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Abstract

Calculations are presented for the thermodynamic functions and phase
separation boundaries of solid metallic hydrogen-helium alloys at temperatures

between 07K and 19,000°K and at pressures between 15 and 90 megabars.

results to models of the deep interior of Jupiter is briefly discussed.

Expressions
energy of a randomly disordered alloy {(including third order
Short- and long-range
order are included by the quasi=chemical method, and lattice dynamics in the wvirtual
We conclude that at temperatures below 4,000°% there
is complete phase separation of hydrogen~helium alloys, and that a miscibility gap

The relevance of these



1. INTRODUCTION
Knowledge of the phase diagram of hydrogen-helium alloys at high
pressures (4-40 megobars) is of importance in the study of the interior of
the giant pluﬁ%s.lua Phase separation of hydrogen and helium during the
cooling process may partly account for Jupitor's excess emission of energy.2
This piper prosents a calculation of the thermodynamic functions and phase-
separation boundaries of solid hydrogen-helium alloys at pressures between
15 and 20 megabars, and at temperatures between G°K and 19,000°K. These
metallic systems are also of intrinsic interest, since the particles carry
point charges, and the bare electron-electron, electron-ion, and ion-ion
interactions are given exactly by Coulomb's law,
The calculations reported here supplement earlier results of Stevenson3
on hydrogen-helium phase separation in the liquid phase. Present estimates
of the melting curves of these materials4 and of the temperature in the deep
interior of Jupiter3 indicate that both hydrogen and helium may well be
liquid in the planet's interior, at temperatures far below 19,000°K. However,
since the uncertainties in the calculated melting temperatures are quite
larges, a s0lid-solid phase separation calculation remains of particular interest.
The phenomenon of solid~solid phase separation in alloys is, of course,
not limited to the hydrogen-helium zystem, but is known to occur in many alloys.6
For example, Li and Mg (both simple metals) form solid alloys at all concentrations
except in the range of about 70%~85% Mg, where there exists a miscibility
gap., An alloy formed in this concentration range will separate into two phases
of different concentrations., It is noteworthy that the miscibility gap is still
present at temperatures just below melting. The hydrogen-helivm alloy is, how-

ever, tifferent from many other alloys {such as Li and Mg} in one important respect,



Whercas theo difference between the Mg and L1 electron-ion interactions
(pmoudopotentials) 1s small, hydrogen and helium have electron-ion interactions
of very different strengths, and this difference is oxpected to play an
important role in the thermodynamic properties of their alloys.

In 8ec. II we discuss the general approach taken in formulating the
Helrholtz free energy F for hydrogen, helium, and their alloys. The static
internal energy is is calculated in Bec. III for any given configuration of
hydrogen and helium (confined, however, to an underlying lattice), and is
subsequently evaluated for a randomly - disordered configuration. COntributiohs
to F arising from long - and short=range order are treated in fec, 1V, and
the free energy associated with lattice dynamics in Seec. V. In Bec, VI we
present the equaticns of state and the Gibbs free energy G per ion of hydrogen-
helium alloys. Writing G as a function of its natural variables (preasure p,
tepperature T , and the relative concentration by number of helium ¢), we
compute AG, which is defined by:

&6 = G(p,T,¢) - [c G(p,T,1) + (l=c¢) G(p,T,M] . (1)

From AG we determine the curves describing solid-solid phase separation.

i1, HELMHOI'TZ FREE ENERGY
For a system of volume {], the free energy F can be written as
F(1,Q,c) = FS(T,Q,c) + FV(T,Q,c) R (2)
where FS(T,Q,c) is the static free energy, and FV(T,Q,c) the vibrational
free energy. 1In principle, F can be calculated from the partition function E,

2

which is the sum of e over all degrees of freedom, electronic and ionic,
and in particuiar over all confipgurations of hydrogen and helium on the assumed
underlying lattice. (Here B = I/RBT and E is the total energy.) It is useful
to introduce the following notation: Let (A>s denote the ensemble average

‘of the variable A for a static lattice, The electronic degrees of freedom and

the configurational degrees of freedom remain summed over in obtaining (4) .
s




¥e use the symbol (A¥’° to indiéate the cnsemble average of A for a static

lattice in which the configurations summed over are restricted to be randomly

disordered, We can now write Fs(T,{},c) of Eq. (2) as

F (T, ,¢) = (l)s -7 (s)s . (3)

where § is the entropy. We may also write Eq. (2) as _
F= (E)s’o + [Fs - <E)s.°] + r: + [Fv - F:] ' (4)

where F: is the vibrational free energy of a randomly disordered alloy.

¥+ will ignore the last term in Egq. (4), and in Sec. V calculate only
F: . The vulidity of this approximation will be discussed in the final section.
The neglect of the term [Fv - Fgl, and the separation of the static free energy
as shown in Eq, (4), are motivated by the fact that those temperatures for
which hydrogen~helium alloys actually do form are sufficiently high as to favor
such random disorder. (This point will be argued more fully in Secc, VI) Thus
we expect that at these temperatures <E>s,o will be the major contribution to
(E)s' Note that the second term of Eq. (4) includes the configuraticnal entropy,

as well as corrections to the static energy due to correlations of the positions

of hydrogen and helium on the lattice.

I11. ST.TIC ENERGY

In this section we calculate <E>s,o by writing a general expression for
Es’ the static energy of any configuration of the ions, and then computing its
average over randomly disordered configurations, The approach is to consider
an alloy as consisting of hydrogen and helium ions, located on a lattice, and
immersed in a responding electron gas of compensating density., The ion-ion
electron-electron, and electron-ion interactions are all given by Coulomb's
law. The (divergent) long-wavelength limits of these interactions sum to
zero, and arc eliminated from the starting Hamiltonian.7 One can then write
ES as

- (o
E = E lEM+Eb . (5)
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(o)

Hore E 18 the cnergy (per ion) of n homeogencous intoracting clectron gas (in the

prescnce of o positive, uniform background charge), the Madelung energy EM
is the eloctrostatic energy of the point ions (in the presence of a uniform
negative buckground charge), and Eb is the energy due to the electrons'

response to the non-uniform component of the total ionic potentinl V., By

treating ¥V as rolatively weak, Eb' which is known as the band structure energy,

can be calculated by perturbation theory, What we are describing is conven-
tional pseudopotential theory,8 applied to a system for which the electron-ion

interaction is known exactly. This approach has been used extensively in the

context of metallic hydrogen,7'9 and is an important element in the alloy
calculation of Ref. 3.
In Eq. (5), E(o) is given by

g o g* (éo) [‘2‘(%11)2/3,%2 . !:% (g:}z)l/a,f + (=0,115 + 0,031 1n rs)] (@

*
where Z2 18 the average ionic charge in units of ¢ (e > 0). 8ince ZHE = 2

*
and ZH =1, 2 = CZHE + (l-c)ZH =1 + ¢, Note that r, is the usual dimensionless

electron spacing parameter:
3

4
3" (i) =

0 (7)
o 7Fy

where a, is the first Bohr radius., Since N is the number of ions (in (), NZ*
is the corresponding number of electrons, The first two terms :v -, (6) are
the kinetic and exchange energies, The last term is the correlation energy, and
is only known approximately. We have used the approximation due to Nozieres and

pines,lo which is expected to be quite satisfactory in the T range considered

{0)

here (rs ~ 1). Note that E is independent of both the configuration of

hydrogen and helium ions on the underlying lattice, and of the lattice itself,

Since we are interested in temperatures much less than the Fermi temperature
= 5.82 x 105 K° , (%)
2
r
-]

11
the electron system is taken to be in its ground state.

. Ty
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The secoad term in Eq. (5) is the Modelung energy, and is given by
' 1 ik.(R,~R,)
E =1 z Z f‘-—l,’a"‘“"dzizd, (9)
LYo | |

(1) &

where Zi 18 the charge of the ion a. site i whose position is givon by EA'

The prime cn the sum over i and j denotes the omission of the terms i=j, The

prime on the k-sum denotes the omission of k = a.

The Madelung energy 1s generally large and negative, and for a given f .umily
of structures often assumes its lowest value for the most symmetric structure,
Using perturbation thooryf'9 Eb can be developed as a series in ascending

orders of the electron~ion interaction:

(2 (3)
Eb - Eb + Eb 4+ . [ LI ) (10)
with
® 1§ T v ves £ [ -]
B, =iy Z Vo) VR K (g T M (11)
X in
and
(3) 10 i w0 V(k,) V(k,) V(-k.-k )6 .1 .1 . 1 j}(s)
E === I ~1 ~2 ~ R = F = —_ H " (-q,,9,), (12)
where the primes denote the omission of 51 = 0, Ez = 0, and El = -Ea .
In Egq.s (11) and (12), V(k) is given by:
1 3 -ik.
vy =g [dr e v, (13)
v(r) = - 1%L 2, (14)

ilm ’
where V(r) i1s the total ionic potential as seen by the electrons. The
restrictions on the sums in Fq.s (11) and (12) follow from the form of the
Hamiltoninn.7 The vectors q are defined by q = E/sz, where the Fermi wave-
vector kF is given by the relation

K> = an® 2*N .

F R

In Eq.s (11) and (12), €(q) is the zero-frequency limit of the dielectric function

of the homogencous interacting electron gas, and Héa) is given in Eq. (C3) of

Ref. 7. Wec use Hartree atomic units in the equations above, (and throughout

the rest of the paper).
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It s important to note that Eq., (11) is an exact result for Egz),

for kf[%(q ) —1] measuros the exact linear response of the number density
1 .

m
of the homogeneous interacting electron gas to an external potential, (in this

case tho potontial due to the ions), In contrast, Eq. (12) is only approximate,

as the corresponding second-order response function is not known exactly. 'The
approximation used in Eq.(12) corresponds to treating the e¢lectrons as independent
particles moving in a self-consistent potentinl constructed from a Hartree potentisl
and the external potential, provided ¢ is taken to be the Lindhard dielectric
tunction7’12. In the present calculations we have used the Geldart-Voakola

modified form of th~ Hubbard dielectric function, which includes effects due

to exchange and correlation,and yields the correct q -0 limit. It is certainly

preferable to use this form (rather than the Lindhard function) in E(z), but it

b
technically inconsistent to use it in Ega) as written in Eq. (12)., However,
these two dielectric functions yield values of Eés) within 1% of each other, so

that the effect on phase boundaries, which depend on differences of free energies,
is inconsequential.

Although the hydrogen-helium alloys have been taken as metallic, the
convergence of the perturbation series of Eq. (10) 1s not dependent on the
existence of a metallic state, as discussed in Ref. 3. The point is that the
perturbation series should be adequate as long as the one-electron band gaps
are less than the band widths, which is the case for helium above 10 megabars.
Bince actual metallic conduction may only occur3 in helium at 70 megabars, this
distinction is of considerable importance. (Hydrogen, on the other hand, is
expectedl4 to be metanllic at pressures of a few megabars.)

(4)
b

Considerable progress7 has been made 1in calculating E s which however,
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we do not includo hore. For metallic hydrogen Eéd) is smaller than Eéa)

by rough’y n factor of tcen |, and it includes the effects of the change io

the chomicanl potential of the electron gas due to the presence of the tons,

(4)

To correctly calculate n , one must use finite-temperature perturbation

thoory, as discussed in Ref, 7.
(2) (3)
" Eb , and Eb

of hydrogen and helium, and contain contributions that depend both on the

The terms E are valid as written for any configuration

configuration and on the structure of the underlying lattice, More specifically,
since the total potential V(L) in Eq. (14) takes the form of a sum over sites,‘

Eb will contain the following classes of terma:

{1) Btructure Independent terms, that is, terms independent of configuratjon

(2)
Eb and

and lattice structure. These arise from the terms

(3)
Ey

in which all sites coincide,
(ii) Two-Body. or ion=ion terms. These comprise the remaining terms in
E(z) (3) for which only two site labels coincide,

b b
(ii1i) Three~Body, or ion-ion-ion terms. These arise frum the terms in Egs)

, and the terms in E

in which no site lahels coincide,.
There are, of course, four-body terms and terms involving more than
four ions, but these originate in higher orders of perturbation theory.

Recognizing that E, is #lso a sum over ilon-ion terms, we can group together

M
contrihutions to'E; in Eq. (5) by the clnsses (1)-(ii1) above, and obtain:
S @) z o - -
E-E (o)+_,NZJ¢ )+1 Biik ¢ Ek'ligﬁk)"'"' . (18)
R RATLY

Here the primes denote restrictions forbidding the terms 1 = j in the two body term,
and the terms 1 = k and j = k (but not i = j) in the three bedy term. Note that
the two- und three- body potentinls depend on density and on the identity of the ions

at sites 1 and j, (ns well as on the separations R

~a Eg)‘
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All torms in Es which are indapondent of configuration and lattice structure

are included in E(O).

‘The point about rewriting Eq. (5) as in Eq. (15) i=
simply that by summing over the clectron degreos of fieedom (at T=0°K),

we have been able to write-f' as a sum over (density-dependent) effective
pair and three~body potentials, plus # torm dependent only on density, This
recasting of Eq. (5) is clearly valid for any configuration of hydrogen and
helium ions, and is a conceptually useful alternative to Eq. (5).

We now calculate the first term in Eq., (4), the static energy of a

randomly disordered system:

(E)s'o = g(® (EM>° + (Eéz)>o + (Eb(3)>° + 0o (16)

To do this we must first give the definjtion of randomly disordered, To this

oend we introduce the quantity Pyt

p; = 1, if site 1 is occupied by a helium ion, (17)
Py = 0, if site 1 is occupied by a hydrogen ion,
1
From its definition, 5 one can se¢ that Py obeys the following relations:
n
(Pi) = pil n= 2031 LA A (18a)
(p,? = ¢, (18b)

where the average in Eq. (18b) is over all configurations. Introducing the
auxiliary variables di:
- ¢, (19)
we have

(di) =0 . (20)
Since P, measures the probability that site 1 is occupied by a helium ion,
di measures the deviation of that probability from its average value. In
N’ we write Zi as

2y Py

Eq. (9) for E

+ (1-p 2, . (21)
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Thus ¥, will clearly involve averages of the type (pipd) . In torms of

those correclation functions we define a randomly fisordered system as one

for which the n-th order correlation function factors according tole:

) (piz) v ey ), (32
n

<p11p12 v pin)o = <p11)0 <p1§>o . . -(pirl)o = <p11

where i, £ 12 2. .. iin

1hus for the two-gite correlation function we obtain:

2 = 2 -
<pipj)o"" (py? (pj) =c“ it 1 £, (pipd)o = {p, >y = (p,)g = © 12 1=y, (23)
Bince i = J is excluded from Eq. (9), we immediately have:
(£.) = z%? Z Z 4m k. (R, = Rj)
Mo = e ~ ~ -~ . (24)
20N i3 i k

The Madelung energy of & randomly disordered alloy is that of a pure metal
of ionic charge z*, (correspontling to the so-called "virtual crystal"),16
and c¢an by ealculated by well~known tachniquas.8

To calculate <Eb>o we must first use Eq.s (13)and (14) to write V(k)

in terms of the variable pi:

y ~1k- R (-411 Z (=41 Z
V(k) = 2,9 ~ L (p HE) + (l-p,) H ))
~ 1 1w U N5 (25)
wvhere Edis again the position vector of site i, Introducing di vie Eq. (19),
we obtain:
Y -ik.R,
V(E) = Z- e (U (5) + di AU(E)) N (26)
: 1
where
"
0 k) = - l:c M2, 1oy Ty ]: :‘5—3— , (27a)
~ k2 k2 (1
and
o Am ( _ ) _ =4m
Wk = ~qrs B = %)= w@an (27b)
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From Eqy.s (11} and (17), we find:

2
€, %o =143 Vi) Vi) o [ == -1, (28)
Zu 1) b e [5(11) ]
~L

-

and

(Vilgy) Vik ))o o . e-i'l_t'l.ﬁi JZG *1541'56 ((ﬁ(!&l) + dimcﬁ))(ﬁ(-lil) + dJAU(-!gl)))o . (29)

From Eq. (20) wc sea that the cross terms in Eq. (29) vanish, Using the rolation

L o Ry =N by (30)

i
where K is any vector of the reciprocal lattice, we have:
(veky) Ve-kddo = W26 Tk ) Te-ky) + L) ot Ry gy 2 Cie, Y-k ) ) ¢ dyd o
~1 ~1 "4 i3 14
(31)
_In the Appendix, we prove the relationship:
Zze"i’,&l-“ et ¥Ry (4 d. ) = N(e=c?) . (32)
13’0
Snbstituting Eq.s (31) and (32) into (28), and using

Q= e %Z c2n>3~r“'

we have the finnl second-order result:

(2) 4n adx  4nm [ 1
(E,"")o Z &@) 1] + 3@y ? eme?) Em? ®2 e 1] o (33)
(R)

whore Q

§/2RF . In Eq. (23), the first term is just the second order band

structure energy17 of a pure metal of ilonic charge Z*. This virtual crystal result

is not correct for a randomly-disordered system, because in Eq, (29) the terms

in which the sites i1 and j coincide must be handled separately., However, it is

worth noting that the virtual c¢rystal result corrcctly gives the structural-dependence

(2))

f (E o Since the second term in Eq. (33) is clearly independent of both the lattice

structure ond the configuration of hydrogen and helium on the lattice.
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We have written (Egz))o in a form that is quite similar to other

expressions in the 11ternturo,s'ls

and have used n rather indirect method to
do so., This method, however, avoids much of the confusiom that would otherwise

arise in the calculation of (E(a)) , to which we now turn,

Equation (12) tor (E(s))o can be written in the following torM'12
(3) ﬂ i

~ ~2
where the function X is defined by direct comparison of Eq.s (34)and (12).

However, we shall never neod the explicit expresslion for ¥g but only its
symmetry properties. The form of the function “:3)(-3a'ﬁe) in Eq. (12)
guarantees that xz is symmetric with respect to the interchange of any two
nrguments.7'12 Using Eq.s (27) and (30), we have

(V0 VUV = N & x 8 x5, x Tk D0k Toky)

Kivaa Karea K3rs
+ N C(k,) B (k. ,k.) MI(k.) AUCk + N 6
+ N U (ky)s, (kgok)) a (kg) au Ugy)
%K, 2~3"~ ~
+ Bo(ky ky ko) NICk ) MU(ky) MuCky), (35)
shere woe have defined
-ik ] - .
5,k ,k,) =ZZ e 't e thaRy yddo (36a)
and -
8,0k, ok k) = L22 okym Ry e “hg By o 7ty - By (@d), - (36b)
Lmn

These functions are shown in the Appendix to be

. 2
50y kgD = N &y e (e=) (37a)
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. I f . ) ‘
=3c +2 Z_~Z 3 3 2 . 2 . 2 i
ﬁz(c e +2e7) (2,2 ) |y q; Jd qzk q,e(q;) " aye(yy) Iﬂa'ﬂzi e(q,-q,) Hs )(ql.u )] (39)
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and

2 3
83(k u )m N 6 (c=3c” 4+ Z¢ ) (37b)
Ky tRotka K

Substituting Eq.s (35), (36) and (37) intu Eq. (34), and making use

of the uymmatry or xe wo obtain:

(3) - - -
(r. >°=n4; Z [N 6 N 8 X U(‘lg,l) "‘Ee) u(ggG)

+3N6Ea.§3U(§3)N6h+E‘2 (cc)w(k)w(k)

2 3
N -3 2¢7) Kk k k ] ) . (38
+ N & o ko K (c-3c” + 2¢ @1(~1) Bky) Wky) | Y €97195.93) 621*‘“‘ #y,0 (38)

The first term in Eq. (38) 1s the third order band structure energy17 of the
virtual crystal, As befo.%, there are corrections to the virtual crystal result !
which have their origin in the coincidence of sites in Eq. (34), However,

now the corrections are structure-dependent. To see this more explicitly, we
(3)

recast (Eéa))o in terms of the function H,™° of Eq. (12). By using the .ymmetry
properties of Héa) with respest to interchange of arguments (see Ref. 7), we

can rewrite Eq. (38) as:

(3) - 1/4 v 1 1 1 3 l
o o “S(Qn) "s [Z* z (9.: f@) g e Clg- |2e(24-22))*15 %)

)

- 1 |

] 2 2] q et . ) (3) ﬁ

+5 ) Gy -bY L .[d q( d2e@ Qne(g) " Ja-q| eta-@) s (a9
Q

1 11 1

As before, ( = k/2k .» and the prime in the double sum means we omit

~

Q. =0,4Q, =0, and Q. = Q,

Q Q, Q Qe Since the second term in Eq., (39) involves =&

sum over the reciprocal lattice, it is clearly structure-dependent. Eq. (39)
is our final result for (Eéa))o .

-
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The polynomials in ¢ that appear in Eq.8 (33) and (39), (the basic results
of this section), are cumulant polynominls Ps(c), familiar from the theory of
electron states in the tight-binding model of randomly disecrdered nlloys.19

They are defined by the generating function

»
N s x
L.P(c)5_=m(1-c+ce), (40)
E=1 s Y
which gives,

Pl(c) = C, 2

Pz(c) =c=-c ,

Pa(c)=c-3c2+2'.:3,.... . (41)

The cumulants arise in both problems for the same reason, namely that the
decoupling of the correlatiun functions, illustrated in Eq. (22), does not
hold when two or more sites coincide, This point has been stressed previously in

Ref.s 20 and 21.

1V. LONG AND SHORT RANGE ORDER

¥We now turn to the second term in Eq. (4), namely Fo - (E)B'0 . In the
previous section we have summed over the electronic degrees of freedom to
obtain an effective Hamiltonian for the ions (Eq. (15)). The static partition
function (and wence the static free energy) can be obtained by summing e-E/kBT
over all (static) configurations of hydrogen and helium ions on the underlying
lattice, To carry ocut this sum, we need a convenient language with which to
describe theconfigurations. At high temperatures, this is acheived through

the use of the correlation functions-=’'2> {p.p.?, (pipjpk), ete. introduced

1P5
in Sec. III. 1In general, a helium ion may be more likely to have a hydrogen
ion as a nearest neighbor than another helium ien (or vice-versa), but the

probability (at high temperatures) of a very distant neighbor of the helium

ion being another helium ion will depend only on the mean concentration of

helium,
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The correlation functions (pipj) ctc, are ideally suited to describe such

24,25

short-range order, for we expect the quantity (pipJ) - (pi)(pJ: to bocome |

vory small uvs Ed and Ed become increasingly well separated. (mn the other hand, {
at very low temperatures, and particularly for stoichiometric compositions, %
the alloy, if it forms at all, is expected to take ur an almost completely ordered !
state. (For example, if c= 0,5, the alloy may have the CsCl structure at T = 0°K.) i
It is clearly inappropriate to attempt to describe this situation with the J
correlation functions of the type <pipj>' since <pipj> - (p1>(pd) is expected

to be infinitely long-ranged. Instead, it is convenient to introduce the notion

24,25 l

of long-range order, whiclh for the example quoted above would be defined

by the number of helium ions on " rightgsites", 1.e. the number of He ions
¥ on the "helium ion" sublattice. The point is, of course, that this number is

} 1.00 at T = 0°%K. It also approaches rather ahruptly the disordered value

i of 0.5 at the ecritical temperature (TE), above which there is no long-range !
order.
Thus, any theory used to calculate F, - (E)s o Must be capable of describing
]

these two very different types of behavior at low and high temperatures. More

specifically, at low temperatures we have:

Lim (F_ - (E) = AE 42
Jin  (F (B)g o) , (42)
where AE is the energy difference between the completely ordered phase and i

24 '
its completely random counterpart. At extremely high temperatures we have

Lim (F_ - (E)S'o) = =T (s)sm: kpT [c ine + (1-c) ml-c)] . (43)

T >
where the expression on the RHS of Eq. (43) is s . -ly the negative of the
entropy of a randomly disordered alloy, weighted by the temperature.
The first step in formulating such a theory is drastically to simplifiy

H Eq. (15), and replace it by a nearest-neighbor model, viz:

, n.n.
B s .1 < - - - 4
| T .>_. l-.pipm Ypam * 2P P Gy v (7P IR Qu-u] ’ (44)

R R AR
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where the sum is over nearest neighbors only, ond the pair interactions

] ? , and §

HE<HE' "HE=H 1-H

that since we are computing only the difference betweon energies, the structure-

will be chosen to satisfy Eq.s (42) and (43), Note

independent term in Eq., (15) may be neglected. Tho appeal of the simple form
in Eq. (44) 1is that it allows an exact mapping of the problem onto the anti-

forromagnetic Ising model.zs'27

In addition, the Hamiltonian of Eq. (44)
has received a great deal of attention as a model Hamiltonian of an alloy.24
SBince we only need kecp terms dependent on configuration, it is easy to show
that the pair interactions do not enter separately, but only in the standard
combination,

v=t Gon * S (45)

HE=-H -3
28
where v 1s assumed to be negative.
The energy difference AE, as calculated from the Hamiltonien of Eq. (44),
is proportional to -v, with the proportionality constant depending on the
{stoichlometric) composition and the assumed underlying lattice. It is there-

fore compelling to choose v so that the energy difference AE hetween crdered

and disordered alloy will be the true static energy difference,29 as calculated

by the methods of Sec. III, i.e. with no restrictions to nearest neighbors.
Providing our methods of solving tane model problem defined by Eq.{44) satisfies
the 1limit in Eq.(43), the resulting function F(T, 0, ¢) = (E) s o will then

| ]

exhibit both the correct high and low temperature behaviop,

Such a method of solutioh of the model problem is provided by the quasi-

25,30 The basic idea of the method is to treat clusters

chemicel approximation.
of ions as independent units, subject only to the conservation of the number
of each type of ion consistent with a given long-range order. The probability

of a clusier having a certain configuration of hydrogen and helium ions is then

gsimply given by the standard Boltzmann factor.
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If the clustor 18 chosen to be the whole crystal, the result is exuct. For
smaller clusters, (in particular for a few atoms), error is introduced because
the fact that a given site may be part of two (or more) clusters is ignored
in assigning a probability that the site is occupied by (say) a helium atom.
Neveortheless, the method does tnke into account correlation effects in o manter
reminiscent of classical liquid theory. The free energy can be written down as
a function of temperature and long-range order only, and is to be minimized with
respect to the latter. The quasi-chemical approximation is thus able approximately
to describe both long~ and short=rangn order within one context.

The approximation is related to more accurate mathod531 in that 1t is
the first of a hierarchy of approximation32 which can be substantially developed,
although the calculations become extremely involved. It is most readily applied

in the following cases:

(i) ¢ = 0.5, where the underlying lattice is bec, and the assumed ordered
state 1s the CsCl structure.
{i1) e = 0.75 (or ¢é= 0,25), where the underlying lattice is fcc, and
the assumed ordered state 1s the CusAu structure.
The method correctly predicts that for ¢ = 0.25 alloys (ii), the order-disorder
transition is of first-order,25 that is, the long-range order drops discon-
tinuously to zero at Tc‘ It also correctly predicts that the transition for
alloys of type (i) 4is of second order, with the long-range order vanishing
continuously at Tc. The existence of short-range order above the transition
temperature, and hence a configurational centribution to the specific hent,
is also described by the method,33 but the details of the experimental specific

25,2
keats are reproduced only qualitatively.” '’ 7

e L T —
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When compared to more anccurate solutions of the Ising model, the guasi-
chemical method's prediction of Th i only very roughly cc:u'rczct:.'ﬂ""a5 However,
calculation shows that in the very low temperature region the quantity Fs "<E)s,o
for ¢ = 0.5 agrees fairly woll with the low temperature Ising model series
oxpansion.28

We have used the quasi-chemical approximation to calculate Fs - (E)s o
for c = 0,25, ¢ = 0.50, and ¢ = 0,75 alloys by using the solutions corresponding ;
to the categories (i) and (ii) above, The parameter v was chosen to yield |
the true static energy difference AFE between ordered and disordered piiases,
as previously described, However, the assumed structures for the ordored
and disordered phases in the calculation of AE were chosen by criteria to be
explained in Sec.s V and VI, and were not consistent with the structures for
which the quasi-chemical method was evaluated (see (i) and (i1i) above). In
addition, the contributions of lattice vibrations and the third order band structure
energy to AE were neglected.36 These approximations are expected to have a serious
effect near Tc, but should make little difference well above or below TE. 37 Bince
AE is a function of Ty, we have constructed an approximate form for Fs(T,rS,c) "(E>s,
which has the correct high and low temperature limits., We have not assumed
that the order-disorder transition occurs at constant volume, for the mctual

behavior of the alloys 1s determined in Sec. VI from the Gibbs energy G computed

at constant pressure and temperature,

V. LATTICE VIBRATIONS

To calculate the contribution te the free energy of the lattice vibrations
we first assume that the alloy is randomly disordered. The "phonon" spectrum
of the random alloy is then calcv’ated by replacing each ion with one of charge

2 are chosen so that the long-

eff and mass Meff' The values of Zerf and Meff

havelength limit of the phonon spectrum is given correctly.38'39
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This is readily seen to require

.
'fo =M -CIHE + (1 = ¢) "H' (46)

and
z 2" =ez 4+ (1 - ¢) 2
= - .
ett © ey o =%
The force constants for an alloy of arbitrary configuration are defined

(to second order in the electron-ion interaction)from Eq. (15):

1.1 . (2)
et (R, - &) % ® (1 #3) (47)

Re !-(-E-J

There are three \ypes of force constants (corresponding to hydrogen=hydrogen,

hydrogen-helium, and helium=helium pairs), and from Eq.s (11)=(14) these are

~ H=H 2 ~
0“(5‘-§J)-ZH '0.5(24-511).
~ H=-HE ~
and $ap By =R =2, 2, §5 R -R), (48)
~ HE-HE z ~
H a8 (R - Bd) HE b ad (54 - Bd) .
Here 0.5(5) depends on r and may be written as:
g i 1 -ik.R
fas® = % % I(Zn) 2 Tl ¢ AN (49)

In terms of force constants, Eq. (46) is equivalent to the replacement of the
three types of force constants with a particular type of "average" force
constant.

The concept of phonons in disordered systems in general, and more
specifically the use of average masses and force constants, has met with some
success when applied to alloys whose constituent elements have similar masses
or force constnnts.20'4°'41 Clearly the masses and force constants of pure
hydrogen and helium are not close to each other, but some justification for

the replacement of an alloy by an "equivalent” pure system is given by the

" 2
"wirtual crystal approximation' for the phonon Green function. " More specifically,
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if we start with a pure system of point ions having masgs and charge given by
Eq. (46), and introduce the difference between the physical charges and masses
and the "average" ones as a perturbation,42 then within this approximation

the perturbation causes no change in the phonon Green function,

We have evaluated the dynamical matrix of the pure system defined by
Eq. (46) 1in the adiabatic and harmonic approximations, with the electron-ion
interaction takcen into account up to socond order. This has been repeated for
a variety of crystal structures and concentrations, including pure hydrogen
and helium. From the phonon frequencies, we culculnte43 the vibrational free
energy FVO: B.Z

Fs = kT Z uz(zsinnlii fh w(g,j)j) , (50)
3
where B = 1/kBT' w(qj) is the phonon frequency of wave number ﬂ'and branch
index j, ond the sum 12 over the first Brillouin zone, This zone sum was
carried out using the special-point technique44’45 with a modest number (~ 10)
of special points.

Note that by using the harmonic approximation, the frequencies appearing
in Eq. (50) depend on rs but not on temperature. In order for them to ncquire
a temperature lependence, a more sophisticated approximation, such as the self-
consistent phonon theory, 43 would be needed. However, some thermal expansioa
is included by using the harmonic frequencies, for the contribution of Fvo to
the pressure is not negligible (see Fig.s (i) nnd (2)).

The calculation of the phonon frequenciles of the (randomly disordered)
alloys and of hydrogen and helium was used as a guide in the choice of the
lattice structure chosen for the calculations of Sec. III. The point is that
these Coulomb systems (in the virtual crystal phonon approximation) are very

29
of ten harmonically unstable, as discussed by Beck and Straus.
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(By an instaebility, wo refer to the cccurronce of imaginary phonon frequencies,)
The lattico structures used in the calculations of Sec. I1I, as described in
detail in Sec. VI, were chosen to give real frequencies. It should be noted,
however, that the relationship between instabilities in the virtual crystal

; approximation and those in the real (randomly disordered) alloy 1is not clear,

We shall aeseoss the effect of our approximate treatment of the phonons on the

phase boundaries in Sec. VI,

VI. RESULTS AND DISCUBBICN

{ A. Choice of Lattice Structures.

ﬁ Here we discuss the lattice structures chosen to calculate the various

i contributions to Eq. (4). The static energy differences between lattices are

i in general very sma11,7’9 especially when compared to the energy in the phonon

% system. (However, these energy differences may not be small compared to the

5 differences in phonon energies between lattices.) This raises the question of

whether these materials can ever solidify in the conventional sense. 1t should be noted
that the energy differences are slso 223 necessarlly small when compared to the

difference AG of the Gibbs energies between the alloy and the pure hydrogen and helium

systems, as Fig., 3 illustrates. An extensive search in Bravais leattice space

for the structure of lowest energy (ac carried out in Ref, 8) is not feasible

i
1
i
i,
i
:
j

for this problem: we limited ourselves to the consideration of the bec, fecc, and
hcp (with voriable c/a ratio) lattices in the calculations of (E)s o and Fvo
’

in Eq. (4). (S8imple cubic lattices are harmonically quite unstable for these

systems,)

i For the randomly disordered alloys (and for pure hydrogen and helium),
&

either fcec or bee proved to be stable for all Z except in the range

1.20 s Z* % 1.30, and the stable lattice was chosen for the calculations.

At Z* = 1.25, hep (with c/a = 1.7) was stable, and this structure was therefore

*
‘ chosen in the concentration range near Z = 1.25, The lattices used to compute




{E) 5,0 and Fvo arc summarized in Table I. The nbsence of an entry for
a particular contribution to the encrgy indicates that the value of that con-
tribution wns obtained by interpolation from its values at other concentrations,
Note that (Egs))o was calculated for fce, not hep, in the region 1,10 & z* € 1,35,
it is not expected that this procedure will cause any significant error in the
phase soparation curves, In nddition, the Jdesignated phases for Z* = 1,00 and
1.25 are harmonically unstable46 at low densitios (corresponding to pressures ot
less than 20 and 30 megabars, respectively). Provious calculationé16 show that
such instabilities will only occur at much higher values of r, (lower pressures)
when the phonon spectrum is calculated in the self-consistent harmonic theory.
Thus we adopted the procedure of extrapolating the phonon frequencies to lower
denslty to calculate Fvo at low pressure,

We now discuss the lattice structure of the ordered alloys used in
calculating Fs - (B)s'o by the methods described in Sec. IV. The encergy
difference A E between ordered and randomly disordered states was calculated
for ¢ = 0.25, 0.50, and 0.75. (For pure hydrogen and helium, A E, as well
as Fs - (E) 6,0’ clearly vanishes.) For the alloy of ¢ = 0.50, we have considered
two types of lattices:

(i) Simple tetragonal {st), with n basis of one helium and one hydrogen

ion, situnted so thut when c/n = 1.0, thie lattice has the CsCl structure.47

(i1) Face-centered tetragonal (fct), with o basis of one helium and one

hydrogen ion, situated so that when c¢/a = 1.0, this lattice has the NaCl

structure. |
As the fect lattice proved unstable for a wide range of c¢/a values, we ised
the st lattice at e¢/a = 1.0, where it is stable.

We considered two structures for the ordered ¢ = 0.25 (¢ = 0-70) alloys:
(1) Simple tetragonal (st) lattice of helium (hydrogen) ions with a four-

point basis. The helium (hydrogen) ion resides at the lattice point,

and three hydrogen (helium) ions sit at the face centeéers, If all the
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fung were idontical, the lottice would be face=contored tetragonal.

(This is the genernlization of tho Cu,Au structure to ¢/a £ 1,00)

R
(i1) Body=centored totragonal (bet) lattice of helium (hydrogen) ions with
a four-point basis. The helium (hydrogen) ion resides at the 1li: 'co
point, and three hydregen (helium) ions sit at the faceo-centers and cdge
midpoints, 1If all the lons ware identical, the lattice would be simnle
tetragonnl, with half the originnl lattice constnnt.48
Of these two structures, the st lattice with ¢/a = 0.7 proved, for ¢ = 0.75,
to have the lowest static energy (to second order in the electron-ion internct;on).
8ince this structure is harmonically stable, the difference hetween its gtantic
energy and that of the corresponding disordered alloy of Table I (bec) was set equal
to A E, as required in the application of the quasi~ghomical theory of Sec. 'V, FPor
¢ = 0,25, neither of the two structures are harmonically stable (over a wide.
range of ¢/a values). This may be a dynamic indicatiom49 of immiscibility
at T = 0%, or alternatively it may indicate that these structures are energetically
quite far from the structure an ordered nlloy actually assumes. Of these
two structures, the bet lattice with c/a = 1.0 has the lowest static energy
for T2 0.820 (p <28B.9 megabars at T = 0°K), but the st lattice with c¢/a = 1.0
has the lowest energy for ry < 0,920, The static energy differences between
these structures and the corresponding random alloy (hcp) were used for AE
in the calculation of 8ec.lVv , In Tabie 11 we present the critical temperature
T; as a function of pressure for the order-disorder transition, as calculated from
Bec, 1V.
In order to determine hew serious an error waos made in neglecting lattice
vibrations in the computation of A E, we computed I-‘v Tor the CsCl-structure
alloy at T = 0% and rg = 0,99, The result is within 77 (0.001 a.u. per ion)
of the corregponding random nlloy (bec) result, The difference is small, even
on the scale of AG. This also shows thuot our neglect of the term [Fv - Fvol

in Eq. (4) is quite justified.




B. Phnso Soparation,
The equations of atate of pure hydrogen and helium are presonted in
Fig.s 1 and 2, For hydrogen, at T = 0°K, thoy agroc woll with Cuaron's results
{sce Ref. 29),
Under conditions of constant temperature and pressure, the frec energy
to be minimized is the Gibbs free enorgy G:
G(p,T,c) = F(p,Tyc) +p 0 , (51)
where p is the prescsure and Qo the volume per ion, Stability of mixed phasos
is determined by A G:
AG = G(p,T,cj - [ec G(p,T)1) + (1 = ¢) G (p,T,0)] . (52)
Here ¢ = 1 refers to pure helium and ¢ = 0 to pure hydrogen. In order for there
to be any mixing, A G must be negutive. A miscibility gap occurs when A G
i negative but the systaem can lower its Gibbs energy by separating into a helium-
rich phose and a hydrogen-rich phase.ﬁo This 1s desonstrated in Fig., 3, where
we present typical results for AG(p,T,c) at fixed p and T, At any concentration
between ¢ = c1 and ¢ = c2 the system can lower its Gibbs energy by separnting
with

into a helium~vich phase at ¢ = ¢, and a hydrogen-rich phase at ¢ = ¢

1 2’
the relative amounts of the two phanses being given by number conservation.

For such a partinlly separated system, the Gibbe function is given by the dashed

line in Fig., 3. The error bars in Fig., 3 refer to the estimated computational
orror,51 223 the error due to the various physical approximutions mode. We have also
shown typicul static energy differences (to second order) between lattice structures

in Fig. 3, from which the sensitivity of the phase boundarics to lattice structure

can be estimated,
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The phase separation curves themselvos are presented in Figs. 4-8,
Note that the tomporntureos for whiech mixing occurs are genorally well above
the ordor-ii.sorder transition temperatures listed in Table, II. Thus, as
we have montioned, tho details of this tronnsition are not very important in the
calculation of the phase boundaries, The uncertainties in A G are the cause
of the uncertainties in the phnse boundaries, indicated by the cross-hatched regions,
rogions, The nmost striking features of the results are (i) arec the
persistonco of a large miscibility gap at the highest temperatures and pressures,
and (ii) the large temperaturcs necessary for any mixing to nccur.52 The
occurrence of large mixing tomperntures is not dependent upon the approxim:tions
we have usod to take into account short-range order and 1lattice vdibrations,
although the precise values of the mixing tempermsturesz clearly are, ‘'The prediction
0of complete phase separntion at temperatures below some temperature Tm roflects
the large positive values of A G for the static alloys (A G nrkBTm). In contrast,
the large miscibility gop is primarily dus to the "pinring" of the phaso boundary
near ¢ = 0,25, This is caused by the exceptionally low values of A G for 4
¢ = 0,25 (see Fig, 3) at high temperatures, an effect for which the lattice
dynamics 1s ontirely responsible,

The relatively low phonon frequencies predicted by the virtual erystal

approximation for the ¢ = 0.25 randomly disordered alloys should bhe compared

with the imoginary frequencies found for the ¢ = 0,24 ordered alloys. In both

cases the alloy exhibits phonons whose frequencies-squared are low., This results,
in one case, in a truc instability, and in the other case the low energy and

high entropy resulting from these low frequencies greatly favor mixing. In respect
of the ¢ = 0.25 nlloys, it appears that the treatment of the lattice dynamics

may be quite crucial,
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A more correct trontmont of the disordered alloy (within the harmonic thoory),

and the application on the tempernture-depondent self-consistent (harmonic)

phonon theory for example, "uy produce qunlitative differences in the phase
boundaries. Ous such difference might be tho disappearance of the miscibility
gap at temperatures below 19,000°K.

In conclusion, the calculation praedicts that until the temperature has
reached a fairly high value, which will certainly depend upon pressure, there
1s ossentinlly complete phase separation in solid ulloys of metallic hydrogen
and helium. This may be regorded as a fairly firm result, since it is not depdndent
in any crucial way upon the approximations used to compute A G. If hydrogen
and helium are solid in some region of the interior of Jupiter, these conclusions
have n direet beoring on any phase seponrntion model of encrigy omission,

We also predict a large miscibility gap that persists to T = 19,000°K ond
p = 90 megubars., However, this prediction deponds upon the approximantions we
have usud in treating the lattice dynamics of the alloys, and might well be
gubstuntinlly modified by a more detalled trestiment of the phonon spectrum.
The third-order terms in the band-structure encergy have little effect, tending
to raise A G by only a small amount, Thus the approximate response function uscd

in <Eb(3>>o" as well as the neglect of (Bb(4)}

o is not expected to have any
important effect on the phase boundaries. The same is true of the use of the

quasi-chemical approximation.
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APPENDIX
The calculation of (Eb(z))ound (Eb(3>)°in Sec, I1! recuires the evaluation

of the following ayorages:

Y =ik, .R ~ik,.R
B, (kyy k) & Zi 2‘ e ~l'~Md e AR’ (didj)o , fA=1)
and
VNS -1k, R ~ik, R —ikg.
8, (5&, ’EG) = Z;zjzae ~M'p e ~2'Am e (d d d ) . (A=-2)
imn
We will freely make use of the definitiors and properties of the variableé
Py and di as presented in Bec, IIl., Expressing di in terms of pi, we have
2 2
(dgd g = LUy - e)py - )y = pypyd = e = 8y 4e =y, (A-3)
Similarly,
(@add =Up,-e)p, =)o, -c))
3 3
= <pjpmpn>o -c (pmnn)o -c (pzpn)o -c <p£pm>o + 3¢ - " ., (A-4)

Note that if £ # m # n in Eq., {(A-4), Eq. (22) guarantees that the average
will vanish., If only two of the sites are equal, we use Eq. (18) and again
the average vanishes. Thus

5 (c - 3¢2 + 2¢°) . (A-5)

(dﬁgmdn>o = 6l.m m,n

Substituting Eq.s (A-3) and (A-5) into(A-1) and (A-2), and using Eq. (30),

2
Sz('lf'll'kﬂa) - N6 +k ,K (c‘ - C ) ’ (A-G)
na
and
2 3
S, (k K, oK I k y ¥ (¢ - 3¢” 4 22%) , (A-T)
" ~8’

vhere K is any vector of the reciprocal lattice,
~
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in the dynamical matrix. (C. J. Pethick, Phys. Rec. B2,1789 (1970).)
Since wo only keep second order terms in the dynamical matrix, the replacement
of £Eq. (46) is not exact, even in the long wavelength limit. The resulting
error in the compressibility is of order 10%. (E. Stoll, P. Meier, and

T. 8chneider, I1. Nuovo Cimento 23B, 90 (1874).) This discrepancy is

also present in the case of pure hydrogen and helim.

Hl. Beck and D, Straus (see Ref. 29) define the "average mass" incorrectly.
However, since the mass of a pure system enters the dynamical matrix only
as a multiplicative prefactor, none of their results are affected.

W, A, Kamitakahara and B. N. Frockhouse, Phys., Rev, Elg, 1200 (1974). Note
that the "average'' force constants used in this reference do not correspond
to the average defined by Eq.s (46) and (48).

E. C. Svensson, B. N. Brockhouse, and J. M. Rose, Sol.State Comm, 3,

245 (1965): 8, C, Ng and B. N. DBrockhouse, Sol. State Comm, E, 79 (1967).
This procedure is necessary to keep T, constant.

P. Choquard, The Anharmonic Crystal (Benjamin, N.Y., 1971).

A, Baldereschi, Phys. Rec. BY7, 5212 (1973); D. J. Chadi and M. L. Cohen,
Phys. Rev. B8, 5747 (1973).

D. M, Straus and N. W. Ashcroft, Phys. Rev. Bld, 448 (1976).

The type of "Kohn anomaly" instability shown by these two substances is
discussed in Beck and Strous (see Ref., 29). The self-consistent phonon

theory might well stabilize these substances at low density,



47.

48.
49,
50.

51.

52.

._52 .

In the context of cubic lattices, c/a 15 the ratio of the distance

between ecquivalent planos to the distance between equivalent ions in n plane,
F. Dyson, Ann. Phys. 63, 1 (1971},

instabilities occur at long wavelength for both structures,

We describe the criterion for global instability,

The large error bars at higher temperatures and low concentrations of

kuslium are largely due to the (estimated) error in only using a few special
(hcp) points to calculate F: for ¢ = 0,25. The fractional error AF:/FD

is usually less than 5%, but F: can be large, on the scale of AG. (FS
for ¢ = 0,25 in Fig., 3 is of order 0,1 a.,u. per ion,)

These features should be contrasted with the phase separation curves of

Ref. 3.
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FIGURE CAPTIONS

Equation of state of metallic hydrogen.

Equation of state of helium.

Typical results for AG vs, ¢, The dashed line determines
the phase-separated region. (c2 Sc S cl). The dotted line
shows another possibhility for the phase-separated region
consistent with the error bars. Typical static energy
differences between lattices of randomly-disordered alloys
are also shown. (FCT refers to face-centered tetragonal,)
Phase separation curve at 15 megabars, x is the relative
concentration (by number) of helium. The cross-hatched regions
show the uncertainty in the phase separation boundary.
Phase separation curve at 21 megabars,

Phase separation curve at 30 megabars.

Phase separation curve at 60 megabars,

Phase separation curve at 90 megabars.
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TABLE I

lattices used in Computations for Randomly Disordered Alloys, and for Pure Hydrogen and Helium

z 1.00 1.05 1.10 1:15 1.20 1.25 1.30 1.35 1.40 1.45 1.50
{ + (E(Z)) £ hep* h h h h h
EM)O b o ce fce cp cp cp cp cp cp fcc bcc becc
{ (3)) ¢ f f 5 f f
Eb o cc cc cc ec cc cc -——— -—— -—— - becc
Fv “cc -—- - -—— -—— hep -—— -—- -——- - bece
yA 1.50 1.55 1.60 1.65 1.70 1.75 1.80 1.85 1.90 1.95 2.00
<EE? + (E(Z)) bee bee bee bce bee bce bece bee bee bhee bee
o b o
(3)
<Eb )0 bee -—— -——— - —— bce - —— - - bcc
FV bece —e—— - et - bece —— - - -—— bec

*hcp refers to the hexagonal close-packed lattice with c/a = 1.70.
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TABLE 11

Order - disorder critical temperature (in units of 103°K) as a

function of pressure p (in units of megabars).

(Pressures are approximate only).

|

c = 0,250 ¢ = 0.500 c = 0.750
€ p T, P ) p
5.06 2.0 3.45 3.0 0.79 2.5
4.82 4.5 4.40 7.0 1.21 7.0
4.65 7.5 5.63 13.5 1.70 14.5
4.45 13.0 6.67 21.0 2.16 23.5
4.40 20.5 7.92 34.0 | 2.73 39.0
4,37 31.0 9.19 50.0 ' 3.07 49.5
5.35 47.5 10.05 63.5 3.46 64.0
5.94 59.5 11.03 80.5 ~ 3.89 82.5
6.61 74.5 12.10 102.5 L 4,21 98.5
7.35 94.5 12.68 116.0 | 4.47 111.5
7.90 111.0 13.31 131.5 ' 4.1 127.0
8.33 125.0 i
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