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LIST OF SYMBOLS

a(t) half crack length at time t

2a 	 = initial crack length

bilci	 = crack propagation constants

CD discharge coefficient

D(t) crack opening or orifice area

E modulus of elasticity

h:	 = wall thickness of the cylinder

k(t) stress intensity factor

k 	 = critical stress intensity factor

P	 = length of the cylinder

m 
	 = initial masE of the gas

P(t)	 = gas pressure inside the cylinder

Po	= initial gas pressure

PR (t)	 = resistance pressure or lead carrying capacity

R	 = gas constant

R 
	 = mean radius of curvature of the cylinder

T(t)	 = absolute gas temperature

To	 = initial gas temperature

t	 = time

V	 - volume of the container

V(t)	 = crack velocity

Y	 = ratio of specific heats

A(t)	 = shell parameter.

P(t)	 = gas density

(i)
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CRACK PROPAGATION AND ARREST
IN PRESSURIZED CONTAINERS(*)

by

F. Erdogan, F. Dulale, and J. A. Owczarek
Lehigh University, Bethlehem, Pennsylvania

Ab6ttact. The problem of crack propagation and arrest in a finite volume
cylindrical container filled with pressurized gas is ecnsidered. It is

assumed that the cylinder contains a symmetrically located longitudinal

part-through crack with a relatively small net ligament. The net ligament

suddenly ruptures initiating the process of fracture propagation and de-

pressurization in the cylinder. Thus zhe problem is a coupled gas dynamics

and solid mechanics problem the exact formulation of which does not seem

to be possible. It is formulated by making two major assumptions, namely

that the shell problem is quasi-static and the gas dynamics problem is

one-dimensional. The problem is reduced to a proper initial value problem

by introducing a dynamic fracture criterion which relates the crack accel-

eration to the difference between a load factor and the corresponding

strength parameter. The main results are demonstrated by considering two

examples, an aluminum cylinder which may behave in a quasi-brittle manner,

and a steel cylinder which undergoes ductile fracture. The results in-

dicate that generally in gas-filled cylinders fracture arrest is not pos-

sible unless the material behaves in a ductile manner and the container is

relatively long.

f*) This work was supported by the Materials Division, NASA-Langley under
the Grant NGR 39-007-011 and by NSF under the Grant ENG 73-045053 A01.
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1.	 INTRODUCTION

In studying the fracture failure of relatively thin-walled pressure

vessels and pipes, in general one may consider the phenomenon in three

different phases. The fi.rst is the subcritical crack propagation starting

from a localized imperfection. This initial flaw which may form the nu-

cleus of a dominant crack in the cylinder wall may be a material or manu-

facturing defect, or may be accidentally induced. Even though such flaws

are just as likely to be fully imbedded interior defects, from the view-

point of subcritical crack growth, it is the surface flaw which is of more

critical concern. The reason for this is the presence of higher level

stresses near and at the surfaces and the likelihood of ready exposure to

adverse environmental conditions. Once the crack is nucleated, the sub-

critical crack propagation may be due to low cycle fatigue and stress

corrosion cracking.

In the heavy-section low toughness structures if the subcritically

growing crack reaches a "critical" size, it is possible to have a plane

strain type of fracture leading to catastrophic failure. However, in

most cases, particularly in relatively thin-walled cylinders, there is

sufficient amount of plastic deformation around the leading edge of the

part-through crack so that before the crack reaches the critical size

the net ligament between the crack front and the opposing surface would L

fully yielded (Figure 1). In such cases, the second phase of the failure

process would then be (generally ductile) fracture of the net ligament.

The net ligament rupture may occur as a result of progressive stable crack

growth. However, for materials with relatively high fracture toughness,

perhaps a more likely rupture mechanism is the "net ligament plastic in-

stability" described in [1].

Even though in some cases it is theoretically possible to have "leak"

before "burst", in practical situations it turns out that in both brittle

as well as ductile type of fracture, the internal pressure which is high

enough to cause the net ligament to rupture is usually above the critical

level which can be sustained by a cylinder with a through crack having

the same length 2a  as the part-through crack [1] (Figure 1). Thus, the
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i_nal phase of the fracture failure in pressurized cylinders is the prop-

uyation of a through crack. This is clearly a coupled fracture dynamics

and fluid mechanics or gas dynamics problem. whether the fracture propa-

gation would result in catastrophic failure or crack arrest would, of

course, depend on the nature of decompression in the cylinder as the

liquid or gas is discharged through the orifice provided by the propagating

crack.

From the structural view point the tools dealing with the subcritical

crack growth phenomenon appear to be fairly well-understood and quite ad-

equate [2,3]. If the particular part-through crack problem can be solved

(see, for example [4,5]), then the crack propagation rate under fatigue

or stress eorrosicn cracking may be estimated by using certain empirically

established models [2,3,6,7]. A quantitative modelin g of fully-yielded

net ligament in shells is somewhat more complicated. However, in this

case too adequate results may be obtained by properly considering the

plasticity effects [1,8,9]. On the other hand, it would be no exaggera-

tion to state that the crack propagation phase of the fracture failure

following thu ,iet ligament rupture is not understood at all. In this paper,

after making some remarks regarding the fracture dynamics in relatively

thin-walled pressurized containers mostly for the purpose of pointing out

the extremely complex nature of the problem, the quasi static fracture

propagation problem for the finite volume containers is considered. Two

types of fracture models applicable to materials with essentialll 	 tle

or ductile fracture behavior are developed and some numerical exampled,

are given.

2. ON THE FRACTURE DYNAMICS IN PRESSURIZED CONTAINERS

Consider a relatively thin-walled pressurized cylindrical container

of finite volume. Let a symmetrically located meridional through crack

of length 2ao suddenly appear in its wall as a result of net ligament rup-

ture (Figure 1). The ensuing phenomenon may be considered as an initial

value problem with, for example, the components of the displacement vector

ul , u2 , and u 3 in the cylinder wall and the components of the velocity

vector vi , v2 , and v 3 , the pressure p, the temperature T, and the density p

-3-
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of the liquid or gas inside the cylinder as the basic state variables

which are functions of time and space coordinates. Considering the sym-

metry of the problem and assuming that no crack branching takes place, the

problem has at least one more unknown function which is the crack length

a(t). The crack surface displacements which determine the size and the

shape of the "orifice" are given by the displacement components u l , u2,

and u 3 . By using the basic physical principles, theoretically it should

be possible to write nine field equations (e.g., equations of state and

energy, and conservation of mass and momentum), to account for the nine

basic unknown functions u., v., (i=1,2,3), p, T, and p. These equations

may be expressed in terms of a system of differential operators as follows:
i.

L.
1	 J	 J
(u.,v.,p,p,T) = 0, (i=1,..,9, j=1,2,3) .	 (1)

Equations (1) will be subject to standard initial conditions, the condi-

tions of continuity on the inner surface of the. cylinder reqarding the

traction and the velocity components, and the traction boundary conditions

on the outer surface of the cylinder and on the surface of the crack. Even

if there is no crack propagation after the rupture of net ligament, the

general dynamic problem is intractable. The reason for this is that in

considering the gas dynamics or the fluid mechanics, it does not seem to

be possible to express the boundary conditions at the opening on tht^ cyl-

inder wall created by the crack in an exact manner.

If the crack continues to propagate after the rupture of net ligament,

the problem is further complicated by the fact that it now 'nas a moving

boundary. In this case, technically one may complete the formulation of

the problem by considering an additional unknown function which represents

the crack size, such as the half crack length a(t), and an additional co;1-

dition, such as a fracture criterion of the form

F(u
i
,p,a,c.) > 0

J -

which states that a certain minimum condition must be met for propagation

of the crack. In (2) the displacements ui , (i=1,2,3) represent the stress

or the strain field in the cylinder, the nonuniform pressure p represents

(2)

-4-



the applied load which may appear in the criterion explicitly as well as

through ui , and c.
7 

(j=1,2,..) are the constants representing the yield

and fracture resistance behavior of the material. Ordinarily, in struc-

tural mechanics the form of the fracture criterion as given by (2) and,

for example, expressed in terms of the stress intensity factor k ? kIC'

the strain energy release rate G ? GIC , the i-integral, or the KR curve

is adequate if one is only interested in the question of stability of the

crack under a given set of loading conditions which are usually either

fixed load or fixed displacement type. However, it is clear that in a

coupled problem of Fracture dynamics-fluid mechanics, it is not sufficient

to say that the fracture will take place if certain minimum conditions are

met ane exceeded. It is at the same time necessary to make some specific

statements regarding the dependence of the fracture acceleration and de-

celeration or fracture velocity on the load level. More specifically,

the fracture criterion must express the dependence of some time rate of

change of the fracture area on the difference between a load factor repre-

senting the intensity of the applied load and a corresponding strength

parameter which represents the fracture resistance of the material. Lack

of phenomenological understanding and adequate modeling has been one of

the major difficulties in studying the problem of fracture dynamics in

structural solids. Because of this in most of the existing studies rather

than considering a physically acceptable fracture criterion, an inverse

technique is adopted by specifying the crack velocity [5,10].

3. A QUASI STATIC MODEL FOR GAS-FILLED CYLINDERS

Consider now a cylindrical shell of length C', mean radius of curvature

Ro , and thickness h. Initially let the cylinder be filled with gas of

pressure p  and (absolute) temperature T o . it is assumed that the cylinder

contains a symmetrically located part-through longitudinal crack with a

relatively small net ligament thickness (Figure 1). At time t=0 the net

ligament ruptures creating a through crack of length 2a 0
. Let the pressure

po be greater than the value which can be sustained by a cylindrical shell

having a through crack of length 2a 0* 
Thus, the crack will start growing

upon the rupture of net ligament and, because of the gas outflow through

the crack opening, the container will start to depressurize. From the

-5-
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view point of crack propagation, similar to flat plates, under constant

load the cracked cylindrical shell is basically unstable. However, be-

cause of depressurization there is a pos ability of crack arrest before

catastrophic failure. It is therefore clear that the problem of fracture

dynamics is strongly coupled with the problem of gas dynamics.

To develop any type of an acceptable analytical model for the problem

two major obstacles need to be overcome. As pointed out earlier, the

exact formulation of the related gas dynamics problem does not seem to be

possible. Therefore, even if the necessary mathematical techniques to

solve such problems were to be available, without any approximating assump-

tions the problem would be intractaLie. This then is the first major as-

pect of the phenomenon which requires certain physically acceptable simpli-

fying assumptions so that an analytical treatment of the problem is

possible. The second mvior aspect of the phenomenon refers to fracture

dynamics which is fundoimentally much lese. understood. In the present

coupled problem to use the so-called inverse method which assumes the

velocity or the acceleration of the crack beforehand would be meaningless.

The key question in this respect is this: in what way is the crack prop-

agation behavior (say, its velocity or acceleration) dependent on the load

factor which represents the intensity of the applied load and the geometry?

Without makinq some statement to this effect, clearly the crack propagation

and arrest problem cannot be treated as a dynamic phenomenon.

Consider now the first aspect of the phenomenon, namely the formula-

tion of the coupled solid mechanics-gas dynamics problem. To render the

problem tractable and bring it down to manageable proportions, in this study

the following approximating assumptions will be made:

(a) In the shell analysis the inertia effects will be neglected and

the problem will be treated as being quasi-static. Even though there are

no available solutions to the dynamic shell problem, using the flat plate

results as guide it may be stated that the inertia effects will be neglig-

ible provided the crack velocity remains below approximately one-fourth of

the shear wave velocity of the shell material [10]. As will be seen from

numerical examples, in the finite volume containers this ceiling for the

-6-
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crack velocity and hence, the quasi-static assumption does not seem to be

very unrealistic.

(b)The compressed gas in the container behaves like an ideal gas

with constant specific heats.

(c)The pressure drop in the container is sufficiently slow so that

the gas dynamics problem may be treated as being 'one-dimensional" with

the (space-independent) basic variables pressure p, temperature T, and

density p.

(d)The discharge through the crack opening is at sonic velocity with

a constant discharge coefficient CD , i.e., it is assumed that

Pe ^ ( 2 ) Y-1
p(t) - 1+Y

where p is the gas pressure in the containers, p  is the environmental pres-

sure, Y= cp/ev, 
c  

and c  being the specific heats under constant pressure

and constant volume, respectively.

(e)The crack opening or the "orifice" may be approximated by an

ellipse with the crack length and the crack opening displacement in the

center of ::he crack as the major axes. Using the results given in [11]

and extrapolating them the crack opening area may be approximated by

2R	 2
D (t) = na2p [ hE + hT^	 (4)

where B is the elastic modulus of the cylinder.

Under these assumptions it is seen that the unknown functions are p,

p, T, and a with t as the independent variable. The conditions to deter-

mine these functions are

(i) the equation of state for the gas

P
	 RT
	

( 5)

where R is the gas constant;

(ii)the isentropic process equation

pp Y = constant;
	

(6)

(3)
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(iii)the conservation of mass which states that the rdte of mass

outflow through the orifice is the same as the rate of mass reduction in

the container and which may be expressed as

71t (M 	 ° CDDO*u* .	 (7)

where m  is the initial mass of the gas, V is the container volume, C D is

the discharge coefficient, and D is the crack or orifice area. The quanti-

ties p* and u* are, respectively, the gas density and velocity at the small-

est exit section where sonic flow conditions are assumed to prevail, and

are given by
1

p* p(1+Y) Y-1 u* = (1+Y RT) k	(8)

Eliminating p and T, from equatio.is (4) to (8) it foll.,ws that

a _ 
7tCD ( 2 

) 2(Y 1) Y Y	 (2 0 + 1.27a')a2p(5Y-1) /2Y (9)dt	 V Y+1+1	 p (Y-1)/2Y hE	 h E
0

where To and p  are the initial gas temperature and pressure in the container.

(iv)Dynamic fracture criterion. A fracture criterion stated in the

form of an inequality such as (2) can only refer to fracture initiation or

to a static condition. In order to treat dynamic crack propagation prob-

lems, the criterion must also be dynamic in nature and must properly relate

"the crack driving force" to the crack length and its time derivatives. In

expressing the dynamic fracture criteria used in this study, two basic

physical assumptions are made which are intuitively motivated. It is as-

sumed that first the crack acceleration or velocity is a function of the

"crack driving force" and secondly, if the crack driving force is negative,

in structural metallic materials there is a fracture deceleration phase and

the deceleration rate is much higher than the crack acceleration rate. The

next step is the proper selection of the "crack driving force" which will

be dependent on the fracture behavior of the material. In brittle or quasi-
*

brittle type materials it is realistic to assume that	 k-kc or G-Gc is

(*) Here the critical values kc and Gc may be velocity dependent and may not
be the same as the plane strain values KIC and GIC . In this sense, the model
has some flexibility and may accommodate the phase of the fracture which may
not be completely plane strain in nature.

-8-
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the crack driving force where k is the time-dependent stress intensity

factor at the crack tip, k  is a critical value which has to be exceeded

For fracture initiation and gr-+wth, G and G c are the strain energy re-

lease rate and fracture toughn e ss and are related to k2 k2, respectively.

The experiments on glass plates indicate that "the crack has no in-

ertia". The meaning of this statement and the related conclusions are

that the crack velocity is always in phase with the crack driving force,

the velocity is a function of the crack driving force alone, and crack

branching occurs when the input energy (or the crack driving force) becomes

too high to be dissipated by a single crack and takes place at a certain

limiting crack velocity (approximately half the shear wave velocity).

Since the limiting crack velocity implies increased fracture resistance

at higher crack velocities, for ideally brittle materials the dynamic

fracture criterion may be expressed by relating the crack velocity to

k-kc or G-Gc . Assuming that G_k2 , one may, for example, write
N	 n

d (k 2-kfo r k > ko	 c
I	 (10)dt	
l0, for k <kc

where di ,..,% are constant, k is generally a function of a, and k  is a

function of da/dt. In the range of crack velocities for which the inertia

effects are negligible, k  may be assumed constant and the differential

equation (10) with (0) would determine the functions a(t) and p(t).

Intuitively it could be argued that in metallic materials with varying

degrees of plastic behavior the instantaneous change in velocity implied

by (10) is not possible and the phenomenon must exhibit some inertia. In

this case the dynamic fracture criterion must include crack acceleration

as well as the velocity. Also, if the plasticity effects are not apprec-

iable, k or G may be used as the crack driving force and the fracture cri-

terion in its simplest form may be expressed as

Model I:

d2a
(bl (k-kc) for k>kc ,

(11)
dt2 lbI (k-kc) - b2(k-kc)2

_ 

	 , for k< kc

-9-
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or Model I1:	

2dZa _ Ib3(k-kc) , for k > kc

dt2 lb3 (k 2-k^) - b4 (k2-k0) 2	for k< k 

(

(12)

where bl , ... b4 are constant.

The stress intensity factor k is obtained from the elastic solution

of the shell problem (e.g., [1.^,,131). Extrapolated for large values of

the shell parameter a, the stress intensity factor for the pressurized

cylindrical shell with an axial crack may be approximated by

pR
k h V'Ira A(A)	 (13)

f0.5a +0.6+0.4e-1'25 X , for X _< 5

A(a) ^ <	 (14)
11.761 9 , for a > 5

a = [12(1-v2)]^ a/ Rh	 (15)0

where v is +z.., Poisson's ratio.

In the case of ductile fracture one may need a fracture criterion

which takes into account the ductile behavior of the material. Two Bich

criteria based on the crack opening stretch and plastic instability were

described in [5] and [1]. In either criteria the material's fracture re-

sistance parameter may be expressed in the form of a "resistance pressure"

wfn ich is a function of the crack length. For example, for steel cylinders

the resistance pressure pp, or the load carrying capacity of the vessel may

be expressed as [1]

PR = py[n+ (1-n)e 
aa]	 (16)

where n and a are constant (0<n<l, a>0), I is the shell parameter given

by (15), and
hQ

pY 	 R Y ' aY - QYS(1+S)
	 (0.05 <^< 0.15)	 (17)

0

Here 0 Y is the yield strength of the material, Cr y is defined as the flow

stress which is somewhat higher than QYS , and p  is the pressure correspond-

ing to a "fully-yielded" cylinder. Thus, in this case the "crack driving

force may be taken as either p-pR or p2-p22 and the following dynamic fracture

-10-



criteria may be expressed:

Model III:

A^cl (P-PR) . for P > PR ,	
(18)6

d0	 ^cl (P-PR) - c 1_(P-PR) 2 , for P < PR

or Model IV:

d2a = fc3 (P 2-PR) , for p> pp ,

2	
(19)

dt	 ^c 3 (P 2-P 22 ) - c4 (P2-PR) 2 for P < PR

where again c i ,..,c4 are constant. These as well as the constants bl,..,b4

have to be determined experimentally, Such experiments may be conducted

on flat plates under ideal lading conditions and crack geometry.

The coupled depressurization and quasi-static crack propagation prob-

lem may now be solved by considering (9) and any one of the equations (11),

(12), (18) or (19). The problem is a typical initial value problem which

is highly nonlinear. It may be solved n,=crically by defining

da
Ft v(t)	 (20)

and by observing that the differential equation (9) and the Models I to IV,

i.e., (11), (12), (10) and (19) are of the form

dt	 f(a,P)
	

(21)

d 2a _ dv _

dt2	 dt - g
i (a,p)	 (i=1,..,4)	 (22)

Using the initial conditions

a(0) = ao , v(0) = 0 , P(0) = Po	 (23)

one may then write

t.r
pit) = p  + 

t
o f(a,p)dt ,	 (24)

t((
a(t) = a  + J o v(t)dt	 (25)

(ft
v(t) = Jo gi (a,p)dt	 (i=1,..,4)	 (26)

-11-
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and use any one of the integration formula:, to obtain the unknuwn functions

p, a, and v. The numerical calculations are terminated when either

v(tA )	 0 , a(tA ) < 0.8k/2 ,	 (27)

or

a(tF) - 0.8Z/2	 v(tF) >0	 (28)

where k is the total length of the cylindrical container. The former situa-

tion corresponds to fracture arrest t o b-iing the arrest time arid the latter

basically implies catastrophic failure. The approximate limit a= 0.8./2 is

imposed by the shell analysis which is adopted from the infinitely long

cylinder Solution.

A.	 EXAMPLES AND DISCUSSION

:.s an example for a pressure tank with brittle or quasi-brittle frac-

ture behavior a 20 in. diameter aluminum cylinder and for a pressure tank

with ductile tracture behavior a 36 in. diameter steel cylinder is consid-

ered. In both cases the gas is assumed to be a biatomic ideal gas. The

relevant information regarding the numerical data used in the calculations

is given in 'fable I. The initial value problem as formulated by equations

(9) and (10) or (20) to (23) was solved by using two sets of values for

the crack propagation constants b i , c i f (i=1,..4) and d1 (i.e., N=1 in (10)),

which are shown in Bible II. Other variables in the solution were the

length of the cylinder Z, the discharge coefficient CD , and the amount of

the initial overload such as k(0)-k c or po-pR (0). Some of the typical re-

sults are shown in Figures 2 to 15.

Figures 2 to 5 show the results for the aluminum cylinder which was

assumed to behave in a quasi-brittle manner. Here the lenqth was varied

between 20 in. and 200 in., the discharge coefficient was 0.5 < C D < 0.8,

and the initial pressure overload was such that 50 < k(0)-kc < 500 psi in.

Models I and II were used to calculate a(t), p(r), v(t), and k(t) using the

constants shown in Table II. Figures 2 and 3 show the results obtained

from Model I, i.e., equation (11), by using the constants given in columns

A and B of Table II, respectively. In these as well as in the subsequent

figures the computed values p, a, v, k, and p  are normalized with respect

-12-
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Table II. Crack propagation constants (in
units of lb, in, so )

Model A B

b1 8 x 10 5 8 x 10-4I

Eq.	 (11)
b2 4 x 10 7 4 x 10-6

b 3 8 x 10-10 8 x 10-9
IZ

Eq.	 (12) b4 4 x 10-17 4 x 10-16

c 1 0.002 0.02
ITI

Eq.	 (18) c 2 0.001 0.01

c 3 0.4/ipR-PR (0)) 4/( Po-PR(0))

IV c4 2	 2BO/lgo PR (0)
800/(p2-P2(0))

Po-PREq.	 (19)

dl
_8

10 lo- 7Eq.	 (10)

to a set of constants pn , an , vn , kn , and pRn which are different for each

example and are given by the figure captions. Thus the quantities shown in

the figures are defined by

a = a(t)/an , P = p ( t)/pn	 v = v(t)/ n

k = k(t)/kn , PR = PR ( t)/pRn	(29)

From the crack arrest view point these figures correspond to the most favor-

able conditions, that is, they were calculated for longer length (t= 200 in.),

greater dischtLrge coefficient (CD = 0.8), and smaller overload (k(0)-kc = 50

psi Vi_n). Even in this case, in spite of the sharp decrease in the pressure

and the stress intensity factor after a certain time, at a= 0.8 Q/2 the

crack velocity v was still increasing. The basic conclusion here is that in

gas-filled cylinders behaving in quasi-brittle manner it is unrealistic to

expect any crack arrest.
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figures Q and 5 show the results obtained from Model 12, i.e., equa -

tion (11), by using the crack propagation constants given in columns A and

B of Table II. Note th qualitatively these results are quite similar to

those obtained from Model I.

The results for the steel cylinders are shown in Figures 6-13. Fig-

ures 6-9 show the results obtained from Model III, i.e., equation (18) for

various combinations of Q, CD , and c  and c 2 (see columns A and B in Table

II). Here the figures show the driving pressure p and the resistance

pressure p  with the same scale. It is seen that for the short cylinder

(2 =50 in) before the pressure drops below pR, i.e., before the crack starts

to decelerate, the crack length reaches 80 percent of the cylinder length,

hence no crack arrest appears possible (Figures 6,7). On the other hand,

in the long cylinder (P-= 500 in) the crack is arrested before the crack

length reaches P_/2. Changing various constants in the calculations indicated

that in the ductile fracture model, from the crack arrest view point the

most important variable was the cylinder length. For example, comparing

Figures 8 and 9 it may be seen that in spite of one order of magnitude dif-

ference in crack propagation constants c l , c 2 (see columns A and B in Table

II), the results are qualitatively the same. Higher values of c  and c2

simply shortens the crack arrest time. In the results shown in Figures 8,

9, 12, and 13 where crack arrest took place, the calculations were stopped

when the crack velocity dropped to zero.

The resulte obtained form Model IV (equation (19)) are shown in Fig-

ures 10-13. Except for the shortened time scale, these results are quite

similar to those obtained from Model III.

The results obtained from the velocity model (10) with N= 1 are shown

in Figures lA and 15. In these calculations too the influence of crack ve-

locity on k  or 0c is neglected. The highest velocity observed here is

approximately one-fourth of the shear wave velocity of the material, meaning

that the inertia effects may still not be all that crucial. It is seen that

qualitatively these results are quite similar to those obtained by using the

acceleration Models I and II, the important difference being in the time

scale. In both cases there does not seem to be sufficient time for any

-15-
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significant depressurization. Hence, the problem is analogous to the cen-

trally cracked flat plate problem under constant tensile stress with the

additional magnification in the "crack driving force" k  coming from the

shell curvature effect.

The sample calculations given in this paper indicate that in order to

deal with the crack propagation and arrest phenomenon the fracture cri-

terion must be cast in dynamic form relating the time ratea of the crack

length to the overload. Developing such dynamic fracture criteria does

not seem to be a major problem. The main difficulty in this respect lies

in determining the related crack propagation constants. This may be done

by conducting carefully designed experiments in which the crack length and

the appropriate load factor are accurately measured or calculated and the

corresponding resistance parameter is independ ntly estimated. The pre-

liminary calculations given in this paper also indicate that in most finite

volume containers it is very likely that the crack velocity will always be

,ufficiently low to justify the quasi-static assumption in the shell

analysis.
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Figure 1.	 Geometry of the pressurized cylindrical container.
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•	 Figure 2.	 Results fut the 20 in. diameter aluminum vessel; f= 200 in.,
CB = 0.8, Model I with constants in column A, Table II. The
normalization constants: ,,p__..nn= 300 psi, an = 60 in., vn = 80

in/sec. , kn = 16 x 10 5 psi Vin.
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Figure 3.	 Results for the 20 in. diameter aluminum vessel; Z= 200 in.,
C ID =0.8, Model I with constants in column B, Table II. The
normalization constants: pn = 300 psi, a n = 80 in., vn = 300

6in/ sec. k n = 2 x 10 psi Vin.
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Fiqure 4. Results for the 20 in. diameter aluminum vessel; £ = 200 in.,
CD= 0.8, Model II with constants in column A, Table II. The
normalization constants: p^ =300 psi, an= 60 in., v n = 400
in/sec. , k n = 20 x 10 5 psi 3 in
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Figure 5. Results for the 20 in. diameter aluminum vessel; t= 200 in.,

CD = 0.8, Model II with constants in column B, Table II. The
normalization constants: , p = 300 psi, an= 80 in., vn =2500

in/sec. , kn = 3 x 10 6 psi 3 in .
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Figure 6.	 Results for the 36 in. diameter steel vessel; Q =50 in.,

CD = 0. 5, Model III with constants in column A, Table II. The
normalization factors: p n = 1000 psi, a n = 20 in., vn = 7 in; sec.

pRn = 1000 psi.
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Figure 7.	 Results for the 36 in. diameter steel vessel; F = 50 in., CD= 0. 5,
Model III with constants in column B, Table II. The normalization
factors: pn = pI;zn = 1000 psi, an = 20 in. , vn = 20 in/sec.
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Figure 8.	 Results for the 36 in. diameter steel vessel; t= 500 in.,

CD ;-0.8, Model III with constants in column A, Tatle II.
Normalization factors: pn pRn= 1000 psi, an = 65 in., n= 10

in/sec.
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Figure 10. Results for the 36 in. diameter steel vessel; e= 50 in., CD =0.5,

Model IV with constants in column A, Table II. The normalization

factors: p  = pR.n = 1000 psi, an= 20 in., vn = 25 in/sec.
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Figure 12. Results for the 36 in. diameter steel .essel; Z= 500 in.,
CD= 0.8 1 Model IV with constants in column A, Table II. The
normalization factors: p n = pRn = 1000 psi, an = 30 in.,
vn = 40 in/sec.
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Figure 13. Results for the 36 in. diameter steel vessel; t =500 in.,

CD = 0.8, Model IV with constants in column B, Table II.
The normalization factors: pn = pRn = 1000 psi, an = 100 in.,
v  =150 in/sec.
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Fiqure 14. Results for the 20 in. diameter aluminum cylinder; t = 200 in.,
CD = 0.8. The velocity model, Eq. (10). d 1 = 10 -8 ; normalization
factors: ban = 50 in., pn = 300 psi., vn = 30,000 in/sec. ,
kn =2x10 psi Vin-.
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Figure 15. Results for the 20 in. diameter aluminum cylind9r; t= 200 in.,
CD= 0.8. The velocity model, Eq. (10), d l = 10 ; normalization
factors: an= 50 in., pn = 300 psi., vn = 30,000 in/sec. ,
kn = 5 x 10 5 psi vin.
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