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1.0 SUMMARY

Experimental evaluations of the acoustical characteristics and
source sound power and directionality measurement capabilities

of the NASA Lewis q x 15 foot low speed wind tunnel in the
'	 untreated or hardwall configuration were performed.

The results indicated that source sound power estimates can be
made using only settling chamber sound pressure measurements.
The accuracy of these estimates, expressed as one standard
deviation, can be improved from ± 4 dB to ± 1 dB if sound

pressure measurements in the preparation room and diffuser are
also used and source directivity information is utilized. A
simple procedure is presented.

Acceptably accurate measurements of source direct field acoustic

radiation were found to be limited by the test section reverberant

characteristics to 3.0 feet for omni-directional and highly

directional sources. The standard deviation of the measurement
reproducibility ranged from 0.6 to 1.7 dB. The source measure-

ment accuracy ranged from - 1.5 to 3.4 dB, but may be due in

part to source strength variation.

Wind--on noise measurements in the test section, settling chamber

and preparation room were found to depend on the sixth power of

tunnel velocity. The levels were compared with various analytic
models and it was concluded that:

1. Sound pressure levels measured by test section
_	 microphones are due to t-ue acoustic levels, not

turbulence induced pseudo-noise.

-1-



R

r 	 1
l

Report 3174
	

Bolt Beranek and Newman Inc.

2.	 The most likely area of significant noise generation is
the transition from the test section to the diffuser.

Numerous procedural recommendations are set forth.

-2-
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'	 2.0	 INTRODUCTION

The 9 x 15 foot low spe<,, d wind t-unnel at t1Z e ::A'A Lewis Research
Center (LeRC), Cleveland, Ohio (1)*, has been adapted for

measurement of the acoustic performance of model propulsion

systems. The Nurpose of the effort reported herein is to

evaluate the resulting acoustic measurement capabilities.

2.1	 Wind Tunnel Description

The 9 x 15 foot wind tunnel at the NASA Lewi.5 Research Center,

Cleveland, Ohio, was built in the return leg of the 8 x 6 foot

supersonic wind tunnel, Figure 1 (1). Prior to construction

of the subsonic 9 x 15 foot test section, the 8 x 6 foot

+	 facility had received acoustic treatment downstream of the
test section for the purpose of comrpunity no-1:,e abatement. The

treatment consists of lor: frequency Helr;holtz resonators, a

lined duct muffler, wall treatment and acoustic baffles. As

a result, noise propagating; downstream from the supersonic test

section is low relative to community noise standards (2), and

subsequently does not affect acoustic measurements in the

9 x 15 foot low speed wind tunnel.

Other aspects of the construction of the facility which relate
to acoustic measurement are the presence of flow regulation

doors upstream and downstream of the 9 x 15 foot test section,

"	 a cooler screen upstream of the settling chamber, and dryer

beds between the diffuser leg and the drive fan, Figure 1.

.^	 *Numbers in parentheses indicate references listed.

K^



Report 3174	 Bolt Beranek and Newman Inc.

The test section is constructed of steel with wood lining on

the side walls. The side walls also have four inch slots

running the length of the test section, 27 ft (8.2m). Acousti-

cally, the slots provide a window of 67 ft  (6.2m 2 ) between

the test section and the surrounding preparation room.

The tunnel flow is induced by a seven stage axial flow com-

pressor. Operation of the 9 x 15 foot low speed wind tunnel
is usually conducted at a standard compressor rotational

speed which ranges from 800 to 820 rpm. The desired tunnel

flow is achieved with the flow control doors. The compressor

first stage has 52 blades, preceded by an array of 72 guide

vanes. The final stage rotor has 60 blades. This stage is

preceded by 66 stator blades and followed by 84 exit blades.

2.2	 Acoustic Measurement Approaches

In the hardwall or untreated configuration the approach to

acoustic measurement has been limited to the placement of micro-

phones in appropriate locations. Four microphones in the

tunnel settling chamber have been used to evaluate relative

sound power generation. The signals from microphones placed

on rigid supports in a pattern around a model have provided

source directivity data. Finally, directional microphones

placed outside the tunnel test section have been calibrated

and utilized for source directivity evaluation (3).

2.3	 Relation to Preceding Work

Increasing interest in performing aero-acoustic measurements

has resulted in a number of studies (4-15) similar to this

one. Typically, the tunnel ambient noise and reverberant

-4,
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properties are described with the intended aim of making direct

field measurements in an unmodified or a treated closed test

section. Sound Dower measurement calibrations are also per-

formed in open test section tunnels.

Preceding work on this program resulted in a report delineating

the wind-on noise characteristics and an omnidirectional source

sound power measurement calibration (16). This report expands

on that work along with setting forth an acoustic sound power

measurement calibration for directional sources. This effort

in the LeRC hardwall 9 x 15 foot wind tunnel is unique with

respect to calibration of the adjoining tunnel chambers for

sound power measurement. In addition, the hardwall tunnel

characteristics which limit direct field measurements are

defined.

-5-



	

3.0	 ACOUSTIC MODELS

Analytic models are appropriate for the evaluation of the

acoustic properties of a facility. The models describe the

relationships between acoustic and other physical parameters.

i;: the case of the hardwall 9 x 15 foot wind tunnel., one

model serves as a framework for the application of experimental.

data to the reverberant calibration. Another series of models

describes the functional behavior of various candidate noise
sources, which is applicable to noise source diagnosis.

	

3.1	 Reverberant Chamber Model

A wind tunnel may be acoustically modeled as either a duct with
propagating waves or as a collection of interconnected semi-

reverberant rooms. The approach selected depends on both the

intended purpose of the modeling exercise and on the physical

characteristics of the tunnel. The mathematical acoustic model

adopted has four interconnected semi-reverberant chambers

including the test section. These chambers, along with the

acoustically important volumes and areas, are shown in Figure 2.

The tunnel is well suited for this model: for the following

reasons

1. The facility had received acoustic treatment for community

noise abatement. As a result, the 8 x 6 test section is
isolated acoustically from the 9 x 15 test section,
Figure 1.

2. The three chambers adjoining the test section are each

somewhat isolated from the rest of the tunnel and lend
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themselves to the measurement of sound power eminating
from the test section.

3. The test section has exhibited a fairly uniform reverberant
field using an omni-directional source (16).

The interrelationships of the appropriate acoustical parameters

are given in various references on room acoustics (17-18).
For standard atmospheric conditions, the sixty dB reverberation

decay time and total absorption are related by:

	

Sa - 55.2V	 (1)t	
c T 

where S = area, ft. 2 (m2 )
at = aSAB + 4 mV/S = total average absorption

a'SAB = Sabine absorption (in the absence of atmospheric
absorption)

V = volume, ft . 3 (M3 )

T  = reverberation time, 60 dB decay, see.

m = atmospheric absorption term, 1/ft. (1/rn)

c = speed of sound, ft/sec (m/sec)

The atmospheric absorption term is primarily a function of
relative humidity and frequency with some variation with temper-

ature. .Available data for reverberant chambers (19) have been
summarized into a single curve, Figure 3. Atmospheric absorption

Is also a factor in direct field sound propagation above 1000 Hz

for test section to settling chamber distances. For direct
Field sound propagation, the excess atmospheric attenuation is
usually expressed in terms of dB/1000.ft W. Standard values
for octave and one-third octave bands as a function of humidity
and temperature have been published by the Society of Automotive

-7-
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Engineers (20,21). 	 Octave band data from Reference 21 are

reproduced as Figure 4.

With an acoustic source in the room, sound power and sound

pressure level are related by

SPL = PWL + 10 log @ 2 + Say,	
4+	

mV + 10	 (2)
4nr	 SAB

where SPL = sound pressure level, dB re 20 uN/m2

PWL = sound power level, dB re 10-12 Watt

Q = SPL along sound source geometric centerline
(-) SPL of an omnidirectional source having
equivalent sound power, measured at same radius

r = radius from ,source ft. 	 (m)

Subtract 10 dB from the right hand side for SZ units.

The hall radius is the point at which the direct field and

reverberant sound pressure levels are equal.	 From Equations l a>
and 2:-

l^z x/z
r	 =

Sat =5.2VQ
(3)H 17	 7r ncTR,

The sound power output of propulsion inlets has, :;-n the past,

been evaluated by LeRC on a relative basis by measurement of
settling chamber sound pressure levels. 	 The SPL-PWL relation--

ship, equation 2, provides a means to calculate the sound a
power in the settling chamber. 	 However, knowledge of the

fractional portion of the source sound power exiting to the

settling chamber is also required.

Recognizing these factors which contribute to settling chamber

levels	 therevious soundp	 power calibration method { 16) has
f

been revised to place more reliance on the chamber decays
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and to include physically significant acoustic source power
distribution terms.

The recommended chamber reverberant calibration is represented
in equation form:

PWL source = SPL i + 10 log Sa SAB i + 4mV,l - lo log Pi - 16 (4)
1 ^

where P	 fraction of source sound power exiting to the
ith chamber

10 log P	 9, power index

Add 10 dB to the right hand side for SI units.

If all the source sound power is inserted into the particular
chamber, P = 1.0, and the chamber reverberant relation results,

PWL	 S IFI L + 10 log Sat -- 16	 (5)

or PWL SPL	 55.2V10 log	 16cT
R

10 log V
cT + 1.5

R

Add 10 dB to the right hand side for SI units.

The ratio of source power to that exiting to the settling
chamber, the preparation room, or the diffuser depends both on
the tunnel acoustic properties and the source directivity
index. The directivity index is defined as

DI H 10 log Q	 (6)

In. words, the directivity index is the ratio of sound pressure

-9-



levels from directional and omni-directional sources having the

same sound power.	 This directivity index may be determined

from directionality plots or from concomitant direct field sound

pressure and sound power level measurements. 	 For directionality

plots, the DI determination results from integrating the product_

of intensity and area.	 Since accurate integration of this product

is tedious, a -3 dB to -5 dB point approximation can be used.

That is, the transition from high intensity to low intensity is

assumed to be instantaneous and to occur between -3 dB and -5 dB

on the directionality plot.	 For example, for loudspeaker data,

the -5 dB point gives a better approximation (22). 	 In addition,°

if the directionality pattern is symmetrical in the horizontal
^. r

and vertical directions, the projected area is a circular

segment and the directivity index is given by the equation

DI = 10 log	
2	

(7)
1-cos y

where y = the angle between the source centerline and the repre-

sentative transition point.
i

The directivity index may also be computed from sound pressure

and sound power using the following equation:

DI	 SPLI.a	 ft	 (m) - PWLsource + 1	 ()

where SPL	 = Direct field, centerline sound pressure1.0 ft	 (m)
level dB re 20 O/m2 , at 1.0 ft (m)

Add 10 dB to the right hand side for SI units.

The relation between source directivity index and the power
r

index is best determined experimentally. 	 However, note that N

this dependence on source characteristics is required because

*." xep

-10-
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only one chamber measure.rnent is used. in order to minimize
inaccuracies arising from the variability of P with source

characteristics, the use of preparation room and diffuser

measurements, along with settling chamber levels, is recom-
mended. In that situation, only the acoustic energy absorbed

in the test section is not accounted for by chamber measurements.

3.2 funnel and Microphone Noise Models

Tunnel generated noise and turbulent wind induced microphone
noise place amplitude limits on the measurement of source
generated noise in both low velocity chambers and the higher
velocity test section. The candidate noise sources contri-
buting to test section and settling chamber measured levels

are as follows:

1. Microphone self noise  in the presence of :rind.
2. Test section turbulent boundary layer noise.
3. Turbulence--test object vortex noise.
4. Settling chamber cooler coil vortex noise.
5. Tunnel drive fan noise propagating through the dryer bed

and up the diffuser.

Norse from the 8 x 6 foot supersonic =mind tunnel by way of the

settling chamber, Figure 1, is not considered significant.
Levels measured at the exit prior to construction of the
9 x 15 foot wind tunnel were lower than present settling
chamber levels as indicated in Table I.

3.2.1 Microphone Wind poise

Microphone self noise in the presence of wind is generally
attributed to fluctuating dynamic pressure -

_11-



TABLE I

COMPARISON OF UPSTREAM SOUND PRESSURE LEVELS.,

dB re 2-0 pN/M2

Condition Octave Band Center Frequency, Hz

125	 250	 50!0	 1K	 2K	 4K 8K

Mach 1.9 in 8 x 6, prior

to 9 x 15 construction,

no ram jet (2)
60 55 56	 57 51 45 37

Present settling

chamber levels,

q = 25 PSf (16)

89

to

9-5

87

to

93.5

8.3.5	 81.5

to	 to

88	 87

72

to

81

67

to

79

65

to

70
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since U and q are not time variant and U > u,

(10)

u2	 (ll}

average variance of the pressure,
iN2

m

p(t)

	and	 p2(t)

	

where	 p2(t)

p Uu

p2U2.

time

l^T^
ft
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q + p(t) = 1/2 p(U + u) 2 	 (9)

1/2 p[U2 + 2Uu + u2]

where q = dynamic pressure, lb/ft 2 (N/m2)

p(t) = fluctuating dynamic pressure lb/ft 2 (N/m2)

p = density, slugs/ft 3 (kg/m3)

U = mean velocity, ft/sec (m/sec)

u = fluctuating velocity, ft/sec (m/sec)

Y L

y'

;^ s

n d

I'

-`	 vh

•.r

r

Ll
ifs

The fluctuating velocity is usually expressed in terms of a

turbulence index, a fraction of the mean velocity, T = u/U.

Substituting into equation (11) yields

p2 (t) = p2 4 2
	

(12)

Taking ten times the logarithm of both sides of equation 121

using the air density for standard conditions, and converting

to 20pN/m2 reference

SPL = 40 l.ogU+20 log T + 75.	 (13)

Add 20.5 dB to the right hand side for S1 units.

-l3_



In terms of dynamic pressure, q:

SPL = 20 log q + 20 log T + 133.8 	 (14)
-^	 e

Subtract 33.6 dB from the right hand side for SI units.

In review of aero-acoustic measurements, Fuchs (23) presents

data showing that the U 4 dependence holds for circular gets 	 -#

and free stream measurements. However, the basic constant of

proportionality differs by a factor of 1/2 from equation 12,

as follows:

p ( t ) = 112 pUu
	

(15)

In addition, for non-homogene ous turbulent boundary layers,

a form proportional to U 2 TO.5 gives a better fit. These

results suggest that the constant of proportionality,

equations 13 and 14, may have a sizable variability or may

even be in error. However, since the experimental results do

not consist of well documented concommitant turbulence and

dynamic pressure data measurements, the analytically correct

form, aquation. 12, will be used.

In order to model the response of typical microphones in the

presence of turbulent flow, the following additional information

is required:

1. Experimental assurance that microphone wind .noise depends

on U4.

2. Data on the improvement afforded by microphone nose cones.

3. The intensity and spectral characteristics of the turbulence

in the 9 x 1.5 foot test section.
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Data from tests by B&K (24,25) and Noiseux (26) collapse nicely

(to different curves) if normalized by velocity to the sixth

power. However, the mid-to-high frequency spectra of both

sets of data are decreasing with increasing frequency, approx-

imately to the second power. if the higher velocity measure-

ments are shifted down in frequency, they are then related to

the lower velocity measurements by U4.

Rasmussen (25) shows an average of 15-25 dB decrease in wind

noise with a nose cone for one-half inch microphones and 10-15 dB

for one-quarter inch microphones in the frequency range from

100 to 5000 Hz. For those tests, the reference data were

measured with a protection grid which may induce local turbu-

lence, especially in high frequency bands. This would tend to

increase the apparent nose cone improvement. Noiseux (27)

presents concomitant turbulence and wind noise data for a B&K

one-half inch microphone with nose cone. The microphone

exhibited levels which are approximately 16 dB lower than the
fluctuating dynamic pressure levels calculated from equation 13.

From these limited experiments, 15 dB is taken as the expectation

for wind noise reduction with the addition of a nose cone for

one-quarter inch microphones.

The turbulence intensity in the center of the 9 x 15 foot test
x section averages 0.75% (1).	 The intensity averages 1.3% as

the measurement Location is moved to within 10 inches of the
w floor or ceiling. 	 The electrical signals from the hot wire

probes used for those measurements were passed through low pass
filters at the time of measurement (28). 	 The one-third octave

band spectrum of the turbulence was inferred from these measure-

ments to essentially flat, with a level of - 56.5 dB re unity.

Combining the confirmation of the U	 dependence, the 1.0 dB
nose cone improvement, and measured turbulence levels, the

t
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predicted one-third octave band wind noise sound pressure level

is 90 dB re 20pN/m 2 for a tunnel dynamic pressure of 25 psf

(1196 N/m2 ). The microphone wind noise is also predicted to

increase as U4 (or q2).

3.2.2 Turbulent Boundary Layer Noise

From unpublished BBN work acoustic power radiated from a

turbulent boundary layer can be expressed as follows:

PWL (w) = 10 log

	

	 3p U	 + 41	 when w.0 > 1	 (16)
c mS

	

10 log^SU w + 41 when '" * < 1	 (17)
c3.

where PWL (w) = the sound power Level for one-third octave

bandwidth, dB re 10-12 Watt

p = air density, lb sec t/ft 4 (N see 2/m4)

S = radiative area, ft  (m2)

U = free stream velocity, ft /sec (m/sec)

c = speed of sound, ft/sec (m/sec)

S = boundary layer displacement thickness, ft (m)

w 2frf = radial frequency, radians/sec

Subtract 11.5 dB from the right hand side of equations 16 and 17

for Si units.

-16-



The diffuser would also be expected to generate turbulent
boundary layer noise.	 However, the 1:3 reduction in velocity
occurring in the diffuser effects almost a 30 dB reduction
in the sound power production per unit of radiative area at

the diffuser end, relative to the test section, from equations

16 and 17.	 The contribution of the diffuser turbulent boundary
layer is estimated to be, at most, equal to that of the test
section.	 This would add 3 dB to the estimate for the test
section to arrive at a total turbulent boundary layers sound
power estimate.

3.2.3	 Vortex Noise

a

With respect to vortex noise, theoretical and experimental work

a
has also been done to understand the basic process of noise

generation by the interaction of flow with rigid surfaces.

Current noise pi•&diction techniques are summarized by Hayden (29)

for the cases of: s

,.Aa

-17-
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In the transitional frequency region where wd* = U, one-third

octave band levels will increase approximately as U 6 . Un-
fortunately, the constant of proportionality in equations 16
and 17 has a variability of ± 20 dB.

For a representative tunnel flow condition of q = 25 psf, and
a boundary layer displacement thickness of 0.5 inch or 13 mm (1),
the transition point frequency, f = U/6* 2a = 561 Hz. Taking
the radiative area as the test section area (16 143 ft2 or 153 m2),
equations 16 and 17 both yield sound power estimates of 85 dB

re 10-12 watt. The one-third octave band sound power levels
diminish at a rate of 3 do per octave on both sides of the
transition point one-third octave band, centered at 561 Hz.
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s

a) flow past a single discontinuity-trailing edge,

b) rigid body in disturbed flow,

y'r	 c) spoilers in confined environments.

Analyses show that the noise sources for (a) and (c) above are

dipole, and the resulting sound power varies as U	 Point dipole

sources are also postulated for incoming turbulence although

d^.
deviations apparently exist.

For flow past a single discontinuity trailing edge, the engin-

eering form of the acoustic generation prediction is as follows:

}

i

4•

PWLOA = 10 log ^a 6)- 21	 (18}
where PWLOA = overall sound power, dB re 10

-12 
Watt

d = boundary layer thickness, ft (m)

W = edge length, ft (m)

U = tunnel mean flow velocity, ft/sec (m/sec)

Add 41.3 dB to the right hand side for SI units.

The one-third octave band spectrum peaks at A frequency

f	 ^# x 10
-2

p  U/d and at a level 10 dB lower than the overall

sound power level. The spectrum decreases at 3 dB per octave

above the peak frequency band.

Two trailing edges are candidate noise producers - the diffuser

end, and the transition from the test section to the diffuser. 	 `+

The latter is postulated not so much for the clean empty test 	 "J;

section as for when test hardware or test section wall 	 ='

irregularities are present, promoting local or general boundary

layer separation., similar to a trailing edge situation.

-1 8-
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For a representative test section flow condition of q	 25 psf

(1196 X/m2 ), the noise related parameters and predicted sound

power generation are as follows:

End of Diffuser	 End of Test Section

1 ft	 (0-3 m)	 6 = 0.4 ft	 (0.12 m)	 (1)

W a 80.5 ft (24.5 m)	 W = 48 ft	 (14.6 m)

U = 50.2 ft/sec (15.3 m/sec)	 U = 147 ft/sec (44.8 m/sec)

fp = 2 Hz	 fp = 15 Hz

PWLOA = 100.1 dB	 PWLOA = 121.8 dB

With respect to a rigid body in disturbed flow, Hayden (29)

comments that "there still exists no coherent, experimentally

verified theory which enables one to predict accurately sound

production from an arbitrarily shaped body in an arbitrary

inflow-"	 This absence of a general prediction methodology

is balanced by the ease of application of the spoiler noise
is

model.	 Hayden (29) and Beranek (30) summarize work by Yudin (31)

7 and Gordon (32) on the noise generated by an obstruction in a

duct or pipe.	 The model relates sound power production to the

pressure drop across the spoiler spanning a pipe. 	 If the

pressure drop is assumed to be equal to the product of the

dynamic pressure and coefficient of drag of the spoiler ., the
Tr

following engineering equation results:

PWLOA w 30-log qCd + 20 log D	 - 76.1	 (19)P -
where PWLOA = overall sound power dB re 10 12 Watt

2	 2q	 dynamic pressure	 16/ft	 (N/m

DP
 

= diameter of pipe on test section s ft (m)

Cd = Coefficient of drag

Subtract 37.4 from the right hand side for ST, units-.
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The with of the spoiler is not a factor in Equation 19 because

the formulation assumes the sound power level is dependent on A

the peak frequency squared, which in turn. is inversely depen-
dent on spoiler width.

The one-third octave band spectra peaks at 10 dB below the

overall and at a frequency of fp = 0.2 U/d, where d is the aa
diameter of the spoiler.	 This frequency must be below the pipe
cutoff frequency for Equation 19 to be applicable.	 The cutoff
frequency is defined as f c = 0.5 c/Dp .	 The one-third octave

band spectra decreases at 3 dB/octave above and below the

peak spectral level.
a

For a 1.5 foot diameter pipe spanning the average test section
dimension, and for representative tunnel flow conditions,

q = 25 psf in the test section, Equation 19 predicts an over-
all sound power of 98.5 dB re 10-12 Watt.	 The predicted k'
spectrum peaks at a frequency of 19.6 H2. i

3.2.4	 Settling Chamber Cooler Coil 	 Vortex Noise

Upon completion of the return leg of the 8 x 6 foot super-
sonic wind tunnel circuit in 1957, a serious noise problem was

_ a

identified and corrected (33).	 The bank of cooler coils,

Figure 1, exhibited discrete frequency vortex shedding which a

matched one or more "organ pipe resonances" of the heat
exchanger boundaries, along with structural resonances. 	 This

narrow band phenomenon was eliminated by installation of three
vertical baffles in each of seven foot wide sections.	 In

G

addition, V- shaped plates were installed in place of flat
plates between adjacent sections. 	 With completion of the

cooler modifications, the noise level was reported to have

-20
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been reduced 60 dB in the range from 110 to 170 Hz. No
broadband noise measurements are reported for any mid-to-
high frequency bands.

Fortunately, a reasonably accurate (+5 dB) method exists for

estimating the overall sound power generated by flow

obstructions, such as air conditioning diffusers. Beranek (34)

presents an empirical method, attributable to Humbert (35),
as follows:

FWLOA = 10 log S + 30 log e + 60 log U - 31.3 	 (20)

where	 S = area, ft 2 (m2)

e = pressure drop divided by dynamic pressure,

A 	 dimensionless
U = velocity, ft/sec (m/sec)

WẀo 	 Add 41.3 dB to the right hand side for SI units.

The estimated one-third octave band spectrum is haystack in

shape, peaking at 10 dB below the overall level at a frequency

f  = 457 U/Uref , where Uref = 10 ft/sec (3 m/sec). The

spectral level decreases approximately 3 dB per octave above
and below the peak frequency.

The dimensions of the cooler coils are 32 by 47 feet (14.3 m

by 9.7 m). The pressure drop across the cooler coil bank was

measured prior to installation of the 9 x 15 foot test section
(36). At maximum flow conditions, the pressure drop was
5.7 inches of water. This corresponds to approximately 17

dynamic pressure heads.

c
a	 -21-
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The values of the parameters of equation 20, for a test section
dynamic pressure of 25 psf (1196 N/m 2 ) are as follows:

S = 1504 ft  (140 m2)

e = 17
U = 13.2 ft/sec (4 m/sec)

PWLaA = 104.4 dB re 10 -12 Watt
fp = 603 Hz

Considering that one-half of the acoustic energy propagates
upstream, the power transmitted to the settling chamber in the

one-third octave band centered at 603 Hz would be 91.4 dB

re 10-12 Watt.

3.2.5 Tunnel Drive Fan Noise Propagating Through the
Dryer Bed

Fan generated noise is attributed by various authors (370$)
to combinations of mechanisms including:

a) Steady blade forces

b) Interference noise (from upstream obstructions)

c) Vortex shedding

d) Inlet turbulence

The first two mechanisms produce sinusoidal tones at the blade
passage frequency and multiples thereof. The compressor fan
for the facility turns at an average speed of 810 rpm. The

drive fan has 52 blades, yielding a blade passage frequency of

702 Hz. The acoustic transmission properties of the dryer
bed are not known, making the noise source level estimation

impossible. However, identification of contributions from
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1
these noise sources should be relatively easy because of their

sinusoidal nature.

Fan vortex shedding and inlet turbulence exhibit the same U6

parametric dependence as turbulent boundary layer and vertex

noise. However, the velocity through the 9 x 15 foot low speed
test section is controlled with the flow control doors with

the compressor speed and Flow held approximately constant.

Therefore, any broadband noise from the tunnel drive fan would
not be dependent, in either amplitude or frequency, on the low
speed test section flow velocity.
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4.0 EXPERIMENTAL RESULTS AND DISCUSSION

The experimental evaluation of the hardwall acoustic measurement

characteristics of the 9 x 15 foot low speed wind tunnel took

place over a period of time from 29 November 1973 to 17 July
1974. The resulting data and discussion of their significance
are organized as follows:

Chamber Reverberant Decay Measurement
Sound Power Measurement Calibration
Directionality Measurement Demonstration

Tunnel and Microphone Wind-On Noise

4.1 Chamber. Reverberant Decay Measurements

The graphic display and measurement of the decay of impulsive

or steady state acoustic signals permits identification of

dominant reflecting surfaces as well as calculation of the

average absorption. Impulsive decays were recorded on
29 November 1973, 24 February 1974, and 27 February 1974.

The relative humidity was not measured in the tunnel, but

Cleveland Weather Bureau data, shown in Table II, indicate

an average of 60% for those days. Based on a limited number

of subsequent measurements, the relative humidity in the
settling chamber is estimated to be significantly lower than
the ambient relative humidity, especially on cold days.

The equipment used for all decay measurement is shown in
Figure 5a. The recordings were played back through an octave

band filter onto a grphic level recorder, and the reverber-
ation times were calculated. With the use of an impulsive

noise source, a graphic level recorder tends to over-react

—24—
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TABLE II

Relative Humidity, Cleveland, Ohio, Airport
on Static Acoustic Test Days, %

Date Type Test

Time of Day

10 a.m.	 3 P.M.	 9 p.m.

29 Nov. 1973 Pistol Decals, ILG 64 54 75

24 Feb. 1974 Pi stol Decays 60 68 78

27 Feb. 1974 Pistol Decays 45 46 51

3 April 1 974 ILG 43 87 78
sd

,d 11 July 1974 Shotgun Mic 66 57(38)* 49

as 12 July 1974 Shotgun Mic 53 54 40

15 July 1974 Horn, Reverb.	 Cal. 64 6o 66
16 July 1974 Horn, Reverb. Cal. 61 46 47
17 July 1974 Horn, Sword, Direct. 50 35 53

*Measured In Test Section

-25-
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to the instantaneous increase in signal. This obscures the

initial part of the subsequent decay. To overcome this diff-

culty, the magnetic tape was played in. reverse.

Typical settling chamber octave band decays are presented in
Figure 6. The reverberant decays are well behaved with a
single slope. This indicates the predominance of a single

class of room modes, probably floor to ceiling and wall to wall.

Decays for the diffuser section and preparation room are pre-

sented in Figures 7 and 8, respectively. As with the settling

chamber, the curves are well behaved with little or no ambi-

guity about the appropriate reverberation time to use to

characterize the acoustic properties.

The test section decay curves, Figure q, all have a double

slope characteristic. The initial slope is identified with

the reverberant decay of the test section itself, the energy
is exiting to the other three chambers. The subsequent slope,
which starts 15 to 20 dB from the initial test section level,
is associated with the decay of the settling chamber with some
input from the diffuser and preparation room.

The reverberation tames for all the pistol shot recordings

were calculated and averaged. The average reverberation times
were used to calculate the absorption, hall radius, and sound
power-sound pressure difference, for the settling chamber,

preparation room, and diffuser section, Table III.

For the test section, the initial part of the decay was con-

sidered an inaccurate descriptor of the average absorption

-26-



Octave Band Center Frequency,,Hz
250 5.00 1K 2 K 4K 8KChamber Property

Settling Chamber Reverb. Time Sec. 3.6 3.5 3.0 2.5 1.65 0.95

13,000 ft 2 (1208m 2 ) Sat ,	 ft 2 1360 1400 1630 1960 2970 5160

100,000 ft 3(2832m 3 ) at 0.10 0.11 0.13 0.15 0.23 0. 40

Hall Radius, ft. 5.2 5.3 5.7 6.2 7.7 10.1
PWL (-) SPL, dB 15.3 15.5 16.1 16.9 18.7 21.3

Diffuser Section Reverb. Time, Sec. 5.0 4 .9 14.1 3.3 1.9 1.0

20 ' 000 ft 2 (1860m 3 } Sat, ft 2 1370 1400 1670 2100 3600 6900

14o,00o ft 3 at 0.07 0.07 0.09 0.11 0.19 0.35
(39,65'm3^

Hall Radius, ft. 5.2 5.3 5.7 6. 4 10.6 11.7
PWL (-) SPL, dB 15.4 15.5 16.2 17.2 19.6 22.3

Preparation Room Reverb.	 Time, Sec. 2.6 2.7 2.4 2.0 1.14 0.68

23,000 ft2(2137m2) Sat'	 ft 2 1885 1815 2040 2450 3500 7200

10o,000 ft 3 at 0.08 0.08 0.09 0.11 0.15 0.31

(2832m3) Hall Radius, ft. 6.1 6. o 6.4 7 8.3 12
PWL (-) SPL, dB 16.8 16.6 17.1 17.9 19.14 22.6

Test Section Reverb.	 Tame, See. 0.8/4.0 1.1/3.4 0.8/2.8' 1.2/2.6 0.8/1.6 0.7

1643	 ft 2 	(153.m 2 ) Sat'	 ft 2 	(T60 ) 236 172 23:6 158 236 270

3861	 ft 3 	(109 17j 3 ) PWL (-) SPL (ILG) 9.5 9 9 9.2 10.5 10.7

Sat ,	 ft 2 ,	 (ILG) 355 316 33.0 445 457 470

It
0.22 0.19 0.2 o.27 0.28 0.29

Hall Radius, ft 2.7 2.5 2.6 3.0 3.0 3.0

ti

i

TABLE III

Acoustic Properties of Wind Tunnea. Chambers
Determined from Decay Measurements and

Calibrated Sound Power Source, Low Relative Humidity (25%)
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because of the short decays and limited number of reflections.

This inaccuracy was confirmed by observing that the test section

effective absorbing area, Sa t , calculated from the pistol decays

was consistently less than the area opening to the adjoining

chambers (337 ft 2 ). To overcome this measurement problem and
resulting inaccuracy, an ILG centrifugal blower, calibrated,
omnidirectional, acoustic source (39) was placed in the test

section and octave band sound pressure levels were measured at
various locations in the test section. A reasonably uniform
acoustic field was observed at radii beyond five feet, and the
test section reverberant properties were calculated from these
data, Table III.

4.2 Sound Power Measuremeot. Calibration.

4.2.1 Omni Directional Source

On two occasions, 29 ISovember 1973, and 3 April 1974, settling
chamber sound pressure levels were measured while the ILG source

was in the test section. These data had been used to calibrate

the settling chamber microphones for source sound power in the
previous report (16). With use of decays for the settling
chamber calibration, these data have now been used to determine

7, the fractional portion of the source sound power exiting
to the settling chamber, Table IV. The calculated values of
Tr differ by 0.2 to 4.8 dB for the two sets of data. These

differences are attributable to one or both of the following:

1. source sound power output variability,

2. relative humidity uncertainty.

=28—



TABLE IV

Estimation of Sound Power Output of ILG Omnidirectional
Source In Wind Tunnel Test Section Using Settling Chamber

Sound Pressure Level Measurements

ry

Relative Octave Band Center Frequency
Humidity

Test Estimate, Property 250 500 1K 2K 4K 8K

29 Nov.	 1973 25% SPLsc 60 60 61.7 60,2 53.5 44
Test 1, 2 A,PWL sc SPL 15.3 15.5 16.1 16.9 18.7 21.3

sc
PWL	 -SPL	 + A 75.3 75.5 77.8 77.1 72.2 65.3

se
PWLILG	

sc
80.5 81 81.7 82 79 75.5

T1,PWLILG-PWLsc -5.2 - 5 .5 -4.9 -4.9 -6.8 -10.2

3 April 1 97 + 70% SPLsc 57.5 58 62 61 57.5 52
Test II, A,PWLsC-SPLsc 1 5.3 15.5 15.7 16.0 17.2 18.2
Test Section
Station 0,0 PW ^ c =SPL sc+A 72.8 73.5 78.2 77.0 74.7 70.2

PWLILG 80.5 81 81.7 82 79 1	 75.5

}^ ,PWLILG -PWL sc -7.7 -7.5 -3.5 -5.0 -4.3 -5.3
Average 1L' ave PWLILG-PWL 

Se -6.5 -6.5 -4 .2 -5 -5.5 -7.7

Ratio,conneeting area to
total test section -
absorption, Table III

10 109(9x15) /Sat - 4 .2 - 3 . 7 -3.9 -5.2 -5.3 - 5.4

ty, equation 4 and Figure 3.
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The average value of H is approximately -6 dB with some

frequency dependence. This says that one-fourth of an omni-

directional source's acoustic energy goes to the settling

chamber.

The bottom line of Table IV lists the ratio of total test

section absorption to the area of the 9 x 15 foot opening

into the settling chamber, expressed in dB. If the test section

were truly reverberant and the settling chamber levels negli-

gible, these values would correspond to n. These values are

different from the average H values by -0.2 to 3.9 dB. This is

indicative of the sound power estimation accuracy which can

be achieved with an omnidirectional scurce in the middle of

the test section using only settling chamber measurements.

In addition to this measurement variability, the acoustic

power distribution also depends on the source location in the

test section. This has been demonstrated by moving the IL,G

source within the test section, Figure 10, and by observing

the effect of angle of attack (position) of a 5.5 inch fan

inlet, Figure 11.

In order to overcome the dependence of sound power estimates

on source position, and to an even greater extent the depend-

ence on directionality, the ILG-induced acoustic levels in the

diffuser and preparation room were utilized along with the

settling chamber levels. The sound pressure levels measured

with a hand held sound level meter are listed in Table V.

These octave band levels were converted to sound power

estimates using the PWL-5PL values, Table III, plus a humidity

correction. The humidity was approximately 25% for the

w^
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TABLE V

SOUND PRESSURE LEVELS WITH ILG OMNIDIRECTIONAL SOURCES IN WIND
TUNNEL TEST SECTION, HAND HELD SOUND LEVEL METER

3 APRIL 1974, RELATIVE HUMIDITY ESTIMATE 70%

TEST SOURCE MICROPHONE OCTAVE BAND CENTER FREQUENCY
NO. LOCATION SC	 PR	 DS 00 1K 2K 4K 8K

II Test Section, x 57.5 58 62 61 57.5 52
Station 0, 0 x 62 59.5 58 57.5 54.5 49

x 57.5 58 58 57 52 46

III Test Section x 58 59.5 61 61.5 59 53
Station 7, 0 x 60 58.5 58 56.5 54 X48.3

X 57 57.5 58 56.5 52 1 45

IV Test Section, x 57.5 58.5 61 60.5 59 52.5
Station 0, -3.5 x 60 59 58 57.5 54.5 50

x 57.5 58 59 57.5 52 43

V Test Section, x 56 56.5 59 59 56.5 49
Station -15, 0 x 58.5 56 56.5 56 53.5 47

x 59.5 61 60.5 59.5 55.5 49

VIII Test Section, X 58 59.5 60 59 57 50.5
Station -0, 0 x 61 59.5 59 57.5 54.5 50

X 57.5 57.5 59 60 55.5 48
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chamber calibrations and approximately 70% for the ILG measure-

ments. The Sa t values, Table III, equation 4 and the humidity

absorption, Figure 3, were used to calculate humidity corrections,

Table VI.

TABLE VI	
Sa (25%)

HUMIDITY CORRECTION, 10 log Sat 70
t

Chamber
F'req ue cy Hz

1000 2000 4000 8000

Settling Chamber 0.4 0.9 1.5 3.1

Preparation Room 0.4 1.0 2.2 3.2

Diffuser Leg 0.5 1.2 2.1 3.3

The corrected chamber calibrations were applied to the measured

sound pressure levels in all three chambers to arrive at sound

power estimates, Table VII. The sound power estimates for the

individual chambers were summed and compared with the source

sound power, Table VII. The summed results are independent of

source position. In addition, the difference in source and

measured sound power agrees well with the ratio of total test

section absorption to open area (expressed in dB), Table VII.

This indicates that all of the Omni-directional source sound

power is accounted for; it is either absorbed in the test

section or is divided between the adjoining chambers. Thus,

the sound power estimation a--curacy for an omni-directional

source can be improved to +1 dB if all three chamber measure-

ments are used.

^y

^g

^r

4.2.2 Sound Power Measurement Calibration Directional Source

As mentioned in the preceding section, early tests by LeRC with

a 5.5 inch fan-inlet noise source showed variation in settling
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SOUND POWER OUTPUT OF ILG OMNIDIRECTIONAL SOURCE IN WIND
TUNNEL USING MEASUREMENTS IN THREE CHAMBERS

PWL* = SPL + A (TABLEIII) + RELATIVF HUMIDITY CORRECTION, TABLE V1

TEST SOURCE MICROPHONE YOCTAVE BAND CENTER FRE UENC
NO. LOCATION SC PR DS TOTAL 250 500 1K 2K 4K K

I: Test Section, x 72.8 73.5 77.7 77.0 74.7 70.2
Station 0,	 0

x 78.8 76.1 74.7 74.4 71.7 68.6

x 72.93.5 73.7 73.0 69.5 64.8

x 80.5 79.2 80.4 79.8 77.2 72.8

III Test Section, x 73.3 75.0 76.7 77.5 76.2 71.2
Station 7,	 0 x 76.8 75.1 7 4 .7 73.4 71.2 69.1

x 72,E 73,0 73,7 7?•5 6.9:•5 63..8

x 79.2 79.3 79.5 79.7 78.0 73.3

IV Test Section, x '(2.8 74.0 76.7 76.5 76.2 70.7
Station 0,	 -3.5 x

76.8 75.6 7^.7 74.4 71.7 69.6

x 72.9 73.5 M7 73.5 69.5 61.8

x 79.3 78.6 80.5 79.7 78.2 73.7

V Test Section, x 71.3 72.0 74.7 75.0 73.7 67.2
Station -15, 0 x 75.3 72.6 73.2 72.9 70.7 66.6

x 74.9 76.5 76.2 75.5 73.1 67.8

x 78.8 78.7 79.5 79.2 77.3 71.9

VITT Test Section, x 73.3 73. 0 76.1 75.0 74.2 68.7
Station -0,	 0 x 77.8 (6.1 76.1 74.4 71.7 69.6

x 72.9 731Q 74.7 7610 72.9 66.8

x 80.0 79.1 80.1 79.8 77.8 73.1

PWL Average x 79.6 79.0 80.0 79.6 77.7 73.0

ILG SOUND POWER x 80.5 81.0 81.7 82.0 79.0 75.5
AVERAGE CALIB.

PWL ILG - PWLEST x 0.9 2.0 1.7 2.4 1.3 2.5

REF,10 log (Sat/337) 1.1 0.7. 0.9 2.2 2.3 2. 4

*PWL, dB re 10- 12 Watt; SPL dB re 20 U N1 2
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chamber sound pressure level with angle of attack, Figure 11.

The measurement variation was attributed to source directionality

as well as location in the test section. In order to understand

source acoustic power distribution and improve measurement ac-

curacy, a sound power measurement calibration was performed in

July 1974, with a highly directional source of known character-

istics (40). The source and rotational drive are shown in

Figure 12. In addition to the four settling chamber microphones,

preparation room and diffuser leg microphones were used, Figure

5c. The microphone signals were averaged on line with time

division mu.ltiplexcrs, passed thru log converters, and plotted

as a "unction of source-to-boom angle ^ of 360 0 while positioned

at angles of attack, a = 0, 30 and 90 0 . The horn was driven with

octane band noise centered at 500, 1000 and 2000 Hz, then with

one-third octave band noise centered at 6300, 8000 and 10,000 Hz.

The averaged chamber sound pressures were plotted on-line as a

function of ^, Figure 13.

The curves for each chamber were replotted and averaged using

the source angle in the tunnel (a + *) as the common absissa

Figure 14. The average responses so obtained for the individual

chambers were converted to sound power estimates using the

chamber calibrations, TableIIT, plotted together for each octave

band, and summed. These resulting summation plots had an in-

ordinate contribution from the preparation room microphone. The

summed sound power estimate rose 3 dB when the source was

directed towards the side walls. The preparation room contri-

butions were then reduced by 3 dB. This was Justified by con-

sidering that the preparation room microphones were directly

under the test section and were measuring near field as well as

reverberant noise.
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I
The results of the calibration with the directional source so

obtained are presented in Figures 15 through 17. The calcu-

lated summations of sound power vary only +1 dB with source

angle even though the variation within individual chambers is

as great at +10 dB. The indicated sound power levels are

compared with the calibrated source levels, Table VIII.

I
I
j

TABLE VIII

ESTIMATION OF SOUND POWER OUTPUT OF HORN DIRECTIONAL SOURCE
IN WIND TUNNEL USING MEASUREMENTS IN THREE CHAMBERS

SourceData Source 500. 1K
an
2K

en er
4K

requency
6.3K_

,	 z
$K 10K

indicated Level 112 112 1.1.1 107 105 103 100

Calibrated Source (112.5) 112 ill 104 100.5 97.5 93.5
Level	 (40)

Difference, -0.5 0 0 3 4.5 5.5 6.5
Indicated (-) Cal

The differences between indicated and calibration levels are at-

tributed to the direct field radiation of the horn source dom-

inating the settling chamber microphone reverberant field. The

direct field and reverberant field contributions for three dif-

ferent sources are calculated in Table IX. As would be expected,

the more directional the source, the higher the direct field

contribution relative to the reverberant.

The same trends are expected for diffuser and preparation room

measurerfents, because the distance from source to microphone

are similar. This is confirmed by observing that the sums of

estimated sound power were invariant with angle, Figures 15,

16 and 17.

T^5
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TABLE TX

ESTIMATION OF REVERBERANT AND DIRECT FIELD CONTRIBUTION TO
MEASURED SETTLING CHAMBER SOUND PRESSURE LEVELS FOR THREE
DIFFERENT SOURCES

BAND CENTER FREQUENCY, HZ
SOURCE FIELD QUANTITY 250 500 1000 '2000 -4000 , 6300 8000 1 0 ,000

ILG Rev PWLts 80.5 81.0 81.7 82.0 79.0 - 75.5 -
II	 (Tab le IV) 6.5 -6.5 -4. 0 -5.0 -5.5 - -7.5 -
PWL

sc
=
 
PWLts +II 74. o 74,5 77.7 77.0 73.5 - 68.5 -

A* ,PWL sc-SPLsc 15.3 15.5 16.0 16.8 18.4 - 21.0 -
SPLsc=PWLsc-A 58.7 59.0 61.7 60.2 55.1 - 47.5 -

Dir SPLIO 58.2 61.5 63.7 63.3 56.0 - 50.0 -
AL - 20 log 7+A* 17.0 17.0 17.0 17.3 18.0 - 19.4 ^-

SPL70=SPL10-Ar 41.2 44.5 46.7 46. 0 38.0 - 30.6 -

DI=SPL10-PWL+21 1.3 1.5 3 2.3 -2 - -4.5 -

LE5-2 Rev PWL t $ 96.2 54.7 96.3 94.7 - 93,7
Speaker,
0.25 h	 (est ) - -3.0 -3.0 -3.0 -2.0 - -2 .0 -
Amp

PWLsc=PWLts +Ii - 93. 2 91.7 93. 3 92 .7 - 91 .7 -
A, PWL sc -SPLSC - 15,5 16.0 16.8 18.4 - 21.0 -
SPLsc=PWLsc -A - 77.7 75.7 76.5 73.3 - 70.7

Dir PWL - 9E.2 94.7 95.7 94.7 - 93.7 -
10 log Q = DI - 6.5 7.0 7.0 13.0 - 14.0 -

SPL1.0=PWL+DT-1 - 101.7 100.7 101.7 106.7 - lo6.7 -
Ar= 20. log 70+A - 37.0 37.0 37.3 38.0 - 39.4 -

SPL70=SPLI -pr - 64.7 63.7 64.4 68.7 - 67,3 -

Horn Rev PWLts - 112.5 112.0 111.0 104.0 100.5 97.5 93.5
0.25 n(Fig 15,16,17) - -2.0 -1.0 -0.5 -0.5 -0 -0 -0
Amp PWLsc=PWL--ts +II _ 110.5 11.1.0 .110.5 104.5 .100.5 97.5 93.5

A, PWL sc -SPLSC _ 15.5 1:6.0 36.8 38.4 20.0 21.0 22.1
SPLsc = PWLsc -A _ 95.0 94.0 93.7 96.11 80.5 76.5 71.4

Dir PWL - 112.5 112.0 111.0 104.0 100.5 97.5 93.5
10 log Q = DI 12 19.0 18.5 18.0 22.0 23.5 26.5
5PL1.0=PWL+DI - 1 - 123.5.130.0 128.5 1.21.0 3.21.5 120.0 119.0

Ar=20 log 70+A - 37.0 37.0 37.0 37.3 38.7 39.4 40.2

SPL7D=SPL
1..0 -Ar 86.5 93.0 92.0 93.7 8248 80.6 79.8

*All atmospheric absorption terms calculated for conditions of relative
humidity, 30%, temperature 68° F; A = atmospheric absorption,70 ft. from Fig.4
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The implication is that reverberant sound power measurement is

dependent on source directivity, even if all three chamber

microphones are used. Fortunately, typical inlets are not

expected to have directionality indices (Dl) in excess of

20 dB like the horn source. The LE5-2 speaker has Dl's ranging

from 6.5 to 14, which may be more typical.. The speaker has a

_	 worst case settling chamber sound pressure contribution of

°s	 reverberant = 70.7 dB versus direct = 67.3 dB. This would raise

the measured levels measured by the settling chamber microphones

by 1.6 dB, compared with the 6.5 dB worst case error with the

horn source.

4.2..3 Hardwall Reverberant Calibration Summary

The measurement of sound power in the hardwall configuration

depends on three factor :

a.

b.

c.

^r

The PWL-5PL calibration from the settling chamber, (and

preparation room plus diffuser if used)

The fractional part of the source energy exiting to the

settling chamber (or absorbed in test section if all

three chamber measurements used).

The contribution of the source direct field to the

microphone signals in the receiving chambers.

Approximations for these three factors are presented as

Figures 18,	 ly and 20 respectively. Since the three chambers

are reasonably close in response, Figure 18 may be used as

the PWL-SPL calibration for all three.

The use of these figures is best explained by example.	 SupposeV

the following data were taken in the 4000 Hz octave band when

1
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the measured relative humidity was 50%.

Chamber SPL

Settling Chamber 84

Preparation Room 81

Diffuser Leg 81

From Figure 18, 0 = 18 dB.

From experience, the source directionality index is assumed. to

be 10 dB, with the main lobe pointing towards the settling

chamber. From Figure 19, H = --3dB, and from Figure 20 SPL rev

SPL dir = 10 dB.

Using only the settling chamber reading

PWL - SPL + A - n

=84+18+3=105 dB

Correcting for the direct field contribution (10 dB below the

reverberant field), the final source sound power estimate is
104.6 dB re 10 -12 watt.

Using all three chamber readings

PWLsc - 84 + 18 = 102

PWLpr = 81 + 18 = 99

PWds = 81 + 18 =

Total	 105 dB
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Again, correcting for the direct field contribution to the

' measured sound pressure levels, the source sound power estimate

is 104.6 dB re 10 -12 watt.

4.3	 Direct	 Field	 Calibration

As previously reported (16), the direct field measurement
characteristics of omni, and directional sources have been

evaluated by two methods.	 The decrease in sound pressure level
with distance from a 5.5 inch fan-inlet noise source was

measured by LeRC for both the hard wall (present configuration)
and soft wall cases.	 The information of interest were the near
field characteristics of the nonideal source and the extent of
the direct	 field.acoustic3

The second method utilized the TLG sound power source to define
the properties of the test section reverberant field (Table III).

Both methods led to an evaluation of the radius at which the
reverberant and direct fields are equal. 	 This radius is nomi-
nally 3.0 feet from all frequencies.	 Some consistent variations
occur with position in the test section, but precise analysis
is frustrated by the nonstationarity of the fan as a noise
source.

The ability to describe directionality patterns of highly
directional sources has subsequently been evaluated by rotating
the microphone boom around the horn for 180 combinations of horn
orientation, microphone radii, and frequency. The testing was
performed on 17 July 1974. The horn and microphone boom with
omnidirectional microphones are shown in Figure 21. The Omni--

directional microphones are mounted on weathervaning "swords"



to keep the microphone pointing into the flow, minimizing

microphone wind noise.

The test conditions and the measured centerline sound pressure

levels are listed in Tables X and XI. These tables show that the

centerline sound pressure level of a highly directional source

can be measured accurately at radii from 2 to 10 feet. More
specifically, the data indicate the following:

1. The reproducability of the results for a given frequency

band and orientation in the tunnel, expressed as one

standard deviation, ranges from 0.5 to 1.7 dB.
,f.

2. Angling the source towards the wall (Table XI) raised
the measured source centerline levels from the measurements

made with the source pointing downstream (Table X) in five
of six bands.

3. The accuracy in. measurement of the one-foot centerline

sound pressure levels, relative to the calibrated free

field levels, range from -1.5 dB to 3.4 dB.

4. The decreasing amount of test data for large microphone
radii (5 and 10 feet) as the source is positioned and 	 K

angled towards the wall (Table XI) emphasizes the
geometrical constraints in the 9 x 15 foot test section. : h

5. The data measured at the three foot microphone position

for a = 30 0 ,	 _ - 900 , in frequency bands 1000, 2000, and

4000 Hz, average 10 dB lower than comparable data. It was
assumed that an attenuator switch position was improperly

erT.
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Table X.	 Hardwall Directionality Test Condition Summary With
Measured Horn Centerline Sound Pressure Levels,
Source Pointing Down Tunnel Centerline

R

c

Angle Horn Boom Mic 20 Input Si nal Band Center Fre uenc 	 Hz
of angle Length Radius log d, 1000	 2000	 1	 4000 6300 8000	 10 000attack re ft. From d-
a inlet Horn r + 4 Mic SP Lt 	I qic SPL	 1 Mic SPL Mic SPL Mic SPL	 , Mic SPL

Face, at radius at	 adiusl at radius. at radius at radius4 at radius
r	 1.0' r 1.0 1 r 1.0 ;r	 1.0' r	 'l. C) r 1.0'r	 ft.

2 15.5 113	 .12	 .5112 127.510 121. 106.5;122 107 122. 103.211 .7
0°

I
0° 10 2 15.5 114.t2q.8112.5128 `lob 121. 107	 !122. 106 X121. 102 117.5

6 2,5 16.3 114.5130.8113 129,3106 122. 107	 ;123. 1.06 122.1102 118.3
4 3 16.9 11.1.7,128.6 09. 5126.4:lo5. Qj121. 9105.21.22. 105.2 22.100. 7117.6
6 3.5 17.5 112.0429.5112 29.5'106.0123. 105.0122. 103.5121 99.5117
4 4 18.1 110-%28.6108 126.11103-3121.4104.0122.1104 122. 99.5117.6

10 5 19.1 112	 4131.1111 30,11105 124. lo4.5123.6102.7121. 99 118.1
6 6 20 109-5 29-5110 30	 1104 124 102.5122.51.02.2122. 98,51118.5

10 10 22.9 1Q7.5:30.4107.3130.21101 123.9 99	 121.9 99.2 22.4 98 1120.9

30° -30 `' 4 2 15.5 112.21127.7112 127.51105.8121.33.0 -6.5;122 lo6.61.22.110
10 2 15.5 114 1129.5112.6 28.1'1.06 121. 108 1123.51o ,6.8122.3'1 17.7
6 2.5 16.3 108 124.3112 128.3 1101

122.5105.8J122.7106
117.3105.5121.8105.5121.8100.5 16.8

4 3 16.9 111 127.9111 1.27.91105. 122.9102 18.9
6 3.5 17.5 111.7 29.2111.6129.11105.8123.3103 6120.5104 121.5 98.6`116.1
4 4 18.1 109.7127.8log.51.27.611Q4.3122.4104 '122.1104.9123 ao1.8 19.9

10 5 19.1 111.8130.9111. 6130.7,105.1124.2103,5122.6103.8122.9 9 8 ,3 17.4
6 6 20 lo8.6128.61og 129	 1104 ``1.24 ' 02 22 102 122 9 8 18

10 10 22.9 107.8"13.0.7.08 130	 9[101.51124.4 98.8 21.7 00.3123.2 9 6. 5 1118.4

Average value (CP/0 and 3, Q°/-3Q° } ___ 129.111 -_- 128 J --_- 122.5 --- 22.3 --- 1122.2 - 118.2

Measurement standard deviation, dB --- 1.6:--- 1.4 --- 1.7 --- 0.7, ---- o.6 --- 1.2

Free Field, Table IX and Ref.	 (40) : --- 130 1128.51 --- 121 --- 121.5 --- 120 --- 119

Difference, Free Field (-) Average --- -- 0 . --- 0.2' --- 1.5 --- 0 . --- 2 .2 --- --0. 8
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Angle Horn Boom Mic 20 Input Signal Band Center Frequency Hz
of angle Length Radius log d,'

attack
a

re
inlet

ft. from
Horn
Face
r,ft.

d =
r + 4

10°010 2000 40,00 6300 81000 10	 00!0
Mic SPL
at Radius

Mic SPL
at Radius

Mic SPL
at Radius . at

Mic SPL
Radius

Wic SPL
at Radius

Mic SPL
at Radius

r 1.0 1 r 1-0 1 r 1.0 1 r 1.0 1 r 1.0 1 r 1.0

0° -600 4 2 15.5 112.7!28.? 13 128.5107 122-5107 122-5108-5124 10 5 120.5
4 3 16.9 112 128.9112 128.9107 123.9106.1123.6107-5124.4105-3122.2
4 44 1 8. 1 111.2128-3111 129.li o6 24.1 . 0 r5.7 1 23.8 1 0 6.5 24.6 03 121.1

30 0 -900 4 2 15.5 11 3.4 12 8.91 12.61 28- 1107-1122.6107-3122.8108.0123-5104-0119.5
4 3 16.9 102.2 19 # 02.0 1819 97.9ll4 *8 l 05.5122.4 o^6 . 123.2 04.9121.8
6 3.5 17.5 110 127. 5112.0129-5107.0124-5104.2121-7105.4122-9103.61 21.1
4 4 18.1 10-0.8118f9100.9119* 97.9116* 1 04.8122 -9105-9124 102.4120.5
6 1	 6 20 107.9 27.9 111 .231.210 ,6.4 26.4 03.5123.5 o4.5 24.5F01.5121.5

Average value ( 0 0 /-60°,3 .0 0 /-90 0 ) ---- 128.5 ---- 29.1 12 4.4 --- 122.9 --- 123.9 --- ; 21
Measurement standard deviation, dB 0. 0.9 1. 0.7 +0. +0.9

Free Field, Table	 IX and Ref. 40 --- ! 30 --- 28.5 --- 21 --- 121-5
1
--- 20 --- 1119 

Difference, Free Field (-) Average --- -1.5 ---
-

0.6
[ -

--- 3.4
I

--- 1. 4 ---
I	 '

3.9
1	 1.

---
1

2.0
-j

*Levels increased by 10 dB for averaging

)`	 1r
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documented. The levels were arbitrarily increased by

10 dB for averaging.

Typical directionality plots obtained on-line are presented

in Figure 22. Typical horn directivity curves were replotted

relative to the source centerline levels and compared with

anechoic conditions in Figures 23 through 26. These figures

show the characteristic result that the main lobe of the

directionality pattern is well defined to the 3 dB point where

it begins to broaden out. This characteristic does not change

significantly with radius from the source. However, the skirt

of the directionality pattern is raised by acoustic reflections

for the six foot radius measurements (Figures 25 and 26)

relative to the three foot radius measurements (Figures 23 and

24). Therefore, the hall radius which is 3.0 feet for hardwal,l

test section appears to be a limitation on the direct field

measurement of highly directional sources as well as omni-

directional sources.

4.4 Tunnel_ and....Miarophone. Wind- On Noise

t
t
r.

t

Yi

^h

•h

4,e

e

a

With the tunnel running, both the settling chamber and test

section microphones evidence levels in excess-of the electrical

noise floor. Typical settling chamber measurements are presented

as Figure 27 for test section dynamic pressures (q) ranging from

9.5 to 45 Psf (455 to 2153 N/m2 ). Normalizing these data by the

third power of the dynamic pressure yields a good fit, Figure 28.

In addition to the normalized sound pressure levels, Figure 28

also shows the prediction of grille noise attributed to the

cooler coil. bank. This prediction was derived from the sound

power generation model, Section 3.2.4 of this report, and the
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settling chamber calibration, Table III. The low frequency

cooler coil predicted levels are significantly lower than the

measured levels. Above 2000 Hz, the predicted levels approach

the measured levels, suggesting a significant contribution.

Figure 29 shows normalized sound pressure levels for the.pre-

paration room. These levels are similar to those measured in

the settling chamber. This is the same result as observed with

an omnidirectional source in the test section, Table V.

Test section microphone, wind-on, noise measurements for

dynamic pressures of 20 to 60 psf (957 to 2871 N/m2 ) are shown
in Figure 30. These data were normalized by 30 log q /qre£'
and are presented in Figure 31. Also presented in Figure 31 are

predictions of microphone wind noise, turbulent boundary layer

noise, and vortex noise from inlet support and trailing edges.

The sound pressure level. predictions are derived from the sound

power level predictions, Sections 3.2.1, 3.2.2, and 3.3.3,

respectively, along with the test section calibration, Table III.
E	 Only the noise predicted for the transition of the test section

to the diffuser, which is admittedly inappropriate, agrees with

the measured data over all frequency bands. In spite of

inappropriate application of the noise generation model, the

favorable comparison of model and measured results indicates

that significant noise generation may be associated with flow

entering into the diffuser. The microphone turbulence generated

predicted levels intersect the measured levels in the high

frequency bands, indicating a contribution to the test section

microphone measured levels, at least for q < 25 psf.

With respect to microphone wind noise, the shape of the predicted

spectra is different from the measured spectra, Figure 31. In



i

addition, the measured spectrum is different, in shape, from
other microphone, turbulence generated, noise measurements.

Figure 32. Finally, the measurements made in the test section
vary as U6 , not U	 All these factors suggest that the test
section microphone is sensing acoustic noise, not pseudo-noise

from turbulence.

Figure 33 compares the normalized settling chamber measurements
with levels which could be attributed to test section sources.
The agreement again suggests that the measured test section
levels are indeed acoustic.
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5.0 CONCLUSIONS AND RECOMMENDATIONS

The results of this study indicate that accurate source sound

power estimations can be made in the hardwall configuration

using settling chamber sound pressure level measurements alongg	 g	 P	 g

with relative humidity levels and approximations of source

directivity. The measurement standard deviation ranges From

0.2 to 3.9 dB.

The accuracy of source sound power estimations can be improved

if preparation room and diffuser leg sound pressure level

measurements are used along with settling chamber sound pressure

level measurements. In addition, approximation of source

directivity would be required only to avoid errors due to 	 -

direct field levels exceeding reverberant field levels, not

for sound power distribution. With these steps the measurement

standard deviation may be reduced to + 1.0 dB.

Accurate direct field measurements in the test section are

limited to a radius of 3 feet by the reverberant field, with

the one exception of a highly directional source pointing

directly upstream. The measurement reproducibility ranges

from 0.6 to 1.7 dB (one standard deviation). The source measure-

ment accuracy ranges from - 1.5 to 3.4 dB. This may be due in

part to source strength variation.

The dominant source of wind-on microphone noise cannot be

precisely identified from analytic models and available data.

However, the results suggest the following conclusv.ons: 	
3

A

1. Sound pressure levels measured by test section microphones

are due to true acoustic levels, not turbulence induced

pseudo-noise.
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2. The most likely area of significant noise generation is

the transition from the test section to the diffuser.

If reduction of wind-on noise is required, measurements should

be made to support or contradict these conclusions. Removing

the nose cone from a test section microphone and measuring wind-

on noise would be the most instructive. Surveys down the

diffuser would also be of benefit.

The conduct of these tests has served to emphasize various

procedural errors, equipment problems, and pitfalls. The

following recommendations are intended to help avoid subsequent

problems.

1. Measure relative humidity in the settling chamber and

relate to weather bureau readings. Utilize for sound

power estimation from existing settling chamber sound

^- pressure data.

2. Utilize a calibration, electro dynamic Omni-directional

source for subseque it evaluation and calibrations.

^	 3. On-line presentation of levels is feasible and should be

encouraged.

4. Maintaining end-to-end calibration traceability is

essential.

5. The driven shield connection between cathode follower and

sword should be checked routinely (the sensitivity should

not be changed by moving the microphone from cathode

follower to sword).

-47-
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6. The test section should be lined with acoustical absorptive

material in order to measure directivity (already done).

7. When using a microphone in the preparation room for source

sound power estimation, place the microphone in the center

of the work area, not near the test section slots.

5:	 _ -48-
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6.0 SYMBOL. DEFINITION

The symbols used throughout this report are principally

defined with English units because the wind tunnel dimensions

and dynamic pressure are described in English units. However,

nondimensional and engineering relations are expressed in

both English and Sl unit y for reference as follows:

Definition

Atmospheric absorption at 70 feet, dB

Speed of sound

Coefficient of drag

Spoiler diameter

Directivity index, 10 log Q

Pipe diameter

Frequency

Cutoff frequency

Peak frequency

Constant of proportionality,
expressed in dB

Atmospheric absorption

Fluctuating dynamic pressure

Time average rms pressure

Fraction of source sound power to
that exiting to the ith chamber

Symbol

A

c

C 

d

Dl

Dp

f

f
c

fp

k

Units

ft/sec (m/sec)

ft (m)

ft (m)

Hz

Hz

Hz

1./ft (1/m)

lb/ft 2 (N/m2}

lb/ft 2 (N/m2)

Sound power level:, dB re 10-12 1
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Symbol	 Definition	 Units

PWLOA	Overall sound power level, dB	 -

re 10-1.2 Watt

PWL(w)	 One-third octave band sound power level,	 -

dB re 10-12 Watt

q Dynamic pressure lb/ft2 (N/m2)

Q Directivity -

r Radius ft	 (m)

r Hall radius ft (m)

S Area ft 	 (m2)

SPL Sound pressure level, dB re -

20 PN/m2

T  Reverberation time (60 dB) seconds

U Fluctuating velocity ft/sec (m/sec)

U Mean velocity ft/see (m/sec)

V Volume ft3 (m3)

W Edge length ft	 (m)

a

i
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Symbol Definition

a Angle of attack

a Acoustic absorption coefficient

at Average total absorption

SAB
Sabine absorption (in the absence of
atmospheric absorption)

Angle of microphone boom relative
to inlet centerline

Y Angle between source centerline and
representative transition point

Boundary layer thickness

Boundary layer displacement
thickness

PWL	 SPL	 dBi-	 i
A Attenuation due to spherical spreading,r 20 log r

C Normalized pressure drop

11 Power index, 10 log P

P Density

Turbulence index, u/U

Angle of source relative to inlet
centerline

W Radial frequency, 2wf

f.

A'

Units

degrees

degrees

degrees

ft (M)

ft W

Bolt Beranek and Newman Inc.
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