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ABSTRACT

The effect of the adhesive layer on crack propagation
in composite materfals {is investigated. The composite me-
dium consists of parallel load carrying laminates and buffer
strips arranged periodically and bonded with thin adhesive
layers. The system is assumed to approximate boron-epoxy
composites. The strips, which are assumed to be isotropic
and Tinearly elastic, contain symmetric cracks of arbitrary
lengths located normal to the interfaces. Two problems are
solved for hoth plane strain and plane stress cases. In
the first problem, thin adhesive layers are approximated by
uncoupled tension and shear springs distributed along the
interfaces of the strips for which only the case of internal
cracks can be treated rigorously. The second problem is
introduced in order to study the case of broken laminates
and tc detect the true singular behavior in the presence of
the adhesive layer. In this case the adhesive 1s treated
as an isotropic, linearly elastic continuum. General ex-
pressions for field quantities are obtained in terms of in-
finite Fourier integrals. These expressions, with relevant
boundary and continuity conditions, give a system of sing-
ular integral equations *n terms of the crack surface
displacement derivatives. By using appropriate quadrature
formulas, the integral equations reduce to a system of

linear algebraic equations which is solved numerically.
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Then, stress intensity factors and some significant stress
components are calculated, The results are compared to
those obtained by neglecting the adhesive layer (perfect

bonding assumption). Results are presented in graphical

form,




I. INTRODUCTION

Fracture mechanics 1s the study of the strength of a
structural member that contains a crack. A normally ductile
member may behave in a brittle manner 1f it contains cracks
or other flaws which are sufficienily large. Adhesive-
bonded composites tend to have flaws due to the compiexity
of shape, chemical dissimilarities, and assembly procedures.
These flaws, under Yoad, may develop into cracks with a re-
sulting brittle failure. 1In applying fracture mechanics,
it 1s assumed that all real structures have initiail flaws
or cracks, and that failure is caused by the propagation of
the largest of these. The techniques of fracture mechanics
can measure the intrinsic toughness of the material, which
determines the load-carrying capacity of the structure in
the presence of flaws., Therefore, 1f the size of the
largest flaw in a particular structure is known, minimum
toughness standards can be established for the materials in
the structure. One has to adopt a proper fracture criterion
and decide on the type of "load factor" to be evaluated,
Usually the fracture criterion consists of a simple com-
parison between a calculated load factor and a material
constant which is determined from certain standard experi-

ments.

Inmost fracture analyses, two basic (essentially equiv-

alent) approaches have been used with variations., With one
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approach, due originally to Griffith (1920), the energy
required to propagate a crack of a given size is considered,
A crack will propagate if the rate of release of the stored
energy per unit growth of the crack exceeds the rate of
change of the surface energy rcquired by the new surfaces.
According to Irwin [1], the 3tress field in the vicinity of
a crack tip can be adequately defined for studies of crack
extension by a single parameter, proportional to the stress
intensity factor. Since this parameter is a function of the
applied 1oad and crack size (it increases with load), when
the intensity of the local tensile stresses at the crack
tip attains a critical value, a previously stationary or
slow-moving crack propagates rapidly. This critical value
defines the "fracture toughress” and it is a constant for

a particular material, since cracking always occurs at a
given value of local stress intensity regardless of the
structure in which the material has been used. Fracture
toughness has the same relationship to brittle design that
yleld strength has to ductile design. Variations of these
theories also have been useful. When a significant degree
of plasticity takes place in the structural member, the
usefulness of the elastic stress intensity factor as a
correlating parameter becomes questionable. For cases where
large-scale yielding can be expected, there are other cor-

relating parameters that have been suggested in recent

e



years such as the J-integral, crack opening displacement,

plastic stress and strain intensity factors, etc,

In the fatigue of bulky structures with no high stress
concentrations, the major portion of the fatigue 1ife is
elapsed before the formation of macrocracks. The remain-
ing portion of the fatigue 1ife s relatively very shert.

On the other hand, in composite structures the formation of
a dominant macrocrack may take placo relatively early in
the fatigue 11fe. Hence in such cases the propagation
phase, i.e., the number of load cycles necessary for the
fatigue crack to reach a critical length at which the struc-
ture may fail statically, represents the major portion of
the total fatigue 1ife. Therefore in composite structures
propagation and arrest of fatigue cracks i5 a major subject.
Since the stress intensity factor is the simplest and the
most appropriate single variable used in studying the fa-
tigue crack propagation, its evaluation attracts consider-

able attention.

Because of the ever-increasing use of modern composite
materials in a wide variety of structural applications, the
mechanics of multi-phased materials has attracted consider-
able attention, particularly within the last ten or fifteen
years. A great amount of work in this area has been con-
cerned with the influence of the localized imperfections

on the overall response of the medium regarding its faflure,
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The primary interest is mostly in the initiation and propa-
gation of fracture in the composite material. The iracture
process may start as the initiation of a fatigue crack at

a local {mperfection in the composite material, This crack
then propagates with the cyclic effect of applied loads re-
sulting in structural faflure at stress levels considered
moderate 1n relation to the theoretical strength of the ma-
terial. There are two types of failure: (1) due to a con-
trolled rate of c¢racking, arising from a steady rate cf
stressing; (2) due to catastrophically fast crack growth,
The latter one needs more attention since the growth cannot
be controlled easily. The main reason for the use of rel-
atively low stiffness and high toughness burfer strips par-
allel to main load-carrying laminates in designing with
high str;~ath composite materials, is to improve the fatigue
crack pvropagation and arrest characteristics of the struc-

ture,

The use of very strong epoxy type adhesives has been
very common in joints of fiight and space vehicle structures
in which 1ightweight and high fatigue strength are dominant
requirements. Epoxy based adhesives are also being used
increasingly in stiffening, Jjoining, and repairing precast

prestressed concrete and othei structures,

The adhesive layers, which serve as the bonding agent

in composites, have not been treated adequately in
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literature (see [2]). 1In the past some of the problems,
particularly the problems relating to the traction-free
boundaries, have presented considerable analytical diffi-
culties., There are some finite element solutions which are
good to the extent that they are reljable. However, these
solutions miss the correct singular behavior near the cor-
ners and hence, from the viewpoint of fracture studies,
they are of Timited value. In recent years, with the in-
troduction of the concept of generalized Cauchy kernel and
the development of the related numerical techniques (see
£3], [4]) it seems that sume of these problems can now be
treated in an analytically correct manner, For examptle,
the problem of a composite isotropic plate which consists
of narallel load-carrying laminates and buffer strips has
been solved by Erdogan and Bakioglu [8]. In this study
the effect of the adhesive layers has not been taken into
account, Eisenmann and Kaminski [6] had considered this
problem before. They concluded that crack arrest could be
achieved through the use of buffer strips in the primary
load-carrying laminates. However, their analytical work
in evaluating the quantities which are useful in design
considerations 1s not complete. The same problem has re-
cently been considered by Delale and Erdogan [7] for ortho-
tropic materials again neglecting the adhesive layers.
Erdogan and Civelek [8] have treated the thin adhesive

layer as a shear spring in the contact problem for a thin
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elastic reinforcement bonded to an elastic plate, In the
stress analysis of a metal ba‘e plate stiffened by a fiber-
reinforced composite layer Erdogan and Arin [9] assumed
that the two matertals are bonded through an adhesive which
1s treated as a two-dimensional shear spring. The problem
of an elastic plate bonded to a rigid horizontal substrate
through an adhesive layer has been considered by Williams
[(10]. In this work, the adhesive layer has been assumed to
react as a Winkler elastic foundation., It should be noted
that the essential assumption introduced by Winkler allows
for vertical motion and dilatation stress only. In one of
the most recent works, Updike {11] has investigated the
effect of adhesive layer elasticity on debonding of a blis-
ter test specimen, The adhesfve layer has been treated as
a distributed spring or elastic foundation which transmits

normal and shear stresses between plate and support.

The objective of this work 1s to jnvestigate the effect
of adhesive layer on crack propagation in composite ma-
terials. A composite medium, which is generated by parallel
main load-carrying laminates and buffer strips bonded
through thin adhesive layers, is considered, Materials of
main laminates and buffer strips are assumed to be jso-
tropic and linearly elastic. Main laminates and buffer
strips are arranged periodically and they are assumed to

contain symmetric fatigue cracks of arbitrary lengths and
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traction-free surfaces normal to their longitudinal direc-
tion. The composite medium 1s loaded in y-direction con-
siderably far from crack region (see Figure 1). The solu-
tion to this problem can be obtained by superposition of
solutions for the following two problems: (1) A strip
having no crack loaded in y-direction, and (2) a strip
having a crack whose surface is subjected to the negative
of the stress distribution obtained at the same location in
the first problem resulting from the appliied loads. Solu-
tion of the first problem is relatively simple and straight-
forward hence one pays more attention to the second problem
(see Figure 2). Therefore we solve the perturbation prob-
lem in which crack surfaces are subjected to prescribed

tractions.

Thin adhesive layers are approximated by distributed
uncoupled tension and shear springs. As 1t can be seen
in the relevant references mentioned above, short of con-
sfdering the adhesive as an elastic continuum, this is the
most sophisticated model for adhesives in }iterature. A
formulation is given for both plane strain and plane stress
cases. General expressions for displacement and stress
components are obtained by solving field equations using
Fourier transform technique. Applying boundary conditions
and the continuity conditions at the interfaces a system

of singular integral equations in terms of crack surface
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displacement derivatives is derived, By using appropriate
quadrature formulas, these inteqral equations are converted
to a system of linear algebraic equations which is solved
numerically. Stress intensity factors and stress components
for imbedded cracks are computed and results are given 1in
Figures 3-16. The results are compared to those obtained
without taking thickness of the adhesive layer into account.
Then the case of broken laminates is considered. It is ob-
served that the spring mode]l approximation is not suitable
under these cfrcumstances when the crack touches interface,
Therefore, in order to be able to examine the singular be-
havior of the cleavage stress, we introduced the problem
described in Chapter III. In this problem, the adhesive is
treated as an isotropic and linearly elastic medium. A1l
laminates are of the sams material and thickness but the
cracks are of different lengths (see Figure 17). The prob-
lTem is solved for imbedded cracks in order to determine
limitations for the spring model approximation in the first
problem. Comparison of two soiutions can be seen in Fig-
ures 18-23. The case of broken laminates can now satisfac-
torily be solved. The power of singularity at the crack
tip is determined from the characteristic equation obtained
by following Muskhelishvili [12]. The integral equation is
replaced again by a system of linear algebraic equations

and this system is solved to calculate the stress intensity

=10~



factor and stresses. These results are given in Figures
24-37. Discussion of numerical results and conclusions

can be found in Sections 2.5, 3.6. and Chapter IV.
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I1. SPRING MODEL PRNBLEM

2,7 Formulatijon of the Problem

Consider a medium consisting of infinitely many number
of 1inearly etastic and tsotropic strips bonded together.
These strips constitute periodically arranged load carrying
laminates and buffer strips which are of different thick-
nesses and material properties. There are fatigue cracks
in laminates and buffer strips normal to the interfaces.
Main laminates and buffer strips are bonded through thin
layers of adhesive. Loads are applied away from the crack
region and in a direction parallel to the strips {(see Fig-
ure 1). Solution for a strip having a crack of traction-
free surface and loaded sufficiently far €rom the crack
region can be obtained by superposing the solutions of
(i) a Toaded and uncracked strip, and (ii) a strip having
a crack whose surface is subjected to the negative of the
stress distribution acting on the image of the crack in
the uncracked strip due to remotely applied loads. There-
fore in solving the abovementioned elastostatic plane prob-
lem, one should first solve the problem of a strip having
a crack whose surface is subjected to a prescribed traction.
In this work we will consider the singular part of the
problem in which the self-equilibrating crack surface trac-

tions are the only external loads (see Figure 2).
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First, we will establish the forms of the field quan-
tities for a strip having a crack. Forms of the exp essions
for the field quantities for a strip having a crack and
which is loaded sufficiently far from the crack region can
be obtatned by superposing the general expressions of these
quantities for: (1) an uncracked strip, and;(2) an infin-

itely large medium having a crack.

The basic equations for a linearly elastic, isotropic

medium in plane problems can be written as (see [13]):

Strain-displacement relations:

du
Cxx © X °
av
= == .la-¢c
- du , 3v
ny oy T
where Eyx? Eyys ny are component:; of the strain tensor,

U, v are displacements in x- and y-directions in a Cartesian

coordinate system.

Stress-displacement relations:

k+1 au 3-x BV

1 - au
Zuoxx  Z{k-T1) 3%

2 2(k-1) 3y °®

1 o 3~k 3u K+l _ 3v

220y © T0e-TT 9% * Z(ReTT by (2.2a-c)
1.1 u, v

-13-




where o s T are components of the stress tensoy, u

xx* Tyyr Txy
1s the shear modulus, «=3-4v for plane strain case, and

k=(3-v)/(1+v) for generalized plane stress case, v being

the Poisson's ratio.

Equilibrium equations, in the absence of body forces:

(2.3a,b)

where V% = iﬁ; + Jﬁ; .
oX ay

2.1.1 Stadip Having no Crack

Taking the Fourier cosine transform of Eq. (2.3a) and
sine transform of Eq. (2.3b) in y-direction, and combining

the resulting equations, we obtain:

[ ey
%;2-2523-;-‘}+ s*V = 0 , (2.4)

where (~) stands for the sine transform and s is the trans-
form variable. Note that the strip is symmetric about both
x- and y-axes. The solution of Eq. (2.4) is:

V= [f(s)-+5%l-g(s)]s'1cosh(sx)4-g(s)x sinh{sx) , (2.5a)
where f(s) and g(s) are unknown functions, Similarly,
U=~ [f(s) -551-g(s)]s'1sinh(sx)-g(s)x cosh(sx) , (2.5b)

-14-



where (~) implies the cosine transform. Taking the fnverse

transform of Eqs. (2.5), displacement components are found

to be

ulx,y) = - %-I:{[f(s)- E&l g(s)]s'lsinh(sx)

+ g{s)x cosh{sx)}cos{sy)ds ,
(2.6a,b)
v(X,y) = %-I:{[f(s)+ E%l g(s)]s']cosh(sx)

+ g(s)x sinh(sx)}sin(sy)ds .

Substituting Eqs. (2.6) into Egqs. (2.2) one obtains the

following expressions for the stress components:

gﬁ axx(x,y).= - %-J:[f(s)cosh(sx)+ g{s)sx sinh(sx)]cos(sy)ds ,

1 2

5= 0, (X,y) = = | {[f(s)+ 2g(s)]cosh{sx)

v " f: (2.7a-c)
+ g{(s)sx sinh(sx)}cos(sy)ds ,

f%‘Txy(*-Y) = %-I:{[f(s)+ g(s)1sinh(sx)+g(s)sx cosh(sx)}sin(sy)ds .

2.1.2 ElLastic Solid Having a Crack

Taking now the Fourier sine transform of Eq. (2,3a)
and cosine transform of Eq. (2.3b) in x-direction and com-

bining again the resulting equations, one obtains

-15-



b 2
d*U _ p.2 430

w gz trii=o0, (2.8)

in which r is the transform variable. Note again that the
medium 1s symmetric about both x-~ and y-axes. Solution to

Eq. (2.8) vanishing when y+o becomes then

U= . m(r)r"(ﬁ%l - ry)e”™ (2.92)
where m(r) is an unknown function. Similarly,

V= m(r)r'l(E%l + ry)e”"Y (2.9b)

Taking the inverse transforms of Eqs. {(2.9), we get

u{x,y) = - % Iwm(r)r'](ﬁil ~ ry)e"Vsin{rx)dr ,
0 (2.10a,b)
v(x,y) = %-Iom(r)r'1(5%l + ryYe Veos(rx)dr .

Substituting Eqs. (2,10) into {2.2) one obtains the stress

components as follows:

gﬁ Tyx{Xsy) = - %IOW(P)(1-Py)e'rycos(rx)dr ,

] LB vy, .
7 Oyy(xsy) = - 3 Iwm(r)(1+ry)e cos(rx)dr ,{2.11a-c)
! = . 2 * va=-TY

2y Txy(x.y) T [om(P)Fye sin{rx)dr .

2.1.3 Supeapcsition

Now consider a strip which has a crack on which there

w16~



are prescribed tractions as the only external loads. Gen-
eral forms of displzcement and stress components are es-
tablished by superposing those for an uncracked strip, and

a cracked space as mentioned before. Hence we obtain:

=1
U1(X1 W) = - %’I:{s-1[f1(5) "K-‘f"' 91(5)]51ﬂh(x15)

+ xigl(s)cosh(xis)}cos(ys)ds

Kyl
-2 f:""1m1(r)("1'2'“" - ry)e™sinlxyridr

: (2.42a,b)
K+
uixgan) = 2 [ 708 0) + e gy(s) Jeoshlngs)

+ x1g1(s)sinh(x*s)}sin(ys)ds
o0 K+l
+ %-Ior']mi(r)(u%r—»+ ry)e'rycos(xir)dr ,

as the general expressions for displacement components for
the 1-th strip where i=1 for the main load carrying lamin-
ates and i=2 for buffer strips. Similarly, general ex-

pressions for the stresses become:
1 .2 )
?ﬁ; Uixx(xi’Y) = -3 I:[fi(s)cosh(xis)+sx191(s)sinh(xis)]cos(ys)ds

2
]

Jmm1(r)(]-ry)e'rycos(xir)dr ,
0

=17~




2-:7; aw(x,.y) s %—f:{[f,(S)‘fZgi(5)]cosh(x15)

+ sxig,(s)sinh(x,s)}cos(ys)ds

Iomi(r)(1+ry)e'rycos(xir)dr s
. (2.13a-c)

-2
T

E%T Tixy(Xyo¥) = %‘[:f[ff(S)+gi(s)]sinh(xis)

+ sxigi(s)cosh(xis)}sin(ys)ds
2 ~ry
- 5 f:ﬁi(r)rye sin(xir)dr .

The unknown functions f,(s), g,(s) and my{r), (i=1,2) can
be determined by using appropriate boundary and continuity

conditions.

2.1.4 Continuity Conditions

Consider the elastostatic plane problem shown 1in Fig-
ure 2, Load carrying laminates ((:)) having thickness of
2h; are bonded to buffer strips ((:)) of thickness zh, by
means of thin adhesive layers ((:)) of thickness 2h,. Main
laminates and buffer strips contain symmetrical cracks of
lengths 2a and 2b respectively located on the line y=0,
normal to y-axis. Thin adhesive layers are approximated by

distributed tension and shear springs. That is, the x
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component of normal stresses and the x-y component of shear
stresses in the adhesive layer are assumed to be constant
through the thickness 2h3. Then the continuity conditions

may be written as;

lex(h]|Y) . GZXX(-hZ'y) y Ogy<w

(2.14a,b)
T]xy(h]oY) = szy('hzty) y Ogy<e
hO
U1(h1.y) - UZ('hzly) 2 = r G‘Ixx(h]’y) ] Oiy(m
b (2.15a,b)
volhyoy) - v (=h,,y) = - £ ¢ (hysy) o Ofy<°°
[ 2 2 Mo Txy* ™1

where h =2hqs U ®Uq, EO=E3/(1-U§) for generalized plane
stress case [sayyno. (USZZ)aV_=°] and E°=E3(1~v3)/(1+u3)
=0) where E {is

(1-2v4) for plane stratn case (e, =0, E

3yy Jzz
the Young's modulus and the subscript (3) stands for the

adhesive layer.

Substituting Egs. {2.12), (2.13) into Eqs. (2,14),
(2.15)}, taking Fourier sine and cosine transforms of the
resulting equations in y, and making use of the integral
formulas given by (A.1) in Appendix A we obtain the follow-
ing four eguations:

Kyl
(0g+2X,5hyap) Fy ()4 fy(s)+{~ —%r- o +shyay*23, 520 hyoy ) gq (5)

Kn=]
+ (- -—22-—- G3+Sh2(14)92(5) = - F]1(5)‘2)\45h0F]3(5)'F21(5) s
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Kqt]
x2+1
- (—1r-'u4+5h203)92(3) = -Flz(5)+2A35h°F]4(5)*F22(5) ’
'ﬁzf](S)+A2a4f2(5)'5h]a1g](5)+A25h2a392(5) = F13(S)-A2F23(5) »
( 2 . 1 63 "d)

a1f1(s)+h2a3f2(s)+(a]+sh1a2)g1(s)

+ k2(33+sh204)92(5) = F14(5)+A2F24(5) ’
where

oy = sinh(shy) ,

az = ‘:OSh(Sh])

@y = sinh(sh2) .
o, = cosh(shz) ,
and
A] = H]/uz ' Az = U2/U1 )

la = U1/UD ’ A4 U]/EO

The functions Fij(s)’ (1=1,2;3=1-4) are defined by (B.1) in
Appendix B. Solving Eqs. (2.16) simultaneously we obtain

the unknown fupctions fi(s), gi(s), (i=1,2) in terms of
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infinite integrals of the other unknown functions m1(r).
{i=1,2) as follows:

£.(s) = le[aijFTJ(s)+biJsz(s)]e'5h1 \
(2.17a,b)

iy
gy(s) = z]tcijr,d<s)+dijrzj(s)1e'5“i . (1=1,2) .

Known functions a4 biJ' Cyg0 d1j (§=1,2;3=1-4) are given
in Appendix B by (B.2).

2.1.5 Boundary Conditions

The boundary conditions related to symmetry about x-
and y-axes have already been used in deriving the general
expressions for displacement and stress components. The
remaining boundary conditions are used to determine the two
unknown functions mi(r),(1=1.2). These boundary conditions

may be stated as follows:

v1(x1,0) =0 a<]x1l<h1

(2.18a,b)
VZ(xZQO) = 0 » b<|X2|<h2
Oy (%120 = =py{x) 1w 0<[x]<a
(2.19a,b)
czyy(xglo) = 'Pz(xz) ] 0<IXZ|<b
Eqs. (2.18) can be replaced by:
g%? vi(x1,0) = 0 a1<[xil<hi . (a1=a,a2=b) (2.20)

-2~
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and

a
[ P sl vi(x,0)dxg = 0, (1=1,2) . (2.21)

_ i
-d1

The unknown functions mil“). (1=1,2) are determined
from the mixed boundary conditions (2.19) and {2.20).

2.2 Derivation of Integral Equations

Substituting Eqs. (2.12b), (2.13b), and (2.17) into
Eqs. {2.19) and (2.20) we could obtain two sets of dual in-
tegral equations for m1(r). (i=1,2). However, we will fol-
Tow a more direct procedure to solve the problem by defining
new unknown functions, Gi(xi)' as

6,(x;) = 3%7 vi(x5,0) , (1=1,2) 5 O<[x;l<ny . (2.22)

From Eqs. (2.12b) and (2.22),

kil [
Gi(xi) = (= —TT—) = Jomi(r)sin(xir)dr . {(2.23)

Taking the Fourier sine transform of Eq. {2.23) in Xy and
using Eq. (2.20),

mi(r) T Ef%T f?ﬁi(t)sin(rt)dt (2.24)
is obtained.

Now using Eq. (2.24) and the integral formulas given
by (A.2) in Appendix A, the functions defined by (B.1) may
be expressed as:
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Fygls) = .-(-1‘77 I:‘[M”(s.t)-M”(s.-t)]G,‘:(t)dt : (2.25)

where
' teg(s0t) = Nyglst)es(M=t) (2.26)
and
1-K1
Nil(s't) = ‘S(hi't) + 7 s
'M-rc_I
N12(s't) s s(hi-t) -~

(2.27a-d}
Nis(sat) = S(hi-t) ’

Nygls-t) = s(hy=t) - 1, (1=1,2) .

From Eq. (2.13b) we can write,

2&; °1yy(xi’0) = %-f:{[fi(s)+291(s)]cosh(xis)+sxigi(s)sinh(xis)}ds
~;221[%'Jomi(r)f1+ry)e'rycos(x1r)dr] . (2.28)

With mi(r) as defined in £q. (2.24), the second integral in
Eq. (2.28) becomes;

00 a
in [2 -y — I 1, 1
;Lgl[“ Iomi(r)(1+ry)e cos(xir)dr] ETE?FTT . (t-x1 t+xi)Gi(t)dt’
(i=1,2) . (2.29)
N+te that,
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G1(K1) £ - G‘i(-xi) s (1=112) ' (2-30)
due to symmetry of vi(xi.y) about y-axis.

Substituting Eqs. {(2.17), (2.25), and (2.29) into Eq.
(2.28) and using Eq. {(2.30)

N 4111 a w0
oty = 1 La,(t)dt [ 505,000y #2c, Dcosh(x;s)
+ cijsxisinh(xis)]

Cah. 4u b o0
e~SMigs + FUEE%TT Ibﬁz(t)dt Iosz(s.t)[(b15+2dij)cosh(xis)

Gu,  raf Gy(t)
-sh i i -
+ dijsxisinh(xis)]e 1d5}4'n(K1+1) [31 T, dt,(1=1,2)
(2.31)
is obtained. Now Eqs. (2.19) with Eq. (2.31) give,
1 a G](t) 1+K b
-3
]+K
'rp](x-l) ’ ‘a<x'|<a ’
(2.32a,b)
b G,(t) 1+Kk,, rd b
v ] e e J 1 (xpot) Gy ()t + [ yly 08, ( 1) E =
b =b
T4k
- 'ﬁé"‘ pz(xz) » -b<X2<b ’

as the integral equations for the new unknown functions
61(t),(i:1,2) where the kernels k1j(x1.t), (i,3=1,2) are

given by
-24-



kij(xi’t) = I:Kij(xi.t,s)e's(hj't)ds . {2.33)

The expressions for the functions Kij(x1.t,s) are given in
Appendix B by (B.5).

The dominant parts of the integral equations {2.32)
have a simple Cauchy type singularity for a<h, and b<h2.
However, it is worthwhile to take a closer look at the
Fredholm type kernels kij(xi’t)' The integrands of the
kernels vanish as s+= and are bounded everywhere except for
s=0. From (B.5) it can be seen that as s+0 the functions
Lij{xjetss) = K1j(x1.t.s)e's(h1't) behave as s™'. That is,

for small values of s,

Lyslxgatas) = =+ o1, (2.34)

where 1,3J=1,2, and a;4 are constants independent of t. We

can write,

-] £ ©
(2.35)

for any O<e<w, Choosing a very smail ¢, and hence replacing
Lij(xi.t.s) in [0,c] by its asymptotic expansion around s=0
[see Eq. (2.34)], we can rewrite Eq. {2.35) as

e ... b
IoLij(xi,t,s)ds = Io[—%ﬂw+011)]ds + JELij(xi.t.s)ds .
(2.36)
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Now consider the last equation and, for example, the fol-

lowing integral appearing in £q. (2.32a):

d a € 311
| k”(xi,t)Gl(t)dt=IaG1(t)dt{ [ on1es
-d -

+ Iekjl(x].t.s)e's(h1't)ds}

- ['tfomas+ [Tk, (g ti1ems Vs e (1ot
~a

a € oy
+ [ - [ L. (2.37)
0
-a

Using the single-valuedness condition, Eq. (2.21), we can
see that the last integral in Eq. (2.37) vanishes. The re-
maining integrals are all bounded and they can be evaluated
numerically. One can show similarly that the singularity

around s=0 is removable for all kernels.

Al11 the known special cases may be recovered from

Eqs. (2.32) by letting a,b,hy,h,, and hy (or E ) go to

0*¥o
proper limits. For example, for hoéO Eqs. (2.32) become
identical to those found in [5]. Note that making h, very
small has the same effect as making E,, uo very large due
to spring model assumption. That is, a very small ho cor-
responds to a very stiff adhesive and as hg increases the
rdhesive becomes less stiff. Hence the case of direct ad-

hesion of laminates to buffer strips [5] can be achieved
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by letting Eo'"o*" too. An infinitely large hy will then
imply that there is almost no bond between laminates and
buffer strips. Therefore, letting ho*e (or Eyr¥g”0) we re-
cover the case of a center-notched strip having traction-

free straight boundaries [14]. By letting he*0 {or E

0t W™
and making laminates and buffer strips be identical (a=b,
hy=hss Uy=uys vy=vy) we can obtain the solution for the case
of colinear cracks in a homogeneous medium [15]. If we let
b=0, ho=° (or Eo.u°+m). and hy,+=, the integral equations
(2.32) reduce to an integral equation in G](t) for the prob-
lem of two half planes bonded through a center-notched

strip [16].

2.3 Solution of Integral Equations

2.3.1 No Crach in Bugfer Stripa (a<h1,b=0)

In this case the integral equations (2.32) reduce to:

1 (@ G1(t) a 1+»<1
‘TTJ t"_x-l—dt + jak-lvl(x-lgt)ﬁ](t)dt:' mp-l(x]) ’ -a<x1<a

- i (2,38)

where G,(t) is unknown, and p1(x1) and kll(x1't) are known

functions which are Holder-continuous in the closed interval
[-a,a]. A function f{x) is said to be Holder-continuous in
[-a,a], if for any two points Xy1Xg in [-a,a] the following

condition is satisfied:
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lf(xz)-f(x,)|< Alxz-xTIu , =a<x<a (2.39)
where A and u are positive constants, and O<u<l,

G](t) and k]](xi.t) being H&lder-continuous, the sec-
ond integral in Eq. (2.38) gives a bounded function of Xy
Hence, the singular behavior of G](t) may be obtained by
studying the dominant part of Eq. (2.38) only:

1 (@ G1(t)

where F](x]) contains all the bounded terms in Eq. (2.38).

Define the sectionally holomorphic function,
a 6,(t)
h2) = gy [ -t (2.41)

-a
Assume that the unknown function G](t) has the following
form:

8 o (tm)Bnem‘t=—a ’
G](t) s ¢1(t)(t+a) (t+a)™ ~ tt+a)® near tea , (2.42)

where ¢](t) is a bounded continuous function in the closed
interval [-a,a], and a,B are yet unknown conctants restrict-
ed by -1<a,B8<0, which implies that the unknown function
G](t) has an integrable singularity at the end points t =¢+a,

Following [12] and using Plemelj formulas [17] given

below
28-



'J-’.;(x]) '\”i(x]) = G'l("1) '

(2.43)
+ . 1 (@ Gy{t)
\U'[(X-l)"'dhl(xl) = :"ﬁ‘[a -.t-:;‘—'r dt ,

the value of Y,{(x,) around x, = -a and x, =a can be found as
1™ 1 1

-(2a?9-°-§{1§- ¢1(-a)(x1+a)3+¢1(-a)w”(x,)'rw,z(x,) around xj=-a,

¢1(X1)= 8 (2.44)
(2a) go_g_r_g 9 (a)(-le-a)u'w](a)w]a(xl)ﬂum(x‘) around xy=a,

where w1i(x1). (1=1-4) are bounded in [-a,al. From Egs.
(2.40), (2.41), and (2.44)

-(2a)%ot 78 ¢1(-a)(x]+a)s+(2a)5cot Trarp](a)(-x#a)“a Fip » =asxy<a ,
(2.45)

where F”(x1) contains all the bounded terms, Multiplying
Eq. (2.45) first by (xy+a)™® and Tetting xy+a, and then by
(><1+a)"B and letting Xq*+-a

cotma=0 |,

(2.46a,b)
cotmg=0 ,
are obtained for -1<a,B8<0 since ¢](-a),¢1(a) #0.
Eqs. (2.46) give
a=g=-1/2 . (2.47)

The index of the problem which is defined by
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kK = - {a+g) , (2.48)

is related to the physical nature of the problem. 1In this
probiem, G](t) has integrable singularities at both ends
and x=+1, From Eqs. (2.42) and (2.47) we obtain

01(t)
VaF-tZ |

G](t) = -a<t<a . (2.49)

The solution of the problem wil} contain one arpitrary con-
stant [12]. Theoretically this constant is determined by
using the single-valuedness condition, Eq. (2.21). However,
due to symmetry, €q. (2.21) will be automatically satisfied
if one considers a solution satisfying Eq. (2.30).

Now substituting Eq. (2.49) into Eq. (2.38) we obtain

V4K
;T—Ja = [t_x1+11k-”(x-|at)]dt"- Ly py{x) o -a<xy<a . (2.50)

Define non-dimensional variables w,T by

(24
n

Xy = aw at ,  -askA;.ta . (2.51)

Then Eq. (2.50) takes the form

1 8, (1)
l[ U L+ makgy (amar)ldr =21, e, (2.52)
T -1 fr-'z'_,r T=W
where
4y ¢, (at)
s

-30-
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and p](x]) fs assumed to be py(xy)=p, =constant. Actually,
this is not an assumption. The self-equilibrating pressure
acting on the crack surface is Py = constant when the strips
are subjected to uniformly distributed normal loads in y-
direction. The integral in Eq., (2.52) can be evaluated by
using the Gauss-Chebyshev integration formula given in [17].

Hence, Eq. (2.52) becomes

N
12191“1”“%7'}"63' + makyq(aug,at)] = =N, (2.56)

vhere

Ty ® cos[(21-1)}n/2N) , (i=1,...,N) ,

(2.55a,b)
wj = COS(jTT/N) ’ (J=]|°--:N'1) ’

are the roots of related Chebyshev polynomials, Eq. (2.54)
provides (N-1) linear algebraic equations for (N) unknowns,
9](11). (¢=1,...,N}). The single-valuedness condition, Eq.

(2.21), which can now be written as
N
J a.(ty) =0 (2.56)
jep 11
completes the system of (N) equations for (N} unknowns.
However, one can take advantage of symmetry and can deal

with less number of equations. Using Eq. (2.30) we can

write Eq. (2.52) in the following form:

-31-
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] Io Aoz T v o b Ry (wet)]dt = -1, 0w, (2.57)
where
kyp{w,t) = alkyy(aw,at) ~ kpqlaw,-at)] . (2.58)

Now Eq. (2.57) can be replaced by

n
12191( 1')["11“‘3 + "11‘*’3 + nl-<1-|(mj,-r1)] =N, (J5)heneon)
(2.59)

in which t, and wy are the same as in Eqs. (2.55) and 2n=N,
Eq. (2.59) constitutes a system of (n) linear algebraic
equations in (n) unknowns, 6](11). (4=1,...,n). The single-
valuedness condition, Eq. (2.21), 1s automatically satis-
fied by the solution obtained from Eq. (2.59).

After determining B](r) at discrete colocation points,
the field quantities can be computed numericaliy. In frac-
ture problems, one is interested mostly in the so-called
"stress intensity factor"., The stress intensity factor
may be defined in terms of cleavage stress, o]yy(x],o).
and may be expressed in terms of 61(1) as follows (see
Appendix C):

ka = x;lin;vﬂx-l-a’ Ulyy(x-lgO):- va p-le](]) ’ a":h" . (2-60)
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2.3.2 No Crach in Main Laminates !ara,b<h2)

The integral equations (2.32) reduce to

T Ib 'Tt"'_","'é" dt + Ibkzz(xZot)Gz(t)dtg - Tu-; Pz(xz) ' 'b<x2<b ’

(2.61)

Following a procedure similar to the one followed in sec-
tion 2.3.1, we determine the behavior of the unknown func-

tion Gz(t) as

6,(t) = P2(t) . -bet<b (2.62)
¢ /BTTE?

where ¢2(t) is a bounded continuous function in the closed

interval [-b,b].

Substituting Eq. (2.62) into Eq. (2.61) one obtains

L gt g
'T?I N t'ﬁ"."{z'* "kgg(xgst)]dt'- W{PZ(XZ) R -b<X2<b . (2.63)

Defining non-dimensional variables n,t by

Xg=bn , t =bT , -b<X,,t<h (2.64)

Eq. (2.63) takes the following form

1
J..f 8y(1) + 1 ]
- L + mbkyy(bn,br)Jd = =1, <len<l (2.65)

where
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BZ(T) a T"’Kg . -—B_bz (2-66)

and pz(xz)- Py ® constant. Using the Gauss-Chebyshev inte-
gration formula given in [17]), Eq. {2.65) becomes

]
12162(71)[?;:"'1‘; + Tl’bkzz(bnjnb'l'i)] = =N , (2-67)

Note that

nj mj » (j“]....,N-]) 3 (2-68)

Tiely being defined in Eqs. (2.55), and hence Eq. (2.67)

can be written as

N
12192(71)[r11mj b mbkyy(bug,bry)] = N . (2.69)

The single-valuedness condition, Eq. (2.21), in this case,

becomes

N
1gleztr,) = 0. (2.70)

Eqs. (2.69) and (2.70) constitute again a system of (N)
linear algebraic equations for (N) unknowns, 62(11),
(i=1,...,N). Taking again the advantage of symmetry,
namely using Eq. (2.30), Egs. (2.69) and (2.70) can be re-
placed by

1 + 1
Ti-wj 11+wj

n
12]62(’[1)[ + ﬂﬁzz(mj!'ri‘)]='“ ] (,j='|,.,.,r|) y

(2.7%)
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where
kpplugaty) = blkyp(bugabry) - kyp(buyaebry)] (2.72)

and 2n =N, Eq. (2.71) give (n) linear alaebraic equations
for (n) unknowns, 0,(t,), (i=1,...,n). ®, obtained from
Eq. (2.71) will satisfy the single-valuedness condition,
Eq. (2.21), automatically.

The stress intensity factor, in this case, may be ex-

pressed as (see again Appendix C):

(x5,0) = = Vb py8,(1) 4 behy . (2.73)

2.3.3 Crachs in Laminates and Bufgern Strnips (a<h,,b<h2)

The singular behaviors of Gl(t) and Gz(t) at the end
points t=-a,a and t=«b,b respectively will be the same
as in the cases where there are cracks in one type of strips
only. Now substituting Eqs, (2.49) and (2.62) into Eqs.
(2.32) we obtain

p @ 6 (t) o t)]dt+1+n1 Jb ¢5(t) ()t
L + ’
" Ia e et They 1y JB7ogz 1271
]+K}
= - T py(xy) 4 ma<xy<a
(2.74a,b)
T+, ra ¢, (t) b $,(t)
et et 122 1
iy L /AZ-tE k21(x2.t)dt4-" ib Vs [t-xz*'“kzz(xz-t)]dt

]+K2
= - 7ﬁgr Pz(xz) » =b<x,<b
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Using the non-dimensional variables defined by Eqs. (2.51)
and {2.64), Eqs. (2.74) and (2.21) become

1
] P2
=1, lcwdl
(2.75a,b)
1 (1 Py 1
F I]__.:.T-— {91 (’t)p—z- Aa‘n’akz.l(bn .a'l') + 92('[)['%-:6"' ﬂbkzz(bnibT)]}dT

= -1, =1<n<1 ,

and
!
I o (t)dr = 0, (k=1,2) . (2.76)
|

Use of Gauss-Chebyshev integration formula for the evalua-

tion of integrals in Eqs. (2.75) and (2.76) leads us to

N Py
121{61(11)[111 +ﬂak1](awjga'f.‘)]+62('r.i) 'I )\-lﬂbk-‘z(awj.bTi)}"N ’

(2.77a,b)

Z {6](T.‘) ﬂakz](bm:jia'r.i)"‘sz('r )[ j+ﬂbk22(bmj’b‘['1)]}=-N ,
(3=1,...,N=1)

and

N
.E]ek(Ti) =0, (k=1,2) , (2.78)
=

which constitute a system of {2N) linear algebraic equations
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for (2N) unknowns, ek(Ti)' (k=1,2;4=1,...,N). We can use
Eq. (2.30) with Eqs. (2.75) to obtain

1 1 P -
12,{91“1)[11-% * Tt "511“”3”1”*92“1)5% Mhplug T =N,

(2.79a,b)

7 PL ok (R B
f£1 {B'I(Tf )EE‘ Az'ﬂ'kz-' ((UJ!T,I) +92(Ti)[T1 -wd +T.|+wj + Trkzz(mj,'f'ix} = =N N
(3=14...,n)

where

E]z((ﬂja'l'.i) = b[k]z(awj.bT.i) - k-lz(aw ""b'l'.j)] »
(2,80a,b)

E2I(wj’ri) = a[kzl(bwj,ari) - kyq{bw -at4)] .

Eqs. (2.79) give an (NxN) system,

Pefinitions of the stress jntensity factors will be
the same as those in Eqs. (2.60) and (2.73) since the sing-
ular behaviors of the functions G,(t), (i=1,2), at the end
points are not affected by the cracks in the other strips

for a<h1 and b<h2.

In these numerical solutions we cannot determine the
values of the unknown functions 9],62 at the end points di-
rectly from the system of linear equations, since we are
not allowed to choose the end points as colocation points,
as it can easily be seen in Eq. (2.55a). Nevertheless,

using an appropriate summation formula [18], which is based
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on the properties of Chebyshev polynomials, we can deter-
mine 81(1),82(1) in terms of the values of 6,48, at co-

location points. From [18], we can write

sin[4zL (2i-1)n]

n
L

1
0,(1) =
k LIRS sin[—4—2‘,‘1‘ 7]

ek(ri) » (k=1,2) . (2.81)

One should keep in mind that the above approximate formula

can be used for a=8=-1/2 only.

2.4 Stresses at the Interfaces

We consider the stresses at the interfaces for the
case in which there are cracks in main laminates (a<h].b=0)
only. The other cases can be treated similarly. Since the
shear stresses, Tixy® and the normal stress in x-direction,
Oyxx are assumed to be the same for both strips at the
interfaces, for the sake of simplicity we consider the
stresses in the buffer strips when there are cracks in the

main laminates.
Now, from Eqs. (2.13) we can write

1

Eﬁ; OZxX(-hz.y)==- %-Io[fz(s)cosh(hzs)+-shzgz(s)sinh(has)]cos(ys)ds .

5%; czyy(-hz.y)==%-Jo{[fz(s)*-2g2(s)]cosh(hzs)+ shzgz(s)sinh(hzs)}

cos{ys)ds ,
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2—:-]; ’rzxy(-hz,y) =- %— [O{[fz(s) + gz(s)]sinh(hzs) + shzgz(s)cosh(hzs)}
sin{ys)ds , (2.82a-c)

since mz(r) is zero by definition, Eqg. (2.24), for b=0.
Using Eqs., (2.17) with Eq. (2.25)

A | d
ORI "2 [ (5.8) - Wy (s,-£) 16, (£)dt
- (2.83a,b)

b C a
s(s) = § Tk &2 [ (s,) - (5,010 (1)t

are obtained. Then substituting Eqs. (2.83) into Egs.

(2.82), the stress expressions become

da
2—:['2- szx('hziy) 2 - '.r'r'("l%:';)' Jo[hz'l (y.t) - h2'| (.Yo't)]G] (t)dt ,
1 __2 [
“z—uz Uzyy('hzg.Y) "F("H._K_IT Io[hzz(y;t) - hzz(.‘/-'t)]a] (t}dt ,

1 ) 2 a
'2?2' szy('hzay) == m Jo[h23(.Vnt) - h23(.Y:‘t)]G'l(t)dt ¥
(2.84a-c)
where
hyo (yst) = JWH Jths)e Sty (k=13 2,85
2k(‘y ) o zk(y e ( ) ( )
and

4 -5h
Hoy(¥st,s) =jZ]N1j(s,t)[a2jcosh(hzs)4-czjsh251nh(hzs)]e 2cos(y§),
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N
sz(y.t.s)==J§1N1J(s.t)[(a23+2c23)cosh(hzs)+c235h251nh(h25)]e'Shz

cos(ys) ,

i
H23(Y.t.s)==JE]Nlj(s.t)[(a23+c23)s1nh(has)+c255h2cosh(h25)]e'5h2

sin{ys) . (2.86a-c)

Now using Eqs. (2.49) and (2.53) with the non-dimen-
sional vartables w,t defined by Eq. (2.51), and defining p

by
y = h]p ' (2.87)
we obtain
¢ (1)
T MgV /oy = hg T | = By (o,
1 el
( hzs.y)/p] "'Az - J /1-—-2- zz(psT)dT ’ (2.88a-c)
10 (T)
T2xy( hza.V)/P-I = "}\2 J.E I ]‘T 3(p’T)dT ?
where
hyy (050 = alhy (hyp.at) - hyy (hyps-at)] ,  (k=1-3) . (2.89)

The Gauss-Chebyshev integration formula given in [17] again

can be used to evaluate the integrals in Eqs. (2.88). Hence

W

Uaxx("hzsy)/p] 'N' (s )Flz-l(pa'ri) ’

ll 13
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A, | _
0y, hps¥) 1y = Lerehgloy) (2.90a-c)

A -
szy(-hziy)/p] - 'Ng‘ 1219]('{1)"23(9;'?1) .

2.5 Numerical Results

The analysis carried out is valid for both plane
strain and generalized plane stress cases. The systems of
equatfons (2.59), (2.71), and (2.79) are solved numeric-
ally for ak(Ti)’ (k=1,231=1,...,n). In computing the
kernels, the infinite integrals are evaluated by using the
approximate Laguermquadrature formula [19] since the in-
tegrands have exponentially decaying behavior. Once Ok(ri)
are determined, the stress intensity factors and the
stresses at the interfaces can then be computed easily.
Note that the stresses are computed for the perturbation
problem whose configuration and loading conditions are
shown in Figure 2. Assuming that there is no constraint
in x-direction, and the composite medium shown in Figure 1
is loaded in y-direction sufficiently far from the crack
region {(i.e., the dimension of the medium in y-direction is
large compared to that in x-direction), the crack surface

tractions in Figure 2 satisfy the following conditions:

p]/p2 = E1/E2 for plane stress case,
(2.91a,b}

P1/Py = Ej(1-v2)/E,(1-v2) for plane strain case.
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Here E] and E2 are the Young's moduli for the strips (:)
and (:) respectively. The problem is solved for three

combinations of materials:

Combination I:
u1=6.65u2 . u330.167p2 H v1=u3=0.35 s v2=0.45 .
£y =12.38x 10' /n? (17,955 x 10%ps1)
Ey=2.0x10"%/m (2.9x10%s1)

E4=0.31 x 10'%/n? (0.45 x 10%psi) .

Combination II:
My = Hp u3=0.025u1 H v1=u2=v3=0.35 .

E =Ez=12.38x1o‘°N/m2 (17.955 x 10%psi)

]

£y 0.31 x10'O0/n (0.45x10%s1)

Combination III:
u]=u2 ’ U3=0.167u2 H \J-|=\J2=0-45 ’ V3=0-35 .

E =E2=2.0x10wN/m2 (2.9 x10%s1) ,

1

E5=0.31 x10' O/ (0.45x 10%psi) .

Among these, Combination I is the most significant

one which is assumed to approximate boron-epoxy composites
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having buffer strips of the same material with different
stiffness, In this combination, the first strip is the
stiffest one and the adhesive layer is the softest one.
Figures 3-16 show the results obtained for materfjal Combin-
ation I, Figure 3 shows the variation of the normalized
stress intensity factor, Ky =k,/v/@ py, with a/h; for

hy=h ("), b=0 (section 2.3.1), hy/hy = .00, .05, and .10;
for plane strain and generalized plane stress cases. It
may be obhserved that: (a) Ky increases with increasing
h3/h]; {b) K] is larger in generalized plane stress case;
(c) Ky increases with increasing a/h;. Figure ¢ s the
plot of K, =k,/vb p, Vs. b/h, for hy =h,, a=0 (section
2.3.2), hy/h, = .00, .05, and .10; for plane strain and zen-
eralized plane stress cases again. One can conclude that:
(a) K, increases as h3/h2 increases; (b) K2 is larger again
in generalized plane stress case; (c) The trend in varia-
tion of K2 with b/h2 depends on the ratio h3/h2. For small
values of h3/h2 (up to ~.04) K2 decreases with increasing
b/hz. For larger h3/h2 ratios Ko increases with increasing
b/hz. It is well known that the stress intensity factor at
the tip of a crack approaching the interface of two differ-
ent materials increases if the crack is in the stiffer

material and decreases if the crack is in the softer

.3

{ )Problem is formulated in such a way that the ratio hs/h
can vary. But the results are shown for hp/h7=1 to con-
form with the experimental programs carried out elsewhere.
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material. When hg/h, is small, 1t seems as {f the crack in
buffer strip approaches the main laminate, which is stiffer
than buffer strip, when b/h, increases. But when hy/h, is
large, the adhesive layer, which 1s softer than buffer
strip, seems to dominate. One should also keep in mind
that increase in h,/h, is equivalent to relative decrease
in E3.u3 due to spring model approximation. Figures 5-8
show the variation of I(1 and Ko with a/hy and b/h, for

h2= h1. hy/hy = .00, .05, and ,10. Main laminates and buffer
strips both contain cracks (section 2.3.3). We can observe
and state similar conclusions as in Figures 3 and 4. In
Figures 9 and 10, variation of K] with h3/h1 is shown for
hy=hy, a/hy =0.8, b/h; =0.0, 0.8, and hy/hy =0--100. As
h3/h1 increases, K1 also increases tending to the asymp-
totic value for h3¢m which corresponds to the case of
center-notched infinite strip having traction-free straight
boundaries, since h3*w is equivalent to E3,u3+0. Figures
11 and 12 show similarly the variation of K2 with h3/h2

for h.l =h2, a/h2=0.0, 0.8, b/h2=0.8. and ha/h2=0—100.
Ky and K, become equal to each other when hge= (or Egyug+0).
Note that the solution (stress intensity factor) for a
center-notched single strip is independent of the material.
A1} the results obtained for h3= 0 are exactly the same as

those in [5].
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In Figures 13,14 distributions of the stress compon-
ents Sayy and Taxy along Xq = -h2 boundary for generalized
plane stress case with h2= hys h3= 0.05h1. b=0 are shown.
As the crack propagates, the stresses at the interface in-
crease. Note that o,, (hy,y) =0y, {-h,y.y), r1xy(h1.y) =
Taxy(-hz.y) and IyxOyy Bre symmetric whereas Txy is anti-
symmetric about the x-axis. Figures 15 and 16 show the

variations of ozyy(-hz.o) and T (-hz,h1) with h3/h1 again

21y
for generalized plane stress case in which h2= h]. b=0,

Beginning at hy=0, o first increases (up to hy=.012hy)

2yy
and then decreases as h3/h1 increases, 1imiting value being
zero for h3+m. whereas Taxy decreases continuously, vanish-
ing for h3+w. This is expected since h3+w (or equivalently

E3.u3+0) relieves the constraints on the boundaries.

We attempted to solve the problem for a=h,, b=0.
But some unavoidable troubles arose. For example, a singu-
larity power of -1/2 is found from a characteristic equa-
tion which does not contain any material constants. It is
now obvious that the spring model used to approximate the
adhesive layers is not suitable for this case. The model
is valid for cases where crack tip is away from the ad-
hesive layer. So we introduced the problem described 1in
the next chapter in order to be able to examine the effect
of the adhesive on the solution of the problem when a= hl'
In this problem, the adhesive is treated as an elastic

continuum.
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IT1, CONTINUUM MODEL PROBLEM

3.1 Formulation of the Problem

Consider the following problem: Infinite number of
strips of the same material and the same thickness of 2h]
ave bonded through adhesive layers of thickness 2h3. The
matn laminates contain perjodically arranged symmetric
cracks of lengths 2a and 2b on the 1ine y=0 perpendicular
to y-direction (see Figure 17). The strips (:) and (:)
are symmetric about x- and y-axes. Therefore the general
expressions derived in Section 2.1.3 for displacement and
stress components are still valid for the main laminates
in this problem. RBut the adhesive layers are symmetric
with respect to x-axis only. Therefore we have to derive
displacement and stress expressions for the adhesive layer.

3.1.1 Displacement and Stress Expressdons forn the
Adnes4ve Layen

Now let us consider Eq. (2.4). The adhesive layer is
symmetric about x-axis only. The solutfon to Eq. (2.4) for

a strip with no symmetry about y-axis becomes

S .
Va = 5 [5— f4{s) + g4(s) + sx395(s)] sinh(sx;)

(3.1a)
+1
+ J§ [f3(5)+i§2— 93(5) +Sx3f4(5)] COSh(SX3) »

where fi(s),gi(s),(1=3,4) are unknown functions. We can get
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« ] k3]
Uy = = o [f3(s) «—5— g5(s) + sx3F,(s)] sinh (sx,)

o (3,1b)
- %. [gy(s) -—32— f4(s) + sxq95(5)] cosh(sx,) ,

tn a similar way. Taking the inverse transforms of Eqs.

(3.1), the displacement components are found as,

o -1
u3(x3.y) = - %I -;- {[f5(s) -K—az— gs(s)+sx3f4(s)] sinh(sxa)
0

-1
+ [94(8) -f%— f4(s)+sx393(s)] cosh(sxs)}cos(sy)ds ,
(3.2a,b)

0 Kotl
Valxgy) = 2 jo L (-3 £,(s) + gy(s) + sx404(s)] sinh(sxy)

K3+1
2

+ [f3(5)+ g3(s)+sx3f4(s)] cosh(sx3)}51n(sy)ds .

Substituting Eqs. (3.2) into Eqs. (2.2) we obtain,
1 _ 2 { .
thx(xyy) = - fo{[f3(.~.)+sx3f4(s)] cosh(sx3)

+ [g(s) + 5x40,(s)] sinh(sxz)}cos(sy)ds ,

2%5 °3yy(x3’y) = ;2; fo{[f3(s) + 293(5) + sx3f4(s):[ cosh(sxa)

+ [ga(s)+2f4(s)+sx3gs(s)] sinh(sxa)}cos(sy)ds .
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2—:-,; 'r3xy(x3.y) =% J:{[f3(s) + ga(s) + sx3f4(s)]sinh(sx3)
(3.3a-¢)
+ [f4(s) + g,(s) + sx594(5)Jcosh(sx,) }sin(sy)ds

for a strip having no crack.

3.1.2 Boundary and Continuity Conditions

Boundary conditions on the line y=0 for this problem
are the same as those in Egs. (2.18), (2.19). However, the
continuity conditions do change since the adhesive layer is
not modeled as distributed springs any more. Taking the
adhesive layer as an elastic continuum we can write the

following conditions of continuity:
Oyx(ys¥) = o3y, (-haa¥)

T1xy(h].y) = Tsxy(‘h3’y) *

u}(h]ny) u3(-h3.y) )

VT(h]sy) = V3(‘h3!y) ’
(3.4a-h)
UZXX(“hT'y) = G3XX(h3’y) ’
szy(‘h]ay) = T3xy(h3|y) »
uz('h1-Y) = U3(h3.y) ’

Vol=hysy) = valhgay) o Ogy<e
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Substituting Eqs. (2.12), (2.13), (i=1,2), and Eqs.
(3.2), (3.3) into Eqs. {(3.4); then taking the Fourier sine
and cosine transforms of the resulting equations in y; and
using the integral formulas given by (A.1)} in Appendix A we
obtain the following eight equations:

Xazf1(s)+ksh1alg1(s)-a4f3(s)-sh3a393(5)+sh3aaf4(s)+a3gq(s)- “AFyq s
Aa1f1(s)+h(a]+sh1uz)g](s)+a3f3(s)+(a3+sh3a4)g3(s)-(34+sh303)fa(s)
-049,(s) = AFqq s
a1f1(s}+[(1-x])u1/2+sh]a2]g‘(s)+a3f3(s)+[(l-Ks)a3/2+sh3u4]g3(s)
=[shyogt{1-x5)0,/2]F, (5} =040, (s) = -Fyq
azf](s)+[sh1a]+(1+a])a2/2]g1(s)-a4f3(s)-[sh3a3+(1+K3)a4/2]g3(5)
H(14k5)aq/245hq0, I, (s)t090,(s) = -Fqy s
Au2f2(5)+xsh1a1gz(s)-a4f3(s)-sh3aag3(s)—sh3a4f4(s)-a3g4(s)= -AFpq s
Aa1fZ(s)+x(a]+sh]a2)gz(s)+a3f3(s)+(a3+sh3a4)g3(s)+(sh3a3+a4)f4(s)
tay94(s) = Moy s
o Fo()+L(1-k; Yoy /24shy oy g, (5)+agfa(s)+[(1-kcz)az/2shqa, Tg,(s)
+[sh3a3+(1-Kz)aaIZ]fq(s)+a4g4(s) = -Fpy s
u2f2(5)+[sh1a]+(1+x1)a2/2]gz(s)-a4f3(s)-[sh3a3+(1+x3)a4/2]93(s)
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=3
—
1|
-

= sinh(sh1)
ay = cosh(shy) ,
ag = sfnh(shs) .
ay = cosh(sh,) ,

and A= “]/”3' The functions Fij(s)' (i=1,2;3=1-4) are
defined in Appendix D. After solving Eqs. (3.5) simultan-
eously, the unknwon functions fi(s)' gi(s), (i=1-4) are ex-
pressed in terms of infinite integrals of mi(r). (i=1,2)

as follows:

_ ¢ -shg
f_!(s) _-zl[aijF'lj(s)+bi.]'F2.j(s)]e '

J (3.6a,b)

shi

91(5) = ][C.”F]j(s)"'diszj(s)]e’ , (i=1-4) ,

G
It b~ &

where k=1 for i=1,2 and k: } for 1= 3,4. g 0 bij’ cij'
dij’ (i,j=1-4) are given in Appendix D. The unknown func-
tions mi(r), (1=1,2) can again be determined from the

mixed boundary conditions (2.19) and (2,20),

3.2 Derivation of Integral Equations

Defining Gi(xi)' (i=1,2) as in Eq. (2.22) we can simi-

larly obtain
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a4
n(r) = - iy [atsinreyee . (m12) (3.7)
Following a precedure similar to that followed in section

2.2 and using the pertinent equatfons one can write

4111 L} -l a
ciyy(xi’o)’=E;3T jzl{ ﬁ'[aﬁltt)dt I0M15(5't)[(313+2°13)°°5"(“15)
sh, oy b o
+ ¢, sX;sinh{x;5)]e” ‘ds+= | G,(t)dt | My, (s,t)
135%ysinn(xys)] 'nL)Z Lu

[(b1j+2dij)cosh(xis)1-dijsxisinh(x1s)]e-5h1ds}

4“1

+
K.I +]

1
m

aj G.(t)
[ . G (3.8)
-a‘i ]
Now substituting Eq. (3.8) into stress boundary conditions,
Egs. (2.19), we obtain

1131 b 1+K]

—a(x]<a
a ] b 1 1+,
-d -

-b<x2<b (3.9a,b)

where the kernels kij(xi’t)' (i,i=1,2) are given by

-5{hy-t
(h )ds

kij(xi’t) = foKij(xi,t,s)e , (3.10)
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and Kij(xi’t's) are given in Appendix D by (D.5). kij(xi't)

behave similar to those used in Section 2.2,

Again some special cases can be recovered from Eqs.
{3.9) by letting some length and/or material parameters go
to proper 1imits. For example, for a=b one can obtain the
one-crack case in [5]). For a=b and hg=0 or uy=uy,

V3=V, we recover the problem of colinear cracks in an elas-
tic solid [15]. 1If we let W3*0 the integral equations (3.9)
reduce to an integral equation for the problem of a center-
notched strip [14]. By making hy*= we obtain the case of
two half planes bonded by a center-notched strip [16].
Finally by letting h]+m or h2+m we recover the case of a

crack in an infinite elastic solid.

3.3 Solution of Integral Equations

Following exactly the same procedure as in Section
2.3 we can obtain, for the case of crack in strip (:)
only (a<h] ,b=0},

L ] 1 - ) )
17):-191(1.1)[1'1-“)‘1 + T1+wj + "k”(wjﬂ-l)]“‘N « (J=1,..04m) (2.59)

which is to be solved for 91(11), {(i=1,...,n) and 9](1) is
defined in Egq. (2.53). For the case of crack in strip (:)

only (a=0,b<h1). we will have again
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n -
] eztri)trile + Til“’j + mpluget)] = ANy (3=1,.000m) (2.71)

1=1
in which
du,  ¢,(bt)
s 1, 2

In case of crack in both strip (:) and strip (:) (a<hy,b<hy),

n -
121 {8](T1)[T11wj * Tile + kg logarg)] + BZ(Ti)“EIZ(wJ'Ti)} = -\,

n
121 {91(T1)“E2](NJ|T1) +92(71)[Ti1wj+111wj + “EZZ(NJ'Ti)]} = =N,

(3=14...40) (3.12a,b)

are the equations to be solved for Bk(Ti). (k=1,23i=1,...,n)
Eqs. (2.60) and (2.73) are still valid for the stress in-
tensity factors for a<h], b<h] in this problem.

3.4 Case of Broken Laminates (a=h1.b=0)

3.4.1 The Integral Equation

In this case, Eqs. (3.9) reduce to

1 (M 1+k,
v | iyt (0t gl () ey

"
1 (3.13)

However, kq;(x;,t} is no longer bounded in -h;<x;,tsh; and

it has point singularities at t=h; and %y =+h;. Eq. (3.13)
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is not an ordinary singular integral equation since it
contains generalized Cauchy kernel. Integrand of the in-
finite integral giving k]I(x].t) is bounded and continuous
everywhere in O<s<», and the singularity near s=0 is re-
movable (see Section 2.2). The divergence in the integral
is due to the behavior of the integrand as s»=, One can

separate the asymptotic part of K11(x1.t.s) by writing

where
Kiqo(Xy,ts8) = 1im Kyy(%,,t,8) (3.15)
nstxpates) = Hm kg (x

and Kyyelxy,t,s) is bounded in 0<s<e. Now define

o -S(h]-t)
k]]s(xl't) = IOK]1S(x1.t.s)e ds ,
(3.16a,b)
@ 'S(h]-t)
so that

Kyp¢(xqst) being bounded in -hy<xq,tsh.  After taking
1imits it is found that

~sh
- 2Q1x1[2(h1-t)52-s]sinh(x]s)}e S , - (3.18)
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where

0 = (1-0)/0m;) s
(3.19)
QZ = (KI-AKB)/(]+AK3)

Using the following integral formula [20]

* n_~s{2h -t} sinh(x,s .
Jos ¢ ! {coshix1s;} ds =

[(Zh -t)z-xf (py-t}] » (1122,
(3.20)

we can evaluate the integral in Eq. (3.16a) and obtain

2
Ty 15 (% 0t) =3 140, (hy#xy)? ad?{ +120; (hy+xp) agT* 30 - Q5]

2
+ 3 L4y (g )° ad?{ 12; (hy-x) Erg“]"' 3 - Q)

e e 1. (3.21)
t ]-X]
Now substituting Eq. {3.17) into Eq. (3.13)

lfh‘[-‘-— F1kyy (X5t} 16, (£)dt + " (%, ,t)6, (t)dt

T " 5 T s X121715 Ly I BE AR BRI

T+
T hla) o heeshy (3.22)

is obtained. The terms in the bracket constitute a typical

generalized Cauchy kernel.
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3.4.2 Chanacterdistic Equation

Assume that G1(t) has an integrable singularity at

t =+h, which can be expressed as

Blt) o (t)e™

G
! (h;-tz)"f (t=hy }Y(t+hy)Y

|t]<h, (3.23)

where O0<Re{y)<1 and ¢1(t) is H8lder-continuous in the
closed interval -h15t§h]. In order to determine the power
of singularity, y, one should study Eq. (3.22) near t= th].

Consider the following sectionally holomorphic function

hy G(t)
nia =17 - a (3.24)
=
which becomes
'p (z) - ¢'|('h'|) eTT'IY ] . ¢'|(h-l) '| + w (z)
1 (2h,)Y  SITY (241 )Y (2, )Ysinmy (z-hy)Y 'O
1 1 1 1 (3.25)

by using Eq. {3.23) and following [17]. Here wlo(z) is

bounded everywhere except at the end points th, where

lgg(2)] < 2

l2+h11“ » Re(yq)<Rely} , (3.26)

A 1s a real constant. From Eq. {3.25), using the Plemelj

formulas given by Eq. (2.43) we obtain

¢7(=h,) ¢, (hy)
117 cotmy 1M1 _cotmy +0q) (3.27)

¥y (%) =
TR T )Y (gt ¥ (20 Gy )Y
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where the behavior of wll {s similar to that of wlO' We

can simitarly evaluate

dy(hy) y
(2h1)Ysinﬂy (hltx.'l)Y

1My (£) (hy+xy) 8 [—rpr—] dt = +

+ (hytxg) g ypltn)

_2hi) )

n
1 : g 1
[ 6 (t)htx)" g e reyd @

S

2 dz
+ (hltxl) lez(txl) ’

(3,28a,b)

where the behavior of w]z is again simjlar to that of W10-
Substituting Eqs. (3.27), (3.28) into Eq. (3.22) and noting
that ¢](t)= -¢](-t) from Eqs. (2.30) and (3.23) we obtain

b (hy)

m [2C051TY-4Q-‘Y(Y+1) + ]2Q'|Y"3Q‘| + Qz]

1 1 -
= F » 3-29
[(h1+x] v (h1-x])Y] 1) 2-29)

where Fi contains all the bounded terms. Now multiplying
Eq. (3.29) by (h1+x])Y and Tetting x;>-h; or multiplying by
(h]-xT)Y and letting xy>h,, we obtain the following charac-

teristic equation for the unknown constant y:
2cosmy +4Q;(v-1)* - (Q)+Q,) = 0 . (3.30)
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One can see that this equation is the same as those found
in [5], [21], [22], [23]. Eq. (3.30) is solved for y, the
power of singularity, which is assumed to be 0O<y<l to get
an integrable singularity. We can find this real value of
y numerically, for evamale, using Newton's iteration method
[24] within the desired accuracy.

3.4.3 Solution of Integral Equaticn

Define now the dimensionless variables w,t by

X] = h-lm » t = h]T » -h1sx];tfh] . (30 3])

Then Eq. {3.22), with Eq. (3.23), takes the following form

‘F[‘ + whykey (hyosh1t) + Thakoy e(hyushyT)] frtyT)
- il wyMT T Wefly T =
T 5 T~ 1M1V 19 M 111515 (h])ZY(]_Tz)Y
i+|-:-I
- Tg]—pi(h-lw) . (3.32)

Introducing the new unknown function

411] . qb](hfr)

8, (1) = (3.33)
in which pq = p1(x])= constant, one can write
1 1 OI(T) _
) (3.34)
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Note that (1-t2)"Y is the weight function of the Jacobi
polynomials Pn('y"Y)(r). Thus the integral in Eq. (3.34)
can be evaluated by using a Gauss-Jacobt integration for-

mula given in [17]. Hence Eq. (3.34) becomes

1

Ti'uﬁ

n
1;}91(T1)Ni[ + ﬂhlk]1s(h1wj’h111) + “h]k11f(h]ﬂﬁ,h111)] E -7 N
(3=1,..00041) (3.35)

in which Tyswy are the roots of the Jacobi polynomials:

PN(-Y’-Y)(Ti)go N T I
(1-y,1-) (3.36a,b)
Py (W) =0 5 (§=1hal-1)
and W,{i=1,...,N) are the weights of PN(-Y'-Y)(11).
The single-valuedness condition, Eq. (2.21), which can be
written as
N
izle.l('r,‘)wi =0 (3.37)

in this case, completes the system of (N) equations for (N)
unknowns, 61(11). We can replace this system by an (nxn)
system by considering the symmetry of the strip about y-

axis. Hence

n

1 1 - _ )
1216](11)w1[11_wj + T1+mj + ﬂk]]S(NJ;Ti) + “k]]f(mj’Ti)] = -1

(3=1,....0) (3.38)
in which 2n = and
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kgl egorsd = Mlkygg(hyugahytg) = kypolbqugi-hytgd]

kypelegetid = hylkypelhqugshyty) - kyyelhgog-mtdl
(1,3=1,...,0) , (3.3%a,5)
js obtained.

Examination of stress expressions indicates that the
stress components are bounded for this case except °3yy
which has a singulari y at Xq = -h3. The definition of the
stress intensity factor at the tip of the crack (x;=hy,
x3=-h3) is no longer the same as those in Eqs. (2.60),
{2.73) since the power of the singularity is not 1/2 any-

more, Now define

Y =
k Lﬂp3 Ve (x3+h3) °3yy(x3'0) , @ h] . (3.40)

=
8 Xgroh
which can be expressed as (Appendix E)

ky = -Qqhy )08y (1), as=hy (3.41)

Q; being defined by (E.11) 1in Appendix E. After solving
the system given by Eq. (3.38) for 91(T1). (§=14...,n) we
can compute 61(1) using an appropriate extrapolation tech-
nique. According to [18]

m-1 ("Y"Y)
8,(1) = 321 ¢4, (M (3.42)
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m
_%I 121 Aimpj(-Y'-Y)(Ti)el(Ti) .

]*2? 2
2%-2Y+1 +] ! ’ (3.430-6)

o om2Y [rim-r'. 12 2m-2y+2
M " 2 TNITR-292) T, ) (=Ys=v)
Pm (v )Py (1y)

Hence 91(1) can be computed after determining vy and comput-
ing 91(11),(1=1....n).

3.5 Stresses

We consider the stress components which seem to be the
most stgnificant ones for ach,, b=0. The stresses at
Xy = -h, can directly be obtained from Eqs. (2.90) as
‘I -
N’i . el(Ti)hZ](p’Ti) ) ﬂ<h1 »

°2xx('h1'y)/pl =<
(T )wiﬁZI(p Ti) ) a=h1 ’

(3.44a-c)

1
o

n -
% 1213](T1)h22(paTi) ' a<h1 ’
Uzyy('h1:y)/p] = g

=19](T1)N1HZZ(D,T1) s a=h1 '

]
- N‘iEIB](Ti)h23 p’Ti) s a<h] ’
szy('h]sY)/p] = . n )
"7 Loa(rihggleaty) ey

where T1(1=1,....n) are defined in Eqg. (2.55a) for a<h1 and
in Eq. (3.36a) for a-= hlv From Eq. (3.8), by using Eqgs.
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(3.10) and (D.5), one can write

qu, ra
1
Tayy (410} = EFTLI(Z](xz.t)G](t)dt . agh, (3.45)

and following a procedure similar to the one followed in

section 2.4 he cur further write

n -
12161(11)k21(NiT1) ’ a<h1 ’

(3.46)

s
N
Gzyy(xzio)/p] "\ n i

where Ty are the same as stated above and Xp = h1n.

From Eqs. (3.3) we obtain

Bug 1
Tayyip0) = BT Ja"sﬂ"a-t)ﬁﬂ")dt :

(3.47a,b)

oMy
Sau Mgy = < T T Lhaﬂ,(y.t)G](t)dt .

where

-S(h1‘t)ds

]

kg (xgot) = Joka](xyt.s)e

(3.48a,b)
oo 'S(h]‘t)
h34(.‘/nt) = fo H34(ypt$5)e ds ,

and

u
K31(x3.t,s) = kZ1N1k(s't)[(33k+2°3k+a4k5x3)°°5h(x35)

-sh
+ (2a4k+c4k+c3ksx3)s1nh(x35)]e 3 .
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W
H34(y.t.s) = kZ]N]k(s.t)[(a3k-a4ksh3)cosh(h35)
~5h3
- (c4k—c3ksh3)sinh(h35)]e cos{ys) . (3.49a,b)
Defining Xq=h3&, and using Eqs. (2.49), (2.53) for a<h, and

Eqs. (3.23), (3.33) for a=h1. then replacing integrals by

appropriate summations, we can rewrite Eqs. (3.47) as

n -
Lo (rkgy (Bary) o a<iy
Usyy(xsso)/p'l = "
x]_n z*’1“1)""1"31(‘5”1) L
n _ {3.50a,b)
ZB] [1)h34(p|1'1) » a<h-l
stx('hsly)/p1 = ] n
=3 E (T])W1h34(p, 1) ’ a=|'|~|

where T, are given again by Eq. (2.55a) for a<hy, by Eq.
(3.36a) for a=h1; y“h]D. and

K3y (€a74) = alkg(hgEiaty) - kqy(hg€s-atg)]
(3,51a,b)

534(9:1:1) = a[h34(h1paa1’i) - h34(h]p,-a11)]

3.6 HNumerical Results

The problem is solved for both plane strain and general-
jzed plane stress cases since the formulation is carried out

with k, definition of which characterizes plane strain or
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plane stress cases in itself (see section 2.1). MNumerical
results are obtained for material combinations Il and III
(see section 2.5 for definitions of material combinations).
The cases where a<h, and/or b<h, are solved in the same way
as the former problem, Solutions for these cases are ob-
tained in order to establish limitations of the spring model

approximation in the first problem.

Figures 18-23 show comparison of the stress intensity
factors for various geometries and material combinations
for plane strain and plane stress cases. As one can see in
Figures 18-23, the stress intensity factor does not depend
on the material properties and plane strain or plane stress
cases when h3=0. This is expected since h3=0 corresponds to
the case of colinear cracks in an infinite elastic solid.
These figures show that the two solutions match very well
for practical values of h,/h; ratio (h3/h1 =0-10%). Re-
sults do not vary for plane strain or plane stress cases.
But it s notable that agreement between the two solutions
1s better for material combination II. As hy+= the stress
intensity factors for a,b= 0,0.Qh] become the same for
material combinations II and 111, for plane strain and
plane stress cases in the problem where the adhesive layers
are approximated by distributed springs, Note that h3+m is
equivalent to E3.u3+0 which make the problem be the same

as a center-notched strip having traction-free boundaries.
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However, in the second problem the stress intensity factors
depend on the conditions of plane strain or plane stress and
the material combination. In Figures 22,23 the stress in-
tensity factors for a=b=0,9h, (for plane ‘.. 2ss case)
first increase as hy/h; increases (up to ~.10), then start
decreasing with further fincreases 1in h3/h]. This, we be-
lieve, can be explained as follows: When h3 is too small
the two cracks in adjacent strips are close to each other.
As h3 increases the tips of these cracks will still be close
to each other for small values of hy whereas we will have
the effect of a thin soft layer between main laminates.

This will increase the stress intensity factors. But if hy
continues to increase, the cracks will loose the interacting
effect of each other which will make the stress intensity
factors decrease. As a result, for small values of h,, the
effect of increasing the thickness of the softer layer is
dominant; for larger values of h3, effect of ceasing inter-

action between two cracks dominates,.

Figures 24 and 25 show the variations of the normal
stresses in x-direction on the boundaries of the adhesive
layer. The normal stresses in x-direction in the adhesive
layer and the adjacent laminate increase as the crack prop-
agates, However, they can be reduced by increasing the
thickness of the adhesive layer. In Figures 26 and 27 the

normal stresses in y-direction on the 1ine y=0 are shown.
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These figures show that the cleavage stress ahead of a
crack decreases as the thickneszx of the adhesive layer in-
creases. This 1s very important as far as crack arrest in
composites 1s concerned. One can cee¢ in Figure 26 that the
cleavage stress at a location Xo =-h] can be reduced to 1/3
of 1ts value in a homogeneous medium by bonding strips with
adhesive layers of thickness h,= S%h] for a=0.9h,. Compar-
json of Figures 25 and 27 shows that there is a possibility
of delamination along the line X3 = -h3 when the crack
approaches this boundary. The normal stress in x-direction
is much higher than the normal stress in y-direction at the
beginning of the adhesive layer. Therefore, depending on
the strength of the bond between adhesive and 1aminates, a
crack approaching the interface may propagate along the
boundary (delamination) rather than going through the ad-

hesive layer.

In order to solve the problem for a=h] we should first
determine the power of singularity, y, from Eq. (3.30). By
using Newton's iteration method y is found for various
cases as shown in Table 1{(a). Figure 28 and Table 1{b) show
the variation of y with = u1/u3 for plane stress and plane
strain cases when vy T Vg =E 0.35. From these results one can
observe that the power of singularity is higher for plane
strain case. The difference is larger for small values of

A and it vanishes as A becomes larger. One can also observe
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that y=0.5 for both plane strain and plane stress cases
when A =1 for which the composite medium is equivalent to

a homogeneous medium. v is lower than 0.5 for A<l and

it is larger than 0.5 for A>1. Figure 29 shows the varia-
tion of the normalized stress intensity factor, K= ka/p]hY.
with X on a logarithmic scale for h3= .05h1. Vy = Vg = 0.35,
For small values of A{<~1) K is larger for plane stress
case by an amount of more than 50%, then for larger values
of A it is almost the same for both cases. The value of
this normalized factor is much less for A>1 than its value
for A<1 in both plane stress and plane strain cases, van-
ishing as A»=, Variations of K for a=h] with h3/h] are
given in Figures 30,31. Fiqure 30 shows the results for
material combinatfon II whereas Figure 31 does for combin-
ation III. One can observe that (a) K is slightly larger
for plane strain case, Jdeviation being small (the same
trend in v), {(b) K is larger (~4 times) for material combin-

ation III, {(c) K increases with increasing h3/h] ratio.

Figures 32-37 show some of the calculated results for
stress components. In Figure 32, the cleavage stress °2yy
at Xo = -h], y=0 varies as the crack in main laminate prop-
agates. The stress increases as the crack approaches the
adhesive layer. The value of the cleavage stress when the
crack touches the interface (a=h1) is unbounded if h,y=0 and

it is bounded otherwise. Presumably this is the most
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important point in this problem. The infinite cleavage
stress (for h3=0) at the beginning of the second strip can
be made finite by considering even a very thin adhesive
layer. This finite value decreases as the thickness of the
adhesive layer increases. Figures 33 and 34 show the varia-

tions of the stress components o and Taxy along Xo = -h1

yy
line in y-direction. These stresses decrease as y increases

and they are slightly larger for plane stress case. Oayy

becomes smoother over O<y<w with increasing h3/h] ratio

(reYaxation). 1In Figure 35, the variation of o with

2yy

leh] at y=0 is shown for material combination II. Oayy

again decreases with increasing h3/h1 ratio., Variation of

the cleavage stress aq in the adhesive Jayer as the crack

Yy
approaches interface is shown in Figure 36. csyy(-hB,O)

becomes unbounded when the crack touches the interface.

Figure 37 shows the variation of Oq with x3/h3 on y=0 line

yy
for a=h].

-68-




IV. CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK

The effect of the adhesive layers on crack propaga-
tion in composites has been examined for both plane stress
and plane strain cases. Composjte medium consists of main
load-carrying laminates and buffer strips bonded periodic-
ally through thin adhesive Tayers. The adhesive layers
have been approximated by distributed tension and shear
springs. We solved the problem for the cases where the
cracks were imbedded in laminates and/or buffer strips.
The problem has been reduced to a system of singular in-
tegral equations and this system has been replaced by a
system of linear algebraic equations which has been solved
numerically. The stress intensity factors and some stress
components have been computed and presented in Figures 3-
16, We saw that the stress intensity factors at the crack
tips have increased by taking the adhesive layer into ac-
count. They increase as the thickness of the adhesive
layer increases {(or as Young's and shear moduli of adhes-
ive decrease). However, the presence of the adhesive Tayer
relaxes the constraints at the interfaces so that the
cleavage and shear stresses in the strip on the other side
of the adhesive layer decrease. This is important from the
point of view of crack arrest in composite materials. Al}

the relevant special cases treated in literature can be
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recovered from this solution which has beaen observed to be

in good agreement with them.

Then we attempted to solve the case of broken lamin-
ates. We observed that the spring mode) approximation is
not mathematically suitable for this case. Hence we in-
troduced the problem described in Chapter IIl in which the
adhesive has been treated as an elastic continuum. We
solved the case of imbedded cracks in order to establish
limitations of the spring model approximation in the former
problem. We concluded that the spring model is good enough
within practical ranges. Approximation is not reliable for
very large thicknesses of adhesive layer or for compara-
tively weak adhesives, The case of broken laminates has
been solved without any major difficulty. The character-
jstic equation to be solved for the power of singularity
has come out to be the same as those obtained in [5], [21],
[22], [23]. Stress intensity factors still increase as
the thickness of the adhesive layer ‘ncreases. However,
the cleavage stress at the closer edge of the second strip
(first strip is broken) becomes finite in this case whereas
it has been found infinite by ignoring the adhesive layer.
Special cases can be recovered from this sclutiun too. See
detailed numerical results and conclusions in sections 2.5

and 3.6.
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The work presented here can be extended in several

directions treating the adhesive as an elastic continuum:

(i) The problem can be solved for non-isotropic

(e.g., orthotropic) materials which will be more realistic.

(ii) The strips bonded by adhesive can be of differ-

ent materials.
{(ii1) Finite number of strips can be studied.

(iv) It may be useful to solve the problem for the
cases where crack continues to propagate into the adhesive

or along the interface (delamination).

However, one should keep in mind that all these prob-
lems will require considerable amount of time and labor.
We hope that the present work will contribute to future
studies in this field.
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Power of singularity, vy
Combination
Plane Strain Plane Stress
Il ,8689 .8658
111 .7183 . 7060
(a)
v1=v3=.35 Power of singularity, v
A=u1/u3 Plane Strain Plane Stress
.0 .3203 2617
.001 . 3207 .2623
.01 . 3240 2680
. .3538 .3155
1. . 5000 . 5000
10. . 7551 .7652
100. .9160 .9138
1000. .9732 .9724
(b)

Table 1. Values of the power of singularity, v,
for various material combinations when

a=h1.

-72-




‘untpaw 3j3tsodwod ayjz jo Aujswocay

L 94anbLy

!

i.m__m

%y

.

©

d
a:P;

i TI_S.NI.I.' il

|

vty it
d

o

4

SUINOp FILX kp

[T 34

- #

']li\:{; I‘.“.{, .

PEy

-74-



*wa|qoad uorleqaniuaad au3 jo uoreanbLiuo)

*Z 24nb1y
\.._!1
Yoo | —uz—| b—"d2— uz
92 02
p ¢ ot 4 ¢ ' 418
X W“H“Hv ARIEE T
'd < 'q d
_ﬁ ——

-75-



- uoLjzeuLquo IJPULWE] ulew ul Jeas
I L L i L !

3Y3z 404 u/e -sa By uojdey A31Sudjul ssaazs 3y g 9J4nbtry
- m - - . »
& W ) X 9 s
) : . ——— \\M\\l\un“..\l\x LS
A N T S 2t
- UIDJS 3UD|d ——— nd
- ssajg aub)d
-~ \
\\\ N -9}
< 7 o uz—fig—uz
74 \ o
V744 .NH" m gl
v/
% L
/ 02 .
/7 2 il 1 o2
/, [
7 LYS VA
-2’2

-76-



(1 uotjeurquoj) dials J4344nq uL Yoead
Y3 a0y 2y/q -sa 9y ao3sey £1isuajul ssauals ayg

*f sanbi4
2
—._\ Q . . . . -
m- Nn w— m- ¢n m. w-o
~ uIDYS BUD|d ——— o _ll
~ ! 2
"4 — —
~ SS9.S auD|d H _m:N vz -0

LV VA

«l7a=



“(] uoljeuitquo)) ased sSadls sueid
‘lyg-p=9 404 ly/e o031 333dsad 43tm By 4o ugLieLaep

*G danbLy

oAld/ %y

-78-



‘lyg-0=q 404

'y/ 0 w..

{1 uoijeurquo)) ased $S343s aue|d
iy/e 03 3923dszaa Uilm 9y jo uolrjetaep

L S S

g 24nbL4

&

-79-



*{I uoljeutquo)) ased Ssauls aue|d
‘2Yg 0=e 403 Cy/g 01 303dsad y3rm By jo uorjeruep

*/ 94anblLy
5,1 s, J wn 2 y E
Tamiﬂﬂﬁ_ml
Na Q .....m._
_...aNJ_ _lu .
/ -1
- - %,
or ~g0" 400 = %4/ Lo
opald/®y




{1 uoljeuLquol) 3sed s$saa}s aued
*24g-0=e 40} 2Y4/q 03 3o03dsa4 ¥iim 9y Jo uolrjerdep

N.._\n . 2 9 g

1 i 1 ]

‘g 9anbiry

1

ap’ds %y

—6'|

-81-

et S e ey g

e e AT e s e

A e IR TN Y



(I uoLjeutquo)) 3sed s$s3u3s aue|d
‘iyg-pg=e aoj ly/€y o031 3o238dsau YItM By 310 uoijzeLaep ‘6 J4nbLA

]
oz ,_\bm._ o} 2r 80 720} oo

i
f -f - - *

'
oand/®
LAVA N

-82-



{1 _uotjeuLquo)) 3sed ssa3d3s aueld “lyg-pg=e
103 Lly/y (6oL} 03 3129dsaa y3tm By jo0 uorjerdep (gl o4nbir4

001 W/ g | I 1o 100"

1 ] L | 1

(St9181) co="y/%y

opldsOy

-83-



. *(I uoLleniquo)) ase2 ssauLls aue|d
‘eug Q=9 404 2y/€y 031 3d3dsas yiim % 30 uwoijeraep || 2u4nbiry

. c . . . . .
oz ‘W g e 80 . b0 __ 09
j\ll‘( _—
=242 “yg —= i
=G
L qz- Loz ~60
2 el |
80 \—00="%/0 o)
\,
|I\.\.|\
-2
(SboIBl) w=/y .
LAV

~I'e

-84



-{] uotjeutquo)) 3sel ss3u3s dueid “2yg-0=4q
403 24/ty {6o|) 03 323dsad YiLm Q% 10 uoLgeLABA

*21 24nbiy
001 W N o) | X 10; 100;
L S0
Wry.ml%ﬁ_uk._ml.
a.“ “ M ._% “ % -60
r.._N.a_ _!oNl_ ] 5
2 |ef 1 8
~ 80 00 =%/ €l
I A
~(sboB1) oo=tu/Ty |
LTV

-1'C



3-0-1 ‘ ‘

Tayyl=hy ¥}/ p,

Figure 13. Distribution of the stress component op2yy at
x2==hy for h3=.05h7, plane stress case
(Combination™1).
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Figure 14. Distribution of the shear stress Tgxg at gf—h;
for h3=.06h1, plane stress case (Combinatidn I).
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Figure 24. Distribution of the stress component opyx at
==Ny for h3=0.05hy, plane stress case
(Eomb1nation 11).
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Figure 25. Distribution of the stress component o3y, at

x3=-h3 for h3=005h1, plane stress case
(aomb nation II).
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Figure 33, Variation of ¢ along the line X2=-h1 for a=h
(Combination Iﬂy 1
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Figure 34. Variation of the shear stress tp,, along the
line Xxp=-hy for a=hy (Combination” II).
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APPENDIY A

Evaluation of some integrals [21], [25]:
i r
|2 Veos(ys)dy = wper » w0,
e Vsin(ys)dy = rﬂ""' , 0 ,
‘0
(A.1a-d)
[ . 2_.2
J e eoslys)dy = '(FETE%T 0 ,
® 2rs
one sin(ys)dy m—m , M0,
0
-s
[ by statar = gl (1™
= sy
J TW sin{ry)dr = as ye .
0
o0 1 ) -sy i
Jo wrigr cos{ry)dr = Joe™ (A.2a-e)
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APPENDIX B

Expressions of the functions used in Eqs. (2.16) and (2.17):

K,=3 in(h,r)
Fipls) = %f—f:mi(r)[252+ 2 (r?+s?)] ;Ff¥§;77 dr

252 , Kyt cos(h,r)
Fials) = 5 [:mi(r)[zr t—g— (r25%)] s 0T

(h.r) (8.1a-d)
 4s? @ cos hir
) = 4 [t e o

4s [* , sin(hir)
F,M(S) =—ﬁ—-L’m1(r)r W dr » “‘1.2)

The forms of the functions JTE bij’ iy d,J.
(i=1,2;3=1-4) appearing in Egs. (2.17) are as follows:

€1y = (95035035 + d31934)/0
©12 = (931937 - 95932938)/0
€13 * Q3839 - 937937)/0

©14 = (93194 * d3090)/0

1

- (95050935 * 933934 /0
€y = (95030935 - 933937)/0
23 = {a33037 - a3039)/0 »

Cyg = = (930940 * 933932}/

-t
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di

93

dig

91

do3

dag

4

"o Yy,
= {ag1957 = 93505500
= (937953 +93,9,4)/0
Y1 v Gp =y

" (9309 ~ G3505,)/0

* - (a3094 + a3343)/0
= = (Nagn, + 936217/95
T - (95002 * ageepp)/ag
= (N9 - 4059803 - 95655 )/05
" (9= Nagrtyy - 360p0)/a5
Tan 0 by teay
" (O \0p0 3+ agedy3) /a5
" (9= Mgyt - agedyg)/ag
= (Azq4a2] -shgicqq + A25h2q302])/q2 ;
= (09525 - shyarc,, + "25"2"3‘:22)‘;21 '
= (-1+ ApQy8ys - ShyQycq 4+ A25h2q3cz3)/q2 ’

* (X354 = shyayeyg + Apshyazeyy)/a,
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-

iy =3y s by -ay,

where

D = 930831 =~ 932933 »

ay = (122 g, = (e My,

Q3 = (I'Q-ZShz)/z ’ Q4 = (1+e-25h2)/2 ’

-2s(hy+hs)
9 = [1-e s *hz 1/

-2 =2sh
e Shz--e 1)/2

2 , Qg = (1+e

=25h -2sh
e 1+e 2

Q7=( 9q8=(

4shy

- =4
G = (e V2, g = (e M2

a (1-e""2) /2 G = (1+e”4ShZ)/2 '
93 = (T4} (Ap-1)gpr2

a4 = (1+z])A25h0(A4q2q4-A3q1q3) ,

g = (14cy)a59,/2

Mo = 25 ha(r5af - 1a3)

Q7 = -Agshe®a3 + G5 = KA5-Q;

g = -AgShodz95 » Gpg = =Kpd5-Q7 »

-117-

=25(hy+h,)
'y,

}/2

L]

(8.2)

(8.3)



=2sh
qZ] " (]+Kl)5h0q5[(l3-l4)e 1'(A3+A4)q]0]/2 ’
q22 - (K2+A2)“-'\2)q"/2 '

-2sh
Gp3 = (Vp)hgsho[(Ag-Ag)e " 2u(ager, ey, 02

2sh

Qpy = Shye 2+q”/2 v 95 = (1-A))shyqg

=25h
g = =(x)*Ay)a5a9/2 , qy; = shie

1+QQ/2 '
Qg = dAghys*hias

%99 = 2hshy(Agq1a5+24050,)

93 " %13 * %y o

shp

-2
31 = 95 + %6® * G19%g * %99

-2sh
x (1er )2 2 _ - a2 22
935 = (1-25)*shye Gz + Gp3 = MPAgh5 hody,

2sh]
+ hpq - 97{084909) * 955

G433 = dp5¢
%94 = (Ag=1)ay = 2hphgshga;

G5 = 9 * 233shygy

A3 = Shyag + (qg5-04)/2

937 = (Ag-T)ag - 2Ap44sha,

Q3 = 9 + 2A4sh°q1 s

B39 = N9 * Physhytixdy + (itdrghgsPhilayag
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Qg = 9299 * 2A3shy1ag + (A +arghss®hi)agag
Q0 * Q1(q5'”\2q29) ’
Q44 b qZ(q5+Azq29) . (8.4)

The expressions for the functions K13(*1’t'5)'

(1,J=1,2) which appear in Eq. (2.33) are

«5h
TI’K,” (x1 ot,8) 'k§1N1k(s't)[(aik+2°1k)c°5h("15) + ciksxisinh(xis)]e LI

Cl -5hi
ﬂK12(x1.t.s)=1§1N2k(s,t)[(b1k+2d1k)cosh(x1s)+-d1ksxisinh(xis)]e LI

(1=1.2) . (8.5)
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APPENDIX €

Derivation of the stress intensity factors defined
by £qs. (2.60) and (2.73) as:

ky x'lin; VEX7T 07, (%40} a<‘h1 (2.60)
1
kb E J;flb VE(xz'B) Uzyy(xza(]) ’ b<h2 . (2-73)

From Eq. (2.31) we can write

4u 1 aj G,(t)
9yy{g+0) = T?é%'ﬁ'[aj Ly @t o) (c.1)
where a, . (x5,0), (J=1,2) are the bounded parts of the

cleavage stresses, o (xJ.O). Consider Eqs. (2.49) and

(2.62):

Jyy

in/2

$.(t)
Gj(t)= J _ gylt)e

BT (toa ) H(tay)®

’ (J=]’2;al=a'a2=b) . (C.Z)

Define the sectionally holomorphic functions,

a, G.(t)
xj(z)z%fj—t{T-dt . (=1,2) . (C.3)
-aj
Following Muskhelishvili [12, Chapter 4] and using Eq. (C.2)
we obtain
i (=2 )ew2 di{a;)
xj(z) =_|L_L____J_J__.+ x'O(z) (C.4)
v2aj /z+aj #?E} ‘/z-aj J
and
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¢:(ay)
xj(xJ) s - _J_J'—"' x,ﬂ(x“]) v (J=1,2) (C.S)

where xJo(z) and X“(xj) are bounded functions for -3 <X <8y
Now with Egs. (C.1), (C.3), (C.5), Eqs. (2.60) and (2.73)

become

k, = 4u1 1im ¢1(a) a<h
3 +k) X+ /@ ’ 1
(C.6a,b)
4112 ¢2(b)
kb F - T'Fc'z' :;j‘b » b<h2
Using Eq. (C.?) we can rewrite Eqs. (C.6) as
k. = T__au, Vim vITEeET S1(%) A<k
a " " THy oy La %
]
(C.7a,b)
4u,
ky = = Toc, il V2TBXpT Gylxg) o b<hy
or with th: definitions (2.53) and (2.66)
(C.8a,b)

are obtained.
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APPENDIX D

Expressfons of the functions appearting in Eqs. (3.5) and
(3.6):

2g 00 2 K.I-3 2. 2 sin(hIr)
Fip(s) = TL’“i""“s t g )] ey dr

9g? 2, 1, cos(hyr)
Fials) = =2 JMi(rii2rts —— (r®s%)] ooy, dr
- cos(har) (D.1a-d)
Fia(s) = &%i Iomi(r)r T;!;;%j!‘ dr
sin(hyr)

F'|4(S) = %fomi(r)rz m dr ’ ('|='|.2)
Tunctions a4 biJ’ Ciy dij' {1,§=1-8) used in Egs. (3.6):

a31 = 934/Dy » a3y = Q3:/D;

833 % Mgg/Dy 4 agy = May/Dy
byj = a3y » (3=1-4) ,

€31 % 932/0y » C3p = a33/0)
€33 ="Apg/Dy » €3 = -Aap/0y

dsj = ch » (wj=]-4) ’

tH

81 = 936/Dy » 3y = agy/D,
3 = ~A3:1/Dp s a5y = -Aayy/D,
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i1

-c4j

{9y + ag1Cq * G404y /9g0

(9 = 93637 = 94024207949

- (M9 * agy033 * agp843)/00

- (29 * agiegy * agpag)/e,

= {agyd3y + apobyy)iqgy - (§21-4)
9311 * Y431 * Y4534
%312 ¥ 94C32 * 45842 * 1/(A-Na,
%3C13 * 94%33 * Y5943 - M (A1),
9314 * 94%34 * Y524

U3ty * YaCsy - Ystey o (I=1-4)

by 5

aU.

*

v Cqp = 93970,

’ C44 = AQZG/DZ ’

(§=1-4)

(§=1-4)
(§=1-4)

{i=1-4)




dZJ = c]J ] (J']'4) (D-Z)
where
-2sh3
By = 2(1-A)[(1-A)sh3e + (1+AK3)q3q4]Q21

«25h4
+ (1) AL(A-1)shyqge °-K3Aq5q7/2-n3qf1/2-q§/21 '

-2shy
D, = 2(A-1)[(1-A)shqe -(143k3)050,Ja,¢
-25h3
+ (1+K])A[(I-A)sh3qse 'K3AQ5Q7/2'K3Q%2/2‘q%0/2] » (D.3)

-2sh ~25hy
h=(le )2, gy=(1e )2,

=2(hy+h,)s -2(h,+h,)s
g=le ' 3y2 , qoslive VU2,
93 = (e e M2, gp=[e "+ V2,

q]a =“(1*K])Aq2/2 ’ Q14 = (1'1)Q¢ s
G5 = (A-1)3h3q3 + (1+n3)kq4/2 R

q]s = (1‘1)5h3Q4 - (1+K3)AQ3/2 '

(]”A)Q3 s q]a = (1+K1)lq]/2 ’

[1 - (]'K3)A/ZJQ3 + (1'A)5h3Q4 s
-124«



qu ® (A‘1)5h3Q3 - [1 - (1'“3)3/2]Q4 '

-25h1
a9 = shye - K%

Gyp = Ag/2 * shatyg * K3Iy/2

qp3 = -Shydg = G1g/2 * K3hp/2

Ay = Na92) - %3 » 925 ® Ns%1 " Ntz
Qg = 916921 = H3%3 + 927 © W% * hohs
Qg = %791 - 99%s + 920 ° Gyo%1 " hgdz2 ¢
930 = G20%1 - Ng%23 * 931 © Nt T Nohe

Q32 (]'X)AQQQZ] + (1+K1)A(q11‘ZAQ1Q4)q2/2 ’
Q33 © (1'A)AQ3QZ] - (1+K1)A(q]1+ZAQZQ3)q]/2 ’
q.34 = A[(A-])sh3q3 + (1+K3)}‘q4/2]q?|

+ (]*K1)A[(q]2+ZAQ1Q3)5h3 + (]+K3)AQ1Q4 + qZQ3]q2/2 »

A (A-1)shyg, - [1-(1-k3)Ap/2]ag}ay

- (1+r1)A[(q]2-2Aq2q4)sh3 - (1-k3)Aa505 + q2q3]q] .
A3 = AMA-1)a505 * (1411 )2 (0y2+200143)9/2

Ag7 = MA-1)0,05¢ - (1+K1)A(q12-2kq2q4)q]/2 ,

Qgg = AL(1-A)shyq, - (1+r3)Aa5/2]az

+ (1+K1)kﬂqyr2kq1q4)sh3 - (1+K3)Aq1q3-qzq4]q2/2 .
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Qg9 * A{(I-A)shsq3 + [1-(1-n3)A/2]q4}q2]

+ “"'K] )A['(q]]"'m‘q?‘h)s"a - (]"‘3)AQZQ4+¢I2Q4]Q]/2 '

-25h]

G0 * (1-A)shye -(Ay)ayq,
4y = (1*K3)Q11/2 v Qg0 = (1+K3)q]2/2 ’
%3 = -sh]tanh(sh]) + (I+K1)/2(A-1) R
Q44 » -(T+x3)q4/2(1-1)q2 ’
G5 © (1+K3)q3/2(1-1)q2 . {D.4)

The functions Kid(x1,t,s). (1,3=1,2) appearing in Eq. {3.10):

=sh
ﬂKi](x1.t.s) = k2]N1k(s.t)[(a.'k+2cik)cosh(x15)+ciksx151nh(xis)]e ! ,

4 -sh
“Kiz(”i't'S) = k§1N1k(s,t)[(bik+2d1k)cosh(xis)+-diksx1.sinh(xis)]e )

(1=1 92) . (0.5)
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APPENDIX E

Derivation of the stress intensity factor for a=h1.

b=0 in section 3.4.3:
Define

¥
kg =x1+'|n;| V2 (x3+h3) 03”()(3,0) , as=hy . (3.40)
37773

From £q. (3.47a) we can write

A9 1 (M

h
1 ~hy

T3yy

for a=h] where 030b(x3) is bounded and

o "S(h-l""t)
in which
K315(x3,t,s) = 1im K3](x3.t,s) . (€.3)

S0

From Eq. (3.49) by using Eqs. (2.27) and (D.2)

1-2(hy-t)s  3=2(h*xa)s =s{h.+x,)
- _ A 1 373 373
K315(x3stas) = - 7 (k*1I Tt DT

(E.4)
can be written with which (E.2) gives

-1
kgys(xgot) = =3 (41)[Q(hg#x3) aﬁg*%lft-(hﬁhaﬂa)l (E.5)

where
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-1 -1
Qs ¥ 2[“""1) - “""3"3) l .,

1 1 (E.6)
0 = [(Mxy) = 3(1acg) ] .
Substituting (E.5) into (E.)) we obtain
1 M d -1
°3yy("3'°) x -2u1 T Ih [05(h3+x3) a};"' Qs][t'(h]*hs"'xa)] G(t)dt
1
+ aaob(xa) . (E.7)

The integral in the last expression can be evaluated by
following the procedure followed in section 3.4.2. Hence

one can get

(x4:0) = =20 i) ] + 0oy Xa) (E.8)
a ’ E ’ .
where

04 = U](Q5Y‘QG)/51HWY (E.9)

and 031b(x3) is again bounded.

Now substituting (E.8) into Eq. {3.40)
(2hy)Y

=
]
1
n
=
=

-20, Vim vZ (hy=x)6; (%))
%y

-Q3(hy) Y84 (1) (E.10)
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is obtained. Here

-{y+.5)
03 B 04(2) Y (K]+])/U] ’ (E-”)
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