General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.

- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.

- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.

- This document is paginated as submitted by the original source.

- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)
CERAMIC THERMAL-BARRIER COATINGS FOR COOLED TURBINES

by Curt H. Liebert and Francis S. Stepka
Lewis Research Center
Cleveland, Ohio 44135

TECHNICAL PAPER to be presented at Twelfth Propulsion Conference
cosponsored by the American Institute of Aeronautics and Astronautics and the Society of Automotive Engineers
Palo Alto, California. July 26-29, 1976
CERAMIC THERMAL-BARRIER COATINGS FOR COOLED TURBINES
Curt H. Liebert and Francis J. Stepan
National Aeronautics and Space Administration
Lewis Research Center

Abstract
Ceramic thermal-barrier coatings on hot engine parts have the potential to reduce metal temperatures, coolant requirements, cost, and complexity of the cooling configuration, and to increase life, turbine efficiency and gas temperature. Coating systems consisting of a plasma-sprayed layer of zirconia stabilized with either yttria, magnesia or corundum over a thin alloy bond coat have been developed, their potential analyzed and their durability and benefits evaluated in a turboshaft engine. The coatings on air-cooled rotating blades were in good condition after completing as many as 500 two-minute cycles of engine operation between full power at a gas temperature of 1644 K and flameout, or as much as 150 hours of steady-state operation on cooled vanes and blades at gas temperatures as high as 1644 K with 15 start and stop cycles. On the basis of durability and processing cost, the yttria-stabilized zirconia was considered the best of the three coatings investigated.

Introduction
Recent work (1973) with cooled rocket engine operating at high gas temperatures and heat fluxes[1], shows that ceramic coatings are good heat insulators and can withstand large temperature differences through the coating thickness. In much earlier work (1955) ceramic coatings were tried as a means for reducing the metal temperature of un-cooled turbine blades in a turboshaft engine during transient operation[1]. These uses of heat-barrier coatings, however, were for short times of a minute or less. Also in 1955, techniques resembling enameling or glazing were used for coating ceramics onto air-cooled turbine blades, and steady-state durability tests in a jet engine were conducted on these coatings[2]. The engine tests reported in references 2 and 3, however, were made at relatively low turbine inlet temperatures and heat fluxes.

The operating conditions of current and future gas turbine engines - long-time steady-state operation at high pressure, temperature, heat flux and stress levels - impose more severe strains on the coating. Also, the coating may have to withstand several thousand hours of cyclic engine operation to gas temperatures as high as 2200 K without cracking, spalling or eroding. In addition, to be useful, the airfoil ceramic coating should have a low thermal conductivity and a low density and must not degrade turbine aerodynamic performance. Stabilized zirconia appears to have many of the desired properties.

The purposes of this report are to summarize the work conducted to (1) demonstrate the insulation capability of stabilized zirconia in steady-state engine operation and compare the experimental results with analysis, (2) analyze the potential benefits of using coatings for air-cooled turbines, (3) evaluate the durability of the coatings on turbine vanes and blades in steady-state and cyclic engine operation, and (5) evaluate the relative material and processing costs for several coatings.

The results include comparisons of measured and calculated vane metal temperatures with and without thermal-barrier coatings at steady-state engine conditions over a range of coolant-to-gas flow ratios. The potential benefits to be achieved by using a thermal-barrier coating are presented in terms of coolant flow and metal temperature reduction for both an advanced core engine turbine and a turbine in an existing research engine. A simple steady-state one-dimensional heat transfer analysis was used on composite walls that consisted of a metal wall, an alloy bond coat and various thicknesses of zirconia coating. The gas temperatures and pressures for the analysis were taken at 1644 K and 3000 atmospheres, respectively. The aerodynamic results are presented in terms of kinetic energy loss coefficients and were obtained by pressure and angle surveys made in a two-dimensional, cold-air cascade. The coating durability was evaluated in the turbine of a research engine at steady-state and cyclic conditions and the results are presented in terms of the coating condition as determined by visual and metallurgical examinations. The maximum gas temperature and pressure condition for the engine tests was 1644 K and 3.0 atmospheres, respectively.

Apparatus and Procedure
An air-cooled turbine blade covered with a ceramic thermal barrier coating is shown in Figure 1. The procedure used for depositing the ceramic coating onto the blade metal substrate was to prepare the substrate surface, plasma-spray on a bond coat and then plasma-spray on the ceramic coating. The most current application process is described herein.

Coating Description and Application Process
Prior to coating, all airfoil surfaces and base platforms were first grit blasted with commercial, pure (white) alumina. Use of the 'white' alumina minimized contamination that might occur with less pure grit. The inlet supply pressure to the equipment was 70 N/cm². The grit impingement was nearly normal to the surface. The alumina grit size was 250 ums and the surface roughness after grit-blasting was 6 micrometers, rms. All airfoils used, except for those in the aerodynamic tests, had prior usage and had an aluminate coating. Grit-blasting removed about one-tenth or about 10⁻⁵ centimeter of this coating.

For the blades to be used in the cyclic tests, a bond coat of NiCrAlY (Ni-16Cr-6Al-0.5Y) was sprayed onto the substrate to a thickness of 0.010 ±0.005 centimeter. The particle size of the bond powders fed into the plasma spray gun was 74 to 44 ums. The measured roughness of the bond coat was 5 microimeters, rms.

Within 30 minutes after bond coat application, stabilized zirconia was applied to a thickness of 0.036 ±0.008 centimeter. Thirty-one blades were
In operation, cold atmospheric air was drawn through the cascade tunnel, the vanes and the exhaust control valve into the laboratory exhaust system. The aerodynamic performance of all three configurations was determined in terms of kinetic energy loss coefficient over a range of pressure ratios corresponding to ideal exit critical velocity ratios of about 0.6 to 0.96 using pressure and flow-angle survey rakes.

Engine tests. - An existing research turbojet engine modified to investigate air-cooled turbine vane and blade configurations was used to evaluate the insulating capability and durability of the coatings. The vane and blade walls were made from cast Ni(1-2%Cr) and cast Ni-10%Cr. The turbine vanes had impingement-cooled and chord-wise finned leading-edges, impingement-cooled pressure and suction-surfaces and convention- and film-cooled trailing edges. The blade was convective-cooled with air flowing radially outward from hub-to-tip over internal span-wise fins. The turbine wheel diameter was 8.8 centimeters and the blade length was 10.8 centimeters. Instrumentation was provided for measurements of turbine inlet gas temperatures and gas pressure, fuel/air ratio, vane and blade cooling-air inlet temperature and flow rate, vane and blade overall and blade trailing-edge ceramic coating temperature. The thermocouples were mounted halfway into the metal wall thickness to measure the average wall temperature. Details of the thermocouple installation are described in reference 7.

Steady-state durability tests: Prior to thermal insulation testing, the coolant-flow to each of five test vanes was measured in a bench-test at room temperature over a range of inlet pressures. The flow-rates between vanes were found to be uniform to within 2 percent. Two of these five vanes were coated. One of the coated vanes and one of the uncoated vanes was instrumented with a Chromel-Alumel thermocouple at the mid-span of the leading-edge. These two vanes along with the three other vanes were fitted into a segment of the engine vane ring where the coolant-flow to the vane group could be independently controlled and measured. The engine was operated at a turbine inlet gas temperature of 1644 K, a gas pressure of 3 atmospheres and coolant-to-gas flow ratios of about 0.045 to 0.11.

Steady-state durability of the coating on vanes and blades in the engine was evaluated as part of another research test. The operating conditions and number of starts and shutdowns were, as a consequence, partially influenced by the other test. The coated vanes and blades were usually operated at turbine inlet gas temperatures of 1567 to 1644 K and a gas pressure of 3 atmospheres. The resulting coated vane and blade leading-edge metal temperatures generally did not exceed 900 K. On several occasions, hot starts resulted in transient metal temperatures of 1200 K.

Cyclic durability tests: Thermal-barrier coatings were applied to 83 blades of the type just discussed. All but six had been previously operated in the engine for 200 to 500 hours. About 10 percent of the blades were dented at the leading-edge tips because of foreign object damage.

Control of the desired cyclic conditions was accomplished primarily by controlling the combustor fuel (ASTM A-1) supply. Adjustments were made for

Coating Equipment

Commercial grit-blasting equipment was used to clean and roughen the vane and blade surfaces. In figure 2, a hand-held plasma-spray gun is used to apply powders of bond and ceramic materials. In the gun(4) an electric arc is contained within a water-cooled nozzle. Argon gas passed through the arc and is excited to temperatures of about 17,000 K. The bond and ceramic powders were mechanically fed into the nozzle and were almost instantaneously melted.

Test Equipment and Procedure

Aerodynamic cascade tests. - Solid core-vanes were tested in a simple two-dimensional cascade tunnel described in reference 6. This cascade tunnel has 10 vanes. Uncoated, rough-coated and smooth-coated vanes were tested. Only one coated vane was used. This single coated vane was instrumented and one of the uncoated vanes near the center of the ten-vane cascade.

Prepared with 12 weight percent of yttria-stabilized zirconia, 15 with 5.8 weight percent of magnesia-stabilized zirconia and 39 with 5 weight percent calcium-stabilized zirconia. The yttria- and magnesia-stabilized zirconia particle size was 74 to 44 um and the calcium-stabilized zirconia powder size was 105 um to 10 microns. The roughness of the applied ceramic coatings was 6 to 10 micrometers, rms. The substrate temperature did not exceed 420 K during the plasma-spray operations.

The bond and ceramic coatings were built up to the desired thickness by a succession of spray passes in the span-wise and chord-wise directions on the airfoils. The coatings were first applied to the blade leading-edge, then to the trailing-edge and finally to the pressure and suction surfaces. In this way overlapping coating seams were joined on the flatter surfaces. This was important because furnace tests of the coating have shown that seams along small radii such as the leading- and trailing-edges can lead to coating cracking.

The coated surface area on each blade was 110 square centimeters. The coating thickness was measured during the coating process by checking the overall thickness of the airfoil at points at the mid-span and mid-chord. The measurements were made with micrometer calipers. The powder needed to coat a blade was 113 grams for the yttria-stabilized zirconia, 255 grams for the magnesia-stabilized zirconia, and 56 grams for the calcium-stabilized zirconia. The plasma-spray gun was held nearly perpendicular to the surface at distances of 15 and 10 centimeters for bond and ceramic coat applications, respectively. The processing time for a blade with yttria-, magnesia-, or calcium-stabilized zirconia was about 20, 35, and 15 minutes, respectively.

For the vanes used in the aerodynamic tests, a bond coat of nichrome (80Ni-20Cr) was used and covered with zirconium orthosilicate. For the vanes and blades used in the steady-state durability and insulating capability tests, a bond coat of nichrome of a nominal thickness of 0.010 centimeter was used and covered with calcium-stabilized zirconia applied to a nominal thickness of 0.018 centimeter.

Coating Equipment

Commercial grit-blasting equipment was used to clean and roughen the vane and blade surfaces. In figure 2, a hand-held plasma-spray gun is used to apply powders of bond and ceramic materials. In the gun(4) an electric arc is contained within a water-cooled nozzle. Argon gas passed through the arc and is excited to temperatures of about 17,000 K. The bond and ceramic powders were mechanically fed into the nozzle and were almost instantaneously melted.

Test Equipment and Procedure

Aerodynamic cascade tests. - Solid core-vanes were tested in a simple two-dimensional cascade tunnel described in reference 6. This cascade tunnel has 10 vanes. Uncoated, rough-coated and smooth-coated vanes were tested. Only one coated vane was used. This single coated vane was instrumented and one of the uncoated vanes near the center of the ten-vane cascade.
this control system so that maximum turbine inlet temperature and pressure were maintained at about 1644 K and 5 atmospheres, respectively. These maximum temperature and pressure conditions will be called "full power." At full power condition the rotor speed was 6800 rpm. After about 70 seconds at these conditions turbine inlet temperature and speed were reduced to about 100 K and 3300 rpm in about 20 seconds by reducing and then shutting off the fuel supply. This condition is designated "flameout." Fuel was supplied and reignited and the engine reached maximum power condition in about 30 seconds. Cooling-air flow was adjusted to limit the leading- and trailing-edge metal wall temperatures to about 1200 K at the maximum temperature condition. During flameout the metal wall temperatures reached about 800 K. Other details of the procedure for automatic cycling and fuel flow control are described in detail in reference 8.

A total of 500 two-minute cycles were run. The engine was stopped for visual inspection of the coating at 100, 300, and 500 cycles. The cycle duration was 2 minutes. Seventy-four blades were tested in the engine at any one time. After 100 cycles, eight blades were removed from the wheel for detailed examination and reference purposes. After termination of tests at 500 cycles, one of each of the three different types of stabilized coated blades which had been run for the full duration of the tests was sectioned and the coating and blade microstructure was examined at the mid-span, leading-edge region with light optical photomicrographs, at 150X. The microstructure of one untested yttria-stabilized zirconia coated blade was also examined. The ceramic coating thickness and roughness was also obtained on one of each of the three different stabilized coated blades which had been run for 500 cycles. The ceramic coating thickness was measured after it was purposely spalled from the surface. This was done by exceeding the allowable interplane temperature of 1376 K by heating the blade in a furnace to 1600 K and then instantly cooling it by plunging it into water at a temperature of 300 K.

Thermal Barrier Coating Analysis

A simple one-dimensional steady-state heat balance through a composite wall was used to evaluate the potential benefits of using a ceramic coating as a thermal-barrier for impingement-cooled turbine vanes. Thermal radiation was neglected in the analysis. The gas and coolant conditions presented in table 1 were those of an advanced core engine turbine and those of an existing research engine. The former engine was chosen to evaluate the benefits of a ceramic thermal insulating coating on cooled turbines that are subjected to conditions of high heat flux. The latter engine was used to evaluate the benefits of the coating at lower heat flux conditions and to demonstrate the insulation capability of the stabilized zirconia. The bulk temperature (integrated average temperature over the entire vane) was the primary variable used in evaluating the benefits of the coating. The average metal wall temperature at the leading-edge region was also used in comparing prediction with experimental data. Further details are given in Table I and II and reference 9.

Results and Discussion

Comparison of Measured and Predicted Thermal Performance

Figure 5 compares measured and predicted wall metal temperatures at the midspan of the leading-edge of an uncoated and coated turbine vane operating in the research engine. The comparison is shown over a range of calculated coolant-to-gas flow ratios from 0.04 to 0.12 and includes measurements at ratios of about 0.045, 0.06, 0.09, and 0.11. The results show good agreement between prediction and measurement. The predicted and measured reductions in leading-edge metal temperature for the coated vane agree within 25 K. The results showed large reductions in leading-edge metal temperature with the 0.028-centimeter thick zirconia coating. At a coolant-to-gas flow ratio of 0.06 the metal temperature was reduced by 190 K from 1065 K for the uncoated vane to 865 K for the coated vane.

Aerodynamic Performance

The kinetic energy loss coefficient for the three test vanes is shown in figure 4. The loss for the rough-coated vane was much larger than the loss for either the smooth-coated or uncoated vane. In the as-sprayed condition the ceramic coating had a surface roughness averaging about 8 to 10 micrometers. Polishing with solid aluminum oxide smoothed the ceramic coating to a surface roughness averaging 1.6 to 5.0 micrometers. This smoothing reduced the loss to about one-half of that obtained with the rough coating. The loss for the smooth-coated vane was higher than the loss for the uncoated vane. At an ideal exit critical velocity of 0.8, which is near design, the kinetic energy loss coefficients were 0.062, 0.031, and 0.023 for the rough-coated, smooth-coated, and uncoated vanes, respectively.

Much of the difference in loss between the smooth-coated vane and the uncoated vane was attributed to the difference in trailing-edge thickness. The trailing-edge thickness of the uncoated vane was 0.203 centimeters and the ceramic coating increased the trailing-edge thickness to 0.356 centimeters. The figure also shows a data point for a full-coverage film cooled vane (C). The loss with this vane, though not necessarily an optimum aerodynamic design, is greater than the rough-coated blade.

Benefits of Thermal Barrier Coating

Predicted reductions in bulk turbine-vane metal temperatures and coolant-to-gas flow ratios with increases in ceramic coating thickness on vanes in the advanced core engine turbine and in the research engine turbine are shown in figures 5(a) and (b), respectively. Bulk wall metal temperature (integrated average temperature over entire vane) was substantially reduced as ceramic coating thickness was increased. The reductions in metal temperature with increasing coating thickness were greater for the core engine than for the research engine. The reason is the higher heat fluxes associated with the conditions of the core engine.

The bulk wall metal temperature of an imping-
ment-cooled advanced core turbine vane could be reduced by as much as 390 K at a coolant-to-gas flow ratio 0.10 when the vanes were coated with a 0.051-centimeter thickness of zirconia (fig. 5(a)). Alternatively, when both coolant flow and wall metal temperature were allowed to vary, large reductions in both metal temperature and coolant flow were predicted. Vanes coated with a 0.051-centimeter thickness of zirconia could have both an eight-fold decrease in coolant flow and 110 K reduction in metal temperature compared to the uncoated vane. The coolant flow was reduced from 0.100 for an uncoated vane to 0.0125 for a coated vane with a corresponding vane metal temperature reduction from 1390 to 1280 K, respectively.

The dashed portions of the curves in figure 5(a) illustrate a limitation associated with using the current ceramic composite coatings in applications such as the core engine with high gas temperature and pressure. The limitation is the ability of the ceramic coating to adhere to the bond coating when the temperature at the interface between these two layers exceeds 1367 K. This limiting temperature was determined with furnace tests described in reference 6.

As shown in figure 5(a) at the tick marks, thicker layers of the coating were required to give acceptable interface temperatures (1567 K) as coolant-to-gas flow ratio was decreased. This is because the heat flux will decrease as flow ratio is reduced. Reducing the heat flux will also reduce the thermal gradient through the metal wall. This together with the constant limiting interface temperature resulted in slightly increased average vane metal wall temperatures (fig. 5(a)).

Although not shown in figure 6, calculations indicate large (bulk) temperature drops through the coating. The largest drop of 923 K occurred through a 0.002-centimeter thick coating on the turbine vane of the core engine at a coolant-to-gas flow ratio 0.10. At these conditions, the coating outer temperature was 1380 K and the ceramic/bond interface temperature was 1040 K. The temperature drop through the same coating thickness on the turbine vane of the research engine was calculated to be 761 K at a coolant flow ratio of 0.10. The coating outer temperature for this condition was 1147 K and the ceramic/bond interface temperature was 796 K. The resulting average ceramic coating temperature was considerably higher in the core engine (1514 K) than in the research engine (972 K). In general, the differences in gas temperature levels and heat fluxes for the two engine conditions resulted in the temperature gradients through the coating on the advanced core engine vanes being about 2.7 times those of the research engine. The larger temperature gradient, coating exterior surface temperature, and ceramic/bond interface temperature would impose more severe strains on the coating in the advanced core engine.

Steady-State Durability

The evaluation in engine operation of 0.028-centimeter thick calcia-stabilized zirconia coating on each of the two vanes and blades, showed no evidence of deterioration after 150 hours at gas temperatures as high as 1147 K and as many as 30 start-and-stop cycles including 4 hot starts. The measured leading-edge vane and blade steady-state metal wall temperatures were generally 920 K and the transient values were up to 1200 K. Figure 6 shows one of the blades after completion of the tests. No deterioration was evident.

Cyclic Durability

Visual inspection of the coating after 100 cycles of testing in the research turbine engine showed that about 90 percent of the blades had a metallic colored scuff mark at the tip of the leading-edge. Also, about 40 percent of the blades had a minimal 1-square centimeter chipped area of ceramic in the vicinity of the scuff mark. The cause of the chipping was traced to the impingement of metallic pieces of thermocouple probes which broke during engine transient overheating and excessive vibration. About half of the yttria- and half of the calcia-stabilized zirconia coated blades were chipped at the leading-edge tip, but only one of the 13 magnesia-stabilized zirconia coatings showed this damage. The reason for this apparent greater resistance to chipping is not known.

The inspection after 100 cycles showed that the yttria-stabilized zirconia was completely removed from three blades. The cause for this was the procedure in processing the first group of 10 blades. The roughening and cleaning procedure was probably not adequate for the hard, dented and oxidized surfaces. Also during application of the bond coat to the first group of blades, particles were observed to intermittently spurt from the plasma gun. This anomaly could also have contributed to the poor coating adherence. The blades processed after the first group were more thoroughly cleaned and roughened; fresh, clean grit was used and more attention was given to impinging the grit normal to the surface and keeping the air pressure at or above 70 lb/ft². Better control was also maintained on the performance of the plasma-spray feed apparatus.

At completion of 100 cycles, eight blades (including the three blades discussed above) were removed from the wheel and replaced with calcia-stabilized zirconia coatings processed with the more consistent and carefully controlled coating procedure developed after the coating of the first group of blades. Cyclic testing was then continued for another 200 cycles. Inspection with the unaided eye disclosed no change in coating appearance. The tests were then completed for another 200 cycles and then terminated. The thermal barrier coatings on 60 blades (24 with yttria, 18 with magnesia, and 30 with calcia-stabilized zirconia) completed 500, 5-minute cycles between full power and flameout without external visual evidence of deterioration except for foreign object damage incurred during the first 100 cycles. The other 4 calcia-stabilized zirconia coatings completed 400 cycles of testing and all coated blades, except for minor foreign object damage, were in as good a condition as the blades run during the steady-state durability tests. During the full power portion of the transient values were momentarily as high as 1200 K and the ceramic external surface temperatures were about 1500 K.
blades shown in the figure were used as reference blades for other tests. The black spots on the blade tips in figure 7 are soot deposits that occurred during the test. The black lines along the span near the root on the suction surface were also caused by soot deposition.

Despite foreign object damage which caused minor chipping at the blade leading edges, the coatings were in very good condition. The chipped areas did not further deteriorate and the exposed bond coat in the chipped regions remained intact for at least 400 cycles of testing. Ceramic coating roughness measurements showed no roughness change over the duration of the tests. In actual usage the roughness should be reduced to improve the durability and aerodynamic performance.

The microstructure (fig. 8) of the bond coat and the ceramic coatings was metallographically examined on several blades at the leading edge region where durability problems are most likely to occur. The ceramic microstructure consisted of solid material connected with a network of fine voids interspersed with larger voids. The photomicrographs (fig. 8) also showed that the aluminum that was originally present on all of the blades tested in the engine was not completely removed by grit-blasting. Also, the NiCrAlY bond coat adhered well to this aluminum coating. Cracks in the calcium-stabilized zirconia coating tested for 600 cycles were observed on some of the photomicrographs (fig. 8(a)). These cracks generally were located parallel and adjacent to the bond coat. In some cases these cracks penetrated to the outer surface of the coating. The formation of such cracks can weaken the coating adherence. These cracks, however, did not cause spalling of the coating.

The microstructure of the mangania-stabilized zirconia composite was similar to the other composites and the NiCrAlY bond coat adhered well to the aluminum coat.

Other Considerations

Control of the coating thickness during deposition of the mangania-stabilized zirconia was more difficult and the quantity of powder used was about 2 and 4.5 times more than for the calcia- or yttria-stabilized zirconia, respectively. Also, the total processing time for the mangania-stabilized zirconia (about 30 minutes) was almost twice as long as for calcia- or yttria-stabilized zirconia. Since the current cost of the mangania- and yttria-stabilized zirconia powders is about twice that of the calcia-stabilized zirconia, the processing cost per blade for the mangania-stabilized coating is the highest of the three coatings investigated herein. Based on these considerations and the results of the cyclic tests, the yttria-stabilized zirconia coating was considered the best of the three coatings investigated.

Thermal radiation heat flux was neglected to simplify the analysis used herein. The effects are negligible for the low pressure conditions of the research engine. However, as gas pressures and temperatures increase, the absorbed radiation heat flux increases, particularly when the part directly views the combustion gases. The higher reflectance of the clean zirconia coating, 0.8 compared to 0.2 for the oxidized metal, provides the additional potential benefit of reducing the radiative heat flux absorbed by the hot parts.

The higher reflectivity of the coating could be particularly beneficial for reducing the metal temperature of such parts as combustor liner walls. The benefit would be in addition to the insulating effect of the coating. Alternatively, maintaining metal temperature could permit the surface of the coating exposed to the gas to operate at higher temperatures than without the coating. This could provide a potential benefit of reducing the amount of unburned hydrocarbons and pollutants by reducing the quenching of the combustion gases as the wall. The ability of the coating to maintain a high re-reflectivity with prolonged engine operation is not known and needs to be investigated.

It is important to emphasize that the benefits of a thermal barrier coating are directly related to the level of heat flux through the uncoated hardware. As a consequence, hardware or portions of it that are poorly cooled will not show large benefits with a coating. Trailing-edge regions of turbine vanes and blades of small engines, for example, have a physical limitation on the use of effective cooling geometries and thus may not show large benefits with a thermal barrier coating.

Application of thermal barrier coatings to existing hardware could limit the potential benefits and could impose aerodynamic losses because of increased trailing-edge thickness. Coating benefits can best be maximized when the coating is integrated into an original design. The added weight of the coating increases the stress level in rotating parts, which may diminish some of the potential benefits of the coating.

Although the results obtained are encouraging, more testing is required at the high gas pressure and high temperature conditions of advanced core engines, where the coating may be especially susceptible to particle erosion, corrosion, vaporization, thermal fatigue, and thermal shock.

Summary of Results

The following are the results of tests to evaluate the coating insulation capability, aerodynamic performance, durability, cost, and calculations made to show the potential benefits of the coating.

1. The zirconia coating reduced the measured midspan leading-edge vane metal temperature in the research engine by 100 K; from 1058 K for the uncoated vane to 958 K for the coated vane. This reduction compares well with analysis. Engine turbine inlet temperature, pressure and coolant-to-gas flow ratio were 1444 K, 3.0 atmospheres, and 0.6 respectively.

2. Smoothing the surface of the ceramic coating markedly reduced the aerodynamic loss. At a design exit critical velocity ratio of about 0.8 the kinetic energy loss coefficients were 0.062, 0.023 and 0.023 for the rough-coated, smooth coated, and uncoated vanes, respectively.

3. Reductions in metal temperatures of an impingement-cooled vane of as much as 350 K at a constant coolant-to-gas flow ratio of 0.10 were
predicted for an advanced core turbine when the vanes were assumed to be coated with a 0.001-meter thickness of zirconia. Turbine inlet temperature and pressure were 2200 K and 40 atmospheres, respectively.

4. Alternatively, large reductions in both coolant flow and metal wall temperature were predicted for coated vanes operating in the advanced core turbine. Vanes coated with a 0.001-centimeter thickness of zirconia could have both an eightfold decrease in coolant flow and a 110 K reduction in metal temperature compared to the uncoated vane.

5. A calcia-stabilized zirconia coating on cooled turbine vanes and blades withstood 150 hours of steady-state operation including 35 stop and start cycles in a research engine at gas temperatures as high as 1644 K without deteriorating.

6. The coatings on 66 blades (24 with yttria-12 with magnesia- and 30 with calcia-stabilized zirconia) completed 500, 2-minute cycles between full power (turbine inlet temperature of 1644 K) and flameout (turbine inlet temperature of 1600 K) in a research turbojet engine.

7. Metallographic examination of the coatings after cyclic testing showed that the TicrAlY bond coat adhered well to the blade wall surfaces. However, cracks were detected in the calcia-stabilized zirconia coating. These cracks did not cause spalling of the coating.

8. Based on material and processing cost and on the results of the cyclic tests, the yttria-stabilized zirconia coating was considered the best of the ceramic coatings investigated herein.

References

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Turbine Vane Type</th>
<th>Advanced Core Engine</th>
<th>Research Engine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turbine-inlet gas temperature, K</td>
<td>2200</td>
<td>1644</td>
<td></td>
</tr>
<tr>
<td>Turbine-inlet temperature, K</td>
<td>60</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Gas-side heat transfer coefficient, W/ m²(K)</td>
<td>8.89</td>
<td>11.00</td>
<td></td>
</tr>
<tr>
<td>Leading edge</td>
<td>12.27</td>
<td>12.27</td>
<td></td>
</tr>
<tr>
<td>Coolant-side heat transfer coefficient, W/ m²(K)</td>
<td>8.89</td>
<td>11.00</td>
<td></td>
</tr>
<tr>
<td>Leading edge</td>
<td>12.27</td>
<td>12.27</td>
<td></td>
</tr>
<tr>
<td>Coolant temperature, K</td>
<td>110</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>Metal wall thickness, cm</td>
<td>0.127</td>
<td>0.102</td>
<td></td>
</tr>
<tr>
<td>Bond coating thickness, cm</td>
<td>0.0102</td>
<td>0.0152</td>
<td></td>
</tr>
<tr>
<td>Ceramic coating thickness, cm</td>
<td>0.002</td>
<td>0.0011</td>
<td></td>
</tr>
</tbody>
</table>

Note: w sub g is the coolant-to-gas flow ratio.

<table>
<thead>
<tr>
<th>Material</th>
<th>Use</th>
<th>Conductivity, W/m²(K)</th>
<th>Temperature Range, °C</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAR M-302</td>
<td>Metal wall (research engine)</td>
<td>3.0 x 10⁻¹⁴</td>
<td>180 - 1250</td>
<td>6</td>
</tr>
<tr>
<td>MAR M-309</td>
<td>Metal wall advanced core engine</td>
<td>3.0 x 10⁻¹⁴</td>
<td>180 - 1250</td>
<td>10</td>
</tr>
<tr>
<td>Nicotene</td>
<td>Bond</td>
<td>8.3 x 10⁻¹⁴</td>
<td>180 - 1250</td>
<td>11</td>
</tr>
<tr>
<td>Calcia-stabilized zirconia</td>
<td>Ceramic</td>
<td>4.1 x 10⁻¹⁴</td>
<td>180 - 1250</td>
<td>11</td>
</tr>
</tbody>
</table>
TABLE I. - ANALYTICAL CONDITIONS

Parameter	Turbine vane type		
	Advanced core engine	Research engine	
Turbine-inlet gas temperature, K	2200	1644	
Turbine-inlet gas pressure, atm	40	3	
Gas-side heat transfer coefficient, W/(m²)(K):			
Leading edge	-----	2326	
Bulk	8994	1186	
Coolant-side heat transfer coefficient, W/(m²)(K):			
Leading edge	a 5.6×10^4 (w_c/w_g)^0.62	7.6×10^3 (w_c/w_g)^0.49	
Bulk	9.6×10^3 (w_c/w_g)^0.70		
Coolant temperature, K	811	319	
Metal wall thickness, cm	0.127	0.102	
Bond coating thickness, cm	0.0102	0.0152	
Ceramic coating thickness, cm	0 - 0.051	0 - 0.051	

a(w_c/w_g) is the coolant-to-gas flow ratio.

TABLE II. - THERMAL CONDUCTIVITY OF CERAMIC, BOND, AND METAL WALL MATERIALS

<table>
<thead>
<tr>
<th>Material</th>
<th>Use</th>
<th>Conductivity, W/(m)(K)</th>
<th>Temperature range, T, K</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAR-M-302</td>
<td>Metal wall (research engine)</td>
<td>4.9×10⁻³ (T + 18.0)</td>
<td>300 - 1260</td>
<td>6</td>
</tr>
<tr>
<td>MAR-M-509</td>
<td>Metal wall (advanced core engine)</td>
<td>3.0×10⁻³ (T + 3.7)</td>
<td>590 - 1370</td>
<td>10</td>
</tr>
<tr>
<td>Nichrome</td>
<td>Bond</td>
<td>8.3×10⁻³ (T + 6.7)</td>
<td>400 - 1400</td>
<td>11</td>
</tr>
<tr>
<td>Calcia-stabilized zirconia</td>
<td>Ceramic</td>
<td>4.1×10⁻⁴ (T + 0.46)</td>
<td>400 - 2400</td>
<td>11</td>
</tr>
</tbody>
</table>
Figure 1. - Ceramic coated turbine blade.
Figure 2. - Plasma spray application.

Figure 3. - Comparison of calculated and measured midspan leading-edge wall metal temperatures of uncoated and zirconia-coated turbine vanes operating in a research engine. Inlet gas temperature, 1644 K, inlet gas pressure, 3 atm; coolant temperature, 319 K.
Figure 4. - Overall aerodynamic performance of a core turbine vane.

Figure 5. - Reductions in metal temperature and coolant flows for vanes coated with various thicknesses of zirconia.
Figure 6. - Ceramic-coated blade after steady-state testing in research engine.
Figure 7. - Ceramic coated blades after 500 cycles of testing.
Figure 8. Microstructure of zirconia composites on turbine blade leading edge at midspan after cyclic engine tests. X150. (Ref. 12.)