 3.2% 
fuel saving and a 1.5% DOC saving at an overall pressure ratio of 38 at max­
imum climb, and a turbine inlet temperature of 1427° C (2600° F) at takeoff. 

If ceramic vanes were omitted from the advanced technology package, the 
DOC would have become insensitive to turbine inlet temperature selection, as 
illustrated in Figure 16. The absolute level of fuel burned increased 1.1% 
at 1538° C (2800° F) takeoff T4l for metal versus ceramic vanes, in both 
turbines (Figure 17). Ceramic vanes were not included in the recommended 
advanced technology Task III engine design because feasibility from the 
impact-damage standpoint had not been established. 

46 

Observations and conclusions as a result of those studies are summarized: 

• Significant advantages (-2% in DOC and -3.5% in fuel for the trijet 
application) were achieved with a 1538° C (2800° F) takeoff T4l/ 
38:1 maximum-climb pressure ratio/advanced turbine technology 
versus 1316° C (2400° F) takeoff T4l 32:1 maximum-climb pressure 
ratio/current technology. 

• The range of interest for advanced engines is 1371° C to 1538° C 
(2500° F to 2800° F) takeoff T4l. 

• LPT cooling requirements became dominant at 1538° C (2800° F) 
takeoff T4l and above . 

• , .1427° C (2600° F) takeoff T4l is recommended for initial rating, 
with growth to 1538° C (2800° F). 

• A cycle pressure ratio of 38:1, at altitude, is recommended for 
initial rating (higher for growth). This choice was made to reduce 
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the development risk for the initial ratings of the advanced engine 
and to provide capacity for growth by boosting the core without 
encountering excessive pressure ratios. 

Separa te- and mixed-flow engines \"ere studied over a range of fan pres­
sure ratios from 1. 55 to 1. SO. For this portion of the study, a 153So C 
(2800° F) takeoff turbine inlet temperature, 3S.1 maximum-climb cycle pres­
sure ratio and advanced turbine technology ItJere employed. For the separate­
flow engines, the primary to fan exhaust jet: velocity ratio was initially 
selected at 1. 65; a value representr.1tive of modern separate-flm", turbofan 
engines. In a separatl? study, the primary s.tream energy extraction was 
varied. 

Some of the pertinent cycle parameters are tabulat.ed in Table XXV for 
the three mixed-flow engine.s at fan pressure ratios 1.55,1.115, and 1.S0, and 
for the two separate-f Imrl engines at fan pressure ratios 1. 65 and 1. SO, with 
an exhaust velocity ratio of 1. 65. The table also shows a separate-flo""T 

engine at a fan pressure ratio of 1.76 and velocity ratio of 1.50. That 
engine had the same specific thrust and [an dil]meter as the 1.65 fan pressure 
ratio, mixed-flow, baseline engine but with tho extraction selected for 
minimum fuel usage in a separate-f] ow cycle. 

The relationship of the separate- and mixed-flow nacelles, relative to 
the wing, is illustrated in Figure] S. The spacing parametl~r "h" \\Tas held 
constant to achieve negligible interference drag for both installatj.ons. 
Nacelles were defined for each case with approximately the same overall noise 
level. The effect of the pylon drag, weight, and cost differences between 
installations was also considered in the study. Installed and bare-engine 
sfc trends are illustrated in Figure 19 for the engines in Table XXV, except 
for the separate-flow engine of exhaust velocity ratio 1.5 ,,,hich is discussed 
later in this section. Installed weight Hnd pric.e trends for the same 
engines, derived by consistent procedures, are illustrated in Figure 20. 

The resulting DOC and fuel usage trends for the trijet and quadjet are 
presented in Figures 21 and 22. The curves show that a higher fan pressure 
ratio yields a lower DOC, but an increase in fuel burned. The thrust lapse 
rate from takeoff to cruise altitude varied with fan pressure ratio. Ivhen 
the comparison between engines designed at several levels of fan pressure 
ratio was made, the engines could be scaled to hold takeoff or cruise thrust 
constant. The results are shown for both engine-sizing assumptions. The 
cruise-sized comparison favored the higher fan pressure rat in. The trijet 
mixed-flow ins~allation showed a 4.2% fuel usage and 1.0% DOC advantage versus 
the separate flow' at the baseline fan diameter, as illustrated in Figure 21. 
Comparison at a constant fan diameter is equivalent to constant specific 
thrust, since all engines are scaled to the same installed thrust in this 
chart. 
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Table XXV. Cycle Definitions, Mixed versus Separate Flow. 

5560 km (3000 nmi), Trijet, Cruise Sized, M = 0.80, 10,670 m (35K ft), Fnr = 20,000 N 
(4500 Ib) 

Hixed, nmix = 175 Separate 
V9/V29=1. 65 1. 65 1.50 

Fan PIP MxCl 1. 65 1.55 1. 80 1. 65 1. 80 1. 76 
~xCr 1. 61 1. 51 1. 75 1.61 1. 75 1. 74 

Takeoff Fn sIs, 
Flat to +15 0 C, N 89,000 93,000 83,800 91,100 85,600 87,200 

(+27° F, 1b) (20,000) (20,910) (18,830) (20,470) (19,250) (19,613) 

MiC1Fn , 0.8/10670m (35Kft) 
HxCl Flat to +10 0 C, N 22,700 22,800 22,500 22,800 22,600 22,900 

C018° F, Ib) (5100) (5130) (5060) (5130) (5080) (5134) 

MxCr +10° C, N 21,000 21,200 20,900 21,200 21,000 . 21,200 
(+18° F, 1b) (4740) (4770) (4700) (477O) (4730) (4758) 

Bypass Ratio MxCr 8.1 9.6 6.5 8.6 6.8 7.7 

HxCl Carr, Fan F1mv, kg/sec 337 387 283 367 305 337 
(lb/ sec) (742) (853) (625) (809) (673) (742) 

Fan Diameter, m 1. 54 1. 65 1.41 1. 61 1. 47 1.54 
(in. ) (60.6) (65.0) (55.6) (63.3) (57.7) (60.6) 

No. Booster Stages I 3 4 2 3 2 2 

h No. LP Turbine Stages 6-1/2 4-1/2 5-1/2 4-1/2 5-1/2 
i 

,. 
" 
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The primary to fan exhaust jet velocity ratio was initially set at 1. 65 
at the M = 0.8, 10,670 m (35K ft) maximum climb design POillt for the separate­
flow cycles discussed above. This velocity ratio was varied down to 1.1 
(higher primary-stream extraction) for the separate-flow engines. The 
results are presented in Figures 23 and 24 for a fan pressure ratio of 1.65 
and 1. 80. 

The best exhaust velocity ratio for minimum fuel consumed and DOC was 
approximately 1.5, when compared at constant fan diameter or specific thrust. 
For higher-extraction, separate-flow cycles, an additional low pressure tur­
bine stage was required. There was a range of velocity ratios where either :' 
four- or five-stage turbine, for fan pressure ratio 1.80, or a five- or six­
stage turbine, for pressure r~tio 1.65, could be used. 

There was a sigr:i.ficant turbine efficiency improvement when the four­
stage LPT was replaced with a five-stage LPT, or the five-stage 1,,;ras replaced 
by a six-stage LPT. The resulting sfc improvement yielded lower mission fuel 
consumption for the same exhaust velocity ratio, as illustrated in Figure 24. 
Except for those higher-extraction, separate-flow engines where increased 
turbine staging was required, component efficiency differences between the 
mixed- and separate-flow engines were a minor part of the sfc differences. 

For persepective, the two levels of core extraction are superposed on 
Figure 25. Compared to the best high-extraction, separate-flow cycle, ~Jith a 
five-stage LPT, the mixed-flow DOC and fuel-consumed advantage was reduced to 
0.8% and 2.6% respectively at the baseline specific thrust. The distribution 
of DOC and fuel-consumed gains are presented in Table XXVI. The largest 
portion of the gain was due to sfc improvement. 

To examine the case where interference drag for the mixed-flow nacelle 
might be higher than the separat~flow nacelle, in the nominal axial position 
illustrated in Figure 26, a possible solution may be to reposition the mixed­
flow nacelle further forward of the wing. If the mixed-flow exhaust plane is 
relocated in the plane of the wing leading edge, the fuel saving for mixed 
versus separate flow will be reduced from 2.6% to 2.1%. The reduction in 
fuel saved will be due to the weight and drag (noninterference) increase of 
the longer pylon necessary to support the nacelle. Alternately, if the 
sensitivity to an interference drag difference between mixed- and separate­
flow nacelle (in the nominal position) is examined, the effect of a 1% (of 
installed cruise thrust) drag increase reduces the fuel saved from 2.6% to 
1. 6%, as illustrated in Figure 27. Figure 28 illustrates the sensitivity to 
DOC and fuel saved for an increase in aircraft structural weight associated 
with moving the nacelle of the mixed-flow. engine to a more forward location. 
If the increased moment arm of the installation results in a 136 kg (300 Ib) 
wing weight increase per engine, the mixed-flow fuel saving will be reduced 
from 2.6% to 1.9%, while the 0.8% DOC saving will be reduced to 0.1%. 

The following are observations and conclusions from the fan PIP (pres­
sure ratio) and exhaust-type study: 
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Table XXVI. Engine Evaluation, Mixed versus Separate Flow.* 

.-
Fan Diameter = 1.54 m (60.6 inches) 

Trij et Alc Cruise Sized, 55% Load Factor, 1300 km (700 nmi) Mission 

0.8 Mn/l0670 m (35K ft) 
- -

/:;. DOC % /:;.Hf % 

Fan Pressure Ratio l. 65 1. 76 
Mixed Separate 

-
Velocity Ratio - 1. 50 

llmix % 75 - , 
6 

/:;. Engine Height, kg (lb) -54 (-118) -0.2 -0.3 

/:;. Nacelle Weight, kg (lb) +88 (+195) +0.3 +0.5 

6 Engine Price, lOUD $ +4 0 -

6 Nacelle Price, 1000 $ +25 +0.2 -

/:;. sfc Bare, % 95% Max. Cruise -2.5 -0.10 -2.7 

6 Drag, % Fn -0.1 -0.1 -0.10 

Total -0.8 --2.6 

i, 

V9/V29 High extraction version of separate flow, = 1.5 

6<1 
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• A higher fan pressure ratio (up to 1.8) yielded improved DOC and a 
small increase in fuel usage. 

• A fan pressure ratio of 1.7 is recommended for initial rating 
(increase with growth). 

• Mixed flow has potential of major payoff in DOC and fuel usage. 
For example, improvements of 2.6% in fuel and 0.8% in DOC in the 
trijet average mission were estimated. 

• The sfc advantage of mixed exhaust was the dominant factor in the 
comparison to separate flow. For instance, the base sfc contrib­
uted a 2.7% fuel reduction. The effect of installed weight and 
drag only slightly altered this result to 2.6%. 

• The potential interference-drag problem requires attention, but the 
mixed-flow sfc advantage appears large eno~ght to overcome possible 
penalties associated with different nacelle location. 

F. Basic Engine Technology Evaluation 

The use of composites in the fan blade was considered, in combination 
with an advanced high tip speed aerodynamic design. It was compared to a 
current-technology design for reference, and also to a titanium, high-speed, 
advanced aerodynamic design in order to evaluate the material effect by 
itself. The design features are presented in Table XXVII a~d the resulting 
weight, price, sfc changes, DOC, and fuel-usage benefits are listed in Table 
XXVIII. The high tip speed, advanced aerodynamic benefits were about half 
the total benefit of the advanced fan design with composites contributing the 
remainder. The sensitivity to variations in design input, such as blade 
aspect ratio, composite cost level, and fan efficiency differences, are illus­
trated in Figures 29, 30 and 31. 

The substitution of a composite fan-frame design for a conventional 
metal frame was also evaluated. The results are presented in Table XXVIII. 

An improved compressor clearance control design was substituted for the 
current technology design and a comparison of the two was made. The design 
utilized a casing material with a low thermal expansion coefficient and 
casing thermal insulation and cooling features. The advanced design a110tved 
lower running clearances for a criceria of no significant rubs during engine 
transients. The improvements resulting from the compressor clearance reduc­
tion are illustrated in Table XXIX. 

Improved high pressure turbine clearances were obtained by the applica­
tion of an on-off, HPT shroud-cooling system in this study. The shroud 
support diameter remained small during steady-state operation with cooling 
on. The cooling flow was turned off during engine transients, causing the 
casing to run hotter than would otherwise have been the case, and therefore 
mainta.ined adequate clea.rances to prevent rubs. The benefits obtained are 
presented in Table XXIX. 
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Table XXVII. Advanced Fan Design Features. 

Reference 
Midspan Shroud High Speed High Speed 

CF6-50 Type Tip Shrouded Composite 

Number of Blades 38 44 30 

Material Ti Ti Composite-Hybrid 

To Fn, N (lb) 88,960 (20,000) 88,960 (20,000) 88,960 (20,000) 

Corrected Flow, kg/sec 337 (743) 338 (745) 337 (744) 
(lb/sec) 

uTI8, m/sec (ft/sec) 421 (1380) 488 (1600) 488 (1600) 

Performance Effects for Constant Tip Clearance 

n Fan Efficiency, % Base +(l.8 +1.1 

n Fan Hub Efficiency, % 
(Includes Boosters) Base +0.3 -0.7 

Staging 

NBoost 4 3 3 

Core Same Same Same 

NLPT 6 5 5 _. 

Table XXVIII. Payoff Summary of Higher Fan Tip Speed and Advanced Materials. 

5560 km (3000 nmi) Trijet Evaluation at 55% Load Factor, 1300 km (700 nmi) 

Technology Description 
Application Advanced Reference 

Fan Blade Composite High CF6 Type Fan 
Tip Speed 

Fan Blade Ti High 'fip CF6 Type Fan 
Speed 

Fan Frame/Case Composite Steel 
Integrated with Conventional 
Nacelle Construction 

* 10,190 km (5500 nmi) Quadjet 
** Includes cycle effect 

Installed 
b. Height n Price 
kg (lb)** $lOOO'h~ 

-118 (-260) -46 

+2.3 {+5) -27 

-70 (-155) -21 

ORIGINAL PAGE IS 
OF POOR QUALITY. , 

n sfc 
% 

-0.75 

-0.88 

0 

.. 
n DOC b. Fuel Used 

% % 

-1. 38 -1.49 
(-1. 85) (-1.95)* 

-0.71 -0.95 
(-1.01) (-1.26)* 

-0.42 -0.44 
(-0.53) (-0.52)* 
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Table XXIX. Clearance Control Payoff. 

5560 km (3000 nmi) Trijet Evaluation at 55% Load Factor, 1300 km (700 nmi) 

Installed 
Technology Description t:,. Weight t:,. Price t:,. sfc 

Application Advanced Reference kg (lb)** $1000** % 

--
Compressor Inco 903 Inca 718 -5.9 (-13) 0 -0.32 
Clearance Cooled Casing Uncooled 
Control Insulated Casing 

Uninsu1ated 

HPT Clearance Active Passive -6.8 (-15) +4 -1.0 
Control Cooling System Cooling Sys 

HPT Cooling Bore Entry Rim Entry -4.5 (-10) -2 -0.06 
Supply 

* 10,190 km (5500 nmi) Quadjet 
** Includes cycle effects 

- ------ -~~ --------- ------------ -------- --- ------_ .. _-

~ 

t:,. DOC t:,. Wf 
% % 

-0.15 -0.38 
(-0.26) (-0.50)* 

-0.39 -1.13 
(-0.73) (-1.49)* 

-0.06 -0.09 
(-0.09) (-0.12)* 



Supplying the HPT blade-cooling flow from the compressor midstage to HPT 
rotor hub (bore entry) resulted in a small advantage, as listed in Table XXIX. 

The use of ceramics was evaluated in the HPT and LPT vanes and HPT 
shrouds. The results (Table XXX) indicated a net benefit for all applica­
tions. However, the feasibility of ceramic vanes from an impact-damage 
standpoint has not yet been established. For this reason, ceramic vanes were 
not used in the Task III design, reserving them for later engine growth. 
Figure 32 illustrates the impact of changes in parts usage and cost level on 
the benefits of ceramic vanes. Ceramic shrouds were used in the Task III 
design since shrouds do not have the same impact problem as vanes (They are 
not out in the flow path nor in front of rotating parts). Figure 33 illus­
trates the effect of changes in ceramic shroud cost and parts usage. 

The use of eutectic turbine-blade materials in the HPT and LPT resulted 
in a fuel saving, but also a DOC increase (due to the high production costs 
of eutectic blades) as presented in Table XXXI. The use of full internal 
impingement cooling with multiple inserts, relative to the simpler monolithic 
film-cooled design, resulted in a small fuel saving, but a substantial DOC 
increase (again due to production cost increase of the blades). A brief 
summary of the conclusions and observations from the basic engine technology 
studies are listed below: 

74 

• Composite fan blades; a high potential payoff area: 

Survivability of high tip speed composite fan blades to bird 
strike not established. 

Safety (containment) an additional advantage beyond DOC. 

• Composite frame/case integrated with nacelle; a major weight and 
cost reduction item. 

• Core compressor clearance control; will be applied in any new 
engine design. 

• Active (on-off cooli.ug) HPT clearance Clmtrol; worth pursuing. 

• Bore-entry cooling; modest payoff, but considered good design 
approach. 

• Ceramics; high potential payoff area 

Feasibility from impact-damage standpoint not established. 

Shrouds would be first area of application 

Uncooled LPT ceramic vanes would be next area of attention. 

• Cost of eutectic turbine-blade material; barrier to its use. 



Table XXX. Ceramic Materials Payoff. 

5560 km (3000 nmi) Trijet, Evaluation at 55% Load Factor, 1300 km (700 nmi) 
f-

Installed -Technology Description l!. Weight l!. price l!. sfc l!. DOC 
Application Advanced Reference kg (lb)** $1000** % % 

" 

LPT Vane Ceramic Har H 509 -35 (-77) -16 -0.66 -0.69 
Hetal (-0.98) 

HPT Vane Ceramic MA 754 0 -s -0.15 -0.31 
(-0.39) 

HPT Shroud Ceramic Poroloy -S (-IS) -S -0.24 -0.53 
(-0.67) 

* 10,190 km (5500 nmi) Quadjet 
** Includes cycle effects 

c 

Table XXXI. Advanced Materials and Cooling Payoff. 

5560 km (3000 nmi) Trijet, Evaluation ht 55% Load Factor, 1300 km (700 nmi) 

Technology Description 
Application Advanced Reference 

HPT Blade Eutectic Advanced 
Nickel-Base 
DS Casting 

LPT Blade Eutectic Advanced 
Nickel-Base 
DS Casting 

lIPT Blade Film and Full Film Cooling, 
Cooling Impingement Cold Bridge 

i, 
10,190 km (5500 nmi) Quadjet 

** Includes cycle effects 

---

Installed 
l!. Height l!. Price 
kg (lb) i,* $1000** 

-12 (-26) +10 

-22 (-4S) +14 

+8 (+17) +14 

ORIGINAU PAGE IS 
OF POOR QUALITY .. 

~<-"'- ,. ~ 

l!. sfc 
% 

-0,16 

-0.60 

-0.11 

l!. :')OC 
% 

+0.34 
(+0.33) 

+0.10 
(-0.07) 

+0.49 
(+0.51) 

i 

.. 
I l!. Wf 

% 

-0.91 
(-1. 20) * 

-O.lS 
(-0.23)* 

-0.31 
(-0.41)* 

~ 

l!. Wf 
% 

-0.24 
(-0.32)* 

-0.7S 
(-1.03)* 

-0.17 
(-0.22)* 
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• Elaborate blade-cooling designs must consider cost performance 
trades. 

G. Installation and Acoustic Technology Evaluation 

The baseline composite nacelle is illustrated in Figure 7 with the 
advanced technology features indicated. The payoff summary of Table XXXII 
indicates a substantial DOC and fuel-saved benefit for the integrated com­
posite nacelle. The installation improvement features depended upon advanced 
lightweight composites, aerodynamic improvements in the nacelle design, and 
the sfc improvement. 

The composite nacelle showed improvements from four sources; composite 
substitution for metal, thin inlet for lower drag, integration of fan frame 
with the engine, and moving the accessory pod into the pylon for lower drag. 
The breakdown of the benefits is given in Table XXXIII. As shown, the com­
posite material accounted for over half of the DOC and onethird the fuel 
saving benefit. Moving the accessories to the pylon, to eliminate the nacelle 
bulge, yielded about one-fourth of the DOC and one-third of the fuei reduc­
tion. The results of the mixed- versus separate-flow study are covered in 
Section E, but are repeated here since they can also be considered installa­
tion technology. 

The results from preliminary noise studies indicated that turbine noise 
reduction would be needed to meet FAR minus 10 EPNdB. Two alternate ways to 
obtain an extra 5 PNdB of turbine suppression were considered, as illustrated 
in Figure 34: 1) the high frequency source-noise LPT and 2) a spool piece 
extension plus splitter. Figure 35 illustrates that additional suppression 
can be obtained with no penalty by utilizing the higher source-frequency LP 
turbine. The result is shown in tabular form in Table XXXII. 

The benefit of utilizing bulk absorber versus aluminum honeycomb­
sandwich, inlet-suppression lining for equal suppression of 8 PNdB was sub­
stantial, as listed in Table XXXII, because of the large weight saving due to 
a shorter inlet length with bulk absorber treatment. This benefit can also 
be taken as increased suppression of 3 PNdB, at a constant DOC and fuel-used 
penalty, as illustrated in Figure 36. 

A brief summary of observations and conclusions relating to advanced 
nacelle technology are listed below: 
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• Composites in the nacelle offer major 

• Pylon-mounted accessories have payoff 

• Small diameter outer cowl has payoff 

paYOff! 
Complementary benefit 
of integrated nacelle 

• Turbine noise suppression; LPT with high blade-passing frequency is 
a good approach. 

• Bulk-absorber inlet treatment; significant advantage over con­
ventional inlet treatment. 
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Table XXXII. Installation Technology Payoff Summary. 

5560 1<\,,1 (3000 nmi) Trijet/10,190 km (5500 nmi) Quadjet 

Evaluation at 55% Load Factor, 1300 km (700 nmi)/3700 km (2000 nm:i) 

Technology /:, Weight /:, Price /:, sfc /:, DOC 
Description Advanced Reference Aircraft kg (lb) ,~-J, $1000** % % 

Mixed Flow Mixed Separate Trijet +35 (+77) +29 -2.6 -0.8 
Cruise Sized 
Baseline Same Fan 
Engine Size Quadjet +37 (+81) +36 -2.6 -1.4 

Composite Composite Metal 
Nacelle Thin Inlet Thick Inlet Trijet -150 (-330) -87 -0.85 -1.52 

Fan Frame Nonintegral 
Accessories Accessories in 
in Pylon POD Quadjet -159 (-350) -109 -0.85 -2.03 

Turbine High Fre- Spool piece 
quency LPT extension 

+ splitter Trijet -29 (-63) -3 -0.24 -0.18 

Turbine noise Suppression 
/:, = -9 PNdB Quadjet -32 (-71) -5 -0.24 -0.31 

Inlet Suppression Bulk Absorber AL Honeycomb 
L/D = 0.68 sand,.;rich Trijet -32 (-70) -10 -0.13 -0.25 

L/D = 92 Quadjet -33 (-73) -13 -0.13 -0.34 

/:, = -8 PNdB 

-J,* 
Cycle effects included 

Trij et 5560 km (3000 nmi)/200 PAX 79. $/m3 (30~/gal) fuel, engine Fn = 89,000 N (30,000 lb) 
Quadjet 10,190 km (5500 nmi)/200 PAX 119. $/m3 (45c/gal) fuel, engine Fn = 93,410 N (21,000 lb) 

-------

/:, Wf 
% 

-2.6 

-3.6 

-1. 77 

-2.31 

-0.38 

-0.56 

-0.42 
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Table XXXIII. Separation of Nacelle Features. 

5560 km (3000 nmi) Trijet, Evaluation at 55% Load Factor, 1300 km (700 nmi) 

Features Benefits 

Inlet Lip Accessory Fan Frame 1.Jeight Price Drag Total 
Material Thickness Location Integration kg (lb) $1000 N (lb) Effects 

Metal Thin Pylon Yes 11 -100 (-220) -59 0 

11 DOC % -0.36 -0.43 0 -0.80 

Composite Thin Pylon Yes 11 1vf % -0.56 0 0 -0.56 

Metal Thick Pylon Yes 11 -14 (-30) -7 -80 (-18) 

11 DOC % -0.05 -0.05 -0.15 -0.25 

Hetal Thin Pylon Yes 11 1-1f % -0.08 - -0.42 -0.50 

Metal Thick Pylon No 11 -18 (-40) -11 

11 DOC % -0.07 -0.08 - -0.15 

Metal Thick Pylon Yes t:,. Wf % -0.11 - - -0.11 

Metal Thick POD No 11 -18 (-40) -10 -98 (-22) 

t:,. DOC % -0.07 -0.07 -0.18 -0.33 

Metal Thick Pylon No 11 Wf % -0.10 - -0.51 -0.61 

All Effects Combined 

Metal Thick POD No 11 -150 (-330) -87 -178 (-40) -

11 DOC % -0.55 -0.64 -0.33 -1.52 

Composite Thin Pylon Yes 11 Wf % -0.85 - -0.92 -1. 77 
-
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H. Summary of Results - Task II 

Parametric cycle studies and evaluation of advanced design and tech­
nology features were carried out for new advanced turbofans with a technology 
level consistent with 1985 introduction into service. The evaluation was 
made for two new advanced aircraft: a transcontinental design and an inter­
continental design. The significant results and conclusions from these 
studies are summarized as follows: 
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Turbine Inlet Temperature and Cycle Pressure Ratio 

1. Significant advantage (DOC and fuel usage) was achieved with the 
combination of higher T4l and cycle pressure ratio with advanced 
turbine technology. 

2. The resulting range of interest in takeoff T4l for an advanced 
engine was 1371 to 1538° C (2500 to 2800° F). 

3. LPT cooling requirements became dominant at 1538° C (2800° F) and 
above. 

4. 1427° C (2600° F) is suggested for initial rating, growth to 1538° 
C (2800° F). 

5. A cycle pressure ratio of 38:1 at altitude (31:1 at takeoff) is 
recommended for initial rating, higher for growth. 

6. The magnitude of advantage estimated for the selected core cycle 
and turbine technology versus CF6 level was 1.3% DOC and 3.5% fuel 
usage for the transcontinental aircraft. 

Fan Pressure Ratio and Exhaust ~~em 

1. A higher fan pressure ratio (up to 1.8) yielded improved DOC (small 
penalty in fuel usage). 

2. A fan pressure ratio of 1.7 (altitude) is recommended for initial 
rating, increase with growth. 

3. The sfc advantage of mixed exhaust was a dominant benefitial factor 
for advanced technology nacelles at constant noise. 

4. Mixed flow has the potential for major payoff in DOC and fuel 
usage. Estimates were 1% DOC and 4.2% fuel saved versus a CF6-
type, separate-flow cycle and 0.8% DOC and 2.6% fuel saved versus a 
high extraction, advanced, separate-flow cycle. 

5. The potential interference drag problem requires attention, but the 
mixed-flow sfc advantage is large enough to overcome possible 
penalties associated with different nacelle locations. 



The technology payoff items investigated in Task II for use in the 
engine and installation are summarized in Table XXXIV. This permits a com­
parison, on one chart, of the relative merits of all items. This is con­
sidered separately from cycle selection issues, such as fan pressure ratio, 
turbine inlet temperature, overall pressure ratio, and mixed versus separate 
flow. 

The conclusions reached for basic engine technology features are as 
follows: 

1. Composite fan blades are a high potential payoff area 

• Bird-strike feasibility is not established for high tip speed 

• Safety is an additional advantage beyond DOC improvement 

2. Composite frame/case integrated with nacelle; major weight and cost 
reduction item. 

3. Core compressor clearance control will be applied in any new engine 
design. 

4. Active (on-off design) HPT clearance control is worth pursuing. 

5. Ceramics are a high potential payoff area. 

• Feasibility from impact-damage standpoint is not established. 

• Shrouds are the first area of application. 

• Uncooled LPT ceramic vanes are the next area for attention -
higher risk. 

6. Cost of eutectic turbine-blade material is currently barrier to its 
use. 

7. Elaborate blade-cooling designs must consider cost and performance 
trades . 

. Summarl: - Nacelle Technology 

The following is a brief summary of the evaluation of nacelle technology 
features for the transcontinental aircraft. 
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Table x..UIV. Engine Technology Payoff Summary. 

5560 km (3000 nmi) Trijec/10190 km (5500 nmi) Quadjet 

Evaluation 55% Load Factor, Average Range 

11 Height Price* 11 sfc 
Technology Installed Installed Installed 

Description Advanced Reference Aircraft kg (lb) $1000 % 

Fan Blade Composite CF6 Type Fan Trijet -572 (-260) -46 -0.75 

High Tip Speed Quadj et -612 (-278) -56 -0.75 

Fan Frame/Case Composite CF6 Type Fan Trijet -340 (-155) -21 0 

Integrated ",ith 
Nacelle Quadjet -360 (-165) -26 0 

Compressor Clearance Inca 903, Inca 70, Trijet -29 (-13) 0 -0.32 
Control Cooled Casing, Uncooled, 

Insulated Uninsulated Quadjet -31 (-14) 0 -0.32 

HPT Clearance Active Cooling Passive Trijet -33 (-15) +4 -1.0 
Control System Cooling Sys. Quadjet -35 (-16) +4 -1.0 

HPT Cooling Supply Bore Entry Rim Entry Trijet -22 (-10) -2 -0.06 
Hithout Clearance 
Control Credit Quadjet -24 (-11) -2 -0.06 

LPT Vane Ceramic MAR N 509 Trijet -170 (-77) -16 -0.66 
Netal Quadjet -180 (-82) -19 -0.66 

HPT Vane Ceramic NA754 Trij et 0 (0) -5 -0.15 
Quadjet 0 (0) -7 -0.15 

HPT Shroud Ceramic Poroloy Trijet -40 (-18) -8 -0.24 
Quadj et -42 (-19) -9 -0.24 

}lPT Blade Eutectic Advanced, Trij et -57 (-26) +10 -0.16 
Nickel-Base 
DS Casting Quadjet -62 -28 +13 -0.16 

LPT Blade Eutectic Advanced, Trijet -106 (-118) +1, -0.60 
Nickel-Base 
DS Casting Quadj et -110 ( -50) +17 -0.60 

HPT Blade Cooling Film and Full Film Cooling Trijet -37 (-17) +14 -0.11 
Impingement Cold Bridge Quadjet -40 (-18) +18 -0.11 

" Includes cycle effects on I_eight and price 
-

I 

lJ DOC 11 l'f 
% % 

-1.38 -1.49 

-1. 85 -1. 95 

-0.42 -0.44 

-0.53 -0.52 

-0.15 -0.38 

-0.26 -0.50 

-0.39 -1.13 
-0.73 -1.49 

-0.06 -0.09 

-0.09 -0.12 

-0.69 -0.91 
-0.98 -1.20 

-0.31 -0.18 
-0.39 -0.23 

-0.:'3 -0,31 
-0.067 -0.41 

+0.34 -0.24 

+0.33 -0.32 

+0.10 -0.78 

-0.07 -1.03 

+0.49 -0.17 
+0.51 -0.22 



Advanced, Mixed-Exhaust System versus 
High-Extraction, Separate-Flow Design 

Composite Construction versus 
Conventional Metal 

High DMax/DHL Inlet versus CF6 
Type Inlet 

Pylon-Mounted Accessories versus Fan 
Case Mounted 

High Aspect Ratio and Spacing LPT 
versus Splitter and Spool Piece for 
Reduced Turbine Noise 

The conclusions reached are as follows: 

llDOC, % 

-0.8 

-0.8 

-0.3 

-0.4 

-0.3 

1. Composites in the nacelle have major payoff 

II Fuel Usage % 

-2.6 

-0.6 

-0.5 

-0.6 

-0.3 

2. Pylon-mounted accessories have payoff Complementary Benefit 
in Integrated Nacelle 

3. Small diameter outer cowl has payoff 

4. Turbine noise suppression: LPT with high blade passing frequency 
is a good approach. 

5. Bulk-absorber inlet treatment: significant advantage over con­
ventional inlet treatment. 
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SECTION V 

TASK III - REFINED ANALYSIS 

A. Baseline Engine and Installation 

In Task III, the results of the Task II evaluation were applied to define 
a new, baseline, advanced-technology engine. Features and modifications that 
were found to be a reasonable compromise between direct operating cost, fuel 
economy and engine growth potential were incorporated. 

The significant cycle and technology items included in this design are as 
follows: 

Cycle 

Overall Pressure Ratio: 38:1 (MxCl) 

Fan PreSsure Ratio: 1.7 (MxCl) 

Features 

Unshrouded composite fan blades 

Composite frame and nacelle 
Long-duct, mixed-flow exhaust 

Clearance control systems 
Advanced noise-suppression systems 
Highly loaded four-stage LPT 

The engine and installation layouts for the Task III engine are illus­
trated in Figures 37 and 38. They are quite similar to the Task II baseline 
engine q:escribed earlier, except for the specific cycle and component changes 
recomme;nded as a result of Task II studies. Certain component configurations 
defined in Task II were altered slightly due to optimization studies carried 
out in Task III. 

! 
B. /Cycle and Component Aerodynamic Definition and Performance 

.I From the parametric cycle work done in Task II, it was decided to make 
t\vO major changes from the Task II basline cycle. Turbine inlet temperature 
at take-off power was lowered to 142r C (2600° F) from 1538° C (2800° F), 
with the higher value being reserved for growth. Fan pressure ratio was 
raised from 1.65 to 1.71 at the maximum climb design point at M = 0.8, 
10,670 m (35!000 ft). 

An overall definition of the Task III engine cycle is given in Table XXXV. 
This is the "design size" that will be referred to in later section. A 
sumrr:ary of engine component characteristics is presented in Table llXXVI. 

A primary goal of the study was to define an engine with lower fuel con­
sumption than a current modern turbofan. As illustrated in Figure 39, the 
Task III basline engine (scaled) has an installed sfc advantage (including 
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Table XXXV. Engine Cycle Definition. 

Design Point at MxCl Mn = 0.8, 10,670 m (35K ft) 

Takeoff - Hot Day 

- Fn , N (lb) 

- T4l' Turb. Rotor Inlet 
(Average Cycle) 

- Fan Pressure Ratio (P/P) 

- Bypass Ratio 
Mixed Flow - 75% Effectiveness 

Nn = 0.80, 10,668 m (35K ft) 

- MxC1 Fn , N (lb) 

- w/e/e at NxC1, kg/sec (1b/sec) 

- Fan UT/{e at HxCl, m/sec (ft/sec) 

- Bypass Ratio at MxC1 

- HxCr Fn N (lb) 

- Booster PIp at MxCr 

- Core Compo p/p/wle/o kg/sec (lb/sec) 
at HxCr 

- Overall Pip at }~Cr 

- T41 at MxCr - hot day 

- T41 at ~~C1 - hot day 

Baseline-STEDLEC Task III 

147,700 

1427° C 

1.52 

7.5 

38,900 

568 

494 

6.9 

35,600 

2.G5 

13.6/30.4 

35.9 

1327° C 

1371 ° C 

(33,200) 

(2600° F) 

(8740) 

(1253) 

(1620) 

(8010) 

(13.6/67.1) 

(38:1 at Design Point) 

(2420° F) 

(2500° F) 

Table XXXVI. Engine Component Definition. 

ORIGIN AD PAGE IS 
OF POOR QUALlTY/ 

Fan Tip Diameter, cm (in.) 

Fan r/r 

Fan Design 

No. of Boosters 

No. of Core Compressor Stages 

Core Compressor r/c 

Combus tor Type 

No. HPT Stages 

Cooling 

No. LPT Stages 

Average LPT \,ark Coefficient §Jt~2 

Nozzles 

Length (Flange to Flange), em (in.) 

Base1ine-STEDLEC Task III 

200 (78.8) 

0.38 

Unshrouded Composites 

3 

0.68 

Double Dome, Low Emissions 

1 

Film Impingement; Bore-Entry Supply 

4 + OGV (1 Cooled Blade) 

1.63 

Fixed Convergent/Divergent 

259 (102) 
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nacelle drag) of over 10% in the cruise thrust range of interest when compared 
to the CF6-50. 

Prior to selecting the final LP system configuration, presented in Table 
XXXVII, a fan tip speed and LPT optimization study was carried out using the 
evaluation procedure of Task II. The study took into account fan and LPT 
efficiency variations, weight, cost, and the effect on the booster. Results 
of this study are illustrated in Figure 40. As the fan tip speed was reduced 
below 494 m/sec (1620 ft/sec), the fan efficiency improved at the constant fan 
design pressure ratio of 1.7. This was due to lower blade shock and compres­
sibility losses. The low pressure turbine flowpath was close coupled to the 
high pressure turbine; as a result the four-stage, low pressure turbine 
loading increased, and its efficiency decreased, as the fan tip speed was 
reduced. At some fan tip speed, 480 m/sec (1575 ft/sec) for example, a fifth 
stage had to be added because no reasonable four-stage design was possible. 
When the stage number was increased, the low pressure turbine efficiency 
increased, improving sfc by 0.8%, but also increasing the engine weight and 
price. Based on a minimum DOC, a corrected fan tip speed of 494 m/sec 
(1620 ft/sec) and a four-stage LPT were chosen. Although the 480 m/sec 
(1575 ft/sec) fan with five-stage turbine gave minimum fuel usage, that 
advantage was overcome by the increase in price, weight and complexity; as 
indicated by the DOC result. 

The booster compressor design is summarized in Table XXXVIII. A three­
stage design was selected to provide adequate stall margin at the available 
tip speed. Relatively low blade and vane aspect ratios were chosen for 
mechanical strength and resistance to aero/mechanical vibrations. 

The high pressure compressor design, presented in Table XXXIX, had a high 
tip speed of 431 m/sec (1415 ft/sec) at the first rotor. The high speed was 
necessary to produce a 14:1 pressure ratio in 9 stages. The compressor design 
included advanced aerodynamic blading design and thermal insulation of the 
compressor casing for improved clearance control on the back stages. 

The double-dome combustor was designed to meet both low idle HC and CO 
emissions as well as low NOX emissions at high power settings. This was 
accomplished by operating only on the outer fuel nozzles at idle and low 
speeds with a high level fuel-air ratio. At high power the secondary inner 
dome, with lean stoichiometry for low NOX emission, was activated. Low 
emissions was the primary requirement of the double-annular combustor 
described in Table XL. It was also expected that better profile and pattern 
factors could be achieved with this design than with current combustor designs. 

Figure 41 illustrates the results of a study made on the HPT for changes 
in diameter and loading. Tip clearance, radius ratio, weight, cost and 
efficiency effects were taken into account for this study. Based on these 
results, a turbine work coefficient of 0.87 and a configuration almost 
identical to the Task II engine HPT were selected. When the turbine pitch 
diameter was increased by 5%, the turbine loading parameter was reduced by 10% 
(example, from 0.87 to 0.79). There was an adverse effect on tip clearances 
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Table XXXVII. Fan Aerodynamic Design. 

Fan Pressure Ratio 

Diameter, em (in.) 

Hub Radius/Tip Radius 

UT/82' m/see (ft/see) 

w182/o 2 A, kg/see-m2 (lb/see-ft2) 

No. Blades 

No. Vanes 

Shroud Type 

Solidity, Tip/Hub 

(1) Vane Frame 

J:1xC1/MxCr 

1. 71/1. 65 

200 (78.8) 

0.38 

494/480 (1620/1573) 

1.82/1.778 (43.3/42.2) 

28 

40 (1) 

Unshrouded 

1.65/2.60 

\.' 
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Table XXXVIII. Booster Aerodynamic Design. 

Pressure Ratio, Fan Hub (Booster Inlet) 

No. Booster Stages 

Pressure Ratio, Booster Stages 

Average PiP/Stage 

uH/;e; Boost Rotor Stage 1, m/sec (ft/sec) 

Average Blade Aspect Ratio (AR) 

Average Blade Pitch1ine Solidity 

Average Vane Aspect Ratio CAR) 

Average Vane Pitch1ine Solidity 

MxC1/MxCr 

1. 61/1. 55 

3 

1.71 

1. 20 

212/206 (694/674) 

2.0 

1.3 

1.8 

1.7 

Table XXXIX. Compressor Aerodynamic Design. 

10,670 m (35K ft) 10.8 Mn 

W2 Corrected, kb/sec (It/sec) 

Pressure Ratio 

No. Stages 

Corrected Tip Speed, m/sec (ft/sec) 

rH/rT 1st Rotor Inlet 

Corrected Flow. ks/seL (lb/sec) 

MxC1/MxCr 

31.0/30.3 (68.4/67.1) 

14/13.6 

9 

431/427 (1415/1400) 

0.68 

17.1 (37.8) 

2.0 

\ 
\ 

\ 
\ , 
\ 

.. " 



P3' N/m2 (psia) 

T 3' 0 C (0 F) 

Table XL. Combustor Design. 

Combustor Exit Temp. 0 C (0 F) 

M3 

V Outer/Inner, m/sec (ft/sec) Dome 

Space Rate, joule/hr-N/m2-m3 (Btu/hr-atm-ft3)xl06 

Comb. Length/Dome Height 

Profile Factor 

Pattern Factor 

Liner Cooling, % 

Type 

SLS Takeoff 

2,900,000 (433) 

586 (1086) 

1479 (2695) 

876 (1609) 

0.294 

5.18/31.4 (17/103) 

2.76 (7.5) 

3.2/3.9 

0.10 

0.25 

17.7 

Double Annular 
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due to a smaller blade height at a larger diameter, an increase in secondary 
flow losses to lower blade aspect ratio, and finally an efficiency increase 
due to lower turbine loading. Overall there was a small net improvement in 
turbine efficiency. But there was also a turbine weight and price increase 
due to an increased number of turbine blades at the larger pitch diameter. 

Table XLI presents a general description of the HPT (high pressure 
turbine). The highly loaded, single-stage turbine was advantageous, from a 
cooling standpoint, for a high temperature engine. Active clearance control 
was employed to achieve better efficiencies than currently available from this 
type of HPT deisgn. 

The LPT (low pressure turbine), described in Table XLII, was a highly 
loaded design that utilized results from recent NASA-sponsored, low speed 
turbine programs. The LPT counterrotates from the direction of the HPT to 
reduce the turning required of the stage 1 LPT vane. Two stages of vane 
cooling and one stage of blade cooling were required. 

The turbine cooling design features are listed in Table XLIII. Some of 
the advanced features (such as Ni76XB blade material, and ceramic HPT shrouds 
and bands) have been included. Others, such as ceramic turbine vanes, are not 
included but should be considered for later growth of the engine. 

One important consideration in any new engine design is whether the 
engine is capable of growing significantly in thrust for later application. 
Table XLIV presents the growth goals for this engine (20 to 25%), and the 
methods available to achieve them. 

C. Engine Design 

Design features evaluated in Task II, and determined to have economic 
payoff, were incorporated into the Task III engine (Figure 37) with the 
exception of ceramic HPT and LPT vanes (it was felt the necessary technology 
and development would not be in place in time to permit a 1985 certification). 
The Task III design features are compared to the CF6-50 in Table XLV. 

Composites were used extensively in the fan rotor, frame, and casing with 
significant weight and cost savings. A ,vide-chord fan blade, without shrouds, 
was designed to satisfy aeromechanical stability requirements. Use of 
composites in the fan case and frame permitted an integration of the two with 
the nacelle in the area over the fan. The fan-frame struts were designed to 
perform the outlet guide vane function, allowing a more compact engine layout. 
The fan blade containment design was based upon a Kevlar-type material. 

The booster mechanical design was conventional, with titanium used for 
the blades and vanes. Low aspect. blading was chosen to provide necessary 
stall margin and to enhance the FOD (Foreign Object Damage) resistance of the 
blading. 
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Table XLI. Hp Turbine Aerodynamic Design. 

10,670 m (35,000 ft)/0.8 Mn 

MxCr 

~ h, joule/kg (Btu/lb) 476,000 (205) 

No. Stages 1 

Overall Pressure Ratio 3.82 

Clearance Control Active 

CL/L % 0.5 

Rotor Cooling Supply Stage 5 Bore Entry into Turbine 
(Compressor Source), 

Leaving Mach No. 0.48 

Leaving Swirl 20° 

Tip Shroud No 

Table XLII. LP Turbine Aerodynam~c Design. 

10,670 m (35,000 ft)/0.8 Mn 

MxC1/MxCr 

No. Stages 4 1/2 

~h, joule/kg (btu/lb) 456,,000/437,000 (196/188) 

pip 5.7/5.6 

tjJP _ gJ~h 
2U2 1. 63/1. 61 

Tip Shroud Yes 

Rotation Counterrotating with Core 

Interturbine Frame No 

Cooled Blades Yes (1 stage) 



Table XLIII. Turbine Cooling System. 

High Pressure Low Pressure 

Stage 1 1 2 

Blade Hateriel Ni76XB Ni76XB Ni76XI; 

Cooling Technology Impingement/Film Improved Convection Uncooled 

Vane Haterial HA754 HARH 509 HARM 509 

Cooling Technology Impingement Film Simple Film Simple Film 

Band Haterial Ceramic HARH 509 HAR}! 509 

Shroud Haterial Ceramic Hetalli-c Honeycomb Hetallic Honeycomb 

Table XLIV. Gro\\;th Considerations. 

20 to 25% thrust increase required, takeoff and cruise 1 - same diameter 7· 

Initial cycle and configuration - select so that no barriero to growth exist 
(such as jet noise, temperature limitation, shaft torc;ue, etc.) 

Elemen ts of growth necessary 

Growth Cycle 

- Core energy +93° C (+200° F) turbine temperature 1538° C (2800° F) T4l 
added booster stage 0,44:1 cycle pIp 

- Thrus t porducing capability +8 to 10% fan pressure ratio "'1.85 fan pIp 
plus some flow within same fan diameter 

Technology features for growth 

- Ceramic vanes Feasibility needs to be established 

- Eutectic turbine rna terials Cost trades change in growth con text 
and more axo tic cooling 

Table XLV. Engine Design Features. 

Advanced Turbofan Current Engine 
Task III CF6-50 

Fan CompOSite, Unshrouded Titanium Hidspan Shroud 
HIgh Tip Speed, Advanced Aerodynamics Low Tip Speed 
Composite Fan Blade Containment Armor Steel 
Composi te Fan Frame Metal Frame 
Integrated Fan-Exit Guide Vanes Separate Struts and Exit 

Guide Vanes 

Compressor 9 Stages 14 Stages 
High Tip Speed, Advanced Aerodynamics Current Technology 

Clearance Controlled Rear Casing 
Rugged, Wide-Chord Blading 

".-

Combustor Double-Dome Annula1: 
Low Emis s ions 

High Pressure Turbine High Pip, High Loading Single Stage 
Advanced Aero. and Tip Clearance 
Control 

Low Pressure Turbine 4-1/2-Stage High Loading, COoled 
No Intetturbine Transition 
Low Source Noise 

Exhaust Advanced Hixer 
75% Effectiveness 

Single-Dome Annular 

2-Stage 'turbine, LO\< Loading 
Current Technology 

4-Stage Low Loading 
Transition Duct 

Separate 

·U1iiGTN.f(L PAGE IS 
OF POOR QUALITY; 

'-

101 



Titanium and Inconel blading was employed in the core compressor. The 
wide-chord design was an element of the high stage-loading concept and also 
increased tolerance to blade erosion. The rotor was cooled by booster dis­
charge air. An inside diameter extraction system was used to provide HPT 
blade-cooling air. Compressor clearances in the last four stages were main­
tained by using a double casing, of a cooled and insulated, low-expansion 
alloy design (See Task II for a description of the benefits). Variable 
stators were necessary in the forward stages for flow matching. 

A double-annular combustor, with primary and secondary burning zones for 
low emissions "(Ilas utilized in the Task 111 engine. Film cooling was employed 
in a machined-ring design for improved reliability. 

The liPT was a high tip speed, single-stage design utilizing an advanced, 
bore-entry, cooling-supply system, an advanced, directionally solidified, 
blade alloy, and an active clearance-control system for the blade/shroud 
interface. The improvements due to the active clearance-control system were 
evaluated in Task II. Table XLIII describes the cooling technology and 
materials used in the blades and vanes. Ceramics were utilized for the HPT 
blade shroud and vane inner and outer bands. 

A close-coupled, highly loaded LPT with 4-1/2 stages was employed in the 
Task III engine. Two stages of vanes and one stage of blading required 
cooling, due to the high LPT inlet temperatures. A directionally solidified 
blade material was used in the first two stages, and a high temperature nickel 
alloy was used in the first three stages of vanes. The OGV function was 
combined with the struts in the exhaust frame to remove the swirl coming out 
of the last rotor stage. 

Figure 42 illustrates an engine schematic, consistent with the Task III 
design, with overall dimensions and CG (center of gravity) location identified. 
The estimated bare-engine weight in the design size "(Ilas 2040 kg (4500 lb), 
yielding a thrust-weight (uninstalled take-off thrust) ratio of 7.6. Figure 43 
is a comparison, by component, of the Task III engine weight versus a scaled 
CF6-50. 

D. Installation Design 

The long-duct, mixed-flow installation used in Task II was retained for 
Task III (illustrated in Figure 38). 

Extensive use of composites in the cooler part of the nacelle and fan 
duct produced significant weight and cost savings, as described in Task II. 
Strength and weight calculations were based on a honeycomb sandwich construc­
tion with graphite polymeric composite surfaces. The surfaces consisted of 
multiple layers of prepreg material oriented at 0.79 to 1.05 rad (45 0 of 60 0

) 

with conductive strips for lightning and static electric discharge. Leadihg­
edge anti-icing was accomplished through an aluminum-sheet, leading edge 
annulus blown with hot compressor discharge air. An epoxy coating was used to 
reduce normal surface erosion. 
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A canventianal, ,no.nredundant mounting 'system was emplayed an the Task III 
engine, as illustrated in Figure 44. Thrust is taken aut by a yake maunted to. 
the frant frame af the care engine. 

An advanced, thin-nacelle cancept was emplayed to. reduce nacelle drag. 
Figure 45 illustrates the Task III inlet campared to. a t:urrent CF6-type can­
ventional inlet. A higher value af DHL/DMax, cansistent with a cruise Mach 
number af 0.8, was selected, hawever, the internal cantractian ratio. was main­
taine,l. Placement af the engine and airframe accessaries gearbax in the pylan 
allaY7ed the usual nacelle accessary "hump" to. be eliminated. A drag reductian 
af 0.8% af cruise thrust resulted fram a cambinatian af the thin nacelle and 
placement of the accessaries in the pylan. 

The mixer design was an advanced, 2l-labe system (Figure 46). Mixer 
effectivenless was estimated at 75%, which is a prajectian af what can be 
abtained with develapment effart. Fram the exit plane af the mixer aft, the 
engine nazzle is campased af steel haneycamb far light weight, stiffness and 
saund sUPPlcessian. Backflaw and pluming af hat gases accured during reverse 
aperatian, requiring the high temperature nazzle material. 

The reverser was af the cascade type, but simplified and reduced in 
weight fram current cascade reversers. Campasites were emplayed where passible. 
During rev'erse aperatian, caaling air circuits were apened to allaw caal aut­
side air to. flaw into. the hot recirculating exhaust gases to protect the 
composite duct walls fram overtemperature. The reverser design provided 
approximately the same reverser effectiveness as the CF6-50 fan reverser. 

A component-by-component comparison of installation weight with a scaled 
CF6-50C is given in Figure 47. Combined with the reduction in base engine 
weight~ an installed weight savings of 12% was achieved when campared to a 
CF6-50 scaled to the same take-off thrust, and 24% when scaled to. the same 
cruise thrust. An installed weight af 2940 kg (6600 lb) was estimated far the 
Task III engine for an installed take-off thrust/weight ratio. af 5.1, compared 
to 4.5 for the CF6-50C on a scaled basis. 

E. Noise and Emissions 

Noise levels of the installed Task ITI engine were estimated to meet the 
FAR36 minus 10 EPNdB requirements established far this study in the host air­
craft defined in Task II. The suppression performance penalty was estimated 
to be abaut 0.1% sfc with an installed cost and weight penalty af abaut 1.5%. 
Low noise levels were achieved through a combination of suppressian and 
source-noise reductian assuming continued development of low naise technalogy. 

Fan blade to fan stator spacing wa.s set at 1. 7 blade chard lengths to. 
reduce pure-tone noise due to wake interference. In the LPT, the number of 
blades in the last two stages was increased, along 'with the blade to. vane 
spacing, to reduce pure-tone noise and to increase the passing frequencies to 
less object.ionable levels. 
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Figure 44. Engine Mounting Schematic. 
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Suppression was accomplished by using bulk acoustic-suppression liners in 
the inlet and phased SDOF (Single Degree of Freedom; tuned for a particular 
frequency) treatment in the fan duct. A Kevlar-based bulk absorber treated to 
reduce wetting and moisture abosrption problems was used. A limited amount of 
honeycomb suppression liner \.]as employed in the turhine exhaust and in the hot 
section of the mixed-flm.] exhaust liner. 

Figures 48 and 49 present the estimated suppressed and unsuppressed 
source-noise levels, by component, for a typical approach condition and for 
takeoff Hith no cut back. Only fon.]ard- "and aft-radiated noise levels are 
supplied since sideline noise was not a limiting factor. At takeoff, a noise 
level of FAR36 minus 10 EPNdB ,.]as achieved. During approach, a system noise 
level of just under FAR36 minus 10 EPNdB achieved, with the aircraft contribution 
being about the same as the engines. The aircraft contribution Has estimated 
fr,m DC-lO noise patterns. No margins or tolerances that would be necessary 
to certify an aircraft to a given noise level were included in these estimates. 

Emission estimates Here made for an advanced, double-annular combustor 
design, which employed the concept of a primary burner for low power and idle, 
and an added secondary burner for high pmver. During idle and low' pOHer 
settings, the primary burner employed a rich mixture, and low air velocities, 
to reduce CO and HC emissions. At higher power levels, the secondary burner 
cut in and maintained a leaner mixture and high burner velocities for low 
smoke and reduced NOX' 

Table XLVI presents the predicted emission levels of the Task III 
combustor, along Hith 1979 and 1981 EPA requirements. ABsuming continued 
development of such a combustor, it is projected that the requirements could 
be met Hith the exception of NOX (3.7 versus 3.0). Currently, no acceptable 
'.Jay to meet the NOX emission requirement has been identified. Again, no 
margins that might be necessary for certification were included in these 
estimates. 

F. Economic Factors 

Estimates of the production cost for the Task III engine and installation 
Here made and compared to the cost of a scaled CF6-S0 engine. In Figure 50, 
relative cost changes (as a result of cycle, technology, and materials) are 
shown for both the basic engine and installation. The basic engine cost 'vas 
higher, due primarily to the extensive use of more expensive high temperature 
materials. However, the installation items were lmver due to the use of 
composites, resulting in a slightly lower installed engine cost. 

Another economic factor was the impact on maintenance cost of the Task 
III engine design. Although a quantitative estimate of the maintenance cost 
per flight hour was not made, many features were incorporated into the engine 
to decrease maintenance. The basic engie layout was simple, and involved a 
relatively small number of parts. Table XLVII presents a few of the design 
features which shOUld reduce maintenance cost. These features were separated 
into two major groups, primary failure prevention, and secondary failure 
prevention. 
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Table XLVI. Emissions Estimates*. 

STEDLEC EPA Requirements 
Task III T2 Class Turbine Engines 

1979 1981 

CO, kg/lOOO N Fn-hr/Cycle <0.31 (3.0) - 0.44 (4.3) 0.31 (3.0) 
(lb/lOOO lb Fn-hr/Cycle) 

HC <0.04 (0.4) 0.08 (0.8) 0.04 (0.4) 

NOX 0.38 (3.7) 0.31 (3.0) 0.31 (3.0) 

AlA smoke at TO, % < 20 20 

Table XLVII. 

-
* No Margins 

Design Features for Improved Reliability 
and Lower Maintenence Costs. 

• Primary Failure Prevention 
Shrouded Compressor 
Clearance Monitoring 
More Rugged Blading 
Rolled-Ring Combustor Liner 
Condition Monitoring Ports 
Remote Accessory Mounting 
Optical HPT Blade Temperature Monitoring 
Main-Shaft Bearing Monitoring 
Ceramic Shrouds 

• Secondary Failure Prevention 
Composite Fan Blades 
Chip Detection 
Vibration Monitoring - Engine and Bearings 
Double-Insulated, Aft Sump 
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The goal for the installed engine cost of the advance.d engine was to 
match that of the CF6-50, scaled to same thrust, and compared at the same 
point in production run. The goal for maintenance costs \Vas an improvement of 
15% versus the scaled CF6-50. 

The effects of meeting the engine technical goals, discussed above, are 
illustrated in Figure 51. The fuel saved ranged from 13.5 to 17.5%, if all 
the goals are met in the advanced propulsion system. As illustrated in Figure 
39, the installed sfc improvement was predicted at 11%, 1% better than the 
10% goal. The installed 1;veight reduction was 24%, at the same cruise thrust 
as the CF6-50, which exceeded the 20% installed weight reduction goal indicated 
in Figure 51. 

The DOC reductions estimated were just under 6% for the transcontinental 
aircraft, and 10% for the intercontinental aircraft; based on installed sfc 
and weight improvements only. Although the installed production engine cost 
was esU_mated as being the same for the advanced and CF6-50 engines, the 
engine market price may well be higher because of development cost and 
maturity effect. However, engine market pricing differences were beyond the 
scope of this study and are not included in Figure 51. The contribution of 
the 15% maintenance cost reduction on DOC is 1 to 1-1/2%, as illustrated in 
Figure 51. The installed sfc reduction contributed the largest portion toward 
the DOC and ROI benefits of the advanced aircraft. 

G. Summary of Results - Task III 

A preliminary design of the advanced technology engine identified in Task 
II 1;vas carried out. In order to illustrate the magnitude of improvement which 
could be achieved with a new engine incorporating advanced technology, 
comparisons were made ",ith the CF6-50C engine, "'hich is believed to be a good 
current engine from \Vhich to measure improvement in technology and perfor- . 
mance. An improvement in installed sfc (including nacelle drag) of just over 
10% was estimated in this study. It must be emphasized that this includes the 
effect of advanced technology in terms of component performance, cooling, and 
materials technology. A reduction in installed 1;ve'ight of 12% below that of 
the CF6-50C, scaled to the sa1]le take-off thrust, was obtained. Since the 
advanced engine ratings ",ere set to provide relatively high cruise thrust, the 
resulting weight reduction becomes 24% when compared at the same cruise 
tl1Yust. It was also estimated that the advanced engine, plus nacelle, would 
have a comparable cost level to a scaled CF6--50C at the same point in the 
production run. 

The effects of installed engine improvements were estimated for the 
advo.nced aircraft defined for this study. An approximate 6% improvement in 
DOC, B,nd 13% improvement in fuel usage, were sholVU for the transcontinent8.l 
trijet. The corresponding improvements for the intercontinental quadjet were 
10 and 17%. 
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The advanced Task III engine was projected to meet the noise goal of FAR 
Part 36 minus 10 EPNdB for the aircraft defined in this study, utilizing the 
advanced noise-reduction technology identified. 

The proposal 1981 EPA emissions requirements will require advanced 
combustor-technology features, but no acceptable approach to meeting the NOX 
requirement has yet been identified. 
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SECTION VI 

RECOMMENDED TECHNOLOGIES 

Quantitative data, related to payoff of specific technology design 
features, was presented in Tasks I and II. Figure 52 is presented -to 
summarize the payoff of the technology advances employed in the advanced 
engine relative to the technology of the current CF6 engines. Results of 
the STEDLEC study were supplemented by results from previous studies in con­
structing Figure 52. The two most significant advances, from an energy con­
servation standpoint, are the high thermal efficiency cycle (high turbine 
temperature and cycle pressure ratio) combined with advanced turbine tech­
nology and the advanced, mixed-exhaust system. All the advances, however, 
contribute to an improvement in aircraft DOC and are therefore importallt in 
justifying a new transport engine. 

A. Energy Consumption 

The technology needs, directed at reducing the energy consumption of 
advanced technology engines, are summarized below: 

1. Engine technology allowing economical use of high thermal 
efficiency cycles: 

a. Advanced materials 

Ni-base blades 

Ceramics for static flowpath parts 

b. Engine arrangement for minimum cooling 

Single-stage core turbine 

It is believed that effort to advance technology is justified in all 
areas shown. The improvement indicated for high thermal efficiency cycles is 
large, provided that hot parts design technology can be developed for 
reasonable initial and maintenance costs. Improved, directionally solidified, 
Ni-base blade material not only will allow reduced eooling flows, because of 
the higher allowable metal temperature, but has the promise of improved low 
cycle fatigue characteristics. Ceramics are a good candidate for turbine 
shrouds, but the feasibility of alternate methods of designing ceramic vanes 
with impact-damage resistance must be explored. 

2. Improved component performance: 

a. Fan; high tip speed fan compatible with composite blades 

b. Core compressor; high tip speed, compact, rugged design 
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c. Core turbine; single-stage, high pressure ratio design 

d. Fan turbine; high work-coefficient design 

e. Engine design and materials for clearance control 

f. Engine design for efficient handling of cooling and 
leakage flows 

g. Design features for reduced deterioration 

Improved component performance is necessary in order for the compact 
arrangement, selected for the advanced 1985 engine, to provide the performance 

.~ level projected in this report. If based on correlations of current tech­
nology, the designs selected would have lower component performance than the 
CF6. Figures 53 thru 56 illustrate the technology needs for each of the 
major components. An improvement in efficiency is projected, in each case, 
beyond that based on correlation of current technology. 

The aerodynamic performance of the high tip speed fan must be obtained 
with low aspect-ratio blading compatible with composite construction. The 
core compressor has a relatively small number of stages (9) for its 14:1 
pressure ratio, but an improvement in efficiency through a combination of 
aerodynamic refinement and clearance control is needed. The single-stage, 
high pressure ratio, core turbine provides an advantage in cooling air 
consumption, but improvements in the basic aerodynamics of the blade and 
end-clearance control are needed. The highly loaded fan turbine allows the 
relatively high bypass engine to be configured with a low number of stages, 
but development of the basic aerodynamic capability is necessary. 

The basic engine must be designed to allow the full aerodynamic capa­
bility of the components to be achieved. This includes design features to 
maintain control of clearances during engine transients and to minimize the 
mechanical distortion of the engine under various operating conditions. 
Efficient means of handling the cooling and leakage flows, including use of 
advanced seal concepts, must also be a requirement of the engine design. 
Reduced in-service performance deterioration can also be obtained by the use 
of clearance-control design features, the use of erosion-resistant shrouds 
and coatings, and the use of rugged, low aspect-ratio blading, particularly 
in the high pressure section of the engine. 

\ 

3. Cycle selection for good propulsive efficiency: 

a. Fan pressure ratio and bypass ratio; balance of factors 

b. Mixed-flow exhaust technology 

The fan pressure-ratio/bypass-ratio combination was selected to balance 
energy consumption, DOC, noise, and growth capability. The mixed-flow exhaust 
system was a high-payoff feature, but development is needed to assure that the 
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estimated levels of mixing effectiveness and losses can be achieved in an 
engine environment. Figure 57 illustrates the technology factors involved 
in the mixer for the advanced engine. 

4. Minimum installation losses: 

a. Compact engine layout 

b. Efficient nacelle layout for M = 0.8 cruise 

c. Improved noise-suppression techniques 

The nacelle aerodynamic design should be laid out to take advantage of 
the short length of an advanced engine and provide a minimum nacelle 
diameter, with accessories located in the pylon. Wind tunnel verification 
of such a layout, including interference effects, will be necessary. 
Improvements in noise-suppression techniques are necessary to meet the 
expected noise requirements for 1985 aircraft with normal-length inlets, 
and without the use of high loss splitters in the inlet or exhaust systems. 

B. Aircraft Economics 

In addition to improved fuel usage, a new engine must provide an 
improvement in aircraft economics in order to justify the development of 
such an engine. The technology features directed at reducing energy 
consumption, discussed above, are of course contributors to improved 
economics. In addition, there are additional technology needs directed 
primarily at improving economics, as summarized below: 

1. Longer life and lower cost designs for high turbine temperatures: 

a. Design approach to balance all factors 

b. Haterials technology 

The hot parts of the engine are the major contributors to engine 
m~intenance costs, and technology for long life and lower parts costs is 
necessary to make the high temperature, high pressure-ratio cycle acceptable 
to .the airlines. 

2. Engine design for minimum number of major parts: 

Advanced component aerodynamic technology - small number of 
stages 

b. Two-frame, five-bearing arrangement 

The advanced engine has been laid out with a relatively small number 
of major parts, such as turbine stages and frames. The advanced component 
aerodynamic designs allow suchan engine arrangement, but require development 
to provide appropriate efficiencies as described in the previous section. 
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3. Use of composites in fan blade and frame 

Composites in the fan section and nacelle can provide a substantial 
improvement in economics and, indirectly, fuel usage because of weight 
reduction. Much development work will be required to make composites 
practical. The fan blade, in particular, requires effort relative to the 
bird-strike problem. 

4. Nacelle technology: 

a. Composites; integrated with -fan static parts 

b. Improved reverser 

The reverser system has historically been an area of concern, in air­
line service, in terms of installation components. The proposed, mixed-flow 
exhaust system will allow the elimination of the core reverser; and the pro­
posed, advanced-concept, Task III fan-reverser system will result in a simpler, 
lighter, and more reliable configuration. 

5. Advanced digital controls 

Digital controls can be a contributor to improved DOC through the flexi­
bility for additional functions, their possible integration with aircraft 
power management (including better engine protection and reduced pilot work­
load), and as an element of condition-monitoring system. 

C. Environmental and Safety 

Most of the above technology items are applicable in some degree to 
current engines or growth models of these engines. 

A new engine must meet the noise and emissions requirements that will 
be in existence at the time it goes into service. The estimates shown in 
this report for the advanced engine assume that continued effort is applied 
and progress is made in both noise and emissions technology. Specific design 
features were described in Task III, but continued basic technology work in 
these areas is required. 

It is also expected that a new engine will incorporate additional safety 
features which should be given attention from the technology standpoint. For 
example, composite blades (once they are developed for bird-strike capa­
bility) should have an advantage because of their tendency to fail in small 
fragments. Disc design technology for reduced chance of failure is another 
area where effort is justified. 
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SECTION VII 

CONCLUSIONS 

This report summarizes the results of the Study of Turbofan Engines 
Designed for Low Energy Consumption (STEDLEC). Design improvements and 
technology features were considered for the CF6 family of engines and 
evaluated in DC-10 type aircraft. Advanced technology features suitable for 
a new engine, which could enter service in 1985, were also evaluated in 
terms of the potential for improving energy consumption for advanced, sub­
sonic transports. Aspe~ific design was laid out and compared to a current­
technology, high bypass turbofan. Overall conclusions drawn from this study 
are as follows: 

• CF6 Engine 

Design changes categorized as design improvements, not requiring 
significant technology development, were identified which indicated a 
potential for 1-1/2 to 2% improvement in sfc. Basic engine design changes, 
which required technology development of various degrees, were identified 
which indicated a potential for 2 to 3% sfc improvement. The long-duct, 
mixed-flow design using composites was predicted to have the potential for 3 
to 3-1/2% installed sfc imrovement. The changes studied will require substan­
tiation thru rig and engine testing. Based on past experience, the total of 
the estimated improvements will normally not be achieved. In addition, 
certain items, particularly on a retrofit basis, do not show any advantage 
in aircraft economics. 
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• Advanced Engines 

1. An increase in turbine temperature and cycle pressure ratio to 
1427° C (2600° F) and 38:1 respectively, can provide a significant 
advantage in fuel usage in an engine incorporating advanced 
turbine technology. A corresponding improvement in DOC will also 
be obtained, provided that suitable life and endurance is developed 
into the advanced desigp. hoOt sect:lon of the engine. 

__ 0 ___ _ 

2. The mixed-exhaust system has the potential for a significant 
improvement--ooover a separate-flow cycle and exhaust system. The 
fan pressure-ratio/bypass-ratio choice of 1.7 and 7:1 respectively 
represents a balance between DOC, energy consumption, and growth 
capability. 

3. Component performance improvements, both aerodynamic and mechanical­
design related features, such as clearance control, are necessary 
in order that the estimated fuel usage and DOC improvements can be 
achieved with the compact engine design sho,ro. 



'( 

4. Advanced materials, including composites in the fan section 
and ceramics in the hot flowpath static parts, have the potential 
for significant improvements, but much technology work is required 
before they can be incorporated in an engine design. 

5. For a typical advanced-engine design incorporating the above tech­
nology, an improvement in installed sfc of over 10% is estimated, 
combined with a reduction in installed engine weight of about 20%. 
This results in an improvement in energy consumption of 13 to 17% 
for the transcontinental and intercontinental 0.8 MIl aircraft 
respectively. 

6. Technology improvements are necessary in all areas of the engine 
and installation, in order to provide the following requirements 
for an advanced engine; a) a major improvement in energy consump­
tion, b) sufficient improvement in aircraft economics to justify 
a new engine, and (c) environmental characteristics suitable for 
an all-new engine. An agressive research and development program 
directed at the technology of such an engine is necessary. 
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AlA 

ATA 

CDP 

CG 

CL/L 

DHL 

DHL 

D Hax. 

DOC 

DT 

EPA 

F 
m 

Fn or F 
n 

FOD 

HPT 

L 

1PT 

N or Hn 

HA754 

MARM509 

MxCl 

MxCr 

NB 
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NOMENCLATURE/SYMBOLS 

Aircraft Industry Association 

American Transport Association 

Compressor Discharge Pressure 

Center of gravity 

Clearance + blade height 

Inlet highlight diameter, m (ft) 

Inlet highlight diameter, m (ft) 

Nacelle maximum diameter, m (ft) 

Direct Operating Cost 

Fan tip diamete1, m (ft) 

Environmental Protection Agency 

Installed net thrust (net thrust minus drag), N (lb) 

Net thrust, N (lb) 

Foreign Object Damage 

High Pressure Turbine 

Inlet length, m (ft) 

Low pressure turbine 

Mach number 

Dispersion-strengthened alloy 

High temperature nickel alloy 

Maximum climb rating 

Maximum cruise rating 

Number of fan blades 



Ni76XB 

NiCrAly 

NO 
x 

PAX 

PI 

pip 

R95 

R125 

r
H 

ROI 

r/r 

r
T 

SDOF 

sfc 

sfc r 
STEDLEC 

T4l 

TO or T/O 

TOBL 

UR/ re;- B 

uT/re;-

V9 

V29 

W2C 

W 
c 

Advanced, directionally solidified, Nickel alloy 

Turbine shroud filler material 

Oxides of nitrogen 

Passenger 

Cost ratio, replacement parts new parts 

Pressure ratio 

Current, high temperature, Ni-base alloy (disc material) 

Current, high temperature, Ni-base alloy (blade material) 

Hub radius, m (ft) 

Return on investment 

Radius ratio 

Tip radius, m (ft) 

Single Degree of Freedom 

Specific fuel consumption, kg/N-hr (lb/lb-hr) 

Installed sfc, kg/N-hr (lb/lb-hr) 

Study of Turbofan Engines Designed for Low Energy Consumption 

Turbine rotor inlet temperature, 0 C (0 F) or 0 K (0 R) 

Takeoff (Take-off power) 

Takeoff-Balanced Field Length 

Hub speed corrected to booster-rotor inlet conditions, m/sec 
(ft/sec) 

Corrected tip speed, m/sec (ft/sec) 

Primary-jet velocity, m/sec (ft/sec) 

Fan jet velocity, ill/sec (ft/sec) 

Core compressor flow, kg/sec (lb/sec) 

Turbine cooling flow, kg/sec (lb/sec) 
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Weight of installed engine, kg (lb) 

Fuel flow, kg/sec (lb/hr) 

Standard day corrected airflow 

. Ideal thrust, mixed - Actual thrust, mixed 
Mixer effectlveness, Id 1 th d Th fl ea rust, mixe - rust, separate ow 

Mean loading of turbine stage 
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