AIRCRAFT DIGITAL CONTROL DESIGN METHODS

by

J. David Powell, Principal Investigator
Eric Parsons, Research Assistant
Michael G. Tashker, Stanford Research Institute

Guidance and Control Laboratory
Department of Aeronautics and Astronautics
Stanford University
Stanford, California 94305

February 1976
FINAL REPORT

Prepared For
NASA Langley Research Center
Hampton, Virginia
Grant NSG-1137
Many variations in design methods for aircraft digital flight control have been proposed in the literature. In general, the methods fall into two categories; those where the design is done in the continuous domain (or s-plane) and those where the design is done in the discrete domain (or z-plane). This report evaluates several variations of each category and compares them for various flight control modes of the Langley TCV Boeing 737 aircraft. Design method fidelity is evaluated by examining closed loop root movement and the frequency response of the discretely controlled continuous aircraft. It was found that all methods provided acceptable performance for sample rates greater than 10 cps except the "uncompensated s-plane design" method which was acceptable above 20 cps. A design procedure based on optimal control methods was proposed that provided the best fidelity at very slow sample rates and required no design iterations for changing sample rates.

At very slow sample rates, system roughness or jerkiness may be the limiting factor on the design. To better understand this phenomenon, an experimental study was defined for the Langley motion simulator with candidate designs for evaluation.
TABLE OF CONTENTS

Abstract .. 1

1.0 Introduction .. 1

2.0 Design Methods .. 3
 2.1 Introduction .. 3
 2.2 Digitized s-plane 3
 2.3 Modified Digitized s-plane 17
 2.4 Direct Digital Design 32
 2.5 Discrete Design Using Optimal Techniques 38
 2.6 Comparisons of Design Methods 47

3.0 Roughness .. 54

4.0 Conclusions .. 61

Appendix .. 62

References .. 75
1.0 Introduction

Digital Computers for aircraft inner-loop control functions have been implemented for research purposes\(^1,2\) and will probably be used for operational aircraft within the next few years. This research has been carried out in order to facilitate the design and performance evaluation of discrete flight control systems for future missions.

Many variations in design methods exist, but generally fall into two broad categories: 1) those where the design is done in the continuous domain (or s-plane) and then discretized, and 2) those where the design is done in the discrete domain (z- or w-plane).

Design using the first category is attractive since it utilizes the experience gained over many years of continuous autopilot design, and the additional discretization step required can be separated from the s-plane design process. All the discretization procedures (z-transform, bilinear or Tustin's, and z-forms) introduce an error\(^3\) which is small for relatively fast sampling (typically > 40 Hz) but grows larger as the sample rate is reduced. The effect of this error or approximation in the design method is generally checked by a simulation of the system. In some cases, a continuous control design exists and the sole requirement on the designer is to obtain the software for the digital computer which duplicates the continuous control as closely as possible. For these cases, only the discretization and verification via simulation is required.

Design using the second category includes the w plane techniques,\(^4,5\) z-plane Nyquist techniques,\(^6\) and discrete state space techniques.\(^7,8,9\) These methods do not introduce an error due to the discrete nature of the problem at any sample rate and therefore are particularly attractive when attempting to establish the lowest practical sample rate.

There is an interaction between the design method sample rate, system sensitivity, roughness of control, prefilter design, and gust response that needs to be thoroughly understood in order to synthesize digital control systems with confidence. Preliminary results\(^9\) on the interaction between the sample rate and system sensitivity and gust
response for a high performance aircraft indicate that sample rates can be used which are lower than those typically judged necessary in previously reported aircraft digital control studies.1,10,11,12 This research primarily concerns design method evaluations as a function of sample rate. Preliminary results concerning roughness of control are also included.
2.0 Design Methods

2.1 Introduction

The following sections carry out discrete designs for the NASA TCV Boeing 737 autopilot using several different methods. All the resulting designs are checked using an exact discrete analysis to determine the fidelity of the design method vs. sample rate.

Although only a few autopilot modes have been studied, the dynamics of the aircraft in the remaining modes of the autopilot are not sufficiently different to cause any significant change in the results concerning design methods. However, for other aircraft with significantly faster natural modes or greater structural flexibility, the results contained here do not apply.

2.2 Digitized S-Plane Design

Digitized s-plane design refers to the one-for-one replacement of continuous transfer function blocks with difference equations that can be mechanized on a digital computer. In classical flight control designs, these blocks fall into 4 general categories: integrators, washouts, simple lag networks, and compound lead or lag shaping networks for frequency compensation. The systems being considered here are ones that feed back sensor signals (from accelerometers, gyros, altimeters, etc.) which have been processed through these networks for stability improvement, or noise or bias rejection.

The digital problem after s-plane synthesis of an appropriate control is to obtain the best possible match of a continuous compensator with a digital filter. There are many methods of transforming a continuous filter into digital form [Refs. 13, 14, 15, 16] among which are the direct method, impulse invariant, zero-order hold, bilinear approximation (sometimes called Tustin's method), and the matched z-transform. The most successful methods exactly map the poles and zeros of the continuous filter into the z-plane by the transformation \(z = e^{st} \) for all sampling rates. Some methods, notably Tustin's method without pre-
warping, cause a shift in the poles and zeros of the filter at low
sampling rates. Exact mapping of the poles and zeros means that the
transformation itself plays less of a part in any degradation of
performance of the digital system.

The matched z-transform [16] was used in this analysis. For
the continuous filter transfer function,

\[G(s) = \frac{K \prod_{i=1}^{m} (s + \alpha_i) \prod_{i=1}^{n} [(s + \alpha_i)^2 + b_i^2]}{\prod_{i=1}^{r} (s + \beta_i) \prod_{i=1}^{r} [(s + c_i)^2 + d_i^2]} \]

the digital mechanization is

\[G(z) = \frac{K'(z + 1)^k \prod_{i=1}^{m} (z - e^{-\alpha_i T}) \prod_{i=1}^{n} (z^2 - 2e^{-\alpha_i T} \cos b_i T z + e^{-2\alpha_i T})}{\prod_{i=1}^{n} (z - e^{-\beta_i T}) \prod_{i=1}^{n} (z^2 - 2e^{-\beta_i T} \cos d_i T z + e^{-2\beta_i T})} \]

where

\[k = r + 2s - m - 2n, \quad k \geq 0 \]

and \(K' \) is the normalization constant. \(K' \) can be chosen to
produce the desired gain at either high or low frequency. Thus, to
choose the gain at low frequency, \(G(z) \) is evaluated at \(z = +1 \) and
\(K' \) picked to yield the desired magnitude. For a high frequency gain,
\(G(z) \) is evaluated at \(z = -1 \). Table I shows the transforms and associated
difference equations for the four forms of compensation mentioned above.

Even though any root movement due to the transformation is
eliminated, there is still some degradation of performance due to the
physical zero-order hold (ZOH). The hold produces a lag proportional to
the sampling interval, and can be regarded as causing a shift in the z-
plane zeros of the plant that increases with the sampling interval. This
zero shift occurs for all plant zeros not at the origin. Thus, any system
whose digital compensation is determined without taking into account the
phase shift of the hold mechanization will have degraded performance for long
<table>
<thead>
<tr>
<th>Transfer Function</th>
<th>Differential Equation</th>
<th>Transform</th>
<th>Difference Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{1}{s}$</td>
<td>$\dot{y} = x$</td>
<td>$\frac{T}{2} \left(\frac{z + 1}{z - 1} \right)$</td>
<td>$y_n = y_{n-1} + \frac{T}{2} \left(x_n + x_{n-1} \right)$</td>
</tr>
<tr>
<td>$\frac{1}{\tau s + 1}$</td>
<td>$\dot{y} = -\frac{1}{\tau} \dot{y} + \frac{1}{\tau} x$</td>
<td>$\frac{1-e^{-T/\tau}}{2} \left(\frac{z + 1}{z - e^{-T/\tau}} \right)$</td>
<td>$y_n = e^{-T/\tau} y_{n-1} + \left(\frac{1 - e^{-T/\tau}}{2} \right) (x_n + x_{n-1})$</td>
</tr>
<tr>
<td>$\frac{s^n}{\tau s + 1}$</td>
<td>$\dot{q} = -\frac{1}{\tau} q + x$</td>
<td>$\frac{1-e^{-T/\tau}}{2} \left(z - 1 \right)$</td>
<td>$y_n = e^{-T/\tau} y_{n-1} + \left(\frac{1 + e^{-T/\tau}}{2} \right) (x_n - x_{n-1})$</td>
</tr>
<tr>
<td>$\frac{\tau_s}{\tau s + 1}$</td>
<td>$\dot{y} = -\frac{1}{\tau} \dot{q} + x$</td>
<td>$\frac{1-e^{-T/\tau}}{2} \left(\frac{z - e^{-T/\tau}}{z - e^{-T/\tau}} \right)$</td>
<td>$y_n = e^{-T/\tau} y_{n-1}$</td>
</tr>
<tr>
<td>$\frac{\tau_1 s + 1}{\tau_2 s + 1}$</td>
<td>$\dot{q} = -\frac{1}{\tau_2} q + \frac{1}{\tau_2} x$</td>
<td>$\left(\frac{1-e^{-T/\tau_2}}{1-e^{-T/\tau_1}} \right) \left(\frac{z - e^{-T/\tau_1}}{z - e^{-T/\tau_2}} \right)$</td>
<td>$y_n = e^{-T/\tau_2} y_{n-1}$</td>
</tr>
<tr>
<td></td>
<td>$y = \left(1 - \frac{\tau_1}{\tau_2} \right) q + \frac{\tau_1}{\tau_2} x$</td>
<td>$\left(\frac{1-e^{-T/\tau_2}}{1-e^{-T/\tau_1}} \right) \left(x_n - e^{-T/\tau_1} x_{n-1} \right)$</td>
<td></td>
</tr>
</tbody>
</table>

Table I.
Matched Z transforms for common filters.
sampling intervals (or low sample rates).

Formally, the procedure of digitized s-plane design consists of transforming an already existing s-plane design by substituting a difference equation for each control block. A reasonable measure of the success of this technique is to compare the equivalent s-plane root locations of the closed loop discrete system at various sampling rates to the closed loop roots of the continuous system. This comparison is not a function of the merits of the continuous design; the continuous system roots are taken to be the desired roots. The consequences of any root shifting can be displayed graphically by a transient response simulation. This has been done for three systems based on the TCV Boeing 737:

1) Pitch SAS,
2) Pitch attitude control wheel steering,
3) Longitudinal autoland.

For each of these systems a block diagram of the model† will be presented with the difference equations produced by the digitization, as well as a locus of root locations. Appropriate transient response plots will also be shown.

The equivalent s-plane roots of the system with a digital control law are determined by a method suitable for computer mechanization. First, the transition matrix is determined from the plant equations of motion and hold characteristics:

Given
\[x = Fx + Gu \]
then \[x_{n+1} = \phi x_n + \Gamma u_n \]
where \[\phi = e^{FT} \]
\[\Gamma = \int_0^T e^{FT}Gd\tau, \]
and \(T \) = the sampling interval.

These difference equations are combined with the difference equations of the controller (put into appropriate state form), and the

†The models are based on the actual TCV autopilot with nonlinearities removed.
eigenvalues found. These z-plane eigenvalues are transformed back into the s-plane by the inverse relation \(s = \frac{\omega_n(z)}{T} \). A program to perform these operations as well as certain synthesis methods is described in the appendix.

2.2.1. Pitch SAS

The pitch SAS is simple pitch rate feedback to the elevator for better damping and higher bandwidth. A short period model of the airplane is used here: a block diagram of the continuous system is shown in Figure 1. In this system it is assumed that the control law is calculated instantaneously; there is no sampling interval delay at the output of the controller. Also note that there is no washout on pitch rate in this model. Although a washout is common in most stability augmentation systems, it does not affect root locations or their variation since its break frequency is quite low. Without the washout, the digital controller has no states and no difference equation; therefore, this example is somewhat degenerate but will serve as a basis for comparison with other design methods in later sections. The root movement shown in Figure 2 is due entirely to the lag induced by the ZOH. This lag causes immediate degradation of the system damping. The real root is very slow and is not affected by sampling rate.

2.2.2 Pitch Attitude Control-Wheel Steering

The aircraft model for the attitude control-wheel steering mode is the same as that shown in Figure 1 with the addition of a pitch angle state. In this mode pitch rate is fed back through a washout to eliminate any steady-state component. The output of the washout and difference between the pitch angle and the preselected pitch angle is fed back through a one cycle delay to simulate computational delay.

The existence of this delay depends on the particular mechanization and does not always exist. Its presence degrades the stability and performance of the system more than would be encountered without it.

A block diagram of this system is shown in Figure 3.
The continuous washout for the TCV is:

\[\frac{d(s)}{c(s)} = \frac{16s}{16s + 1} \]

which yields a discrete transfer function (Table II) of

\[\frac{d(z)}{c(z)} = \frac{1 + e^{-T/16}}{2} \left(\frac{z - 1}{z - e^{-T/16}} \right) \]

and a difference equation

\[d_{n+1} = C_1 d_n + C_2 (c_{n+1} - c_n) \]

where the values of the coefficients are given in Table II for several sample rates.

Short Period model in state space form:

\[
\begin{bmatrix}
\dot{w} \\
\dot{q}
\end{bmatrix}
= \begin{bmatrix}
-.6283 & 207.1 \\
-.0033 & -.4499
\end{bmatrix}
\begin{bmatrix}
w \\
q
\end{bmatrix}
+ \begin{bmatrix}
-.1408 \\
-.01739
\end{bmatrix} \delta_e
\]

Figure 1 Pitch SAS Model

-8-
Figure 2 Pitch SAS roots, s-plane design
For the purposes of analysis and simulation, the input from the control wheel is assumed to be zero. The variation in dominant root locations versus sampling rate is shown in Figure 4. The transient response of pitch angle and pitch rate is shown in Figure 5 for an initial pitch error of 0.1 radian.
Sampling at 4 cps causes instability and is not shown.

\[h = w - 207.16 \]

2.2.3 Longitudinal Autoland

The longitudinal autoland aircraft model is the same as that for the control-wheel steering model with the addition of a vertical position state given by:

\[h = w - 207.16 \]

The feedback control (Figure 6) was taken from drawings of the NASA Langley's TCW Boeing 737 and linearized. As with the control-wheel steering mode, a one cycle delay is assumed in the controller. The digital washout coefficients are the same as in Table II while the difference equation for the digital integration is:

\[b_{n+1} = b_n + \frac{T}{2} (a_{n+1} + a_n) \]
Figure 5 Pitch Angle/Rate, Control Wheel Steering
The variation in dominant root locations versus sampling rate is shown in Figure 7. Figure 8 shows the error in pitch rate for an initial altitude error of 100 feet off the glide slope. Again sampling at 4 cps results in instability.

In summary, digitized s-plane design is suitable for higher sampling rates or for systems with high relative stability. The addition of delays due to computation (which are cascaded in several multi-computer systems) has an increased effect with slower sampling.
Figure 6 Autoland Controller
Figure 7 Dominant autoland root locations
Figure 8 Pitch Rate, Autoland
2.3 Digitized S-Plane Design with Hold Approximations

A modification to the design method described in section 2.2 is to include the effect of the ZOH in the s-plane design. Since this effect is sample rate dependent, the s-plane design needs to be refined for any selected sample rate. This design technique will be evaluated for the Pitch SAS system which was discussed previously in section 2.2.1. In this case the s-plane model is represented as shown in Figure 9, where \(G_c(s) \) is nominally 1 for the continuous or extremely fast sampling case and varied to cause an acceptable design as \(T \) increases.

Assuming that the loss of damping shown to occur in Figure 2 is due primarily to the hold characteristics, some compensation such as a classical lead:

\[
H(s) = K \frac{(s + A(T))}{q(s + B(T))} \quad (A < B)
\]

will be required to retain sufficient damping when \(T \) increases. The lead parameters can be chosen to meet root location or frequency response criteria, both of which will be described.

![Figure 9 Modified s-Plane Design Model](image-url)
2.3.1 Root Location Design

If the natural frequency and damping of the short period roots are preserved, the time response will be essentially unchanged. For purposes of constructing s-plane root loci, we approximate the transcendental Laplace transform of the zero-order hold by a rational expression of polynomials in s. Padé approximates,

\[
\frac{a_m(-sT)^m + a_{m-1}(-sT)^{m-1} + \ldots + a_0}{a_n(-sT)^n + \ldots + a_0},
\]

of \(e^{-sT}\) are formed by matching the largest possible number of terms of the respective McLaurin series by suitable choice of the \(a_i\)'s and \(b_i\)'s. The approximates thus formed are given in Table III (from ref. [17]).

\[
\begin{array}{|c|c|c|}
\hline
n=0 & n=1 & n=2 \\
\hline
m=0 & 1 & 1+x & 1+x + \frac{1}{2}x^2 \\
\hline
m=1 & \frac{1}{1-x} & \frac{1+\frac{1}{2}x}{1-\frac{1}{2}x} & \frac{1+\frac{1}{2}x + \frac{1}{4}x^2}{1-\frac{1}{2}x} \\
\hline
m=2 & \frac{1}{1-x - \frac{x^2}{2!}} & \frac{1+\frac{1}{2}x}{1-\frac{1}{2}x + \frac{1}{4}x^2} & \frac{1+\frac{1}{2}x + \frac{1}{4}x^2}{1-\frac{1}{2}x + \frac{1}{4}x^2} \\
\hline
\end{array}
\]

TABLE III - PÆDE Table for \(e^X\) (from [17])

The success of the approximation depends on selecting a high enough order of approximate to match the frequency response of the zero-order hold over the bandwidth of interest. Using Table III, we find that the exact hold transfer function,

\[
H(s) = \frac{1 - e^{-sT}}{s}
\]

reduces to:

\[
H(s) \approx \frac{T}{1 + \frac{sT}{2}} \quad \text{(for } n, m = 1)\]

and

\[
H(s) \approx \frac{T}{1 + \frac{sT}{2} + \frac{(sT)^2}{12!}} \quad \text{(for } n, m = 2)\]

Fig. 10 compares the amplitude and phase of all three representations of \(H(s)\)

-18-
Figure 10 Frequency Response Comparisons of the Hold and its Approximations.
The m=n=1 approximate is accurate for frequencies less than 1/10 the sample rate and the m=n=2 approximate is very good for \(\omega \) less than 1/3 the sample rate. For the short period closed loop poles at approximately 1 cps (Fig. 2), the 2nd order \((m,n=2) \) approximate must be used to evaluate sample rates of 5 cps.

The compensation is designed by arbitrarily locating the lead zero at \(s=-8 \) and by successive trials determining the gain \(K_q \) and pole location \(-B\) which restore the short period roots that have been perturbed by sampling. This is easily done since the transcendental nature of the lag is eliminated by replacing it by a Padé approximate. The results of these calculations are contained in Table IV.

<table>
<thead>
<tr>
<th>T (sec.)</th>
<th>(K_q)</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>4.15</td>
<td>8</td>
<td>8.85</td>
</tr>
<tr>
<td>0.1</td>
<td>4.1</td>
<td>8</td>
<td>10.</td>
</tr>
<tr>
<td>0.2</td>
<td>4.7</td>
<td>8</td>
<td>14.1</td>
</tr>
</tbody>
</table>

TABLE IV - Compensation Parameters

Figure 11 shows the equivalent s-plane roots that result after converting the s-plane design in Table IV to discrete form using Tustin's (or Bilinear) approximation and the matched z-transform.

The Tustin transform is formed by substituting \(\frac{2}{T} \frac{z-1}{z+1} \) for \(s \).

\[
\frac{K_q}{s+B} \xrightarrow{s \rightarrow \frac{2}{T} \left(\frac{z-1}{z+1} \right)} \frac{K_q (AT/2 + 1)}{(BT/2 + 1)} \cdot \frac{z+AT/2+1}{z+BT/2-1} \cdot \frac{z+BT/2+1}{z+BT/2-1}
\]

The matched z-transform was defined in the previous section. As also described in the previous section, the equivalent s-plane roots are obtained by performing an exact discrete analysis of the system and transforming the z-plane closed loop roots back into the s-plane by:

\[
s = \frac{1}{T} \ln z
\]

-20-
The root migration in Figure 11 is caused primarily by the approximations in the matched z transform and Tustin digitization. The figure shows that root migration at the lower sample rates is much reduced compared to the identical design (Figure 2) performed without the Padé approximate for the hold.

As a further aid in evaluating these designs, frequency response data are presented in Figures 12 and 13 for the Tustin digitization. The open loop gain $= 1$ crossover frequency can be seen to be lower in the compensated discrete case (GHZ) at $\omega_s = 5\text{Hz}$ than the continuous case (G). Furthermore, the closed loop bandwidth can be seen in Figure 13 to decrease as the sample rate decreases. These effects occur in spite of the fact that the short period root locations remain essentially unchanged; primarily because the additional root introduced by the compensation affects the frequency response.

2.3.2 Frequency Response Design

An alternate method of choosing the lead compensation is to maintain certain characteristics of the open loop frequency response. In other words, use the lead to restore the frequency response degradation due to sampling.

The closed loop transfer function of plant G with feedback compensation H is:

$$\frac{GZ}{1 + GHZ}$$

where the zero-order hold (Z) must be included for sampled systems.

At low frequency the ZOH and lead network have vanishingly small effect, and the closed loop transfer function is $\frac{G}{1+G}$ as desired. At high frequency where $|GHZ| \ll 1$ the transfer function is GZ instead of G, and the compensation H cannot counteract the zero order hold. But this is well above the bandwidth of the system, the highest frequency of interest. The critical location and sharpness of the Band edge, (Closed loop magnitude of -3db) is heavily dependent on the frequency at which $|GHZ| = 0$ db and the corresponding phase angle.
Figure 12 Open Loop Frequency Response, s-plane
Design, \(T = 0.2 \) Seconds
Figure 13 S-Plane Design Closed Loop Frequency Response
Thus in the frequency response design, \(H(s) = K \frac{s + A}{q s + B} \)
is picked so that the 0 db or cross-over frequency and phase margin of \(G \) is maintained for GHZ as shown in Figure 14 for 5 cps.

The lead compensation is designed by arbitrarily locating the zero at \(s = -8 \text{sec}^{-1} \) and choosing \(K_q \) and \(B \) to meet the phase margin and gain criterion of 0 db at \(\omega = 4.1 \) radians/second, the cross-over frequency of the continuous plant. The parameters thus obtained are contained in Table V.

<table>
<thead>
<tr>
<th>T. (Sec.)</th>
<th>(K_q)</th>
<th>(A)</th>
<th>(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>.01</td>
<td>4.48</td>
<td>8</td>
<td>8.42</td>
</tr>
<tr>
<td>.02</td>
<td>4.68</td>
<td>8</td>
<td>8.88</td>
</tr>
<tr>
<td>.05</td>
<td>5.41</td>
<td>8</td>
<td>10.54</td>
</tr>
<tr>
<td>.1</td>
<td>7.44</td>
<td>8</td>
<td>14.90</td>
</tr>
<tr>
<td>.2</td>
<td>31.8</td>
<td>8</td>
<td>64.53</td>
</tr>
</tbody>
</table>

In Figure 15 the equivalent s-plane poles of the discrete system using the compensation of Table V are shown.

The approximate discrete compensation is formed using both Tustin (or bilinear) and matched z-transform methods giving rise to two different s-plane loci.

Also shown in the figure are the s-plane root locations before digitization. The root movement for the higher order Padé approximates is due to the preservation of frequency response characteristics.

Furthermore, comparison of the various s-plane designs with different Padé approximates indicates that the 2nd order Padé yields sufficient accuracy for this design although for the higher bandwidth roots at \(T = .2 \) seconds there is a noticeable difference between the 2nd and 3rd approximates.
Figure 14 Open Loop Frequency Response, Frequency Response Design (T = .2 sec)
Figure 15 Modified s-plane Design (Frequency Response)
The discretization changes the predicted s-plane roots significantly, especially if the compensation is fast relative to the sample rate. For our case where $A = 8$, the Bilinear transform is unacceptably inaccurate at moderate sample rates. The z-transform is somewhat more accurate and should be used. The bilinear and matched z-transform and Padé approximate curves coalesce for higher sampling and slower compensation. An example of this is Figure 16 which resulted from a design using the same frequency response techniques but fixing the pole at -9.5 sec^{-1} and varying the zero for proper compensation. The compensation is relatively slow, but clearly the curves are more consistent in this case. However, if the lead compensation pole is too slow, closed loop frequency response will be adversely affected.

The migration of the short period root that occurs in this design (Figure 16) does not adversely affect the closed loop response because the resonant peak from the reduction in damping of the short period is offset by the lag from the real root originating from the compensation pole and zero. Furthermore, the adverse phase lag of the zero-order hold is counteracted by the increased bandwidth of the short period poles.

The closed loop frequency response characteristics of the designs with lead parameters given in Table V and root locations given in Figure 15 are shown in Figure 17. Comparing these results to the designs based on short period pole fixing (Figure 13), we find that the magnitude matches better at low frequencies and the phase is slightly better over all frequencies.

The designs with slower compensation yielded less discretization errors (note correspondence between dotted curves and solid curves in Figure 16) because of the slower compensation to be digitized; however, the slower compensation yielded a poorer match to the continuous system at the lower frequencies than either the fast compensation frequency response design on the root location design.

Either frequency response design criteria or dominant root location design criteria appear to be feasible methods for adjusting
Figure 16 Modified S-Plane Design (Freq. Response)
slow compensation
Figure 17 Closed Loop Frequency Response
For Frequency Domain Design (T = 0.2 seconds)
the s-plane designs for the effect of sampling in the cases studied. The frequency response method, however, appears to offer a more reliable method in general since movement of all roots is accounted for in the design criteria. For flight control modes with higher order dynamics, it may be more difficult to pick the dominant poles and adjust the compensation without introducing some new dominant pole.
2.4 Direct Digital Design

Direct digital design refers to the design of a controller in the z-plane (or the w-plane, with an appropriate transformation). It differs from digitized s-plane design in that the effects of the hold circuit are known exactly at all sampling rates. In the z-plane, techniques such as root locus and pole placement may be used exactly as they are in the s-plane.

Direct digital design is most widely used in the construction of estimators or of controllers with state variable feedback inasmuch as optimal control techniques may be applied with little change to the discrete system. However, the starting point for most digital systems is a continuous mechanization, for which engineers still have the most insight as well as an arsenal of design tools. The object, therefore, is not to completely redesign the system, but instead, to have changes to account for the discrete characteristics and the lag of the hold circuit. Toward this aim, two of the systems discussed in the section on digitized s-plane design (2.2) were re-analyzed with the addition of a lead network at the input to the hold circuit. The lead ratio and gain of this network was chosen in order to place the dominant poles of the closed-loop system at the location chosen in the continuous design. This process can, in general, be done by trial and error; but for this effort, a systematic procedure was developed and implemented in a computer program (called LEAD, See Appendix A). It calculates the lead required from the pole/zero constellation in the z-plane.

It is important to note that this design was performed in the z-plane, which is an exact representation of the digital system. This FORTRAN computer program has been expanded so that it contains options to do the analysis of the s-plane design method as well as calculating the lead network.

2.4.1 Pitch SAS

To the SAS system shown in Figure 1 is added a digital lead network which performs the equivalent of the continuous lead:
using the matched z-transform method, the digitized version of this
becomes:

\[\frac{\tau_1s + 1}{\tau_2s + 1} \]

The constants for this lead network were determined so as to match the
equivalent s-plane complex roots of the discrete system with the original
complex roots at \(s = -5.15 \pm 4.5j \). Table VI shows the lead network
characteristics determined and the resulting equivalent s-plane root
locations. Except for the 4 cps case, the complex roots were matched
exactly while the position of the additional real root added by the
network varied. The inability to match precisely the 4 cps complex
roots was due to the arbitrary design procedure of fixing the lead zero
at 8 r/sec and varying the lead pole to obtain the desired roots. A
zero placement closer to the s-plane origin would have allowed matching
at 4 cps also.

The additional real root arising from the lead compensation
dynamics is sufficiently fast to have a relatively small effect on the
system response. However, for progressively slower sampling the root
becomes progressively slower and more important in the response. In
subsequent designs, the detrimental effects of the additional real root
on the transient response will be evaluated.
2.4.2 Pitch Attitude Control-Wheel Steering

Just as for the SAS described above, an appropriate compensation for the control-wheel steering mode is a lead network at the output of the digital controller (see Figure 18). LEAD was used to match the dominant poles at \(-1.34 \pm 2.13j\). With decreasing sampling rate, however, one of the faster roots moves toward the origin to influence the system response. Basically, there is no way to keep all the system roots constant with a decreasing sampling rate with only one compensation. However, there is a great improvement in performance i.e. the response is good down to 4 cps, whereas the system with a digitized s-plane design goes unstable. Table VII presents the parameters of the digital lead network employed, and Figure 19 indicates that there is no movement of the root at \(-1.34 \pm 2.13j\) at all versus sampling rate. That figure also shows the position of the next faster root at 4 cps versus the lead network zero (sampling faster than 4 cps puts this root on the negative real axis and much faster than the dominant root). Since these two roots have bandwidths of the same order of magnitude, they both must be taken into consideration in determining performance. Figures 20 and 21 show the pitch error and pitch rate transient response for an initial pitch error of 0.1 radian with lead compensation (they may be compared directly to Figure 5). Although there is some degradation in transient performance, it is considerably better than that of the system without compensation.
Figure 18 Control Wheel Steering (Discrete Design)

Table VII
Control Wheel Steering Lead Characteristics

<table>
<thead>
<tr>
<th>Sampling rate</th>
<th>$1/\tau_1$</th>
<th>$1/\tau_2$</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>32 cps</td>
<td>2.0</td>
<td>2.23</td>
<td>0.87</td>
</tr>
<tr>
<td>16</td>
<td>2.0</td>
<td>2.49</td>
<td>0.77</td>
</tr>
<tr>
<td>8</td>
<td>2.0</td>
<td>3.31</td>
<td>0.61</td>
</tr>
<tr>
<td>4</td>
<td>2.0</td>
<td>6.03</td>
<td>0.45</td>
</tr>
</tbody>
</table>
Figure 19 Control Wheel Steering Mode Equivalent S-Plane Roots

- = dominant root vs. sampling rate
○ = next faster root at 4 cps vs. compensation zero

4 cps
$1/\tau_1 = 2.5$

4 cps
$1/\tau_1 = 2.0$

4 cps
$1/\tau_1 = 1.5$

4 cps
$1/\tau_1 = 1.0$

continous, 32, 16, 8, 4 cps

σ (sec$^{-1}$)

jω (r/sec)
32, 16, 8 cps are between the 4 cps curve & the continuous curve.

Figure 20 Pitch angle/rate, Control Wheel Steering (Discrete Design)
2.5 Discrete Design Using Optimal Techniques

An alternate method to the design techniques discussed so far is to use modern control's "optimal" estimator/controller approach. This entails a somewhat arbitrary selection of weighting factors in a cost function; however, once these are selected, the discretization process is routine.

An estimator/controller implementation can be exactly the same as a classical compensator, the difference being solely in the methods used to arrive at the design. In many continuous cases, however, the estimator/controller design results in a higher order compensation than would result using classical methods; for discrete systems, the difference in order is less pronounced.

Design of compensation using modern methods is made up of two parts; the controller and the estimator (sometimes called an observer). The controller is determined by minimizing the quadratic performance index:

\[J_c = \frac{1}{2} \int_0^\infty \left[x^T A x + u^T B u \right] \, dt \]

and the estimator by minimizing:

\[J_o = \frac{1}{2} \int_0^\infty \left[(z - Hx)^T R^{-1} (z - Hx) + w^T Q w \right] \, dt \]

where

- \(x \) is the state vector
- \(x \) = estimated state vector
- \(u \) = control vector
- \(z \) = measurement vector
- \(H \) = measurement state distribution matrix
- \(A \) = state weighting matrix
- \(B \) = control weighting matrix
- \(W \) = process noise vector
- \(Q \) = white process noise power spectral density matrix
\[R = \text{white measurement noise power} \]
\[\text{spectral density matrix} \]
\[v = z - Hx = \text{measurement error vector} \]

It can be shown, (ref. [18] [19]) that the solution of the optimal control and estimation problem consists of linear state feedback to the control \(u \) and linear measurement error feedback to the estimator:

\[
\begin{align*}
 u &= C\hat{x} \\
 \dot{\hat{x}} &= (F + GC)\hat{x} + K(z - H\hat{x})
\end{align*}
\]

Using eigenvector decomposition methods [19], [20] the steady state controller gains, \(C \), and estimator gains, \(K \), can be efficiently determined. To accomplish this, the \(A, B \) matrices and the \(Q, R \) values of the noise model are chosen to give a "satisfactory" system design. The judgement in determining when the system is satisfactory is based on the same factors that one would use for a classically designed system. In this particular design exercise, the goal is to obtain a modern design which has all the same root locations as the previous design methods; thus enabling a direct comparison with the other methods. Therefore, \(A, B, Q, \) and \(R \) were selected to yield identical closed loop short period roots while maintaining the additional roots which occur with the introduction of the estimator relatively fast. The bias estimate state (which performs the same function as the classical washout) is an exception to this; its root was maintained at the washout break point.

A continuous controller/estimator for the Pitch SAS with a washout was determined for the TCV vehicle. The state space model for the aircraft was given in section 2.2.1. Combining this with the actuator model and augmenting the state to account for a possible bias in the pitch rate measurement (the equivalent of a washout), we obtain the system model:
\[
\begin{bmatrix}
q_b \\
w \\
q \\
\delta_e
\end{bmatrix} = \begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & -6.28 \times 10^{-3} & 207 & -1.45 \\
0 & -3.28 \times 10^{-3} & -45 & -1.74 \times 10^{-2} \\
0 & 0 & 0 & -10.1
\end{bmatrix} \begin{bmatrix}
q_b \\
w \\
q \\
\delta_e
\end{bmatrix} + \begin{bmatrix}
0 \\
0 \\
0 \\
10
\end{bmatrix} \delta_e_c
\]

\[
y = Hx + v
\]

where:

- \(H = [1010] \);
- \(q_b = \) pitch rate measurement bias
- \(q = \) pitch rate
- \(w = \) z-component of aircraft velocity
- \(\delta_e = \) elevator angle in degrees
- \(\delta_{ec} = \) commanded elevator angle
- \(y = \) measurement

The values of \(A \) and \(B \) selected for use in the cost function were:

\[
A = \begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 0.33 & 0 & 0 \\
0 & 0 & 7.33 \times 10^{-4} & 0 \\
0 & 0 & 0 & -0.86
\end{bmatrix}
\]

\[
B = 1
\]

which yielded:

\[
C = [0, -1.32 \times 10^{-8}, 247.23, 9.0 \times 10^{-9}]
\]

The values of \(Q \) and \(R \) selected are:

\[
Q = \begin{bmatrix}
22.877 & 0. & 0. & 0. \\
0. & 5.03 \times 10^{8} & 0. & 0. \\
0. & 0. & 33.92 & 0. \\
0. & 0. & 0. & 1.106 \times 10^{7}
\end{bmatrix}
\]

\[
R = 1
\]

which yielded:

\[
K = \begin{bmatrix}
4.783 \\
-1.908 \times 10^{4} \\
-8.816 \\
-314.5
\end{bmatrix}
\]

The notation \(3.1 \times 10^{-3} \) means \(3.1 \times 10^{-3} \).
For comparison purposes, the poles and zeros of the resulting design's open loop transfer function were computed. Figure (21) shows the selected closed loop root locations and a root locus vs the open loop gain. This design yields three roots more than a classical design with a washout. If compensating the system using classical methods to overcome effects of sampling, one or two extra roots may be added, a step that is not required when discretizing a controller/estimator design.

By formulating the system equations in a discrete fashion but using an identical cost function and weighting values to the continuous design, an optimal discrete controller/estimator results which closely matches the performance of the continuous design.

In this case, the discrete system representation is as stated in section 2.2 and results in a discrete controller:

\[
\begin{align*}
 u_i &= Cx_i \\
 \hat{x}_{i+1} &= \hat{x}_{i+1} + K(z_{i+1} - Hx_{i+1}) \\
 \hat{x}_{i+1} &= \Phi \hat{x}_i + Iu_i \\
 z_i &= Hx_i + v_i \\
 \text{or} - \quad \hat{x}_{i+1} &= \Phi \hat{x}_i + Iu_i + K(\hat{x}_i - \hat{x}_i) + Kv_{i+1}
\end{align*}
\]

The actual cost function used in the minimization was discrete, i.e.:

Controller: \(\min_{u_i} J = \frac{1}{2} \sum_{i=0}^{\infty} \left[x_i^T A_D x_i + u_i^T B_D u_i \right] \)

Estimator: \(\min_{x_i} J = \frac{1}{2} \sum_{i=0}^{\infty} \left[w_i^T Q_{i+1} w_i + (z_i - Hx_i)^T R_{i+1} (z_i - Hx_i) \right] \)

however, the values of \(A_D \) and \(B_D \) are computed based on \(A \) and \(B \) from the continuous design. The values of \(Q_D \) and \(R_D \) are the same as the \(Q \) and \(R \) used in the continuous system optimization. Eigenvector decomposition methods yield a very efficient tool in solving for the optimal gains for either the continuous or discrete problem. Figure (22) shows the equivalent s-plane root locations for the discrete system designed as a continuous system in Figure (21). The roots show very little migration due to sampling. Figure (23) shows the closed loop...
Figure 21 Root Locus vs Open Loop Gain of Controller/Estimator Design
Figure 22 Root Locus of Controller/Estimator Design vs. Sample Period
Figure 23 - Closed loop Frequency Response versus Sample Period for Design Using Quadratic Synthesis
frequency response characteristics for the various sample rates. To demonstrate the modification to the compensator that is being brought about by this digitization procedure, we have included Figure (24). Note the very large changes that occur in some gains vs. sample rate.

The digitization procedure is essentially routine and no design iteration is required for any of the sample rates evaluated. The design iteration is carried out on the continuous system with the end product being a set of controller weighting matrices, A & B, and estimator noise matrices Q & R. These matrices are easily turned into discrete control laws (or compensators) for any reasonable sample period in a non-iterative manner.

The most difficult part of the design method is obtaining the continuous optimal design. For systems being designed for the first time, the iterations required are on the same order as those required for a classical design. For systems whose continuous design exists and was obtained using classical means, the iterations required to obtain a matching optimal design is somewhat cumbersome, but the requirement to "match" only exists in a study such as this where it is important to make consistent comparisons.

* actually can't be matched exactly because the order of the continuous compensation is higher for the optimal method.
Figure 24 Controller and Estimator Gains Versus Sample Period
2.6 Comparisons of Design Methods

Five different design methods have been evaluated for various modes of the TCV flight control system. For a common comparison of the methods, the fastest loop (inner pitch stabilization) has been evaluated by all of the methods.

Figure 25 shows the equivalent s-plane short period root locations of the discrete systems for four of the design methods and Figures 26 and 27 show the closed loop frequency response characteristics for 5 of the methods. The methods are:

1) Uncompensated s-plane design (section 2.2)
2) Modified s-plane design based on pole fixing with the matched z-transform digitization (section 2.3.1)
3) Modified s-plane design based on frequency response with the matched z-transform digitization (section 2.3.2)
4) Discrete design based on pole fixing (section 2.4)
5) Optimal discrete design (section 2.5)

Figure 25 shows the most severe degradation in stability for the "uncompensated" design method (as expected), a conclusion that is amplified by Figures 26 and 27. For this flight control design problem, the uncompensated design method should not be used with sample rates much slower than 20 cps. Since the system dominant poles are at approximately 1 cps, this represents sampling at 20 times the dominant closed loop roots.

Further comparison of the designs shows a large root movement of the frequency response design but no corresponding change in the frequency response. This arises because the short period root movement is being counteracted by shifts in the other real roots which are not shown and demonstrates the usefulness of the frequency response information in performing a total design evaluation.

With the exception of the uncompensated design, all other design methods would probably be considered acceptable; however, most show some loss of bandwidth at the slow sampling rate (5 cps).
Figure 25 Equivalent S-Plane Short Period Root Locations
Figure 26 Comparison of Closed Loop Magnitude Frequency
Response by Design for T = .2 Sec.
Figure 27 Comparison of Closed Loop Phase Frequency Response by Design for $T = 0.2$ sec.
Since the frequency response design was based on retaining the same gain and phase at crossover (4.1 r/sec) it's interesting to note that the closed loop frequency response information does not match the continuous system at 4.1 r/sec. This is due to the error brought about by the digitization procedure (the matched z-transform), an error that is present for any design method that is based on s-plane results, regardless of whether the hold characteristics are accounted for or not.

Note also however, that accounting correctly for the digitization process is not nearly sufficient in itself to obtain a good design. This is demonstrated by the discrete pole fixing design in Figures 26 and 27, which, except for the uncompensated design, is the worst match to the continuous of all the designs. This design was not shown on the root locus in Figure 25 because it was based on maintaining the z-plane roots at the location which produced no movement of the equivalent s-plane roots. The shift in the frequency response characteristics is due to shifting real root locations which were not taken into account when compensating the system.

Factors other than the accuracy of the method must also be taken into account when evaluating design procedures. Table VIII is included to illustrate these differences. The first column refers to the quality of match to the continuous closed loop bandwidth as evidenced by Figure 26. Intuitive design refers primarily to whether the design iterations are performed in the s-plane or not, which most designers prefer; however, the modern discrete is given a qualified yes because many designers do not consider the weighting matrix selection an intuitive process. The third column refers to whether the digitization effects are evaluated in the z-plane or not. For the s-plane methods, the magnitude of the error is dependent on the frequency placement of the compensation — the higher the frequencies, the worse the error. This error can always be computed by an analysis such as that performed by this study, but this is not considered to be part of the design method. The fourth column refers to whether any design iterations are required when changing sample rate,
<table>
<thead>
<tr>
<th>METHOD</th>
<th>CLOSED LOOP FREQ. RESPONSE ACCURACY (RANK)</th>
<th>INTUITIVE DESIGN</th>
<th>ERROR IN DESIGN METHOD</th>
<th>ITERATIVE DIGITIZATION</th>
<th>ORDER OF COMPENSATION</th>
<th>MINIMUM (\omega_b) DOMINENT VALIDITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uncompensated</td>
<td>5</td>
<td>Yes</td>
<td>Yes (very great)</td>
<td>No</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>Modified Pole Pix</td>
<td>2</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>S-Plane F.R.</td>
<td>3</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>Direct Discrete</td>
<td>4</td>
<td>No</td>
<td>None</td>
<td>Yes</td>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td>Modern Discrete</td>
<td>1</td>
<td>Yes *</td>
<td>None</td>
<td>No</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

* design iteration done in s-plane but weighting matrix selection may not be intuitive.
a feature that is attractive if part of the design exercise is to determine the minimum practical sample rate; hence designs at many sample rates being required. The order of the compensation refers to the complexity of the control mechanization. For all but the modern design, considerable freedom exists in the order of the compensation, although the order tends to increase with slower sampling. For the modern design the compensation order is typically equal to the plant order but can be made equal to the plant minus the number of measurements when using a reduced order estimator. The last column is a somewhat arbitrary attempt to indicate at what sample rates the method can be used. For example the uncompensated design method should not be used at sample rates below 20 times the dominant closed loop poles. These estimates are based primarily on the quality of the closed loop bandwidth match as indicated in Figure 26 and in the more detailed design data in the individual sections. They are valid for the example used in the designs, the 737 TCV pitch stabilization mode, and should be used with some caution for other design problems.
3.0 Roughness

Since the output of a ZOH is constant for an entire sampling period, the control is a series of steps which may be perceived by a pilot through his motion or visual cues as jerkiness or roughness. These effects will be most noticeable in the high frequency modes of the aircraft and become increasingly noticeable as the sample rate decreases.

To evaluate and quantify this effect of digital flight control for varying sample rates, the following designs have been selected for implementation on the Langley motion simulator. The autoland and control wheel steering modes have been selected for this investigation. The autoland mode essentially places the pilot in a monitoring type of function and may produce different reactions compared to the control wheel steering where he will be required to execute various tasks.

The holds to be considered are (Fig. 28) the standard zero order hold (ZOH) for a baseline and the integral hold.

![Diagram of Hold Definition]

Figure 28 Hold Definition
The integral hold (IGH) is motivated by the desire to eliminate the step changes in u characteristic of the ZOH but to retain its hardware simplicity. Its mechanization simply requires the addition of an analog integrator between the standard ZOH and the actuators in the aircraft.

Figure 29 combines the different elements of the evaluation and indicates where the different portions of the computations are to be carried out.

The algorithms to be implemented for the hold are:

ZOH: \[u(t) = u_i ; t_i < t < t_i + 1 \]

IGH: \[u(t) = \int_{t_i}^{t} u_i \, dt \]

The aircraft model and autopilot for the control wheel steering mode for use with the ZOH is given in Figure 18 with the washout coefficients given in Table II and lead coefficients in Table VII for the sample rates to be used on the CDC 6600.

The aircraft model for the autoland mode is given by Figures 1 and 3 and the additional position state relationship:

\[\dot{h} = w - 207.1 \theta \]

The autoland autopilot for use with a ZOH is given in Figure 6. The digital washout coefficients are again given in Table II and the integration by:

\[b_{n+1} = b_n + \frac{T}{2} (a_{n+1} + a_n) \]

For adequate stability with decreasing sample rates, the overall loop gain shown to be 0.85 in Figure 6 was adjusted according to Table IX.

<table>
<thead>
<tr>
<th>Sampling Rate</th>
<th>Gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>32 cps</td>
<td>0.60</td>
</tr>
<tr>
<td>16</td>
<td>0.51</td>
</tr>
<tr>
<td>8</td>
<td>0.34</td>
</tr>
<tr>
<td>4</td>
<td>0.21</td>
</tr>
</tbody>
</table>

TABLE IX
Autoland Gains
Analog Computers (EAI 231R's)

Digital Computer (CDC 6600)

Figure 29 Roughness Simulation Schematic
For the integral hold, designs are preliminary and need further refinement for good response characteristics. Because of the extra 90° phase lag of the integrator and the additional feedback from the integrator, the design is more difficult than that for the ZOH. One preliminary design was performed using a modified s-plane approach where an approximation to the delay is contained in the system model. The design was obtained for $\dot{\theta}$ feedback only so did not represent the full control wheel steering mode. Figure 30 shows the block diagram and defines portions of the compensation.

![Diagram](image)

Figure 30 Integral Hold Design

The transient response of this controller obtained from a hybrid simulation with a 10 cps sample rate in the digital portion is shown in Figure 31. It shows that the performance can be made to match that of the system without the extra integrator even though the controller input to the actuator is ramped instead of stepped. Furthermore, the magnitude closed loop frequency response is shown in Figure 32 to match very closely as well. Further design efforts are
Figure 31 Transient Response of Pitch Stabilization Mode from Hybrid Simulation underway to determine compensation for the control wheel steering and autoland modes.
Analytical evaluations of roughness have been proposed [20] and can be used for a quantitative comparison with pilot evaluations; they are:

\[
RF_1 = \sum_{i=0}^{N} \left(\frac{\theta_1}{\pi/2} \right)^2 \Delta u^2
\]

\[
RF_2 = \sum_{i=0}^{N} \left(\frac{\theta_2}{\pi/2} \right)^2 \Delta u^2
\]

\[
RF_3 = \max \left| \frac{\theta_2}{\pi/2} \Delta u \right|
\]

\[
RF_4 = \max \left| \frac{\theta_1}{\pi/2} \Delta u \right|
\]
where the terms are defined in Figure 33. These functions are to be evaluated in the digital computer during the simulations.

The exact nature of the evaluations with regards to initial conditions for the autoland, test maneuvers for the control wheel steering, and form of pilot evaluations, have not been determined.

Figure 33 Roughness Function Parameter Definitions
CONCLUSIONS

Discrete Design methods have been compared at various sample rates for several different flight control modes for the Langley TCV Boeing 737. It has been shown that digitization of continuous autopilot design leads to a substantial degradation in performance for sample rates slower than 20 Hz (or 20 times the closed loop bandwidth). Modifications to the s-plane design to account for the lag due to sampling improves performance considerably and can be used with confidence at sample rates of 10 Hz (or 10 times the closed loop bandwidth). For sample rates much lower than 10 Hz, a discrete design procedure is advised to eliminate the digitization error present in any s-plane design procedure. A new discrete design procedure has been evaluated which is based on optimal control and estimation techniques. It entails performing the design iterations on the continuous system, then using the resulting weighting matrices in a discrete optimal control procedure. The resulting discrete designs match the continuously designed system better than any other method evaluated and requires no iteration during the discretization procedure, a feature that no other acceptably accurate method possesses.

A test of roughness has been defined and control algorithms determined for the Langley simulator facility with sample rates of 32, 16, 8 & 4 Hz. Preliminary designs are included for the integral hold, a hold which requires the addition of an integrator between the ZOH and the actuator.
Appendix A: Program LEAD

Program LEAD calculates the eigenvalues in the z-plane of a continuous system with a ZOH, actuator dynamics, and a digital controller mechanized in difference equations. An option of the program allows the user to calculate the lead network required at the input of the ZOH to produce given s-plane roots.

Derivation:

A system may be written

\[\dot{x} = A'x + B'u \] \hspace{1cm} (A1)

where

\[x = \begin{bmatrix} x_s \\ x_a \end{bmatrix}, \] \hspace{1cm} a state vector partitioned into the original states \(x_s \), from \(\dot{x} = Ax + Bu \), and \(x_a \), the actuator states

\[A' = \begin{bmatrix} A & B \\ 0 & C \end{bmatrix}, \] \hspace{1cm} (A2)

\[B' = \begin{bmatrix} 0 \\ D \end{bmatrix}. \] \hspace{1cm} (A2)

Thus u is the control signal to the actuators whose differential equations are of the form

\[\dot{x} = Ax_s + Bx_a \] \hspace{1cm} (A3)

If the transition matrix is calculated for equation A1

\[x_{n+1} = Px_n + Qu_n \] \hspace{1cm} (A4)

where

\[p = e^{A'T} \]

\[Q = \int_0^T e^{A'T}B'd\tau \]

To equation A4 must be added the difference equations of the digital controller. The control is of the form

\[u_n = C_1x_n + C_2x_{cn} + C_3x_{sn} \] \hspace{1cm} (A5)
where x is the controller state variables,

x_s is the derivative of original state variables such as acceleration. (and $x_s = A'x$)

then

$$x_{n+1} = [P + Q(C_1 + C_3 A')] x_n + QC_2 x_{cn}$$ \(\text{A6}\)

The difference equations can be written

$$x_{cn+1} = M_1 x_{cn} + M_2 x_{cn+1} + M_3 x_n + M_4 x_{n+1} + M_5 x_{n+1} + M_6 x_{n+1}$$ \(\text{A7}\)

The presence of x_{cn+1}, x_{n+1}, x_{sn+1} is due to the existence of these types of terms in most matched 3-transforms.

Now

$$x_{sn+1} = A' x_{n+1}$$ \(\text{A8}\)

which can be rewritten using A6

$$x_{sn+1} = A' [P + Q(C_1 + C_3 A')] x_n + A' QC_2 x_{cn}$$ \(\text{A9}\)

and finally

$$x_{cn+1} = (I - M_2)^{-1} \left(M_3 + (M_4 + M_6 A') [P + Q(C_1 + C_3 A')] + M_5 A' \right) x_n$$

$$+ (I - M_2)^{-1} \left(M_1 + (M_4 + M_6 A') QC_2 \right) x_{cn}$$ \(\text{A10}\)

Thus, given the state definition A2, A3, the sampling interval T, the control law A5, and the difference equations A7, LEAD solves for the eigenvalues of the matrix

$$
\begin{bmatrix}
P + Q(C_1 + C_3 A') & QC_2 \\
(I - M_2)^{-1} \left(M_3 + (M_4 + M_6 A') [P + Q(C_1 + QC_2) + M_5 A'] \right) & (I - M_2)^{-1} \left(M_1 + (M_4 + M_6 A') QC_2 \right)
\end{bmatrix}
$$

To calculate the lead network required to fix a specific root in the s-plane, the program first computes the poles and zeroes of the system in the z-plane. It then transforms the desired root into the
z-plane, calculate the lead angle deficiency, and places the pole of the lead network from this. The gain is computed by standard root-
locus methods.

The user must program 3 FORTRAN subroutines: size, diffeq, and plant. They define respectively the size of various arrays, the difference equation matrices, and the state equations of the plant and actuators. A listing follows of the main program and relevant subroutines.
REAC Compensation zero (Positive sign)
REAC(10,*) Zeros
1 CONTINUE
CALL PROMPT(*INS? *,5,10)

READ Instructions
INS = 1,2,3, or 4 (Integer)
TSAMP = Sampling interval (seconds)
The third and fourth variables read have meanings dependent
on the value of INS
INS = 1: Roots in the Z plane and S plane will be found for
the system with an inputted gain and compensation
The third variable is the gain. It
multiplies all the elements of the num matrix. The
fourth variable is the compensation pole (positive
sign). If no compensation is desired, set the pole
location at the zero location. The roots will then
include an uncoupled one corresponding to the
compensation,
INS = 2: The gain and pole location will be calculated
that
will guarantee particular roots in the S plane. The
desired S plane root is inputted as the third and fourth
variables (real and imaginary). As a check, the
roots are calculated with this computed compensation and
gain. This can be used to check on the location of
other roots whose locations were not specified.
This option will work currently only for 1 actuator
that influences the states through the num-zero element
cf. nom. Any other formulation will give unpredictable
results in this version.
INS = 3: This performs the same computation as for INS = 2.
This can be used only after INS = 2 has been specified
for a particular zero location and sampling interval.
This option exists to eliminate some computation that
has performed previously.
INS = 4: Returns to a prompt for a new zero. The second, third
and fourth variables must be inputted, but are ignored.

READ(10,*) INS,TSAMP,SRPNT,SIPNT
GO TO (99,4,166,1009),INS
99 GAIN=SRPNT
CPGLES=SIPNT
GO TO 199
44 GAIN=1.
CPGLES=CZEROS
CALL CMATID(DONOM,NACT,NC,GAIN)
CALL CNTRLNFPLANT(MDICT,NC,NACT,INS),STUT,NSTUT2,
1 INCNT,INT,GN,GN,CKR,CHI,TINV,ACL,HELI,VECM,VEGIN,VECA,
2 VECI,VE,Y,VIV,VEV,VIV,AFRIME,APRIME,FY,CA,C2,C3,HI,H2,H3,H4,
3 M5,M6,A,E,C,D,TEM5A,TEM5B,TEM5AB,TEM5BA,TEM5AB,V1,V2,
4 TEM5BA,TEMBB,TEM5BB,TEM5AB,F,TEM5BA,E,MNDA,WINM)
GO 1403 J=1,NSTOT
R=CMR(J)**2+CMI(J)**2
IF (R.GT.1.) GC TO 1402
XR=CMR(J)
YI=CMI(J)
GO TO 1409
1403 CONTINUE
1409 GAIN=0.
CALL CMATID(DONOM,NACT,NC,GAIN)
CALL CNTRLNFPLANT(MDICT,NC,NACT,INS),STUT,NSTUT2,
ICNT, INT, GN, D9, CHP, CHI, TINV, ACL, RVLC, VEGAN, VECIN, VECR,
VECI, VPR, VIV, VPRV, VRIV, APRIME, BPRIME, P, Q, CL, L2, C3, M1, M2, M3, M4,
S5, M6, A, C, D, TEM5BA, TEMAA, TEMBA, TEMAB, V1, V2,
TEM3BA, TEMBB, TEM2BB, TEM2AB, F, TEM2BA, TEM4BA, UNUM
SF=1.
CO 404 I=1, NSTCT
SF=SF*SQRT((XR-CWR(I))**2+(YL-CWI(I))**2)
POLE(1, I)=CWR(I)
POLE(2, I)=CWI(I)
GAIN=1.E10
CALL CMAT(0, DMP, NACT, AC, GAIN)
CALL CNTRL(PLANT, NC, NACT, N5, NSTCT, N3TOP2,
1 ICNT, INT, GN, D9, CHP, CHI, TINV, ACL, RVLC, VEGAN, VECIN, VECR,
2 VECI, VPR, VIV, VPRV, VRIV, APRIME, BPRIME, P, Q, CL, L2, C3, M1, M2, M3, M4,
3 S5, M6, A, C, D, TEM5BA, TEMAA, TEMBA, TEMAB, V1, V2,
4 TEM3BA, TEMBB, TEM2BB, TEM2AB, F, TEM2BA, TEM4BA, UNUM
NZ=0
CO 505 I=1, NSTCT
IF (CWR(I)**2+CWI(I)**2 < GT. 2) GO TO 505
NZ=NZ+1
ZERO(1, NZ)=CWR(I)
ZERO(2, NZ)=CWI(I)
505 CONTINUE
CO 605 I=1, NZ
SF=SQRT(SQR(TX-ZERO(I, I))**2+YI-ZERO(2, I))**2)
CZERO2=EXP(-TSAMP*ZERO2)
ZPRENT=EXP(SPRTN*TSAMP)*COS(SPRTN*TSAMP)
ZPINT=EXP(SPRTN*TSAMP)*SIN(SPRTN*TSAMP)
CALL LEAD(ZPRENT, ZPINT, NSTCT, POLE, NZ, ZERO, GAIN, CPOLEZ, PHI
1 , CZERO2, SF)
CPOLES=-ALOG(CPOLEZ)/TSAMP
WRITE(6, 544) CPOLES, GAIN
544) FDMAT(* POLE, G15.6, GAIN, G15.6)
159 CONTINUE
CALL CMAT(0, DMP, NACT, AC, GAIN)
CALL CNTRL(PLANT, NC, NACT, N5, NSTCT, N3TOP2,
1 ICNT, INT, GN, D9, CHP, CHI, TINV, ACL, RVLC, VEGAN, VECIN, VECR,
2 VECI, VPR, VIV, VPRV, VRIV, APRIME, BPRIME, P, Q, CL, L2, C3, M1, M2, M3, M4,
3 S5, M6, A, C, D, TEM5BA, TEMAA, TEMBA, TEMAB, V1, V2,
4 TEM3BA, TEMBB, TEM2BB, TEM2AB, F, TEM2BA, TEM4BA, UNUM
F CFORMAT(* G15.6, G15.6)
10 CFORMAT(* G15.6)
CC 960 J=1, NSTCT
SRE=DLUG(CSQT(CWJ(J)**2+CH(J)**2))/TSAMP
SIM=CATAN(CWJ(J)/CWJ(J))/TSAMP
IF (CH(J) < EQ. 0.0) GO TO 4974
WRITE(6, 110) CWR(J), CH(J), SRE, SIM
GO TO 960
4974 WRITE(6, 8) CWR(J), SRE
560 CONTINUE
GO TO 1
46 RETURN
END
SLBROUTINE CNTRL (APLANT, NS, NC, NACT, NS, NSTOT, NSTOT2),
1 ICNT, INT, GN, D9, CR, CI, TINV, ACL, VEC, VECN, VECIN, VECR,
2 VECI, VECV, VECV, VECV, APRIIME, BPRIIME, P, Q, C, C3, M3, M2, M3, M4,
3 M5, M6, A, F, C, D, TEM5BA, TEM5A, TEM2AA, TEM2AB, TEM2BA, UNOM,
4 TEM3BA, TEM3BA, TEM2BB, TEM2AB, F, TEM2BA, TEM4BA, UNOM
IMPLICIT REAL (K, L, M)
REAL E, ICNT, INT, GS, ACL
REAL *8 OLCG, DSORT, DATNS
CCMKCN/T/Tsamp, CECLES, CECFCS
DIMENSIONS ICNT (NSTOT2), INT (NSTOT2), GN (NSTOT, NSTOT), D9 (NSTOT2),
1 CRW (NSTOT), CRW (NSTOT), TINV (NDIG, 101G), ACL (NSTOT, NSTOT),
2 VECR (NSTOT, NSTOT), VECM (NSTOT, NSTOT), VECN (NSTOT, NSTOT),
3 VECR (NSTOT, NSTOT), VECN (NSTOT, NSTOT), VECR (NSTOT, NSTOT),
4 VECR (NSTOT), VECN (NSTOT), VECR (NSTOT),
5 PNS (NS, NS), QNS (NS, NS), C1 (NC, NS), C2 (NC, NS), C3 (NC, NS)
DIMENSIONS M1 (NDIG, NS), M2 (NDIG, NS), M3 (NDIG, NS), M4 (NDIG, NS),
1 M5 (NDIG, NS), M6 (NDIG, NS), ANPLANT, NPLANT, PLANT, NPLANT,
2 C (NACT, NACT), D (NACT, NACT), TEMPRA (NDIG, NS), TEMBA (NS, NS),
3 TEM2AA (NS, NS), TEM2AB (NS, NS), TEM2AB (NS, NS),
4 V2 (NSTOT2), TEM3BA (NS), TEM3BA (NS), TEM3BA (NS), TEM3BA (NS),
5 TEM2AB (NS), TEM2AB (NS), TEM2AB (NS), TEM2AB (NS),
6 , DONOM (NACT, NC)

CALL DIFFEC (NPLANT, NS, NC, NACT, NS, NSTOT, NSTOT2),
1 ICNT, INT, GN, D9, CR, CI, TINV, ACL, VEC, VECN, VECIN, VECR,
2 VECI, VECV, VECV, VECV, APRIIME, BPRIIME, P, Q, C, C3, M3, M2, M3, M4,
3 M5, M6, A, F, C, D, TEM5BA, TEM5A, TEM2AA, TEM2AB, TEM3A, TEM3B, TEMV, V2,
4 TEM3BA, TEM3BA, TEM2BB, TEM2AB, F, TEM2BA, TEM4BA, UNOM

DO 91 I = 1, NPLANT
DO 90 J = 1, NPLANT
90 APRIIME (I, J) = A (I, J)
DO 91 J = 1, NC
91 APRIIME (I, J + NPLANT) = P (I, J)
DO 94 I = 1, NACT
CC 94 J = 1, NACT
CC 94 J = 1, NACT

DO 96 I = 1, NPLANT
DO 96 J = 1, NACT
56 BPRIIME (I, J + NPLANT) = D (I, J)
CALL FGPC (APRIIME, BPRIIME, P, C, NS, NC, TSAMP)
CALL MMULT (C3, APRIIME, TEM5BA, NC, NS, NS)
CALL MACC (TEM5BA, C1, TEM5BA, NC, NS, NS)
CALL MMULT (C3, TEM5BA, TEM5A, NS, NS, NS)
CALL MACC (TEM5A, P, TEM5A, NS, NS, NS)
CALL MMULT (C0, TEM5A, TEM5A, NS, NS, NS)
CALL MACC (TEM5A, TEM5A, TEM5A, NS, NS, NS)
CALL MMULT (TEM5A, TEM5A, TEM5A, NS, NS, NS)
CALL MACC (TEM5A, TEM5A, TEM5A, NS, NS, NS)
CALL MMULT (TEM5A, TEM5A, TEM5A, NS, NS, NS)
CALL MACC (TEM5A, TEM5A, TEM5A, NS, NS, NS)
CALL MMULT (TEM5A, TEM5A, TEM5A, NS, NS, NS)
CALL MACC (TEM5A, TEM5A, TEM5A, NS, NS, NS)
CALL MMULT(TEM2A,TEM2A,TEM2B,TEM2B,NDIG,NS,NS)
CALL MACC(TEM2P3,M1,TEM2P3,NDIG,NDIG,NDIG)
CALL MMULT(TEM2P,TEM2P,TEM2P,NDIG,NDIG,NDIG)
DC 125 I=1,NS
CO 125 J=1,NS
125 F(I,J)=TEMAA(I,J)
CC 76 I=1,NDIG
CC 76 J=1,NS
CC 76 F(I+NS,J)=TEMAB(I,J)
DO 77 I=1,NS
CC 77 J=1,NDIG
CC 77 F(I,J+NS)=TEMAA(I,J)
77 F(I,J+NS)=TEMAB(I,J)
C***
CALL ELARAC(NSTCT,NSTCT,F,ILOW,IHIGH,9)
CALL ELARCH(NSTCT,NSTCT,ILCW,ILCW,F,INT)
CALL HCR2(NSTCT,NSTCT,ILCW,ILCW,F,CHI,CHI,ACL,ACL,646)
C***
46 RETURN
END
C
C
C
C
C
C
C
SUBROUTINE LEAD(X,R,YI,PCLES,POLE,NS,GEJS,ZERU,GAIN,CMPZ,PHI,
1 CMPZ,SP)
CIMEHCP POLE(2,6),ZERCS(2,8)
ANGLE=0.
GAIN=1.0
IF(NPCLES.EQ.0) GO TO 15
CC 10 I=1,NPCLES
GAIN=GAIN*SQRT((XR-POLE(I,1))**2*(YI-POLE(I,2))**2)
TEMP=ATAN((YI-POLE(I,2))/(XR-POLE(I,1)))
IF(POLE(I,1).GT.XR) TEMP=3.141592+TEMP
10 ANGLE=ANGLE+TEMP
CC 16 FORMAT(7F10.2)
15 IF(NSRCS.EQ.0) GO TO 25
CC 20 I=1,NSRCS
GAIN=GAIN/(SQRT((XR-ZERCS(I,1))**2*(YI-ZERCS(I,2))**2))
TEMP=ATAN((YI-ZERCS(I,2))/(XR-ZERCS(I,1)))
IF(ZERCS(I,1).GT.XR) TEMP=3.141592+TEMP
20 ANGLE=ANGLE+TEMP
25 PHI = ANGLE+3.141592
PHI2=ATAN(YI/(XR-CMPZ))
IF(CMPZ.GT.XR) PHI2=3.141592+PHI2
CMPZ = XR - YI/TAN(PHI2-PHI)
GAIN=GAIN*SQRT((X2-CMPZ)**2+(Y1)**2)
GAIN=GAIN/(SQRT((X2-CMPZ)**2+(Y1)**2))
GAIN=GAIN*(1.-CMPZ)/(X1.-CMPZ)
RETURN
END
SUBROUTINE DMAT(C,DNC,DACT,NC,GAIN)
DIMENSION DCM(DACT,NC),D(NACT,NC)
CC 10 I=1,NACT
DO 10 J=1,NC
 10 C(I,J)=DNC(I,J)*GAIN
RETURN
END
SUBROUTINE SIZE(NPLANT,NR,IG,NC,NACT)

SIZE IS THE NUMBER OF DIFFERENTIAL EQUATIONS OF THE PLANT.
SIZE IS THE NUMBER OF DIFFERENTIAL EQUATIONS OF THE CONTROL.
SIZE IS THE NUMBER OF ACTUATOR DIFFERENTIAL EQUATIONS.
SIZE NOTE: THIS MEANS THAT NPLANT DOES NOT INCLUDE ANY
ACTUATOR DYNAMICS.

THE PROGRAM SHOWN HERE IS FOR THE LONGITUDINAL ATTITUDE
CONTROL-WHEEL STEERING PROBLEM DISCUSSED IN THE BODY OF THE
REPORT.

NPLANT=3
NR=3
NACT=1
NC=1
RETURN
END
THE PROGRAM SHOWN HERE IS FOR THE LONGITUDINAL ATTITUDE
CONTROL-WHEEL STEERING PROBLEM DISCUSSED IN THE BODY OF THE
REPORT

A \times 1 = -6.2328751 \times 10^{-1} \\
A \times 2 = -3.279 \times 10^{-3} \\
A \times 11 = -2.07064 \\
A \times 21 = 4.49942 \times 10^{-1} \\
B \times 1 = -1.40348 \times 10^{-1} \\
B \times 2 = -1.7392 \times 10^{-2} \\
C \times 1 = -1.0 \times 10^{-4} \\
D \times 1 = 10.0 \\
RETURN
CONTROL-STEERING PROBLEM DISCUSSED IN THE BODY OF THE
REPORT

\[E_{016} = \exp\left(-\frac{\text{TSAMP}}{16.}\right) \]
\[E_{016}F_3 = 5.7257951 \times (1. + E_{016})/2. \]
\[C_2(1,3) = 1. \]

C WITHOUT
\[M_1(1,1) = E_{016} \]
\[M_1(1,2) = -E_{016}F_3 \times 2.16 \]
\[M_4(1,2) = E_{016}F_3 \times 2.16 \]

C COMPENSATION
\[T_T2 = \exp\left(-\text{TSAMP} \times CPOLES\right) \]
\[T_T1 = \exp\left(-\text{TSAMP} \times C2FROS\right) \]
\[M_1(2,2) = T_T2 \]
\[GLL = (1. - T_T2) / (1. - T_T1) \]
\[M_1(2,1) = GLL \times T_T1 \]
\[M_2(2,1) = GLL \]
\[M_3(2,3) = -GLL \times T_T1 \times 0.4753 \]
\[M_4(2,3) = GLL \times 0.4753 \]

C DELAY
\[M_1(3,2) = 1. \]
\[\text{RETURN} \]
\[\text{END} \]
The utility routines are:

MMULT matrix multiplication
MADD matrix addition
MATIN matrix initialization (0 or 1)
MATEQ equate two matrices
SCAMAT matrix-scaler multiplication
FGPQ calculates ϕ given F
MINV matrix inverse
CDIV complex number division
HQR2 eigenvalue solver (QR algorithm)
BALANC pre-processes matrix for HQR2
ELMHES post-processes matrix from HQR2
References

