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NOMENCLATURE

a,b Half lengths of crack!; 	 in laminates and buffer
strips

E Young's modulus of elasticity

G i Crack surface displacement derivatives

h l ,h 2 ,h 3 Half widths of laminates, 	 buffer strips and
adhesive layers

k a ,k b Stress	 intensity factors

p(a,b)(x) Jacobi	 polynomials

pl,p2 Crack surface tractions

r,s Fourier transform variables

u„ v i Displacement components 	 in x- and y-	 directions

x i ,y,z Rectangular Cartesian coordinates

a,B,y Power of singularity at the crack 	 tip

cij,yij
Components of strain tensor

is 3-4v for plane strain,
(3-v)/(l+v)	 for generalized	 plane	 stress

Ratios of elastic material 	 parameters

u Shear modulus of elasticity

V Poisson's	 ratio

V Laplacian operator

°ij,Ti9 Components of stress tensor

Oi Bounded multiplicative	 part of Gi

e i Normalized	
01

(") Fourier cosine	 transform

(') Fourier sine transform
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ABSTRACT

The effect of the adhesive layer on crack propagation

in composite materials is investigated. The composite me-

dium consists of parallel load carrying laminates and buffer

strips arranged periodically and bonded with thin adhesive

layers. The system is assumed to approximate boron-epoxy

composites. The strips, which are assumed to be isotropic

and linearly elastic, contain symmetric cracks of arbitrary

lengths located normal to the interfaces. Two problems are

solved for both plane strain and plane stress cases. In

the first problem, thin adhesive layers are approximated by

uncoupled tension and shear springs distributed along the

interfaces of the strips for which only the case of internal

cracks can be treated rigorously. The second problem is

introduced in order to study the case of broken laminates

and tc detect the true singular behavior in the presence of

the adhesive layer. In this case the adhesive is treated

as an isotropic, linearly elastic continuum. General ex-

pressions for field quantities are obtained in terms of in-

finite Fourier integrals. These expressions, with relevant

boundary and continuity conditions, give a system of sing-

ular integral equations in terms of the crack surface

displacement derivatives. By using appropriate quadrature

formulas, the integral equations reduce to a system of

linear algebraic equations which is solved numerically.
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Then, stress intensity factors and some significant stress

components are calculated. The results are compared to

those obtained by neglecting the adhesive layer (perfect

bonding assumption). Results are presented in graphical

form.



I.	 INTRODUCTION

Fracture mechanics is the study of the strength of a

structural member that contains a crack. A normally ductile

member may behave in a orittle manner if it contains cracks

or other flaws which are sufficie^i_ly large. Adhesive-

bonded composites tend to have flaws due to the complexity

of shape, chemical dissimilarities, and assembly procedures.

These flaws, under load, may develop into cracks with a re-

sultinc, brittle failure.	 In applying fracture mechanics,

it is assumed that all real structures have initial flaws

or cracks, and that failure is caused by the propagation of

the largest of these. The techniques of fracture mechanics

can measure the intrinsic toughness of the material, which

determines the load-carrying capacity of the structure in

the presence of flaws. Therefore, if the size of the

largest flaw in a particular structure is known, minimum

toughness standards can be established for the materials in

the structure. One has to adopt a proper fracture criterion

and decide on the type of "load factor" to be evaluated.

Usually the fracture criterion consists of a simple com-

parison between a calculated load factor and a material

constant which is determined from certain standard experi-

ments.

Inmost fracture analyses, two basic (essentially equiv-

alent) approaches have been used with variations. With one

-3-



approach, due originally to Griffith (1920), the energy

required to propagate a crack of a given size is considered.

A crack will propagate if the rate of release of the stored

energy per unit growth of the crack exceeds the rate of

change of the surface energy required by the new surfaces.

According to Irwin [1], the stress field in the vicinity of

a crack tip can be adequately defined for studies of crack

extension by a single parameter, proportional to the stress

intensity factor. Since this parameter is a function of the

applied load and crack size (it increases with load), when

the intensity of the local tensile stresses at the crack

tip attains a critical value, a previously stationary or

slow-moving crack propagates rapidly. This critical value

defines the "fracture toughness" and it is a constant for

a particular material, since cracking always occurs at a

given value of local stress intensity regardless of the

structure in which the material has been used. Fracture

toughness has the same relationship to brittle design that

yield strength has to ductile design. Variations of these

theories also have been useful. When a significant degree

of plasticity takes place in the structural member, the

usefulness of the elastic stress intensity factor as a

correlating parameter becomes questionable. For cases where

large-scale yielding can be expected, there are other cor-

relating parameters that have been suggested in recent

-4-
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years such as the J-integral, crack opening displacement,

plastic stress and strain intensity factors, etc.

In the fatigue o;' bulky structures with no high stress

concentrations, the major portion of the fatigue life is

elapsed before the formation of macrocracks. The remain-

ing portion of the fatigue life is relatively very short.

On the other hand, in composite structures the formation of

a dominant macrocrack may take plats relatively early in

the fatigue life. Hence in such cases the propagation

phase, i.e., the number of load cycles necessary for the

fatigue crack to reach a critical length at which the strut-

tune may fail statically, represents the major portion of

the total fatigue life. Therefore in composite structures

propagation and arrest of fatigue cracks is a major subject. 	 _ta,

Since the stress intensity factor is the simplest and the

most appropriate single variable used in studying the fa-

tigue crack propagation, its evaluation attracts consider-
.

able attention.

Because of the ever-increasing use of modern composite

materials in a wide variety of structural applications, the

mechanics of multi-phased materials has attracted consider-

able attention, particularly within the last ten or fifteen

years. A great amount of work in this area has been con-

cerned with the influence of the localized imperfections

on the overall response of the medium regarding its failure.

-5-
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The primary interest is mostly in the initiation and propa-

gation of fracture in the composite material. The fracture

process may start as the initiation of a fatigue crack at

a local imperfection in the composite material. This crack

then propagates with the cyclic effect of applied loads re-

sulting in structural failure at stress levels considered

moderate in relation to the theoretical strength of the ma-

terial. There are two types of failure: (1) due to a con-

trolled rate of cracking, arising from a steady rate cf

stressing; (2) due to catastrophically fast crack growth.

The latter one needs more attention since the growth cannot

be controlled easily. The main reason for the use of rel-

atively low stiffness and high toughness buffer strips par-

allel to main load-carrying laminates in designing with

high strr ,.;ith composite materials, is to improve the fatigue

crack propagation and arrest characteristics of the struc-

ture.

The use of very strong epoxy type adhesives has been

very common in joints of flight and space vehicle structures

in which lightweight and high fatigue strength are dominant

requirements. Epoxy based adhesives are also being used

increasingly in stiffening, joining, and repairing precast

prestressed concrete and other structures.

The adhesive layers, which serve as the bonding agent

in composites, have not been treated adequately in

-6-
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literature (see [2]).	 In the past some of the problems,

particularly the problems relating to the traction-free

boundaries, have presented considerable analytical diffi-

culties. There are some finite element solutions which are

good to the extent that they are reliable. However, these

solutions miss the correct singular behavior near the cor-

ners and hence, from the viewpoint of fracture studies,

they are of limited value. In recent years, with the in-

troduction of the concept of generalized Cauchy kernel and

the development of the related numerical techniques (see

[3], [41) it seems that some of these problems can now be
treated in an analytically correct manner. For example,

the problem of a composite isotropic plate which consists

of oarallei load-carrying laminates and buffer strips has

been solved by Erdogan and Bakioglu [5]. In this study

the effect of the adhesive layers has not been taken into

account. Eisenmann and Kaminski [6] had considered this

problem before. They concluded that crack arrest could be

achieved through the use of buffer strips in the primary

load-carrying laminates. However, their analytical work

in evaluating the quantities which are useful in design

considerations is not complete. The same problem has re-

cently been considered by Delale and Erdogan [7] for ortho-

tropic materials again neglecting the adhesive layers.

Erdogan and Civelek [S] have treated the thin adhesive

layer as a shear spring in the contact problem for a thin

-7-
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elastic reinforcement bonded to an elastic plate. In the

stress analysis of a metal ba-e plate stiffened by a fijer-

reinforced composite layer Erdogan and Arin [9] assumed

that the two materials are bonded through an adhesive which

is treated as a two-dimensional shear spring. The problem

of an elastic plate bonded to a rigid horizontal substrate

through an adhesive layer has been considered by Williams

[10]. In this work, the adhesive layer has been assumed to

react as a Winkler elastic foundation. It should be noted

that the essential assumption introduced by Winkler allows

for vertical motion and dilatation stress only. In one of

the most recent works, Updike [11] has investigated the

effect of adhesive layer elasticity on debonding of a blis-

ter test specimen, The adhesive layer has been treated as

a distributed spring or elastic foundation which transmits

normal and shear stresses between plate and support.

The objective of this work is to investigate the effect

of adhesive layer on crack propagation in composite ma-

terials. A composite medium, which is generated by parallel

main load-carrying laminates and buffer strips bonded

through thin adhesive layers, is considered. Materials of

main laminates and buffer strips are assumed to be iso-

tropic and linearly elastic. Main laminates and buffer

strips are arranged periodically and they are assumed to

contain symmetric fatigue cracks of arbitrary lengths and



traction-free surfaces normal to their longitudinal direc-

tion. The composite medium is loaded in y-direction con-

siderably far from crack region (see Figure 1). The solu-

tion to this problem can be obtained by superposition of

solutions for the following twu problems: (1) A strip

having no crack loaded in y-direction, and (2) a strip

having a crack whose surface is subjected to the negative

of the stress distribution obtained at the same location in

the first problem resulting from the applied loads. Solu-

tion of the first problem is relatively simple and straight-

forward hence one pays more attention to the second problem

(see Figure 2). Therefore we solve the perturbation prob-

lem 'in which crack surfaces are subjected to prescribed

tractions.

Thin adhesive layers are approximated by distributed

uncoupled tension and shear springs. As it can be seen

g in the relevant references mentioned above, short of con-

sidering the adhesive as an elastic continuum, this is the

most sophisticated model for adhesives in literature. A

formulation is given for both plane strain and plane stress

cases. General expressions for displacement and stress

components are obtained by solving field equations using
Iq

{

Fourier transform technique. Applying boundary conditions

and the continuity conditions at the interfaces a system

of singular integral equations in terms of crack surface

.>lr_



displacement derivatives is derived. By using appropriate

quadrature formulas, these integral equations are converted

to a system of linear algebraic equations which is solved

numerically. Stress intensity factors and stress components

for imbedded cracks are computed and results are given in

Figures 3-16. The results are compared to those obtained

without taking thickness of the adhesive layer into account.

Then the case of broken laminates is considered. It is ob-

served that the spring model approximation is not suitable

under these circumstances when the crack touches interface.

Therefore, in order to be able to examine the singular be-

havior of the cleavage stress, we introduced the problem

described in Chapter III.	 In this problem, the adhesive is

treated as an isotropic and linearly elastic medium. All

laminates are of the sam4 material and thickness but the

cracks are of different lengths (see Figure 17). The prob-

lem is solved for imbedded cracks in order to determine

limitations for the spring model approximation in the first

problem. Comparison of two solutions can be seen in Fig-

ures 18-23. The case of broken laminates can now satisfac-

torily be solved. The power of singularity at the crack

tip is determined from the characteristic equation obtained

by following Iluskhelishvili [12].	 The integral equation is

replaced again by a system of linear algebraic equations

and this system is solved to calculate the stress intensity

-10-
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factor and stresses. These results are given in Figures

24-37. Discussion of numerical results and conclusions

can be found in Sections 2.5 0 3.6. and Chapter IV.

-11-



II. SPRING MODEL PROBLEM

2.1 Formulation of the Problem

Consider a medium consisting of infinitely many number

of linearly elastic and isotropic strips bonded together.

These strips constitute periodically arranged load carrying

laminates and buffer strips which are of different thick-

nesses and material properties. There are fatigue cracks

in laminates and buffer strips normal to the interfaces.

Main laminates and buffer strips are bonded through thin

layers of adhesive. Loads are applied away from the crack

region and in a direction parallel to the strips (see Fig-

ure 1). Solution for a strip having a crack of traction-

free surface and loaded sufficiently far From the crack

region can be obtained by superposing the solutions of

(i) a loaded and uncracked strip, and (ii) a strip having

a crack whose surface is subjected to the negative of the

stress distribution acting on the image of the crack in

the uncracked strip due to remotely applied loads. There-

fore in solving the abovementioned elastostatic plane prob-

lem, one should first solve the problem of a strip having

a crack whose surface is subjected to a prescribed traction.

In this work we will consider the singular part of the

problem in which the self-equilibrating crack surface trac-

tions are the only external loads (see Figure 2).

-12-



First, we will establish the forms of the field quan-

tities for a strip having a crack. Forms of the exp essions

for the field quantities for a strip having a crack and

which is loaded sufficiently far from the crack region can

be obtained by superposing the general expressions of these

quantities for:	 (1) an untracked strip, and;(2) an infin-

itely large medium having a crack.

The basic equations for a linearly elastic, isotropic

medium in plane problems can be written as (see [13]):

Strain-displacement relations:

au
^xx	 ax

8 	 (2.1a-c)
cyy - ay

au + 3v
Yxy ey ax

where exx , eyy , yxy are component.; of the strain tensor,

u, v are displacements in x- and y-directions in a Cartesian

coordinate system.

4

Stress-displacement relations:

1
2u °xx

-	 K +1
2TK-1^

au +	3-K	 a 
a"x	 T(K T ay

1
1°yy

_	 3-K
^TK-TT

au	 K+1	 9 
ax +-CK=>-T aY

1
21XY

_	 1	 au	 +
- 2 ( 2y

av
ax)

-13-
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where axx' ayy , T xy are components of the stress tensov, u

is the shear modulus, K-3-4v for plane strain case, and

K=(3-v)/(1+v) for generalized plane stress case, v being

the Poisson's ratio.

Equilibrium equations, in the absence of body forces:

Dau + K-T x ( ax + ay ) 	'

(2.3a,b)

where v z = 
a + 

a2 '

2.1.1 SUip Having no Cnach

Taking the Fourier cosine transform of Eq. (2.3a) and

sine transform of Eq. (2.3b) in y-direction, and combining

the resulting equations, we obtain:

d--c - 2s2 d2v + s°w = 0 ,
dx	 <lx̂T	

(2.4)

where (-) stands for the sine transform and s is the trans-

form variable. Note that the strip is symmetric about both

x- and y-axes.	 The solution of Eq. (2.4) is:

"v = [f(s) + K 	 g(s)]s -l cosh(sx)+g(s)x sinh(sx) 	 (2. 5a)

where f(s) and g(s) are unknown functions. Similarly,

u = - [f(s)--K-1— g(s)7s -l sinh(sx)-g(s)x cosh(sx)	 (2.5b)

-14-
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where (") implies the cosine transform. Taking the inverse

transform of Eqs. (2.5), displacement components are found

to be

u(x,y) _ - n r{[f(s)-	 g(s)ss-lslnh(sx)

+ g(s)x cosh(sx)}cos(sy)ds

(2.6a,b)

v(x,([f(s)+ 
K+l 

g(s)ls-I cosh(sx)y) 
m n ^ 

+ g(s)x sinh(sx)}sin(sy)ds .

Substituting Eqs. (2.6) into Eqs. (2.2) one obtains the

following expressions for the stress components:

oxx (x,y) = - 2—x JW[f(s)cosh(sx)+ g(s)sx sinh(sx)lcos(sy)ds
0

2u cyy(x,y)
= n J ([f(5)+ 

2g(s)lcosh(sx)
o	 (2.7a-c)

+ g(s)sx sinh(sx)}cos(sy)ds

IT xy(x,y) = ,2—x jo([f(s)+ g ( s)lsinh(sx)+g(s ) sx cosh(sx)}sin(sy)ds

2.1 .2 EQaa.tia So id Having a Cnack

Taking now the Fourier sine transform of Eq. (2.3a)

and cosine transform of Eq. (2.3b) in x-direction and com-

bin I ng again the resulting equations, one obtains

-15-



dY.. 2rz d^ + r° g = 0	 (2.8)

in which r is the transform variable. Note again that the

medium 1s symmetric about both x- and y-axes. Solution to

Eq. (2.8) vanishing when y+m becomes then

0 = _ m(r)r"
1 (	

_ ry)e" ry ,	 (2.9a)

where m(r) is an unknown function. Similarly,

v - m(r)r-l("*' + ry )e -ry .	 (2.9b)

Taking the inverse transforms of Eqs. (2.9), we get

u(x,y) _ - n !mm(r)r"l(^ - ry)e "rysin(rx)dr

o	 (2.10a,b)

v(x,y)	 n j^m(r)r"1('^	 + ry )e" rycos(rx)dr .
0

Substituting Eqs. (2.10) into (2.2) one obtains the stress

components as follows:

guaxx (x, y ) _ - 
n ^^

m(r)(1-ry)e-rycos(rx)dr
0

u aYY(x,y) = - n !^m(r)(l+ry)e" rycos(rx)dr ,(2.11a-c)
a

T xy( x ,y) - - 2—s Om(r)rye -ry sin(rx)dr10

2.1.3 Sup.enpc.6ition

Now consider a strip which has a crack on which there

16-



are prescribed tractions as the only external loads. Gen-

eral forms of displacement and stress components are es-

tablished by superposing those for an uncracked strip t and

a cracked space as mentioned before. Hence we obtain:

ui ( xi .Y) • - e r(s -l [fi (s) - K	gi(s)7sinh(xis)

+ xigi(s)c0sh(xis)}cos(ys)ds

K -1

- n f r`lmi(r)( 	- ry)e-rysin(xir)dr
0

(2.12a,b)
K +l

vi (xi .Y) = it	1[fi(s) + T- 9i(s)3cosh(xis)
0

+ xigi(s)sinh(xis)}sin(ys)ds

K +l

+ n for l mi ( r )( 2 + rY)e rycos(xir)dr
1

as the general expressions for displacement components for

the i-th strip where 1=1 for the main load carrying lamin-

ates and i = 2 for buffer strips. Similarly, general ex-

pressions for the stresses become:

2I °ixx(xi,y) = - ,2—x fo[fi(s)cosh(xis)+sxigi(s)sinh(xis)]cos(ys)ds

-
 
n f'm,(r)(1-ry)e-rycos(xir)dr

0



I
oiyy ( x i ,y) • n ^{[fi(s) +2gi(s) ]cosh(xis)

+ sxigi(s)sinh(xis))cos(ys)ds

- ,22 jomi (r)(1+ry)e -rycos(x i r)dr .

(2.13a-c)

^— tixy(xi,y) n n {[fi(s)+gi(s)]sinh(xis)

+ sxigi(s)cosh(xis))sin(ys)ds

- n mi (r)rye-rysin(x i r)dr .
0

The unknown functions f i (s), g i (s) and m i (r), (i m 1,2) can

be determined by using appropriate boundary and continuity

conditions.

2.1.4 Continuity Cond.i,tdona

Consider the elastostatic plane problem shown in Fig-

ure 2. Load carrying laminates ( 0 ) having thickness of
2h i are bonded to buffer strips ((2 ) of thickness 2h 2 by

means of thin adhesive layers ( 0 ) of thickness 2h 3 . Main

laminates and buffer strips contain symmetrical cracks of

lengths 2a and 2b respectively located on the line y=0,

normal to y-axis. Thin adhesive layers are approximated by

distributed tension and shear springs. That is, the x

-18-
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r
component of normal stresses and the x-y component of shear

stresses in the adhesive layer are assumed to be constant

through the thickness 2h 3 . Then the continuity conditions

may be written as:

o lxx (h lj y) ` a2xx(-h2ey) . 0<Y4,

(2.14a,b)

Tlxy (h l s y ) 4 T 2xy ( - h 2 .y)	 # 04y<m

u l (h l ,Y) - u 2 (-h 2 .Y)	 - go— olxx(h1^Y)	 04y4m

(2.15a,b)

v l (h l .Y) - v2(-h2,Y)	 ho Tlxy(hl+Y) , 04y4^
0

where ho = 2h 3 , 11e = u 3 . Eo =E 3/(1-v3) for generalized plane

stress case [e3yy-01 (03zz)ay. 
-0] and Eo=E3(1-v3)/(1+v3)

(1-2v 3 ) for plane strain case (E3yy=0, c3zz=0) where E is

the Young's modulus and the subscript ( 3 ) stands for the

adhesive layer.

Substituting Eqs. (2.12), (2.13) into Eq3. (2.14),

(2.15), taking Fourier sine and cosine transforms of the

resulting equations in y, and making use of the integral

formulas given by (A.1) in Appendix A we obtain the follow-

ing four equations:

K1-1	
z(a1 +2a4shoa2 )fl (s)+a3f2 (s)+(- 2 al+shla2+2a4s hohlal)gl(s)

K -1
+ (- -^ a3+sh2a4 )92 (s) _ - Fll(s)-2a4shoF13(s)-F21(s) .

-19-



and

IM

K +1
(a2+2a3shoal )fl (s)-a4f2 (s)+( — a2+shlal+2A352hohl02+2a30oal)91(s)

- K-^(— a4+sh2a3 )92(s) - -F12(s)+2x3shoF14(s)+F22(5)

-a2fl (s)+A2m4 f2 (s)-sh l al g l (s)+a2sh2a3g2 (s) - F13(s)-Y23(s)

(2.16a-d)

a1fl(s)+a2a3f2(s)
+(al +shla2)gl(s)

+ A2 (a3+sh 2a4 )92 (s) - F14 (s)+a2F24 (s) ,

where

al - sinh(sh l ) ,

M
2 - cosh(sh l ) ,

a3 = sirh(sh2)

01 4 = cosh(sh 2 ) ,

X
1 = u l /u 2	 a 2 = 112 /111

X
3 = u l /uo , a4 = U1/Eo

The functions F ii (s), (i=1,2;J=1-4) are defined by (B.1) in

Appendix B.	 Solving Eqs. (2.16) simultaneously we obtain

the unknown functions f i (s), g i (s), (i=1,2) in terms of

j	

-20-
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IM

infinite integrals of the other unknown functions mi(r),

(i=1,2) as follows:

f i (s) - E [a if F lf (s)+b if F 2f (s)le -shi ,

f=1	 (2.17a,b)

g i (s) =	 E [c if F lf (s)+d if F 2f (s)le -shi , (1 = 1,2) .
f=1

Known functions a if , b if , c if , d if (i=1,2;f=1-4) are given

in Appendix B by (B.2).

2.1.5 Boundan.y Conditions

The boundary conditions related to symmetry about x-

and y-axes have already been used in deriving the general

expressions for displacement and stress components. The

remaining boundary conditions are used to determine the two

unknown functions mi(r),(i=1,2). These boundary conditions

may be stated as follows:

v l ( x 1 90) = 0	 ,	 a<lxll<hl

(2.18a,b)
v2 (x2 ,0) = 0	 ,	 b<lx2l<h2

alyy(x1,0) = - p 1 (x l )	 0<lxll<a

(2.19a,b)
02yy(x250) = -p 2 (x 2 )	 ,	 0<Ix21<b

Eqs. (2.18) can be replaced by:

ax v i (x i3 O) = 0 , a i <jx i I<h i	 ( a 1 =
a,a 2 = b)	 (2.20)

i

-21



and

E

J ai exi v i (x i3 O)dx i = 0	 0=1,2)	 (2.21)

-ai

The unknown functions m i (-• ), (i=1,2) are determined
from the mixed boundary conditions (2.19) and (2.20).

2.2 Derivation of Integral Equations

Substituting Eqs. (2.12b), (2.13b), and (2.17) into

Eqs. (2.19) and (2.20) we could obtain two sets of dual in-

tegral equations for m i (r), (i • 1,2). However, we will fol-
low a more direct procedure to solve the problem by defining

new unknown functions. G i (x i ), as

Gi(xi)	 2x v i (x i3 O) , (1 = 1,2) ; 0 <Ix i l< h i 	 (2.22)
i

From Eqs. (2.12b) and (2.22),

G i (x i ) = (- Kill) n 
Jo m

i (r)sin(x i r)dr .	 (2.23)

Taking the Fourier sine transform of Eq. (2.23) in x i and

using Eq. (2.20),

m i (r) _ - K +1 Jai G i (t)sin(rt)dt	 (2.24)
i

is obtained.

Now using Eq. (2.24) and the integral formulas given

by (A.2) in Appendix A, the functions defined by (B.1) may

be expressed as:
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F iJ(s) = K i +
joi [Mij (s,t)-M,J (s,-t)]G i (t)dt	 (2.25)

where

Mij (s,t) . N ii (s,t) e-s(hi-t) ,	 (2.26)

and

Nil(s.t) _ -s(h i -t) + I- i

•

	

	 1 +K
i

N 12 (sot) = s(hi-t) - 2 

(2.27a-d)

Ni3(s,t) - s(hi-t)

Ni4 (s ' t) = s(h i -t) - 1 , (1 =1,2) .

From Eq. (2.13b) we can write,

oiyy (x i ,o) = n
	

{[fi(s)+2gi(s)]cosh(xis)+sxigi(s)sinh(xis))ds

- lim [,2-2 J m i (r)(l+ry)e-rycos(x i r)dr]	 (2.28)
0

With m i (r) as defined in Eq. (2,24), the second integral in

Eq. (2.28) becomes;

M

lira [f , m (r)(l+ry)e-rycos(x r)dr] = - —^ 2 	 J ai ( I + I )G (t)dt,
yi0+	 Ki+1	 p t- x i t+x i i

(i=1,2) .	 (2.29)

N,te that,



1 +K1
- -TT P I 	 , -a<xl<a

(2.32a,b)

r	 i

Gi(xi) _ - G i (-x i ) , (i=1,2)
	

(2.30)

due to symmetry of v i (x i ,y) about y-axis.

Substituting Eqs. (2.17), (2.25), and (2.29) into Eq.

(2.28) and using Eq. (2.30)

oiyy(xi'0) _ j E1{n 
Kl+	

faGl (t)dt 
f0

Mlj(s,t)[(aij+2cij)cosh(xis)

+ cijsxisinh(xis)]

	

4u	 b	 m

	

e -shi ds + n 2+	
1 bG2 (t)dt foM2j(s,t)[(bi]+2dii)cosh(xis)

.
+ d ii sx i sinh(x i s)]e -shi ds)+ x 

K i4u+1 Iai
ai G i(t

(t) dt,(i=1,2)

(2.31)

is obtained.	 Now Eqs. (2.19) with Eq. (2.31) give,

a G (t)	 a	 1 +K	 b

n fa t
-xl dt + fakll(xl,t)Gl(t)dt + f+K2 Jbk12(xl.t)G2(t)dt -

Ir f

b G (t)	 1 +K	 a	 b
t x2 dt + +—Kj fa k21 (x2 ,t)Gl (t)dt + Jb k22 (x2 ,t)G2(t)dt =

-b	 -

1+K2

4112 P
2 (x2 ) , - b<x2<b

as the integral equations for the new unknown functions

Gi(t),(i=1,2) where the kernels k ii (x i ,t), (i,J = 1,2) are

given by

-24-



k ii (x i ,t) - fMK ii (x i .t,$)e -s(h f -t) ds .
0

(2.33)

The expressions for the functions Ki](xi,t,$) are given in

Appendix B by (8.5).

The dominant parts of the integral equations (2.32)

have a simple Cauchy type singularity for a<hl and b<h2.

However. it is worthwhile to take a closer look at the

Fredholm type kernels k i] (x i ,t). The integrands of the

kernels vanish as s+w and are bounded everywhere except for

s=0. From (B.5) it can be seen that as s+0 the functions

Li](xi,t,$) = K ij (x i ,t,$)e -s(hi-t) behave as s -1 .	 That is,

for small values of s,

Li^(xi,t,$) = a^ + 0'(1) ,
	

(2.34)

where i,J = 1,2, and 
ai3 

are constants independent of t. We

can write,

J 
00	 E	 m
o L ii (x i ,t,$)ds = f o L i] (x i ,t,$)ds + jeLii(xi,t,$)ds

(2.35)

for any 0<e<-. Choo

Li](xi,t,$) in [0,e]

[see Eq. (2.34)], we

JoLii(xi,t,$)ds

sing a very small c, and hence replacing

by its asymptotic expansion around s=0

can rewrite Eq. (2.35) as

( c a..

= Jo [
 s-+ 0'(1)]ds + J e L i ^(x i ,t,$)ds .

(2.36)
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Now consider the last equation and, for example, the fol-

lowing integral appearing in Eq. (2.32a):

•	 jakll(xet)G1(t)dt=jaGl(t)dt{ Jo[asl+O'(1)]ds

-a	 -a

+ f Kll(xl,t,$)e-s(hl-t)ds}

= ja[joC(1)ds+ jeKll(x1,t,$)e-s(hl-t)ds]Gl(t)dt

-a

+ jaGl (t)dt - j
e 
"sl ds.	 (2.37)

-a
0

Using the single-valuedness condition, Eq. (2.21), we can

see that the last integral in Eq. (2.37) vanishes. The re-

maining integrals are all bounded and they can be evaluated

numerically. One can show similarly that the singularity

around s=0 is removable for all kernels.

All the known special cases may be recovered from

Eqs. (2.32) by letting a,b,h l ,h 2 , and h o (or E0 911 0 ) go to

proper limits.	 For example, for h 0 = 0 Eqs. (2.32) become

identical to those found in [5].	 Note that makifig h o very

small has the same effect as making E o , uo very large due

to spring model assumption. That is, a very small h o cor-

responds to a very stiff adhesive and as h o increases the

r.dhesive becomes less stiff. Hence the case of direct ad-

hesion of laminates to buffer strips [5] can be achieved

-26-
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by letting Eo ,uo-►m too. An infinitely large h o will then

imply that there is almost no bond between laminates and

buffer strips. Therefore, letting h o -*m (or Eo ,uo+o) we re-

cover the case of a center-notched strip having traction-

free straight boundaries [14]. By letting h o-•0 (or Eo,uo+`)

and making laminates and buffer strips be identical (a=b,

h l = h 2 , u l = u 2 , v I = v 2 ) we can obtain the solution for the case

of colinear cracks in a homogeneous medium [15]. If we let

b=0, h o-0 (or Eo ,uo .►m ), and h 2im , the integral equations

(2.32) reduce to an integral equation in G 1 (t) for the prob-

lem of two half planes bonded through a center-notched

strip [16].

2.3 Solution of Integral Equations

2.3.1 No Cnack in Ba64eh S.tUp.6 (a<hl,b=0)

In this case the integral equations (2.32) reduce to:

1 a G 1 (t)	 a	 1+K1

n j 
t-xl dt + fa	 1+K

 = - T11 P 1 (xl ) , -a<xt<a
-a

(2.313)

where G l (t) is unknown, and p l (x l ) and k 11 (x l ,t) are known

functions which are Holder-continuous in the closed interval

[-a,a].	 A function f(x) is said to be Holder-continuous in

[-a,a], if for any two points x l ,x 2 in [-a,a] the following

condition is satisfied:

s



I f(x2 ) -f(xl )I< AIx2-x l l u , -a<x<a	 (2.39)

where A and u are positive constants, and 0<u<l.

G I (t) and k 11 (x l ,t) being HSlder-continuous, the sec-

ond integral in Eq. (2.38) gives a bounded function of xl.

Hence, the singular behavior of G 1 (t) may be obtained by

studying the dominant part of Eq. (2.38) only:

l ra G, (t)

IT J	 t-x dt = F
l (x l ) , -a<x l <a	 (2.40)

-a	 i

where F 1 (x l ) contains all the bounded terms in Eq. (2.38).

Define the sectionally holomorphic function,

a G(t)

^1(7) =
Elf J	 t-z d 	 (2.41)

-a

Assume that the unknown function G l (t) has the following

form:

G (t) =(t)(t+a)OR+a)a - 
C(t+a)a ne ar t= -a	

(2. 42)
1	 1	 (t+a) near t=a

where 0 1 (t) is a bounded continuous function in the closed

Interval [-a,a], and a,s are yet unknown constants restrict-
s
i	 ed by -1<a,O<O, which implies that the unknown function

I`	 G1(t) has an integrable singularity at the end points t=±a.
J
a

Following [12] and using Plemel,i formulas [17] given

below
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1

\

V J (X l )-' 1 ( X1 )	 ° GI(XI)
` (2.43)	

r
i

+	 l	 a GI(t)

dt'^1(xl) + ^	 (xl) ' ni
 la	 t-xl

t

the	 value of W 1 (x l )	 around	 x l =-a and x l m a	 can be found as
f

-(2a) co	 Q'1(-a)(Xl+a)5+01(-a)^Yil(xl)+^,12(xl) around xi=.a,

ry1 (xl ) = (2.44)

(2a)Sc°—Fa 0 1 (a)(•x l+a)a+O l (a)V 13 (x l ) +^14 (xl ) around xl=a,	 i

where ^ li (x l ),	 (1 . 1-4)	 are bounded	 in	 [-4,a]. From Eqs.	 3

(2.40),	 (2.41),	 and	 (2.44)
i

-(2a)acot7rOol(-a)(xl+a)6+ ( 2a)Scotira ¢1(a)(-xl+a)a- Fll -a<xl<a	
)

(2.45)

where	 F ll (x l )	 contains all	 the	 bounded terms. Multiplying

Eq.	 (2.45)	 first	 by	 (-x l+a) -a and	 letting	 x l -+a, and then by

(x l +a)
-S
	and	 letting	 x 1

 -+-a
s

cot rra = 0
(2.46a,b)

cot 7rS = 0

are	 obtained	 for	 -1<a,s<0	 since	 ^1(-a),¢l(a)o 0.

Eqs.	 (2.46)	 give

a = S = -1/2 (2.47)

The	 index of the	 problem which	 is	 defined	 by
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K	 - (a+p)	 (2.48)

is related to the physical nature of the problem. In this

problem, G l (t) has integrable singularities at both ends

and K E +1.	 From Eqs. (2.42) and (2.41) we obtain

=
G1(t)	

Q1(t)

The solution of the problem

stant [12]. Theoretically

using the single-valuedness

due to symmetry, Eq. (2.21)

if one considers a solution

-a<t<a .	 (2.49)

will contain one arbitrary con-

this constant is determined by

condition, Eq. (2.21). 	 However,

will be automatically satisfied

satisfying Eq. (2.30).

Now substituting Eq. (2.49) into Eq. (2.38) we obtain

a 0 (t)	 1+K
,11 

1a al -t I t - I P 1 ( x 1 ) , -a<xl<a . (2.50)

Define non-dimensional variables w,T by

x i
 = aw	 ,	 t = aT	 ,	 -a<x l ,t<a	 (2.51)

Then Eq. (2.50) takes the form

r1 a (T)
1 1-1 ^ [T-w + 7ak11 (aw,aT)]dT = - 1	 -1<w<1	 (2.52)
n

where

el (T) = a^ • ^a(p, )	
(2.53)

'	 -30-
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and p l (x l ) is assumed to be p l (x l )= p l n constant. Actually,

this is not an assumption. The self-equilibrating pressure

acting on the crack surface is p l =corstant when the strips

are subjected to uniformly distributed normal loads in y-

direction. The integral in Eq, (2.52) can be evaluated by

using the Gauss-Chebyshev integration formula given in [17].

Hence, Eq. (2.52) becomes

N
i l l e i (T i )[ Tj ^ wj + irak ll (awj ,aT i )] = -N	 p	 (2.54)

where

T i = cos[(21-1)7T/2N]	 (i=1,...,N)

(2.55a,b)

W  = cos(fir/N)	 ,	 (f = 1, ... ,N-1)	 ,

are the roots of related Chebyshev polynomials, 	 Eq. (2.54)

provides (N-1) linear algebraic equations for (N) unknowns,

e l (T i ), (1=1,...,N).	 The single-valuedness condition, Eq.

(2.21), which can now be written as

N
e l (T i ) = 0	 (2.56)

i=1

j	 completes the system of (N) equations for (N) unknowns.

I	
However, one can take advantage of symmetry and can deal

with less number of equations.	 Using Eq. (2.30) we can,

write Eq. (2.52) in the following form,

(s ;

rJ



r

1 r

o JT-Tr

t e t (T)	 t	 t
IT J	 [T—w + T+w + nktt (w,T)]dT - -1 , O<w<l	 (2.51)

where

k11 (w,T) - a[kll (aw,aT) - kll (aw,-aT)]	 (2.58)

Now Eq. (2.51) can be replaced by

6l ( T^)[T lw + T +w + rrkll (wj ,T j A _ -N	 (^=1,•..,n)
i = 1	 i J	 i

(2.59)

in which T i and wi are the same as in Eqs. (2.55) and 2n-N.

Eq. (2.59) constitutes a system of (n) linear algebraic

equations in (n) unknowns, 6 1 ( T i ), (i=1....,n).	 The single-

vatuedness condition, Eq. (2.21). is automatically satis-

fied by the solution obtained from Eq. (2.59).

After determining 6 l (T) at discrete coloration points,

the field quantities can be computed numerically. In frac-

ture problems, one is interested mostly in the so-called

"stress intensity factor". The stress intensity factor

may be defined in terms of cleavage stress, alyy(x1,0),

and may be expressed in terms of 6 l (T) 3s follows (see

Appendix C):

ka = Iim 2 x l -a a, yy (x 1 ,0) = - Fa P l e l (1) , a<h l 	(2.60)
xi -• a



f

r	 I- 	 -I

2.3.2 No Uach in Main Lamina .tee (a-O, b < h 2 )

The integral equations (2.32) reduce to

n 
1b t

G2( 2 dt + jbk22( x2 ,t)G2 (t)dt - - 12 P2 ( x2 ) , -b<x2<b .

(2.61)

Following a procedure similar to the one followed in sec-

tion 2.3.1, we determine the behavior of the unknown func-

tion G 2 (t) as

Yt)	
(2.62)

where 0 2 (t) is a bounded continuous function in the closed

interval [-b,b].

Substituting Eq. (2.62) into Eq. (2.61) one obtains

1 b 02 (t)	 1	 1+K2

a f [t _X2 + A22 (x2 .t)]dt - - ^ P2 ( x2 ) , -b<x2<b (2.63)

Defining non-dimensional variables n,T by

x 2 = bn	 t = bT	 -b<x2,t<b	 (2.64)

Eq. (2.63) takes the following form

1 

11 

e2(T)	

1IT -1 J1—^ [
T_n + irbk22 (bn,bT)1dT = -1	 -1 <n<1	 (2.65)

where
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a 2 (T) - 
+K2 	 y2(bT)	

(2.66)
2	

pb2

and p 2 (x 2 ) n p 2 -constant. Using the Gauss-Chebyshev inte-

gration formula given in [17], Eq. (2.65) becomes

i=1
62(Ti)[T i '-n f + 7t bk 22 (bn j ,bT i )] - -N	 (2.67)

Note that

Ili 
= wi	 ,	 (.)-1,...,N-1) $	 (2.68)

T i ,w i being defined in Eqs. (2.55), and hence Eq. (2.67)

can be written as

0 2 (T i )[ T l W + nbk 22 (bwj ,bT i )] = -N	 (2.69)
i=1	 i	 J

The single-valuedness condition, Eq. (2.21), in this case,

becomes

N

0 2 (T i ) - 0	
(2.70)

Eqs. (2.69) and (2.70) constitute again a system of (N)

linear algebraic equations for (N) unknowns, 62(Ti)'

(1=1,...,N).	 Taking again the advantage of symmetry,

namely using Eq. (2.30), Eqs. (2.69) and (2.70) can be re-

f	 placed by

n
i ^ l g 2 ( Ti )[ Ti l w^ + Ti +wj + tr[C22 (wj .T i )] = -N , (J=l,...,n)

(2.71)
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where

k22 (wj , T i ) = b1k22 (bwj .bT i )- k22 (bwj .-bT i )1 ,	 (2.72)

and 2n= N.	 Eq. (2.71) give (n) linear al gebraic equations

for (n) unknowns, 0 2 (T i ), (i n 1,...,n). e 2 obtained from

Eq. (2,71) will satisfy the single-valuedness condition,

Eq. (2.21), automatically.

The stress intensity factor, in this case, may be ex-

pressed as (see again Appendix C):

kb 
X2 b M2-'T a2yy

( x2,0) = - J6 P2e2(1) b<h2	
( 2.73)

2.3.3 Cnaeks in Lam.ina.te.e and Bu66eh. S.t&ip6 (a<h,,b<h2)

The singular behaviors of G 1 (t) and G 2 (t) at the end

points t= -a,a and t= -bob respectively will be the same

as in the cases where there are cracks in one type of strips

only.	 Now substituting Eqs. (2.49) and (2.62) into Eqs.

(2.32) we obtain

1 a 4
1 ( t )	1	 1+K1 b ^2(t)

v J d v^ ^t-xl
+^rk11 (x l , t )^dt +^ jb 7 k12(xl,t)dt

1+K1
_ -	 P1(Xl) , -a<x l <a ,

(2.74a,b)

1+K2 fa ^l(t)	 1 b 02 ( t )	 1

T+K1 1a Utz k21 (X2 ,t)dt + Tr (b b2-t2 [ t=x2 + nk22(x2,t)7dt

1+K2	 L
- - 2 P2 (X2 ) ,
 

-b< <b
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and

N
e k (T i ) = 0 , (k=1,2)

i=1

(2.78)

Using the non-dimensional variables defined by Eqs. (2.51)

and (2.64), Eqs. (2.74) and (2.21) become

a 

r1
J-1	 z {e 1 (T)LT-w + nak11 (aw,aT)]+ e2(T) 

P 
pl alnbk12(aw,bt)}dT

-1 , -1<w<l

(2.75a,b)

P

I 1
1

1	 {e,(T)p2 X 2,rak21 (bn,aT)+ (T)[-n + nbk22(bn.bT)]}dT

= - 1, .-1<n<l ,

and

J'sk (T)dT = 0 , (k=1,2)	 (2.76)

-1

Use of Gauss-Chebyshev integration formula for the evalua-

tion of integrals in Eqs. (2.75) and (2.76) Leads us to

iN {e1(Ti)LTi1wi 
+ nak11 (awj ,aT i )] + 0 2 (T i ) P1 a l rrbkl2 (awj ,bT i )) _ -N ,

(2.77a,b)

N	 P1

(0
J1(Ti)p2 a2 irak2l(bwj,aTi)+62(Ti)[Ti 1

	
+7rbk22(bwj,bTi)]}= -N

i
	 .

(J=l,...,N-1)

which constitute a system of (2N) linear algebraic equations
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for (2N) unknowns, e k (T i ), (k=1,2;i=1,...,N).	 We can use

Eq. (2.30) with Eqs. (2.75) to nbtain

{e 1 (T i )[T lw + T +w + nk 11 (wj ,T i )] +e 2 (T i )P2 7 1 nk12 (w^,T i )} = -N ,
1=1	 i - 3	 1	 pl

(2.79a,b)
n ^h

i l l
{9 1 (T i )p2 ,X2nk21(w],Ti) +B2(Ti)[TiIw]+ 

I +
Ti nk 22( w^$ T i p = - N

0=1,...,n)

where

k12 (w] , T i ) = b[k72 (aw] ,bT i ) - k12 (awj ,-bT i )] ,

(2.80a b)

k21 (wj' T i ) = a[k2l (bw] ,aT i ) - k21
(bwj ,-aT i )] .

Eqs. (2.79) give an (NxN) system.

Definitions of the stress intensity factors will be

the same as those in Eqs. (2.60) and (2.73) since the sing-

ular behaviors of the functions G i (t), 0=1,2), at the end

points are not affected by the cracks in the other strips

for a<h 1 and b<h2.

In these numerical solutions we cannot determine the

values of the unknown functions e 1 ,e 2 at the end points di-

rectly from the system of linear equations, since we are

not allowed to choose the end points as colocation points,

as it can easily be seen in Eq. (2.55a).	 Nevertheless,

using an appropriate summation formula [18], which is based
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on the properties of Chebyshev polynomials, we can deter-

mine e l (1),9 2 (l) in terms of the values of 8 1 ,9 2 at co-

location points. From [18], we can write

- 1 n sin[ 2̂ (21 -1 )Tr]
k(l) - n it	 sin[	 ^r]	

9k (Ti) , (k=1,2)	 (2.81)

One should keep in mind that the above approximate formula

can be used for a=g=-1/2 only.

2.4 Stresses at the Interfaces

We consider the stresses at the interfaces for the

case in which there are cracks in main laminates (a<hl,b=0)

only. The other cases can be treated similarly. Since the

shear stresses, T ixy , and the normal stress in x-direction,

oixx' are assumed to be the same for both strips at the

interfaces, for the sake of simplicity we consider the

stresses in the buffer strips when there are cracks in the

main laminates.

Now, from Eqs. (2.13) we can write

2u2 a2xx (-h
2 ,y) _ - 'Tr Jo [f

2 (s)cosh(h 2s) + sh2g2(s)sinh(h2s)]cos(ys)ds

I02yy(-h2,y) =, r Jo {[f2 (s) + 2g2 (s)]cosh(h2s) + sh292(s)sinh(h2s)l

cos(ys)ds ,
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T2xy (-h2 ,Y) _ - n J°
{ Lf2 (s) + 92 (s)]sinh(h2s) + sh2g2(s)cosh(h2s))

sin(ys)ds ,	 (2.82a-c)

since m2 (r) is zero by definition, Eq. (2.24), for b=0.

Using Eqs. (2.17) with Eq. (2.25)

a

f2 (s) _ E	 2 e
-sh2(a LMIi

(s,t) - M1 ^(s,-t)]G1 (t)dt ,
3=1	 1	 °	

(2.83a,b)

92 (s)	
E ^— e-sh2JoLM1.)(s,t) - M1i

(s,-t)]G 1 (t)dt ,
^ = 1	 1

are obtained.	 Then substituting Eqs. (2.83) into Eqs.

(2.82), the stress expressions become

112 °2xx(-h2,Y)= - r +K1 J0Lh21(Y,t) - h21(Y,-t)]G1(t)dt

21 a2yy(-h2,Y)=,^ +
K1 

J0Lh22(Y,t) - h22(Y.-t)]Gl(t)dt

T2xy(-h21Y)= - ,a 
+K1 

J0Lh23(Y,t) - h23(Y,-t)]Gl(t)dt

(2.84a-c)

where

h2k (Y.t) = Jm
0 H 2k

(Y,t,$)e-s(hl-t) ds , (k=1-3)	 (2.85)

and

a	 -sh2

H
21

(y,t,$)= , I 1 N
1j

(s,t)[a 2j cosh(h2s)+ c
2i

sh 2sinh(h 2 s)]e	 cos(ys)
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H22 (y9t9s)= JI N1 J(s,t)[(a2j +2c2j)cosh(h2s)+c2Jsh2sinh(h2s)]e-sh2

cos(ys)

a	
- 2

H23(y , t ,$) _ ^j1N1^(s,t)[( a2^+c2^)sinh(h2s)+c2^sh2cosh(h2s)]e sh

sin(ys)	 (2.86a-c)

Now using Eqs. (2.49) and (2.53) with the non-dimen-

sional variables w,T defined by Eq. (2.51), and defining p

by

Y = h i p	 (2.87)

we obtain

1	 1 el(T)
°2xx(-h2 ,Y)/Pl = -a2 n 10 /r--T-T 621(P,T)dT

l	 1 el(T)
°2yy(-h2,y)/Pl = a2 n 

10 ^^ R=-=T
(2.88a- c)

(1 9l(T) h

23(P.T ) dT ,T2xy(-h2 ,Y)/Pl = - 2 n 
J0

where

h2k (P,T) = a[h2k (h l p , aT )- h2k ( h l p ,-aT)l , (k=1-3) .	 (2.89)

The Gauss-Chebyshev integration formula given in (17] again

can be used to evaluate the integrals in Eqs. (2.88). Hence

a2 n
02xx (-h2 ,y )/P l = - -N- i1181(Ti)621(P,Ti) ,
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n

02yy( h
2 , y )/p l =	 if 1 0 1 

( T i ) h22 (P,T i ) ,
	

(2.90a-c)

T2xy(-h2,y )/P l = - F Wel(Ti)b23(p,Ti)
2.5 Numerical Results
	

i

The analysis carried out is valid for both plane

strain and generalized plane stress cases. The systems of

equations (2.59), (2.71), and (2.79) are solved numeric-

ally for 8 k ( T i ), ( k=1,2;1=1,...,n).	 In computing the

kernels, the infinite integrals are evaluated by using the

approximate Laguermquadrature formula [19] since the in-

tegrands have exponentially decaying behavior. Once ek(Ti)

are determined, the stress intensity factors and the

stresses at the interfaces can then be computed easily.

Note that the stresses are computed for the perturbation

problem whose configuration and loading conditions are

shown in Figure 2. Assuming that there is no constraint

in x-direction, and the composite medium shown in Figure 1

is loaded in y-direction sufficiently far from the crack

region (i.e., the dimension of the medium in y-direction is

large compared to that in x-direction), the crack surface

tractions in Figure 2 satisfy the following conditions:

p l /P 2 = 
E l /E 2 	 for plane stress case, 	

(2.91a,b)

P l /P 2 = E 1 (1- v2) /E 2 (1-v i )	 for plane strain case.
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Here E l and E 2 are the Young's moduli for the strips lD
and O7. respectively. The problem is solved for three

combinations of materials:

Combination I:

Il l = 6.65u2 , u 3 = 0.167u2
 ; vl =v3=0.35  , v2 = 0.45

El = 12.38 x 1010N/m2 (17.955 x 106psi) ,

E2 = 2.0 x 10 I ON/m2 (2.9 x 106psi) ,

E 3 = 0.31 x l O l ON/m2 (0.45 x 106psi) .

Combination II:

P2=111 . u
3 = 0.025u1 ; vl = v2 = v3 = 0.35 .

E 1 = E2 = 12.38 x IOION/m2 (17.955 x 106psi)

E 3 = 0.31 x 10 1 ON/m2 (0.45 x 106psi) .

Combination III:

u1 = µ2 , 113=0.167p2 ; v l = v2 = 0.45 , V3=0.35

El = E 2 = 2.0 x 10 1 ON/m2 (2.9 x l O6psi) ,

E 3 = 0.31 x 10 1 ON/m2 (0.45 x l O6psi) .

Among these, Combination I is the most significant

one which is assumed to approximate boron-epoxy composites
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having buffer strips of the same material with different

stiffness.	 In this combination, the first strip is the

stiffest one and the adhesive layer is the softest one.

Figures 3-16 show the results obtained for material Combin-

ation I.	 Figure 3 shows the variation of the normalized

stress intensity factor, K I = k a /,rS p l , with a/h, for

h 2 = h l (*) , b = 0 (section 2.3.1), h 3 /h l = .00, .05, and .10;

for plane strain and generalized plane stress cases. 	 It

may be observed that:	 (a) K I increases with increasing	 a

h 3 /h l ; (b) K I is larger in generalized plane stress case;

(c) K I increases with increasing a/h l .	 Figure 4 is the

plot of K
2 = k b /V'6 P2 vs. b/h. for h I =h 2 , a =0 (section

2.3.2), h 3 /h 2 =.00, .05, and .10; for plane strain and cen- 	 a

eraiized plane stress cases again. One can conclude that.

(a) K2 increases as h 3 /h 2 increases; (b) K 2 is larger again

in generalized plane stress case; (c) The trend in varia-

tion of K 2 with b/h 2 depends on the ratio h 3 /h 2 .	 For small

values of h 3/h 2 (up to -.04) K2 decreases with increasing

b/h 2 .	 For larger h 3 /h 2 ratios K2 increases with increasing

b/h 2 .	 It is well known that the stress intensity factor at

the tip of a crack approaching the interface of two differ-

ent materials increases if the crack is in the stiffer

material and decreases if the crack is in the softer

(*) Problem  is formulated in such a way that the ratio h2/hl
can vary.	 But the results are shown for h2/h1 = 1 to con-
form with the experimental programs carried out elsewhere.
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material.	 When h 3/h 2 is small, it seems as if the crack in

buffer strip approaches the main laminate, which is stiffer
1

than buffer strip, when b/h 2 increases. But when h 3 /h 2 is	 1

large, the adhesive layer, which is softer than buffer

strip, seems to dominate. One should also keep in mind 	 '

that increase in h 3/h 2 is equivalent to relative decrease

in E39113 due to spring model approximation. 	 Figures 5-8

show the variation of K 1 and K 2 with a/h 1 and b/h 2 for

h 2
 = h l , h 3 /h 1 = .00, .05, and .10.	 Main laminates and buffer

strips both contain cracks (section 2.3.3). We can observe

and state similar conclusions as in Figures 3 and 4. 	 In

Figures 9 and 10, variation of K 1 with h 3 /h 1 is shown for

h 2 = h l , a/h 1 = 0.8, b/h l = 0.0, 0.8, and h 3 /h 1 = 0 -100. As

h 3 /h l increases, K1 also increases tending to the asymp-

totic value for h 3 
+W which corresponds to the case of

center-notched infinite strip having traction-free straight
I

boundaries, since h3-w is equivalent to E 3 ,u 3{0.	 Figures
7

11 and 12 show similarly the variation of K 2 with h3/h2

for h 1 = h 2 , a/h 2 = 0.0 1
 0.8, b/h 2 = 0.8, and h3/h2 =0 _100'

K 1 and K 2 become equal to'each other when h 3 -
w (or E3,113-+0).

Note that the solution (stress intensity factor) for a

center-notched single strip is independent of the material.

All the results obtained for h 3 = 0 are exactly the same as

those in [5].
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In Figures 13,14 distributions of the stress compon-

ents a2yy and T 2xy along x 2 = -h 2 boundary for generalized

plane stress case with h 2 = h l , h 3 = 0.05h l , b = 0 are shown.

As the crack propagates, the stresses at the interface in-

crease.	 Note that a lxx (h l ,y)= a2xx (-h 2` y)• T lxy (h l' y) _

T2xy (-h 2 ,y) and axx ,ayy are symmetric whereas Txy is anti-

symmetric about the x-axis. Figures 15 and 16 show the

variations of a 2yy (-h 2 ,0) and T 2xy (-h 2 ,h l ) with h 3/h l again

for generalized plane stress case in which h 2 = h i s b= 0.

Beginning at h 3 = 0, a 2yy first increases (up to h3=.012hl)

and then decreases as h 3 /h l increases, limiting value being

zero for h 3;m , whereas T 2xy decreases continuously, vanish-

ing for h 3 - W . This is expected since h 3 
+M (or equivalently

E 3 ,u 3-+0) relieves the constraints on the boundaries.

We attempted to solve the problem for a= h l , b= 0.

But some unavoidable troubles arose.	 For example, a singu-

larity power of -1/2 is found from a characteristic equa-

tion which does not contain any material constants. 	 It is

now obvious that the spring model used to approximate the

adhesive layers is not suitable for this case. The model

is valid for cases where crack tip is away from the ad-

hesive layer. So we introduced the problem described in

the next chapter in order to be able to examine the effect

of the adhesive on the solution of the problem when a = hl.

In this problem, the adhesive is treated as an elastic

continuum.
-45-

i
1

19

Aj



III. CONTINUUM MODEL PROBLEM

3.1 Formulation of the Problem

Consider the following problem: Infinite number of

strips of the same material and the same thickness of 2hl

are bonded through adhesive layers of thickness 2h 3 . The

main laminates contain periodically arranged symmetric

cracks of lengths 2a and 2b on the line y = 0 perpendicular

to y-direction (see Figure 17). The strips pl and O2

are symmetric about x- and y-axes. Therefore the general

expressions derived in Section 2.1.3 for displacement and

stress components are still valid for the main laminates

in this problem. But the adhesive layers are symmetric

with respect to x-axis only. Therefore we have to derive

displacement and stress expressions for the adhesive layer.

3.1 .1 Die pkaeemen.t and S.taea

Now let us consider Eq. (2.4).	 The adhesive layer is

symmetric about x-axis only. The solution to Eq. (2.4) for

a strip with no symmetry about y-axis becomes

K +1

v3 = s [ 2 f4 (s) + 94 (s)+ sx 3g 3(s)] sinh(sx3)

(3.1a)
1	 K3+1

+ s [f3 (s)+-7—g3(s)+sx3f4 (s)] cosh(sx3)

where fi(s),gi(s),(i=3,4) are unknown functions.	 We can get
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r — 1

K 1
u
3 ° - s L f3 (s) - 2 93 (s)+ sx 3f4 (s)1 Binh (sx)

K 1

- s 194(s) - -- f4 (s) + sx 393 (s)1 cosh(sx3)
(3.1b)

in a similar way. Taking the inverse transforms of Eqs.

(3.1), the displacement components are found as,

u3(x 3 ,y )	 - n 10 s ([f3(s)_ K
—3,f— 93 (s)+ sx3f4 (s)] sinh(sx3)

0

K3-1

+ 194 (s)_ —T-f4(s)+ sx 3g3 (s)] cosh(sx3)}cos(sy)ds

(3.2a,b)

2 	 1	
K3+1

v 3 (x3 ,y ) = n j s {L--2— f4 (s)+94 (s)+sx393(s)] sinh(sx3)
0

K3+1
+ [f3(s) + 2 9 3 (s)+ sx3f4 (s)] cosh(sx3 ))sin(sy)ds .

Substituting Eqs. (3.2) into Eqs. (2.2) we obtain,

a3xx(x3,y) _ - i Jo
{Lf3 (s) + sx 3f4(s)] cosh(sx3)

+ 194(s)+ sx3g 3 (s)] sinh(sx 3 )}cos(sy)ds ,

2u3 a3yy(x3 ,Y) = F Jo{[f3(s)+ 293 (5)+ sx3f4 (s)] cosh(sx3)

+ 194(s)+ 2f4 (s)+ sx
3g3(s)] sinh(sx 3)}cos(sy)ds ,
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` n	
{Lf3 (s)+ g 3(s)+ sx3f4(s)]sinh(sx3)2u3 T3xy(x3,Y) 

(3.3a-c)

+ [f4 (s)+ 94 (s)•f sx3g3(s)]cosh(sx3))sin(sy)ds

for a strip having no crack.

3.1.2 Boundary and Continu-ity Condit.ione

Boundary conditions on the line y - 0 for this problem

are the same as those in Eqs. (2.16), (2.19). 	 However, the

continuity conditions do change since the adhesive layer is

not modeled as distributed springs any more. Taking the

adhesive layer as an elastic continuum we can write the

following conditions of continuity:

°lxx(hl,Y) _ °3xx(-h3,Y) ,

Tlxy(hl•Y) = T3xy( -h3,Y)

u l (h l ,Y) = u3 (-h3 ,Y) ,

v 1 (h l ,Y) = v 3 (-h 3 ,Y) ,

(3.4a-h)

°2xx(-hl,Y) = o3xx(h3,Y)

T2xy (- h l ,Y) = T 3xy ( h 3 ,Y) ,

u2 (-h l ,Y) ° u 3 (h 3 ,Y) ,

v2 (-h l ,Y) = v 3 (h 3 , y ) , 04y< '	.
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Substituting Eqs. (2.12), (2.13), (1 . 1,2), and Eqs.

(3.2), (3.3) into Eqs. (3.4); then taking the Fourier sine

and cosine transforms of the resulting equations in y; and

using the integral formulas given by (A.1) in Appendix A we

obtain the following eight equations:

%02fl (s)+Xshl chgl (s)-04f'. (s)-sh3
a3g3(s)+sh3a4f4 (s)+a3g4 (s) n -XF13

aalfl(s)+a(al+shla2)91(s)+a3f3(s)+(a3+sh3a4)93(s)-(a4+sh3a3)f4(s)

-"4g4(s) 
= IF14 ,

alfi( s!+[( 1-Kl)al/2+shla2]gl(s)+a3f3(s)+[(1-K3)a3/2+sh3a4]g3(s)

-[sh 3a3+(1-K3)a4/2]f4 (s)-a494 (s) _ -Fll '

a2f1(s)+[shla,+0+a,)a2/2]91(5)-a4f3(s)-[sh3a3+(1+K3)a4/2]93(s)

+[( 1+K3 ) a3/2+s h 3a4 ] f4( s )+a3g4( s ) = 412 '

aa2 f2 (s)+dshl al 92 (s)-a4f3 (s)-sh 3a3g3 (s)-sh 3a4f4 ( s )-a3g4 ( s ) = -aF23

aa1f2(s)+a(al+shla2)92(s)+a3f3(s)+(a3+sh3a4)93(s)+(sh3a3+a4)f4(s)

+a494 (s) = AF9-4

aIf2(s)+[(1-Kl)al/2+shla2]g2(s)+a3f3(s)+[(1-K3)a3/2+shp4lg3(s)

+[sh3a3+(1-K3 )a4/2]f4 (s)+a4g4 (s) = 421 '

a2f2(s)+[shlal+(1+K1)a2/2]g2(s)-a4f3(s)-[sh3a3+(1+K3)a4/2]g3(s)

-[(1+K3)a3/2+sh3a4]f4(s)-a3g4(s) = 422
	

(3. 5a-h)
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where

a 1 = sinh(sh l ) ,

012 
= cosh(sh l ) ,

U 3 - sinh(sh3)

a4 = cosh(sh3)

and X = ul/113.	 The functions F ij (s), (i=1,2;j=1-4) are

defined in Appendix D. 	 After solving Eqs. (3.5) simultan-

eously, the unknwon functions f i (s), g i (s), (i = 1-4) are ex-

pressed in terms of infinite integrals of m i (r), (i=1,2)

as follows:

f i (s) = I [a ij F lj ( ) + bijF2j(s)le-shk

j=1	 (3.6a,b)

gi(s) =j41[cijFlj(s)+ di
	

hk	
(i=1-4)jF2j(s)]e s 	 .

where k = 1 for i = 1,2 and k- 3 for i = 3,4. 	 ai j , b i j , c i j ,

d ij , (i,j = 1-4) are given in Appendix D. 	 The unknown func-

tions m i (r), (i=1,2) can again be determined from the

mixed boundary conditions (2.19) and (2.20).

3.2 Derivation of Integral Equations

Defining G i (x i ), (i = 1,2) as in Eq. (2.22) we can simi-

larly obtain
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mi(r) = - K +T j a iGi(t)sin(rt)dt 	(i=1,2)
1

(3.7)

Following a precedure similar to that followed in section

2.2 and using the pertinent equations one can write

a	 1 a	 m

0iyy(xi90) = 

4p1

K1+1 
jgl( 7T jaGI(t)dt 10 lj(s,t)[(aij+2cij)cosh(xis)

+ cij sx i sinh(x i s)]e
_ 
shl ds + n j 

b 
G2 (t)dt j Mlj(s,t)

_b	 o

[(bij+2dij )cosh(x i s)+ dijsxisinh(xis)]e-shlds}

4,,l
	 1 ai Gi(t)

+ K +l i J	 t=x dt	 (i=1,2)	 (3.8)
1	 _ai	 i

Now substituting Eq. (3.8) into stress boundary conditions,

Eqs. (2.19), we obtain

a	 b	 1+K

1r f [t-xl +irkll (x l ,t)]G,(t)dt+( b k12 (x l ,t)G2 (t)dt = -	 pl(xl)
-a

-a<xl<a

a	 b	 1+K
Jk21(x2,t)G1(t)dt+n 

Jb[ 
-'x2+^rk22(x2,t)]G2(t)dt=- ^ P1(x1)

-a

-b<x2<b
	

(3.9a,b)

where the kernels k ij (x i ,t), (i,j=1,2) are given by

kij (x i ,t) = JWKij (x i ,t,$)e s(hl-t) ds	 (3.10)
0
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and	 K ij ( x i ,t,$) are given	 in Appendix D by	 (D.5). kii(xi,t)

behave similar to those used in	 Section 2.2.

Again some special cases can be recovered from Eqs.

(3.9) by letting some length and/or material parameters go

to proper limits. For example, for a= b one can obtain the

one-crack case in [5].	 For a = b and h 3 = 0 or 
11 3 = I'll

v 3 2 vi we recover the problem of colinear cracks in an elas-

tic solid [15].	 If we let 113.0.0 the integral equations (3.9)

reduce to an integral equation for the problem of a center-

notched strip [14]. By making h 3y- we obtain the case of

two half planes bonded by a center-notched strip [16].

Finally by letting h 1 +- or h 2+- we recover the case of a

crack in an infinite elastic solid.

3.3 Solution of Integral Equations

Following exactly the same procedure as in Section

2.3 we can obtain, for the case of crack in strip Ol
only (a<h1,b=O),

n
el(Ti)[T 

1w 
+ T +w. + Trkll(W j, T i)] = -N	 (.)=1,...,n)	 (2.59)

i=1	 i-	 i J

which is to be solved for e l (T i ), ( i=1,...,n) and e l (T) is

defined in Eq. (2.53). For the case of crack in strip 2Q

only (a=O,b<hl), we will have again
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E a2(Ti)[T lW
	 +W + nk22 (WJ ,T i )] _ -N , (J=19...,n)	 (2.71)

i = 1	 i J	 i j
in which

4u1	02(bT)	

(3.11)

In case of crack in both strip 	 and strip 2O (a<h ,b<h1	 1)'
n
j

l 
{g l (T i )[ Ti ^Wj * Ti+WJ + Trk ll (mJ ,T i )] + g 2 (T i )1rk 12 (wJ ,T i )) = -N,

n

	

{e l ( T i ) nk21 (WJ ,T i ) +	 (Ti)[92T lW + T 1	 + a k22 (WJ .T i )]) = -N, Ti -6)i 	 i J
(j=l,...,n)	 (3.12a,b)

are the equations to be solved for e k (T i ), (k=1,2;i=1,...,n1

Eqs. (2.60) and (2.73) are still valid for the stress in-

tensity factors for a<hl, 
b<h l in this problem.

3.4 Case of Broken Laminates (a=hl,b=0)

3.4.1 The In.tegna.2 Equation

In this case, Eqs. (3.9) reduce to

1

hl	 1 +K
h [t lxl + ^k ll (x l ,t)]Gl (t)dt = - ^ P 1 (xl ) , -h l <x l <h l .
_1

(3.13)

However, k ll (x l ,t) is no longer bounded in -h l <x l
,t<h l

 and

it has point singularities at t= h l and x l = +h l .	 Eq. (3.13)

-53-



1

is not an ordinary singular integral equation since it

contains generalized Cauchy kernel. Integrand of the in-

finite integral giving k ll (x l ,t) is bounded and continuous

everywhere in 0<s4w, and the singularity near s= 0 is re-

movable (see Section 2.2). The divergence in the integral

is due to the behavior of the integrand as s-+-. One can

separate the asymptotic part of K ll (x l ,t,$) by writing

K11 (xl ,t.$) = Klls(xl,t,$) + Kllf(x,t,$) 	
(3.14)

where

Klls(xl,t,$) = lim K11(xl,t,$) 	 ,	 (3.15)
S4_

and Kllf(xl,t,$) is bounded in O<s< m .	 Now define

-s(hl-t)
klis (xl ,t) = j Klls(xl,t,$)e
	 ds ,

o	 {3.16a,b)

°°	 -s(hl-t)
kllf(xl,t) = f Kllf(x1,t,$)e	 ds ,

0

so that

kll (x„t) = klls (xl ,t) + kllf(xl,t)	
(3.17)

	

kllf(xl,t) being bounded in -h l <x l ,t<h
I
.	 After taking

limits it is found that

nKlls(xl,t,$) = {[4Ql h l (h l -t)s 2 -Q1 (8h 1 -6t)s + 3Q 1 + Q2)cosh(xis)

- 2Qlxl[2(hl-t)s2-s]sinh(xls)}e-shl
	

(3.18)
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where

Ql = (1-a)/(X+Kl) .

(3.19)

Q2 = (Kl -AK3 )/(1+AK3 ) -

Using the following integral formula [20]

	

j

n -s(2h^ -t) sinh((x s 	 do	 1	 x1	 =os a	 {cosh(x^s;} ds = dt
n [TFl

-t)2 -x^ {2h1-t}1
	 (n 1,2....)

(3.20)

we can evaluate the integral in Eq. (3.16a) and obtain

z
irklls(xl .t) T [4Q 1 (hl +x l ) z 	+ 12Q 1 (h l +x l ) ^+ 3Q 1 - Q21

[ _	 , +X, T1

+ I [4Q l (hl -xl )
z
 ^- 12Q1(hl-xl) ^+ 3Q1 - Q21

[t-	 1-x1	
( 3.21 )

Now substituting Eq. (3.17) into Eq. (3.13)

n J-hl [t ,xl +irkils(xl.t)]Gl(t)dt + Jhikllf(xl.t)Gl(t)dt

_	 1+K1
Pl(xl)	 hl<xl<h1	 (3.22)

is obtained.	 The terms in the bracket constitute a typical

generalized Cauchy kernel.

M
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3.4.2 Chaaac.teA.ie.t.ic Equa.t.inn

Assume that G l (t) has an integrable singularity at

t=+h l which can be expressed as

Triy

G1 = (h^ (t2)y	(t-hl)y(t+hl)Y ' 
jtj<h l	 (3.23)

where 0<Re(y)<l and 0 l (t) is Hdtder-continuous in the

closed interval -h l <t<h l .	 In order to determine the power

of singularity, y, one should study Eq. (3.22) near t= +hl.

Consider the following sectionally holomorphic function

^ l (z) = n
1. (hl 

Gt(z) dt	 (3.24)
-hl

which becomes

	

0 1 (-h l )	 eTriy	 1-	 01(h1)	 1	 +^yl(z)	
(2hl ) y	s-	 (z+h1)Y	 (2h 1 ) ysinTry (z-hl)y	

^10(z)

(3.25)

by using Eq. (3.23) and following [17]. 	 Here O O (z) is

bounded everywhere except at the end points ±h l where

10 (z) j <	 A	 , Re(Y ) <Re(y) ,	 (3.26)
10	 lz+hllyl	

1

A is a real constant.	 From Eq. (3.25), using the Plemeli

formulas given by Eq. (2.43) we obtain

01(x1) = 0 1 ( 'hY cot7TY	 _ 0 1 (h l^ cotITY	 + ^ ll ( xl )	 (3.27)
	( 2h,)	 (h l +xl )

Y

	(2hl ) (hl-xl)

Y



whc;re the behavior of I'll is similar to that of x'10. We

can similarly evaluate

n jh;Gl(t)(hl±xl) ax L t. 
1+x1 ] dt 

a 
(2h 1 ) Ysinny (hl xI)Y

+ (hl±xl) ^ ^12(±xl) .

Ih10 1 (t)(n l
±x 1 )2 

d' 
[t- 1 +x ] 

dt = — ^1(h1)	 +1

h l	 1	 1- 1	 (2h1)YsinTry (h1±xl)Y

+ (h l xl )2 x ^12(txl) ,

(3.28a,b)

where the behavior of x'12 is again similar to that of '10.

Substituting Eqs. (3.27), (3.28) into Eq. (3.22) and noting

that 0 1 (t) = - 0 1 (-t) from Eqs. (2.30) and (3.23) we obtain

^1(hl) [2cosTry-4Q l y(y+l) + 12Q 1 Y-3Q 1 + Q21
(2h 1 ) Ys inTry

[ (hl +xl)y 
+ (hl- F

l ( x l	 (3.29)) 

where F 1 contains all the bounded terms. Now multiplying

Eq. (3.29) by (h l +x l ) Y and letting x l -*-h l or multiplying by

(h l -x l ) Y and letting x l ah l , we obtain the following charac-

teristic equation for the unknown constant y:

2cos7ry+4Q 1 (Y-1) 2 -(Ql +Q2 ) = 0 .	 (3.30)
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One can see that this equation is the same as those found

in [5], [21], [22], [23].	 Eq. (3.30) is solved for y, the

power of singularity, which is assumed to be 0<y<l to get

an integrable singularity. We can find this real value of

y numerically, for exam»le, using Newton's iteration method

[24] within the desired accuracy.

3.4.3 Sotat.ion o6 In.teghat Equation

Define now the dimensionless variables W,T by

X
1
 = h 1 W	 , t = h 1 T	 41<x1,t<h1
	

(3.31)

Then Eq. (3.22), with Eq. (3.23), takes the following form

1	 1	 1	 ^1(h1T)

1	 [T-W + ^,hlklls(h1W,hlT) + irh
l kllf(h

1 W,h 1 T)l ( 
)2y(t -TZ)Y 

dT =
h1

1+K1
- ^ p1 (h,w)	 ( 3.32)

Introducing the new unknown function

4111	01(hiT)

el (T) _ T+K1 • (h^ ,	 (3.33)

t	 1

in which p 1 = p i (x 1 ) = constant, one can write

i

I 	 1	 01( T)

1 [ T -W + 7rh l klls (hl w,h 1 T) 
+ 7Thlkllf(h1W,h1T)]

(t -T)z 
y dT = -n

(3.34)
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(3.35)(j=1,...,N-1)

Note that (1 -T')
-Y 

is the weight function of the Jacobi

polynomials Pn(-Y'-Y)(T). Thus the integral in Eq. (3.34)

can be evaluated by using a Gauss-Jacobi integration for-

mula given in [17].	 Hence Eq. (3.34) becomes

n
T i )W i [ Ti I Wj + A klls

i^161(	 (hlWj'h1Ti) + ,hllllf(hlwj,h,Ti)l _ »-

in which T i ,mj are the roots of the Jacobi polynomials:

PN
(T i ) = 0	 ,	 (i=1,...,N)	 ,

p N 

0

1	 (wj) = 0	 (j=1,...,N-l)	 ,

and Wi(i=1,...,N) are the weights of P N	(Ti).

The single-valuedness condition, Eq. (2.21), which can be

written as

N
i ;1 0 1 (T i )Wi = 0
	

(3.37)

in this case, completes the system of (N) equations for (N)

unknowns, 9 1 (T i ). We can replace this system by an (nxn)

system by considering the symmetry of the strip about y-

axis. Hence

n
i ^l e l (T i )W i [7;::	 + Ti+^j + 

nklls (wj' T i ) + nkllf(Wj ,T i )] = -Tr

0=1,...,n) 	,	 (3.38)

in which 2n = N and
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ills( I*T i ) = hl[klls(hlwj,hlTi) - klls(hlwj,-h1Ti)3 ,

kllf(wj'T i ) = hl[kllf(hlwj,hlTi) - kllf(hl(dj,-hlTi)7

0,j•1,...,n)	 (3.39a,b)

is obtained.

Examination of stress expressions indicates that the

stress components are bounded for this case except o3yy

which has a singulari y at x 3 = -h 3 . The definition of the

stress intensity factor at the tip of the crack (xl=hl,

X3=-h3) is no longer the same as those in Eqs. (2.60),

(2.73) since the power of the singularity is not 1/2 any-

more. Now define

ka = x3 h3 V7(x3+h3)ya3YY(x3,0)	 a= h 1 ,	 (3.40)

which can be expressed as (Appendix E)

ka = -Q3(h l ) Yp 1 e 1 (1) , a=h 1 	(3.41)

Q 3 being defined by (E.11)	 in Appendix E. After solving

the system given by Eq. (3.38) for 6 1 ( T i ), ( i=l,...,n) we

can compute 6 1 (1) using an appropriate extrapolation tech-

nique. According to [18]

61(1) = mil cJpJ(1)	
(3.42)

J-1
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cj FyI 
In

 ill aimp^(-Y.-Y)(Ti)Ol(Ti)
21-2y t^ ;-L+n r

hJ = ^+l 3lr(i-2Y+ i)	
(3.43a-c)

11	 2-2y	 t m-	 .,	 2m-2y+22
im ` -	 m+ t m-

m-zY+
Y+2) pmt-y,-'(Ti)p(m+l.-Y)(Ti)

Hence 6 l (1) can be computed after determining y and comput-

ing 81(ti)^(i=1,...n).

3.5 Stresses

We consider the stress components which seem to be the

most significant ones for a<h i , b=0. The stresses at

X
2 = -h l can directly be obtained from Eqs. (2.90) as

1 n
N	 el(Ti)h21(P+Ti)	 a<hl

o2xx(-h
l ,Y)/ p i =	 'n'1

n J1 5l(Ti)Wi52l(P,Ti)	 a=hl

1 n
I E a ( T i )h22 (P.T i ) , a<hl

Q2yY(-hl ,Y)/Pl =	 il	 (3.44a-c)

n ni=1e1(Ti M 622 (P,T i )	 a=hl

n

^i	 al(Ti)h23(P,Ti)	 , a<hl

T 2xy(-h l ,Y)/ p l =	 i'n- n 
iFl 

1 
(Ti )Wih23(P,Ti)	 a=hl

where Ti(i=l,...,n) are defined in Eq. (2.55a) for a<h1 and

in Eq. (3.36a) for a= h 11 
	 From Eq. (3.8), by using Eqs.
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(3.10) and (D.5), one can write

o2YY(x2,0) = 7K
41 a

 T jak21(x2,t)Gl(t)dt 	 a<hl	 (3.45)

and following a procedure similar to the one followed in

section 2.4 he chr, further write

n

N iElel(Ti)k21(n,Ti)	 a<hl
02YY(x2,0)/Pl	

n

J1 
l ( T i ) W i k21 (n,T i )	 a=hl

where T i are the same as stated above and x 2 = hln.

From Eqs. (3.3) we obtain

4u3 1 a

03YY(x3,0) 
= K +l n j k31(x3,t)Gl(t)dt

1	 -a

4N3 1 a
o3xx(-h	 K +3 ,Y) _ -	 T n Jah34(Y,t)Gl(t)dt

where

°°	 -s(hl-t)
k 31 (x 3 ,t) = j K31 (x 3 ,t,$)e	 ds

0

-s(hl-t)

h34(.Y,0 = 
fm

 H34(Y,t,$)e	 ds
0

and

K31 (x3 ,t,$) = kI1Nlk(s,t)[(a3k+2c3k+a4ksx3)cosh(x3s)

-sh3
+ (2a4k+c4k+c3ksx3)sinh(x3s)]e
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ii

4
H34 (y ,t.$) - kI1Nlk(s,t)[(a3k-a4ksh3)cosh(h3s)

—sh3

- 
(c4k-c3ksh3)sinh(h3s)]e 	 cos(ys)	 (3.49a,b)

Defining x 3 =h 3 &, and using Eqs. (2.49), (2.53) for a<h l and

Eqs. (3.23), (3.33) for a = h l , then replacing integrals by

appropriate summations, we can rewrite Eqs. (3.47) as

1	 n
E e l (T i )k 31 (&,T i )	 a<h,

a3yy(x3,0)/Pl =	
i=1

1	 n
an	 e l (T i )W i k3i (E,T i )	 a=h1

1
—	 i F l e 1 ( ^`i )h 34 (P,T i )	 a<h1

°3xx(-h 3'y)/Pl =	 n

—71T  i=E 1el(Tj)Wih34(P,"i) 	
a=hl

where T i are given again by Eq. (2.55a) for a<h l , by Eq.

(3.36a) for a=h l ; ,Y`hlp, and

k31 (4,T i ) = a[k 31 (h 34,aT i ) - k31 (h 3C,-aT i )1 ,

(3,51a,b)

h34 (P,T i ) = a[h34 (hl p ,aT i ) - h 34 (h l p ,-aT i )7 .

3.6 Numerical Results

The problem is solved for both plane strain and general-

ized plane stress cases since the formulation is carried out

with K, definition of which characterizes plane strain or
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plane stress cases in itself (see section 2.1). Numerical

results are obtained for material combinations II and III

(see section 2.5 for definitions of material combinations).

The cases where a<h l and/or 
b<h 1 

are solved in the same way

as the former problem. Solutions for these cases are ob-

tained in order to establish limitations of the spring model

approximation in the first problem.

Figures 18-23 show comparison of the stress intensity

factors for various geometries and material combinations

for plane strain and plane stress cases. As one can see in

Figures 18-23, the stress intensity factor does not depend

on the material properties and plane strain or plane stress

cases when h 3=0. This is expected since h 3=0 corresponds to

the case of colinear cracks in an infinite elastic solid.

These figures show that the two solutions match very well

for practical values of h 3 /h l ratio 0 3 /h l = 0 -10%). Re-

sults do not vary for plane strain or plane stress cases.

But it is notable that agreement between the two solutions

is better for material combination II. As h 3 -;W the stress

intensity factors for a,b= 0,0.9h 1 become the same for

material combinations II and III, for plane strain and

plane stress cases in the problem where the adhesive layers

are approximated by distributed springs. Note that h 3 -+ m is

equivalent to E 3
,1'

3i0 which make the problem be the same

as a center-notched strip having traction-free boundaries.

-64-



P_
	

I	
Iq

However, in the second problem the stress intensity factors

depend on the conditions of plane strain or plane stress and

the material combination. 	 In Figures 22,23 the stress in-

tensity factors for a= b =0.9h 1 (for plane . iss case)

first increase as h 3 /h 1 increases (up to -.10), then start

decreasing with further increases in h 3 /h l . This, we be-

lieve, can be explained as follows: When h 3 is too small

the two cracks in adjacent strips are close to each other.

As h 3 increases the tips of these cracks will still be close

to each other for small values of h 3 whereas we will have

the effect of a thin soft layer between main laminates.

This will increase the stress intensity factors. But if h3

continues to increase, the cracks will loose the interacting

effect of each other which will make the stress intensity

factors decrease. As a result, for small values of h 3 , the

effect of increasing the thickness of the softer layer is

dominant; for larger values of h 3 , effect of ceasing inter-

action between two cracks dominates.

Figures 24 and 25 show the variations of the normal

stresses in x-direction on the boundaries of the adhesive

layer.	 The ;-formal stresses in x-direction in the adhesive

layer and the adjacent laminate increase as the crack prop-

agates. However, they can be reduced by increasing the

thickness of the adhesive layer. 	 In Figures 26 and 27 the

normal stresses in y-direction on the line y=0 are shown.
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These figures show that the cleavage stress ahead of a

crack decreases as the thickness, of the adhesive layer in-

creases. This is very important as far as crack arrest in

composites is concerned. One can seei in Figure 26 that the

cleavage stress at a location x 2 = -h 1 can be reduced to 1/3

of its value in a homogeneous medium by bonding strips with

adhesive layers of thickness h 3 = 59 1 for a= 0.9h 1 . Compar-

ison of Figures 25 and 27 shows that there is a possibility

of delamination along the line x 3 = -h 3 when the crack

approaches this boundary. The normal stress in x-direction

is much higher than the normal stress in y-direction at the

beginning of the adhesive layer. Therefore, depending on

the stre;igth of the bond between adhesive and laminates, a

crack approaching the interface may propagate along the

boundary (delamination) rather than going through the ad-

hesive layer.

In order to solve the problem for a=h 1 we should first

determine the power of singularity, y, from Eq. (3.30). By

using Newton's iteration method y is found for various

cases as shown in Table 1(a).	 Figure 28 and Table l(b) show

the variation of y with a= u1/N3 
for plane stress and plane

strain cases when v 1 = v 3 = 0.35. From these results one can

observe that the power of singularity is higher for plane

strain case. The difference is larger for small values of

X and it vanishes as a becomes larger. One can also observe



F_

that y= 0.5 for both plane strain and plane stress cases

when a= 1 for which the composite medium is equivalent to

a homogeneous medium. 	 y is lower than 0.5 for a<1 and

it is larger than 0.5 for W. Figure 29 shows the varia-

tion of the normalized stress intensity factor, K= ka/plhYj,

with a on a logarithmic scale for h 3 =.05h1, 'I= v 3 = 0.35.

For small values of a(<-1) K is larger for plane stress

case by an amount of more than 50%, then for larger values

of a it is almost the same for both cases. The value of

this normalized factor is much less for a>l than its value

for a<l in both plane stress and plane strain cases, van-

ishing as X;-.	 Variations of K for a=h 1 with h 3/h l are

given in Figures 30,31.	 Figure 30 shows the results for

material combination II whereas Figure 31 does for combin-

ation III. One can observe that (a) K is slightly larger

for plane strain case, deviation being small (the same

trend in y), (b) K is larger (-4 times) for material combin-

ation III, (c) K increases with increasing h 3 /h l ratio.

Figures 32-37 show some of the calculated results for

stress components. In Figure 32, the cleavage stress o2yy

at x 2 = -h l , y=0 varies as the crack in main laminate prop-

agates. The stress increases as the crack approaches the

adhesive layer. The value of the cleavage stress when the

crack touches the interface (a=h l ) is unbounded if h 3 = 0 and

it is bounded otherwise. Presumably this is the most
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important point in this problem. Th p infinite cleavage

stress (for h 3 =0) at the beginning of the second strip can
s

be made finite by considering even a very thin adhesive
;i

layer. This finite value decreases as the thickness of the

adhesive layer increases. Figures 33 and 34 show the varia-

tions of the stress components a2yy and T 2xy along x 2 = -hl

line in y-direction. These stresses decrease as y increases

and they are slightly larger for plane stress case. o2yy

becomes smoother over 0<y<- with increasing h 3/h l ratio

(relaxation).	 In Figure 35, the variation of a 2yy with

x 2 /h l at y=0 is shown for material combination II. a2yy

again decreases with increasing h 3 /h l ratio.	 Variation of

the cleavage stress a 3yy in the adhesive layer as the crack

approaches interface is shown in Figure 36. o3yy(-h3,0)

becomes unbounded when the crack touches the interface.
I

Figure 37 shows the variation of o 3yy with x 3 /h 3 on y = 0 line

for a=hl.
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IV. CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK 	 j

The effect of the adhesive layers on crack propaga-

tion in composites has been examined for both plane stress

and plane strain cases. Composite medium consists of main

load-carrying laminates and buffer strips bonded periodic-

ally through thin adhesive layers. The adhesive layers

have been approximated by distributed tension and shear 	 j

j
springs. We solved the problem for the cases where the

cracks were imbedded in laminates and/or buffer strips.

The problem has been reduced to a system of singular in-

tegral equations and this system has been replaced by a
'

	

	 7
system of linear algebraic equations which has been solved

numerically.	 The stress intensity factors and some stress

components have been computed and presented in Figures 3-

16. We saw that the stress intensity factors at the crack

tips have increased by taking the adhesive layer into ac-

count. They increase as the thickness of the adhesive

layer increases (or as Young's and shear moduli of adhes-

ive decrease). However, the presence of the adhesive layer

relaxes the constraints at the interfaces so that the

cleavage and shear stresses in the strip on the other side

of the adhesive layer decrease. This is important from the

point of view of crack arrest in composite materials. All

the relevant special cases treated in literature can be
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recovered from this solution which has been observed to be

in good agreement with them.

Then we attempted to solve the case of broken lamin-

ates. We observed that the spring model approximation is

not mathematically suitable for this case. Hence we in-

troduced the problem described in Chapter III in which the

adhesive has been treated as an elastic continuum. We

solved the case of imbedded cracks in order to establish

limitations of the spring model approximation in the former

problem. We concluded that the spring model is good enough

within practical ranges. 	 Approximation is not reliable for

very large thicknesses of adhesive layer or for compara-

tively weak adhesives. The case of broken laminates has

been solved without any major difficulty. The character-

istic equation to be solved for the power of singularity

has come out to be the same as those obtained in [5], [21],

[221, [23].	 Stress intensity factors still increase as

the thickness of the adhesive layer 'ncreases. 	 However,

the cleavage stress at the closer edge of the second strip

(first strip is broken) becomes finite in this case whereas

it has been found infinite by ignoring the adhesive layer.

Special cases can be recovered from this solution too. See

detailed numerical results and conclusions in sections 2.5

and 3.6.
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The work presented here can be extended in several

directions treating the adhesive as an elastic continuum:

(i) The problem can be solved for non-isotropic

(e.g., orthotropic) materials which will be more realistic.

(ii) The strips bonded by adhesive can be of differ-
	 j J

ent materials.

(iii) Finite number of strips can be studied.

(iv) It may be useful to solve the problem for the

cases where crack continues to propagate into the adhesive

or along the interface (delamination).

However, one should keep in mind that all these prob-

lems will require considerable amount of time and labor.

We hope that the present work will contribute to future

studies in this field.



Combination
Power of singularity, y
—
Plane Strain Plane Stress

II .8689 .8658

III .7183 .7060

(a)

vi =v3=.35 Power of singularity, y

X=111/113
Plane Strain Plane Stress

.0 .3203 .2617

.001 .3207 .2623

.01 .3240 .2680

.1 .3538 .3155

1. .5000 .5000

10. .7551 .7552

100. .9160 .9138

1000. .9732 .9724

(b)

Table 1. Values of the power of singularity, y,
for various material combinations when
a=h1.
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	 Distribution of the stress component azyy at
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APPENDIX A

Evaluation of some integrals [21], [25]:

e-rycos(ys)dY 
x

r-2+s-2 . r>0

^^e rysin(ys)dy - p +	 r>0
0

Fo
e-rycos(ys)dy = rrz+sue

z	
r>0

Jye-rysin(ys)dy = r +S^	 r>0
0

10 
'r rz+sz ' sin(rY}dr = Ts -e-sy)

jo r +-S	
sin(ry)dr = Ts ye- sy

o

j
o r-	 cos(ry)dr =	

e-sy

M	
S2

Jo rz+sz z cos(ry)dr =	 (1+sy)e-SY

Tr z+s z
 £ cos(ry)dr = ' (1-sy)e-sY

(A.1a-d)

(A. 2a-e)



APPENDIX B

Expressions of the functions used in Eqs. (2.16) and (2.17):

	

K -3	 sin(h r)
fil (s) _ IT ^mi(r)[2s2+ 2 (r 2+S2.)] r +si

	 dr0

Fi2( s ) = 2nZ ) omi(r)[2r2 + 
K	 2T— (r+'

2
)] rorx+sz)xdr

_ 4s2 m
	 cos(hir)

Fi3(s) - n 
1 
mi(r)y r2+S2 2 dr

0

_ 4s m
	 2 sin(hir)

F14 (S)- n J mi(r)yTr--S-2T22+ 	 dr	 (i=1.2)0

The forms of the functions a ii , b ij , c ii , dt],

(i=1,2;J=1-4) appearing in Eqs. (2.17) are as follows:

011 = (g 5g32g 35 + g31 g34 )/D '

012 = (g31 g37 - g5g32g38)/D ,

013 ^ (g32 g 39 - g31 g37)/D '

014 - (g31 g34 + g32g40)/D '

021 - - (g5g30g35 + g33g34 )/D '

022 - (g5g30g38 -g33g37)/D '

023 = (g33g37 - g30g39)/D

_	 024 = - (g30g40 + g33g34)/D
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I

d11	 cll	 d12 ` 'c12

d13 ` (g3lg41 -q 32 q 42)/D

d14 ` (g31g43 + g32g44)/D

d21 ` c21 ' d 2 n 
-c22

d23 
n 

(g30g42 -q 33 q 41)/D

d24 : - ( g30g44 + g33g43)/D

a21 - - ( ^1 g27c11 + g36c21 )/q5 '

a22 = - (xlg27c12 + g36c22 )/g5 '

a23 = (A l g l -, 1 g27c13 - g36c2:,,)/q5

a24 = ( '1 q2 - A1 g27c14 - g36c24)/g5

b21 = a71 , b22 = -a22 '

b23 = - ( q l +A, g27d13 + g36d23)/g5

b24 = 
(q

2 - ^1 g27d14 - g36d24)/45

all - (a2g4a21 - shlglcll + a2sh2g3c21)/q2

a 1 2 - (''2%a22 - shigl C12+ 12sh2g3c22)g2

a13 = (-1+A2g4a23-shlglcl3+,A2sh2g3c23)/q2

a14 - (x2g4a24 - shiglcl4 + a2sh2g3c24)/q2 ,



bll - all	 b12 - -a12

b13 ' (a2 +'2g4b23 - sh l q l dl3 + a2sh2g3d23)/q2

b14 a ( YO24 - Shlgldl4 + X2sh2g3d24 )/g2 ,	 (0.2)

where

0` g30g31 
-q 

32 
q 
33  '	 (B.3)

ql	
(1-e-2shl)/2 . 

q2 - (1+e-2shl)/2

q3 = (1-e-2sh2 )/2 , q4 . (1+e
-2sh

2)/2 ,

-2s(hl+h2)	 -2s(hl+h)2
q5 ' L1-e	 1/2	 q6 = L1 +e	 1/2 ,

q7 - (e-2sh2-e-2shl)/2	 q  - (e-2shl+e-2sh2)/2 .

qq . (1-e-4shl)/2	
q10 - (1+e-4shl)/2

qll - (1-e
-402

)/2 , qt2 - 
(1+e-4sh2)/2

q13 = ( 1+K1 )(a2-1) g 7/2 ,

q14 = (1+K1)a2sho(a4g2g4 -X3 qlq 
3)

q15 = (
1+K2) g5g7/2 ,

q16 = 2s Z h`h2 (a3q^ - a4g2)

q17 = -a
3shogl g3 , qlB = "2 q5 -q7

qlg = -X4shog2g4 , q20 = -K2g5 -q 7
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I_	 1

q21 w ( 1+K1) shogS L( a3-X4)
e-2shl

-(A3+a4 ) g10l/2 .

q22 • (K2+7 2)(1-x2)gll/2

q23 * ( 1+K2 ) a2shol(a3-X4 )e
-2sh2

-(Ya
4 ) g1 d/2 ,

q24 n sh2e2,h2+q ll /2
	 q25 ° (1-al )shl g5 ,

q26	 ( Kl +al) g5g9/
2	 q27 n shle-2shl+q9/2 s

q28 
n 4X	 2h 2

q29 = 2Alsho(a3glg3+A02%)

q30 = q13 + q14 '

-2sh2

q31 - q15 + gl6e	+ gl7g18 + g19g20 '

q32 V (1-A2)ZSh2e-2sh2 - 
q	 4a22 + q23 -	 2
	 s 2 hx3a4og24

-2sh1
q33 - g25e	+ q21 - g27 (g28+q29 ) + q26

q34 = (Xz- 1 ) g4 — 2a2x3snog3

q35 - q2 + 2^3
1hagl ,

q36 = sh2g6 + (q 5-q7)/2

q37 = ( X2 - 1 ) g 3 - 2a2a4shog4

A

938 - q l + 2Y h0g 1 ,

q39 = g l g29 + 2a4shog2g 5 + (AI+4a3a4s2ho)glg5
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\	 1

q40 n g2g29 + 2a3sh0gl g5 + (a1+4X3X4s'ho)g2g5

q41	
?.2 ([X2 (1-4A3%45 2ho)-1]q3 - 2^4shog4) ,

q42 ' gl ( g5+A2g29 ) ,

q43 •	 -34s'-q4 - 2a3shog3} ,

q44 ' g2( g5+a2g29 ) .	 (B.4)

The expressions for the functions Kii(xi,t,$),

(i,J = 1,2) which appear in Eq. (2.33) are

nKil (x i ,tIs) k t lNlk(s,t)[(aik+2cik)cosh(xis) + ciksxisinh(xis)]e shi

7rKi2(xi,t,$) k41N2k(s,t)[(bik+2dik)cosh(xis) + diksxisinh(xis)]e shi

(B.5)
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APPENDIX C

Derivation of the stress intensity factors defined

by Eqs. (2.60) and (2.73) as:

k	 Iima a 	 3£(-x1=aj alyy( x1 ,0) , a<hl	(2.60)
xlia

kb a 1 im 3Z(x2-b) a2yy(x2 60)	 b<h2 .	 (2.73)
x2+b

From Eq. (2.31) we can write

4u 1 (a^ G (t)
aJYY(xj'0) 

= 
1+KJ n J a "t xf dt + aiYYb(x^,0)	 (C.1)

3

where a jyyb ( x 3 ,0), (J=1,2) are the bounded parts of the

cleavage stresses, a jyy (x 3 ,0). Consider Eqs. (2.49) and

(2.62):

0 (t)	
n/2

G (t) _ 
1	 0d (t)e i

ar^ (t-a^)`'(t+a^)''	 1	 2

Define the sectionally holomorphic functions,

Xi (Z)=1 
raJ 

t̂ -dt	 (J=1,2)	 (C.3)
J-a^

Following Muskhelishvili [12, Chapter 4] and using Eq. (C.2)

we obtain
n

X (Z) = ^j( a,)ei /2-	
0i(ai)

+ X (z)
Z+a	

'o
^ ^ ^ 3

and
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XJ(xj
mJ(aj)	

+ Xi1 (x )	 001,2)	 (C.5)a _

11—ai x- 

where X jo (z) and X jl ( x j ) are bounded functions for -aj<xj<aj.

Now with Eqs. (C.1), (C.3) 9 (C.5), Eqs. (2.60) and (2.73)

become

4ul01(a)
-	 tim -	 , a<h

'a 	 l+Kl xl+a r	 l
(C.6a,b)

4t'2	 ^2( b)
k m -	 lim	 , b<h

b	 xeb vS	 2

Using Eq. (C.2) we can rewrite Eqs. (C.6) as

k a 	- 4i+K lim	 a-x, 01(x1)	
a<hl

1	 x l -^-a
(C.7a,b)

4N2kb	 _ +	 111
^	 52(x2)	 b<h2

2 x2

or with tn ..- definitions (2.53) and (2.66)

	

ka = - V-a P 1 el (1)	 , a<hl

(C.8a,b)

	

kb = - 36 p 2 92 (1)	 b<h2

are obtained.

I'

F i
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APPENDIX D

Expressions of the functions appearing in Eqs. (3.5) and
(3.6):

Fil (s) ' ns
 Jo'"i(r)[2s'+ KK1-3 (rZ +s 2 )] s in+s ir) dr

Fi2 (s) - 2n? rmi (r)[2r2+ K-1f-1 (rZ+s z )] roi l+s r) 2 dr

4s2 r	 cos(hlr)	 (D.1a-d)
Fi3(s) = n lo

mi (r)r r +s FIT dr ,

4s (w	 sin(h r)
F14 (s) ' n omi(r)r2 r2+si z dr ,

"Lnctions a ij , b ii , c ij , d ij , (i,J=1-4) used in Eqs. (3.6):

a 31 = q34/D1	 a32 = q35/D1

a33 = lg2g/D1	 a34 = lg25/Di

b 3 = a 3j , (J=1-4)

C31 = 93P/D 1	c32 = q33/Dl

C33 =-ag28/D1	 c34 = -ag24/D1

d3,j = c3j	 (J=1-4)

4
a41 = g36/D2	 a42 = g37/D2

`r
a43 -lg31/D2	 a44 = -lg27/D2
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b4j = -a4j	 (j=1-4)

C41 = Q38/D2	 c42 = 939/D2

C43 = "30/D2	c44 = xg26/D2

d 4 = -c4j . (j=1-4) .

c11 = -(q2 + g41c31 + g42a41)/440

92 - (gl - g4l c32 - g42a42)/g40

C
13 = - (,ql + g41c33 + g42a43)/g40

C
14 = - (Ag2 + g4lc34 + 442'44)/440

dlj = - (Q4ld3j + g42b4j)/440	 (j-1-4)

'11 = 443°11 + g44c31 + 445'41

'12 - 443°12 + g44c32 + 445'42 + 1/(a-1)4 2 ,

'13 - g4393 + 444°33 + 445'43 - A/(X-1)42 '

'14 = g43c14 + g44c34 + 445'44 '

blj - g43dlj + g44c3j - g45'4j . (j=1-4)

a2j = bij . 0 1-4) .

b2j = aij . (j=1-4)

c2j = dij . (j=1-4)

-123-
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d21 - c1i 
, 0.1 -4) (D.2)

r
	

4i

where

D1 - 2(1-a)[(1-a)sh3e-2sh3 + (1+IK3)g3g4]g21

-2sh.,
+ (1+K1)A[(A-1)sh3g5e	 '-K3Xg5g7/2-K3g11/2-gy/2]

D2 - 2(a-1)[(1-a)sh3e-2sh3-(1+'K3)g3g47q21

.	 -2sh3
+ (1+K1)a[(1-a)sh3g5e 	 -K3ag5g7/2-K3g12/2-qlp/2] 	 (D.3)

ql - (1-e-2shl)/2 , q2 = (1+e-2shl)/2

q3 - (1-e
-2sh3

)/2 , 04 = (1+e-2sh3)/2

•
q5 = (1-e -4shl )/2 , q6 - (1+e -4sh 1 )/2 ,

q7 = (1-e-4sh3)/2 , 

q8 = (1+e-4sh3)/2

-2(h i +h 3 )s	 -2(hl+h3)s

-2sh3	-2hi s	 -2hls -2h3s

qlt = (e	 -e	 )/2 , q12 = [e	 +e	 1/2

q13 =-(1+K1 )Xg2/2 , q14 = (A-1)q4

q15 = (A-1)zh 3g 3 + (1 +K3 )ag4/2 ,

N = ( 1-X)sh3g4 - (1+K3)ag3/2

q17 = (1-a) g3 , q18 = (1+K1 )7gl /2 ,

ql g = C1 - ( 1-K3 )a/2]q3 + (1-a)sh3g4
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q20 = (a-1)sh3g3 - [1 - 0 -K3)A/2]g4

-2sh1

q2l - sh
l e	 - Klglg2

q22 = q9/2 + sh 3g10 + KA 1/2

q23 ° -sh3g9 - q10/2 + K3g12/2

q24 ' g14g21 - g9gl3 ' q25 : g15g
21 - g13g22

g26 - g16g21 - g13g23 ' g27 - g17
g21 + g10g13

I	 1

g28 ^ g17g21 - g9g18 ' g29 - g19g
21 - g18g22 '

g30 - g20g21 - g18g23 ' C1 31 = g14g21 + g10g18

q32 = (1_7,)ag4g21 4' 	 ,

q33 ' (1-)')^g3g21 - (1+K
1 )X( g11 +2ag2g 3) ql /2 ,

q34 = 7,[(A-1)sh 3g 3 + (1+K3)ag4/2]g21

+ (1+K1)X[(g12+2aglg3)sh3 + (1+K3)Xglg4 + g2g3]g2/2

q35 = a{(a-1)sh 3g4 - [1-(1-K3)x2/2]g3}g21

- (1 +K1 ) X [( g 1 2 2ag2g4) sh3 - (1-K 3 )
Xg2g3 + g2g37ql

q36 = x( X_1)g3g21 + (1+K1 )a(g12+2agl g 3) q2/2 ,

q37 = X ( X _ 1 )g4g 21 	 (1+K1 )X(g 12-2ag2g4 ) q l /2 ,

q 3 = X[(1-a)sh3g4 - (1+K3)ag3/2]g21

+ (1+K1 )),Q gll-2ag l g4 )sh3 - (1+K3)aglg3-g2g4]g2/2
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q39 ' 
a((1 a)sh3g3 + [1 (1-K3)a/2]g4)g21

+ ( 1+Ki )a[-(qll
+2ag2g3 )sh3 - (1-K3)ag2g4+g2g4]ql/2

q40 ' (1-a)shle-2shl-(a+Kl)glg2

q41 ' (1 +K3 ) gll
/2 , q42 = ( 1+K3 ) g12/2 ,

q43 ° -shl tanh(sh l ) + (1+K1)/2(a-1) ,

q44 ' -(1+K3)g4/2(a-1)q2

q45 °
	 )q	 )q2)q2	 (D.4)

The functions Kii(xi,t,$), (i,f = 1,2) appearing in Eq. (3.10):

i
g	 -shl	 3

irKil (xi ,t,$) = kt Nik( s , t )L( aik+2c i k ) cosh(x
i s) +

 ciksxisinh(xis)]e

-shl	
acr

Al2 (x i -t,S) = kIl N i k
(s,t)[(b

ik
+2dik )cosh(xi s)+ diksxisinh(xis)]e

`	 +3

0=1 1 2)	 (D.5)

)

f

r
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APPENDIX E.

Derivation of the stress intensity factor for a=hl,

b=0 in section 3.4.3:

Define

Y
ka

	

	lim 3ff (x3+h3) 03yy(x3,0)	 a=hl	 (3.40)
x3-+-h3

From Eq. (3.47a) we can write

h

a3yy(x3,0) = 1^ n Jhlk3ls(x3,t)G1(t)dt + 3	 (x3)	 (E.1)
_1

for a=h 1 where a30b(x3) is bounded and

k31s(x3,t) = J K31s(x3,t,$)e 	 ds	 (E.2)
G

in which

K31s(x39t,$) = s^lim  K3l(x3,t,$)	 (E.3)

From Eq. (3.49) by using Eqs. (2.21) and (D.2)

1-2(hl -t)s	 3-2(h 3+x3 )s -s(h3+x3)

K31s (x 3' t ' s) - - 2 (K1+1)[
	

a+K1	
+	 1 +XK3	

le

(E.4)

can be written with which (E.2) gives

r

k31s(x3,t) = -2 (K1 +1)[Q5 (h 3+x3 ) dx3 + Q67Lt-(hl

-1

where

-127-
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Q5 ' 2[(a+Kl ) -1 - (1+aK3)-1]

(E.6)
-1	 -1

Q6 n [(1+K1 )	 - 3(1+aK3) ]

Substituting (E.5) into (E.1) we obtain

o3yy(x390) 
n - 211 1 n lh 1 CQ5 ( h 3+x3 ) d + Q6][t-(hl+h3+x3 )1- l0(t)dt

1

+ 030b(x3)	
(E.7)

The integral in the last expression can be evaluated by

following the procedure followed in section 3.4.2. Hence

one can get

Q3yy(x300) ` -2Q4

'Dl(hl y	

l y + a3lb(x3) ,	 (E.8)
(2hl )	 (h3+x3)

where

Q4 = 11 l (Q5y -Q6 )/sinTry 	(E.9)

and 
"31b(x3) 

is again bounded.

Now substituting (E.8) into Eq. (3.40)

^1( hl)
ka = -2Q4 3f	 ,

(2h1

= -2Q4 lim 3f (hl-xl)y0l(xl)

X14hl

= -Q3 (hl ) yp l e l (1)	 (E.10)
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is obtained.

Q 3 ° Q4(:
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