OR-/77 720,

. (Ni5a-GR-984794) o COMPARISON OF ) © N76-30250 )
' CONPTTATIONAL MODELS FOR THE SATELLITE

| RELATIVE POSITION PROBLEM (Texas Univ.)
1 120 p HC $5.00 CSCL 223 Unclas

G3/13 49584
i /

/ /

A COMPARISON OF COMPUTATIONAL MODELS FOR THE
SATELLITE RELATIVE POSITION PROELEM

BY
RICHARD E. MCKENZIE

AMREL 1078 . MAY, 1076

7

7 SEP 1976

RECEIVED
<3 NASA STI FACILIFY
S, INPUT BRANCH

&z 5

APPLIED MECHANICS RESEARCH LABORATORY
THE UNIVERSITY OF TEXAS AT AUSTIN ATUSTIN,TEXAS




A COMPARISON OF COMPUTATIONAL MODELS FOR THE
SATELLITE RELATIVE POSITION PROBLEM

Richard Elvin McKenzie
The University of Texas at Austin
Austin, Texas

AMRL 1078
May 1976

Applied Mechanics Research LabgPatéRps

The University of Texas at Austin
Austin, Texas



"This report was prepared under

Grant No. NAS5-20946
for the

National Aeronautics and Space Administration
.Goddard Space Flight Center

.by the

Appred'Méchanics Research Laboratory
The University of Texas at Austin
Austin, Texas

under the direction of

Wallace T. Fowler-
Associate Professor



ACKNOWLEDGEMENTS

I would like to express my heart-felt appreciation to Dr. Wallace T.
Fowler for his encouragement and guidance, and especially for the many
enlightening discussions which were of inestimatable value. To Dr. Robert
E. Schutz I owe a debt of thanks for his understanding and patience.

The'discussions with Drs. Pau] E. Nacozy and Victor‘G. Szebehely
were of vital importance to the development of this report and are
gratefully acknowledged.

At this point I would also i1ike to thank Dr. Kenneth R. Hall for
hislencouragement and help in my decision to enter graduate school.

And I especially wish to thank my wife, whose help, love, and patience,
were so instrumental in this work.

Finally, to Mrs. Susie Thorn for her excellent typing, numerious

suggestions, and for devoting the amount of time and effort she did on

this project, thank you, Susie.

iii



TABLE OF CONTENTS

ACKNOWLEDGEMENTS . . & & & v &t v it e st et e e e e s o s as
TABLE OF CONTENTS v & v v o v v 0 v 6 o i b e e et v s a0 e s
LIST OF FIGURES. . . . . « « « « . . P h e e e e e e e N

CHAPTERI-INTRODUCTIONI‘I..l‘l.l...l..ll.....
CHAPTER II - FORMULATIONS STUDIES

Set 2: Cowell Equations Modified for Relative Motion. .
2.2 The Time Smoothed Equations. . . . . . . . . . . . . ..
Set 3: Independently Smoothed Equations . . . . . . . .

Set 4: Time Smoothed Based on One Satellite's Position
Applied to Relative Vector . . . . . . e e

Set 5: Time Smoothing Based on Both Sateliites Position

Applied to Relative Vector . . . . . . . . . ..

2.3 The Nacozy-Szebehely Method foriComputing Relative
Acceleration + + « & ¢ v v v 4 4 e b 4 b s s e e e e e

Set 6: N-S Method Applied to Modified Cowell Formu-
Tation & v v o v 4 vt e e e e e e e e e e e

Set 7: N-S Method Applied to Set 4. . . . . e e e
Set 8: N-S Method Applied to Set 5. . . . . . . . . ..
CHAPTER 111 - COMPUTATIONAL PROCEDURE

Page
iii
iv

vi

£

~ o o u;

10

13
13
14

15
16
18
20
20
24



N . 26

Pair G . v i v i e e e e e e e e e e e e e e e e e 28

- S 30

3.2 Testing Procedure. . . « v v « v v 4 + . e e e e e 32
CHAPTER IV - RESULTS OF NUMERICAL STUDIES ‘

.1 Pair A v i e e e e e e e e e e e e 40

4,2 PairB. ... ... e e e C e s e s e s e e e s 46

4.3 Pair € . v v o vt et e e e e e e e e e e e e e s 58

L - B B | 64

R N 65

4.6 Pair F o oL o i i i s e e e e e e e e e e e e e e e 72

4,7 PairG . . .. .. e e e e e R 72

4.§ T 83

4.9 Data Comparisons . . . .« v v v « o ¢ s e o e 44 e e . 89

CHAPTER V - CONCLUSIONS AND RECOMMENDATIONS. e e e e e SR 98

APPENDIX . . « + ¢ v v 4 & & ; .................. 102

REFERENCES . & & v ¢ ¢ & 0 v 4 o o o s s o s o s o s o s o o s o s 109

VITA



LIST OF FIGURES

Figure Page
1a XVS. Yy FOr Pair A v & v v v e e e v e e e e e e e e e 17
1b TIME HISTORY OF RELATIVE DISTANCE, PAIRA . . . . . .. 17
2a xvs,yforPairB .. .. ... ... T e e e e e e e 19
2b TIME HISTORY OF RELATIVE DISTANCE, PAIRB . . . . . . . 19
3a xvs.yforPairC .. ... ... .... e e e e e e 21
3b TIME HISTORY OF RELATIVE DISTANCE, PAIRC ... .. .. 21
4a xvs.yforPairD . ... .. v e e e e . 22
ab TIME-HISTORY OF RELATIVE DISTANCE, PAIRD . . . . . .. 23
5a X VS, YTOr PRir E & v v v it et e e e e e e e e e e 25
5b TIME HISTORY OF RELATIVE DISTANCE, PAIRE . .. . . .. 25
6a xvs.yforPairF . . @ @ v v v v o i v e i e e e 27
6b -  TIME HISTORY OF RELATIVE DISTANCE, PAIR F . c v e e 27
7a Xxvs.yforPairG . . . o v 0 . 0 i i s e h e e e e e 29
7b TIME HISTORY OF RELATIVE DISTANCE, PAIRG . . . . . .. 29
8a xvs.yforPairH .. .. ... e v e e s e e e e e e 31
8b TIME HISTORY OF RELATIVE DISTANCE, PAIRH . . . . . .. 31
g LOGIC FLOW WITHIN COMPARISON ROUTINE PAIRH . . . . .. 38

PAIR A

10.1a EFFICIENCY PLOT FOR SET 4. . . . + « v v o v v v o« . . 41

10.1b EFFICIENCY PLOT FOR SET 7. . +. « ¢« v v v v o v ¢ v « L. 41

10.1c EFFICIENCY PLOT FOR SETS 4 AND 7 . . . . . . . . e e 41

10.1d EFFICIENCY PLOT FOR SET 5. . . + + v v« & v v & & . PR 42

10.1e EFFICIENCY PLOT FOR SET 8. . . . . . « . . e e e e s 42

10,1f - EFFICIENCY PLOT FOR SETS5AND 8 . . . . . « . ¢« o . . 42
vi



Figure Page

10.1g EFFICIENCY PLOT FOR SETS 2 and 6 . ; ............ 43
10.1h "COMPARISON OF EQUATIONS FOR SATELLITE PAIRA . . . . . .. 44
10.714 TIME HISTORY OF ERROR, PAIRA. . . . . . . . . . . . . . . 45
PAIR B
10.2a EFFICIENCY PLOT FOR SET 4. . . . . . . . o v v o v v v W 47
10.2b EFFICIENCY PLOT FOR SET 7. . . + . & v v v v v v ¢ v v o & 47
10.2c - EFFICIENCY PLOT FOR SETS 4 AND 7 . . . +. . + v & v v « » . 47
10.2d EFFICIENCY PLOT. FOR SET 5. . « . .« v v v v v v v v v W 48
10.2e EFFICIENCY PLOT FOR SET 8. . . .+ + & v v v v v o v v o+ & 48
10.2F EFFICIENCY PLOT FOR SETS5AND 8 . . . . . . . . . . . .. 48
10.24 EFFICIENCY PLOT FOR SETS 2 AND 6 . . . . . . . . . . . .. 49
10.2h COMPARISON OF EQUATIONS FOR SATELLITE PAIRB . . . . .. . 50
10.2i TIME HISTORY OF ERROR, PAIR B, . . . . « « ¢ ¢ < v o ¢ v & 51
PAIR C
10.3a EFFICIENCY PLOT FOR SET 4. . . . + v v v v v v v v v o W 53
10.3b EFFICIENCY PLOT FOR SET 7. . . v v v v v v v v v o v v o 53
10.3c EFFICIENCY PLOT FOR SETS 4 AND 7 . . . o v v 4 v v v 4 « b3
10.3d EFFICIENCY PLOT FOR SET 5. . + « v o v v v v v v v v v v 54
10.2e EFFICIENCY PLOT FOR SET é ................. 54
10.3f EFFICIENCY PLOT FOR SETS 5 AND 8 . . . . . . . . . . . .. 54
10.3g EFFICIENCY PLOT FOR SETS 2 AND 6 . . . . + ¢ v « o v v & & 55
10.3h COMPARISON OF EQUATIONS FOR SATELLITE PAIRC . . . . . .. 56
10.3i TIME HISTORY OF ERROR, PAIRC. . . « v v v v v v v v 4 . 57

vii



Figure Page

PAIR D
10.4a EFFICIENCY PLOT FOR SET 4. . . . . . . v v v v ¢ v v v o 59
10.4b EFFICIENCY PLOT FOR SET 7. . . v v v v v v v v v v o o o & 59
10.4c EFFICIENCY PLOT FOR SETS 4 AND 7 . . . . ¢ v ¢ v v v ¢« .+ 59
10.4d EFFICIENCY PLOT FOR SET 5. . . . . . .+ « v v v v o o 4 . 60
10.4e EFFICIENCY PLOT FOR SET 8. . . . . . « v v v v v v v v o 60
10.4f | EFFICIENCY PLOT FOR SETS5AND 8 . . . . . . . .« « . . . . 60
10.4g EFFICIENCY PLOT FOR SETS 2 AND 6 . . . . « v v ¢« ¢ v « « & 61
10.4h COMPARISON OF EQUATIONS.FOR SATELLITE PAIRD . . . . . . . 62
10.31 TIME HISTORY OF ERROR, PAIRD. . « « ¢« « ¢ ¢ v ¢ v o o « & 63

PAIR E
10.5a EFFICIENCY PLOT FOR SET 4. . . . . . . v v v ¢ v v v v+ & 66
10.5b EFFICIENCY PLOT FOR SET 7. . . + ¢ v v v v v v v o 0 v v 66
10.5¢ EFFICIENCY PIOT FOR SETS4 AND 7 . . . . . . . .« « . . . 66
10.5d EFFICIENCY PLOT FOR SET 5. . . . . . . « « . . e 67
10.5e EFFICIENCY PLOT FOR SET 8. . . . . « + ¢« v v v v o o v . . 67
10.5F EFFICIENCY PLOT FOR SETS5AND 8 . . . . . . . . .+ . . . 67
10.5g EFFICIENCY PLOT FOR SETS 2 AND 6 . . . . . . . « + v . « . 68

10.5h COMPARISON OF EQUATIONS FOR SATELLITE PAIRE . . . . . . . 69
10.51 TIME HISTORY OF ERROR, PAIR Ev v v v v 4 o v o o o o o o » 70

PAIR F

10.6a EFFICIENCY PLOT FOR SET 4. . . . . ¢+ v v v v v v v v o & 73
10.6b  EFFICIENCY PLOT FOR SET 7. « v v v v o v ¢ v v o o s o o 73
10.6c EFFICIENCY PLOT FOR SETS 4-AND 7 . . « « v v v v v v o o 73

viii



Figure
10.6d
10.6e
10.6f
10.6g
10.6h
10.61

10.7a
10.7b
10.7¢
10.7d
10.7e
10.7f
10.79
10.7h
10.71

10.8a
10.8b
10.8¢c
10.8d
10.8e
10.8f
10.8g

EFFICIENCY PLOT FOR SET 5. v v v o v o e v v e e v e v s
EFFICIENCY PLOT FOR SET 8. « » « v v v v o v w e v o . ..
EFFICIENCY PLOT FOR SETS 5 ANDS . . . . . . . e
EFFICIENCY PLOT -FOR SETS.2 AND 6 . . . . . . e
COMPARISON OF EQUATIONS FOR SATELLITE PAIR F . . . . . ..
TIME HISTORY OF ERROR, PAIR Fu v v 4 v v v v e v e u e v

PAIR .G
EFFICIENCY PLOT FOR SET 4. . . . . 4 v v v v v v v v v u s
EFFICIENCY PLOT FOR SET 7. v . v v v v v v 4 0 0 v 0 o u s

EFFICIENCY PLOT FOR SETS5AND 8 . . . . . . . . . v « . .
EFFICIENCY PLOT FOR SETS-:Z ANDB . . . . . . . . . . ..
COMPARISON OF EQUATIONS FOR SATELLITE PAIRG . . . . . . .
TIME HISTORY OF ERROR, PAIR G. . . . . .+ . v o v v o o .

PAIR H
EFFICIENCY PLOT FOR SET 4. . . v « v v v v v v v 4 v v« &
EFFICIENCY PLOT FOR SET 7. . v + v & v v v v 4 v o v o 4 &

EFFICIENCE PLOT FOR SET 5. v v v v v v v v . . e
EFFICIENCY PLOT FOR SET 8. v v v v v v v v v v v e v e e
EFFICIENCY PLOT FOR SETS 5 AND 8 o+ « v v o v = v v o .
EFFICIENCY PLOT FOR SETS 2-AND 6 o v o v v v v v v o v . .

ix

78
78
78
79
79
79

80

81
82

84
84
84
85
85
85
86



Figure
10.8h
10.81

COMPARISON OF EQUATIONS FOR SATELLITE PAIRH . . . . . .
TIME HISTORY OF ERROR, PAIR H. . . . « . . v v v o v v

Page
87



I. Introduction-

The problem of accurately modeling the relative positions of two orbit-
ing vehicles has become increasingly important.with the advent of‘missions
whose success depend upon this information.. Three instances of such missions
are:

1) Missions involving rendezvous

2) Missions which attempt to study certain physical phenomena by ohserv-

ing their relative effects on two orbiting vehicles.

3) Inexpensive modeling of a set of satellites to check for possible

coltision.

One obvious approach to determining the relative position of two vehi-
cles is simply to difference the position vectors of the two vehicles. Thus,

if the position vectors, ?} and Fé of the two vehicles are given as:

"

x'.;'i+y-{j+z.[k (1)

and’

~
—

ry = Xo i+ Yo 3 +z, k .
the relative vector, r, would be computed as
TaTy Tyt (g - M+ (v - y,) 3 # (2 - 2p) ke (2)
Clearly, when ?ﬂ approaches Fé, a serious loss of significant digits
may result from the subtractions involved due to the finite word length
of the computer being used.
There are obviously other limiting factoré upon the accuracy with which

the relative vector can be obtained. The most visible 1imiting factor i§ the

method used to-obtain the positions .of each-satellite, in-the:case of -numerical



integration this is a factor of the accuracy of the integrator, the stepsize
used and the length of time integrated.

The use of time transformations have recently been applied to the equa-
tions governing the motion of space veh%c1es in attempts to more accurately
predict their positions. It is hoped that these methods may be benificial in
the case of re]aiive posttions between two satellites. These studies have
shown’ that the value of the exponent used in the time transformations, n, can
have dramatic effect on the global integration error. These investigations
have generally been concerned with app]ying the transformations to a single
orbiting body. Velez'¥ has shown that the transformations with I < n<2
enhance the stgbiTity of the system in the sense of Liapunov, and that as n
is increased, the numerical stability of the numerical integration algorithms

1011 £oagin and Mikkilineni®, and Nacozy’

9

increases. In addition, Velez
" have studied the effects of these methods on truncation errors. Nacozy” gives
an excelient survey of these investigations. One major result of these .

studies is that the optimal value of n is dependant upon the model employee

4 and Meu11er6’7

Other studies such as Dunning have developed special-
ized equations of motion based upon approximations which are valid only
when the vehicles are in close ﬁroximity. For this reason, when using
these rendezvous type equations it is necessary to-alternate between a

set of eduations which are valid only for near approaches, and a set valid
for large separations. Such switching can introduce a number of complica-
tions. One primary complication introduced is the determination of when
to switch, which increases the complexity of the required coding. Other

complications resultsfrom questions inherent in the alteration, such as



3

how to restart the integration if a multi-step integrator is used, and how
to control loss in accuracy resulting froﬁ required transformations.

This stu&y compares eight formulations of the equations of motion
for two bodies orbiting-a central body. A1l equations compared will be
valid for both close approaches and large separations. As well as avoiding
the problems mentioned above, this will allow a more careful study of

the regions in which the individual equations are most applicabie.



CHAPTER II

Formulations Studied

Eight equation sets are studied which represenf several philosophies
for improving computational accuracy in the relative motion problem. Some
of the formu]a?ions attempt to increase precision by coupling the equations.
This is accomplished by integration of one satellite in earth centered
coordinates and integration of the relative vector joining the satellites.
Another concept employed attempts to make the equations of motion more
stable through the use of a new independent variable of integration in order
to reduce the propagated error. Several studies have shown that time
smoothed equations enhance the stability of the equations, [Beaudetz’s],
[Ve1ez]0’1]]. Still other formulations are based upon a more direct
approach‘and attempt to reduce the’errors resulting from subtraction of the
two nearly equal quantities which appear while computing relative acceler-
ation. The formulations studied are 1isted below.

1. Standard Cowell

2. Cowell equations modifjed for relative motion

3. Independently time smoothed

4. Time smoothing of one satellite and the relative vector, based

upon smoothed satellite

5. Time smoothing of one satellite and the realtive vector, based up

upon both satellites

6. Cowell equations modified for relative motion emp]oy{ng Nacozy-

Szebehely method



7. Nacozy-Szebehely method applied to equation set Four

8. Nacozy-Szebehely method applied to equation set Five

The most commonly used formulation of the equations of motion in space
dynamics is the Cowell set. Two versions of these equations were included

in the comparisons to serve as reference.

2.1 The Cowell type equations
Equation Set 1 (Standard Cowell equations)

The classical Cowell equations were applied independently to each

satellite as follows:

-
— L —

+ P (rT, F&)

, - = (3)
ry = - H*F;g P ry 1))

_.'1
L
H
=
o H _""S‘J 1

where the first term on the right is Newtonian Force and the P's represent
the perturbing forces.
The relative vector v 1is determined at desired output points by

differencing

F=FI—% ‘ ' f@
In this formulation the equations are very easy to implement, however,
the problem of lost significant digits in the computation of ¥ from (4)
can lead to difficulties in obtaining the relative vector accurately when

r; and Fé are very close tohone another. In an attempt to reduce this



source of error, it is shown in the next section that the equations
can be coupled by altering them for integration of one satelilite re-
ferenced to the central body, and the other satéi]ite position rela-

tive to the first:

Equation Set 2, (Céwell.Equations modified for relative motion)

Differentiation of equation (4), and substitution of equations (3)

into the result yiélds

. oo : :
» o LN _ 'I _ 2 — —_ —_ e —_
FErp Ty = [F{a Fz"a]”ﬂrvﬁ) “Palrgs 1) (5)

In this formulation, one of equations (3) and equation (5) are integrated
simultaneously. In the evaluation of equation (5), equation (4) must be

used to determine the position vector of the satellite which is not integrated
in earth centered coordinates. It should be noted that as F}‘approaches Fé, the
subtraction required by equation (5) may still result in a Toss of signifi-
cant digits. Thus, the original problem has not been eliminated. Rather

than having the loss of significant digits appear directly in the calcula-
tionof r, as r = F} - r,, 1t now appears in the acceleration of v

There are other techniques which can be applied to the problem which may

allow the solution to be computed with greater precision. One such tech-

nique is the use of time smoothing to enhance the stability of the equation.

2.2 The Time Smoothed Egquations

The time smoothed equations are all based on a transformation of the

independent variable of integration from time to a new independent variable
s. This transformation generally requires that another differential

equation, relating t and s, be added to the equation set. 1In



general, the-relation can be given as

ds = f dt, : (6)
where f 1is a function of the magnitudes of the position vectors ?&
and/or Fé. Detailed derivations of the time smoothed equations are
presented in the Appendix. The most obvious use of these equations is to
apply them independently to each satellite.

Equation Set 3: (Independently smoothed equations for each satellite)

For this set f] and f2 are defined as .

ds1 1
f=—t = — (7)
dt a4 1
and
d52 1
fz = = n (8)
dt CAL 2
The resulting equations become
n n, dr, dr —
o= _%_ B ) " a? r]2"1 3 ryt P(r1, r]) 3] r§"1
r ds1 ds.| (9)
s h, dr, dr .
=" _27272 _ 2 _ 2n,-3 - 2 .,.2n

where primes denote differentiation with respect to s, the new independent

variable of integration. The relations between S1s Sp» and t are

51t ny

1 (10)
S
and 10
Spa - n
_ (T2t 2
t, = Is a,r, © ds,
20



Thus, in order to obtain information about the relative vector at a
desired output point it is first necessary to match t1 and t2. This time
matching is extremely difficult since the relations are both highly non-
linear, and get even more so as the values of n, ana n, increase. For
this reason a formulation which eliminates the need for this time matching
is desirable. One method for accomplishing this is integration of the
relative vector directly.

équation Set 4: (Time smoothing based on one satellite’s distance from the

central body applied to relative vector.)
One satellite and the relative vector are smoothed, the smoothing

function f 1is defined as

1
n 11
a2r2 2 (11)

= ds _
=&

The resulting equations of motion are:

n dr, 4
—n Mo Wy 2 3= L5 2.2 .20
Ya ro ds ds W, Ty ro + P (rz,rz)az vy 2
2 (12)
1l n — 2n . . F F
- .2 drdr 2 “hy Y . , T
FOTF, asas T2 P pr)Plndhge 5 g
In order to evaluate (13) the relation
ry = Fé + 7 (14)

must be used. For this formulation, there is only one relation between t

and S,

s (15)
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This eliminates the major drawback inherent in equation set 3, the required
matching of- t] and tz.‘ However, only information about one of the
satellites is being incorporated into the smoothing function. If the
smoothing function is based upon 1 and Fos it might adapt the equations

to the satellites even more accurately.

Equation Set 5: (Time smoothing based on both satellites applied to the

relative vector)
Another time smoothing formulation, suggested by Dr. V. G. Szebehelys,
also smooths one satellite and the relative vector, but this time

information about both satellites is supplied to the smoothing function

which is now defined as

ds -ne
f = -a-t—z ('r'_lr‘z) (16)

For this case the equations of motion emerge as:

Ry e )Ty ) 2y B () )

o = —— (rar,'tr,r,') r,'-{r,r B o= + rost,)iror )

2 rirs 1’2 21 2 21 r23 222712 (17)
oy i 1 1 — -

Po= s (e ru(eg ) | - 5 Y P(r sr)-Plry.ry)) (ryry)

1 o2
The relationship between t and s 1is
3 n
t = J f (r1r2) ds (18)

%0
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In each of the time smoothed equation sets, the exponent in-the time
smoothing equation, denoted n, is arbitrary. The value of n can
affect the methods to a great extent, as will be shown. Thus, one
necessary consideration of the present study is to determine the most
a&vantageous choice for n for each time smoothed equation set. In this
study, each equation set was tested at n=1.0, 1.5, and 2.0.

It can be seen that in each of the formulations involving integration
of the relative vector, there is a term arising in the acceleration of r

due to the two Body forces of the form

3 3
Y2 1
As discussed earlier, this subtraction can lead to numerical difficd1t1es.

The Nacozy-Szebehely method described below attempts to relieve these

difficulties by computing this term in a more suitable fashion.

2.3 The Nacozy-Szebehely method for computing relative acceleration.

Nacozy: and Szebehe]y8 have recently developed methods for accurately
calcuiating the acceleration of the relative vector. Nacozy and Szebehely
apply Encke's method as modified by Potter to the problem of non-interacting -
space vehicles,

Expressing the relative vector, r as
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the relative acceleration can be written in the following form.

r T . .
" 2 ] e - = (20)
r -3 + P(ri’r]) -P (rzarz)

ry

~ The first term on the right hand side is the acceleration due to the
Keplerian forces, while. ?(?H,?ﬂ) and ?‘(Fé,?é) are the perturbing forces.
If the perturbing forces are small, compared to the Keplerian forces, the
errors incurred in calculating the Keplerian acceleration can be expected
to dominate. In cases where the perturbing forces are large, a similar
technique for calculating their differences as described below for the two
body forces may be emplofed.

Observing that in equations (20), the Keplerian term is similar to a

term arising in Encke's method for special perturbations, Nacozy and
Szebehely applied a technique analogous to Encke's to that term. Rewriting

the subtraction in equation (20} as

- - 3

r r -1 r - . -

50 2[5 e 2
‘(‘2 Y'-l Y‘? r-l

a2 quantity g ds defined as

r
2.
q=| =] -1
["1]

as in tne classical Encke method. It should be noted that when q is small
(the magnitude-of ?ﬁ is close to the magnitude of Fé), a substraction of

two nearly equal numbers is still involved. A more accurate means of



12

computing q ‘can be obtained by substitution of equation (19) into the

above expression. This results in

G
(rytr) (ry+r) (22)

The classical approach at this point is to define

r. 2- 3/2
£(q) =[<-f.%) - z] =(1+q) -1 (23)

and expand f(q) 1in a power series in g, or to use tabulated values.
Battin], however, derives a closed form expression for f(q) that pro-
vides accurate computations of f{(q) for small gq.
‘Nacozy and Szebehely adopt this formulation, which is designed for
mutualiy attracting bodies to the relative motion on non-attracting bodies.

Multiplying equation (23) by

1+ (1 + q)3/2-
1+ {1+ q)3/2

equation (23) becomes

2
flq) = q (323929 ) (24)

1 (1 + q)¥?
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Substitution into equation (19) for the relative acceleration yields:
r= ':‘%‘ [f(Q)F-I + (1 + f(CI))F]*' F(Fl sF]) - p-(Fz’Fz) (25)
1

This method for'computing the relative acceleration was incorporated
in the Cowell and Time smoothed equations involving integration of the

relative vector.

Equation Set 6: (Nacozy-Szebehely (N-S) method applied to the modified Cowell

Formulation)
For this formulation, the equations for Set 2 are modified to use the

(N-S} technique for computing the relative acceleration. The equations

become

-r_2 —_— -:- i
rz"'il"‘g' +P(I‘2, r2) .
s

(26)

5[
I

=B
3

: CERE f(q))F] + P(Fy o) PR, T,

0)
The implementation of the N-S method into the [ime smoothed equation sets

is straight forward. The N-S formulation for fhe acceleration of the relative

vector can be substituted directly where it is required.

Equation Set 7: {Nacozy-Szebehely method applied to Equation set 4).

When the N-S method is substituted into equation set 4, (equations {12) and
(13)), the results are.
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The Nacozy-Szebehely method can be incorporated into equation set 5
in the same manner:

Equation Set 8: (N-S method applied to equation set 5.)

After introduction of the N-S technique into equation set 5, the equations can

be written as

h

=" = n 1 1V 8 2n rZ - = 2n
2 7, MM I - ngy) w5 P () egry)

) 2
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Eight equation sets are now ayai1ab]e for comparison, the two Cowell]
formu1at1‘ons3 the three time smoothed equation sets, and the'Nacozy-Szebehely
method applied to Modified Cowell formulylation, and the two time smoothed
eapations involving integration of the relative vector.

The next consideration is how the comparison was carried out, the

first aspect being which satellite pairs were modeled. This is described

in the next chapter on Computational- Procadures.



CHAPTER III

Computational Procedures

Obviously the eight equation sets cannot be compared for every con-
ceivable pair of satellites. Thus, a representative group was chosen which
includes many different situations. The effect which varying the altitudes
of one or both satellites has on the relative efficencies-of the equation
sets can be studied as well as-the effects of the eccentricities of the
orbits.

Due to the force model chosen (which wiil be described in the next
section of this chapter), the absolute inclination, (I) ascending node (w),
and argument of perigee (R) have no effect on the models. Only the relative
inclination (i), eccentricity (e), and semi-major axis (a) of the two
orbits will affect them. In all cases inclination w and Q were
chosen as 0. In all pairs, closest approach is at perigee and the initial
time 2,000 seconds after the start of the integration. This allows the
first small separation to have an effect on the integration. In an attempt
to observe the effects of the altitudes of the orbit on the equation sets,
very high, moderately high and near earth orbits were modeled. The effect
of the subtraction on the equation sets was studied both by using orbits
which were similar and dissimilar as well as by using orbits which were
close for the entire 1integration time and those which were close only for

small periods of time.

3.1 Satellite Pairs Modeled

The eight satellite pairs modeled are diverse enough to cover a large

15
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variety of possible orbits while they have enough similarities to allow
comparisons of the effects of changes in certain parameters on the relative
efficiencies of the methods.
Pair A.

This first pair was inspired by the International Sun-Earth Explorers
(ISEE) A B satellites which will be launched to study the structure of the
solar wind. This pair models two high altitude orbits which have large

eccentricities. The orbital parameters are:

Sateliite 1 Satellite 2
Semi-major axis 76 ,000km 76 ,000km
Eccentricity 913 .78142
Inclination 0% 0°
Perifocus passage 2,000 sec 2,000 sec
Argument of perigee 0° 0°
Ascending node 0° 0°
Final integration time 150,000 sec

Figure la shows these orbits, while Figure 1b displays the time history
of the reiative distance between the itwo satellites. The minimum separation
for this pair 6ccur at apogee and perigee and are on the order of
10,000 km. Apogee for satellite one is 145 380km, and for the second
satellite is 135 380 km, so for fhis pair, the subtraction of Fi-?é even
at its worst case involves only minimal To0ss in significance. This allows
a comparison of the equation sets when the subtraction does not introduce
a significant error.

The next pair modeled is more representative of the ISEE A B pair, with
much smaller separations at apogee and perigee to determine the relative

effects on the equation sets of the close approach.
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Pair B

The orbital parameters for this pair ére:

sateflite 1 satellite 2

Semi-major axis 76 ,000km 76 ,000km
Eccentricity .913 - .9129342105
Inclination 0° 0°
Perifocus passage 2,000 sec 2,000 sec
Argument of perigee 0° 0°
Ascending node 0° 0°

Final integration time 150,000 sec.

These parameters describe orbits which have minimum separations of
ﬁnly 5 kilometers, thus at agogee and perigee, as many as five significant
digits can be lost in tﬁe subtraction of F&- Fé .

Figure 2a shows the similarity between the two orbits (one cannot
distinguish between them at the scale used) while 2b displays the relative
separation as a function of time. The close approach is the primary
difference between this and the previous pair, and will allow us to draw
conclusions as to the effect of a very small separation for this type of
orbit. “

The effects of these large eccentricities on the equation sets is
also of interest. One way to study this is to use another pair model with

much smaller eccentricities.
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Pair C

These satellites are two high altitude orbits, similar to the previous

set, but one is circular, while the other is very nearly circular.

Orbital Parameters

Satellite 1 SatelTite 2
Semi-major axis 42,162 .8km 42,162.8km
Eccentricity 0 1.0E-6
Inclination 0° - 0°
Perifocus Passage 2,000 sec 2,000 sec
Argument of Perigee 0° 0°
Ascending Node 0° 0°
Final Intigration time 86,160 sec

As can he seen from Figure 3a, these orbits are very similar, as were Pair
B. The minimum separations (from Figure 3b) are approximately 4.216x10"2km.,

and again up the five digits can be lost in the subtraction of ?é

-
Thus, the major difference between Pairs B and C are the eccentricities of
the orbit.

Up to this point, only very similar orbit pairs have been described

but the comparisons of the equation sets for dissimilar orbits should

also be investigated.

Pair D

For this case two very dissimilar orbits are modeled, one circular
and the other moderate1& eccentric with close approach at perigee. The
period of the second satellite is three times that of the first, so that

every three revolutions of the first satellite there is another close
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approach. The orbits and their relative time histories are shown in

Figures 4a and 4b.

Orbital Parameters

Satellite 1 Satellite 2
Semi-major axis 42,162.8 km 66,929.37106 km
Eccentricity 0 .37004010125
Inclination 0° 0°
Perifocus passage 2,000 sec 2,000 sec
Argument of perigee Q° 0°
Ascending node 0° 0°

Final integration time = 86,160 sec

At the point of minimum separation, up to five significant digits may
be Tost in computing ?ﬁ - —é. Since this close separation occurs only once
every three revolutions of Satellite 1, we can attempt to observe the
propagated effects of the subtraction of the two nearly equal numbers.
Another objective of the study is to compare the relative efficiencies

of the equation sets as the altitudes of the orbits vary.

Pair E

This pair models two near earth low éccentricity orbits which are
very similar and have small separation for the entire orbit. The only
difference between this and Pair C are the altitudes of the orbits

The orbits are indistinguishable at the scale shown as can be seen in

Figure 5a. The relative distance time history is shown in Figure 5b.
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Semi-major axis
Eccentricity ’
Inclination
Perifocus passage
Argument of perigee

Ascending Node

Orbit Parameters

Satellite 1
- 7378.165km

0
0°
2,000 sec
0°
0°

Final Integration Time = 10,000 sec

26

Satellite 2 .
7378.165 km

1.0E-6
00

2.00G >ec
00
.00

‘ At the two points of minimum separation approximately 5 digits are

Tost in the subtraction of the two position vectors.

To further study the effects of eccentricities on the equation sets

a situation simitar to Pair E is used, but this time with a greater eccen-

tricity for both satellites.

Pair F

Pair F represents two low altitude orbits which are very similar,

but of moderate eccentricity. The orbit shape and relative vector time

history are shown in Figure 6a and 6b, respectively..
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Orbit Parameters

Satellite 1 Satellite 2

Semi-major axis - - 7378.165km 7378.165km
Eccentricity .3 .300001
Inclination N . 0° g°
Perifocus Passage . 2,000sec 2,000sec
Argument of Perigee 0° 0°
Ascending Node . 0° 0°

Final Integration Time = 10,000 sec
Again the subtraction of ?H - Fé can résu]t in a loss of up to 5
significant digits. The primary differences between this and the previous
Pair is the larger eccentricities. Thus enabiing another look at the
effects of a greater eccentricity on the orbits. Two more pairs were
considered, both pairs were very non-similar, the first one is presented

below.

Pair G

In this case, two near earth orbits which are very dissimilar are
modeled. The semi-major axis of satellite 2 is chosen such that the ratio
of the periods of the two satellite is 1/3 resulting in a small separation
every 3 revolutions of satellite 1. This provides another chance to study

the propagation of the errors incurred in the first subtraction.
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Orbital Parameters
Satellite 1 Satellite 2

Semi-major axis ' 7378.165km  15,347.2km
Eccentricity 3 .6634883367
Inclination 0° 0°
Perifocus Passage 2,000sec 2,000sec
Argument of Perifocus 0° 0°
Ascending Node o° 0°

Final Integration Time = 10,000sec.

The minimum separation occurs at perigee and approximately 5 signifi-
cant digits cén-be lost in the subtraction. The pair model resembles Pair D,
except that the eccentricities are greater for both satellites. The orbit
shapes and relative vector time history are shown in Figures 7c and 7b.
The Tlast pair model is again a nonsimiiar pair, but they are more similar

than G or D.

Pair H
These again model two near earth orbits, but which are more similar
than Pair G, The ratio of the periods is now 1/2; and there is one close
approach every two revolutions of the first satellite. The orbit shapes
and relative position vector time history is shown in Figures 8a-and 8b

respectively.
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Orbit Parameter
Satellite 1 Satellite 2

Semi-major axis 7378.165km 10,917.672km
Eccentricity ' .3 .526949
Inclination 0° 0° |
Perifocus passage 2,000sec 2,000sec
Argument of Perigee 0° 0°
Ascending node 0° 0°

Final Integration Time = 10,000sec
The subtraction of ?ﬁ - Fé can again result in a loss of up o 5
significant digits.
Once the satellite pairs to be modelled have been decided upon, the

hext step is to choose the comparison method and criteria for comparison.

3.2 Testing Procedure

The first step in evaluating the relative merits of the various
formu]ations is to develop viable comparison criteria. Since, in theory,
it should be possiblg in any integration to achieve any reasonable accuracy,
given a small enough step size, the criterion chosen was efficiency. The
" efficiency of-a method can be based either on the total amount of computing
time required to achieve a certain accuracy, or upon the number of function
evaluations (calls to the derivative subroutine) required to achieve a certain
accuracy. The total integtation time required by each method is obviously
going to be dependent on many factors such as:

1) differences in the coding of the method

2) amount of information calculated at each step for each method,

3) relative difficulties involved in obtaining certain types of
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information from each method.

One instance of the third problem is that if acceleration, velocity,
and position information for each of the satellites énd the relative vector
are desired in the coordinate-system where time is the independent variable
at each output point, then transformations from s to t are required for
each of the time smoothed equation sets, while the information is readily
available for the Cowell formulations. Since the type and frequence
of information required is very dependent ﬁpon needs of the particular
user, the number of function evaluations required to achieve a disired
accuracy was chosen as an efficiency criterion. For the particular force
model chosen (two body only) the function evaluations are relatively
inexpensive; but for more complicated force modeis they can become the
dominant user of computing time. It is felt that trends apparent in this
study will be reflected in those with more complicated force models,

For any comparison, a method of determining relative accuracy is a ’
necessary consideration. Three appéoaches for determining relative accuracy
were examined.

In the first approach, perturbed motion of the two satellites was
integrated backwards in time from some reference state to some initial state
using an integrator which had control over truncation error. The satellites
were then integrated forward to the reference state, and a bound on the
integration error was obtained by comparing the final solution to the
reference state.

This approach had two major drawbacks. First, a considerable amount
of setup time was required for each problem, to determine the true" or

_reference solution. Second this method would only examine the effects of
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a particular perturbation history. It was felt that it would be more appro-
priate to examine the basic behavior of the equation sets, so this procedure
was abandoned.

Another possibility is to transform the problem into one in which the
initia] conditions could be recaptured at a-given time. The integrated
solution would then be compared with the initial conditions. This recapturing -
of initial conditions severly restricts the type of problems which could be
studied, and was discarded in favor of the following method.

A model was developed with strict two body motion. Such a model allowed
use of the known integrals of the two body equations. &Given the initial
states for each satellite, reference state vectors for each satellite could
then be computed using the known two body solution at any time. These
reference states were computed in double precision to obtain the true
(reference) states as accurately as possible.

A program was written to compare the accuracies and efficiencies of the
methods tested. The logic flow within the program is diagramed in Figure 9.
The desired initial conditons for each satellite, either in rectangular
Cartesian or orbital elements are first read in, along with the desired
central body, {earth or moon), the unit of length to be used (kilometers,
earth radii, or lunar radii), and the output desired (Table 1). A1l required
transformations neéessary to get the initial states in the proper form for
each of the methods are then carried out. These transformations are described
in the AppendiX.

After all input and initialization is completed, the actual integration
is carried out. Because of the required time matching for the third

equation set, and the complications this entails, the third equation set ¢
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is treated first, then the others all follow the same pattern, with the
exception of the time matching required for set 3. Equation set 3 is first
integrated to the first desired output point. This is done by integration
of the first satellite until the time has passed the first output time,
then the second satellite is integrated until t, passes t;, the integration

6 second of one another.

is then iterated until the two times are within 107
It was found that a more restrictive match than this often resulted in a
stepsize in the s system which was so small as to be numerically zero.
The time state was then calculated and all transformations required to
compute desired output information was calculated. The ocutput information
was then computed and stored.

At this point a note on the method chosen to acheive time matching for
equation set 3 is in order. The process of iterating on stepsize requires
a great number of added function evaluations, and the efficiency curves for
~ the method ‘make the formulation look totally unfeasible. Other methods may
be devised for accomplishing the necessary time matching more economically,
but at this stage, the iteration method seems to be a fair approach. The
added expense of interpolation would not be visible in the comparison, and
errors incurred in an interpolation process would be difficult to isolate.
from the errors inherent in the integration.

After the required time matching. has been completed, the system
of equations is integrated to the next output point. The process is re-
peated until the final time has been reached.

The integration method employed was a Runge-Kutta (7)8 with Fehl?erg's

coefficients. -This code employs variable step size and attempts to keep
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the relative Tocal truncation error at each step less than the desired

3

tolerance. Each case was run at various tolerances between 10~ and

10"8 in order to generate the data for the efficency plots.
The rest of the equation sets are then p}ocessed in the same manner
sequentially. Although it would be more efficient to integrate the équations
gimu]taneous]y and make use of some of the intermediate information which is
common to two or more equation sets, it was felt that totally isolating
each equation set from the others would prevent any possible interaction
by the equation sets. One such interaction is that since a variable step
Runge-Kutta method was employed to carry out the integration; the smallest
step size required for any of the equations would be used for-all equation
sets.

After the integration of.all eight equation sets has been completed,
the desired tables and plots are produced. This included the description

of the comparison methods employed. The next chapter will present the

results of these tests.
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CHAPTER 1V
Results of Numerical Studies

Each of the eight satellites pair models described in Chapter III
were integrated using the eight equation of motion formulations. The.
information from these runs was first examined in order to determine the
most efficient choice of n, the time smoothing exponent for equation
sets incorporating time smoothing. Efficiency plots were made for each of
the time smoothed equations, the normalized ervror being plotted against
the number of functions evaluations for various values of n. The most
efficient value of n 1is then the one which T1ies closest to the origin,
(the one which yields the best accuracy with the fewest function evaluations).
To determine the effects of the Nacozy-Szebehely method, methods involving
it were plotied against their counterparts separately. Thus, Equation sets
4 and 7 are plotted separateiy, as are 5 and 8, and 2 and 6. Efficiency
information is presented for the independently time smoothed equation set
3 in the first pair model only. Due to the large number of function
evaluations required for time matching, it was not competative with the
other methods from an efficiency standpoint. It was found that in-
clusion of set 3 on the comparison graph caused the scale to become so large
as to make the efficiency information on the other -equation sets difficult
to discern. Thus, set 3 data was omitted for all pairs except pair A. In
all of the plots, all errors plotted are the normalized L2 norms of the

errors at the final integration time, i.e., error in 1/2

- 2 - 2 - 2

F—_(xtrue xca1cu1ated) +-(ytr'ue yca1cu1ated1 +(ztrue zcalcu1ated)]
lrtr‘uel

in the efficiency plots, each of the lines is composed of three data
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points, the Tines connecting them are just to show trends, and do.not denote

imbedded data points.

The results will be broken down into eight sections, one for éach
satellite pair. The first portion of each section will deal with a .
determination of the best choice for the smoothing exponent in the time
smoothing equation sets. Once this has been found, the Nacozy-Szebehely
version of the relative motion equations will be compared with their standard
counterparts. Finally, the most efficient form of each equation set will

be presented on the final graph of each section.
As this comparison is based only upon the errors at the final time,

it is necessary to determine how the equation sets behave as a function of
time for each Pair tested. A plot depicting the time history of the normal-
ized error in distance of the various equation sets is included.for each
pair.
4.1 Satellite Pair A

From Figures 10.1 a and b, the appropriate values of n for eguation
set 4, and its Nacozy-Szebehley counterpart equations, set 7, are seen to
be 1.0 and 1.5 respectively. With these va]yes a2 comparison of the two
equation sets (Figure 10.7c) show that the N-S formulation does help the
efficiency over a large region. Figures 10.}d, and 10.7e show that the
value n=1 1is most efficient for both sets 5 and 8. The N-S method appears
to make equation set 8 slightly more efficient than'set 5 at
high accuracies. Figure 10.1g shows.that set 6, {the N-$S version of
" set 2) is agajn slightly more efficent. In general for this pair, the N-S
method does not appear to make as large difference in the efficiencies of
the methods. This is probably due to the fact that the smaliest separations
which the two satellites experience 1s very large, and the number of signif-

jcant digits lost in the subtraction of F} - Fé is small. Looking at
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Figure 10.Th, it can be seen that equation set 3, the independently smoothed
equation set was very inefficient as previously mentioned. Equation set 6

appears appreciably more efficient than the standard Cowell equations,
especially at higher accuracies, and the time smoothed equation set are

even more economical for hidhke accuraciés.

If the time histories of the equation sets (Figure 10.11) are now
compared, it can be seen that the various equation sets appear to hold
their positions relative to one another for the time displayed. From this
observation.one might be Justified in the assumption that the efficiency
comparisons are valid over a reasonable neighborhood of time around the

point at which the comparison was actually made.

4,2 Satellite Pair B

The satellites modelied in this pair have much smaller separations at
apogee and perigee and the orbits are more similar than those of Pair A.
Figure 10.2a shows the value of n to have a more pronounced effect upon
the efficiencies of equation set 4 than was observed in satellite Pair A
(Figure 10.1a). The most efficient choice of n for this equation set is
not clear cut and apparently depends upon the accuracies required, but for
most cases the choice n=1.5 appears optimum. Figure 10.2b is much more
definitive in showing n=1 to be most efficient for equation set 7. However
comparison with Figure 10.1b shows the equation set to be more drastically
affected by the choice of n for this satellite pair than the previous one.
The effect of the Nacozy-Szebehely method upon equation set 4 is much more
pronounced for this pair, as can be seen from Figure 10.2c. An accuracy
of 10"7 can be achieved by Equation set 7 with almost 13% fewer function

evaluations than with its standard subtraction counterpart, Equation set 4,
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Comparison of Figures 10.2d and 10.1d show that this pair's closer
approach did not seem to affect the choice of n for equation'set 5, but
merely moved the points to the left and up. The same conclusion can be
reached for equation set 8 by observing the differences in Figures 10.2e
and 10.7e. The N-$ technique does not appear to have a large effect upon
equation set 5, as can be seen from Figure 10.2f, but has a better_effect
than it did on Pair A (Figure 10.1f) resulting in a savings of almost 6%
in function evaluations for most of the graph. Figure 10.2g shows set
6, (the N-S version-of equation set-2}-to be consistently more effi¢ient than
set 2, although this increase in efficiency is limited to about 6%.
Comparison of this to the same graph for Pair A (Figure 10.1g) shows that the
N-S method definitely helps set 2 for ‘Pair B to a greater extent than
Pair A, '

The comparison of the best version of each of the equation sets on
Figure 10.2h shows that a dramatic incféase in efficiency can be realized by
Equation set 7. The same accuracy as the next best set can be obtained with
22% fewer function evaluations. The other equation sets seem pretty much
clustered with one another. For Pair B, then, the N-S technique improves
the éfficiencies of relative equations and the effect of n on sets 4 and 7
is.more..pronounced.than for Pair A.

_ A g1énce'a£ Figure 10.21i- shows that once again the equations sets all
appear to vary ih the same fashion, with time. This observation seems to
support the belief that the efficiency comparisens could be accurately

extrapolated to the région around the chosen comparison time.

The reader should recall that the primary difference between Fair A

and Pair B is.-thatithe orbits in Pair B are much more similar and have a
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smaller separation. The orbits in the next pair,-Pair C, are also very similar
and have small separation distances. Pair C is a high altitude Pair with

both satellites havéng very small accentricities.

i

4.3 Satellite Pair C

The efficiency plots show rather erratic behavior for the methods in
high accuracy regimes for this satellite pair. It is felt that this is
due to the effects of entering the region of round-off error.

Figure 10.3a, when compared with Figure 10.2a, shows the effect of
n to be much Tess on the efficiency of equation set 4, but the best
choice for n appears to be 2.0. 1In Figure 10.3b, the same type of behavior
is exhibited for set 7, with n = 2.0 appearing to be the most efficient
value. The comparison of equation sets 4 and 7 in Figure 10.3c shows the
N-S method to be very advantageous for this equation set. Note that a
savings of up to 25% in function evaluations can be realized over most of
the range of accuracies. The determination of the best n for sets 5 and 8
from Figures 10.3d and 10.3e, yields n =1 to be the best but it should
be noted that these equation sets are not as clearly affected by the value
of n as were equation sets 4 and 7.

Figures 10.3f and 10.3g show 1ittle benefit from the application of the
N-S technique to sets 5 and 2. This is a major change from the previous
pair. The comparison of the most efficient version of each equation set,
presented in Figufe 10.3h, does not show any one set to be most efficient
for all accuracy ranges of accuracies, but shows set 7 to be the best over

the largéest range -of acciracies with the othar sets clustered near it.
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In summary, for .Pair-C, which primarily differed onily in eccentricity
from the Pair B, the N-S method does not.seem to- help as much, and n -
not affect the-time smoothed equations as drastically as before, although

for sets 5 and 8 the exponent n=1 now appears best.

Figure 10.31 shows the equation sets to vary little relative to
one another as the time increases. The calculated efficiencies at the final
time the, would appear to be representative for this pair.

The next Pair models two very dissimilar orbits, which differ even more
than Pair A.
4.4 Sateliite Pair D

Figures 10.4a, b, and c are very similar to their counterparts for
Pair A, in that the value of n affects the efficiencies of equation sets
4 and 7 to a lesser degree than in pair B. Again, for set 4, the most
efficient choice of n appears to oscillate between 1 and 1.5, with

n = 1.5 being better over a larger region than for n = 1.0.

The value of n for set 7 also has small effect again, but this time
choice of the most efficient value is not clear cut. However, n = 2
seems to be a good compromise, due to its high efficiency at greater
accuracies. Figure 10.4c shows the N-S implementation in set 4 does not
improve matters but is very close to set 7, as in Pair A.

Figures 10.4d, e, and f show sets 5 and 8 to be relatively insensitive
to the value of n, but the N-S implementation seems to have helped slightly.
Figure 10.4g displays the change in efficiencies of set 2 with and without
the N-S technique, and again it doesn't affect the accuracy or efficiency
much.

Figure 10.4h compares the most efficient forms of each of the sets,
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and set 1 appears much better than the others. In summary, for these very
dissimilar orbits, the N-S method does not appear in general to be as
effective as the striaght subtraction, (standard Cowell). In an attempt to
understand why set 1 is so much more efficient, it may be advisable to look
at the relative distance vs. time plot for this pair (Figure 4b). As the
satellites approach the point of close separation, the subtractions needed
by the methods which require integration of the relative vector can cause
a very abrupt loss in precision. This presents problems for the other
methods and they must reduce step size

problem and can continue at a larger step size. Another important aspect
of this pair can be seen from Figure 4b. Due to the final time chosen,

the satel]iﬁes have a large separation when the relative vector is calculated
for equation set 1, and a minimal loss of significant digits occurs in the
subtraction of ?& - —é. From this standpoint, the fact that the time

smoothed equations which integrate the relative vector competed as well as
they did is quite impressive.

Figure 10.41 shows the equation sets to be reasonably well behaved,
however there is quite a bit of range in the relative efficiencies of the
methods at different time points, and no extrapolation to times around the

comparison points can safely be made.

The effect of the altitudes on the equation will be studied next by
comparing the results of Pairs C and E which except for their altitudes

are almost indentical.

4,5 Satellite Pair E
Figures 10.5a, b, and ¢ are aimost identical with those from Pair C

(for Equation Sets 4 and 7) in shape. However, when Figure 10.5c is
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compared to 10.3c it can be seen that the relative effectiveness of the
N-S method on set 4 has decreased with decrease in altitude.

Figure 10.5d is very similar to its equivaient in Pair C, while
for equation set 8, Figure 10.5e, the effect of n on the methods is
much more pronounced. In general, from Figure 10.5f the efficiency of
equation set 5 is greatly improved by the N-S technique, while for Pair
C there was not much effect.

Equation set 2 also is greatly aided by the N-5 technique. as can be
seen from Figure 10.5g. The comparison of the best form of each equation set,
Figure 10.5h, shows set 8 to be the most efficient over most of the range.

The major effect of the decreased altitude between Pairs C and E
was to increase the amount the N-S technique helped equation set 5, while it

did not seem to increase the efficiency of equation set 4.
In an attempt to see if the efficiency comparisons made at this

particular time can be extrapolated for other time periods within the
the integration, a study of Figure 10.5i is in order. The equation sets
oscillate drastically in the early part of the integration, then become
more smooth near the comparison point. Even near the comparison point
there is some movement of the sets relative to one another, and it is
apparent that the relative efficiency compariéons are only valid at the

point compared. i
A comparison of Pairs E and F will help to show the effect of changing

the eccentricities on the equation sets.
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4.6 Pair F

A comparison of Figures 10.6a and b with 10.5a and b tend to show that
an increase in eccentricity has only a small effect on the relative
efficiencies of equation sets 5 and 7 at various values of n. In contrast,
Figure 10.6c shows a dramatic increase in efficiency realized from the
Nacozy-Szebehely method applied to equation set 4. However, this efficiency
increase is not as drastic as it was for Pair E. Figures 10.6d and e
vs. 10.5d and e again show little change in the effects of the value of n
for Pairs E and F, sets 5 and 8. Again, the increase in efficiency pro-
vided by the N-S technique has increased for set 5 with the increased
eccentricity.

Figure 10.6g shows a dramatic gain in efficiency when the N-S method
is applied to set 2, (set 6), especially at high accuracy regions.

Figure 10.6h shows the two time smoothed equations compared to their
performance in Figure 10.5h have improved a great deal relative to the
nonsmoothed equations. However, set 6 has gotten a Tittle less efficient

although it is still better than set 1 over most of the range.
Figure 10.61 displays the time history of the error norm used for

each equation set. The equation sets are all well behaved, and do not
cross one another, this tends to show that the exact time chosen for

comparison would not critically affect the conclusions drawn.

-

4,7 Pair G
Pair G, T1ike Pair D, approaches the point of close separation abruptly.
The N-S method does not increase the efficiency of set 4 (Figure 10.7c),

while it is competative for set 5 vs. set 8, (Figure 10.7f) and offers
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a decided advantage for equation sets 2 and 6, (Figure 10.7g). The
integration of the relative vector (Figure 10.7h) does not help the efficiency
of the Cowell methods, while the time smoothing does seem to offer some
advantage, especially for set 5. Again, a look at the magnitude of the
relative position at the final time Figure 7b shows that Eguation set 1 was
not hampered by having to do a subtraction of two nearly equal numbers

at the final term, and yet equation set 5 which must calculate relative
accelerations by subtracting two nearly equal numbers (when satellites are

at perigee) is still more efficient. This would tend to substantiate the
feeling that the smoothing process in itself helps the efficiency of the

methods.
The importance of the time chosen for the comparison aliuded to above

can be easily seen from Figure 10.7i. The relative accuracies of the
equation sets varies widely, and a comparison at another time might show

quite different results.

4.8 Satellite Pair H

From Figure 8b it can be seen that this pair model also approaches
the point of minimum separation abruptly, but not as sharply as Pair G.
The effects of this on the use of the N-S method are to make them more
efficient for sets 4 vs. 7 (Figure 10.8¢c) and very competitive for sets
5 vs. 8 (Figure 10.8f). On the Modified Cowell sets (set 2 and 6), the N-S
equations become more competative as the accuracy requested increases. But
it appears that set 2 is more efficient at low accuracies. Figure 10.8h
shows the integration of the relative vector in the Cowell methods to be

less efficient, while the use of time smoothing appears to increase the

efficiency, especially for set 8.
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The reader's attention is now directed to Figure 10.81, the time
history plot for Pair H . It should be observed that once again the
relative accuracies of the methods vary drastically with time, and for
this reason any conclusion drawn from the efficiencies of the sets at the

comparison may not be valid for other times.

4.9 Data Comparisons

Since the needs of each individual user of this data will be dif-
ferent, it would be impossibie to anticipate all required comparisons.
and make them in this report. However, since all the data are presented,
the user can make further comparisons as needed for any purpose. Selected
comparisions will now be presented which illustrate the information
available in the data.

The next step is to determine how Equation set 5 (time smoothing
applied to one satellite and the relative vector based upon the magnitude
of both satellites position vector) reacts to different situations. For
the case where the closeness of approach is varied (Pair A vs. Pair B}
it can be seen from Figures 10.1d and 10.2d that the efficiency of set 5
is very sensifive to changes in n for both satellite pairs, and n = 1.0
is most efficient by far for both. A comparison of Figures 10.1f and 10.2f
shows how set 5 relates to set 8, which is plotted in Figures 10.7h and
lo.éh. This comparison shows that while for Pair A, set 5 is very competi-
tive with set 4, and more efficient than either the Standard or Modified
Cowell procedures, it is clearly less efficient than set 4 for Pair B and
has moved much closer to the standard Cowell procedure. From this it would

appear that the introduction of the magnitude of the second satellite into
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the smoothing equation has decreased the gains realized by the integration
of the relative vector.

The reaction of set 5 to a change in semi-major axis is next examined
through a comparison of Pairs C and E. Figures 10.3d and 10.5d show set
5 t6 be sensitive to changes in n, but the most efficient choice of n
in both’cases is still n = 1.0. When the plot for set 5 is compared to
set 8 in Figure 10.5f, and its location extrapolated relative to set 8
in Figure TO.Sh, a comparison with Figure 10.3h shows that the change in
semi-major axis has not had a noticeable effect upon set 5, relative to
sets 1, 2, or 4. The effect of the change in eccentricities between Pairs
E and F 1s first noticed in Figures 10.5d and 10.6d. Set 5 is still
sensitive to‘changes in n, but n=1 1is most efficient for both pairs.
Again, in order to compare set 5 to sets 1, 2, and 4 it is first necessary
to look at Figures 10.5f and 10.6f to note its position relative to set 8.
Once this is done, it can be seen that é1though in both cases the efficiency
is better than that attained by set 2, it is again hampered in the
high eccentricity case {as was the other method involving integration of
the felative vector). Set 5 and set 4 are very close to one another although
it appears that in the case of the Tow eccentricity {and therefore less
abrupt approach) set 5 was more efficient while for Pair F, set 4 was
more efficient. |

To further study the effect of ?he abrupt approach on Set 5, Pairs D,
G, and H are now compared. Figures 10.4h, 10.7h and-10.8h all exhibit
the same trend. Over the entire range, set b is more efficient than sets
4 and 2, and for Pairs G and H, set 5 is much better than the Standard

Cowell, but seems to be approaching it as the accuracies get Tower. For
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Pair D, set 5 is not quite as efficient as the standard Cowell. The

overall conclusions are in general that set 5 has better efficiency than

the other methods involving the integration of the relative vector. However,
it suffers from the limitations imposed upon the methods by the abruptness
of approach of the two satellites.

In order to observe how the integration of the relative vector is
affected.by the variation in the closeness of approach between Pairs A and
B it should first be noted from Figures 10.1g and 10.2g that the N-S method
does not affec; the set 2 equations drastically. A comparison of 10.Th and
10.2h shows, however, that the Modified Cowell method with the N-S implemen-
tation (set 6) is more efficient than the Standard Cowell formulation
(set 1) in both cases. Note that for Pair B, with its much closer approach,
the relative gain in ef%iciency is far greater.

The way that a change in the semi-major axis of the two satellites
affects the relative efficiency of the Modified Cowell equation can be
investigated by comparing the results of Pairs C and E. Figures 10.3g and
10.5g show a larger change in efficiency for set 2 with the implementation
of the N-S technique. Figure 10.3h and 10.5h both show the Modified Cowell
with N-S technique to be competitive with the S?andard Cowell method for
Tow accuracy (10—6 and above) regions, while in high accuracy range
(below 30'6) the Modified Cowell procedure is much more efficient. On both
pairs, almost one order of magnitude gain in accuracy can be achieved with
the same number of function evaluations. From this comparison, it appears
that the size of the orbit does not significantly affect the relative

efficiencies of the Standard Cowell and Modified Cowell formulations.
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The next effect studied is how changing the eccentricities of both
satellites affects the efficiency of the Modified Cowell equations relative
to the Standard Cowell set. Pairs E and F are almost identical except
that the eccentricities of both satellites are increased, while this will
change the size of the orbits also) from above we have seen that this
effect is slight). The first thing to note is that in Figures 10.5g and
10.6g9, the appliéation of the N-S method has increased the efficiency of
set 6 by an appreciable amount. Now, from comparision Figures 10.5h and
10.6h, it can be seen that for both Pairs E and F, the Modified Cowel?
are again competitive with the Standard Cowell for Tow accuracies. For
high accuracies, in Pair E the modified Cowell set is much more efficient
than the Standard Cowell, while for Pair F the reverse is true. This
comparison wpu]d tend to substantiate the observation that as the orbits
become more eccentric, the advantages gained by integration of the relative
vector become smaller. A comparison of the time history of the magnitudes
o% the relative positions of the two satellite pairs (Figures 5b and 6b},
suggests a possible reason for this. From the figures it can be seen that
for the more eccentric pair, Pair F, the satellites approach one another
more abruptly at perigee (t = 22 seconds and t = 85 seconds) than the
near circular orbits {(Pair E). The separation of the two satellites for
these two pairs is appéoximate]y the same, while the eccentric satellites

are nearer the central body.
For the Standard Cowell Set, this abrupt approach is no problem as the

integrator will just integrate the orbits independently and not know of the
change. Figures 5b and 6b also show that at the final time where the errors

arercalculated, the relative distance is quite large, so the calculation of
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= o - F} results in the least loss in significance for set 1, and is
a very optimistic situation for the set.

To -further observe the effects of this type of abrupt approach, the
reader's attention is directed to Pairs D, G, and H. From Figure 10.4h it
can be seen that, as expected, the integration of the Modified Cowell
set is not as the Standard Cowell set. From an examination of Figure 4b,
the abruptness of the approach can again be seen. Figure 10.7g shows
that the implementation of the N-S technique has greatly improved the
efficiency of the Modified Cowell set, but even so, from Figure 10.7h, set
6 is much less efficient than thé Standard Cowell set. Aga{n, the time
history of relative position for Pair E, {Figure 6b) shows a very abrupt
approach. Finally, Figure 10.8h shows this same trend; the integration
of the relative vector in set 2 has drastically reduced the efficiency of

the Cowell equations. Figure 8b shows the abrupt approach which hampers

the relative equations.

The integration of the relative vector in general increases the
efficiencies of ;he Cowell type of equations when there are no abrupt
approaches, and the benefits of this Modified set appear to fall off as the
approaches-becomg more abrupt. The trade-off point for efficiency between
the Modified Cowg]] and.the Standard Cowell sets is dependent upon
how rapidly the relative vector changes near the close approaches.

The behavior of equation set 4 (time smoothing applied to one satellite
and the relative vector based upon the magnitude of the satellite position

vector) will now be discussed. The first e%fect studied is how the accuracy

of the equation is affected by a change in the closeness of approach
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between Pairs A and B. As pointed out previously, the value of n has a
more dramatic impact upon Pair B for set 4 than for Pair A. For Pair A,
the Targest change in efficiency is between n=1 and n=2 and is approx-
imately 30%. The other major difference between these curves is that for
Pair A, n=1 is most efficient for most accuracies, while for Pair B

n=1.5 is better over most of the range. From Figure 10.1¢c, it can be seen
that the inclusion of the N-S technique does not improve accuracy for Pair A
a great deal. From Figure 10.1h it can be seen that set 7 is more
efficient for Pair A than the Standard Cowell method. From a comparison
of Figures 10.1c and h, it can be seen that for Pair A, set 4 is more
efficient than the Standard Cowell set as well as the Modified Cowell set
at high accuracies, and competitive with them for Tower accuracies.

If the graph of Equation set 4 vs. set 7 (Figure 10.2c) is now com-
pared with Figure 10.2h, it can be seen that set 4 for Pair B is much more
efficient than the Standard Cowell set, and the'Modified Cowell set. The
relative improvement in $et 4 between Pairs A and B is dramatic. This
improvement is even greater than that realized by integration of the
relative vector rather than the Standard Cowell set. Thus, the time
smoothing has apparently greatly improved the efficiency of the integration,
and this is not dug to the in?egration of the relative vector aione.

To see how thg semi-major axis size affects the efficiencies of set 4,
examination of Pairs € and E is useful. First, from F%gures 10.3a and
10.4a it is clear that this change in size has not changed the relative
effects of n on the set. If the reader looks at Figure 10.3c to see

how set 4 looks relative to set 7, then looks at Figure 10.3h to approximately
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locate set 4 relative to set 7, and then follows the same procedure for
Figure 10.5¢c and h, it can be seen that the efficiency of set 4 relative to
set 1 for Pair E has not been appreciably effected, Thus, the efficiency
gain realized by the time smoothing does not appear to be significantly
effected by the orbit size. '

The ef%ect of the eccentricity on set 4 can be observed in its
efficiency relative to the Standard Cowell equations for Pajrs E and F.
Figures 10.3a and 10.6a (difference is eccentricity) show that set 4 is
not extremely sensitive to the value of n for either Pair. Again, in
order to compare the relative efficiency of set 4 relative to the Cowell
and Modified Cowell equations it is first necessary to cbserve the curves
of Set 4 relative to set 7 for Pairs E -and F.

Next, compare set 7 to sets 1 and 2 1in Figures 10.5c and 10.6¢c.
Once this is done, it can be seen that for both pairs, the time smoothing
has increased the efficiency beyond that for set 1 for both pairs in the
low accuracy region. How;;;;, for Pair E in high accuracy regions, time
smoothing results in a more efficient procedure than set 1 while it is
almost the same as set 1 for Pair F. It shouid:be observed that this is
the same trend as was observed for the Modified Cowell set, and indeed
-this set also integrates ;he relative vector.

If set 4 1shcompared to set 2, it appears that set 4 is always more

efficient than set 2, due to the time smoothing, while set 4 reacts in the

same manner as set 2 in the case of an abrupt approach. To substantiate

this, a comparison of Pairs D, G, and H is in order. Comparison of Figures

10.4h, 10.7h, and 10.8h tend to support this hypothesis. From the figures
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the smoothing does tend to increase the efficiency relative to set 2, but
the fact that the relative vector is being integrated hurts the efficiency
of the method vrelative to set 1.

In summary, it appears that the time smpothing enhances the efficiency
of the integration of set 4 a great deal. However, the integration of the
relative vector introduces the same form of prob]em for this set (set 4 as was
noted for set 2, the Modified Cowell set, when abrupt approaches are
integrated. Again it is necessary to remember that due to the fina]itime,
the efficiencies given for set 1 are very optimistic, and would Tikely
be much lower if output were desired at a point of minimum separation.

The Nacozy-Szebehely method applied to sets 2, 4 and 5 (Sets 6, 7, and
8 respectively) had very consistant effects. If the differences between
each of these sets is Tooked at for Pairs A and B, it can be seen that
the N-S technique increased the efficiencies of each of the mefhods for
higher accuraciés for Pair A, and increased their efficiencies even more
for the closer approach in Pair B.

The semi-major axis difference between Pairs C and E has an interesting
effect upon the efficiencies of sets 2, 4, and 5 and their N-S counterparts.
For Pair C, there is 1ittle increase in éfficiency for the N-S versions
at high accuracies, while for Pair E there is a dramatic increase for
each of the methods at higﬁ accuracies. For the comparison of Pairs E
and F, the implementation of the N-S tgchnique behaves similarly for both
However, it is even more efficient for the moderately eccentric case than

for the near circular case.
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The increases in efficiency due to the N-S procedure iﬁ the above
cases are quite large, jn many cases allowing an accuracy increase of
almost two orders of magnitude for the same number of function evaluations.
A comparison of Pairs D, G,'and H shows a Tittle more erratic behavior in
the advantages of the N-S method. For Pairs D and G, the method has Tittle
effect on sets 4 and 8 (Figures 10.4c and 10.7¢c) but tends to decrease the
efficiency, while for Pair H, the efficiency is increased slightly.
Equation sets 5 and 8, on the other hand, are slightly aided by the N-S
technique 1in Pair B, while it is s1ightly hampered for Pairs G and H. For
Pairs D, set 2 is only slightly effected by thé N-S method, while for
Pair G there is a dramatic increase in its effﬂciency, and finaliy for
Pair H there is only a small decrease in efficﬂency. The N-S technique
appears to help the methods when there is a sustained close approach, but
when the-approach is rapid and short, the method will in general make
little difference.

While it is hoped that this chapter has presented most of the major
comparisons, the graphs included will allow the reader to make any other
comparisons which he may desire. The conclusions reached will now be

_grouped in a more compact form in the next chapter.



: CHAPTER ¥
Conclusions and Recommendations
It is concluded that for the following cases the Standard Cowell set
will either be most efficient, or very competative with the other sets:
' 1) The desired accuracy on the relative vector is Tow
(10"3 and above), or
2) The satellites have an abrupt approach.

For the time smoothed equations, the first factor which it was
necessary(to determine was the fact value of n. As stated by Nacozyg,
the most advantageous choice for n, when studying one vehicles motion is
dependent upon many factors, such as

1} Tocation in the two body orbit,

2} the order of the integration method,

3) forces included in the perturbation model, and

4)" the eccentricity of the two body reference orbit.
Clearly, the most efficient choice for n for each equation set cannot be
determined for all cases, but will only be discussed for the cases run
here.

The proper choice for n, the time smoothing exponent for equation set
4 varies, from pair to pair, and it is interesting to note that the
introduction of the N-S method to perform the subtraction can alter the
most efficient choice of n (i.e., set 7). The proper choice of n seems.
to be Qery problem dependent, and will probably haye to be determined for
the specific model being usgd. The value n=2 was most commonly best for

sets 4 and 7.

98
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Equation set 5 was very consistent in that n=1.0 was most efficient.
This behavior was repeated in its N-S counterpart, set 8. It is interesting

to note that in the time transformation function, for sets 4 and 7
£ = 1/(r)" (29)

and the transformation function for set 5 and 8

f = 1/(r1r2)n (30)

the choice of n=2 for Eq. {(29), and n=1 for Eq. (30) produce values
which are very close to one another if g = ro-

The N-S method appears to enhance the efficiencies of the methods in
almost all cases. This is most evident when the satellites are in close
proximity for a reasonable length of time, i.e., the orbits are similar.

In conclusion it is recommended that when the orbits are dissimilar,
that is, they approach the point of close separation very abruptly, the
standard Cowell equationsgfjl} probably be either most efficient, or very
competative with the other wmethods described here. When the two orbits
are similar, the modified Cowell equations, incorporating the N-S5 technique
will probably offer great advantages at high tolerance. A very important
point to note here is the fact that the machine used (CDC 6600) carries
approximately 14 digits, as the close approaches in which 5 digits were
lost will probably not show the advantages of the N-S technique as clearly
as on a machine of lesser word length. Another point to be considered is
that the N-S method requires extra time to do the subtractions. In cases
where the force model is quite simple, the time savings of this method

might be reduced, but in cases when a more sophisticated force model is used,

its advantages will be increased. The time smoothing equations can be
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very economical to use, but the amoun? of trajectory-time information
required by the user and frequency with which this information is reguired
can reduce its overall economy as far as computing time is concerned: If
only position information is required, then no transformations between t
and s are required after the initialization. If velocity and acceleration
data is required, however, the transformations might become too expensive

if the force model is simple. If the force model is more complex, the
amount of time spent in the transformations may be small compared to the
savings real{zed from fewgr function evaluations. Again, it must be pointed
out that tﬁese conclusions rest on the basis that the trends in relative
efficiencies of -the methods desired using a two-body model carried over

when more sophisticated force models are used. Since the two body acceler-
ations are dominant in most insténces, it is believed that while the optimal
value for n will probably change for each model, the overall trends

will extrapolate the more complex force models.

Equation set 3 suffers from the effects of the method used for time
mqtching. If a much more efficient method can be developed for determining
information for both satellites at the same time, such as an interpolation
procedure, it is felt that this-set might be competative with the other
time smoothed sets, and for the case of dissimilar orbits might be more
efficient, (as the Standard Cowell is more efficient than modified Cowell
for these orbits).

This paper scratches the surfage of a class of problems which
deserve greater study. Oﬁher tqpics of study which could be investigated

are:
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1} An investigation of the effects of the word size of the
computer used on the efficiencies realized in the implementa-
tion of the N-S technique.

2) More efficient means of obtaining information about both
satellites from equation set 3.

3) The possibility of choosing the best value for the time smooth-
ing exponent at each step, analogous to éhe method proposed

by Nacozy for integration of a single body.



Appendix
As stated in Chapter 2, the time smoothed equations are all based on
a transformation of the independent variable of integration, from t to
a new independent variable of integration s. This transformation usually
adds a new differential equation to the system, relating t and s.

The common form of this relationship is

ds = f dt (1)
where f 1is a function of magnitudes of the position vectors of satellite
1 and/or satellite 2.
The first step in obtaining the time smoothed equations is to determine
the relationship between the acceleration of a vector £ with respect to
t, é’, and with respect to s, £". The second derivative of £ with

respect to time can be written

_;3

- ﬁg_ _d_[dE
dt dt |dt
- 4 [dg dsy
T odt [ds] E&‘] (2)

If -%% is replaced by f as indicated by equation (1) and the differentia-

tion is carried out, the equation can be written as:

dt |ds ds dt
L dsdt d [dE dg d_
4t ds L]f*sdtm
-2 [$2 ], dE d
f ﬁi?f Eltas @ | (3)
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Letting n denote differentiation of a vector n with respect to
time, and 7' denote differentiation with respect to S, equation (3)

becomes

R O (4)

This equation relates accelerations in the time space to accelerations in
the time smoothed space. The corresponding relationship between t and s
can be obtained from equation (1) by a separation of variables and integration.

The result is

t S
t f
or 0 .9

34
t=ffd_1s° (5)
So _

In the first time smoothed equation set, each satellite is independently
smoothed with respect to the magnitude of its position from the central

body. Letting

cls.l 1
f° gt ar (6)
1 11
and
ds 1
-fz = 2 = n (7)
dt2 a]r] ]

it can be noted that f; and f, are both of the form f = —lﬁ-,

For this form
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=4 (0
f=x (ar')
-2
= _{aul n-1 dr
{(ar') nar It
= -n_. _(_j__r_‘_ Sl_§_ =.-n (_i,t, £
arn+1 s dt arn+1 ds
or finally,
f= B dr .
2 201 ds (8)
Therefore,
. . dr1 . -n dr
f1 2 2n.+1 s fg =73 2+ 2
aqry 1 ds1 ayr ) L d52
= oy fo = Ly ?
n 2 2n
agr; T2 ayry 2

Substitution of ?i and Fé individually into equation (4), and the

application of equations (9) to the result yields

?i ) zrl i 22 drl dr1
2n.+1 2n.+1
aq Ty 1 ary 1 ds1 ds]
and (10)
?i - ;2 ] n, dr2 dr2
n,+1 2_2n,+1
a,ry 2 A % dss ds2
Lefting the accelerations in time space be expressed as:
ry = 3 + PI(r1,r1) (1)
and _}
™ 'Il(rz) -
rp =g+ Pylrpemy)
2

the accelerations of F& and Fé can be introduced into equations (10).
Solving the resulting equations for r" to obtain the equations of motion

for fime smoothed space the equations become
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""n.___._]_ ____T_____'!_ - 2 2n -3 — = 2n
i v, @5 &, map M1 T e+ P o(egury) Ay g
and i & (12)
'-..__2_2__12‘ 2 2n,-3 — —— 2 .2n
2 7Y, %, &, 2”22 rp + Prysry) a5 ryv2

At this point it is noted that since each satellite has been independ-
ently smoothed, the relations between t and s are different for each
satellite. If f] is substituted into Equation (5}, the relationship
between t and s fér the first satellite is found to be

ty = I:Tt a, r1"1 ds, (13)
10
While for the second satellite the relationship is

s
t, = ISZt oTo N2 ds (14)
20
Thus for this equgtion set, two new first order differential equations have
been introduced. A major disadvantage of this formulation is that since
relative position is our primary interest, it will be necessary to match
t; and t, at each desired output point.

Similar logic as was used in developing the Cowell equations for one
satellite and the relative vector may be used to develop a second set of
time smoothed equations. For phis set, (Eq. set 2} one satellite and
the relative vector are smoothed, both with respect to the magnitude of
the position of the second satellite, (can be 1 or 2). The relation
between t and s is, as heforg,

dt ayry 2
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The expressions for fz and % derived previously and stated in
equations (9) are still valid and need only be applied to ¥ and

Fé . The equation for ?é is unaltered and is restated below

2 —

n~ dr, dr

&|g= 2 2 - 2 zn —3— —_ 2 2n .

r, &, wag 2 " T,y + P(r,,r,)ay vy 2 (16)

The first step in developing the expression for r" 9is substitution

into equation (3).

R (17)
If the equations for fz and % are substituted into equation (17), and

r is replaced by

s s s L8 % - = ——
r= -l - l"2 = =u —3‘ - '_3 + P(T‘-I ,Y‘.i) - P(rzsrz) (]8)
i LY

the following equation is obtained:
n : 2 [ . . r, T
r" = Fi-rzlrl + ag rz.n [%(r],r]) - P(rz,rz) +u[:%—- —%] ] (19)
r r
2 1
It should be noted that one direct consequence of this coupling is to

eliminate the need for two relations between t and s. The time can be

directly calculated from equation (5) as

£ = Jst ds (20)
B f
so
Now the time matching required for the first set of time smoothing equations

is not necessary.
A third set of smoothed equations, suggested by Dr. V. G. Szebehely
can be obtained by smoothing one satellite and the relative vector with

respect to the product of the magnitudes of the positions of both satellites.
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Here f has the form

d -n
f = a%- = (r]rz) (21)
and % can be developed as follows

. -n-1 (dr
f= —n(r1r2) Py Ty

-(n+1) [ dr, ds dr, ds)
= -n {ryry) Py Ty —= —

‘(n+1) 1
= -n (r1r2) . f (r1r2' + rory )

-(2n+])
= - (ryry) (ryrp" + o) (22)

As before, the expressions for f and f can be applied to equation (4)

for Fos resulting in

Py ) wit 4] t 1 )
2 sm T T (Mt o) (23)
(ryry) (rqry)

-

Solving for Fé" one obtains

. 2n n
= rz(r]rz) +

ra

il ] 1y i
iy (rqrp’ +1pry') vy (24)

When the acceleration of Fé with respect to time from equations (11)

is introduced into equation (24), the smoothed equation for Fé emerges as

_ n : = 2n Uy R 2n
r,"= F;?E-(r]rz oYy )r2 -(r]rz) -;§-+P(r2,r2)(r1r2) (25)
2

The relative acceleration vector in the transformed system now needs



108

to be developed. Recalling the acceleration from eguation (18),
2s a3, o, r'l r\z —_— - -_— =
r= Y‘-l - 1"2 = ~U ';"3 - ""'g’ -+ P-I (r-l sr'i)"P(rzsrz) (18)
Y\
_ 1 2
and substituting f, f, and r into equation (17), we arrivé at -
Y‘-I Y'Z . ] _ -2n a
u |~ - 5+ P(r1r])—P(r2,r2) =r"(r]r2) - ———-(r1r2‘+r2r1')
ry r r.r
1 "2 ] 12
Rewriting the equation to isolate v" , produces

—-—

1 rz} P(r i )P(F, ¥,
— _ N o I A L LA A LeY
Il A A L L NP 7R (26)
12 — (ry1r,)
Zn M
(r]rz)

Once again the relationship between time and s may be obtained from
equation (5) as

S¢ N
t = J (rlrz) ds

%0

Again there is no need for the time matching required by the first
set of smoothed equations.



10.
1.

References

Batg%n, R., Astronomical Guidance, McGraw Hi1l, Co., New York, (1965),
p. 216.

Beaudet, P., "Testing and Comparison of Various Methods of Special
Perturbations", CSC 3000-08600-02TM, 1974.

Beaudet, P., "Dynamic Stabilization and Error Propagation in Perturbed
Keplerian Motion", CSC 3000-08600-02TM, 1974.

Dunning, R. S., "The Orbital Mehcanics of Filight Mechanics",
NASA SP325, 1973.

Feagin, T., and Mikkelineni, R. P., Celestial Mechanics, 1976.

Mueller, D. D., "An Analysis of the Behavior of Long Tetherlines in
Space", AMRL-TDR-62-123, 1962. )

Mueller, D. D., "Relative Motion in the Docking Phase of Orbital
Rendezvous", AMRL-TDR-62-124.

Nacozy, P., and Szebehely, V., "The Computation of Relative Motion
with Increased Precision', (private communication), 1975.

Nacozy, P., Celestial Mechanics, 1976.

Velez, C. E., Celestial Mechanics, Vol. 10, No. 4, 1974, p. 405.

Velez, C. E., Proceedings of the NATO Advanced Study Institute on
Long-Time Predictions in Dynamics, ed. by B. Tapley and V. Szebehelv,
D. Reidel Publishing.

109



