S35/ Ch-1efJ568 (¢2

CRACK PROBLEMS IN CYLINDRICAL
AND SPHERICAL SHELLS

BY
F. ErpocAN
~

(RASA-CR-1£5066)

CRACK PROBLENMS 1IN

N76-30608

CYLINDRICAL AND SPHERICAL SHELLS (Lehigh
57 p HC $4.50

Univ.)

CSCL 131
Unclas
G3/39 504086

i:-
Y
5

-7 WP Ut BRANCH

Yu{éﬁf

RECENED 75
o> nASA STLFRCILTE £

‘3-\:.
[E55L

FEﬁRUARY 1976

LEHIGH UNIVERSITY
BETHLEHEM, PENNSYLVANIA

THE NATIONAL AERONAUTICS
AND SPACE ADMINISTRATION
GRANT No. NGR 39-007-011



F. Erdogan

CRACK PROBLEMS ‘I CYLINDRICAL AND SPHERICAL SHELLS

5.1 Introduction

Particularly within the past decade the so-called linear fracture mechanics has
established itself as a highly satisfactory working tool in studying the phe-
nomena of brittle fracture and fatigue crack propagation in structural solids.
The technique appears to be most effective when "plane strain" conditions pre-
vail along the existing crack front. It has also been shown that the stress
intensity factor, which is the basic element in the linear fracture mechanics,
is the most appropriate correlation parameter in fatigue crack propagation
studies of relatively thin-walled plates under membrane loading where the crack
is a through crack, and "generalized plane stress" condifions are assumed to
exist. The plane assumption here, of course, is an approximation in which the
three-dimensional effects resulting from the intersection of the crack plane
with the stress-free surfaces of the plate are neglected.* From the view point
of practical app1icéfions this boundary layer or thickness effect does not
appear to be very significant. Therefore, one may be justified in using stan-
dard plate or shell theories for studying the fracture problems in thin-walled
structures provided the plane of the crack is pérpendicular to the surface 6f

the sheet.

With the assumption of linearity, it is known that the relevant information
in crack problems may be obtained from a local perturbation problem in which
the only external loads are the crack surface tractions. In "thin-walled"

structures this would mean that after solving the plate or sheil problem under

* .
See Chapter 2 of this volume for the effect of plate thickness and related
approximate techniques.

-1-



given external 1oads‘by'?gnoring the crack, the stress intensity factors may

be found by using the equal and opposite of the membrane and bending resultants
at the location of the crack as the crack surface tractions. Since at the pres-
ent time linear problems are the only tractable crack problems, the geometry of
the particular thin-walled structure must then be such that locally, small de-
formation plate or linearized shallow shell theories are applicable. At first
sight it may appear that in such cases it is sufficient to approximate the
structure Tocﬁ11y by a flat plate. However, recent studies have shown that
Tocal shell curvatures may have a rather .considerable effect on the stress in-
tensity factors. Hence, in thin-walled curved structures the crack problem

must be considered in conjunction with a shell rather than a plate theory.

Because of the peculiarity of the crack problems in shells, there are analyt-
ical limitations regarding the type of problems which can be solved by the
existing techniques. Aside from the considerations regarding the Tinearity of
the problem, the two major limitations arise from the geometry and material
behavior of the shell. The geometrical factors include the relative size of
the crack with respect to the radii of curvature and dimensions of the shell,
spatial variation of the curvatures, and the shape and orientation of the crack.
The material factors are primarily the anisotropy and nonhomogeneity. In add-
ition to linear elasticity, in the existing sotutions [e.g., 1-13] it is as-
sumed that the shell is "infinitely" Targe, the curvatures are constant (i.e..
the shell is a circular cylinder or a sphere}, the crack is along a princﬁpa]
ptane of curvature, and the material is isotropic and homogenecus. If these
assumptions are disregarded, mathematically the problem does not seem to be
tractable. Further remarks will be made in this chapter regarding this point.
If the material is isotropic and homogensous, in applications one could obtain
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approximate solutions with an acceptable accuracy by approximating local shell-
crack geometry with an ideal shell which has a solution, namely a spherical
shell with a meridional crack,a cylindrical shell with an axial crack, or a

cylindrical shell with a circumferential crack.

From a practical view point the assumption of homogeneity of the material in
shells does not seem to be a critical restriction. Even in thin-walled struc-
tures made of composites one may easily assume that the gross behavior of the
material is homogeneous. However, in practice a mild or strong anisotropy in
shells appears to bé a rule rather than an exception. Most metallic shells
are manufactured through rolling or extrusion process; and hence, are generally
mildly anisotropic. Shells which are made of composites such as fiberglass,
boron-epoxy, graphite-epoxy, etc., are of course, strongly anisotropic. Since
the treatment of anisotropic or, even orthotropic shells is not traﬁtab]e, it
is therefore desirable to have a technigque for approximately evaluating the
effect of material anisotropy on the critical fracture parameter, namely, the

stress intensity factor.

This chapter describes a method of solution for the specially orthotropic
shells containing a crack. The method is described by considering symmetric
and skew-symmetric problems in cylindrical shells with an axial crack (for
details see [14-16]). Its extension to the other two ideal geometries seems
to be straightforward. Most of the numerical results given in the chapter,
which includes the effect of Poisson’'s ratio and interaction of two cracks,
is, hgwever, on the isotropic shells. The analysis and the results given in
this chapter are based on an 8th order linearized shallow shell theory in

which Kirchhoff assumption is made with regard to the transverse shear and the
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twisting moment on the crack surface. Since there are five traction components
on the boundary, to satisfy all the boundary conditions individually a 10th
order theory should be used.* Also, since any bending theory is necessarily
approximate, one would expect that the shell thickness will have a slight ef-
fect on the membrane component and a considerable effect on the bending compon-
ent of the stress intensity factor.**

5.2 Formulation of the Specially Orthotropic Cylindrical

Shell Problem

The Tinearized bending theory of anisotropic shallow shells dates back to a
paper by Ambartsumyan [18] and the detailed treatment of the subject may be
found in [19-21]. Referring to Figure 5.1, let an infinitely long orthotropic
circular cylindrical shell of elastic constants E,, v,, E,, v,, G,,, thickness
h, and mean radius R contain an axial through crack of length 2a. Assume that
through a proper superposition the problem has been reduced to a local per-
turbation problem in which the crack surface tractions are the only external
loads. Defining the nondimensional orthogonal coordipates in the tangent plane

by
X = X/a ¥y = V/a ‘ (5.1)

The differential equations for the orthotropic cylindrical shell may be written
as

4 a® 32 _
D1V]w(x1,x2) - Tg{ F(x] ’XZ) =0, (5.2a)

hE,a?
b 2 9 a

**See Chapter 6 of this volume.
*
See Chapter 2 of this volume. See also [17] for cracked plate under bending.
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where X7 and xp are the principal directions of orthotropy taken respectively

along axial and circumferential directions, F is a stress function, w is the

displacement component normal to the shell surface, and the operators Vi and

Vi are defined by

-3’-& B G 3’-} E a'}
v = + 2iva +2(1 -vyv i2 - + - s 3
1 E;T 2+ 2( 1V2) E. Bxfax; E, ax: (5.3a)
;
L 3'4 E2 3'-!— 2 3'-1-
V.= —g+ 2 -V I
2 3)(1 Lzeyz 2 3)(:?3)(2 E BXZ (5'3b)

The notation for the orthotropic elastic constants are defined by the following

stress strain relations:

m
1

1
11 E;'(Ull"“lczz) s

_ 1
€22 T F, (022"“2011) 2

- 1
€12 2612 T1gs
AT,
1 k.

(5.4a)

(5.4b)

(5.4¢)

(5.4d)

The stress and moment resultants are related to F and w through the following

expressions:
W= LB
T a? ax,
N = ]_ BZF
22 az ale 2
3%F
Nyp== - s
a - 3X,9X,
D 'Bzw Bzwﬂ
td E - ! +\) [
11 ETLBXE 2 asz
[ 3
P 32 2
= _ —2/8%W , 37w
M22 EZ' x5 V1 X3 ?
. Fi

(5.5a)
(5.5b)

(5.5¢)

(5.5d)

(5.5¢e)



aM D.Iasy [ h%.) 53, | IF
V. = e I & -0 L AP BN 2 oW 1, (5.5f)
1= 3Xz a° ax3 23D, 3x, 98X,
| _ L ) _
oM D,[55 [ H%6) 53, _—
= -.-—..1—2= _.—.g- 12 5,-5
V= ¢ 3Xy a1 3 ax.9x, | (5.59)
| 92 i 2 1982
where T
Dy = Eh?/12(1-vyv,) 5 (k=1,2). (5.6)

The membrane and bending stress components are obtained from relations of the

form

b

11

o= Ny /hseeoson = T2M .7/h%,. .. : (5.7) .

In solving the problem, for example by expressing the functions F and w'in
terms of appropriate-Fourier integrals, (2) may be reduced to a system sztwo
fourth order linear ordinary differential equations. The characteristic func-
tion of this system will be an 8th degree polynomial %he coefficients of which-
will be functions of the transform variable. For the problem to be analytic- -
ally tractable, it is essential that the roots of the characteristic equation
be obtainable in closed form. For anisotropic shells in general and for ortho--
tropic shells in particular this does not seem to be possibie. In order to
éxpress the roots in closed form the operators Vﬁ and V5 must be properly fac- -
torized. From equations (5.3) it may be seen that these operators can indeed

be factorized and expressed in the fo]lowing form

v o= | AETET 2o - v (5.8)
! 3X] 9X2

if the elastic constants satisfy the following conditions:

[v, + 2(1-v,v,)6,,/E,VEJE,) = 1, (5.9a)
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Now, by direct substitution it may easily be shown that the conditions (9) are
satisfied provided the elastic constants are related by

:E1E2:

G, = .
2 7 201+ Vo, )] (5.10)

Considering also the relation in eguation (5.4d), this means that the sheet
material has only three independent constants. Sdchja'matghial is said to be
“specially orthotropic". The analysis and certain résu1¢s given in this chapter
~ will then be valid only for those sheet materials in‘wﬁich the measured value

of G, and that calculated from equation (5.10) in terms of measured Ei and v

3

1

(i=1,2) are in reasonably good agreement.
t

If the variables are changed once more as follows

1

X, = x5 (E/JE,) %, =y, (5.11)

the operators V: and V; become

Y= Y= 32+322-v‘* (5.12)

With equation {(5.12), equations (2) become identical to the differential equa-
tions for isotropic shells in which E and D=Eh®/[12(1 -v3] are replaced by E,

and D,, respectively, i.e.,

2 2
D, 7*w(x,y) - %-éax-z- F(x,y) = 0, (5.13a)
"~ h%E,a? 32 .
V() + g o wly) = 0 . (5.13b)-



Let the stress and moment resultants on y=0, -a<X<a obtained from the solu-

tion of the shell under given external loads by ignoring the-crack be

Ny(X,0) = N3(X) = n_(x) , . (5.14a)
Nyy (X:0) = Ngu (X) =t (x) , | (5.14b)
My(X.0) = M2(K) = m (x) (5.14c)
Vo (X,0) = vp(X) = v (x) . (5.14d)

Considering the perturbation probiem and referring to {5.1), (5.5), and (5.11),
the system of differential equations (5.13) must then be solved under the fol-

lowing boundary conditions specified on the crack surface:

lim % c2§35-+ v XTSI m.(x} , (5.15a)
y>+0 2 ayr !t oax® 0
2
;tg% gz-§;§ = - no(x) . (5.15b)
¢ 9%F _ . ‘
y_y;H(l) Ezgca—y = to(X) ’ (5.15C)
D s 93y h3G 3w |
;iﬁ% E§ {% 3;? * C{vl + 35;&‘5;;5§' = Vo(x) , (=1<x<t1) (5.15d)
where
¢ = (E,/E,)% . (5.16)

It is now clear that by properly decomposing the input functions given by equa-
tions (5.15) into even and odd components, the solution of the general problem
may be expressed as the sum of a "symmetric" and a "skew-symmetric" solution.

In the following two sections the solutions of these problems will be presented-

in some detail.
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5.3 The Skew-Syrmmetric Problem

From a practical view point the important skew-symmetric problem is that:having'

the following crack surface tractions:

m(x) = 0, n{x) =0, t,(x) = t (-x}, v (x) = -v (-x), (-l<x<1). . (5.f7)

Outside the crack, the antisymmetry of the problem and the conditions of contin-

uity require that.

My(X,0) = 0, Ny(X,0) = 0 , '  (5.18)
" 5" |
Tim = wix,y) = Tim =gz wW(x,y) , (n=0,1,2,3) , (5.18b)
y++0 3y y>-0 oy . .
. N 1L
Tim = F(x,y) = lim —Fﬂﬁxd), (n=0,1,2,3) , |x|>1. (5.18¢)
y++0 oy! y+-0 oy -

Since the external loads in equations (5.17) are se]f—gqui]ibrating local
tractions, the functions F and w satisfy the regularity conditions at x=+w
and hence may be expressed in terms of Fourier integrals. Thus using the sym-

metry considerations, after some routine manipulations the solution of equa-

tions (5.13) may be expressed as

o 4

w{x,y) = san(y) ]o ) Qj(u)emjlylsinax do (5.19a)
1

F(x,y) = sgn(y) Jm % Kij(a)emjlylsinax do , (5.19b)
01

where the functions Qj(a), (j=1,...,4) are unknown and

K =K, = - i(E,0,)% , K, = K, = 1(E,hD,)*% ,
m, = - (o +1,50)? m = - (a? - %)%

1 1 » 5 1 )
m = - ((12""']2)\0.);5 . my = = (0’,2 - 'iz}\ﬂ')li 3
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h

Substituting from equations (5.19) into equations (5.15a), (5.15b), (5.17a),
(5.17b), and (5.18a) it is found that

alv, - c?) . .
QS = [ il;\cz +:|2] (Ql + Qz) - %‘ (Ql - Qz) s i (5.213)
2
alv, ~c2) ' )
Q, =—[;"?£K25__ - é] (Q, +Q,) +% (Q, - Q) . (5.21b)
2

The two remaining equations to determine Qj (j=T1,..,4) are obtained from the
mixed boundary conditions in equations (5.15c), {5.15d)}, (5.18c) and (5.18d).
Since w and F are odd functions of y, equations (5.18¢c) and {5.18d) are auto-
matically satisfied for n=1 and n=3. Using equations (5.21) and (5.19):it
may be shown that the conditions in equations -(5.18c) and (5.18d) for n=0 and

n=2 will be satisfied if

J (Q, * Qp)sinax da =0, (5.22a)
0

J (Q, + Q,)o?sinax du = 0 , (§.22b)-
0 ,

@y - c? - © .

J = (Q, + Q,)o?sinax da + Io 4,260, - Q,)asinox da =f0 » ([x[>1).

0 - ,
- (5.22c)

Here. equations (5.22a) and (5.22b) refer to the cpnditi@ns'that w.and Béw/ayé -
vanish on y=0, |x|>1. Since analytically equation (5.22b) follows from equa-
tion (5.22a), equations {5.22) is actually equivalent to only two 1ﬁdépendent

conditions. For d%mensiona? consistency these conditions will be selécted as_

follows:
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JO (Q, + Q,)esinax da= 0 , (5.23a)

j 1,MQ, - Q,)osinax do = 0 5 [x|>1, (5.23b)
4]

With the selection of equation (5.23) as the conditions for |x|>1 it should be
noted that a single-valuedness condition i.e., w=0 for y=0, |x|>1 still remains
to be satisfied. This condition will be necessary to obtain a unique solution

for the resulting integral equations.

Substituting from equations (5.19) into equation (5.15c) and (5.15d), and again,

for dimensional consistency, integrating equation (5.15d), it is found that

[ .
Tim l:--c_:—; E ¥ ijijemjyoacos o d% =- t, () , (5.243)
y>0 1
X D 4 1 h3G .

Tim J {- ;—?,-r X F3m§ —azcmj[v1+T:2]lejemJysin ox dop dx
y+0 ‘o 01|

X

= - [ vo(x)dx » (x| <1). (5.24b)
0] .

With equations {5.21), (5.23) and (5.24) give a system of dual integral equa-

tions to determine Q; and Q,. Define now the following auxiliary functions:
u (x) = [0 1,0(Q, -~ Q,)sinox do , (5.25a)
uy(x) = fo o?(Q, + Q,)sinox do , D<x<wo . (5.25b)

Note that u, and u, are related to the second derivatives of w and F and hence
are expected to have the same type of singularity as Nij and Mij at the crack

tips {x=+1, y=0). From equations (5.25) and (5.23) it follows that

1
[ u,(t)sinat dt , (5.26a)
0

Qy - Q2 = "
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1
f u,(t)sinat dt .
0

(5.26b)

Substituting now from equations (5.26) and {5.21) into equations (5.24) and ob-

serving that u, and u, are odd functions, the following integral equations are

obtained to determine u, and u,:

1 2

Tim ]—[ 5 h
yr0 T iy I

jotylug(tddt = £,(x) L (i=1.2, |x|<1) ,

where
ia?t (x) ad [X
Fo(x) —o—=—, f.(x) = ~—-I v {x)dx ,
U o/E DY T 2 Dy ) o)
rOD
h,(6t.y) = | Foa(ey)sine(t-x)de , (i=1,2) ,
J JO \] )

Fooloy) = %

_ ]

Flz(asy) sy
hzj(x,t,a) =
F, (a.y) = +
231v7? 2
+

F {ay) = 1
22 ? 2
+

#CO

h3G a2 o?
2 12 -
[C -V, - 73p ][1 -y '121‘“31
J

[ h G . .
2¢”-v,- SD:Z] aln, - n,) + 11}\c2n]E “ 121c2n;l ,

r h%G. ) 202 (v, - c?)
2 - v, - 2l lgn + ——2——n_+an
| 1 3D2 [ 2 12102 3 *
3
h°G [ 2a{v_-c2)
2 12 . 1 .
{Zc - v, - 30, ] Toan, Y2 n,* 12Aﬂ3]

-12-
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2.2 ’ 242 .2
+11C 0, 4 20,M(v, - ¢?)n; - 12E m]. {5.30c) -
emzy emz.y em1y emz.V
— - = +

1 m ma * 2 M1 me

m m
ng=r & e e (5.31)
3 3 My * % Ma my 7

By examining the asymptotic behavior of the integrands for Targe and small
values of a in equations (5.29) and {5.30) for the kernels hij’ it may be seén
that some of the integrals are uniformly convergent. In these integrals the
Timit can be put under the integral sign and the resulting kernels are simple
Fredholm kernels. In the expression sinop (p=t-x or p=t) as p+0 it may
also be seen that the remaining integrals become divergent, meaning that the
kernels contain singularities. These singular pafts of the kernels may be sep-
arated in a standard way by“adding and subtracting the asymptotic value of the

integrand for large values of o. For example, noting that for large o

a?n (o,y) = ipe™ + e 0(a™®) , y>0, (5.32)

1

it is seen that

- _ s oy s P2 c YT
[: o’n, (a,y)sinap do = 1 A f:é sinap da + fo[u n (o,y) - 1,2 “Isinop do

o[ My My Y
= 3 p e _e 2 s+ 4 O
11A‘§Fr$§”?'+ f [ m1 ™ ] a”- i,ke Vlisinoap do (5.33)
where the Tast integral is uniformly convergent for all p and y=0, and hence,
the T1imit y=0 can be put under the integral sign, whe}eas the integrated term

gives a Cauchy type singularity 1/p. Similarly

°° ol r M1y My - )
J on,(a,y}sinap do = —EgE“z'+ [ [e + 9—~—]a - 2" |[sinap do . (5.34)
0 P ty of{ ™ M2

13-



Thus, after separating the singular parts of the kernels and goint to limit,

equation {5.27) becomes

1 . ) )
L %aijuj(t) T * K 2 kyj{xsthuz(t)de = af () (fx]<1), (5.35)
where
= _ \)1
Tt AT {5.36)
v h’e
a,, = - 3v, +c*+ [] + E.%.H\,l + 30:2] X

and the Fredholm kernels kij(x,t) are given by

o0

kp5(x,t) = JG[FU@,O) - agylsina(t-x)de , (3=1,2) , (5.37)
and -
kz](x,t) = f Fel(a,o)[sina(t-x) - sinot]de . (53585}‘
OI
a o
kzz(x,t) = - ~%3-+ J [Fgga,ﬂ) - a,,]sina(t - x) - sinatlde . {5.38b)
[ :

Since U and U, are related to the second derivatives of F and w, the elements
of the fundamental matrix of the singular integral equations (5.35) will be

=1
(1-—x2)'£and the solution will be of the form

u;() = ;0001 -x)7F, (3=1.2) o (Ixl<) (539

where the functions Gj are bounded in (—1§xfl). Thus the index of the system
in equation (5.35) is k=1, and hence theoretically the solution is not upique
and will contain two arbitrary constants [22]. These constants are determined
by using the single-valuedness condition mentioned earlier, namely that - _

w(x,0) =0 for [x|>1. Referring to equations (5.19), (5.21), (5.22) and (5.25)

it may be shown that 2u2(x)=- (52/9x2)w(x,0). Since uz(x)==0 for |x|>1, it

-14-



then follows that for w(x,0) for |x]|>1 uz(x) must satisfy the following condition:
1
J uz(x)dx =0, J dx J 2(t)dt (5.40)
=1 -1

The unknown functions Gy and G, defined by equation (5.39) may be obtained from
equations (5.35) and (5.40) in a straightforward way by using the technique out-
Tined in [23].

To examine the asymptotic behavior of the stresses around the crack tips let
us assume that the bounded functions G and G, are expressed in terms of the fol-

Towing infinite series:

G (x) = ] ATy g () o 600 =T BT, (), (5.41)

I
where Tk(x) is the Chebyshev polynomial of the first kind and the symmetry-prop-
erty of uj(x)=.- uj(-x) (3=1,2) has been used.. From equations (5.26), (5.39)
and (5.41) by using the relation [24]

! 3
]0 Ty (01 -x2) sinax da = (1" T 0, (@) 4 (n=0,1,2...)  (5.42)

it may be shown that

12a(Qy -Qp) = J(-1)"A L, (a) . (5.433)

1

@(0) +Q,) = J-1""B 3, (o) | (5.43b)

The expressions for the stresses may then be obtained by substituting from equa-

tions (5.43}, (5.21), (5.19) into (5.5) and (5.7). For example,

4
m c 9*F _ ¢ f” , msy

T = 1Q;{a)m;ae ] de , (y>0) . 5.44
ny haz 3X3y haz o Z: K\]QJ ,OI.)mJae cosoy o (y_ 0) ( )

At (y=0, x=¥1), the integrals in (5.44) are divergent, meaning that the

-15-



stresses will have a‘singu]arity at the crack tips. MNoting that the integrand
in equation (5.44) is integrable around a=0 and is bounded and continuous else-
where in the domain, the divergent behavior of the integral must be due to the
asymptotic behavior of the integrand for large values of «. Thus, substituting

from equation (5.43) and (5.21), equation (5.44) may be expressed as

.
- € 5y yn-Tl, _ Vai-C
%y 5 g0, T(-1) {An o Bn‘
X f Jop_la)[-1+ ay +0{a" M) Je % cosax da (yzo) . (5.45)
0
Noting that for large values of o [24]

Iopy (o) 2 (-1)"'1‘11 (a) = [%]1/2 (-n"! cos[a - ~]+0@‘1)J(n-1 225...),(5.46)

and using the resuits in [24] to evaluate the integrals, we obtain the leading

term in (5.45) as follows:

2
m _ci 4 -cC
Foglrs0) = S (Epop)* | l A+ Bn]
g
7

X ——;L=== [3cos

59 L
e + cos 2] + 0(r?) , (5:47)

where (r,8) are the polar coordinates measured from the crack tip,
{x=1,y=0) ., r?={(x-1)2+y*, tane = y/{x-1) .
For example, if

to(x) = N vo(x) =

0 2

defining the following normalized functions (see equation (5.28)):

-16-



G;(x) = Gj(x)/u0 . (i=1.2) , (5.48a)

a®N, APRN ¢

u, = - , (5.48b)

c Eth1 hJ(E]Ezj
* £o

= (5.48c)
G](x) z anTZn-l(x) ?
. - : .
Gy(x) = I b.Tor 7(x) , (5.48d)

1

equation (5.46) may be expressed as
o Vv -2

-l ¢
o'r)i(]y=[_n._] i Z [_ an+__3.'.__z___b

S
h ¢ "I 4/(2ra) [

6 58 %
3cos §=+ cos]ji- + 0{r?)

(5.49)

Observing that the stress intensity factor in a flat plate under uniform shear
stress NO/h and that in a shell are defined by

kp=N V{@)7h , kS = lim /2(x-1)a oy (x,0) , ~ (5.50)

g
X1 Xy

from equation (5.49) the membrane component of the stféss intensity factor ratio
for the shell is found to be

K o v.-c2
= _S.-. = 9 - 1
C i g { a + s bn] . (5.51)

3

c

K=

Further, noting that T _(1)=1, (n=0,1,2,...) from equation (5.48) and (5.50)
it follows that

k? * v-c? % l )
= = |- 1 ]
C, [ &)+ 2 92(1)} . (5.52)

The remaining membrane stresses may be obtained in a similar way. Thus, for

small values of r the membrane stresses in the shell may be expressed as
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C K
(0 = e (7510 § + sin B + 0(e) (5.532)
o (r,0) = _Su¥p_ [- sin 2 + sin 59]+ o(r?) , (5.53b)
yy*? 4/1Zra) ? 7

) 8 50 5
oj)‘:y(r,a) 4/17—)_ [3cos = *+ COS 2] + 0(r?) . (5.53c)

Defining now the bending component of the stress intensity factor by

= Tim /2(%-Ta cs (xﬂh)=Cbk

; (5.54)
%1 0P

in a similar way the asymptotic expressions for the bending stresses around the

crack tip may be obtained as follows:

b Cpkp 27 1 { 3(v, - ¢?) ]
a,,(r,8,7) = £ 8 + ———— COS =
xy( /0e1) JZray h 4[2+(vy-c?)/c?] ¢ 2
v 2 '
1 C 50 |1 o(rt 5.55a
+ 0z COS - o{r*) , ( )
Cbkp 27

b
Oxxlrs8s Z) = J?ral h 4[2+(v1-c2)/c2][1 - /Viv,)]

-2
X ]!}(1 - v,c%) - \)l_cz_c_ 1+ 7v2c2):|sin %

v, -¢” .
+25 (1 - v,c)sin S pHo(r®) (5.55b)
Cc
C k c® - v,

P (r,8,7) = —-LE 2L
Y y(Zray h 4[2+(v,-c?)/c?11- /v v,;1¢

2

, :
- v, -
X {Vl 2‘C + 8" - 8]sin —g— L sin % +{0(r%) , (5.55c)
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where the bending component of the stress intensity ratio is found to be:*
. RE B R
b T+ J(vlvzi

Thus, once the singular integral equations (5.35) are solved after normalization

W

(2 +

-c? %
) 6,{1) . (5.56)

described by equations (5.48), the stress intensity factors can be obtained with-
out further analysis. The analysis in this section remains valid for the iso-

tropic shell with £y = E, = E, v, =v, =V, Gy, = 6, and ¢ = (E;/E,)% = 1.
5.4 The symmetric Problem

Consider now the symmetric problem in which the only external loads are the

following crack surface tractions (see equations (5.14)):
m(x) = m(-x)., n(x}) =n,(-x) , tx)=0
v(x) =0, (-1<x<1) (5.57)

In addition to the boundary conditions specified by equations {5.14), (5.15),
and (5.57) on the crack surface {-1<x<l, y=0), outside the crack {|x|>1, y=0)
the symmetry and continuity considerations require that (18c,d) and the follow-

ing conditions be satisfied:
NXY(X’O) = nxy(x,o) =0, VY(X,O) = Vy(X,U) =0 (|x]>1) . {5.58)

In this case, using again the Fourier transforms, the solution of equation (5.13)

may be expressed as

w(x,y) = Jm ) Rj(a)emjly]cosax do (5.59)
. 0,

*
See [16] for details.
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mI}

F(x,y) = J y KjRj(a)emjlylcosax do , {5.59b)
0,
where Kj and mj are defined by equations (5.20). Substituting from equations
(5.59) into (5.15), the homogeneous conditions in equations (5.57¢}, (5.57d),

and (5.58) give the following two algebraic relations:

c.o

= (.0 1 i -
mR=(J—-i)(mR + mR.) - & (MR, - mRy) | (5.60b)
4% = \7 i, xc? 1R T Mafol = g ARy = TRyl s .
<, = v, +¢?[1 - 2/(yv,)] , (5.60c)

After some manipulations it can be shown that the continuity conditions are

satisfied if

(myR; + m,R,)cosox do = 0 , (5.61a)
J: 171 2°2

® i A .
Jo-ji- (m]R] - mZR?)cosax de =0, {|x]>1). (5.61b)

The remaining boundary conditions in equations (5.57a), (5.57b) with (5.14),

(5.15), and (5.59) méy be expressed as,

X3 N m 1 (X
1im J [~ —g-fw ) (e%m2 - v,0®)R.e Yeosax daldx = -5 ! mo(x)dx , {(5.62a)
y++0 0 a 01 J J 2 40

“n (x)ax o (<1<x<1) . (5.62b)

X1 4 )
1im J L —g-fw ¥ K.R.e"Yo?cosax daldx = - J
g @ J01 JJ o

y0
With equations (5.6), (5.61) and (5.62) give a system of dual integral equations
to determine R] and R2. In equation (5.62) the integral equations are written
in integrated form to make them dimensionally consistent with equations (5.61)
(i.e., the quantities which appear in equations (5.61) and {5.62) now reﬁfesent,
the first derivatives of F and w). Defining
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Jo (m'IR'l + mZRZ)cosax do = v.l‘(x) s (5.63a’)l

* i
Jo -1§£ (m]R1 - msz)co§ada = vz(x) »  O<x<o .. (5.63b)

and using equation (5.60), and the symmetry conditions vj(x) = vj(—x), (3=1,2),

equations (5.61) and (5.62) may be reduced to:
12 .
11'“(1) %L ) gij(x,t,y)vj(t)dt = p;(x) . (1=1.2) , (|x]<1) . (5.64)
y+ -1 1 . *
Following a procedure similar to that of the previous section to separate the

singular kernels and Qoing to 1imit, equation (5.64) may be put into the fol-

lowing standard form:

12 b,
L g [E5 + 255000014 (0)dt = my(x) , (§=1.2, [x|<1) (5.65)
where
(x) = —22 '[x (X)0% + po(x) azf‘-()d (5.66)
X) = —Zee— | n_(x)dx , X) =5 | m (x)dx; .
" i J{E,ND,) 1o © P2 D2 Jo 0777 -
ZCO 2 "2_5‘0_ . 3.
b-l-{=“"c'"é'",b-‘[2=23b2-1=4(C"U1_)+ Cz (2+\)1-C),
2 ( r (L4 @ gy L Sa (@ oy
C = Sl 3+ = - e . e - .
nteer= | tay* Tc? My Ty T
- (é?—* %L-+ 2)1sina{t-x)da , ' (5.68a)
3 My

e 1 a?
. '?-12()(91:) = JOE“{;X (-l.h-_!- - ;ﬁé“) + T (m_

1 mT—) - 2]sina(t-x)do , (5.68b)
3 M
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Lo

Lo1(xst) = fo [(vl-cz?(§%-+ Loy Ly Lorg) - e (ﬁ%-+ é%?

2 M3 Ty

. 1 . 1+, ;.0 _y 26 o2 o2 .

- i (4 —) = (c¢=-v, ) —O0— (=— - =— - {1 A)]Isino(t-x)do ,
(5.68¢)
I A L 200, O
zzz(xst) E[ ia " m, - 117L) - AC (m'l + ﬁZ—+ 2)
Fav, 2 2 '
V@ 9 iy et e L ol e :

+ i (m3 g 2} + 1 xc (m3 + , f 2)]s1pu(t x)da . (5.63d)

Here ms and éoﬂrstasrtsi1, 12, and A are defined by equations (5.20) and Co is

given by equation (5.60c).

From equations (5.63) and (5.59) it may be seen that physically the quantities
vy and Vo correspond to the first derivatives of F and w. Therefore, the ele-
ments of the fundameﬁtal matrix of the system of'singg]ar integral equations.

(5.65) will be (T-—x"%)!’5 and the solution will be of the following form:
vilx) = B (0 (1-x2)% , (3=1.2, |x[<1) . (5.69)

where Hj is bounded in -1<x<1. Thus the index ;f thé-system in equations (5.65)
is k=-1, and there.are no additional conditions (other than the consistency
conditions of the singular integral equations) necessary for a unique solution
F22]. Note, again, that equations (5.65) are complex and are equivalent tq
four real integral equations which may be solvéd numerica1iy in a simple way

by using the technique outlined in [23].

. To examine the streys state around the crack tips Tet the functions Hj be

expressed in terms of the following infinite series:
Hy(x) = g Ap, () 5 Hy(x) = g BaUsn(x) (5.70)
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where Uk(x) is the Chebyshev polynomial of the second kind and the symmetry

property vj(x) = vj(-x) has been used. By using the relation [24]

1
Jo UZn(t)fll-tzicosat dt = (-1)" %—(Zni-]) %'J2n+1(a) s

(n=0,1,2,..) , (5.71)
from equations (5.63), (5.69), and (5.70) it follows that
T n 1 ‘
MRy + MR, = g (-1) (2n-PT)An E-J2n+](u) . (5.72a)
(5.72b)

1§ (_iyn
mRy - MRy = gy L A1) 20+ 0B I () -

Substituting into the stress expressions from eduatidﬁs (5.72), (5.60), and

(5.59) and omitting the details it may now be shown that*

m i#(Ethli = Co A
,8) =~ 1) (2 A -
Uyy(r 8) PP g (2n 1)(62 n = By

1%

(5.73)

X ;%% (5cos %-- cos %?0 f 0(r%)

where (r,8) are the polar coordinates at thelcrack tip defined by

r2 = (x~1)2 + y? ; tang = y/(x-1} .

Definiﬁg the membrane component of the stress intensity factor in the shell by

kP = 1im /2~ a on,(X50) » (5.74)
and observing that U2n(1) =2n+1, kg is found to be
- R, ¢
kS = _ha_?-—— [E‘} H](]) - Hz('i)]. . ‘(5.75)

—
See [16] for the evaluation of the related integrals.
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For example, if no(x) = NO = constant, mo(x) = 0, and the corresponding plate

stress intensity factor is defined by k_ = (NOJE)/h, the membrane component of

p
the stress intensity factor ratio becomes

K™ % X
Ry i - L2 (1) - Hy(1)] (5.76)
where
. /(E,RD,Y
H.(x) = H,{x) —2-2—, (j=1.2) (5.77)
J J N a2
0

the functions H; are obtained from equations (5.65) after the normalization

given by equation (5.77)

The reamining stress components may be obtained in a similar way. The asymp-

totic stress state in the neighborhood of the crack tip may then be expressed as

m = 8 50 1 . .
oyy(r,e) = Am vq.,ﬁh.ﬁ-(Scos = - COS ) + 0{r?) , (5.78a)
k 2 o
m - c 8 Y
oo (r,8) = A —2_— 3cos & + cos + 0{r%) ,. (5.78b)
(rs0) = Ay B 59) + (¥
o™ (r,08) = A - (sin & - sin 28) + o(r9) (5.7;8c)
Xy*'? m Jl7ra) T Fa 2 >
b K Z 5\’c\’o 8 Yo' 56 L
g’ (r,08, Z) = A, ~——Peu = [(8v - 8v, + —=;5)cos 5 - —=— €0S ] +0(r?),
yy b JZray 2h c? c
(5.79a)
Gb (r,8, Z) = A —«jSLh-gZ-[(B + 5vc ~ 8v c? + 3v,v )cos-g
Xx Ve b 5T N 3 c 2°¢c 2
N )
- 25% (1=-v,c*)cos %?J + G(r%) . (5.79b)
c
k a%h3a
o, (r,8,7) b p %- T2D, 12 —z-s1n —~‘- (8-%—gds1n —J + 0(r%) , (5.79%)
2ra ¢
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where
v =¢2 - v, c=(E/E )LK v,o=¢2 e (v, + n6,, ) - (5 805
o 19 12 s Ve Cc \J1 _E—D_{_ . 2. _

and the bending component of the stress intensity ratio is found to.be

A, = Kk = Q—-h'm x=17a o2 (x,0,h)

12(1 - v,v, c % - .
y 212 TV, EE% - 2){(e? - vy) + 2¢ T (1) . (5.81)

By letting E] = E2 =k, v=v,3=, G.]2 = G, and ¢ = 1 the results of this sec-

1

tion too reduce to the solution of isotropic cylindrical shell.

The "bulging” of the shell in the neighborhood of the crack, i.e., w may be
directly evaluated in terms of the solution given in this section. Also, in -
the present as well in the two other ideal shell geometries (that is, in the
cylindrical shell with an axial or a circumferential crack, and in the spher-
ical shell with a meridional crack) it can be shown that the auxiliary functions
defined to reduce the problem to singular integral equations are directly re-
lated to the crack surface displacements. For the isotropic shells these dis-
placements are obtained and presented for various values of the shell parameter

A in [8]. 3

The 9-dependence in the asymptotic stress expressions given by equations
(5.53), (5.55), (5.78), and (5.79) is identical to the expressions for iso-
tropic shells. However, note that the dimensionless goordinates r, 6, X, and

y in the specially orthotropic shells are defined by

r2 = (x-1)% + y*, tano = y/{x-1) , x=X/a , y = c/Ya (5.82)_
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where X, Y, Z are the actual rectangular coordinates and the actual geometric

angle © in the shell is given by

tan B = Y/(X-a) = gr¥ay’= £ tano . (5.83)

Therefore, because of equation (5.83), the angular variation of the asymptotic
stresses in the specially orthotropic shells is different and a good deal more

complicated than that in isotropic shells.

The analysis given in this and the previous sections indicates that, since the
-roots of the characteristic equation My s (j=1,..,4), shown in equations (5.19)
and (5.20) are functions of the transform variable a, {0<c< =), mathematically
the problem would have been intractable if mj(a) were not evaluated in closed
form. This is essential for extracting the singular parts of the kernels of
the resulting integral equations as well as for studying and obtaining the cor-
rect singular behavior of the solution. The analysis also shows that this.
critical aspect of -the problem relating to the singular nature of the integral
equations and their .solution is entirely dependent on the asymptotic behavior
of certain functions for large values of o (see, for exampie, equations (5.29)
to (5.34)). The variable a appears in these functions explicitly as well gg'
through ﬁﬁ(a). In fﬁe equation which determines ms s the coefficients of thé
characteristic function, which is an 8th degree poiynomial, are functions of
o. Therefore, for the problems -in which the roots mj(a) cannot be expresseﬁ
in closed form, it épbears that if the asymptotic solution of the characteristic
equation giving mj(a) for large values of o can be obtained correctly in

closed form, then the singular parts of the keﬁne]s can be separated and the

singular nature of- the solution can be studied. Furthermore, by also evaluating
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mj(a) for small values of o in closed form and for intermediate discreet values
of o numerically, at least in principle, it is possible to evaluate the Fredhoim
kernels in the integral equations numerically and, at the cost of a rather high

computational effort, to obtain a meaningful approximate solution.
5.5 Results for a Specially Orthotropic Cylindrical Shell

In order to give ap idea about the effect the material orthotropy may have on
the stress intensity factors in a cylindrical shell containing a longitudinal
through crack, in this section some numerical results on cylinders.made of three
different materials will be presented. These are an isotropic cylinder, a
titanium cylinder wﬁich is mildly orthotropic, and a graphite cylinder which

is strongly orthotropic. The measured elastic constants of the orthotropic

materials are shown'in Table 5.1. The table also shows the "average shear

Table 5.1 Elastic constants of the orthotropic materials

Titanium Graphite

E- (psi) 1.507 x 107 1.5 x 10°
E,(psi) 2.08 x 107 40 x 10°
v, 0.1966 0.0075
v, 0.2714 0.2000
Gq2 6.78 x 10° 4.0 x 10°

R B [
Gav. 7.15 x 10 3.73 x ]OJ

modulus" calculated from {see equation (5.10))
MEE,T

G = - s (5.84)
av. 201+ /5 v,)]

where E; 1s the modulus in the axial direction and the notation is given by
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equations (5.4). If the measured shear modulus Gy, were equal to_thejcalcu—
lated modulus Gav.’ then the material would be specially orthotropic andlthe
analysis given in the previous sections would be valid without any approxima-
tions. The table %ndicates that these two values are sufficient?y close so
-that the special orthotropy assumption may be-used to study the effect of

material orthotropy on the stress intensity factors,

Figures 5.2 to 5.5 show the results for a pressurized shell Qith an axial
crack. The membrane and bending'components of the stress intensify factor_
ratio Am and A, shown in the figures are defined by equations (5.74), (5.76)
and (5.81). For the pressurized shell the corresponding fiat-p1ate stres§
intensity factor is

PoR e

kp =4 /@), (5.85)

where Py is the internal pressure and the dimensions R, h, a are shown in
Figure 5.1. Generally the results in cylindrical as well as spherical shells

are presented in terms of the dimensionless "shell parameter" A defihed'by

A = [(12(1 - v2) 1% a//TRRY (5.86)
in isotropic shells, and

A = [12(1 -v,v,)E,/E, T% a/ /RRY (5.87)

_in orthotropic shells (see equation (5.20)). It is seen that the parameter A
in the specially orthotropic shells depends on two elastic constants and,
therefore, is not an appropriate correlétion'cbefficient to be used for the

purpose of.compar%ng the results in two djfferent shells with the same geémetry
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and different materials. Thus, in Figures 5.2 to 5.5 a purely geometrical

parameter, namely a//(Rh) is used as the independent variable.

Also, from the analysis given in the previous sections it is clear that the
dependence of the results on elastic constants is not through A only. Hence,
the orthotropic results shown in the figures are for the specific material
constants given in Table 5.1. Similarly, for the isotropic shells the
Poisson's ratio v appears in the analysis through A as well as elsewhere.

The isotropic shell results shown in Figures 5.2 to 5.5 under the designation
(E]/Ez) =71 are thus obtained for one value of v only, namely .v =1/3. The
effect of v on the stress intensity factors in isotropic shells is discussed
in the following section. In each figure there.are two sets of orthotropic
results which correspond to the alignment of the stiff direction of the ma-

terial in the axial or the circumferential direction of the cylinders.

The resuits indicate that in the specially orthotropic shells the stress
intensity factors are strongly dependent on the modulus ratio E]/Ez, and gen-
erally they increase with decreasing E1/E2, EI being the modulus in axial
direction. This does not, of course, necessarily mean a reduction in the
resistance of the shell to crack propagation as the shell becomes stiffer in
circumferential direction. Any material, particularly a composite, which.is
not isotropic in elastic properties, would not be expected to be_isotropicl'
in its resistance to crack propagation. In each case the load-bearing
strength of the structure would, of course, be 'decided by the ratio of the
stress intensity factor or whatever the measure of the severity of the ex- -
ternal loads and the crack geometry to the corresponding strength parametér

of the materia].'
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Figure 5.6 shows the results for a cylinder with an axial crack under skew
symmetric loading. Here it is assumed that the c¢ylinder is under torsion and
away from the crack region the uniform shear ny==N0 is the only nonzero stress
component acting on the shell. Thus, the corresponding flat plate stress in-
tensity factor is a mode II component given by kp==NGVTEY/h. The membrane
and bending stress intensity factor ratios Cm and Cb shown in the figure are
defined by equations (5.50), (5.51), and {5.54). In this example too a/v{Rh)
rather than the shell parameter A is used as the independent variable-.and for
the isotropic case {designated by (E1/E2)=1) it is again assumed that v =1/3.
Figure 6 shows the same trend as Figures 5.2-5.5, namely, the stress intensity
factors increase with decreasing E]/Ez. This appears to be primarily due to
the muitiplicative factor (ETIEZ)% jn the expression of the shell parametér A
given by equation (5.85}. In fact for a quick estimate of the stress intensity
ratios in skew-symmetric as well as in symmetric problems for the speciaify
orthbtropic shells the isotropic results may Ee sufficient provided A is cal-

culated from equation (5.87).

Table 5.2, which shows the results for only one value of the variable
a/YTRh) = 1.66, gives some idea about the relative effect of material ortho-
tropy. Here the results for graphite, titanium, and an isotropic material
(v=1/3) are compared. In this case.tooy the strong influence of material

orthotropy is apparent.
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Table 5.2 The effect .of orthotro Q% on the stress

intensity ratios (a/ = 1.66)
Isotropic e s .
Material Titanium Graphite
E1/Ep | 1.0 1.381 0.724 26.667 0.0375
A 3.0 2.8M 3.304 1.359 7.018
Cm 1.942 1.880 2.044 1.340 4.045
Cp 0.199 0.158 0.238. 0.019 1.241

5.6 The Bffect of Poisson's Ratio

As indicated in the previous section, in the isotropic shells ;he.Poisson‘s
r&tio v appears in the analysis explicitly as well as throdgh A defined by
equation (5.86). This means that the Stress intensity factors are functions
of two independent variables, namely v and a/{(ﬁﬁf. However, since in most
metallic structura} materials v is in the neighborhood of 1/3 and since v
affects the results partly if not mostly through A, in practice the tendency °
has been to present the results by using only X as the independent variable
fo} a fixed Poisson's ratio, v =1/3. To justify this or to thrgﬁ some light
on the approximation involved, the effect of v for some selected values of A

or a/Y(Rh} has to be studied.

Figures 5.7 to. 5.9 show some results for a cylindrical shell with an
axial crack. Figure 5.7 show the variation of the symmetric stress intensity

‘factor ratios Am and A, for A=1 and A=3 in a pressurized cylinder where

m b
A = E§. A = E§. kK = Noa = PRV (5.88)
nTk M T T R ,

In this case the effect of v on the main stregs intensitiy component Am appears -
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to be négligible. Figure 5.8 shows some:symmetric results for the shell under
cylindrical bending only in which MMY= - M0 is the only nonzero crack surface
loading. For this loading the corresponding flat plate stress intensity factor

is defined by

6M

ky = 52 V2 ’ (5.89)

and Am and Ab are again given by equations (5.88). In this case too the varia-
tion of the mainistress intensity component Ab with v for the values of A=1
and A=3 does nét appear to be significant. Even though theré is a consider-
able relative change in Am as v goes from zero_to 0.5, it should be observed

.that the absolute value of Am itself 1s rather small.

‘An example for the skew-symmetric problem is shown in Figure 5.9. Here it
is assumed that a cylinder containing an'axial crack is under torsion and
A=5. The related stress intensity factors are defined by equations (5.50),
(5.51), and (5.54). For this A value, the effect of v again appears.to be
negligible. ‘

It should be nofed that in Figures 5.7 to 5.9 X is used as a ponstant para-
meter. Since A is a decreasing function of v, thiﬁ would compensate Soﬁe
of the increasesﬁin the stress intensity factor ratios observed for increasing
v. A somewhat more meaningful result would ba obta%ned by comparing the stres
intensity factor-ratios for different Poisson's rafios and a Tixed geometric
parameter a/J(ﬁﬁT. A very limited such comparison for the symmetric prob1eh
is shown in Table 5.3 which Teads to the same general conclusion that the

effect of y on the stress intensity factors is not very significant.



Table 5.3 The effect of Poisson's ratio

. N, #0, M =0 N,=0, M #0
) v Am A R R,
0.5 2.157 0.353 0.097 0.810
o3 1/3 2.163 0.364 0.078 0.865
0.15 2.066 0.352 0.057 0.912
209 ‘13 | 207 | 0.370 0.076 | 0.873
0 2.045 0.326 0.043 0.932
26 1/3 2.059 0.372 0.076 0.875

5.7 Interaction of Two Cracks
In plane problems it is known that if the medium contains more than one crack,
depending on the relative distance between the cracks, there could be a strong
interaction between the respective stress fields and the stress intensity fac-
tors could be high]y affected. In order to give some 1deé about the effect of
interacting stress fields on thé stress intensity factors in shells, in this
section the results of a simple problem for a pressurized cylindrical shell
containing two axial cracks are presented. From the formulation and the solu-
tion of the crack problem in shells given in Sections 2-4 of this chapter it
is clear that there is no major difficulty in formulating the problem and in
deriving the goverﬁing system of singular integral equations if the shell
contains, instead of a single crack, a set of collinear cracks. Therefore,

there is no need io present further analytical details.

L
¢
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In the example under consideration the two cracks are assumed to be equal
in length. The particular crack geometry and dimensions are shown by the
insert in Figure 5.10, and the results are shown in Figures 5.10 and 5.11.
The stress intensity factor ratios Am and Ab are again defined by eguations
(5.88). The superscripts i and o on Am and Ab refer to the inner and ou%er
crack tips, respectively. The figures show the results for A=1,2,3 where A
is defined by equation (5.86) and v again is assumed to be 1/3. For the pur-
pose of comparison, Figure 5.10 also shows the stress intensity factor ratios

for the flat plate with the same crack geometry evaluated from [25]

Al - k; ) b%E(m)/K(m)-—a? (5.908)
m- k. i 2 .
p (b]‘a])[a](b]+a1)/2]
o Ky B30l -E(m)/K(m)] (5.90b)
m k. L ’
P (b'|"a])[b'|(b'|+a])/2]
where
p RVa a2’
o= % ,ay=c-a , by=c+a ,m=1-—, (5.91)

1

and K{m) and E(m} are the compiete elliptic integrals of the first and the

second kind, respectively.

For a/c=0 the two cracks are far apart, there is no interaction, and the
results correspond to that of a single crack in a pressurized cylinder. On
the other hand as aje~+1, i.e., as the length of the net ligament between the
two cracks approaches zero, as expected, the stress intensity factor at the
inner crack tip goes to infinity and that at the outer tip approached the

value obtained for a single crack of length 4a. However, for a/c>0.4 and
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A>2 the results show a somewhat unexpected behavior. In flat plates A; is
always greater than Ag, whereas in shells the resul£s show that for ce;tain
ranges of a/c and X it is possiblie to have A%<:Ag. This behaviot seems to be
even more pronounced for the bending stréss intensity factors shown.in Fig-
ure 5.11. A partial explanation of this phenomenon may be fbund‘in the dis-
tribution of the displacement component w(x,y) normaI»ﬁo the shell surface.
In a pressurized isotropic shell containing a single crack of length 2a,
evaluating w %q the plane of the crack,‘i.e., for x>0, y=0, one obtains,

" for example for A=2, the result shown in Figure 5.12 (wﬁere, in the nﬁtatioﬁ
of Figures 5.1 and 5.10, w>0 inward). The normalization factor which appears
in the figure is given by

212
_ PR%A

“w® TR - (5.92)

and the coordinate x is normalized with respect to a. The figure shows that,
although around the crack there is an ouéward-bu]giﬁg in the shell, further
along the x axis w changes sign and thereuis a:ione'of depression. When the
distance ¢ is smaii enough for the stress and displacement fields of the two
cracks to interact,'for a certain range. of ¢ this "depression" may cause a

reduction in the stress intensity factors.
5.8 Further Results for Isotropic Shells

This section presents a summary of the calcuiated results for the three

idealized crack geometries, namély a cylindrical shell with an axial crack,
that with a circumferential crack, and a spherical shell with a meridional
crack. The 1oad1ng‘condition is assumed to be homogeneous and either syﬁ;

metric or skew—symhétric. The Poisson's ratio of 1/3 is assumed in all
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http:shown.in

calculations. The technique used to solve the related shell problems is sim-

ilar to that described in Sections 5.3 and 5.4 of this chapter [6-9].

Figures 5.13 and 5.14 show, respectively, the membrane and bending stress
intensit& factor ratios Am and Ab for the three shell geometries. In this
symmetric case the only nonzero crack surface trgction is assumed to be
Nyy==-NOf=constant, x being the coordinate along the crack.* The result;
for the symmetric problem in which ﬂxy= -M0f=consFant is the only nonzero
crack surface load are given in Figures 5.15 and 5.16. Finally, Figures 5.17
and 5.18 show the skew-symmetric results for the three crack geométries where
ny==-N0==cohstant is the nonzero crack surface traction. In présenting.,
these results A is defined by equation {5.86), Am and Ab are defined by equa- .
tions (5.88) twith kp as given by equations (5.89) for Figures 5.15 and 5.16),

and Cm and C_ are defined by equations (5.50), (5.51), and (5.54).

"It should be noted that there vas a numerical error in Ap for the cylindrical
shell with a circumferential crack given in [71.
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Figure 1. Geometry of a cylindrical shell with an axial crack.
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Figure 2. Membrane component of the stress intensity factor rat1o An
for a pressurized Titanium and for an isotropic (v= 1/3)
cy11nder



Figure 3. Bending.component of the stress intensity factor ratio Ay for '
a pressurized Titanium and for an isotropic cylinder.
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Figure 4. Membrane component of the stress intensity factor ratio Ay for
a pressurized Graphite and for an isotropic cylinder.
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Figure 5. Bending component-of the stress intensity factor ratio Ap for
a pressurized Graphite and for an isotropic cylinder.
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Figure 6. Membrane and bending components of the stress intensity factor
ratio, Cm and Cp for a specially orthotropic (Titanium) and for
an isotropic {v = 1/3) cylinder under torsion.
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Figure'?. The effect of Poisson's ratio on the ctress intensity factors
in a pressurized isotropic cylinder with an axial crack.
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Figure 8. The effect of Poisson's ratio on the stress infensity factors
in an axially cracked cylindrical shell under uniform bending,
Myy==M0.
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Figure 9. The effect of Poisson's ratio on the stress intensity factors in
an axially cracked fsotropic cylinder under torsion {1=5).



Figure 10.

The membrane components of the s
in a pressurized jsotropic cylin
axial cracks. Al for the inner
crack tip.
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der (v=1/3) with two collinear
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Figure 11. The bending components of the st}'ess intensity factor ratio in
a pressurized cylinder with two axial cracks. A'l!, for the inner
crack tip, Ag for the outer crack tip. :
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Figure 12. ' Displacemerit confip'onent w normal to the shell surface in the
‘ plane of the crack for a pressurized cylinder with an axial
crack, x=X/a.



Figure 13. Membrane component of the stress intensity factor ratio in
symnetrically-loaded shells: Nyy=N0#G, I"lyy=0.



. Figure 14. Bending component of the stress"intensity factor ratio in
symmetrically-loaded shelis: Nyy=No#0, Myy=0.
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Figure 15. Membrane component of the stress intensity factor ratio in
_ shells symmetrically-loaded in bending: r-‘lyy=M0#0,, Nyy = 0.



Figure 16. Ben&ing component of the stres.s“intensity factor ratio in
shells symmetrically loaded in bending: Myy=Mg # 0s Hyy= 0.



Figure 17. Membrane component of the stress intensity factor ratio in
shells under uniform skew-symmetric membrane Toading: Hyy = Ng-



Figure 18. Bending component of the stress intensity factor ratio in shells
under uniform skew-symmetric membrane loading: Nxy=Ng.



