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FOR A STRIP UNDER RESIDUAL STRESS*)

by

M. Bakioglu and F. Erdogan
Lehigh University, Bethlehem, PA, 18015

ABSTRACT. The plane problem for an infinite strip with two edge cracks under
a given state of residual stress is considered. The residual stress is com-
pressive near and at the surfaces and tensile in the interior of the strip.
If the crack is deep enough to penetrate into the tensile zone, then the prob-
lem is one of crack-contact problem in which the depth of the contact area
is an unknown which depends on the crack depth and the residual stress profile.
The problem has applications to the static fatigue of glass plates and is
solved for three typical residual stress profiles. In the limiting case of
the crack crossing tha entire plate thickness, the problem becomes a stress-
free end problem for a semi-infinite strip under a given residual stress state
away from the end. This is a typical stress diffusion problem in which decay
behavior of the residual stress near and the nature of the normal displ=:!cement
at the end of the semi-infinite strip are of special interest. For two typ-
ical residual stress states the solution is obtained and some numerical re-
sults are given.

1.	 Introduction

Introducing residual stresses into structural components which are

compressive near and at the surfaces to improve their impact and fatigue

resistance has been a design practice for many years. Some of the processes

used for this purpose are tempering, cladding, ion exchange, and shot peen-

ing. In calculating the stress state in the part, these residual stresses

must be superimposed on the stress state resulting from the applied loads.

In some cases residual stresses may be the only stress state in the body.

For example, in considering the problem of subcritical crack growth due to

static fatigue in glass plates and other ceramics which normally do not

carry any external loads, the crack driving force is mainly provided by the

residual stresses. Such a subcritical crack propagation may take place if

the surface crack accidentally introduced into the plate is deep enough for

the initial crack front to be in the tensile zone and if the corresponding

This work was supported Dy the National Science Foundation under Grant
ENG 73-045053 A01 and by the Materials Division, NASA-Langley under Grant
NGR 39-007-011.
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stress intensity factor is greater than the threshold level which is the

iiinimum stress intensity level required for crack growth under static

loading ( for a review of the subject see [11). The correlation between

the subcritical crack growth velocity and the stress intensity factor in

ceramics, polymers, and certain metallic alloys under adverse environmental

conditions appears to be quite well established [1,2]. Therefore, in prin-

ciple it is possible to make a reliable prediction for the failure or crack

arrest time in the material under residual stresses provided the proper

fracture mechanics analysis is available.

In this paper a relatively simple problem of a plate under a known

state of residual stress is considered. The plate is assumed to have two

symmetric edge cracks. However, because of the compressive stresses, near

and at the boundaries, the crack surfaces will be closed along a certain

unknown distance from the boundary. Therefore, the problem is one of crack-

contact problem rather than a conventional crack problem. After the cracks

go :through the entire plate thickness, the problem reduces to a stress-free

end problem for a semi-infinite rect.ngular strip under residual stresses.

This is a typical stress diffusion problem and is treated as the limiting

case of the edge crack problem. To study the behavior of the displacement

at the stress-free end and of the diffusion of residual stresses is one of

the primary aims of this paper. The plane problem of an infinite strip

with various crack geometries has been considered by many investigators who

used a variety of techniques to solve the problem [e.g., 3-81.

2. On the Formulation and Solution of the Problem

Consider the elastostatic plane strain or generalized plane stress

problem for an infinite strip under a symmetric state of residual stress

satisfying

(h
ayy (x,y) = OR (x) = aR (-x)	 J aR (x)dx = 0	 (1)

-h
where QR (x) is a known function (Figure 1). Let the strip contain two

symmetrically located edge tracks along y=0, a<lxl<h. Since the stress

component Qyy = a  pe-Lendicular to the crack is compressive near and at the

surfaces, the crack faces will be closed along b<lxl<h, where the constant

-2-
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b is not known. The contact of the crack surfaces at jxj= b is "smooth"

and, consequently, the "ends" of the slits at jxj= b have a cusp shape

rather than the standard parabolic form. Note that the stress intensity

factors at the ends of the slits shown in Figure lb are defined by

ka 	[2 (a-x)]^Uyy(x.0) = 1+Kzirâ(x-a)]h 2X v(x,0) .

kb
 x

lim
+b 

[2(x-b)]hUyy (x,0) _ 1+K libm [2(b-x)] 4 az v(x,0)	 (2a,b)

where v is the displacement component in y direction, and µ and K are the

elastic constants, K =3-4V for plane strain and K= (3-v)/(l+v) for general-

ized plane stress, v being the Poisson's ratio. Thus, from (2b) it may be

seen that the condition of "smooth closure" at the end of the slit x--b may

be expressed as

kb = 0 .	 (3)

Equation (3) provides the additional condition to determine the unknown con-

stant b.

The solution of the edge crack problem may be expressed as the sum of

two solutions: A) the homogeneous solution in the strip without any cracks

which is essentially given by (1), and B) the perturbation solution for the

strip with the edge cracks in which the crack surface traction UYy(x,0)

- aR (x) is the only external load. It is clear that problem B contains all

the important information for the stress-free end as well as the crack prob-

lem. The formulation of the problem is identical to that given in [5] where

it was shown that the problem described in Figure lb may be formulated in

terms of the following integral equation which,considering the symmetry, is

written for one quarter (y%0, 0<x<h) of the medium only:

b(4u 1 [ 1 + 1 + k(x,t)] G(t)dt = UB (x,0) =- UR (x)	 a<x<b	 (4)
Tr(1+K) a t-x t+x	 yy

where

G(x) = 3x v(x, +0) , a<x<b
	

(5)

W

k(x,t	
is	 -ts	 (6)[K(x,t,$)e	 - K(x,-t,$)e	 ]ds ,

0
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K(x,t,$) _ { [hs-2d2hs-3 )(h-t)s-(2+ts)e 2hs3cosh(xs)

-2hs•	 "1- [1-2s(h-t) +e	 ^xs sinh (xs)}[2hs+sinh ( 21.$)1 .	 (7)

In the general case the index of the singular integral equation is +1 and

hence its solution is determinate within an arbitrary constant [9]. On the

other hand, in deriving ( 4) it was assumed that for 0<lxl<a and b<lxl <h G(x)

rather than v(x,0) vanishes. Thus from (5) it follows that

1
b

	

G(x)dx = 0	 (8)
a

which is used to determine the constant arising from the solution of (4).

The solution of the contact -crack problem is then obtained by evaluating

G(x) and b from (4) and (3) subject to the verification that the resultant

stress a
YY 

(x,0) obtained from the superposition of the solutions of problems

A and B for b<lxl<h be compressive.

It should be noted that the left hand side of (4) gives the normal

stress a  within as well as outside the crack on y=0. Therefore, after

obtaining G(t) and b, (4) may be used to evaluate ayy (x,0) on 0<lxl<a and

b<lxl<h. In the residual stress problem for a>0 b is always less than h,

and b+h for a^0. This limiting case of a=0, b=h corresponds to the "end

problem" for which (4) is still valid. However, in this case the kernel

k(x,t) contains additional singular parts which must be properly separated.

The technique for doing so was described in [5] and will be omits •	 this

paper. The expression which will be needed to study the stress ditf,:-ion

phenomenon is that of ayy (x,y), 0<x<h, y>0. From the general formulation

of the problem it may be shown that [5,7]

	

(b 	 (w1+K 
TICS (x, y) = 2 J G(t)dt J (l+ys) e yscos xs sin is ds

4U YY	 a	 o

	

rb	 (c°
+ I G(t)dt I [K(x,t,$)ets - K(x,-t,$)e ts]ces ys ds (9)

	

a	 o

where K(x,t,$) is given by (7). For y=0 and a<x<b (9) reduces to (4).

Evaluating the inner integrals, the kernel in the first term on the right-

hand side of (9) may be expressed in closed form and the first term becomes

-4-
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1

b	
t-x	 +	 t+x	 +	 z :t-x)	 +	 2 Z(t+x)	 dt

	

aG(t)[(t-x—^^ (t+x̂+y	 I +may ]T (t+') +y ]

For the limiting case b=h the kernel in the second term of (9) becomes

unbounded as t and x approach h. For correct numerical (and singularity)

analysis this unbounded part needs to be separated. After doing so, for

b-h (9) may be expressed as follows:

1+x h	t-x	 t+x	 2 2(t-x)
4u x0I (x, Y) = J [ (t-x— xi z+Yz + (t+x^+y2 + (t-x) +Ya

2 2 (t+x)	 _ 2(2h-x-t)	 + (4h-x-3t) (2h-x-t)2- Z
+ (t+x) +y	 (2h-_x^t^r	 (2h-x-t) +Y

+ 4(h-t)(x-h) (2h-x-t)
3 -3 Z (2y _h-x-t) G(t)dtZr(2h-x-t) +y

(h	 (00
+
 1

G(t)dt 1 {[K(x,t,$) - K(x,t,$)]ets
a	 o

- K(x,-t,$)e 
is 

}cos ys ds , (0<x<h, y>0) 	 (10)

where KW (x,t,$) is the asymptotic behavior of K(x , t,$) and may be obtained

from (7) as

KW (x,t,$) = [-2+s(4h-x-3t) +2S 2 (h-tHx-h) 1
e  (2h-x)s	 (11)

Another quantity of interest is the end displacement in the semi-

infinite strip which referring to (5) may be evaluated from

(x
v(x,0) -v(0,0) = 1 G(t)dt .

0

For 0<a<b<h the numerical solution of (4) is straightforward, although an

interpolation scheme is needed to determine the unknown constant b from the

condition ( 3). For a-+0, 17+h and the crack problem becomes a stress-free

end problem. In this case G(t) may be evaluated by using a numerical tech-

nique similar to that described in [4].

(12)
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4. Results for the Crack Problem

The solution of the problem is carried out for three different symmetric

residual stress distributions given by(
w

a1 W = ao (1-3x Z/h 2 )	 (13)

a2 W = ao(1-5x^'/h')	 (14)

G 3(x) - a0 (1-7x 6/h b )	 (15)

where a  is the magnitude of the tensile stress in the midplane x=0 (Fig-

ure 1). First the problem is solved routinely only for those values of a

and b for which the stress intensity factors k  and kb obtained from (2)

are both positive. The results corresponding to the residual stresses (13),

(14), and (15) are given in Figures 2, 3, and 4, respectively. The stress

intensity factors shown in these figures are normalized with respect to

aoT, where R=(b-a)/2. The figures also show the tensile portion of the
numerical stress aR/ao , (i=1,2,3). Note that

k	 a''	 lc	 aR

O3 Q
3Q -> RQ r b - 6 as a-fb , (i=1,2,3)	 (16)

0	 o	 ao''i 	o

This is due to the fact that for small values of £ = (b-a)/2 the problem is

equivalent to that of an infinite plane containing a crack of length 2£ and

subjected to crack surface traction -0R for which ka kb=oR3 ' (i=1,2,3).

For a given value of a, the value of b for which kb=0 (i.e., the loca-
tion of crack closure and beginning of contact area) is shown in Figure 5.

From the figure it may be observed that the point a=b on these curves corre-

sponds to the point xo at which the residual stress is zero, ai(Xi)=0,

(i=1,2,3), (Figure la). It may also be observed that the value of b for
which kb=0 is always greater than xo . For a given value of the crack depth
a the stress intensity factor ka corresponding to k=0 is shown in Figure 6.•	 b

) The parabolic distribution (13) seems to be typical for residual stresses
in tempered glass and the 6th degree polynomial (15) more representative of
the internal stress induced by ion exchange in glass plates.
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dote that as expected k a - as ay 	 a0 and k ^O as a-x .
o

Figure 7 shows a sample result giving the stress distribution 0yy(x,0)

on y=0 plane for the crack -contact problem As pointed out before, the

total stress is

ayy (x,0) = ayy (x,0) + aYy (x,0) ,	 (17)

where

GA (x, 0) = aR (x)	 (18)

The particular residual stress used in this example is given by (14) and is

also shown in the figure. Since 6 y (b,0)=0, the solution of the perturbation

problem must give aYy (b,0)=-aR W. This was found to be the case in the nu-

merical solution within four significant digits.

4. Results for the End Problem

In the end problem the main interest is in the diffusion of residual

stress ayy (x,y) in y direction, going from O ., 0 for y=0 to ayY 0R(x) for

y+ . This is shown in Figures 8 and 9 for the residual stresses given by

(13) and (15), respectively. These results as well as those given in Fig-

ures 10 and 11 must be considered in conjunction with (17) and (18). Fig-

ures 8 and 9 show a8 (x,y) for y/h=0, 0.4, 0.8, 1.2. Perhaps a better
yy

description of the stress diffusion may be observed from Figures 10 and 11

where ayy at x=0 and x=h is given as a function of y. Examining the figures

one could make the following general remark: the stress diffusion rate on

the surface is greater than that in the mid-plane, and a plate thickness

away from the end, i.e., at y=2h the stress at the surface drops to approx-

imately le of its maximum value (*) (which is at y=0).

To give an idea about the deformed shape of the stress-free end, Fig-

ure 12 shows some sample results. Here the relative displacement v(x,0)-v(0,0)

( Needless to say this depends on the undisturbed residual stress profile
OR (x). For example, for O R given by (13) this figure is approximately 1.1%
and for OR given by (15) it is 0.839.
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is given for residual stresses (13) and (iti). Thu normalization factor

which appears in the figure is

(1+i<) ho 

V  =
	

4}1
	 (19)

The examination of the results shown in Figures B-12 appears to indicate

that in relative terms the difference between two end displacements is

much greater than that between two corresponding residual stresses.
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