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The Numerical Evaluation of Maximum-Likelihood
Estimates of the Parameters for a Mixture of Normal Distributions
from Partially Identified Samples
by

Homer F. Walker
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1. Introduction.

Let be populations whose multivariate observations in R »

1.---’“m

are distributed with respective normal density functions

1 0.T o-1 0
1 - 2(x-ui) Iy (x=uy)

(2n)n/2!£:| 1/2

Pi(x) = AR &l P

If LS is a given mixture of members of these populations, then observations

on w, are distributed in IR_“ with density function
E 0
px) = I, agp (x)

for an appropriate set of proportions fa:} . These proportions

i=1,-,m
B o 0
necessarily satisfy 181 % 1 and ai 20, 1i=1,-,m. In this note, we

also assume that each ao is strictly positive.

i
We address here the problem of numerically approximating the maximum-

likelihond cstimates of the parameters {at,u?.x?lihl *

samples of two types. Samples of both types consist of sets |

determined by

}

X
Ik k=1, N,



of independent observations on "1' 1 =0,...,m. (The sets {xik}k-l,....N"

i=1,...,m;, comprise the identified observations of such samples, and such

samples are said to be partially identified.) We distinguish samples of the

two types according teo whether the numbers N1 of identificd obscrvations
contain information about the proportions a:. i=1,...,m:. If the numbers
of identified observations contain no information about the proportions,
then the sample is of the first type; otherwlse, the sample is of the second

type. The following are examples of how samples of the [irst and socond

types, respectively, might be obtained:

(1) For i =0,...m, numbers N1 are arbitrarily choosen and inaependont
observations {x k} are obtai'.ed from 7 .
ik g=1,-,Ng i
(2) A number K = of observations are obtained from w . For some N - K,

No of these observations are left unidentified, while the remaining

K = No observations are identified. For {1 =1,...,m, a subset

[¢]
{xlk} of the identified observations is detormined whoue
k'l'..l ’N]

member observatlions come from "1'

In the following, we¢ consider likelihood equations determined by the
two types of samples which are necessary conditions for a maximum=-likelihood
estimate. These cquations, which were derived by Coberly [1], suggest certain
successive-approximations iterative procedures for obtaining maximuin-1likelihio
estimates. These procedures, which are generalized steepest ascent (deflected
pradient) procedures, contain those of Hosmer [2) as a special case. Using

argument & that parallel those of [3], we show that, with probability 1 .
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No approaches infinity (regardless of the relative sizes of N0 and

N i=1,...,m), these procedures converge locally to the strongly

il
consistent maximum-likelihood estimates® whenever the step-size is between
0 and 2. Furthermore, the value of the step-size which yields optimal

lecal convergence rates is bounded from below by a number which always lies

between 1 and 2.

2. Samples of the first type.

We first assume that numbers {Ni} are given and that, for
1'0.. «syM
{ = 0,0..,my, N, independent observations f{x, |} are drawn on
e
Wye The log-likelihood function for a sample of this type is

No

n N
L) = &, W&y log py(xy)) + \F, log plx,,)

In this expression, the parameter vector © (with componcnts Lo Moo xlo

i=1,...,m) belongs to the vector space a'Om'G,g defined in [3], and

the density functions on the right-hand side are evaluated with the true

0

0 0
parameter vector O (with components o, “i
i

23, 1= 1,...m  replaced

by O,

*As in [3], one can show that, given any sufficiently small ncighbor-
hood of the true parameters, there is, with probability 1 as Nn approaches

infinity (regardless of the relative sizes of N0 and N . S AR SRR T, O

i‘
unique solution of the likelihood cquations for either type of sample in that

neighborhood, and this solution is a maximum-likelihood estimate.
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Differentiating LI(O) and setting its partial derivatives to zero

gives the likelihiood equations

(l.a) a, = Ai(O) g =t I AT

i

N N, 1p (xok No agp, (x )
B : + .z t/// JE 7 -
(1.b) w, =M @) = (I, %, + I x, - o { s

i k=1 "1k = k=1 plx,,)
Ni Nn w WP (\ )
(l.e) &, =8, = {,8, (x,,~u,)(x TS LT (x_, =11 ) Ml "1 "ol
EF P TR T Y AT N S k<1 i p(x,,)
No aip (x k
N, + L, TG
for 1= 1,..:;8:
We set
AI(O) HI(O) sl(u)
A(U) » b ’ M(')) - . ) S(0) =
Am(O) Mm(O) 5,(0)

and define an operator ¢ on CIOIHOAg by

A(O)
¢c(0) = (1 - €)0O+ ¢ | M(O)
$(0)

Clearly, for any non-zero ¢, the likelihood ecquations are satisficd by a
vector 0 ¢ ({of(®@) if and only if 0 = ¢ (0).

We consider the following iterative procedure: Beginning with some

(1)

starting value 0 , define successive iterates inductively by

o) Ly 011y

/

/



for § =1, 2, 3,... . Our local convergence result for this iterative
procedure, as stated in the introduction, follows immediately from the

theorem below.

Theorem 1: With probability 1 as N, approaches infinity, OL is a loca'.y

contractive operator (in some norm on a.m‘g) near the strongly consistent
maximum=1ikelihood estimate whenever 0 < ¢ < 2.

In saying that ¢L is a locally contractive operator near a point
0 « (ZGJYIOJ. we mean that there is a vector norm || || on A®)feN and

a number A, O < X < 1, such that
||¢£(0') - 0]] = All0" - O}
whenever ' lies sufficiently near 0.

Proof of Theorem 1: Let

=]

1
a
] m
o :
L ¥
0= M = 3
R
I:1
5
m

be the strongly consistent maximum=1ikelihood cstimate. We assume that



ay $0, £1=l,iee50: 0Un "0 approaches infinity, the probability is 1
that this is the case.) As in [3] it suffices ro show that, with
probabilicy 1, Vfb( (0) converges to an operator which has operator norm
less than 1 with respect to a suitable vector norm on C’Nﬁf{c,?.

Now AO)

W‘ (0) = (1 - €)I + ¢ V| M) '
S(O)

and we write

A Va'l\ VHA VEA
v M = V’aﬂ Vgﬂ "Eﬁ ’
- v Je
S VQS -’uS M}:‘S
Define inner products < , >i on YW(, <, *'1' on ‘3 T SR B T

(Lon(oj as in [3]. Setting

Py (%) ~1 T
Bi(x) ' L Yi(x) = (x - “1)' 6i(x) = [¥, (x - H =) =11,K,

r

for i =1,...,my one calculates

T
1 NO Bl Bl
Va‘ﬂfo) = 1 - (diag ai) N % : p
o 1 - :
Bm ﬂm
< e T
. il £ 2 1 Lo
AQ) = -~ (diag a,) = L 9 ’
u i N 1 p .
0 B <B Y ot
m m'm*' m
lt' " |
] Nu B‘ [il I’ !
V!:A(H) - (diag “i) N~o— }]'. :
Brn ‘Hmﬁm' m



1 N St % }
VaH(O) = (diag EI { Bi?l) - (diag EI)[ % . :
ﬁm."m B
wr e ag | N [P1M e U L
V-M(0) = (dlag v= ¥ vy,.v.E,'3,) - (diag == b) . .
M l\i 1 - el g i ! KI 1 . a
BmYm <6 P
e l\ "
o (Y [ g 6 A
PgM(O) = (diay # ¥ ByYy<8qa>)) - (diag '—;){’1 : :
2 J'ln"m'. i
3 f (‘:
. " {
V-8(0) = (diag == T §,) - (diag —-»—0
V1 K
. TR :
lu m
: TN ot T T ”
V=8(0) = (diag o— (=L [()y,+v, ()] = ay [( )Y +r (- ) 1 +? 5 <P
M Ki 1 . il | i
o i i
st % MY f '
- (diag m ) { ) - o i
i ! - T :
Bmdm ) l'm\(m’ ‘m
s ol ﬁ181 Shylen !
VS0 = (Mag = ¥ B,8,<6, - (diag -——q { :
A 1 ]
[% 5 o 58 J
m m m m

Here, the arguments of Bi.Yj and 6i can be determined from the indices

of summation, e.g.,

HEA Jen
Bivy = wdy PO v G )



Setting

one obtains at 0O
| 0 0
A
v 2 1% %2 %l
Bar B3a Biy
where
1 Yo
321 = (diag }71 >1 tni'\i
a, N, ;
& At S 1"'1;
822 (diap, Ki : e [j)
B, = (diag - £ g <8, ,+>"
B3 VRS GE ST gt )
xl Hﬂ . 6
831 = (diag Ki rl bi i)
N

TP T AN, SRR RN, ST, S
By, = (diay K}{— : POy )] u1§ [C)y 4y, () 1B, + 2

B.n = (diayp K

i

i

B.8 <8 ,*>M
i i

1Yy

.
.

(N

m'm
B161

\ o)

(diag )

0 (diag )

N



We have assumed that O is the strongly consistent maximum-1ikelihood
estimate. Then, regardloss of the relative sizes of 1‘11 and N _, one can
show as in [3) that, with probability 1, {'-"!’((0) - E(V% (©°))}  converpes

to zero as No approaches infinity. WNow

5 I 0 0
MO(,) n?N“
E(v | M(O)]) = 0 (diag 4 A 1) 0 -
(3] i u,N
) 0
il 0 0 (diag — " 1)
K
i
(dlfug(:?) 0 0
afN
- 0 (diag —— 1) 0 { V() evix), o plan
i fx‘iNl. » lt"
0 0 (diag —— L,)
K i
i
= B(1 - QR),
whoere
| 0 0
o
I 0 (diag - T 1) 0
1 a(‘;N(}
0 0 {diag = 1)
By

(diag a?) TSl
q = 0 1 0

0 0 (diag zi)

R = I Vix) <V(x),'>p(x)dx .
n

R
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It was shown in [3] that QR {is positive~definite and sysmetric with
operator norm less than 1 with respect to the inner product <-,Q'l-> on
aojsroj . It follows that 1-QR {is positive~definite and symmcrrie with

-]

norm less than 1 with respect to <+,Q "*>, Since B and Q commute,

1., is an inner product on a.m.j, and one sces that

<,q '8
-] L =-1.-1 X
W,Q W - <W,Q B W for We (OI®S . Consequently, B(I-0R) i,
positive-definite and symmetric with norm less than 1 with respect to the
inner product <'.l]-18 Y+> . One concludes that
A0\
0 0
E(V¢_(07)) = (1 = )T + ¢ E(V |M(O7) )
$(0")
has norm less than 1 with respect to <',Q—]B-]'» whenever 0 ; 2o
This completes the proof ol the theorem.
We remark that, reasoning as in [3), one may determine o particulan
value of « (the "optimal ") which yields, with probability | as N

approaches infinity, the fastest asymptotic uniform rates of local convir-

gence of the iterative procedure (2) near 0. This optimal ¢ is plven by

2

€® 7= ()

where p and 1 are, respectively the largest and smallest eigenvalues of
B(1-QR) reparded as an operator on EQ&{.A’ ( F is the subspace of (¥
whose components sum to zero.) Since p and © lie between zero and 1,
one sees that the optimal ¢  is always greater than 1. 1f the componcent

populations are "widely scparated,”" then p and T are near roro and,
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hence, the optimal ¢ 18 near 1. If two or more of the component population,
are nearly indistinguishable and 1if N, 1is large relative to the N"s,

then T 1s near zero, and the optimal ¢ cannot be much smaller than 2.

3. Samples of the second type.

We now assume that Ko observations arc obtained from the mixture

population ﬂo , and that, for some N0 < KU. NU of these observations

are left unidentified, while the remaining Kn - NO observations are

Identifiod- Fl‘r 1 - 1,....!!1, ll.‘t {xik} dl‘nu[(‘ l.ll.l' :-u‘l.‘“" ul
k-l.o--. i

the identified obser 11 ns which come from ﬁi' and let {xok]
T PRSE Y

be the set of unidentiticd observations from ﬂu. The lop=1ikeihood

function for this sample is

Ill
GL N N nm Ni N,
= v ) M 0 p
L,(0) = 198 {Nll-..u T Sk 121 ksp 108 Py(xy) + Lk log plx,,)
("u) N N
51 m .1 0
T - - 1 v
log {N TN !} * &y &y doslogp, (x )1 + LF) log plxg,) .

Differentiating L2 and setting its partial derivatives to zero pive

the likelihood equations

) : Ni ay Ng pl(x“ )
(1.a 0, %8 00) 8™ A B wte i

i i % Ko k¥1 p(xuk)
(3.b) n, o= "1(0)

(3.¢) I, = 91(0)
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for L= J,:iiesMs

We soet

>1
—
~
o
—

A(0) =

b B
2

~~

o

S

and define an operator '?! on Gtom.j hy

A(0)
3((0) = (1=-e)0+e [MO i
S(0)

Our iterative procedure is the following: Beginning with some starting

valuoe ﬂ(l). defiue successive fterates fni ctively by

@) UM . § )

for § =1,2,3,... . As before, the desired local convergence result for

this iterative procedure follows {rom the theorem below.

Theorem 2: With probability 1 as N, approaches infinity, Ef is a local'y
contractive operator (in some norm on OlON@J3 ) near the strongly consistent

maximum=likelihood estimate whenever 0 < e < 2.,

Proof of Theorem 2: If 0O is the strongly consistent maximum=1ikelihood
estimate, then, as before, it suffices to show that, with probability 1,
v&‘ (0) converges asx N, approaches infinity to an operator which has

operator norm less than | with respect to some vector norm on Ufﬂmﬁ ‘? .

Proceeding as before, one sees that



Ny oy N

v-(;x(()) = (diag (1 - -—)) (diag & ) 1
1 0

ui N
v A(O)- =(diag k -) { i.

§
~ i 4 Nt) i \ <?
WA(0) = = (diag ) i A :
0 E ) R 6

The remaining Fréchet derivatives, i.e., the derivatives

at ©

S with respect to a, j, and E. are unchanged, except that

replaced by ulK“ wherever it appears.,

One obtains at 0O

N

A (diag(l = — —o) 0
i ]
in
(4) vim| = B, B,y
8 By Y
a
(diap k-) 0
Q
1
0 =1
Ko
0 0

o ~
In this expression, cach B

jk

is the same as

23

=

33

0
L

(diag E!)
0

the corre:

N

=]

spond ing,

i

l}f

B

Ik

13

and

musit bhe

o 3
ik)‘ V(x“k)-‘.'(:-.‘ ) R

1.k

det fned
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previouely, except that each K1 in the latter is replaced by aiko in
the former. One verifies that, with probability 1 as No approaches

infinity, (4) has the same limit as E(I-QR). where Q and R are as
N

before and B = Eg I. Repeating our earlier reasoning, one verifies that
A ¢]
B(I-QR) is positive-definite and symmetric with norm less than 1 with

respect to the inner product <',Q-IE-1 *> . Hence

A(0)
W _(0) = (1= ¢)+ eV [ MO
S(O)
converges to an operator which has norm less than 1 with respect to

-1~=1
<*,Q0 "B . > whenever 0 < ¢ < 2, This completes the proof of the theorem.

The remarks concerning the "optimal «" at the conclusion of the

preceding section are valid here verbatim.
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