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I. Introduction,



The problem of accurately modeling the relative positions of two orbit­


ing vehicles has become increasingly important with the advent of missions



whose success depend upon this information.. Three instances of such missions



are:



1) Missions involving rendezvous
 


2) Missions which attempt to study certain physical phenomena by observ­


ing their relative effects on two orbiting vehicles.



3) Inexpensive modeling of a set of satellites to check for possible



collision.



One obvious approach to determining the relative position of two vehi­


cles is simply to difference the position vectors of the two vehicles. Thus,



if the position vectors, r and F2 of the two vehicles are given as:



r x i Y,J + zk (1) 

and'


r2 x2 y2 j + z2 k 

the relative vector, r, would be computed as 

r+ ' +yCz -z) k. (2)
r=r I - r2 +x 1 -x2) + (Yl - Y2)+ 2)



Clearly, when rI approaches r2, a serious loss of significant digits



may result from the subtractions involved due to the finite word length



of the computer being used.



There are .obviously other-limiting factors upon the accuracy with which



the relative vector can be obtained. The most visible limiting factor is'the



method used to-obtain the positions-of each- satellite, in-the case of -numerical
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integration this is a factor of the accuracy of the integrator, the stepsize



used and the length of'time integrated.



The use of time transformations, have recently been applied to the equ­


tions governing the motion of space vehicles in attempts to more accurately



predict their positions. It is hoped that these methods may be benificial in



the case of relative posi-tions between two satellites. These studies have



shown'that the value of the exponent used in the time transformations, n, can



have dramatic effect on the global integration error. These investigations



have generally been concerned with applying the transformations to a single



orbiting body. VelezlO has shown that the transformations with 1 < n < 2



enhance the stability of the system in the sense of Liapunov, and that as n



isincreased, the numerical stability of the numerical integration algorithms



In addition, VelezlO 'll Feagin and Mikkilineni
5, and Nacozy9

increases. 
 

have studied the effects of these methods on truncation errors. Nacozy9 gives



an excellent survey of these investigations. One major result of these



studies is that the optimal value of n is dependant upon the model employee



Other studies such as Dunning4 and Meuller6 '7 haye developed special­


ized equations of motion based upon approximations which are valid only



when the vehicles are in close proximity. For this reason, when using



these rendezvous type equations it isnecessary to alternate between a



set of equations which are valid only for near approaches, and a set valid



for large separations. Such switching can introduce a number of complica­


tions. One primary complication introduced is the determination of when



to switch, which increases the complexity of the required coding. Other



complications result-;from questions inherent in the alteration, such as





3 

how to restart the integration if a multi-step integrator is used, and how



to control loss in accuracy resulting from reqdired transformations.



This study compares eight formulations of the equations of motion



for two bodies orbiting-a central body. All equations compared will be



valid for both close approaches and large separations. As well as avoiding



the problems mentioned above, this will allow a more careful study of



the regions in which the individual equations are most applicable.





CHAPTER II



Formulations Studied



Eight equation sets are studied which represent several philosophies



for improving computational accuracy in the relative motion problem. Some



of the formulations attempt to increase precision by coupling the equations.



This is accomplished by integration of one satellite in earth centered



coordinates and integration of the relative vector joining the satellites.



Another concept employed attempts to make the equations of motion more



stable through the use of a new independent variable of integration in order



to reduce the propagated error. Several studies have shown that time
 


smoothed equations enhance the stability of the equations, [Beaudet 2'3 ],



[Velez2 O'll]. Still other formulations are based upon a more direct



approach and attempt to reduce the errors resulting from subtraction of the



two nearly equal quantities which appear while computing relative acceler­


ation. The formulations studied are listed below.



1. Standard Cowell



2. Cowell equations modified for relative motion



3. Independently time smoothed



4. Time smoothing of one satellite and the relative vector, based



upon smoothed satellite
 


5. Time smoothing of one satellite and the realtive vector, based up



upon both satellites



6. Cowell equations modified for relative motion employing Nacozy-


Szebehely method



4
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7. Nacozy-Szebehely method applied to equation set Four



8. Nacozy-Szebehely method applied to equation set Five



The most comonly used formulation of the equations of motion in space



dynamics is the Cowell set. Two versions of these equations were included



in the comparisons to serve as reference.



2.1 	 The Cowell type equations



Equation Set I (Standard Cowell equations,)



The classical Cowell equations were applied independently to each



satellite as follows:



r


r 17F .3+1 (r1, r1)



(3)
r2 + T (rr 
­


2



where the first term on the right is Newtohlan Force and the 's represent



the perturbing forces.



The relative vector F isdetermined at desired output points by



differencing



r=r

I - r2 (4)



In this formulation the equations are very easy to implement, however,



the problem of lost significant digits in the computation of F from (4)



can lead to difficulties in obtaining the relative vector accurately when



rl and r2 are very close to one another. Inan attempt to reduce this
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source of error, it is shown in the next section that the equations



can be coupled by altering them for integration of one satellite re­


ferenced to the central body, and the other satellite position rela­


tive to the first;



Equation Set 2. (Cowell Equations modified for relative motion)



Differentiation of equation (4), and substitution of equations (3)



into the result yields



3 Vi2 
r~r - 2 r2F~3 + r 1I 1) ­ W5(F2, F2)51 r l - 1(7
 

In this formulation, one of equations (3)and equation (5)are integrated 


simultaneously. Inthe evaluation of equation (5)' equation (4)must be 


used to determine the position vector of the satellite which is not integrated



inearth centered coordinates. It should be noted that as r- the
1 approaches F2, 
 

subtraction required by equation (5)may still result ina loss of signifi­


cant digits. Thus, the original problem has not been eliminated. Rather



than having the loss of significant digits appear directly in the calcula­


tion of r, as r = rI - r2, itnow appears in the acceleration of r.



There are other techniques which can be applied to the problem which may



allow the solution to be computed with greater precision. One such tech­


nique is the use of time smoothing to enhance the stability of the equation.



2.2 The Time Smoothed Equations



The time smoothed eauafions are all based on a transformation of the



independent variable of integration from time to a new independent variable



s. This transformation generally requires that another differential



equation, relating t and s, be added to the equation set. In
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general, the.relation can be given as



(6)
ds = f dt, 
 

where f is a function of the magnitudes of the position vectors Fl



and/or r2 " Detailed derivations of the time smoothed equations are



presented in the Appendix. 
 The most obvious use of these equations isto
 

apply them independently to each satellite.



Equation Set 3: (Independently smoothed equations for each satellite)



For this set f and f2 are defined as



dsI 1

 (7)
1fn
dt 
 alrlnl


and 

f 2 = (8) 

dt a2r2 

The resulting equations become



_. n - -rl_- a1 rll- P(rl, r1) a 1n1n~nI dr1I T 2 2n 1-3- 1 +-- 12 r2n 
rI = r ds1 ds I (9)



S dr2 dr 2 2n-3- - 7 2 2n 
r2 n2 -2 -pa r2 22 r2 +PF 2 2) a2 r2 2
2 r2Us2 2 22 2 2 22



where primes denote differentiation with respect to s, the new independent



variable of integration. The relations between sl, s2, and t are



tj= fSlt n1 ds (10)



sl1
and s t
t n2



= f:2t a2r2 ds2


20
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Thus, in oraer to obtain iformation about the relative vector at a



desired output point it is first necessary to match tI and t2. This time



matching is extremely difficult since the relations are both highly non­


linear, and get even more so as the values of n1 ano n2 increase. For



this reason a formulation which eliminates the need for this time matching



is desirable. One method for accomplishing this is integration of the



relative vector directly.



Equation Set 4: (Time smoothing based on one satellite's distance from the



central body applied to relative vector.)



One satellite and the relative vector are smoothed, the smoothing



function f is defined as



=ds.(1

dt a2rn
2n2



The resulting equations of motion are:



2 2n-3­
r2 r ds a22 r2 r + P (r2, r2)a2 rn

S nr dr22 2 2n 
2 2 2 

1 (12)


nr22 - + a r2 P rlr-P (-2 2+) r- r-, 1)
r 2 ds ds 22 r 1 r 2r 2 3 (13 

In order to evaluate (13) the relation



rI =r 2 + r (14)



must be used. For this formulation, there isonly one relation between t



and s, fsf ds



t= 1 -7 (5


f



s

0 
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This eliminates the major drawback inherent in'equation set 3, the required



matching of tI and t2. However; only information about one of the



satellites is being incorporated into the smoothing function. If the



smoothing function is based upon r1 and r2, itmight adapt the equations



to the satellites even more accurately.



Equation Set 5: (Time smoothing based on both satellites applied to the



relative vector)



Another time smoothing formulation, suggested by Dr. V. G. Szebehely



also smooths one satellite and the relative vector, but this time



information about both satellites is supplied to the smoothing function



which is now defined as



s (rlr 2)-n (16)


dt 2



For this case the equations of motion emerqe as:


,, nn_ _2n r 2



' =2 s (rlr 2'+r 2rl ) P 2 '-(r 2rl) P -3+ r (r2,F 2)(rlr2 )2n(17) 
I Cr r '+r r I-(rir9{ r12 + (17)



' n r rr')-r'-p(r r 2n r 2 rlrrIr)2n



The relationship between t and s is



I n 

t = sf (r1r2) ds (18) 
s


o
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In each of the time smoothed equation sets, the exponent in-the time



smoothing equation, denoted n, is arbitrary. The value of n can



affect the methods to a great extent, as will be shown. Thus, one



necessary consideration of the present study is to determine the most



advantageous choice for n for each time smoothed equation set. Inthis



study, each equation set was tested at n=l.0,-i.5, and 2.0.
 


Itcan be seen that in each of the formulations involving integration



of the relative vector, there is a term arising in the acceleration of r



due to the two body forces of the form



As discussed earlier, this subtraction can lead to numerical difficulties.



The Nacozy-Szebehely method described below attempts to relieve these



difficulties by computing this term in a more suitable fashion.
 


2.3 The Nacozy-Szebehely method for computing relative acceleration.



Nacozy and Szebehely 8 have recently developed methods for accurately
 


calculating the acceleration of the relative vector. Nacozy-and Szebehely



apply Encke's method as modified by Potter to the problem of non-interacting
 


space vehicles.



Expressing the relative vector, r as
 


r = r1 - r2 (19) 
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the relative acceleration can be written in the following form.



) -F(1,F) (20)+-(r1,2 

L2 V 

The first term on the right hand side is the acceleration due to the



Keplerian forces, while, F(1, 1) and W (r2,r2) are the perturbing forces.



Ifthe perturbing forces are small, compared to the Keplerian forces, the



errors incurred in calculating the Keplerian acceleration can be expected



to dominate. In cases where the perturbing forces are large, a similar



technique for calculating their differences as described below for the two



body forces may be employed.



Observing that in equations (20), the Keplerian term is similar to a



term arising in Encke's method for special perturbations, Nacozy and



Szebehely applied a technique analogous to Encke's to that term. Rewriting



the subtraction inequation (20) as



r2 li [ ] ( 2 +-T)+ (21) 
3 3 3

r2 r1 r. , 

a quantity q is defined as 

- 1
q : 
 

as intne classical Encke method. It should be noted that when q is $mall



(the magnitudeof F1 is close to the magnitude of F2), a substraction of



two nearly equal numbers isstill involved. A more accurate means of
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computing q can be obtained by substitution of equation (191 into the



above expression. This results in



=

q 
 
(r2+r) (F2+r) (22)



The classical approach at this point isto define



N. 2 2- 3/2 

f(q) ) - = (I + q) -1 (23) 

and expand f(q) in a power series in qj or to use tabulated values.



Battin I, however, derives a closed form expression for f(q) that pro­


vides accurate computations of f(q) for small q.



Nacozy and Szebehely adopt this formulation, which is designed for



mutually attracting bodies to the relative motion on non-attracting bodies.



Multiplying equation (23) by



1 + (+ q)3/2.



1 + (+ q)3/2



equation (23) becomes



f(q) = q (3 + 3, - (24) 

3
1 (y+ q)
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Substitution into equation (19) for the relative acceleration yields:



r=J- [f(q- + (1+ f(q))r] + V(Fl'r)- r(r (25)2 r 2 

This method for computing the relative acceleration was incorporated



in the Cowell and Time smoothed equations involving integration of the



relative vector.



Equation Set 6: (Nacozy-Szebehely (N-S) method applied to the modified Cowell



Formulation)



For this formulation, the-equations for Set 2 are modified to use the



(N-S) techhique for computing the relative acceleration. The equations



become



r r 2
2 r3+ PT (r2, 2) 

Ff(q) I,+ (I1+f~) r rr
. (26) 

rLF1~rf + P(r1 ,r 1) -P 2 ) 

The implementation of the N-S method into the l1me smoothed equation sets



is straight forward. The N-S formulation for the acceleration of the relative



vector can be substituted directly where itis required.



Equation Set 7: (Nacozy-Szebehely method applied to Equation set 4).



When the N-S method issubstituted into equation set 4, (equations (12) and



(13)), the results are.
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n2 dr2 dr2 2 2n-3 ­r2 72 ds [- Pa2r2 r2 + PrlF-
 2 (27)

2 2 ]--" _n dr d r 2 2n[( l l nIlf27-- r2 + a r F-kF . 1 ) r2,t2)1 +, , 2T t(q)Fl 

+ f(q)2]]+ 1 

The Nacozy-Szebehely method can be incorporated into equation set 5



in the same manner:



Equation Set 8: (N-S method applied to equation set 5.)



After introduction of the N-S technique into equation set 5, the equations can



be written as



( 2n r2 2n



r(r, ,+r2 2 r 2, _r 2r r P (r2, r2)(r2r1) 

_,, 2n (28)
rr2 (rlr2'+r rl'> ,+(r rl) [Pl,rl)_P(-2,F2) ]
y- 1 2
 29
1 2 2 1)'r 2r1 (F9 )VF )

2nF-+ fq)-] 

+ (r 2r1 )' it 3 [f(q)r + (I + fCq))FJ] 

Eight equation sets are now available for comparison, the two Cowell


formulations, the three time smoothed equation sets, and the'Nacozy-Szebehely



method applied to Modified Cowell formululation, and the two time smoothed



eauations involving integration of the relative vector.



The next consideration is how the comparison was carried out, the


first aspect being which satellite pairs were modeled. This isdescribed



inthe next chapter on Computationavl.Proedures.





CHAPTER III



Computational Procedures



Obviously the eight equation sets cannot be compared for every con­


ceivable pair of satellites. Thus, a representative group was chosen which



includes many different situations. The effect which varying the altitudes



of one or both satellites has on the relative efficencies-of the equation



sets can be studied as well asthe effects of the eccentricities of the



orbits.



Due to the force model chosen (which will be described inthe next 

section of this chapter), the absolute inclination, (I)ascending node (w), 

and argument of perigee () have no effect on the models. Only the relative 

inclination (i),eccentricity (e), and semi-major axis (a)of the two 

orbits will affect them. Inall cases inclination w and s were



chosen as 0. In all pairs, closest approach isat perigee and the initial



time 2,000 seconds after the start of the integration. This allows the



first small separation to have an effect on the integration. In an attempt



to observe the effects of the altitudes of the orbit on the equation sets,



very high, moderately high and near earth orbits were modeled. The effect



of the subtraction on the equation sets was studied both by using orbits



which were similar and dissimilar as well as by using orbits which were



close for the entire integration time and those which were close only for



small periods of time.



3.1 	 Satellite Pairs Modeled



The eight satellite pairs modeled are diverse enough to cover a large
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variety of possible orbits while they have enough similarities to allow



comparisons of the effects of changes in certain parameters on the relative



efficiencies of the methods.



Pair A.



This first pair was inspired by the International Sun-Earth Explorers



(ISEE) A B satellites Which will be launched to study the structure of the



solar wind. This pair models two high altitude orbits which have large



eccentricities. The orbital parameters are: 

Satellite 1 Satellite 2 
Semi-major axis 76,000km 76,000km 

Eccentricity .913 .78142 

Inclination 0. 00 

Perif6cus passage 2,000 sec 2,000 sec 
Argument of perigee 00 00 

Ascending node 00 00 

Final integration time 150,000 sec 

Figure la shows these orbits, while Figure lb displays the time history



of the relative distance between the two satellites. The minimum separation



for this pair-6ccur at apogee and perigee and are on the order bf



10,000 km. Apogee for satellite one is 145 380km, and for the second



satellite is 135 380 km, so for this pair, the subtraction of rl-r 2 even



at its worst case involves only minimal loss in significance. This allows



a comparison of the equation sets when the subtraction does not introduce



a significant error.



The next pair modeled is more representative of the ISEE A B pair, with



much smaller separations at apogee and perigee to determine the relative



effects on the equation sets of the close approach.





17 

-1453 -97190 - o48980 47420 

Figure Is 
x vs. y for PairA



(Kilometers) 

0.00 40.0 80.00 120.00 160.00 200.00 

TIME-10-3(Secoiids) 
Figure lb 

TIRE HISTORY DISTANCEOFRELATIVE 
FORPAIRA 

ORIGINAL PAGMFI8 
OF POOR QUALITYX 



18 

Pair B



The orbital parameters for this pair are:



Satellite 1 Satellite 2 

Semi-major axis 76,000km 76,000km 

Eccentricity 

Inclination. 

.913 
00 

.9129342105 
00 

Perifocus passage 2,000 sec 2,000 sec 

Argument of perigee 

Ascending node 

00 

00 

00 

00 

Final integration time 150,000 sec. 

These parameters describe orbits which have minimum separations of



only 5 kilometers, thus at agogee and perigee, as many as five significant



digits can be lost in the subtraction of rI- r2



Figure 2a shows the similarity between the two orbits (one cannot



distinguish between them at the scale used) while 2b displays the relative



separation as a function of time. The close approach is the primary



difference between this and the previous pair, and will allow us to draw



conclusions as to the effect of a very small separation for this type of



orbit.



The effects of these large eccentricities on the equation sets is



also of interest. One way to study this isto use another pair model with



much smaller eccentricities.
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Pair C



These satellites are two high altitude orbits, similar to the previous



set, but one is circular, while the other is very nearly circular.



Orbital Parameters 

Satellite 1 Satellite 2 
Semi-major axis 42,162.8km 42,162.8km 

Eccentricity 0 l.OE-6 

Inclination 00 00 

Perifocus Passage 2,000 sec 2,000 sec



00Argument of Perigee 00 
 

Ascending Node 00 00



Final Intigration time 86,160 sec



As can be seen from Figure 3a, these orbits are very similar, as were Pair



B. The minimum separations (from Figure 3b) are approximately 4.216xlO-2km.,



and again up the five digits can be lost in the subtraction of r2 - r .



Thus, the major difference between Pairs B and C are the eccentricities of



the orbit.



Up to this point, only very similar orbit pairs have been described



but the comparisons of the equation sets for dissimilar orbits should



also be investigated.



Pair D



For this case two very dissimilar orbits are modeled, one circular



and the other moderately eccentric with close approach at perigee. The



period of the second satellite is three times that of the first, so that



every three revolutions of the first satellite there is another close
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approach. The orbits and their relative time histories are shown in



Figures 4a and 4b.



Orbital Parameters



Satellite 1 Satellite 2



Semi-major axis 42,162.8 km 66,929.37106 km



Eccentricity 0 .37004010125



Inclination 00 00 

Perifocus passage 2,000 sec 2,000 sec



Argument of perigee 00 00 

Ascending node 00 00



Final integration time = 86,160 sec



At the point of minimum separation, up to five significant digits may



be lost in computing r, - F2. Since this close separation occurs only once



every three revolutions of Satellite 1, we cah attempt to observe the



propagated effects of the subtraction of the two nearly equal numbers.



Another objective of the study is to compare the relative efficiencies
 


of the equation sets as the altitudes of the orbits vary.



Pair E



This pair models two near earth low eccentricity orbits which are



very similar and have small separation for the entire orbit. The only



difference between this and Pair C are the altitudes of the orbits



The orbits are indistinguishable at the scale shown as can be seen in



Figure 5a. Th relative distance time history is shown in Figure 5b.
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Orbit Parameters 


Satellite 1 Satellite 2 
Semi-major axis 7378.165km 7378.165 km 

Eccentricity 0 l.OE-6 

Inclination 00 0° 

Perifocus passage 2,000 sec 2,000 zec 

Argument of perigee 00 00 

Ascending Node 0 ° 00 

Final Integration Time = 10,000 sec 

At the two points of minimum separation approximately 5 digits are



lost in the subtraction of the two position vectors.



To further study the effects of eccentricities on the equation sets



a situation similar to Pair E is used, but this time with a greater eccen­


tricity for both satellites.



Pair F



Pair F represents two low altitude orbits which are very similar,



but of moderate eccentricity. The orbit shape and relative vector time



history are shown in Figure 6a and 6b, respectively.
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Orbit Parameters 

Satellite 1 Satellite 2 
Semi-major axis 7378.165km 7378.165km 

Eccentricity .3 .300001 

Inclination 0 ° 00 

Perifocus Passage 2,000sec 2,000sec



Argument of Perigee 00 00



Ascending Node 00 00



Final Integration Time = 10,000 sec 

Again the subtraction of F,- F2 can result in a loss of up to 5 

significant digits. The primary differences between this and the previous 

Pair is the larger eccentricities. Thus enabling another look at the 

effects of a greater eccentricity on the orbits. Two more pairs were 

considered, both pairs were very non-similar, the first one is presented 

below. 

Pair G



Inthis case, two near earth orbits which are very dissimilar are



modeled. The semi-major axis of satellite 2 is chosen such that the ratio



of the periods of the two satellite is 1/3 resulting ina small separation



every 3 revolutions of satellite 1. This provides another chance to study



the propagation of the errors incurred in the first subtraction.
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drbital Parameters 

Satellite 1 Satellite 2 

Semi-major axis 7378.165km 15,347.2km 

Eccentricity .3 .6634883367 

Inclination 00 00 

Perifocus Passage 2,000sec 2,000sec 

Argument of Perifocus 00 00 

Ascending Node 00 00 

Final Integration Time = l&,OOsec.



The minimum separation occurs at perigee and approximately 5 signifi­


cant digits can-be lost in the subtraction. The pair model resembles Pair D,



except that the eccentricities are greater for both satellites. The orbit



shapes and relative vector time history are shown inFigures 7c and 7b.



The last pair model is again a nonsimilar pair, but they are more similar
 


than G or D.



Pair H



These again model two near earth orbits, but which are more similar



than pair G. The ratio of the periods is now 1/2; and there isone close



approach every two revolutions of the first satellite. The orbit shapes



and relative position vector time history is shown in Figures 8a-and 8b



respectively.
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Orbit Parameter 

Satellite 1 Satellite 2 
Semi-major axis 7378.165km 10,917.672km 

Eccentricity .3 .526949 

Inclination 00 00 

Perifocus passage 2,000sec 2,000sec 

Argument of Perigee 00 00 

Ascending node 00 00 

Final Integration Time = lO,O00sec 

The subtraction of r-l - r2 can again result in a loss of-up to 5 

significant digits. 

Once the satellite pairs to be modelled have been decided upon, the 

next step is to choose the comparison method and criteria for comparison. 

3.2 Testing Procedure



The first step in evaluating the relative merits of the various



formulations is to develop viable comparison criteria. Since, intheory,



it should be possible in any integration to achieve any reasonable accuracy,



given a small enough step size, the criterion chosen was efficiency. The



efficiency of-a method can be based either on the total amount of computing



time required to achieve a certain accuracy, or upon the number of function



evaluations (calls to the derivative subroutine) required to achieve a certain



accuracy. The total integtation time required by each method is obviously



going to be dependent on many factors such as:



1)differences in the coding of the method



2) amount of information calculated at each step for each method,



3) relative difficulties involved in obtaining certain types of
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information from each method.
 


One instance of the third problem is that if acceleration, velocity,



and position information for each of the satellites and the relative vector



are desired in the coordinate-system where time is the independent variable



at each output point, then transformations from s to t are required for



each of the time smoothed equation sets, while the information isreadily



available for the Cowell formulations. Since the type and frequence



of information required is very dependent upon needs of the particular



user, the number of function evaluations required to achieve a disired



accuracy was chosen as an efficiency criterion. For the particular force



model chosen (two body only) the function evaluations are relatively
 


inexpensive; but for more complicated force models they can become the



dominant user of computing time. It is felt that trends apparent inthis



study will be reflected in those with more complicated force models.



For any comparison, a method of determining relative accuracy is a
 


necessary consideration. Three approaches for determining relative accuracy
 


were examined.



Inthe first approach, perturbed motion of the two satellites was



integrated backwards intime from some reference state to some initial state



using an integrator which had control over truncation error. The satellites
 


were then integrated forward to the reference state, and a bound on the



integration error was obtained by comparing the final solution to the
 


reference state.



This approach had two major drawbacks. First, a considerable amount



of setup time was required for each problem, to determine the !true" or



,reference solution. Second this method would only examine the effects of
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a particular perturbation history. Itwas felt that it would be more appro­


priate to examine the basic behavior of the equation sets,' so this procedure



was abandoned.



Another possibility is to transform the problem into one inwhich the



initial conditions could be recaptured at a-given time. The integrated



solution would then be compared with the initial conditions. This recapturing
 


of initial conditions severly restricts the type of problems which could be



studied, and was discarded infavor of the following method.



A model was developed with strict two body motion. Such a model allowed



use of the known integrals of the two body equations. Given the initial



states for each satellite, reference state vectors for each satellite could



then be computed using the known two body solution at any time. These



reference states were computed in double precision to obtain the true



(reference) states as accurately as possible.



A program was written to compare the accuracies and efficiencies of the



methods tested. The logic -flowwithin the program is diagramed in Figure 9.



The desired initial conditons for each satellite, either inrectangular



Cartesian or orbital elements are first read in,along with the desired



central body, (earth or moon), the unit of length to be used (kilometers,



earth radii, or lunar radii), and the output desired (Table 1). All required



transformations necessary to get the initial states in the proper form for



each of the methods are then carried out. These transformations are described



in the Appendix.



After all input and initialization iscompleted, the actual integration



is carried out. Because of the required time matching for the third



equation set, and the complications this entails, the third equation set
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istreated first, then the others all follow the same pattern, with the



exception of the time matching required for set 3. Equation set 3 is first



integrated to the first desired output point. This isdone by integration



of the first satellite until the time has passed the first output time,



then the second satellite is integrated until t2 passes t,, the integration



is then iterated until the two times are within 10-6 second of one another.



Itwas found that a more restrictive match than this often resulted in a



stepsize in the s system which was so small as to be numerically zero.



The time state was then calculated and all' transformations required to



compute desired output information was calculated. The output information



was then computed and stored.



At this point a note on the method chosen to acheive time matching for



equation set 3 is in order. The process of iterating on stepsize requires



a great number of added function evaluations, and the efficiency curves for



the methodmake the formulation look totally unfeasible. Other methods may



be devised for accomplishing the necessary time matching more economically,



but at this stage, the iteration method seems to be a fair approach. The



added expense of interpolation would not be visible in the comparison, and



errors incurred inan interpolation process would be difficult to isolate­


from the errors inherent in the integration.



After the required time matching,has been completed, the system



of equations is integrated to the next output point. The process is re­


peated until the final time has been reached.



The integration method employed was a Runge-Kutta (7)8 with Fehlberg's



coefficients. This code employs variable step size and attempts to keep
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the relative local truncation error at each step less than the desired
 


tolerance. Each case was run at various tolerances between lO-3 and



lO- 8  
 in order to generate the data for the efficency plots.



The rest of the equation sets are then processed in the same manner



sequentially. Although itwould be more efficient to integrate the equations



simultaneously and make use of some of the intermediate information which is



common to two or more equation sets, it was felt that totally isolating



each equation set from the others would prevent any possible interaction



by the equation sets. One such interaction is that since a variable step



Runge-Kutta method was employed to carry out the integration; the smallest



step size required for any of the equations would be used for-all equation



sets.



After the integration of'tall eight equation sets has been completed,



the desired tables and plots are produced. This included the description



of the comparison methods employed. The next chapter will present the



results of these tests.
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CHAPTER IV



Results of Numerical Studies



Each of the eight satellites pair models described in Chapter III



were integrated using the eight equation of motion formulations. The­


information from these runs was first examined in order to determine the



mdst efficient choice of n, the time smoothing exponent for equation



sets incorporating time smoothing. Efficiency plots were made for each of



the time smoothed equations, the normalized error being plotted against



the number of functions evaluations for various values of n. The most
 


efficient value of n is then the one which lies closest to the origin,



(the one which yields the best accuracy with the fewest function evaluations).



To determine the effects of the Nacozy-Szebehely method, methods involving



itwere plotted against their counterparts separately. Thus, Equation sets



4 and 7 are plotted separately, as are 5 and 8, and 2 and 6. Efficiency



information ispresented for the independently time smoothed equation set



3 in the first pair model only. Due to the large number of function



evaluations required for time matching, itwas not competat-ive with the



other methods from an efficiency standpoint. Itwas found that in­


clusion of set 3 on the comparison graph caused the scale to become so large



as to make the efficiency information on the othe'r-equation sets difficult



to discern. Thus, set 3 data was omitted for all pairs except pair A. In



all of the plots, all errors plotted are the normalized L2 norms of the



errors at the final integration time, i.e., error in 12

-Btruexcalculated )2 Ytrue ycalculated, +( true zcalculated ,']



r -


ITtruel



In the efficiency plots, each of the lines is composed of three data
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points, the lines connecting them are just to show trends, and donot denote



imbedded data points.



The results will be broken down into eight sections, one for each



satellite pair. The first portion of each section will deal with a



determination of the best choice for the smoothing exponent in the time



smoothing equation sets. Once this has been found, the Nacozy-Szebehely



version of the relative motion equations will be compared with their'standard



counterparts. Finally, the most efficient form of each equation set will



be presehted on the final graph of each section.



As this comparison is based only upon the errors at the final time,



it is necessary to determine how the equation sets behave as a function of



time for each Pair tested. A plot depicting the time history of the normal­


ized error in distance of the various equation sets is included for each



pair.



4.1 Satellite Pair A



From Figures 10.1 a and b,the appropriate values of n for equation



set 4, and its Nacozy-Szebehley counterpart equations, set 7, are seen to



be 1.0 and 1.5 respectively. With these values a comparison of the two



equation sets (Figure 10.1c) show that the N-S formulation does help the



efficiency over a large region. Figures l0.1d, and lO.le show that the



value n=l is most efficient for both sets 5 and 8. The N-S method appears



to make equation set 8 slightly more efficient thanset 5 at



high accuracies. Figure lO.lg shows.that set 6, (the N-S version of



set 2) is again slightly more efficent. Ingeneral for this pair, the N-S



method does not appear to make as large difference in the efficiencies of



the methods. This is probably due to the fact that the smallest separations



which the two satellites experience is very large, and the number of signif­


icant digits lost in the subtraction of rI - r2 is small. Looking at
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Figure l0.lh, itcan be seen that equation set 3; the independently smoothed



equation set was very inefficient as previously mentioned. Equation set 6



appears appreciably more efficient than the standard Cowell equations,


especially at higher accuracies, and the time smoothed equation set are



even more economical for h4hbp ccuracids.



Ifthe time histories of the equation sets (Figure 10.1i) are now



compared, it can be seen that the various equation sets appear to hold



their positions relative to one another for the time displayed. From this



observation-one might be justified in the assumption that the efficiency



comparisons are valid over a reasonable neighborhood of time around the



point at which the comparison was actually made.



4.2 Satellite Pair B



The satellites modelled inthis pair have much smaller separations at



apogee and perigee and the orbits are more similar than those of Pair A.



Figure 1O.2a shows the value of n to have a more pronounced effect upon



the efficiencies of equation set 4 than was observed in satellite Pair A



(Figure lO.la). The most efficient choice of n for this equation set is



not clear cut and apparently depends upon the accuracies required, but for



most cases the choice n=l.5 appears optimum. Figure lO.2b ismuch more



definitive in showing n=l to be most efficient for equation set 7. However



comparison with Figure lO.1b shows the equation set to be more drastically



affected by the choice of n for this satellite pair than the previous one.



The effect of the Nacozy-Szebehely method upon equation set 4 ismuch more



pronounced for this pair, as can be seen from Figure lO.2c. An accuracy



of 1O"7 
can be achieved by Equation set 7 with almost 13% fewer function



evaluations than with its standard subtraction counterpart, Equation set 4.
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Comparison of Figures lO.2d and lO.ld show that this pair's closer



approach did not seem to affect the choice of n for equationset 5, but



merely moved the points to the left and up. The same conclusion can be



reached for equation set 8 by observing the differences in Figures lO.2e



and lO.le. The N-S technique does not appear to have a large effect upon



equation set 5, as can be seen from Figure lO.2f, but has a better effect



than it did on Pair A (Figure lO.1f) resulting in a savings of almost 6%



infunction evaluations for most of the graph. Figure lO.2g shows set



6, (the N-S version-6f equation set -2)-to be consistently more efftci.ent ,than



set 2, although this increase in efficiency is limited to about 6%.



Comparison of this to the same graph for ,PairA (Figure lO.1g) shows that the



N-S method definitely helps set 2 for Pair B to a greater extent than



Pair A.



The comparison of the best version of each of the equation sets on



Figure lO.2h shows that a dramatic increase in efficiency can be realized by



Equation set 7. The same accuracy as the next best set can be obtained with
 


22% fewer function evaluations. The other equation sets seem pretty much
 


clustered with one another. For Pair B, then, the N-S technique improves
 


the 4fficiencies of relative equations and the effect of n on sets 4 and 7



is.more.,pronounced.than for Pair A.



A glance at Figure lO.2i- shtows that once again the equations sets all 

appear to vary in the same fashion, with time. This observation seems to 

support the belief that the efficiency comparisons could be accurately 

extrapolated to the region around the chosen comparison time. 

The reader should recall that the primary difference between Pair A 

and Pair B is..thatrrthe orbits in Pair B are much more similar and have a 
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smaller separation,. The orbits inthe next pair,.Pair C, are also very similar



and have small separation ddstances. Pair C is a high altitude Pair with



both satellites having very small accentricities.



4.3 Satellite Pair C



The efficiency plots show rather erratic behavior for the methods in



high accuracy regimes for this satellite pair. It is felt that this is



due to the effects of entering the region of round-off error.



Figure l0.3a, when compared with Figure l0.2a, shows the effect of



n to be much less on the efficiency of equation set 4, but the best



choice for n appears to be 2.0. In Figure lO.3b, the same type of behavior



isexhibited for set 7, with n = 2.0 appearing to be the most efficient



value. The comparison of equation sets 4 and 7 in Figure lO.3c shows the



N-S method to be very advantageous for this equation set. Note that a



savings of up to 25% in function evaluations can be realized over most of



the range of accuracies. The determination of the best n for sets 5 and 8



from Figures l0.3d and lO.3e, yields n = 1 to be the best but it should



be noted that these equation sets are not as clearly affected by the value



of n as were equation sets 4 and 7.



Figures lO.3f and l0.3g show little benefit from the application of the



N-S technique to sets 5 and 2. This is a major change from the previous



pair. The comparison of the most efficient version of each equation set,



presented in Figure lO.3h, does not show any one set to be most efficient



for all accuracy ranges of accuracies, but shows set 7 to be the best over



the largest range .of accdracies with the other sets clustered near it.
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In) summary, for Pir'C' which primarily differed Only in eccentricity 

from the Pair B- the N-S method does not -eem to help as much, and n ­

not affect the time smoothed equations as drastically as before, although 

for sets 5 and 8 the exponent n=3 now appears best. 

Figure 10.3i shows the equation sets to vary little relative to



one another as the time increases. The calculated efficiencies at the final



time the, would appear to be representative for this pair.



The next Pair models two very dissimilar orbits, which differ even more



than Pair A.



4.4 	 Satellite Pair D



Figures lO.4a, b,and c are very similar to their counterparts for



Pair A, in that the value of n affects the efficiencies of equation sets



4 and 7 to a lesser degree than in pair B. Again, for set 4, the most



efficient choice of n appears to oscillate between 1 and 1.5, with



n = 1.5 being better over a larger region than for n = 1.0.



The value of n for set 7 also has small effect again, but this time



choice of the most efficient value is not clear cut. However, n = 2



seems to be a good compromie, due to its high efficiency at greater



accuracies. Figure l0.4c shows the N-S implementation in set 4 does not



improve matters but is very close to set 7, as in Pair A.



Figures lO.4d, e, and f show sets 5 and 8 to be relatively insensitive



to the value of n, but the N-S implementation seems to have helped slightly.



Figure lO.4g displays the change inefficiencies of set 2 with and without



the N-S technique, and again it doesn't affect the accuracy or efficiency



much.



Figure lO.4h compares the most efficient forms of each of the sets,
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and set 1 appears much better than the others. In summary, for these very



dissimilar orbits, the N-S method does not appear ingeneral to be as



effective as the striaght subtraction, (standard Cowell). In an attempt to



understand why set 1 is so much more efficient, itmay be advisable to look



at the rel'tive distance vs. time plot for this pair (Figure 4b). As the



satellites approach the point of close separation, the subtractions needed



by the methods which require integration of the relative vector can cause



a very abrupt loss in precision. This presents problems for the other



methods and they must reduce step size



problem and can continue at a larger step size. Another important aspect



of this pair can be seen from Figure 4b. Due to the final time chosen, 

the satellites have a large separation when the relative vector is calculated 

for equation set 1, and a minimal loss of significant digits occurs in the 

subtraction of rI - r2' From this standpoint, the fact that the time 

smoothed equations which integrate the relative vector competed as well as 

they did isquite impressive.
 


Figure lO.4i shows the equation sets to be reasonably well behaved,



however there is quite a bi.t of range inthe relative efficiencies of the



methods at different time points, and no extrapolation to times around the



comparison points can safely be made.



The effect of the altitudes on the equation will be studied next by



comparing the results of Pairs C and E which except for their altitudes



are almost indentical.



4.5 Satellite Pair E



Figures 1O.5a, b, and c are almost identical with those from Pair C



(for Equation Sets 4 and 7) in shape. However, when Figure 1O.5c is
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compared to 10.3c it can be seen that the relative effectiveness of the



N-S method on set 4 has decreased with decrease inaltitude.



Figure l0.5d is very similar to its equivalent in Pair C,while



for equation set 8, Figure l0.5e, the effect of n on the methods is



much more pronounced. In general, from Figure l0.5f the efficiency of



equation set 5 isgreatly improved by the N-S technique, while for Pair-


C there was not much effect.
 


Equation set 2 also is greatly aided by the N-S technique, as can be



seen from Figure 10.5g. The comparison of the best form of each equation set,



Figure lC.5h, shows set 8 to be the most efficient over most of the range.



The major effect of the decreased altitude between Pairs C and E



was to increase the amount the N-S technique helped equation set 5,while it



did not seem to increase the efficiency of equation set 4.



Inan attempt to see ifthe efficiency comparisons made at this



particular time can be extrapolated for other time periods within the



the integration, a study of Figure lO.5i is in order. The equation sets



oscillate drastically in the early part of the integration, then become



more smooth near the comparison point. Even near the comparison point



there is some movement of the sets relative to one another, and it is
 


apparent that the relative efficiency comparisons are only valid at the



point compared.



A comparison of Pairs E and F will help to show the effect of changing



the eccentricities on the equation sets.
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4.6 	 Pair F



A comparison of Figures lO.6a and b with lO.5a and b tend to show that



an increase in eccentricity has only a small effect on the relative



efficiencies of equation sets 5 and 7 at various values of n. In contrast,



Figure 10.6c shows a dramatic increase in efficiency realized from the



Nacozy-Szebehely method applied to equation set 4. However, this efficiency



increase is not as drastic as itwas for Pair E. Figures 1O.6d and e



vs. 1O.5d and e again show little change in the effects of the value of n



for Pairs E and F, sets 5 and 8. Again, the increase in efficiency pro­


vided by the N-S technique has increased for set 5 with the increased



eccentricity.



Figure lO.6g shows a dramatic gain in efficiency when, the N-S method



is applied to set 2, (set 6), especially at high accuracy regions.



Figure lO.6h shows the two time smoothed equations compared to their



performance in Figure lO.5h have improved a great deal relative to the
 


nonsmoothed equations. However, set 6 has gotten a little less efficient



although it is still better than set 1 over most of the range.



Figure 10.6i displays the time history of the error norm used for



each equation set. The equation sets are all well behaved, and do not
 


cross one another, this tends to show that the exact time chosen for



comparison would not critically affect the conclusions drawn.



4.7 	 Pair G



Pair G, like Pair D, approaches the point of close separation abruptly.



The N-S method does not increase the efficiency of set 4 (Figure lO.7c),



while it is competative for set 5 vs. set 8, (Figure 10.7f) and offers
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a decided advantage for equation sets 2 and 6, (Figure lO.7g). The



integration of the relative vector (Figure lO.7h) does not help the efficiency



of the Cowell methods, while the time smoothing does seem to offer some



advantage, especially for set 5. Again, a look at the magnitude of the



relative position at the final time Figure 7b shows that Equation set 1 was



not hampered by having to do a subtraction of two nearly equal numbers



at the final term, and yet equation set 5 which must calculate relative



accelerations by subtracting two nearly equal numbers (when satellites are



at perigee) is still more efficient- This would tend to substantiate the



feeling that the smoothing process in itself helps the efficiency of the



methods.



The importance of the time chosen for the comparison alluded to above



can be easily seen from Figure lO.7i. The relative accuracies of the



equation sets varies widely, and a comparison at another time might show



quite different results.



4.8 	 Satellite Pair H



From Figure 8b it can be seen that this pair model also approaches



the point of minimum separation abruptly, but not as sharply as Pair G.



The effects of this on the use of the N-S method are to make them more



efficient for sets 4 vs. 7 (Figure 1O.8c) and very competitive for sets



5 vs. 8 (Figure lO.8f). On the Modified Cowell sets (set 2 and 6), the N-S



equations become more competative as the accuracy requested increases. But



it appears that set 2 is more efficient at low accuracies. Figure lO.8h



shows the integration of the relative vector in the Cowell methods to be



less efficient, while the use of time smoothing appears to increase the



efficiency, especially for set 8.
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The reader's attention is now directed to Figure 10.8i, the time



history plot for Pair H . It should be observed that once again the



relative accuracies of the methods vary drastically with time, and for



this reason any conclusion drawn from the efficiencies of the sets at the



comparison may not be valid for other times.



4.9 Data Comparisons



Since the needs of each individual user of this data will be dif­


ferent, it would be impossible to anticipate all required comparisons.



and make them in this report. However, since all the data are presented,



the user can make further comparisons as needed for any purpose. Selected



comparisions will now be presented which illustrate the information



available in the data.



The next step is to determine how Equation set 5 (time smoothing



applied to one satellite and the relative vector based upon the magnitude



of both satellites position vector) reacts to different situations. For



the case where the closeness of approach is varied (Pair A vs. Pair B)



it can be seen from Figures l0.ld and lO.2d that the efficiency of set 5



is very sensitive to changes in n for both satellite pairs, and n = 1.0



is most efficient by far for both. A comparison of Figures l0.1f and lO.2f



shows how set 5 relates to set 8, which is plotted in Figures lO.lh and



lO.2h. This comparison shows that while for Pair A, set 5 is very competi­


tive with set 4, and more efficient than either the Standard or Modified



Cowell procedures, it is clearly less efficient than set 4 for Pair B and



has moved much closer to the standard Cowell procedure. From this it would



appear that the introduction of the magnitude of the second satellite into
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the smoothing equation has decreased the gains realized by the integration



of the relative vector.



The reaction of set 5 to a change in.semi-major axis isnext examined



through a comparison of Pairs C and E. Figures lO.3d and l0.5d show set



5 to be sensitive to changes in n, but the most efficient choice of n



in both'cases is still n = 1.0. When the plot for set 5 is compared to



set 8 in Figure 10.5f, and its location extrapolated relative to set 8



inFigure l0.5h, a comparison with Figure 10.3h shows that the change in



semi-major axis has not had a noticeable effect upon set 5, relative to



sets 1, 2, or 4. The effect of the change ineccentricities between Pairs



E and F is first noticed in Figures l0.5d and l0.6d. Set 5 is still



=
sensitive to changes in n, but n 1 is most efficient for both pairs.



Again, in order to compare set 5 to sets 1,2, and 4 it is first necessary



to look at Figures lC.5f and l0.6f to note its position relative to set 8.



Once this is done, it can be seen that although in both cases the efficiency



is better than that attained by set 2, it isagain hampered in the



high eccentricity case (as was the other method involving integration of



the relative vector). Set 5 and set 4 are very close to one another although



it appears that in the case of the low eccentricity (and therefore less



abrupt approach) set 5 was more efficient while for Pair F, set 4 was



more effIciqnt.



To further study the effect of the abrupt approach on Set 5, Pairs D,



G, and H are now compared. Figures lO.4h, l0.7h and l0.8h all exhibit



the same trend. Over the entire range, set 5 ismore efficient than sets



4 and 2, and for Pairs G and H, set 5 is much better than the Standard



Cowell, but seems to be approaching it as the accuracies get lower. For
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Pair D, set 5 is not quite as efficient as the standard Cowell. The



overall conclusions are in general that set 5 has better efficiency than



the other methods involving the integration of the relative vector. However,



it suffers from the limitations imposed upon the methods by the abruptness



of approach of the two satellites.



Inorder to observe how the integration of the relative vector is



affected.by the variation in the closeness of approach between Pairs A and



B it should first be noted from Figures lO.lg and lO.2g that the N-S method



does not affect the set 2 equations drastically. A comparison of lO.lh and



lO.2h shows, however, that the Modified Cowell method with the N-S implemen­


tation (set 6) ismore efficient than the Standard Cowell formulation



(set 1) in both cases. Note that for Pair B,with its much closer approach,
 


the relative gain in efficiency is far greater.



The way that a change inthe semi-major axis of the two satellites



affects the relative efficiency of the Modified Cowell equation can be



investigated by comparing the results of Pairs C and E. Figures l0.3g and



lO.5g show a larger change in efficiency for set 2 with the implementation



of the N-S technique. Figure lO.3h and lO.5h both show the Modified Cowell



with N-S technique to be competitive with the Standard Cowell method for



low accuracy (106 and above) regions, while in high accuracy range



(below 10-6) the Modified Cowell procedure ismuch more efficient. On both



pairs, almost one order of magnitude gain in accuracy can De achieved with
 


the same number of function evaluations. From this comparison, it appears



that the size of the orbit does not significantly affect the relative



efficiencies of the Standard Cowell and Modified Cowell formulations.



http:affected.by
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The next effect studied is how changing the eccentricities of both



satellites affects the efficiency of the Modi'fied Cowell equations relative
 


to the Standard Cowell set. Pairs E and F are almost identical except



that the eccentricities of both satellites are increased, while this will



change the size of the orbits also) from above we have seen that this



effect is slight). The first thing to note is that in Figures lO.Sg and



lO.6g, the application of the N-S method has increased the efficiency of



set 6 by an appreciable amount. Now, from comparision Figures lO.5h and



lO.6h, it can be seen that for both Pairs E and F, the Modified Cowell



are again competitive with the Standard Cowell for low accuracies. For



high accuracies, in Pair E the modified Cowell set is much more efficient



than the Standard Cowell, while for Pair F the reverse is true. This



comparison would tend to substantiate the observation that as the orbits



become more eccentric, the advantages gained by integration of the relative



vector become smaller. A comparison of the time history of the magnitudes



of the relative positions of the two satellite pairs (Figures 5b and 6b), 

suggests a possible reason for this. From the figures it can be seen that 

for the more eccentric pair, Pair F, the satellites approach one another 

more abruptly at perigee (t _ 22 seconds and t = 85 seconds) than the 

near circular orbits (Pair E). The separation of the two satellites for 

these two pairs is approximately the same, while the eccentric satellites



are nearer the central body.



For the Standard Cowell Set, this abrupt approach isno problem as the



integrator will just integrate the orbits independently and not know of the



change. Figures 5b and 6b also show that at the final time where the errors



areccalculated, the relative distance is quite large, so the calculation of
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r=r2 -r results in the least loss in significance for set 1, and is



a very optimistic situation for the set.
 


To-further observe the effects of this type of abrupt approach, the



reader's attention is directed to Pairs D, G, and H. From Figure lO.4h it



can be seen that, as expected, the integration of the Modified Cowell



set isnot as the Standard Cowell set. From an examination of Figure 4b,



the abruptness of the approach can again be seen. Figure lO.7g shows



that the implementation of the N-S technique has greatly improved the



efficiency of the Modified Cowell set, but even so, from Figure lO.7h, set



6 is much less efficient than the Standard Cowell set. Again, the time



history of relative position for Pair E, (Figure 6b) shows a very abrupt
 


approach. Finally, Figure lO.8h shows this same trend; the integration



of the relative vector in set 2 has drastically reduced the efficiency of



the Cowell equations. Figure 8b shows the abrupt approach which hampers
 


the relative equations.



The integration of the relative vector ingeneral increases the



efficiencies of the Cowell type of equations when there are no abrupt



approaches, and the benefits of this Modified set appear to fall off as the



approaches -become more abrupt. The trade-off point for efficiency between



the Modified Cowell and-the Standard Cowell sets isdependent upon



how rapidly the relative vector changes-near the close approaches.



The behavior of equation set 4 (time smoothing applied to one satellite



and the relative vector based upon the magnitude of the satellite position



vector) will now be discussed. The first effect studied is how the accuracy



of the equation is affected by a change in the closeness of approach
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between Pairs A and B. As pointed out previously, the value of n has a



more dramatic impact upon Pair B for set 4 than for Pair A. For Pair A,



the largest change in efficiency is between n=l and n=2 and isapprox­


imately 30%. The other major difference between these curves isthat for



Pair A, n=l ismost efficient for most accuracies, while for Pair B



n=l.5 is better over most of the range. From Figure l0.1c, it can be seen



that the inclusion of the N-S technique does not improve accuracy for Pair A



a great deal. From Figure l0.lh it can be seen that set 7 is more



efficient for Pair A than the Standard Cowell method. From a comparison



of Figures l0.1c and h, it can be seen that for Pair A, set 4 ismore



efficient than the Standard Cowell set as well as the Modified Cowell set



at high accuracies, and competitive with them for lower accuracies.



If the graph of Equation set 4 vs. set 7 (Figure l0.2c) isnow com­


pared with Figure l0.2h, it can be seen that set 4 for Pair B is much more



efficient than the Standard Cowell set, and the Modified Cowell set. The



relative improvement in tet 4 between Pairs A and B is dramatic. This



improvement iseven greater than that realized by integration of the



relative vector rather than the Standard Cowell set. Thus, the time



smoothing has apparently greatly improved the efficiency of the integration,



and this is not due to the integration of the relative vector alone.



To see how the semi-major axis size affects the efficiencies of set 4,



examination of Pairs C and E is useful. First; from Figures lO.3a and



lO.4a it is clear that this change in size has not changed the relative



effects of n on the set. If the reader looks at Figure lO.3c to see



how set 4 looks relative to set 7, then looks at Figure l0.3h to approximately
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locate set 4 relative to set 7, and then follows the same procedure for



Figure lO.5c and h, it can be seen that the efficiency of set 4 relative to



set 1 for Pair E has not been appreciably effected. Thus, the efficiency



gain realized by the time smoothing does not appear to be significantly



effected by the orbit size.



The effect of the eccentricity on set 4 can be observed in its



efficiency relative to the Standard Cowell equations for Pairs E and F.



Figures lO.3a and lO.6a (difference iseccentricity) show that set 4 is



not extremely sensitive to the value of n for either Pair. Again, in



order to compare the relative efficiency of set 4 relative to the Cowell
 


and Modified Cowell equations it is first necessary to observe the curves



of Set 4 relative to set 7 for Pairs E .and F.



Next, compare set 7 to sets I and 2 in Figures 1O.5c and 1O.6c.



Once this isdone, it can be seen that for both pairs, the time smoothing



has increased the efficiency beyond that for set 1 for both pairs in the



low accuracy region. However, for Pair E in high accuracy regions, time



smoothing results in a more efficient procedure than set 1 while it is
 


almost the same as set 1 for Pair F. It should:be observed that this is



the same trend as was observed for the Modified Cowell set, and indeed



*this set also integrates the relative vector.



If set 4 is compared to set 2, it appears that set 4 is always more



efficient than set2, due to the time smoothing, while set 4 reacts in the



same manner as set 2 in the case of an abrupt approach. To substantiate



this, a comparison of Pairs D, G, and H is inorder. Comparison of Figures



lC.4h, lO.7h, and 1O.8h tend to support this hypothesis. From the figures
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the smoothing does tend to increase the efficiency relative to set 2, but



the fact that the relative vector is being integrated hurts the efficiency



of the method relative to set I.



In summary, it appears that the time smpothing enhances the efficiency



of the integration of set 4 a great deal. However, the integration of the



relative vector introduces the same form of problem for this set (set 4 as was



noted for set 2, the Modified Cowell set, when abrupt approaches are



integrated. Again it is necessary to remember that due to the final time,



the efficiencies given for set 1 are very optimistic, and would likely



be much lower if output were desired at a point of minimum separation.



The Nacozy-Szebehely method applied to sets 2, 4 and 5 (Sets 6, 7, and



8 respectively) had very consistant effects. Ifthe differences between



each of these sets is looked at for Pairs A and B, it can be seen that



the N-S technique increased the efficiencies of each of the methods for



higher accuracies for Pair A, and increased their efficiencies even more



for the closer approach in Pair B.



The semi-major axis difference between Pairs C and E has an interesting



effect upon the efficiencies of sets 2, 4, and 5 and their N-S counterparts.



For Pair C, there is little increase inefficiency for the N-S versions



at high accuracies, while for Pair E there isa dramatic increase for



each of the methods at high accuracies. For the comparison of Pairs E



and F, the implementation of the N-S technique behaves similarly for both



However, it is even more efficient for the moderately eccentric case than



for the near circular case.
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The increases inefficiency due to the N-S procedure in the above



cases are quite large, inmany cases allowing an accuracy increase of



almost two orders of magnitude for the same number of function evaluations.



A comparison of Pairs D, Grand H shows a little more erratic behavior in



the advantages of the N-S method. For Pairs D and G, the method has little



effect on sets 4 and 8 (Figures lO.4c and lO.7c) but tends to decrease the



efficiency, while for Pair H, the efficiency is increased slightly.



Equation sets 5 and 8, on the other hand, are slightly aided by the N-S



technique in Pair B, while it is slightly hampered for Pairs G and H. For



Pairs D, set 2 is only slightly effected by the N-S method, while for



Pair G there is a dramatic increase in its efficiency, and finally for



Pair H there is only a small decrease in effictency. The N-S technique



appears to help the methods when there is a sustained close approach, but



when theapproach is rapid and short, the method will in general make



little difference.



While it is hoped that this chapter has presented most of the major



comparisons, the graphs included will allow the reader to make any other



comparisons which he may desire. The conclusions reached will now be



,grouped in a more compact form in the next chapter.





CHAPTER V



Conclusions and Recommendations



It is concluded that for the following cases the Standard Cowell set



will either be most efficient, or very competative with the other sets:



1) The desired accuracy on the relative vector is low



(10-3 and above), or



2) The satellites have an abrupt approach.



For the time smoothed equations, the first factor which it was



n. As stated by Nacozy9

necessary to determine was the fact value of 
 

the most advantageous choice for n, when studying one vehicles motion is



dependent upon many factors, such as



1) location in the two body orbit,
 


2) the order of the integration method,



3) forces included in the perturbation model, and



4) the eccentricity of the two body reference orbit.



Clearly, the most efficient choice for n for each equation set cannot be



determined for al.l cases, but will only be discussed for the cases run



here.



The proper choice for n, the time smoothing exponent for equation set



4 varies, from pair to pair, and it is interesting to note that,the



introduction of the N-S.method to perform the subtraction can alter the



most efficient choice of n (i.e., set 7). The proper choice of n seems.



to be very problem dependent, and will probably have to be determined for



the specific model being used. The value n=2 was most commonly best for



sets 4 and 7.
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Equation set 5 was very consistent in that n=l.-O was most efficient.



This behavior was repeated in its N-S counterpart, set 8. It is interesting



to note that in the time transformation function, for sets 4 and 7



f = 1/(r2)n  (29)



and the transformation function for set 5 and 8



f = I/(rlr2)n (30)



the choice of n=2 for Eq. (29), and n=l for Eq. (30) produce values



which are very close to one another if r, r2 .



The N-S method appears to enhance the efficiencies of the methods in



almost all cases. This ismost evident when the satellites are in close



proximity for a reasonable length of time, i.e., the orbits are similar.



Inconclusion it is recommended that when the orbits are dissimilar,



that is,they approach the point of close separation very abruptly, the



standard Cowell equations will probably be either most efficient, or very
 


competative with the other methods described here. When the two orbits



are similar, the modified Cowell equations, incorporating the N-S technique



will probably offer great advantages at high tolerance. A very important



point to note here is the fact that the machine used (CDC 6600) carries



approximately 14 digits, as the close approaches inwhich 5 digits were



lost will probably not show the advantages of the N-S technique as clearly



as on a machine of lesser word length. Another point to be considered is



that the N-S method requires extra time to do the subtractions. In cases



where the force model isquite simple, the time savings of this method



might be reduced, but incases when a more sophisticated force model is used,



its advantages will be increased. The time smoothing equations can be
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very economical to use, but the amount of trajectory-time information



required by the user and frequency with which this information is required



can reduce its overall economy as far as computing time is concerned. If



only position information is required, then no transformations between t



and s are required after the initialization. If velocity and acceleration



data isrequired, however, the transformations might become too expensive



if the force model is simple. Ifthe force model ismore complex, the



amount of time spent in the transformations may be small compared to the



savings realized from fewer function evaluations. Again, itmust be pointed



out that these conclusions rest on the basis that the trends inrelative



efficiencies of-the methods desired using a two-body model carried over



when more sophisticated force models are used. Since the two body acceler­


ations are dominant inmost instances, it is believed that while the optimal



value for n will probably change for each model, the overall trends



will extrapolate the more complex force models.



Equation set 3 suffers from the effects of the method used for time



matching. If a much more efficient method can be developed for determining



information for both satellites at the same time, such as an interpolation



procedure, it is felt that this-set might be competative with the other



time smoothed sets, and for the case of dissimilar orbits might be more



efficient, (as the Standard Cowell ismore efficient than modified Cowell



for these orbits).



This paper scratches the surface of a class of problems which



deserve greater study. Other topics of study which could be investigated



are:
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1) An investigation of the effects of the word size of the



computer used on the efficiencies realized in the implementa­


tion of the N-S technique.



2) More efficient means of obtaining information about both



satellites from equation set 3.



3) The possibility of choosing the best value for the time smooth­


ing exponent at each step, analogous to the method proposed



by Nacozy for integration of a single body.





Appendix



As stated in Chapter 2, the timesmoothed equations are all based on



a transformation of the independent variable of integration, from t to



a new independent variable of integration s. This transformation usually



adds a new differential equation to the system, relating t and s.



The common form of this relationship is



ds = f dt (1) 

where f is a function of magnitudes of the position vectors of satellite 

I and/or satellite 2. 

The first step inobtaining the time smoothed equations is to determine



the relationship between the acceleration of a vector E with respect to



t, ,and with respect to s, i". The second derivative of Z with



respect to time can be written



d2
 - d [d&j
dt1iz =q*1 

d fdT ds1] (2) 
: Y [ds1 Utj 

If s is replaced by f as indicated by equation (1)and the differentia­

dt



tion is carried out, the equation can be written as:



d[f
d 
 

Ttdsds dt [j 

dsdtd Ff1 ~ H 
dt ds dt Lsi . ds dt 

= f F E+ ds dL (3
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Letting n denote differentiation of a vector n with respect to



time, and ni'denote differentiation with respect to S, equation (3)



becomes



-	 f2 + f* (4) 

This equation relates accelerations inthe time space to accelerations in



the time smoothed space. The corresponding relationship between t and s



can be obtained from equation (1)by a separation of variables and integration.



The result is



{:fdt = f ds0
° 
 t 
 or 
 

= 	 f (5) 

0 

Inthe first time smoothed equation set, each satellite is independently



smoothed with respect to the magnitude of its position from the central



body. Letting


_dsI 1



fl 	 IS



dt1 al rnl (6)



and



=ds2 - 1s2 
 (7)

2 dt
2 alrIln



it can be noted that f and f2 are both of the form' f = in



For this form
 




f ddt (arn)-1 
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-_(ar) -2 na rn-l dr 

-n 
arn+l 

dr 
ds 

ds_ 
F 

-n 
arn+l 

dr 
ds 

f 

or finally, 

-n dr 

a2r­2n+l ds (8) 

Therefore, dr1 -n2 d 2 

5 a2r 2nl+l s 'f 2 2 -n+ T r 
1 1 dSI a1r 2 ds2 

1 2n2 a2rn2 

Substitution of r1 and r2 individually into equation (4), and the



application of equations (9)to the result yields


l _____l"_al rl n~Itr n2n drlds1 

I 
dF
ds1 l 

1 2 2n+1 - 2 2n +l 
a1 r, 1 _ a~r1 1 ds1I ds1 

and' (10) 

r2 n2 dr 2 dr 2 
r2n, 
a2 2 2 

2T+1 2n2 
a2r 2 ds ds2 

Letting the accelerations intime space be expressed as:



rl=+P 1(r,r1 ) (I1) 
r13



and I 
._. - (7F2) 

r2 3 + Pr2(2,r 2) 

the accelerations of r, and r2 can be introduced into equations (10). 

Solving the resulting equations for F" to obtain the equations of motion 

for fime smoothed space the equations become





n1 	 drI dr1 2 2n 3­ 2105
rl 	 p a r1 1- rl (+r'r 1 ) -al r n 

and (12) 

2 	 2r2 -3 rs- 1r_ 2rdr 2 221F2 3	 rn2 2n r r2 ds2 ds2 -p a r2n2 r 2 +~22) a2 1, 

At this point it is noted that since each satellite has been independ­


ently smoothed, the relations between t and s are different for each



satellite. If f is substituted into Equation (5), the relationship



between t and s for the first satellite is found to be



t= Jslt  a1 r1n ds	 (13)
1 
 
slO



While for the second satellite the relationship is



t2 s2t a2r2n2 ds2 	 (14)


s20



Thus for this equation set, two new first order differential equations have



been introduced. A major disadvantage of this formulation is that since



relative position isour primary interest, it will be necessary to match



t1and t2 at each desired output point.
 


Similar logic as was used in developing the Cowell equations for one



satellite and the relative vector may be used to develop a second set of



time smoothed equations. For this set, (Eq. set 2) one satellite and



the relative vector are smoothed, both with respect to the magnitude of



the position of the second satellite, (can be 1 or 2). The relation
 


between t and s is, as before,



f = 	 ds 1 (15)



dt 
a2r2n2
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f2
The expressions for and f derived previously and stated in



equations (9)are still valid and need oily be applied to r and



r2 * The equation for r2 is unaltered and is restated below



n2 
 ds2 dF2 2 2n-3- - 2n


r2 ds a2 r2 2 r2 + P(r2'r 2)a2 r2 2 (16)



The first step in developing the expression for r' is substitution



into equation (3).



=p' f2 + f 
 (17)



Ifthe equations for f and f are substituted into equation (17), and



r is replaced by



(r,r?] +V(1 7) Pr, 2


r~~r1 ~-rr2i (8



the following equation is obtained:



2r 2
a r f F(,)- P(Y2 r -11 (19)

u2r l

r 2 2 2' L 1 1 2 r r. j 

Itshould be noted that one direct consequence of this coupling is to
 

eliminate the need for two relations between t and s. The time can be


directly calculated from equation (5) as
 


(20)
t= ft ds 
f
so 
 

Now the time matching required for the first set of time smoothing equations



isnot necessary.



A third set of smoothed equations, suggested by Dr. V. G. Szebehely



can be obtained by smoothing one satellite and the relative vector with



respect to the product of the magnitudes of the positions of both satellites.
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Here f has the form



ds -n (21) 
f dt = (rlr 2) 

and can be developed as follows

-n-I 
 Idr2 
 I



f= -n(rlr 2) r-n--+ r2 I]



l) rl r2 
 ds 
 + r dr 2 dst]
 
=-n (n+


= -n (r r2)~ 
 frIy' d + r 2 dsL
Ll2ds dr ds dtJ
-(n+l)1 

= -n (rlr 2) f • (rIr 2' + r2rlI) 

-(2n+l) 
= -n (rIr 2) (r1r2' + r2r' ) (22)1



As before, the expressions for f and f can be applied to equation (4)



for F2, resulting in



2 1 rr , +rr,
-, 
 

2n - 2n+l (r1r2' + r2r1') (23)
(rr2) (r1r2)



Solving for r 2' one obtains



2n n


1r2) 2r-­r2 2(r (rr2' + r2r1 ) r, (24)



When the acceleration of F2 with respect to time from equations (11)



is introduced into equation (24), the smoothed equation for r2 emerges as



n 2n r. 2n


2 (rlr2 2'-rr2) - +P(r2,r2 )(rlr 2) (25)



The relativeacceleration Vector in the transformed system now needs
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to be developed. Recalling the acceleration from equation (18), 

r = rl - r'2 -P, I -7r2 l( rlr)-P(-2r2)r! (18) 

111 r2 ' +1 

and substituting f,f, and r into equation (17), we arrive at 

Ir - .. "-2n
1 F2i[ r ][r r lr (rIr2+r 2 r) 

r, TI(-,2) -P7(r2, 
1 2 2 

Rewriting the equation to isolate r" , produces 

r Lrl r21+ (2)r nr (rr %rr,)r'
r, 2_ 112 2 1 (r1r2) 2n (r1r2)-2n



Once again the relationship between time and s may be obtained from



equation (5) as
 


t = ff (rlr 2 )n ds 

so



Again there isno need for the time matching required by the first
 


set of smoothed equations.
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