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Abstract

Calculations are presented for the thermodynamic functions and phase

separation boundaries of solid metallic hydrogen-helium alloys at temperatures

between 0°K and 19,000°K and at pressures between 15 and 90 megabars. Expressions

for the band structure energy of a randomly disordered alloy (including third order

in the electron-ion interaction) are derived and evaluated. Short- and long-range

order are included by the quasi-chemical method, and lattice dynamics in the virtual

crystal harmonic approximation. We conclude that at temperatures below 4,000°K there

is complete phase separation of hydrogen-helium alloys, and that a miscibility gap

remains at the highest temperatures and pressures considered. The relevance of these

results to models of the deep interior of Jupiter is briefly discussed.
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I. INTRODUCTION

Knowledge of the phase diagram of hydrogen-helium alloys at high

pressures (4-40 megabars) is of importance in the study of the interior of

plants .	 Phasethe giant	 Phase s® aration of hydrogenp	 p	 yd ogen and helium during the

cooling process may partly account for Jupiter ' s excess emission of energy,2

This paper presents a calculation of the thermodynamic functions and phase-

separation boundaries of solid hydrogen-helium alloys at pressures between

	

15 and 90 megnbars, and at temperatures between O°K and 19,000 °K. These	 1

metallic systems are also of intrinsic interest, since the particles carry

point charges, and the bare electron -electron, electron-ion, and ion-ion

interactions are given exactly by Coulomb's law.

The calculations reported here supplement earlier results of Stevenson 3

on hydrogen-helium phase separation in the liquid phase. Present estimates

of the melting curves of these materials  and of the temperature in the deep

interior of Jupiter  indicate that both hydrogen and helium may well be

liquid in the planet ' s interior, at temperatures far below 19,000 °K. However,

since the uncertainties in the calculated melting temperatures are quite

large 5 , a solid-solid phase separation calculation remains of particular interest.

The phenomenon of solid -solid phase separation in alloys is, of course,

not limited to the hydrogen-helium system, but is known to occur in many alloys,6

For example, L1 and Mg (both simple metals) form solid alloys at all concentrations

except in the range of about 70 7-85% Mg, where there exists a miscibility

gap. An alloy formed in this concentration range will separate into two phases

of different concentrations. It is noteworthy that the miscibility gap is still

present at temperatures gust below melting. The hydrogen-helium alloy is, how-

ever, different from many other alloys ( such as Li and Mg) in one important respect.

2
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Whereas the difference between the Mg and Li cloctron-ion interactions

(pseudopotentials) is small, hydrogen and helium have oloctron-ion interactions

of very different strengths, and this difference is expected to play an

important role in the thermodynamic properties of their alloys.

In Sec. II we discuss the general approach taken in formulating the

Helmholtz free energy F for hydrogen, helium, and their alloys. The static

internal energy Ea is calculated in Sec. III for any given configuration of

hydrogen and helium (confined, however, to an underlying lattice), and is

subsequently evaluated for a randomly - disordered configuration. Contributions

to F arising from long - and short-range order are treated in Sec. IV, and

the free energy associated with lattice dynamics in Sec. V. In Sec. VI we

present the equations of state and the Gibbs free energy G per ion of hydrogen-

helium alloys. Writing G as a function of its natural variables (pressure P,

topperature T , and the relative concentration by number of helium c), we

compute X, which is defined by:

[G = G(p,T,c) - [c G(p,T,l) + ( 1-0 G(p,T,O)7 .	 (1)

From (G we determine the curves describing solid-solid phase separation.

II. HELMHOLTZ FREE ENERGY

For a system of volume n, the free energy F can be written as

F(T,D,c) = F8 (T,fl,c) + Fv (T,fl,c) ,	 (2)

where Fa (T,(l,c) is the static free energy, and Fv (T,(l,c) the vibrational

free energy. In principle, F can be calculated from the partition function 'L,

which is the sum of o OE over all degrees of freedom, electronic and ionic,

and in particular over all configurations of hydrogen and helium on the assumed

underlying lattice. (here S = I A B T and E is the total energy.) It is useful

to introduce the following notation: Let (A) denote the ensemble average
s

of the variable A for a static lattice. The electronic degrees of freedom and

the configurational degrees of freedom remain summed over in obtaining (A)
s

r

=ice
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We use the symbol (Al 'o to indicate the ensemble average of A for a static

lattice in which the configurations summed over are restricted to be randomly

disordered. We can now write Fs (T,O,c) of Eq. (2) as

Fs (T, nr c ) = (E) s - T (S)
9 

.0	 (3)

where S is the entropy. We may also write Eq. (2) as

F = (E)s,o + [Fs - (E) 5 0 + Fv + [Fv - FO] r	 (4)
where Fe is the vibrational free energy of a randomly disordered alloy. 	 1

v

W • will ignore the last term in Eq. (4), and in Sec. V calculate only

Fv The validity of this approximation will be discussed in the final section.

The neglect of the term [FV - F01, and the separation of the static free energy

as shown in Eq. (4), are motivated by the fact that those temperatures for

which hydrogen-helium alloys actually do form are sufficiently high as to favor

such random disorder. (This point will be argued more fully in Sec. VIJ Thus

we expect that at these temperatures (E)s 
o 
will be the major contribution to

(E) s . Note that the second term of Eq. (4) includes the configurational entropy,

as well as corrections to the static energy due to correlations of the positions

of hydrogen and helium on the lattice.

III. ST MC ENERGY

In this section we calculate (E) s o by writing a general expression for

ys , the static energy of any configuration of the ions, and then computing its

average over randomly disordered configurations. The approach is to consider

an alloy as consisting of hydrogen and helium ions, located on a lattice, and

immersed in a responding electron gas of compensating density. The ion-ion

electron-electron, and electron-ion interactions are all given by Coulomb's

law. The (divergent) long-wavelength limits of these interactions sum to

zero, and are eliminated from the starting Hamiltonian. 	 One can then write

E as
s

Es= E (O. EM + E 	 (5)
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A flora E (o) is the energy (per ion) of a homogeneous interacting electron gas (in the

presence of a positive, uniform background charge), the Madolung energy ER

is the electrostatic energy of the point ions (in the presence of a uniform

negative background charge), and E  is the energy due to the electrons'

response to the non-uniform component of the total ionic potential V. By

troating .' as relatively weak, Eb , which is known as the band strums cture energy,

can be calculated by perturbation theory. What we are describing is conven-

tional psoudopotential theory, 8 applied to a system for which the electron-ion

interaction is known exactly. This approach has been used extensively in the

context of metallic hydrogen, 
7,9 

and is an important element in the alloy

calculation of Ref. 3.

In Eq. (5), E (o) is given by
E(o) - 

Z# GL

2^9n^2/3 1 	 3 (9rr\1/3 1 + (-0.115 + 0.031 In r
a ) '	 (6)ao	 4 rs	 3v 9	 re

where Z is the average ionic charge in units of a (e > 0). Since ZHE = 2

and Z  = 1, Z# eZHE + (1-c)ZN = 1 + c. Note that r  is the usual dimensionless

electron spacing parameter:

3 (rsao)3 = 
a	 (7)
ZTN

where ao is the first Bohr radius. Since N is the number of ions (in 0), NZ

is the corresponding number of electrons. The first two terms 1 r	 (6) are

the kinetic and exchange energies. The last term is the correlation energy, and

is only known approximately. We have used the approximation due to Nozieres and

Pines, 10 which is expected to be quite satisfactory in the r  range considered

here (r s ... 1). Note that E (o) is independent of both the configuration of

hydrogen and helium ions on the underlying lattice, and of the lattice itself.

Since we are interested in temperatures much less than the fermi temperature

the electron system 11 is taken to be in its ground state.

TF = 5.882 x 105 K°	 (4)
7-
r
s
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The secoad term in Eq. (5) is the Madolung energy, and is given by

E = 
1 ^^ ^^ 4 iN.(^ ^)

e	 ZIZi ,	 (g)

M 27H (iJ ) k,

where Z  is the charge of the ion a. rito i whose position is given by 4.

The prime en the sum over i and ,) denotes the omission of the terms i e J. The

prime on the k-sum denotes the omission of k - 0.

The Madelung energy is generally large and negative, and for a given family

of structures often assumes its lowest value for the most symmetric structure.

Using perturbation theory ,9 E  can be developed as a series in ascending

orders of the electron-ion interaction:

	

E  = E (b2) + Eb(3) +	 ,	 (10)

with

Eb2) = N
	

V(kl) V(-gl) 
kl CE(^ l ) - 

1] ,
	 (11)

TTTkl

and

E (3) _ 1 ()	 V(kl) V( ) V(-k1-^)r6	1
	 1	 1	

N(3)(-q , q )	 (12)
b	 3 N k k	 F e(ql) e(pz) ¢(-qa-4	 s	 1 g r

..1 ..,2
where the primes denote the omission of k4 0, ^2 = 0, and k^ _ -k2 .

In Eq.s (11) and (12), V(k) is

r

 given by:

V(k) = ft J d 
3 r e- 	 (13)

V(r) = - E Z1	 (14)i I N-^ 	 r

where V(r) is the total ionic potential as seen by the electrons. The

restrictions on the sums in Eq.s (11) and (12) follow from the form of the

Hamiltonian. 7 The vectors q are defined by q = k/2kF, where the Fermi wave-

vector kF is given by the relation

kF3, = 3rf2 Z*N	
i

n

In Eq.s (11) and (12), c(q) is the zero-frequency limit of the dielectric function

of the homogeneous interacting electron gas, and II s 3) is given in Eq. (C3) of

r-

Ref. 7. We use Rartree atomic units in the equations nbove, (and throughout 	 j

the rest of the oaoer).	 W ^*,
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It !s important to note that Eq. (11) is an exact result for 
E (
b
2) '

for 
k1Le(41) 

-1^ measures the exact linear response of the number density
JJJ

TTT

of the homogeneous interacting electron gas to an external potential, (in this

case the potential due to the ions). In contrast, Eq. (12) is only approximate,

as the corresponding second-order response function is not known exactly. The

approximation used in Eq.(12) corresponds to treating the electrons as independent

particles moving in a self-consistent potential construsted from a Ilartree potential

and the external potential, provided e is taken to be the Lindhard dielectric

function 
7,12. 

In the present calculations we have used the Goldart-Vosko13

modified form of th- Ilubbard dielectric function, which includes effects due

to exchange and correlation,and yields the correct q - 0 limit. It is certainly

preferable to use this form (rather than the Lindhard function)in E (2) , but it
b

technically inconsistent to use it in E (3) as written in Eq. (12). However,

these two dielectric functions yield values of E b3 ) within 1% of each other, so

that the effect on phase boundaries, which depend on differences of free energies,

is inconsequential.

Although the hydrogen-helium alloys have been taken as metallic, the

convergence of the perturbation series of Eq. (1.0) is not dependent on the

existence of a metallic state, as discussed in Ref. 3. The point is that the

perturbation series should be adequate as long as the one-electron band gaps

are less than the band widths, which is the case for helium above 10 megabars.

Since actual metallic conduction may only occur  in helium at 70 megabars, this

distinction is of considerable importance. (Hydrogen, on the other hand, is

expected 14 to be metallic at pressures of a few megabars.)

Considerable progress  has been made in calculating EM , which however,

T



a
we do not include here. For metallic hydrogen Ebd) is smaller than Eb3)

by rough'y a factor of ton , and it includes the effects of the change is

the chemical potential of the electron gas due to the presence of the ions.

To correctly calculate E (4) , one must use finite-temperature perturbation

theory, as discussed in Ref. 7.

The terms EM , E b2) , and Eb3 ) are valid as written for any configuration

of hydrogen and helium, and contain contributions that depend both on the

configuration and on the structure of the underlying lattice. More specifically,

since the total potential V(r) in Eq. (14) takes the form of a sum over sites,N

E  will contain the following classes of terms:

(1) Structure Independent terms, that is, terms independent of configuration

and lattice structure. These arise from the terms	 in E(2) and

Eb3) in which all sites coincide.

(11) Two-Body. or ion-ion terms. These comprise the remaining terms in

Eb2) , and the terms in Eb3) for which only two site labels coincide.

(iii) Tbree-Body, or ion-ion-ion terms. These arise frwm the terms in EM

in which no site labels coincide.

There are, of course, four-body terms and terms involving more than

four ions, but these originate in higher orders of perturbation theory.

Recognizing that EM is also a sum over ion-ion terms, we can group together

contributions to E in Eq. (5) by the classes (i)-(iii) above, and obtain:
,s

Es E(0) * 1N L ^(ij(Ri -R^) + 1 x	 ^ijk (; -^, ^-^) +	 (15)
!?A,R,	 3N Bd,RRk

Here the primes denote restrictions forbidding the terms i = ,j in the two body term,

and tho terms i = k and ,j = k (but not i = ,j) in the three body term, Note that

the two- and three- body potentials depend on density and on the identity of the ions

at sites i and ,j, (as well as on the separations R^ - R-j).
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All terms in F; s which are i.ndopondont of configuration and lattice structure

are included in E (e) . 'rho point about rewriting Eq. (5) as In Eq. (15) is

simply that by summing over the electron degrees of froedom (at T=OOK),

we have been able to write Ea as a sum over (density-dependent) effective

pair and three-body potentials, plus r term dependent only on density. This

recasting of Eq. (5) is clearly valid for any configuration of hydrogen and

helium ions, and is a conceptually useful alternative to Eq. (5).

We now calculate the first term in Eq. (A), the static energy of a

randomly disordered system:

(E)s,o = E (o) + (E
M 
)0+ (Eb(2) ) o + (Eb(3) ) o +	 (16)

To do this we must first give the definition of randomly disordered. To this

end we introduce the quantity pi.

pi = 1, if site 1 is occupied by a helium ion, 	 (1'J)

pi = 0, if site i is occupied by a hydrogen ion.

is
From its definition, 	 one can see that pi obeys the following relations:

(Pi )n	Pi ,	 n = 2,3, . . .	 (18a)

(Pi ) = c o	(18b)

where the average in Eq. (18b) is over all configurations. Introducing the

auxiliary variables di:

di = Pi - c,	 (19)

we have

(di) = 0 .	 (20)

Since pi measures the probability that site 1 is occupied by a helium ion,

d i measures the deviation of that probability from its average value. In

£q. (9) for EAR , we write Z  as

z  = PiZHE i. (1-Pi ) Z N	(21)
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Thus EM will clearly involve averages of the type (pi ps )	 In terms of

those correlation functions we define n randomly disordered system as one

for which the n-th order correlation function factors according to 6

(pi 
1 pi 

2 . . . P1 
n 
)o = (Pi 

1	 2
)o (N)o . . .(Pi n )o - (Pi 1

	2
) (Pi ) . . . (Pi ) , 	(22)

r.

where i t 21 12 ;' . . 	01n

9tus for the two-site correlation function we obtain-

(pip j ) o = (pi ) Cpj ) = c2 if i iE j r (P ipj ) o = (P 12 )o = (pi)o a c if i=J•	 (23)

Since 1 = ,j ie excluded from Eq. (9), we immediately have:

,(E )o = 2*2 	 4T eik. (, - 1Q)(24)
2M 

i j k kN
14:o Madolung energy of a randomly disordered alloy is that of a pure metal

of ionic charge Z* , (corresponding to the so-called "virtual crystal"), 16

and can be calculated by well-known techniques.8

)e we must first use Eq. s (13)and (14) to write V(k)To calculate (Eb 

in terms of the variable pi:
n

	

-ik• R	 -4TT Z )	 1-4TT Z 1}
V(k) = 1 e	 i	

pi	
k 

RE	 + (I-Pi ) 	 (25)

where klis again the position vector of site i. Introducing di via Eq. (19),

we obtain:

V(k) = L e	 CU (k) + d i W(k)) ,	 (26)

i

where
*

U (k) = - Cc 
4TT ZHE	

+ (1-c) 4
7T Z11 _ -4

- Tr Z	 (27a)
U	_n kZ0

and

AU (k) _ - 4
TT

	 (Z1YF. - ZII^	 kk Cl	
(27 b)
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From Eq.s (11) and (17), we find:

S
, ^

(Eb(2))O = W I (V(k
l ) V(-)61) ^ ^2 C ĉ ^) - 1^ ,	 (28)

k,L

and

(V(kl ) V(-kl))o	
a-ikl.	 ^ @ +ik^l.^ (CU(k l ) + d i dl(kl ),(U(-kl ) + d,d)C^kl),)o .(29)

From Eq . (20) we ae@ that the cross terms in E q . (29) vanish. Using the relation

e -ik ^ = 
N dk ^K ,	 (30)

	

1	 N N

whore K_ is any vector of the reciprocal lattice, we have:

(V(kl ) V(^kl ))o = N2bk K U(kl ) U(-kl ) + L L a ikl'^i ®+ikl.R^(dJ()d1(-ki)J( didi)o

	

1^^	 1 j

(31)

_In the Appendix, we prove the relationship:

e- 	 c+ik11, (did^)o = N(c-c2) 	 (32)

8nbstituting Eq.s (31) and (32) into (28), and using

Lim 1 ^ , 1 3 f d 3 
k

	

Q -. m n k	 (2TT)
N

we have the final second-order result:

(2)(E	 )o = 
PrL

*2 	
'arr	 1	 1 + ^ (Z _Z	 (e_

e) p d3k3 4T	 1
1	

(33)

b	 2Z	 Ky	
-	

ID H)
2 	 2

J <2TT) 	 k2 C&(q) -
(K )	

N

where Q = K/2kF	In Eq. (33), the first term is ,just the second order band
N

structure energy 
17 

of a pure metal of ionic charge Z * . This virtual crystal result

is not correct for a randomly-disordered system, because in Eq. (29) the terms

in which the sites i and j coincide must be handled separately. However, it is

worth noting that the virtual crystal result corrcctly gives the structural-dependence

of (Eb2) ) o, since the second term in Eq. (33) is clearly independent of both the lattice

structure and the configuration o; hydrogen and helium on the lattice.

i

rdgq,.
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We have written ( E (2) )o in a form that is quite similar to other

expressions in the literature, 8,18 and have used a rather indirect method to

do so. This method, however, avoids much of the confusion that would otherwise

arise in the calculation of (E b3) )o , to which we now turn.

Equation (12) for (E (3) )o can be written in the following form; 12b

(Eb3) )o = N 
L	 (V(k ) V(k ) V(k))o	 (q r q r q ) ga	

r	 rr,1	 ;Z2	 ..3	 X2 1 ^2 53 'kk +k +k o 	 (34)
k3 k8

where the function )(2 is defined by direct comparison of Eq.s (34)and (12).

Ifowover, we shall never need the explicit exprosliion for )2 , but only its

symmetry properties. The form of the function Nb 3) (-ga ,g3 ) in Eq. (12)

guarantees that )(2 is symmetric with respect to the interchange of any two

arguments. 
7,12 

Using Eq.s (27) and (30), we have

(V%)V(WV(k,3))0 = N3 6k ^K 6k K 6k ^K U (kl ) U(k2 ) U(k3)
1 ^3 ;:2 1 .2 ^3 ^3

+A6k3OK3 (k3) S2 ( k̂j r k2 ) LU(k1 ) AU%) + N b ^K3 U (k1) s2 (^,k3 )6U (k,)&J (k6)

+ N U ( IQ 2 ( r ) DI1 ( ) AU ( )
; r^2

+ 63%, 'k 
2

, ka ) CU(kl ) AU(k3 ) W%)r	 (35)

:horn we have defined

S2 (^r^) _ 11 e ikd.Rd e-ik`,.Rd (
d idi)o r	 (36a)

i j

and

S3(kl,k2rv7 = L L o ik1.Rf a 
-ikE Rm 

a 
-ik3

 -n (d )o	 (36b)
fmn

These functions are shown in the Appendix to be

	

82 % ,k2 ) _ N bk k ,K (c-c
2 ) 	 (37a)

1

r



r-	I

)3

and

03(k o, 2 o, a) m N bk +k +k K 
( c-3c2 + 20 3)	 (37b)

Substituting Eq.s (35), (36) and ( 37) ints Eq. (34), and making use

of the symmetry of 
X2 

we obtain:

(Eb3))o 
N	

CN3 °kl' °k2,4 
a^ #^ U(^) U(I ) U%)

.,1 92 -a3

+3Nbkk 
K U(k3 ) N b

k4+kS ,K ( C-C2) dIJ(k^) W%)

+ N 6k
 

+k2+k3,K (c .-3c2 + 2c3 ) dl(kl ) d1(^) dt1( )] )fg (q^r9k,Q3) 
b^1+a2+qar 0

The first term in Eq. ( 38) is the third order band structure energy 
17 

of the

(38)

virtual crystal. As be

which have their origin

now the corrections are

recast (Eb3) )o in terms

properties of HS 3) with

Co:9, there are corrections to the virtual crystal result

in the coincidence of sites in Eq. (34). However,

structure-dependent. 7b see this more explicitly, we

of the function H83) of Eq. (12). By using the oymmetry

respect to interchange of arguments ( see Ref. 7), we

can rewrite Eq. (38) as: 1	 1	 1
	(Eb3))e - 8r q)

1/3 
r [Z* 	 ^d2 s (R )	 @2 6(Q )	 f4 -Q I 2 e(Q -Q 

))II83)(Q1r;z2

8n 9t1	 s	
R1

9 ^ 1 .-d	 2	 1 2	 -1 '.2

	

)'
	 1	 1	 1

	

+ 9 (c - c2 ) (Z - L )2 L d3q ^ 2	 s	 -) II(3)
n	 HE	 H	 q E(q)	 @ E(Q)	 q-Q J 6(q-Q) a (q Q)

Q

Ir
	 1	 1	 1	 \

9 (c-3c2+2c3)(Z[9;-Z	 3	 3	 2	 2II)3+	
fdq jdq	 g 6(q ) * g 6(g )	 Iq -0. I 2 6( q -0. )/H (3) (q .. )] (39)

	

1	 2 1 1	 2 ^2	 1 ^2 1	 a 1 a

As before, Q = h/2kr , and the prime in the double sum means we omit

Q1 = 0, Q= 0, and Ql c Q2
. Since the second term in Eq. (39) involves a

sum over the reciprocal lattice, it is clearly structure-dependent. Eq. (39)

is our final result for (E (3) )o .
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The polynomials in c that appear in Eq.s (33) and (39), (the basic results

of this section), are cumulant polynomials P 5 (c), familiar from the theory of

electron states in the tight-binding model of randomly discrdenred alloys. 19

They are defined by the generating function
w

LP (c) xs= Pin (1 - c + cex ) 	 (40)
s=1 

s	
id

which gives,

P1(c) w co

P2 
(C)=c-c2

P3 (c ) = c - 3c2 + 2v3 ,	 (41)

The cumulants arise in both problems for the same reason, namely that the

decoupling of the correlatiun functions, illustrated in Eq. (22), does not

hold when two or more sites coincide. This point has been stressed previously in

Ref.s 20 and 21.

Iv. LONG AND SHORT RANGE ORDER

We now turn to the second term in Eq. (4), namely Fs - (E)®o . In the

previous section we have summed over the electronic degrees of freedom to

obtain an effective Hamiltonian for the ions (Eq. (15)). The static partition

function (and uence the static free energy) can be obtained by summing a-E/kBT

over all (static) configurations of hydrogen and helium ions on the underlying

lattice. To carry out this sum, we need a convenient language with which to

describe the configurations. At high temperatures, this is acheived through

the use of the correlation functions 22,23 ( pip^	 (pip jpk), etc. introduced

in Sec. III. In general, a helium ion ma.;" be more likely to have a hydrogen

ion as a nearest neighbor than another helium ion (or vice-versa), but the

probability (at high temperatures) of a very d..stant neighbor of the helium

ion being another helium ion will depend only on the mean concentration of

helium.
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The correlation functions (p ips ) otc. are ideally suited to describe such

short-range order,
24,25

 for we expect the quantity (pips ) - (pI )(p^; to become

very small us ,j and Rbecome increasingly well separated. On the other hand,

at very low temperatures, and particularly for stoichiomotric compositions,

the alloy, if it forms at all, is expected to take u;- an almost completely ordered

state. (For example, if c= 0.5, the alloy may have the CsCl structure at T = 0°K.)

It is clearly inappropriate to attempt to describe this situation with the

correlation functions of the type (p ips ), since (p ipj ) - (pI Xpi ) is expected -

to be infinitely long-ranged. Instead, it is convenient to introduce the notion

of long-range order, 
24'25 

which for the exam le^,	 quoted above would be defined

by the number of helium ions on "right sites", i.e. the number of He ions

on the "helium ion" sublattice. The point is, of course, that this number is

3..00	 at T = 0°K. It also approaches rather abruptly the disordered value

of 0.5 at the critical temperature ( ^), above which there is no long-range

order.

Thus, any theory used to calculate F. - (E)goo must be capable of describing

these two very different types of behavior at low and high temperatures. More

specifically, at low temperatures we have;

Lim (Fa - (E) a o ) = AE ,	 (42)
T -. 0

where AE is the energy difference between the completely ordered phase and

its completely random counterpart. At extremely high temperatures we have 24

Lim (Fa - (E ) a o ) 	 -T (S)S, 
o 

k 
B 
T Cc bit c + (1-c) i7(1-c)]	 (43)

T -, a

where the expression on the RHS of Eq. (43) is s_ ly the negative of the

entropy of a randomly disordered alloy, weighted by the temperature.

The first step in formulating such a theory is drastically to simplifiy

.Eq. (15), and replace it by a nearest-neighbor model, viz:

n.n.	
1

E s 2N Z Cp I m 
$HE-IM: + 2p f(1-pm) $IIE-1{ + (1-PR)(1-Pm) $li-HJ '	 (44)

I'm
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whore the sum is over nearest neighbors only, and the pair interactions

^11g-IIE' ¢1,E-11' 
and 

X11-II 
will be chosen to satisfy Eq.s (42) and (43). Note

that since we are computing only the difference between energies, the structure-

independent term in Eq. (15) may be neglected. The appeal of the simple form

in Eq. (44) is that it allows an exact mapping of the problem onto the anti-

ferromagnetic Ising model. 
26,27 

In addition, the Hamiltonian of Eq. (44)

has received a great deal of attention as a model Hamiltonian of an alloy. 24

Since we only need keep terms dependent on configuration, it is easy to show

that the pair interactions do not enter separately, but only in the standard

combination,

v - HE-11 - i(§ H-11 + 4HE-HE ) '	 (45)

where v is assumed to be negative. 28

The energy difference &, as calculated from the Hamiltonian of Eq. (44),

is proportional to -v, with the proportionality constant depending on the

(stoichiometric) composition and the assumed underlying lattice. It is there-

fore compelling to choose v so that the energy difference AE between ordered

and disordered alloy will be the true static energy difference, 29 as calculated

by the methods of Sec. III, i.e. with no restrictions to nearest neighbors.

Providing our methods of solving the model problem defined by Eq.(44) satisfies

the limit in Eq.(43), the resulting function F(T, Q, c) - (E) s o will then

exhibit both the correct high and low temperature behavior.

Such a method of solution of the model problem is provided by the quasi-

chemical approximation, 
25030 

The basic idea of the method is to treat clusters

of ions as independent units, subject only to the conservation of the number

of each type of ion consistent with a given long-range order. The probability

of a cluster having a certain configuration of hydrogen and helium ions is then

simply given by the standard Boltzmann factor.
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If the cluster is chosen to be the whole crystal, the result is exact. For

smaller clusters, ( in particular for a few atoms), error is introduced because

the fact that a given site may be part of two ( or more) clusters is ignored

in assigning a probability that the site is occupied by (say) a helium atom.

Nevertheless, the method does take into account correlation effects in a manner

reminiscent of classical liquid theory. The free energy can be written down as

a function of temperature and long-range order only, and is to be minimized with

respect to the latter. The quasi-chemical approximation is thus able approximately

to describe both long- and short -range order within one context.

The approximation is related to more accurate methods 31 in that it is

the first of a hierarchy of approximation 32 which can be substantially developed,

although the calculations become extremely involved. It is most readily applied

in the following cases;

(i) c = 0.5, where the underlying lattice is bec, and the assumed ordered

state is the CsCl structure.

(ii) c = 0 . 75 (or c= 0.25), where the underlying lattice is fee, and

the assumed ordered state is the Cu 3Au structure.

The method correctly predicts that for c = 0. 25 alloys (ii), the order-disorder

transition is of first-order, 25 that is, the long-range order drops discon-

tinuously to zero at Tc . It also correctly predicts that the transition for

alloys of type (i) is of second order, with the long-range order vanishing

continuously at Tc . The existence of short-range order above the transition

temperature, and hence a configurational contribution to the specific hept,

is also described by the method, 33 but the details of the experimental specific

hents are reproduced only qualitatively. 25,27

r-

{

itt

4.^
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When compared to more accurate solutions of the Ising model, the quasi-

_

chemical method's prediction of To is only very roughly correct. 3A, 35
	

However,

calculation shows that in the very low temperature region the quantity Fs -(E)s
r o

for c = 0.5 agrees fairly wall with the low temperature Ising model eerieb

26
expansion.

Wo have used the quasi-chemical approximation to calculate F s - (E)s
o

for c = 0.25, c = 0.50, and c = 0.75 alloys by using the solutions corresponding

to the categories (i) and (ii) above.	 The parameter v was chosen to yield

the true static energy difference 6E between ordered and disordered phases,

as previously described. However, the assumed structures for the ordered

and disordered phases in the calculation of & were chosen by criteria to be

explained in Sec.s V and VI, and were not consistent with the structures for

which the quasi-chemical method was evaluated (see (i) and (ii) above). In

addition, the contributions of lattice vibrations and the third order band structure

energy to AE were neglected. 36 These approximations are expected to have a serious
i

effect near T , but should make little difference well above or below T . 37 Since
c	 c

A E is a function of r s , we have constructed an approximate form for Fa(T,rSvc) -(E)e 
or

which has the correct high and low temperature limits. We have not assumed

that the order-disorder transition occurs at constant volume, for the actual

behavior of the alloys is determined in Sec. VI from the Gibbs energy G computed

at constant pressure and temperature.

V. LATTICE VIBRATIONS

To calculate the contribution to the free energy of the lattice vibrations

we first assume that the alloy is randomly disordered. The "phonon" spectrum

of the random alloy is then calcv'ated by replacing each ion with one of charge

'Leff and mass 
Meff• 

The values of Z
off 

and 
Meff 

are chosen so that the loug-

wavclength limit of the phonon spectrum is given correctly. 38,39
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0

This is readily seen to require

A1eff : A1^=cmID. 
+ (1 - c) 1111,	 (46)

and
•

zeff 2z
	

=c7 11F 
+ (1 - C) ZIf

The force constants for an alloy of arbitrary configuration are defined

(to second order in the electron-ion interaction)from Eq. (15):

	

ij (K,, - tt) = v^ va mid ) ( 11) 	 (1 of ,)	 (47)
rta	

N

R=^ -Rj

There are three types of force constants (corresponding to hydrogen-hydrogen,

hydrogen-helium, and helium-helium pairs), and from Eq.s (11)-(14) these are
N 1I -11	 L

CLO 
(it i - R^) = 

j if2 ^a$ (it
i - its ),

N H- HE

and	 cx
j
^ ( A - ice) = I H jHE 

	
OC3 (- - _,j ) 	(46)

.v iIE-iff.	 N

CL9
(it4 -tij

)=fHE 	 OLO(xi 
-Rj)

Here ^ (R) depends oil 	 and may be written as:

	

r d 3k	 4r1	 1	 - ik.It

	

^0(it) - v
OL ^^ J ( 2 T7	 k7 ^(k) a	 (49)

In terms of force constants, Eq. (46) is equivalent to the replacement of the

three types of force constants with a particular type of "average" force

constant.

71te concept of phonons in disordered systems in general, and more

specifically the use of average masses and force constants, has met with some

success when applied to alloys whose constituent elements have similar masse.,;

4140,
or force constants. 

'L0,	
Clearly the masses and force constants of pure

hydrogen and helium are not close to each other, but some ,justification for

the replacement of an alloy by an "equivalent" pure system is given by the

"virtual crystal approximation" for the phonon Green function. 
20 

More specifically,
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P'

if we start with n pure system of point ions having mass and charge given by

Eq. (46), and introduce the difference between the physical charges and masses

and the "average" ones as a perturbation, 92 then within this approximation

the perturbation causes no change in the phonon Groan function.

We have evaluated the dynamical matrix of the pure system defined by

Eq. (46) in the adiabatic and harmonic approximations, with the electron-ion

interaction taken into account up to second order. This has boon repeated for

a variety of crystal structures and concentrations, including pure hydrogen

and helium. From the phonon frequencies, we calculate 43 the vibrational free

energy Fv
	 B.Z

F0 = kB 	rT	 2sinhlj R 1 , W(^) j,	 (50)

where = 1A T, W(W) is the phonon frequency of wave number q and branchN

index ,), and the sum i, over the first Brillouin zone. 'ibis zone sum was

carried out using the special-point technique 44 , 45 witha modest number (N 10)

of special points.

Note that by using the harmonic approximation, the frequencies appearing

in Eq. (50) depend on r  but not of temperature. In order for them to acquire

a temperature lependence, a more sophisticated approximation, such as the self-

consistent phonon theory, 43 would be needed. However, some thermal expansion

is included by using the harmonic frequencies, for the contribution of F v 0 to

the pressure is not negligible (see Fig.s (1) and (2)).

The calculation of the phonon frequencies of the (randomly disordered)

alloys and of hydrogen and helium was used as a guide in the choice of the

lattice structure chosen for the calculations of Sac. III. The point is that

these Coulomb systems (in the virtual crystal phonon approximation) are very

often harmonically unstable, as discussed by Heck and Straits. 29
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(By an instability, we rotor to the occurrence of imaginary phonon frequencies.)
E

The lattice structures used in the calculations of Sec. III, as described in

detail in Sec. VI, were chosen to give real frequencies. It should be noted,

however, that the relationship between instabilities in the virtual crystal

approximation and those in the real (randomly disordered) alloy is not clear.

We shall assess the effect of our approximate treatment of the phonons on the

i;
phaso boundaries in Sec. VI.

VI. RESULTS AND DISCUSSION

A. Choice of Lattice Structures.

Here we discuss the lattice structures chosen to calculate the various

contributions to Eq. (4). The static energy differences between lattices are

in general very small, 7 ' 9 especially when compared to the energy in the phonon

system. (However, these energy differences may not be small compared to the

difforenc.as in phonon energies between lattices.) This raises the question of

whether these materials can ever solidify in the conventional sense. It should be noted

that the energy differences are also not necessarily small when compared to the

difference [z of the Gibbs energies between the alloy and the pure hydrogen and helium

systems, as Fig. 3 illustrates. An extensive search in Bravais lattice space

for the structure of lowest energy (ac carried out in Ref. 9) is not feasible

for this problem: we limited ourselves to the consideration of the bcc, fcc, and

hcp (with variable c/a ratio) lattices in the calculations of (E ) s o and F 0

in Eq. (4). (Simple cubic lattices are harmonically quite unstable for these

systems.)

For the randomly disordered alloys (and for pure hydrogen and helium),

*
either fcc or bcc proved to be stable for all Z except in the range

*
1.20 4 Z 4 1.30, and the stable lattice was chosen for the calculations.

*
At Z = 1.25, hcp (with c/a = 1.7) was stable, and this structure was therefore

chosen in the concontration range near Z = 1.25. The lattices used to compute

(
j
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(E) 
s o 

and F  
0 

arc summarized in Table I. The absence of an entry for

a particular contribution to the energy indicates that the value of that con-

tribution was obtained by interpolation from its values at other concontrntions.

Note that (Eb3) )o was calculated for fcc, not hcp, in the region 1.10 S Z * 4 1.35.

It is not expected that this procedure will cause any significant error in the

phase separation curves. In addition, the designated phases for Z * = 1.00 and

1.25 are harmonically unstable 
6 

at low densities (corresponding to pressures of

less than 20 and 30 megabars, respectively). Previous calculations 6 show that

such instabilities will only occur at much higher values of r  (lower pressures)

when the phonon spectrum is calculated in the self-consistent harmonic theory.

Thus we adopted the procedure of extrapolating the phonon frequencies to lower

density to calculate Fvo at low pressure.

We now discuss the lattice structure of the ordered alloys used in

calculating Fc - ($) s o by the methods described in Sec. IV. The energyr

difference 6 E between ordered and randomly disordered states was calculated

for c = 0.25, 0.50, and 0.75. (For pure hydrogen and helium, A E, as well

as Fs - (E) s o, clearly vanishes.) For the alloy of c = 0.50, we have considered
r

two types of lattices:

(i) Simple tetragonal (st), with a basis of one helium and one hydrogen

ion, situated so thut when c/a = 1.0, this lattice has the CsC1 structure. 47

(ii) Face-centered tetragonal (fet), with a basis of one helium and one

hydrogen ion, situated so that when c/a = 1.0, this lattice has the NnC1

structure.

As the fct lattice proved unstable for a wide range of c/a values, we iced

the st lattice at c/a = 1.0, where it is stable.

We considered two structures for the ordered c = 0.25 (c = 0.75) alloys:

(i) Simple tetragonal (st) lattice of helium (hydrogen) ions with a four-

point basis. The helium (hydrogen) ion resides at the lattice point,

and three hydrogen (helium) ions sit at the face centers, If all the
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Was were identical, the lattice would be face-cuntored totragonnl.

4

(This is the generalization of the Cu 3All structure to c/a d 1.00)

(ii) Body-contorod totragonal (bct) lattice of helium (hydrogen) ions with

a four-point basis. The helium (hydrogen) ion resides at the lu co

point, and three hydrogen (helium) ions sit at the Paco-centers and edge

midpoints. If all the ions wore identical, the lattice would be simple

tetragonal, with half the original lattice constant. 48

Of these two structures, the at lattice with c/a = 0.7 proved, for c = 0.75,

to have the lowest static energy (to second order in the electron-ion interaction).

Since this structure is harmonically stable, the difference between its static

energy and that of the corresponding disordered alloy of Table I (bcc) was sot equal

to A E, as required in the application of the q uasi-chomieal theory of Sec. ''V. For

c = 0.25, neither of the two structures are harmonically stable (over a wide

range of c/a values). This may be a dynamic indication 49 of immiscibility

at T = 0°K, or alternatively it may indicate that those structures are energetically

quite far from the structure an ordered alloy actually assumes. Of these

two structures, the bct lattice with c/a = 1.0 has the lowest static energy

for re 7 0.920 (p <28.9 megnbars at T = 0°K), but the at lattice with c/a = 1.0

has the lowest energy for r  < 0.920. '.ho static energy differences between

these structures and the corresponding random alloy (hep) were used for A E

in the calculation of Sec.IV . to 'rabic II we present the critical temperature

c as a function of pressure for the order-disorder transition, as calculated from

Sec. IV.

In order to determine hew serious an error was made in neglecting lattice

vibrations in the computation of A E, we computed F  for the CsCl-structure

alloy at T = O°K and r  = 0.99. The result is within 70 (0.001 a.u. per ion)

of the corresponding random alloy (bcc) result. The difference is small, even

on the scale of A G. This also shows that our neglect of the term IF  - Fvo]

in Eq. (9) is quite justified.

i
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U. Phase Separation.

The equations of state of pure hydrogen and helium are presented in

Fig.s 1 and 2. For hydrogen, at T = 0°K, they agree well wJth Caron's results

(see Rof. 29).

Under conditions of constant temperature and pressure, the froe energy

to be minimized is tho Gibbs free energy G:

G(p ,T,c) = F(p,T,c) + p (1e , (51)

where p is the pros+.uro and 0  the volume per ion. Stability of mixed phases
is determined by A G:

A G = G(p,T,c) - Cc G(p,T,l) + (1 - c) G (p,T,O) j	(52)

(lore c = 1 refers to pure helium and e = 0 to pure hydrogen. In order for there

to be any mixing, A G must be neguttve. A miscibility gap occurs when A G

is negative but the system can lower its Gibbs energy by separating into a helium-

rich phase and a hydrogen-rich phase. 50 This is doL onstrnted in Fig. 3, where

we present typical results for AG(p,T,c) at fixed p and T. At any concentrntion

between c = c  and c = c 2 the system can lower its Gibbs energy by sopnrnting

into a helium-rich phase at c = c  and a hydrogen-rich phase at c = c 2 , with

the relative amounts of the two phases being given by number conservation.

For such a partially sopnrated system, the Gibbs function is given by the dashed

line in Fig. 3. Tso error bars in Fig. 3 refer to the estimated computational

error, 51 not the error due to the various physical npproximutionr made. We have nlso

shown typical static energy differences (to second order) between lattice structures

Fig. 3, from which the sensitivity of the phase boundaries to lattice structure

be estimnted.
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The phase separation curves themselves are presented in Figs. A-B.

Note that the tomparntures for which mixing occurs are generally wall above

the ordor-a.sordor transition temperatures listed in Table. II. Thus, as

we have mentioned, the details of this transition are not very important in the

calculation of the phase boundaries. The uncertainties in p G are the cause

of the uncertainties in the phase boundaries, indicated by the cross-hatched regions.

regions. The most striking features of the results are (i) are the

persistence of a large miscibility gap at the highest temperatures and pressures,

and (ii) the largo temperatures necessary for any mixing to occur. 
52
	 The

occurrence of large mixing temperatures is not dependent upon the approxim+tions

we have used to take into account short-range order and lattice vibrations,

although the precise values of the mixing temperatures clearly are. The prediction

of complete phase separation at temperatures below some temperature T  reflects

the largo positive values of p G for the static alloys (A G — k
13
Tm ). In contrast,

the largo miscibility gap is primarily due to the "pinring" of the phase boandary

near c = 0.25. This is caused by the exceptionally low values of p G for	 «.-+

c = 0.25 ( see Fig. 3) at high temperatures, an affect for which the lattice

dynnmics is entirely responsible.

The relatively low phonon frequencies predicted by the virtual crystal

approximation for the c = 0.25 randomly disordered alloys should be compared

with the imaginary frequencies found for the c = 0.^u ordered alloys. In both

cases the alloy exhibits phonons whose frequencies-squared are low. This results,

in one case, in a true instability, and in the other case the low energy and

high entropy resulting from these low frequencies greatly favor mixing. In respect

of the c = 0.25 alloys, it appears that the treatment of the lattice dynamics

may be quite crucial.

,

^f
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.. A more correct treatment of the disordered alloy (within the harmonic theory),

and the application on the tempo rnture-depandent self-consistent (harmonic)

phonon theory for oxomple, ,ay produce qualitative differences in the phase

boundaries. (kit such difference might be the disappearance of the miscibility

gap at temperatures below 19,000"K.

In conclusion, the calculation I!rodicts that until the temperature has

reached a fairly high value, which will certainly depend upon pressure, there

is essentially complete phase separation in solid alloys of metallic hydrogen

and helium. 'Ibis may be regarded as a fairly firm result, since it is not dependent

in any crucial way upon the approximations used to computo A G. If hydrogen

and helium are solid in some region of the interior of Jupiter, these conclusions

have n direct bearing on any phnso separation model of energy emission.

We also predict a large miscibility gap that persists to T - 19,000°K and

p = 90 magabars. However, this prediction depends upon the approximations we

have used in treating the lattice dynamics of the alloys, and might well be

substantially modified by a more detailed treatment of the phonon spectrum.

The third-order terms in the band- s truC cure energy have little effect, tending

to raise p G by only a small amount. Thus the approximate response function used

in (EbC3%, as wall as the neglect of (z 
It/ e r if. not expected to have uny

important effect on the phase boundaries. The same is true of the use of the

quasi-chemical approximation.
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APPENDIX

The calculation of (E b (2) ).and (Eb(3) ) oin Sec. II! requires the evaluation

of the following n,oragtes:)

ST (k1' kte )	 L L o-ikl	 o -sue R1 (d id
i

)o 	(A-1)

i ,)

and

S3 ( k k2'k3) e LLL @-
Lkl .R^ o-ik^ •

Rtn	 ik.3'nr. (dpmdn )o	(A-2)

Emn

We will freely make use of the definitiots and properties of the variables

P i
 and d i as presented in Sec. III. Expressing d i in terms of p i , we have

	

(d idi ) o = ((P i - c )(pi - c ))o = (Pip i ) o - c2 = bij (c - c2 )	 (A-3)

Similarly,

(did mddo = ((PR - c )(Pm - ON - c))o

(P fP.pdo -c (PmPd o - c (pRpn )o - c (P lPm )o + 3c3 - c	 (A-A)

Note that if R ?i m 4 n in Eq. (4-4), Eq. (22) guarantees that the average

will vanish. If only two of the sites are equal, we use Eq. (18) and again

the average vanishes. Thus

	

(d Rdmd n) o = b
I ' m

 
bm 

n (c - 3c 2 + 2c3 )	 (A-5)

Substituting Eq.s (A-3) and (A-5) into (A-1) and (A-L), and using Eq. (30),

	

S2 (kl , ka ) = Nbk +k K (c - c2 ) 	 (A-5)

and

S 	 Nb	 (c - 3c2 + 2c3 ) 	 (A-7)
3 1 iL vi	 k1aY { =3 ,K

where K is any vector of the reciprocal lattice.N
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Phase Transitions and Critical Phenomena (Oxford University Press, 1971),

p. 91), and since the pair interactions in these alloys have a range of at

least 10 neighbors (II. Beck and D. Straus, Holy . Phys. Act. 48, 655 (1975);

L. G. Caron, Phys. Rev. B9, 5025 (1974)),mean-field theory should ben reasonable

approximation.

30. R. H. Fowler and E. A. Guggenheim, Proc. Roy. Sec. A174, la g (1940); C. N.

Yang and Y. Y. Li, Chi. Jour. Phys. 7, 59 (1947); Y. Y. L1,Jour. Chem.

Phys. 17, 447 (1949).

31. R. Kikuchi, Phys. Rev. 81, 988 (1951); M. Karats, and R. Kikuchi, Jour.

Chem. Phys. 21, 434 (1953).

32. Each higher approximation consists of taking a larger group of ions as

the basic cluster.

33. This is not true of mean-field theory.

34. Domb, Adv. Physics 9, 245 (1960).

35. D. M. Burley, in Phase Transitions and Critical Phenomena, ed. by C. Domb.

and M. S. Green (Academic, N.Y., 1972), Vol. 2.

36. A more subtle assumption made is that at every concentration, there is only

one ordered phase. For examples of other possibilities, see N. S. Golosov

and A. M. Tolstik, Jour. Phys. Chem. Sol. 36, 899, 903 (1975); N. S. Golosov,

A. M. Tolstik, and L. Ya. Pudan, Jour. Phys, Chem. Sol. 37, 273 (1976);

N. S. Golosov and A. M. Tolstik, Jour. Phys. Chem. Sol. 37, 279 (1976).

37. One should note that the quasi-chemical approximation itself is least accurate

in the critical region.
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38. no long wavelength limit of the vibrational spectrum will yield a

compressibility which agrees with that calculated from the static energy

(up to second order in the electron-ion interaction) only if some terms

of third and fourth order in the electron-ion interaction are included

in the dynamical matrix. (C. J. Pothick, Phys. Roc. D2,1789 (1970).)

Since we only keep second order terms in the dynamical matrix, the replacement

of Eq. (46) is not exact, even in the long wavelength limit. The resulting

error in the compressibility is of order 10%. (E. Stoll, P. Meier, and

T. Schneider, I1. Nuevo Cimento 23B, 90 (1974).) This discrepancy is

also present in the case of pure hydrogen and helim.

39, if. Beck and D. Straus (see Ref. 29) define the "average mass" incorrectly.

However, since the mass of a pure system enters the dynamical matrix only 	 ~

as a multiplicative prefactor, none of their results are affected.

40. W. A. Kamitakahara and B. N. Erockhouse, Phys. Rev. B10, 1200 (1974). Note
i

that the "average" force constants used in this reference do not correspond

to the average defined by Eq.s (46) and (48).

41. E. C. Svensson, B. N. Drockhouse, and J. M. Rose, Sol.State Comm. 3,

245 (1965); S. C. Ng and B. N. Brockhouse, Sol. State Comm. 5, 79 (1967).

42. This procedure is necessary to keep r  constant.

43. P. Choquard, The Anharmonic Crystal (Benjamin, N.Y., 1971).

44. A. Baldereschi, Phys. Rec. B7, 5212 (1973); D. J. Chadi and M. L. Cohen,

Phys. Rev. B8, 5747 (1973).

45. D. M. Straus and N. W. Ashcroft, Phys. Rev. B14, 448 (1976).

4ti. The type of "Kohn anomaly" instability shown by these two substances is

discussed in Beck and Straus (see Ref. 29). The self-consistent phonon

theory might well stabilize these substances at low density.

r-



47. in the context of cubic lattices, c/a is the ratio of the distance

between equivalent pianos to the distance between equivalent ions in a plane.

48. F. Dyson, Ann. Phys. 63, 1 (1971).

49. 'I nstabilities occur at long wavelength for both structures.

50. We describe the criterion for global instability.

51. The largo error bars at higher temperatures and low concentrations of

hslium are largely due to the (estimated) error in only using a few special

(hcp) points to calculate F0 for c = 0.25. The tractional error pF0/IF*

is usually less than 5%, but F0 can be large, on the scale of AG. (F0

for c = o.25 in Fig. 3 is of order 0.1 a.u. per ion.)

52. These features should be contrasted with the phase separation curves of

Ref. 3.
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FIGURE CAPTIONS

Figure 1: Equation of state of metallic hydrogen.

Figure 2: Equation of state of helium.

Figure 3: Typical results for A G vs. c. The dashed line determines

the phase-separated region. (c 2 4 c 4 c 1 ). The dotted line

shows another possibility for the phase-separated region

consistent with the error bars. Typical static energy

differences between lattices of randomly-disordered alloys

are also shown. (FCT refers to face-centered tetragonal.)

Figure A: Phase separation curve at 15 megabars, x is the relative

concentration (by number) of helium. The cross-hatched regions

show the uncertainty in the phase separation boundary.

Figure 5: 'Phase separation curve at 21 megabars.

Figure 6: Phase separation curve at 30 megabors.

Figure 7: Phase separation curve at 60 megabars.

Figure 8: Phase separation curve at 90 megabars.
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TAIIIY I I

.j
Order - disorder critical temperature T 

c 
(in units of 10 3 K) as a

function of pressure p ( in units of megabars). (Pressures are approximate only).

	

c = 0.250	 c = 0.5U0	 c = 0.750

T 	 P	 T 
	 P	 T 

	 P

5.06 2.0 3.45 3.0 0.79 2.5

4.82 4.5 4.40 7.0 1.21 7.0
4.65 7.5 5.63 13.5 1.70 14.5
4.45 13.0 6.67 21.0 2.16 23.5
4.40 20.5 7.92 34.0 2.73 39.0
4.37 31.0 9.19 50.0 3.07 49.5

5.35 47.5 10.05 63.5 3.46 64.0

5.94 59.5 11.03 80.5 3.89 82.5

6.61 74.5 12.10 102.5 4.21 98.5

7.35 94.5 12.68 116.0 i	 4.47 111.5

7.90 111.0 13.31 131.5
1

4.75 127.0

8.33 125.0

is

M



r
L

inn

Niv.nv
rn
aD

v

Q

U.8	 0.9	 1.0	 1.1	 1.2
rs



N

v

Ni

0rn00
00

F-

0
0

0
0
 
0
 
0

O
 
O

 
O

 
O

 
0
 
^
 

N
D 	

Q
)	

C
o	

t
i	

w
	

LO
	

^
'

(sjogD
59N

) d



w

0

0
0)	

W
0
 
Z

'Y
^
/

N
WO

W
N

`
UUU.

UUm
1

N
	

^
w

11J
(^

O
	

^^
r

^
0

N
_O
	

^^
M

N

N00L
.
s

In	
0
	

to 	
0

O
	

C
V
	

n
j

tsliun olw
olo X

0
'0

) N
i 9

v



.1* 1

U.Z	 0.4	 0.6	 0.8	 1.0
x

2,000

10,00C

4,000

12,00(

6,000

8,000

14,00(

16,00,

0
U.0

r

T (°i

18,00



12,00C

8,000

ow	 Ikllllgmlll.

T(OK) 	 p = 21 Megabars

18,000

16,000

14,000

10,000

6,000

41000

2,000

0L-
0.0	 0.2	 0.4	 0.6	 0.8	 1.0

x

o.



r-

lr

40

T(OK)

18,000

p = 30 Megal

16,000

14, 000

12,000

10,000

8,000

6,000

4,00c

2,00c

01	 ► 	 1	 1	 1

0.0	 0.2	 0.4 0.6	 0.8	 1.0
x

it

	 `^ J



T ( °K

18,00(

16,00(

14100(

12,000

10,000

8,000

f

0.2	 0.4	 0.6	 0.8	 1.0
x

2,000

4,000

6,000

0
o .0

l^



t s 6 r

T(°K %)
	 p = 90 Megabars

18,000

169000-

14,000-

12,000

10,000

82000^1

6,000

4,000

2,000

0 1 	 t	 1	 1	 1

0.0	 0.2	 0.4

>k

0.6	 0.8	 1.0
x


	GeneralDisclaimer.pdf
	0001A02.pdf
	0001A03.pdf
	0001A03_.pdf
	0001A04.pdf
	0001A05.pdf
	0001A06.pdf
	0001A07.pdf
	0001A08.pdf
	0001A09.pdf
	0001A10.pdf
	0001A11.pdf
	0001A12.pdf
	0001A13.pdf
	0001A14.pdf
	0001B01.pdf
	0001B02.pdf
	0001B03.pdf
	0001B04.pdf
	0001B05.pdf
	0001B06.pdf
	0001B07.pdf
	0001B08.pdf
	0001B09.pdf
	0001B10.pdf
	0001B11.pdf
	0001B12.pdf
	0001B13.pdf
	0001B14.pdf
	0001C01.pdf
	0001C02.pdf
	0001C03.pdf
	0001C04.pdf
	0001C05.pdf
	0001C06.pdf
	0001C07.pdf
	0001C08.pdf
	0001C09.pdf
	0001C10.pdf
	0001C11.pdf
	0001C12.pdf
	0001C13.pdf
	0001C14.pdf
	0001D01.pdf
	0001D02.pdf
	0001D03.pdf

