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The Numerical Evaluation of Maximum-Likelihood

Estimates of the Parameters for a Mixture of Normal Distrihutlons

from Partially Identified Samples

by

isomer F. Walker

Department of ?lat.hematics, University of Houston

Houston, Texas 77004

1. Introduction.

Let ai l , ... ,Tf m be populations whose multivariate observations in. K

are distributes: with respective normal density functions

T
1 ( x -tr0) E0-1 (x-u )___1 _ _	 2 i 

pi(x) o (2tr)n/2IE0I1 12 	
e	 i	 1,...,m.

i

If if 	 is a given mixture of ►nembers of these populatfuns, then observation

on itO are distributed in (R n with density function

m
p(x) = i F. l ctipi(x)

for an appropriate set of proportions 
{ai

}
i= l	

in • These proportions

m
necessarily satisfy	 a = 1 and ai ? 0, 1 = 1,-,m. In this note, we

also assumV that each ai is strictly positive.

We address here the problem of numerically approximating the maximum-

likelihood estimates of the parameters {,x0,11O,};0} 	 determtned r,y
i	 r 

samples ui two types. Samples of both ty{)e:a consist of Sets {x )
1  k=1,....°^l
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of independent observations oil 	 , i = 0,...,m. (The sets {x }
i	 ik k-1,...,Ni•

i W 1,...,ni, comprise the identified observations of such tramples, and tiuc•h

samples are said to beaP rtia;l y identified.) We distinguish sampIc% of thy•

two types according to whether the numbers N i of identified obsc • rvat Lon:;

contain information about the proportions ai, 1 - 1, ... ,nl. Tf Lite numhet's

of identified observations contain no information about the proportion+,

then the sample is of the firr:t type; otherwise, the sample i., of the :.ecund

type • . The following are e::amplc•s of how samples of the fJrs:t and	 Bond

typos, respectively. might be obtained:

(1) For i = 0,...m, number:: N i are arbitrarily choosen and inuependl-nt

observations {x
ik }
	 are ohtai • .ed from n .
k=1, - ,Ni	 i

(2) A number K^ of observations are obtained from ir e . For some N	 K

No of those observations are left unidentified, while Lite retn:cfnin)

h^ - N^ ohse:vations are identified. For i = 1,... on, a subseL

6C
ik }
	 of the identified observations Is cloterinfilcd whoa.•

member observations come from it 

In the followi11g, we consider likelihood equations determined by the

two types of samples which are necessary conditions for a maximum-likelihood

estimate. These oqu.ations, which were derived by Coberly (1}, suggest, certain

successive-approximations iterat ive procedures for obtalnina ; mnximwn- Iik('lihllc,J

estimates.. 'These procedures, which are generalized steepest ascent (deflect-L-1

grad i vo t) procckluro:;, conL ain those of liosmer 11) as a spec ial l'.Itie.	 I1;; I II);

Ir),null nl	 I hat 1 .11 .11 1 1 . 1 1 hose of [ 3} , we show Lh.l( , w I 111 1 1 1 oh,11) i I i I y	 I

kUOR QUALrIT

>e
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No approaches infinity (regardless of the relati.ve sizes of N0 and

NV i • 1,...,m), these procedures converge locally to the strongly

consistent maximum-likelihood estimates * whenever the stele- size is between

U and 2. Furthermore, the value of the step-rJ;'e which yield:; optimal

local convergence rates is bounded from below by a number which always lies

between 1 and 2.

2. Sam les of the f:I rst type.

We first assume that numoers IN
i }
	 are given and that, for

i	 0,...,m, N,	
ik

independent observations	 fx I	 are drawn ()it

k==1,...,NI
Tt i. The log-likelihood function for a sample of tlds type is

M N I	 No
I. 1 (0)	 i^ 1 k= l lol: pi(xIk) + kil lol: 11(xod

III 	 expression, the parameter vector 0 (with components 	 I., 11 i' l:i#

i	 1,...,m) belongs to the vector space (tOPTO_^ defined in [ 31, and

the density function.,; on the right-hand side are evaluated with the true

parameter vector 00 (with components (x	 11i' 	
i = I , ... ,m) replace,)

by 0.

As in [3], one can show that, given any sufficiently small r.eigidpor-

hood of the trite parameters, there is, with probabi l itv 1 as N o 	 q , pro;icher

infinity (re ,ardleas of the relative sizes of No and N i , 1 = I,...,ni), . ►

unique solution of the likelihood equations for either type of sanyle In that

neighborhood, and this solut Ion I:, a m •txitnunrl ikkA ihood e,;t imate.
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Differentiating 1, 1 (0) and setting its partial derivatives to zuru

gives the likelihood equal iunS

(l.a) a i	 Ai(0)	
Ni kNl P

i(X` k
o	 p ok)

N i 	 No	
`I1pi(xck)	 No 11 i p 1 (X k

(l.h) l t i = Mi (0) = {kt:l xik F k'1 xc^k	 P(xuk)	 I/ {Ni + ky.l	 p(XUkt	
1

Ni	 T	 N„	 I.	 ipi (` 1
0.0 ).i	 S 1 (0) _ {kil (rlk"d(xik-i) + k f:l ( xuk !'i)(xok-Ili)	

p(Xoki

No aipi(_xo_k)
lN i + kil	 1'(Xok)	

}

for	 i	 I , .. ,m.

W( . Set

A 1 (0)	 Ml(0)	 :^ 1 (')

A(0)	 M( ))	 S( l)

A111(0)	 Mn)(n) m

and define in operator fi	 on 	 by

A(())

4, (0) = (1 - e) 0 +	 M (0)
C

S (0)

Clearly, for any nun-zero r_, the likulihuod vquatinn5 are satisfied by a

vector 0 ( ^^^►^^(t9^^ if and only if 0 = fi (0) .
c

We considui the following iterative procedure: l vglnuing with soul..

mart ing value j (I) , define successive iterates inductively by

(^)	 O0
+1) = fi (c) (J) )

c



i

for J . 1, 2, 3,... . Our local convergence result I

proce(ure, as stated in the introduction, follows itmet

theorem below.

Theorem 1: With probability 1 as N 0 approaches infit

contractive operator (in some norm on (X®	 J ) near

max i uu ► n1- likelihood estimate whenever 0 < < <` .

III saying that 4)	 is a locally contractive oiler;

U c (xd+,)1(^► 	 we mean that there is a vector north

It	 S A •	 I ,	 such t 11at

14 , (0')-011 <A110'-WI

whenever 0' lies sufficiently near 0.

Proof of Theorem 1: Let

cz 1

U
m

^t

lJ_ 1

0 ° ll

M

F. m

lit , tlit , htronl,Iy con,intent maximum-1 Ikelihood v!;t inutte.	 WL • :1h:;unlu • t 11.11
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a1 0 0, 1 - 1,...,m.	 Mi NJ :approaches infinity, the probahili

that this is the case.) As in [3)	 it suffices to show that, wi

probability 1, Vm
c 
(0) converges to an operator which has operatc

less than 1 with r espect to a suitable vector imrm on

Now

V4 (0) _ (1 - F ) I +	 v t  (0)

S(( ►)

and we wr 1 l e

A	 V-A V},AVu

V	 M	 V V -m 17--+l

S	 1 V-S VuS
Q

DO ine inner products <	 i on	 l , < , ..i un	 .nil

(LQ r)T(®^ as in [3J.	 Setting;

P i ( x )	 _l	 ^•

(x) -
	

6—
). Y i (x)	 (x - u i ). 6 i (x) _ [):, (x - II I Xx - li l )	 x,1:1

for i = 1,..., m, one calculates

n	 l
I No	 '11	 / al

	

V--A(0) = I - (di.ag ni) 
N	

F.
NO l

	

3	 'f r»	
tm

	

N	 ^1	 ^lYl'`1	 l

V-A(0) _ - (diag rtl)
	 N l

	

n	
m	 III In'

	 m

	

N	 X11	
(' 1 ,^ i 	 .	 „ f	 ,^.

V EA(())	 - (d Lig (r. i )	
N-0

il ro	 1 m m +. 'm
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N	
a	 N	

fSlYl
M(n)	 (d ic► }; 

Ki 1^ (3
i r j ) - (cl iag 

-J) { 
^'U

1
mYm	 m

( , •r
No	

T -1	 c:i	 No 	 ^l Y l	 E lYl'

	

v 11M(0) ^- (dtag K 	 YiYiFi i ) - ( d i ag K )	 is
i	 1	 i	 i [^ mY in	 (imYPI	 m

	1 	 No	 a	 "10 (^)	 . a ^	 . 11 \ T
 lY 1	 "I	 1'	 I	 llEM(c^) :: (di 	 h	 3: R iY i : d i ,.^^) - (dial, K 1 )	 i

1	 1

	

i	 !	 '
I ."	 ,•

lS tnYm 	 1'iu Siu

	

i	 N U	 aiEi	 Nq (^.' l^ i	 !{1
µ--s(0)	 Otag K — ): (n i s i ) — (diag K -) t:

	i 	 1 

N

	

^' i ^s(cl) = (,Ij,Ig 
K.	

-F [(•)YT+1'i(')Tl - a	 lc^((•)Y11+Yi(•)TIt'i +?:i lt'^i<t i^l,•.•j

N c>	 R1`SI	 ^fjl.rl '	 1
K i	

t^ 1
am m

Nr^	
^^	 ai) i	 N..V ? S((^)	 (diai; Ki ^:	 t3 i S i <d i ,	i ) - (diag - K -) 1 :I

i	 1

t'm"nn	 ni ro'

Here, the art uments of Qi'Yi and d i can be deter • mtrned from the irld ir(

Of SlImIll tt ion,	 ,

No	 No

E; 1 Y i  (xk}'1 i 'iuk ) ^ i (""k)



h

5t • t t {ng

m

I; ly i

V=

f ,.Yn,

f;ldl

;i
m m

one ohraims at O

I	 0	 0	 (.I i a!t Ni )	 0
^	 o	 `I}

*t	 -	 a`1	 B 'l2	 R `' I	 _	 0	 (^I i:^t; h i	 (^	 1 ( x k 1 ^'(.. ^ 1 ,'	 ,

i	
^	 I

H	 32	 j ;	 F:i

wli^^r^•

No

i. 1

i

No

 1

No
B.̀  1 L (^i iat; h - };	 (' ly i ^d i , • i.t

1 1

N^^

R 31 = (cltai:- 1(,ic5i)
i

N

(dial" I-{-	 i((')Yi3Y1) _ail°((•)tj^ri(^)IJ;;i I 	 i	 ^^i,'	 i

	

i	 i	 I

	

}	 N,)

	

^	 t
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9

We have as.-mned that 	 ()	 is the strongly consistent tuax imum-likelihood

estimate.	 vit , il, regardl.-K y of the relative sizes of	 N I and	 N .' ,	 one	 cats

show as	 in	 (1J that ,	 wiri-, probability	 1, (Vl4 c (0)	 -	 h(`''S '
.

( c	 ^)))	 converl' 	 .•

to zrro as	 N f)
approaches infinity.	 Now

I 0	 0

Ants) a N

K0" M(ch)	 ) _	 0	 (d iap —i " I)	 0
^i	 ct ti1(( o )

i

0	 (dial, -h	 1)	 1^	 1
i	 a N	 ,1

n I',(I - QR),

W11 • r,

I	 U	 (1
("N

N	 (1	 (dia);	 t 0 1)	 0
K i 	 n°N

0	 0	 (d 1,11" h	 1)
i

(d i ag cti) 0	 0

n	 0	 1	 0

0	 0 (diap EP

I:	 J	 V 	 <V('o'*-'1'(X)dx
I1

0<
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It wa:; sllown iu ( j  that Qk is positive-definite and ::ymm-tric l:It11

operator norm lest; than 1 with respect to the inner product <. ,Q-1 ,> 
fill

(Xvi.;703 .	 It follow:, th.lt	 1-QI{	 is positive-de'fitlit. • and symmi-trlr wild

norm less than 1 with respect to < • , Q-1• >. Sin( . . • B and Q commute,

<• ,t1-I li
-1 •> is an inner product on tl(OW#4, and one r;t • c :; t hat

<W,Q -1 W> - <W,Q l it-I W> for W [ Lr0)r^0,^	 Conseyuenlly, It(1-OR)	 i.;

posit ive-definite and syllnnc'trlr with norm Iv:is than I with reslic, t tie tho

inni • r product	 <•,Q-IB i.>	 One c• 4111c • ludes that

u
A((. ► )^

E(V+ (t)`l ))	 (l - 0I + I 1?(V M(()0 )	 )
t

ha:; liorm ]	 >: t h 111 1 Willi respect to 	 <, ,Q_
I it -1 	 whenev.	 (I	 '.

Tlt 1 complete:; the proot of the theorem.

We re'tuark chat, runsmiing as in 	 ( iJ ' 	mi" nl.ey clef c • rnli!w .1 I"11 t i lll.11

value of	 (thr "opt im.il	 which yields, Willi prohahi I i t y I	 a:, N

npproaches infinity, the fastest asymptotic uniform raters of local collvcr-

gence of the itcrative procedure (2) near 0. This optimal 	 I-, } • ivon by

_ 2
c 

a 
2 - (T+p)

where p and T are, respectively the largust and ::mat 1t :.t eif t imiluc ­ c11

ii(1- QI0 	 re},I.ded a:. :m operator on ^ ' OLYtO^^	 ( (' is th ' . :;uh:.paee of	 (I

wh ,• .;e contponc nt .: tium to zero.) 	 Since p and	 r Ile he t .d. cn zero a nd	 1,

One Sl'o't+ cleat t11v opt LIIGI l	 Is always grc zacr t hail	 1.	 It the civtllp,mcilt

populations ;Ire• "wicit • ly SL'pat.ltud," then p anal T arc near zero acid.

t

L,



I 

hence, the optimal c is near 1.	 if two or more of the cumpunent Imupulat im ► vi

arc nearly in,listinguishable and if Nr) is large relative to the 'vi'

then T is near zero, and they optimal	 cannot be «much smal It r than

3. Samples of the second type.

	

We now assume that K	 observations arc • obtained from the mixture
0

population 710 , and that, for some N0 < K06 Nm.) of these ohservatlom:;

are left unidm-ratified, while the rem.tining K0 - N0 ubsurvatitmn!; are

identified.	 FoI- i - 1, ... ,nm,	 let	 {x	 }	 denote t he :.ubsvt of

ik k=1,NJ

the id.-III. i I i ed ohsev .t i.. ns which coume IF rum 't i ,	 and let	
{ xok } k =1,...,..o

be the set of unident I I Icd observations tram il c ^.	 The log ,,- I Ihi , Ihmmul

IIInct ton for thi'; :;anmlmlC . is

m
( i ? 1 N i ) !	 hl	 Nmmm	 m	 N i	 Nn

L2 (0)	
1`)g {Ni!...Nnm! 

ct l
 ... `at } + i. 1 k F	 lo); p i ( x ik ) + k

^"
1 lmmg, Im(xok)

111

( i }.1 N i ) !	 ram	 Pl i 	Nn
ct 

let; {N1l...lvtim!} + 1 = 1 k1 lot.lO i p j ( x ik ) 1 + k ): i log; im( x0k )

1)i117crentiating	 1..,	 and Setting; its part ial dc • rivati.es to ;-.•ro g iv..,.

tit. I i kel i hood c(Iuat ion:;

_	 _ N i	 ai N,-) pi(xOk)(;. -t)	 ai = Ai (0) = K0 + K`, 	 i
► (x k^

(3.1))	 Ili = MI(())

(3. c)	 ):i = S1(0)



0 (0) _ (1 - c )0 +	 ?1(0)E 

S(0)

Our iterative procedure is the following: Beginning with some ntartint;

value 0 (1) 
, clef i ue successive i t v r,c vu K,, e t i v ► 1 y by

0(.i+l) _	 (0 (.1) )E

for j - 1 ,2, 3, ... 	 As before, the desired local  convergence result i or

this iterative procedure follows from the theorem helow.

Theorem 2: With probability I as N
0
 approaMm infinity, 

0e 
is a Iovalty

contractive operator (in some norm on C011613) near the strongly consisten:

maximum-likelihood estimate whenever 0 < c < 2.

Proof of Theorem 2: If U is the strongly consistent maximum-likellho"d

estimate, than, as More, it suffices to show that, with probability 1.

V$ ( (0) converges an N. approaches infinity to an operator which has

operator n-li'm Irsa; than I with rer;pcct to some vector norm on (,rdtN?a i .

Roceeding as before, one sees that

(4)
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. Ns.	 t

N	 a	
N	 ^,1`	 / PI	 1

v--A((1) o (dial; (1 - - i )> - (dlag i)	
ou	 aiho	 K°	

I

	

u► /	 t •m

N^	 00 	 <61Yl' • 
,
i 1 i

V A(0) - -(ding
O

1
_	 ai	 N,, t	

< Yl'

	

0	 I'	 8
n^)	 in m' • m

'rh_ rv:ri. ► inini; Frechvt derivatives, i.e., the dvrivc ► tivo at	 () of

S with respect to u1, 11,	 ani	 art, unchangvdl, vxi-cpt that 	
1`i	

111u:.1 hi-

replaced by (t 11: , wherever it appears.

One obtalm; at 0

N
n	 (d iag (1 -	 --))	 0	 0

i ()

(h)	 "i	 13L1	 B22	 1323

S	
B31	 1332	 B33

a
(di.1 hh)	 0	 0

O	 N0

0 i1—̂I	 0	
k?,l ^ (xc^k ) V(x 	 1 •

	

0	 0	 (dia	 ti; K _.)
n

N
In this ,•xi)r.r:::iun, .	 BI`; tlu- s. ► nu • as th, r„rr .•t,,,n,1in}.	 K ' ^	 d^ 1 in"1
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previously, except that each K1 in the latter is replaced by a 1Ko in

the former. One verifies that, with probability 1 as N o approaches

infinity, (4) has the same limit as B(I-QR), where Q and R are as
_ N

before and A	 --
2 

I. Repeating our earlier reasoning. one verifies that

_	 0
B(I--QR) is poaitive-definite and symmetric with norm less than 1 with

respect to the inner product	 • ,Q-1 t3-1 •>	 Hence

A (n)

	

V4) (0) _ (1 - E) + EV	 M(u)
E

S (0)

converges to an operator which has norm less than 1 with respect to

>	
whenever O	 < 2. This completes the proof of the thuorcm.

The remark!; concerning the "optimal E" at the conclusion of Hit,

prt ('( , ,1 i ng section are valid here verbatim.
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